
 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



ABSTRACT 

Implementing A Tool For Designing Portable Parallel 
Programs 

by 
Geetha Chitti 

The Implementation aspects of a novel parallel pro-

gramming model called Cluster-M is presented in this the-

sis. This model provides an environment for efficiently de-

signing highly parallel portable software. The two main 

components of this model are Cluster-M Specifications 

and Cluster-M Representations. A Cluster-M Specifica-

tion consists of a number of clustering levels emphasizing 

computation and communication requirements of a paral-

lel solution to a given problem. A Cluster-M Representa-

tion on the other hand, represents a multi-layered parti-

tioning of a system graph corresponding to the topology 

of the target architecture. A set of basic constructs essen-

tial for writing Cluster-M Specifications using PCN are 

presented. Also, a. C program for generating the Cluster-

M Representations is shown. Cluster-M Specifications are 

to be mapped onto the Representations using a proposed 

mapping methodology. Using Cluster-M a single software 

can be ported among various parallel computing systems. 

This thesis concentrates on the implementation of the 

Specifications and the Representations. 



IMPLEMENTING A TOOL FOR DESIGNING 
PORTABLE PARALLEL PROGRAMS 

by 
Geetha Chitti 

A Thesis 
Submitted to the Faculty of 

New Jersey Institute of Technology 
in Partial Fulfillment of the Requirements for the Degree of 

Master of Science in Computer Science 

Department of Computer and Information Science 

May 1993 



APPROVAL PAGE 

Implementing A Tool For Designing 
Portable Parallel Programs 

Geetha Chitti 

Dr. Mary M. Eshaghian, Thesis Advisor 	 (date) 
Assistant Professor of Computer and Information Science, NJIT 

Dr. Daniel Y. Chao, Committee Member 	 (date) 
Assistant Professor of Computer and Information Science, NJIT 

Dr. David Wang, Committee Member 	 (date) 
Assistant Professor of Computer and Information Science, NJIT 



BIOGRAPHICAL SKETCH 

Author: Geetha Chitti 

Degree: Master of Science in Computer Science 

Date: May 1993 

Undergraduate and Graduate Education: 

* Master of Science in Computer Science, 
New Jersey Institute of Technology, Newark, NJ, 1993 

• Bachelor of Science in Electronics and Communication 
Engineering, 
Sri Venkateswara University, Tirupathi, India, 1988 

Major: Computer Science 

iv 



This thesis is dedicated to my family 



ACKNOWLEDGMENT 

The author wishes to express her sincere gratitude to her supervi-

sor, Dr. Mary M. Eshaghian for her guidance, friendship, and moral 

support throughout this research. 

Special thanks to Dr. Daniel Chao and Dr. David Wang for serving 

as members of the committee. The author is grateful to the Depart-

ment of Computer and Information Science for partial funding of the 

research. 

The author appreciates the timely help and suggestions from the 

project group team members Phil Chen, Ying-Chieh Jay Wu and 

Ajitha Gadangi. 

The author appreciates Sekhar Chitti for providing his precious time 

and expert assistance in producing this document. 

Last but not the least the author would like to thank her beloved 

husband Sarma Chitti for his love, support and encouragement. 

vi 



TABLE OF CONTENTS 

Chapter 	 Page 

1.0 INTRODUCTION AND BACKGROUND 	  1 

1.1 	Parallel Architectures  	1 

1.2 	Parallel Algorithms  	3 

1.3 Portable Software  	7 

2.0 COMPONENTS OF CLUSTER-M 	  12 

2.1 Cluster-M Specifications 	  12 

2.2 Cluster-M Representations 	  15 

3.0 IMPLEMENTATION OF COMPONENTS 	  22 

3.1 Program Composition Notation (PCN) 	  22 

3.2 PCN Cluster-M Constructs 	  24 

3.3 PCN Cluster-M Macros 	  29 

3.3.1 Associative Binary Operation 	  29 

3.3.2 Vector Dot Product 	  34 

3.3.3 SIMD Data Parallel Operations 	  35 

3.3.4 Broadcast Operation 	  36 

3.4 PCN Representation Algorithm 	  36 

vii 



Chapter 	 Page 

4.0 MAPPING SPECIFICATIONS TO REPRESENTATIONS 40 

4.1 A Mapping Methodology 	  42 

4.2 An Example 	  44 

5.0 CONCLUSION AND FUTURE RESEARCH 	  46 

	

APPENDIX     47 

REFERENCES 	  52 

viii 



LIST OF FIGURES 

Figure 	 Page 

1 	Static Interconnection Topologies  	4 

2 	Static Interconnection Topologies . . . .  	5 

3 	Dynamic Interconnection Topologies  	6 

4 	Cluster-M Representation of N-Cube of Size 8. .   17 

5 	Cluster-M Representation of Mesh of Size 8. 	 18 

6 	Cluster-M Representation of a Ring of Size 8. . . . 	 18 

7 	Cluster-M Representation of A Completely Connected 

System of Size 8. 	  19 

8 	Cluster-M Representation of An Arbitrarily Connected 

System of Size 8. 	  19 

9 	PCN System Structure 	  23 

10 	Cluster-M Specification of Associative Binary Macro 	 30 

11 Mapping of Associative Binary Macro Onto An N- 

Cube of Size 8. 	  31 

12 	Mapping of Associative Binary Macro Onto A Mesh of 

Size 8 	  32 

ix 



Figure 	 Page 

13 	Mapping of Associative Binary Macro Onto A Ring of 

Size 8 	  33 

14 	Cluster-M Specification of Dot Product Macro. . . . 	 35 

15 	Cluster-M Specification of Broadcast Macro 	 37 

16 	Mapping Onto N-Cube of Size 8 	  41 

17 An Example For Mapping Algorithm 	  45 



CHAPTER 1 

INTRODUCTION AND BACKGROUND 

The task of designing parallel algorithms for specific architectures is 

difficult. Every algorithm is specific to the particular architecture. 

In this thesis, we focus on implementing a tool that enhances this 

process of mapping the Specification(algorithm) to the Representa-

tion(architecture). In the following we give a brief introduction to 

parallel architectures, algorithms and issues related to efficient map-

ping techniques. In the rest of the thesis, we give an introduction to 

the Cluster-M components first, and then discuss the implementation 

aspects for each of these components. 

1.1 Parallel Architectures 

The characteristics of parallel algorithms are intimately interwined 

with the characteristics of the problem to be solved and the com-

puter architecture on which the algorithm will be implemented. We 

use the term "architecture" to include the programming environ-

ment and operating system support, as well as machine hardware. 

However, the most significant characteristic of parallel architectures 

is the organization of memory, specifically whether each processor 

has access only to its own private local memory, or memory is glob-

ally shared among all processors. A basic uniprocessor architecture 

1 



2 

has three major components: the main memory, the central pro-

cessing unit(CPU), and the input/output subsystem. A multipro-

cessor architecture consists of two or more uniprocessors. These ar-

chitectures are classified into three schemes: Flynn's classification, 

which is most widely used is based on the multiplicity of instruction 

streams and data streams. These are SISD(Single Instruction stream 

-Single Data stream), SIMD (Single Instruction stream -Multiple Data 

stream), MISD(Multiple Instruction stream -Single Data stream), 

MIMD(Multiple Instruction stream -Multiple Data stream). Feng's 

classification is based on serial versus parallel processing, Handler's 

classification is determined by the degree of parallelism and pipelin-

ing. The SIMD systems are currently being used for scientific oper-

ations as their are especially suitable for exploiting the parallelism 

inherent in certain tasks. In designing SIMD systems, constructing 

an interconnection network for communications among the processors 

and memories presents a major problem. 

In designing the architecture of an interconnection network four 

design decisions can be identified. They concern operation mode, 

control strategy, switching method, and network topology. The oper-

ation modes are classified into three categories: Synchronous, Asyn- 

chronous and Combined_ All existing SIMD machines choose the 

synchronous operation mode. The control strategies are classified 

as centralized control and distributed control. Most existing SIMD 

networks choose the centralized control on all switch elements by 

the control unit. The two major switching methodologies are cir- 



3 

cuit switching and packet switching. Last of all, based on network 

topologies the SIMD interconnection networks are classified into two 

categories: Static networks and Dynamic networks. In a static net-

work, links between two processors are passive and dedicated buses 

cannot be reconfigured for direct connections to other processors. Ex-

amples of static network topologies are linear array, ring, star, tree, 

near-neighbor mesh, systolic array, completely connected, n-cube and 

cube-connected cycle as shown in Figures 1, 2. In a dynamic net-

work, links between two processors can be reconfigured by setting 

the network's active switching elements. Examples of dynamic net-

work topologies are single stage, multistage, and crossbar as shown 

in Figure 3. 

1.2 Parallel Algorithms 

An algorithm performs a single well defined function. A task is per-

formed by execution of a collection of algorithms. The task of de-

signing parallel algorithms presents challenges that are considerably 

more difficult than those encountered in the sequential domain. The 

lack of a well-defined methodology is compensated by a collection of 

techniques and paradigms that have been found effective in handling 

a wide range of problems. This section introduces these techniques 

which are interesting on their own and often appear as subproblems 

in numerous computations. The techniques are balanced binary tree, 

the pointer jumping technique, divide-and-conquer technique and the 

pipelining technique. 



4 

Figure 1. Static Interconnection Topologies 



Figure 2. Static Interconnection Topologies 

5 



Figure 3. Dynamic Interconnection Topologies 

6 



7 

The basic scheme to build a balanced binary tree on the inputs 

and to traverse the binary tree to or from the root leads to efficient 

algorithms for many simple problems. This scheme is one of the most 

elementary and the most useful parallel techniques. Broadcasting a 

value to all the processors, and compacting the labeled elements of 

an array, are two simple examples that can be handled efficiently by 

this scheme. The pointer jumping technique provides a simple and 

powerful method for processing data stored in linked lists or directed 

rooted trees. The pointer jumping technique is useful in general be-

cause it is simple and can effectively handle subproblems arising in 

many computational tasks. These subproblems are usually of a size 

small enough that the pointer jumping technique will allow optimal 

overall processing. It is also possible to use the pointer jumping tech-

nique in combination with other techniques to achieve optimality. 

The divide-and-conquer strategy constitutes a powerful, widely appli-

cable approach for developing efficient parallel algorithms. However, 

a straight-forward divide-and-conquer approach does not lead to op-

timal O(log n) time algorithms, unless the merging can be performed 

effiently. Pipelining is an important parallel technique that has been 

used extensively in parallel processing. In the next section, a brief 

introduction on portable software is presented. 

1.3 Portable Software 

A Highly parallel software is usually designed to be suitable for exe-

cuting on specific target multiprocessor system. Adapting such pack- 



8 

ages to run on different machines may require a complete re-write, 

a time-consuming endeavor. Therefore, it is desirable that a soft-

ware package be portable and executable among various architectures. 

Certain tools are needed to act as intermediate media based on which 

machine-independent algorithms can be designed. Such programming 

tools will also provide mechanisms for mapping a given program onto 

desired underlying architectures. 

One of the parallel programming models extensively described in 

literature is Linda (1) 1  . Linda defines a logically shared data struc-

turing memory mechanism called tuple space. Tuple space holds two 

kinds of tuples; process tuples which are under active evaluation, and 

data tuples that are passive. Ordinarily, building a Linda program 

involves dropping a process tuple into tuple space spawning off other 

process tuples. This pool of process tuples, all executing simulta-

neously, exchange data by generating, reading, and consuming data 

tuples. A process tuple that has finished executing turns into a data 

tuple, indistinguishable from other data tuples. Once a program is 

written based on the Linda model, each step must get implemented 

using the underlying architecture. Linda requires large volumes of 

data exchanged to and from the shared memory which may lead to 

heavy congestion over available communication channels of a typical 

multiprocessor system. For this reason, Linda has been mostly used 

for coarse grain computations. Furthermore, it is very difficult to 

implement Linda on architectures not supporting the shared memory 

structure. 

1Parenthetical references placed superior to the line of text refer to the bibliography. 



9 

In contrast to Linda, the programming model Express supports 

a. distributed memory system organization. The Express paradigm 

provides a parallel programming language which allows the user to 

specify the names of processors supposed to exchange information. 

Express handles the routing without requiring the user to specify the 

routing path or algorithm. Express also contains some built in con-

structs which can translate certain forms of a sequential program into 

its parallel equivalent. However, the algorithms coded using Express 

are machine dependent and therefore are not fully portable. 

A few other examples of parallel programming models are: the 

Actors Programming model (2), and Tool for Large-Grained Concur-

rency (TLC). TLC, developed by BBN, employs a language based on 

common-LISP with implicitly parallel constructs to specify the de-

pendencies among a set of coarse-grained remote computations. The 

TLC compiler translates a TLC program into a network of "contin-

uations", separated by object-oriented invocations on remote servers 

which encapsulate the bulk of the simulation processing behind ab-

stract, interfaces. The TLC virtual machine, which typically runs on 

the end-user's workstation, executes the program by sequentially se-

lecting and executing an eligible continuation from the run queue until 

it is empty. Unfortunately, this sequential bottleneck prevents the al-

gorithm from being executed efficiently in parallel. The model Actors, 

on the other hand, allows massive parallel execution of algorithms 

since it consists of self-contained, interactive, and independent com-

ponents of a computing system that communicate by asynchronous 



10 

message passing. At an overhead cost of implementing such system, 

Actors is machine independent: it can be executed on shared memory 

computers as also over distributed networks. 

In this thesis, we study the implementation aspects of a novel 

parallel programming model called Cluster-M which allows parallel 

programs to be written independent of underlying structure. Cluster-

M has two main components: the Cluster-I\1 Representations, and 

Cluster-M Specifications of a problem. The Cluster-M Representation 

of an architecture incorporates the processor interconnection topol-

ogy. A parallel program executable by this model is called the Cluster-

M Specification which represents the communication and computa-

tion needs of a solution to the problem. The Cluster-M Specification 

will then be mapped onto the Cluster-M Representation of the un-

derlying architecture using Cluster-M mapping module. The same 

Specification may be used for any other form of Cluster-M Repre-

sentation. Cluster-M provides efficient means for designing portable 

algorithms which can be mapped onto various multiprocessor organi-

zations. 

The rest of the thesis is organized as follows to describe the dif-

ferent components of Cluster-M in detail. In Chapter 2, we present 

the Components of Cluster-M. 

In Chapter 3, we present PCN implementation of seven Cluster-

M constructs and macros essential for writing portable Cluster-M 

Specifications. Also an efficient algorithm for generating the PCN 

Representations is presented. In Chapter 4, the Cluster-M mapping 



11 

module is studied and one of the implementation aspects of it is pro-

posed and an application of Cluster-M to heterogeneous computing 

is discussed and an example is presented. In Chapter 5, a conclusion 

and future research is presented. 



CHAPTER 2 

COMPONENTS OF CLUSTER-M 

In this section we present the components of Cluster-M which are the 

Cluster-M Specifications and the Cluster-M Representations. 

2.1 Cluster-M Specifications 

A Cluster-M Specification of a problem is a high level machine-independent 

program that specifies the computation and communication require-

ments of a given problem. A Cluster-M Specification consists of mul-

tiple levels of clustering. In each level, there are a number of clus-

ters representing concurrent computations. Clusters are merged when 

there is a need for communication among concurrent tasks. For ex-

ample, if all n elements of an array are to be squared, each element 

in a cluster, then the Cluster-M specification would state: 

For all n clusters, square the contents. 

Note, that since no communication is necessary, there is only one 

level in the Cluster-M Specification. The mapping of this Specifi-

cation to any architecture having n processors would be identical. 

Using the Cluster-M constructs presented in the next section, the 

above example can be written as follows: 

The Cluster-M specification of a given problem consists of sev-

eral layers of clusters with the lowest layer consisting of clusters each 

• 12 



13 

containing a single computation operand. This similarity between 

Cluster-M representation and specification results in simplification of 

mapping problems to architectures and the means to design portable 

algorithms. This will be more evident in the next section where map-

ping strategies are discussed. 

All initial Cluster-M clusters involved in a computation are merged 

into one cluster in the next clustering level. Clusters in intermediate 

levels are merged, split, and/or their elements manipulated according 

to computation and communication requirements. These operations 

on the clusters of each level, unlike datafiow paradigm, are level in-

dependent. 

The basic operations on the clusters and their contained elements 

are performed by a set of constructs which form an integral part of 

the Cluster-M model. 

The following is a list and description of the constructs essential 

for writing Cluster-M Specifications. 

o CMAKE(LVL, x, ELEMENTS) 

This construct creates a cluster x at level LVL which contains 

ELEMENTS as its initial elements. ELEMENTS is an ordered 

tuple of the form ELEMENTS = [ei , e2, • • • , en] where n is the 

total number of components of ELEMENTS. The components 

of ELEMENTS could be scalar, vector, mixed-type, or any type 

of data structure required by the problem. 



14 

• CELEMENT(LVL,x,j) 

This construct yields the j-th element of cluster x of level LVL. 

If j is replaced by 	then CELEMENT yields all the elements 

of cluster x. If x is replaced by '-', then CELEMENT yields all 

the elements of all clusters of level LVL. 

• CSIZE(LVL,x) 

Yields the number of elements of cluster'x, 

(i.e. ICELEMENT(LVL,x,—)ID. 

• CMERGE(LVL,x, y, ELEMENTS) 

This construct merges clusters x, y of level LVL into clus-

ter min x, y of level LVL +1. The elements of the new clus-

ter are given by ELEMENTS. If ELEMENTS in CMERGE is 

replaced by 	the elements of the new cluster are given by 

[CELEMENT(LVL,x,-),CELEMENT(LVL,y, —)] (i.e. the 

elements of x are concatenated to the elements of y to form EL-

EMENTS of the combined cluster). 

• CUN(LVL,*,x,i) 

This construct applies unary operation * to the i-th element of 

cluster x. If i is replaced by '-', then the operation is applied 

to all elements of x. If both i and x are set to 	then the 

operation is applied to all elements of all clusters of level LVL. 

• CBI(LVL, *, x, i, y, j) 

This construct applies binary operation * to the i-th element of 

cluster x and the j-th element of cluster y. If 1, j are replaced 



15 

by 	then the binary operation is applied to all elements of x, 

y. CBI returns the resulting components. 

 CSPLIT(LVL,x,k) 

This construct splits cluster x of level LVL at k-th element into 

two clusters of level LVL+1. 

Using these constructs the previous problem specification can be 

written as: 

begin 

LVL= 1 

CUN(LVL,Square,—,—) 

end 

2.2 Cluster-M Representations 

For every architecture, at least one corresponding Cluster-M Repre-

sentation can be constructed. Cluster-M Representation of an archi-

tecture is a multi-level nested clustering of processors. To construct 

a Cluster-M Representation, initially, every processor forms a clus-

ter, then clusters which are completely connected are merged to form 

a new cluster. This is continued until no more merging is possible. 

In other words, at level LVL of clustering, there are multiple clus-

ters such that each cluster contains a collection of clusters from level 



16 

LVL —1 which form a clique. At the highest level there is going to be 

only one cluster, if there exists a connecting sequence of communica-

tion channels between any two processors of the system. A Cluster-M 

Representation is said to be complete if it contains all the communi-

cation channels and all the processors of the underlying architecture. 

For example, the Cluster-M Representation of the n-cube architecture 

is as follows: At the lowest level, every processor belongs to a cluster 

which contains just it self. At the second level, every two processors 

(clusters) which are connected are merged into the same cluster. At 

the third level, clusters of previous level which are connected belong 

to the same cluster, and so on until level n. The complete Cluster-M 

Specification of a 3-cube, a 2 x 4-mesh, a ring of size 8, completely con-

nected system of size 8, and a system with arbitrary interconnections 

are shown in Figures 4, 5, 6, 7, 8 respectively. 

A Cluster-M Representation with k nested subcluster levels rep-

resents a connected network of processors with diameter Ω(k). To 

investigate the relationship between the clustering levels of an archi-

tecture and its diameter, lets define DLVL  the diameter of Cluster-

M Representation at clustering level LVL. DLVL  is defined as the 

maximum number of communication steps needed between any two 

processors contained in any single cluster at level LVL. 

The diameter of the Representation at level i + 1 can be expressed 

as: 

DLVL+1 = DLVL+(communication overhead of level LV

L+1) 



17 

For example, let us consider a ring-connected architecture with N 

processors where k=  log N levels. The Cluster-M Representation for 

this architecture is given in Figure 6. In this case every two adjacent 

clusters will be merged, the size of clusters is doubled at level LVL 

compared to LVL — 1. k +1 such levels result. The diameter of the 

network can be found by examining DLVL for several levels: 

Thus at the maximum level k= log N, the network diameter = 

The relationship between network diameter and the number of clus-

tering levels depend on the degree of connectivity of the processor 

nodes and on connection patterns at each level. 

Before presenting an algorithm to find Cluster-M Representations, 

we define several terms and identify some clustering properties: 

Figure 4. Cluster-M Representation of N-Cube of Size 8. 



Figure 5. Cluster-M Representation of Mesh of Size 8. 

Figure 6. Cluster-M Representation of a Ring of Size 8. 

18 



Figure 7. Cluster-M Representation of A Completely Connected 
System of Size 8. 

Figure 8. Cluster-M Representation of An Arbitrarily Connected 
System of Size 8. 

19 



20 

e The system graph of an N-processor system S = (P, E) is an 

undirected graph represented by the adjacency matrix, where 

j) = 1 indicate a communication link between processors 

e A clique in an undirected graph 

of vertices each pair of which is connected by an edge in E. In 

other words, a clique is a complete subgraph of G. 

e A system processor is contained in only one cluster at level 

LVL. Let PC(LVL, x) designate all processors belonging to 

cluster x of level LVL. Thus for clusters x, y of level LVL, 

e Each cluster is identified by the lowest numbered processor con-

tained in the cluster (i.e for cluster x, x = minPC(LVL,x)). 

Thus let CLUSTERS(LVL) = [c1,• • • , cm } be an ordered tuple 

designating the clusters at level LVL, with m being the number 

of such clusters. 

•

 The clusters of level LVL form an undirected graph where 

two clusters x, y are connected if there exists processors px  E 

e Define C(LVL,p) = c to indicate that processor p belongs to 

cluster c of level LV L, 1 ≤ LVL ≤ k, where k is the maximum 

number of clustering levels . 



21 

With the aid of the above properties and definitions, we next present 

an algorithm to generate Cluster-M system Representation. 



CHAPTER 3 

IMPLEMENTATION OF COMPONENTS 

In this section, we first give a brief introduction to Program Com-

position Notation (PCN), a parallel programming system selected as 

an implementation medium for the various components of Cluster-M. 

We then discuss Cluster-M components implemented in PCN. 

3.1 Program Composition Notation (PCN) 

Program Composition Notation is a system for developing and exe-

cuting parallel programs (4). It comprises of a high-level programming 

language, tools for developing and debugging programs in this lan-

guage,and interfaces to Fortran and C that allow the reuse of existing 

code in multilingual parallel programs. Programs developed using 

PCN are portable across many different workstations, networks, par-

allel computers. The code portability aspect of PCN makes it suitable 

as an implementation system for Cluster-M. 

PCN focuses on the notion of program composition and empha-

sizes the techniques of using combining forms to put individual com-

ponents (blocks, procedures, modules) together. This encourages 

reuse of parallel code since a single combining form can be used to 

develop many different parallel programs. In addition, this facilitates 

reuse of sequential code and simplifies development, debugging and 

optimization, by exposing basic structure of parallel programs. PCN 

22 



23 

provides a core set of three primitive composition operators: parallel, 

sequential, and choice composition, represented by ||, ; and ? respec-

tively. It is a simple, high-level programming language with C-like 

syntax. More sophisticated combining forms can be implemented as 

user-defined extensions to this core notation. Such extentions are 

referred to as templates or user-defined composition operators. Pro-

gram development, both with the core notation and the templates is 

supported by a portable toolkit. The three main components of the 

PCN system are illustrated in Figure 9. 

Figure 9. PCN System Structure 



24 

3.2 PCN Cluster-M Constructs 

The seven Cluster-M constructs are implemented in PCN as follows: 

/* 1. Makes given elements into one cluster */ 

CMAKE(LVL,ELEMENTS,x) 

MIN(ELEMENTS, n), 

/* n is the smallest number in ELEMENTS */ 

x = [LVL, n, ELEMENTS] 

M N (E , n) 

{ ? E? = 	> 

; 

n = 

min} 

 

} 

MIN1(E1, in, min) 

{ ? El? = [h E2]— > 

; 

{?h < m— > 	= h, 

default— > m1 = m  

, 



25 

MIN1(E2, ml, min) 

}, 

default— > min = m 

} 

/* 2. Yields an element of the cluster */ 

CELEMENT(x, j, e) 

? x? = [LVL|x1]— > 

{ ? x1? = [n|x2]- > 

CELEMENT1(x2, j, e) 

}, 

default— > e = [] 

} 

CELEMENT1(x, j, e) 

{ ? j > 1— > 

{ ? x? = [h x1]— > 

CELEMENT1(x1, j -1,e), 

default— > e = x 

} 

/* 3. Yields the size of the cluster */ 

CSIZE(x, s) 



? x? = [-, -, x2] — > CSIZE1(x2, 0, s), 

default 	— > s = 0 

} 

CSIZE1(x, acc, s) 

? x? = [-| x1] — > CSIZE1(x1, ace + 1, s) 

default 	— > s = acc 

} 

/* 4. Merges cluster x and y */ 

CMERGE(x,y, ELEMENTS, z) 

? [LV L _x x1], y? = [LV L _y y1]— > 

? xl? = [nx x2], yl? = [ny|y2]— > 

M I N (nx , ny min), 

z = [LVLx  +1, mm, ELEMENTS] 

}, 

default— > z = [] 

} 

26 

MIN (nx, ny, min) 



1? ny >= nx - > min= nx, 

default — > min = ray 

} 

/* 5. Does the Unary operation */ 

CUN(*, x, i, e) 

{II CELEMENT(x,i,e1), 

e= *(e1), 

} 

/* 6. Does the Binary operation */ 

CBI(*,x,i,y,j,e) 

CELEMENT(x,i, el), 

CELEMENT(y,j,e2), 

e = el *e2, 

} 

27 

/* 7. Does the Split operation */ 



CSPLIT(x,k,p,q) 

CSIZE(x,$), 

{? k > 8—> 

H 	x = [LVL  L|x1], 

x1 = [n|x2], 

CSPLIT1(x2,k,p), 

} 
CSPLIT2(x2, k, s — k, q), 

} 

} 

CSPLIT1(x,k,p) 

{? k > 0—> 

{H x=[hlxl] 

P = [hip?], 

CSPLIT(xl,k — 1, pl), 

} 
default— > p = 

} 

CSPLIT2(x,k,1,q) 

k> 0— > 

{H x = [h|x1] 

CSPLIT2(xl,k — 1,1,q), 

, 

28 



29 

default— > CSPLIT1(x,l,q) 

} 

3.3 PCN Cluster-M Macros 

Several operations are frequently encountered in designing parallel 

algorithms. Macros can be defined using basic Cluster-M constructs 

to represent such common operations. The utilization of macros in 

problem Specifications instead of using low-level constructs simpli-

fies mapping of Specifications to Representations. The mapping of 

each defined macro is done for each system Representation only once. 

Whenever any defined macro is encountered in the problem Speci-

fication, the predetermined mapping for the architecture at hand is 

looked up from a Cluster-M macro mapping library. We next present 

several macros, their coding in terms of Cluster-M constructs and 

their PCN implementation: 

3.3.1 Associative Binary Operation 

Performing as associative binary operation on N elements ending up 

with one value as the result is a common operation in parallel appli-

cations. The Cluster-M Specification for input size = 8 is given in 

Figure 10. The resulting Specification is an inverted tree with input 

values each in a leaf cluster at level 1 and the result at root cluster at 

level log n. 1. Using Cluster-M constructs, the macro ASSOC-BIN 



30 

applies associative binary operation * to the N elements of input A 

and returns the resulting value as follows: 

ASSOC_BIN(*,N,A) 

LVL =1, 

{l op i over 1 to N 

CMAKE(LV L,i, A(i))}, 

k = log N, 

{ op LVL over 1 to K 

CMERGE(x,y,CBI(op,x,i,y,j,e)) 

} 

Figure 10. Cluster-M Specification of Associative Binary Macro. 



31 

Figure 11. Mapping of Associative Binary Macro Onto An N-Cube 
of Size S. 



32 

Figure 12. Mapping of Associative Binary Macro Onto A Mesh of 
Size 8. 



Figure 13. Mapping of Associative Binary Macro Onto A Ring of 
Size 8. 

33 



34 

3.3.2 Vector Dot Product 

As a representative example of vector operations(Vecops), we consider 

here the dot product of two vectors. The vector dot product of two n-

element vectors A and B is defined as d =Ʃni=1(ai • bi). The cluster-M 

Specification for n = 8 is given in Figure 14. 

The first level of clustering has each vector pair of vector elements 

ai,bi  in adjacent clusters each containing one element. The clusters 

are merged by multiplying each two elements. Each two adjacent 

clusters are merged by adding their elements. This is continued till a 

single-cluster level is reached. This macro can be written in terms of 

Cluster-M constructs and the above ASSOC-BIN macro as follows: 

MACRODOT_PRODUCT(*, N, arrayA[i], arrayB[j]) 

int arrayA[],arrayB[],i,j, 

LVL =1, 

{|| op over 1 to 2 * N — 1 

arrayA[i]), 

CMAKE(LVL,i+1,arrayB[i])} , 

{ op i over 1 to 2 * N — 1 

CMERGE(LVL,i,i+1,CBI(op,x,i,y,j))}, 

ASSOC 	 RIN(*,N,CELEMENT(LVL+1,—,—))} 



35 

Figure 14. Cluster-M Specification of Dot Product Macro. 

3.3.3 SIMD Data Parallel Operations 

In this class of operations each operation is applied to all the input 

elements without any communication. In this case each operand is as-

signed one cluster in the problem Specification. The desired operation 

is applied to all clusters. The macro DATA-PAR. applies operation * 

to all N elements of input A, as follows: 

MACRODATA_PAR(*, N, A) 

{ ; LVL  L = 1 , FUNCT = 

{ H op over 1 to N 

C 	AK E(LV L, i, FUNCT) 

} 
} 



36 

3.3.4 Broadcast Operation 

This is a frequently encountered operation in parallel programs. One 

value is to be broadcast to all processors in the system. 

The problem Specification for a macro that broadcasts one value 

'a' from processor x to N recipient clusters or processors, can be writ-

ten in terms of Cluster-M constructs as follows: 

BROADCAST(a,x,n) 

{ ; LVL =1,i! = x 

op i over 1 to N 

CM AK E(LVL  L,i,a) 

} 

} 

The Specification of the broadcast operation for N = 8 and its 

mapping onto a completely connected system of size 8 is shown in 

Figure 15. 

3.4 PCN Representation Algorithm 

The following pseudo-code algorithm, SYS — REP, constructs the 

Cluster-M Representation of a connected system of N processors. 



37 

Figure 15. Cluster-M Specification of Broadcast Macro. 

Initially, all clustering levels are empty. At clustering level 1, each 

system processor is in a cluster by itself. For each clustering level, 

the clique containing the lowest-numbered un-merged cluster, is ob-

tained using procedure CLIQUE. The details of finding cliques is 

omitted (for any of several existing algorithms can be utilized). All 

clusters in the obtained clique are then merged into one cluster of the 

next clustering level using procedure MERGE. This is continued 

until all clusters of the current level are merged. The algorithm halts 

when a clustering level is reached which is comprised of one cluster 

with label 1. 

PROCEDURE SY S — REP(A) 

For all, i, LVL 

begin 

C(LVL, i) = 0 

PC(LVL,i) = 



CLUSTERS(LVL) = [] 

LVL = 1 cluster level set to 1 

end 

For all processors i, 1 ≤ i ≤  N 

begin 

C(LV L, i) = 

Each processor is in a cluster by itself at level 1 

PC (LV L, i) = [i] 

CLUSTERS(LVL) = CLUSTERS(LVL) + i 

end  

While CLUSTERS(LVL) [1] do 

begin 

For all c e CLUSTERS(LVL) starting with min(c) do 

begin 

For all x, y E CLIQUE(LVL,c) do 

begin 

MERGE(LV L,x,y) 

38 

end 



39 

end 

LVL = LVL + 1 

end 

PROCEDURE CLIQUE(LV L,c) 

begin 

Find CLIQUE such that c E CLIQUE 

and ⩝x, y E CLIQUE 

3_4(PC (x, LV L),PC(y, LVL)) = 1 

end 	 • 

PROCEDURE MERGE(LV L,x, y) 

ID e gin 

CLUSTERS(LV L+1) = CLUSTERS(LVL+1)+min(x,y) 

PC (LV L + 1, min(x, y)) = PC (x , LVL) + PC (y LVL) 

For all p, C(LV L,p) = x or y do 

begin 

C(LV L + 1,p) = min(x, y) 

end 

end 

The PCN version of the Cluster-M Representation algorithm is given 

in the Appendix. 



CHAPTER 4 

MAPPING SPECIFICATIONS TO REPRESENTATIONS 

The most challenging task in the Cluster-M model is the mapping of 

the Specifications onto the fixed Cluster-M Representations of various 

architectures. Although in some cases this may appear simple, the 

mapping of certain Specifications may be non-trivial. For example, 

consider the associative binary operation example of the last chapter. 

We assume that it will take one time unit for a single communication 

along a link. Its mapping onto a 3-cube is shown Figure 16 and is 

straight. forward. In step 1 two clusters each having one element are 

merged in one time unit. In step 2, two clusters each having two 

elements are merged in two time units. In step 3, two clusters each 

having four elements are merged in four time units into one cluster 

having 8 elements. So Mapping onto the 3-cube is done in 3 steps. 

On the other hand, to map the same onto a binary tree of size 

8 will lead to a greater time complexity since there are not enough 

communication channels available to support the communication re-

quest specified in the Cluster-M Specification. The complexity of the 

Specification onto the Ring and Mesh of size 8 is shown below; 

Mapping onto Ring of size 8: 

The Mapping onto Ring of size 8 will also be 

done in 3 steps but the time complexity in-

creases. It will take 1 unit of time for step1, 

40 



Figure 16. Mapping Onto N-Cube of Size 8 

41 



42 

2 units of time for step2 and 4 units of time for 

step3. 

Mapping onto Mesh of size 8: 

The Mapping onto Mesh of size 8 will also be 

done in 3 steps but the time complexity differs 

from the above to mappings. Here it will take 

1 unit of time for stepl, 1 unit of time for step 

2 and 2 units of time for step 3. 

Similarly, there is going to be a slowdown if there are not enough 

processors in the Representation available as specified in the Specifi-

cation. For example, the same problem described above, will take at 

least. twice as much time if it is to be mapped on a Cluster-M Rep-

resentation having half the number of processors. Mismatch of the 

number and structure of clustering in Cluster-M Specfication versus 

Cluster-M Representation may lead to significant slow performance. 

In the following section we present an efficient methodology for map-

ping an arbitrary Specification to Representation. 

4.1 A Mapping Methodology 

A good strategy for mapping of a parallel computing application onto 

a system of interconnected processors aims at maximizing the utiliza-

tion of the available processing and communication resources, leading 

to faster execution times. This is traditionally accomplished by thor-

ough analysis of the problem graph in terms of computation blocks 



43 

granularity and data dependencies between such blocks. The system 

parameters, namely processor power and interconnection topology, 

are also carefully analyzed. The mapping process then attempts to 

match each computation block with a system processor minimizing 

system communication overhead (i.e minimize the number of system 

communication hops for each data dependency in the problem). 

The Cluster-M paradigm simplifies the mapping process by for-

mulating the problem in the form of Cluster-M problem Specifica-

tion emphasizing its computation and communication requirements 

independently from the target architecture. Similarly, the Cluster-M 

Representation of the system emphasizes the topology of the target 

multi-processor system. Once both, the Cluster-M problem Specifi-

cation and system Representation are obtained the mapping process 

proceeds as follows: 

Start from the root of Cluster-M specification. At level i, there 

are a number of clusters. Each cluster has a size K which is defined by 

the cumulative sum of the number of computations involved in all its 

nested subclusters. On the other hand, in Cluster-M representation, 

we have a collection of subclusters as part of a Cluster-M represen-

tation of a single connected system. We next look for a number of 

clusters in the representation to match the number of clusters at the 

ith level of the specification. Furthermore, we select the clusters such 

that the size of the corresponding pair matches. The details of this 

algorithm are beyond the scope of this thesis. For more information, 

see (13). As part of the proposed algorithm, several graph theoretic 



44 

techniques have been used. In the next section, we give an example 

to illustrate the functionality of the mapping module. 

4.2 An Example 

In this section, we present a complete example to illustrate the Cluster-

M mapping methodology presented above. 

Figure 17 shows the mapping from a Cluster-M specification to 

representation. First of all, two clusters at the top level of specifica-

tion are mapped onto two clusters of representation. The specification 

cluster of size 5 is mapped onto the representation cluster of the same 

size, however the specification cluster of size 4 has to be mapped onto 

the representation cluster of size 3 since this is the closest matching 

of sizes. Then the same procedure applies for the clusters at the lower 

level of specification. As shown in Figure 17 step 2, specification clus-

ter a is mapped onto representation cluster H, which is a processor. 

In step 3, specification clusters b, e, f, g, h and i at specification 2 are 

mapped onto corresponding processors. Finaly in step 4, specification 

cluster c and d are both mapped onto processor F. 



Figure 17. An Example For Mapping Algorithm 

45 



CHAPTER 5 

CONCLUSION AND FUTURE RESEARCH 

In this thesis we have described the PCN Implementation of the 

Cluster-M components which are the Cluster-M Specification and the 

Cluster-M Representation which includes the macros and the Repre-

sentation algorithm. The constructs and the macros are executed on 

the SGI Workstation. The theoretical aspects of Mapping the Spec-

ification to the Representation is illustrated and the Implementation 

aspects is a part of ongoing research and will be discussed in (13). 

46 



APPENDIX 

This appendix contains the PCN version of the Cluster-M Represen-

tation algorithm. 

47 



48 

The PCN version of the Representation algorithm is given: 

***** ** ********** ***/ 

/. 
/' 	 ./ 
1* 	 SYSTEM REPRESENTATION ALGORITHM USING PCN 
I. 	 */ 

/. 	 */ 
/ 	 / 
DATA S.:RU:7=S USED IN TEE. ALGORITHM: 

Clusters : 2-D array of values 0 or 1 . 
First dimension indicating the level and 
second dimension indicating whether the 
cluster numbered by that index is present 
or not. 

Pr_cl 	: 3-D array with 1st dimension indicating 
level, second dimension index indicating 
the cluster number and 3rd dimension index, 
indicating whether that processor is present 

that cluster or not . This array is also 
binary. 

Member 	: 2-D array with 1st dimension indicating 
level, second dimension indicating processor 
number and the value indicating to which 
cluster this processor belongs to. 

Clique 	: 2-D array with first dimension 
indicating level,second dimension indicating 
cluster number of which this clique is, 
third dimension, indicating the processor 
number and the value representing whether 
the processor in the cluster is in the clique. 
This array is also binary valued. 

*define max 100 /* Maximum number of nodes in the system representation graph./ 
/" 

INPUTS : None 
OUTPUTS : Number of graph nodes , 

Adjacency Matrix of the graph nodes. 
Functionality : Reads the number of nodes and the adjacency matrix 

from standard input. 
'/ 

Input(N,adj) 
int N; 

int adj[max][max]; 

is 
int i,j; 

scanf("%d",&N), 	/' Read the number of nodes in the graph */ 
(II i over 1..N 	/' Initialise the adjacency matrix of graph * {||

 j over 1..N 
adj[i][j]= 0} 

i over 1..N 	/* Read the adjacency matrix of the system graph */ 
j over 1..N 

scanf("%d",&adj[i][j]) 

/* 
INPUTS : 	member , clusters,pr_cl,clique,N. 
OUTPUTS : 	member , clusters,pr_cl,clique,N. 
Functionality : Initialises the variables used . 



Initialise(member,clusters,pr_cl,clique,N) in member[max][max]; 
int pr_cl[max][max]; 
int clusters[max][max]: 
int clique[max][max][max]: 
int N; 
int lvl,pr,cl,i,j,cq,k; 

lvl over 2..N 	/* Initialising from level 2 to N 	*/ 

(II 	{||l pr over 1..N 	member[lvl][pr] 	= 0}, {||
 cl over 1..N 	clusters[lvl][cl]] 	= 0}, 

i over 1..N 
(|| 	j over 1..N 

pr_cl[lvl][cl][pr} = 0 {||

	 cc over 1..N 
it 	 k over 1..N 1: 

clique[lv1][cq][pr] 	= 0 

) 
}, 

{|| cl over 1..N 	/* Initialising for level 1 */ 
member[1][cl] 	cl, 
pr cl[1][cl][cl] 	= 1, 

clusters[1][cl] 	= 1, 
clique[1][1][] =1 

) 

INPUTS : 	clusters, lvl. OUTPUTS
 : 	number. 

Functionality : Calculates the number of clusters at level lvl 
using 2-0 matrix clusters and returns this value 
in number. 

no_of_clusters(clusters,lvl,number) 
int lvl: 
int clusters [ max: 
int number; 
Int cl: 

number 	0, 
cl over 1..N 
(7 	clusters[Iv1][cl] 	1 -> 

number :- number 	1 
} 

/* 
INPUTS : 	lvl, cl, n_cl, member, pr_cl. 
OUTPUTS 	member, pr : 	cl.  
Functionality : Merges the clusters numbered cl and n cl into cl

 and accordingly updates the array member and 
pr cl. 

'/ 
merge(lvl,cl,n cl,member,pr_cl} int

 lvl,cl,n_cl; 
int member[max][max]; 
int pr_cl[max][max][max]; 

{|| 	pr over 1..N 
(7 	member[lvl][pr] 	n_cl -> /* if a processor is a member of n_cl 

49 



50 

make it a member of cl 	*/ 

(II 	member[lvl+1][pr]= cl, 
pr_cl(lvl+1][cl][pr] 

1* INPUTS
 : 	lvl, clusters, member. 
OUTPUTS : 	None. 

Functionality : Outputs the clusters in each level to standard 
output. 

•/ 
Output(lvl,clusters,member) 
int Ivl,clusters[max][max]; 
int member[max][max][max]; 
int i,cl,pr; 

prIntf("lvl : 	",1v1), 
{; 	cl over 1..N 

{

? 	clusters[lvl][cl] 	==1 -> 
{; printf("("}, 

printf("%d :",c1), 
(; pr over 1..N 

	{? member[lvl][pr] 	== cl-> 
printf("%d ",pr) 

}, 
printf)") 

}, 
printf("\n"}; INPUTS

 : 	 Ivl, c, x, clique, pr_cl, adj. OUTPUTS
 : 	 flag. 

Functionality : 	Checks if clusters numbered by c and x form a clique 
in the system representation graph and returns the flag 

as 1 if they form clique and 0 otherwise. 

cl,adj,flag) 
Int lvl,c,x,clique[max][max][max]; 
• pr_cl[max][max)(max),adj(max][max]; 
▪ flag,y,pc_x,pc_y; 
{; flag =1, 

{; y over 1..N 	/' for all the processors in the clique of cluster c */ 
{? clique[lvl][c][y] 1-> 

(? flag 	1 -> 
{; flag 	0, 

{II pc_x over 1..N 	/* for all the processors in the 
cluster x 	*/ 

	

(7 pr cl(lv1][x][pc_x] 	==1  -> 

	

{iT pc_y over 1..N 	/* for all the processors in 
' the clusters that are in 

clique formed by c */ 

	

(? pr c1(1vl][y][pc_y] 	1-> 
? adj[pc_x][pc_y] .... 1-> /* if they are adjacent */ 

	

flag 	1 



} 
} 

} 
} 

} 
} 

} 

51 



REFERENCES 

[1 N.Carriero, D.Gelernter, and J. Leichter. January 1986. "Dis-

tributed Data Structures in Linda." Proceedings of the Thirteenth 

ACM Symposium on Principles of Programming Languages. 

[2] G.Agha. 1986. Actors: A Model of Concurrent Computation in 

Distributed Systems. MIT Press, Cambridge, Mass., 

[3] Kai Hwang, Faye A. Briggs. Computer Architecture and parallel 

processing. McGraw Hill International Series. 

[4] Ian Foster, Steven Tuecke. Parallel Programming with PCN. Ar-

gonne National Laboratory, University of Chicago. 

[5] M.Chandy and S.Taylor. 1991 An Introduction to Parallel Pro-

gramming Jones and Barlett. 

[6] Mary. M. Eshaghian and Muhammad E. Shaaban. April 1993 " 

Cluster-M Parallel Programming Paradigm." International Par-

allel Processing Symposium. 

[7] Mary. M. Eshaghian and R. F. Freund. March 1992. "Cluster-M 

Paradigms for High-Order Heterogeneous Procedural Specifica-

tion", Heterogeneous Workshop. 

52 



53 

[8] Mary. M. Eshaghian July 1991. "Parallel Algorithms for Image 

Processing on OMC." IEEE Transactions on Computers: Vol.40, 

No.7. 

[9] Leah. H. Jamieson. 1987 Characterizing Parallel Algorithms. 

MIT Press Series in Scientific Computation. 

[10] A. Khokhar, V. K. Prasanna, M. Shaaban, C. Wang March 1992. 

"Heterogeneous Supercomputing: Problems and Issues." Pro-

ceedings Workshop on Heterogeneous Processing, pp 3-12. 

[11] George S. Almasi and Alan Gottlieb. 1989. Highly Parallel Com-

puting. The Benjamin/Cummings Publishing Company, Inc. 

[12] Joseph JaJa. 1992. An Introduction to Parallel Algorithms. 

Addison-Wesley Publishing Company. 

[13] Ajitha Gadangi Implementation of Mapping Module. Thesis to 

appear, New Jersey Institute of Technology. 


	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction and Background
	Chapter 2: Components of Cluster-M
	Chapter 3: Implementation of Components
	Chapter 4: Mapping Specifications to Representations
	Chapter 5: Conclusion and Future Research
	Appendix
	References

	List of Figures (1 of 2)
	List of Figures (2 of 2)




