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ABSTRACT 

Rigorous TE Solution to the Staircase Model of the Dielectric Wedge Antenna 

by 
Wan-Vu Chen 

The rigorous TE solution to the staircase model of the dielectric wedge antenna is 

presented. The fundamental, even TE surface wave mode of the dielectric slab waveguide 

is taken to excite a dielectric wedge which is formed by symmetrically tapering the slab. 

The method of solution is based on Marcuse's step-transition method. Radiation patterns 

of power gain are presented which show increased maximum power gains and narrower 

main lobe beamwidths for longer wedges. For higher dielectric constant material, the 

main lobe beamwidth is increased. In all cases examined, negligible sidelobes were 

obtained. 
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CHAPTER 1 

INTRODUCTION  

Current interest in tapered dielectric radiators stems from their compatibility with 

dielectric waveguides and the availability of both lowloss silicon and solid state energy 

sources, which permit integration for use in millimeter wave and integrated optical 

devices [1 - 3]. Millimeter wave devices usually involve open structures in which the 

electromagnetic field is not confined to a finite region of space. Hence, energy leakage 

occurs. For a structure to be a waveguide, the leakage has to be minimized. If the structure 

is an antenna then efficient coupling to the radiation field must be effected. By tapering a 

dielectric guide along it axis, a guided surface wave field gets transformed into a radiation 

field which is characterized by maximum intensity in the forward direction. It has been 

shown that tapering a dielectric guide, as opposed to suddenly truncating it, improves the 

radiation characteristics (increased directivity and lower side lobe levels) over a wider 

frequency band [4 - 6]. 

Tapered dielectric antennas have been studied for some time; see [2] for a 

comprehensive list of references. Rigorous theoretical approaches to analyze these 

antennas, such as, the coupled mode theory or the full wave method [7 - 9] are available. 

However, they are mathematically very complex and usually require an iterative 

procedure just to obtain a solution to lowest order. In particular, the field of the two 

dimensional dielectric wedge antenna fed by a guide of the same material has eluded 

being completely determined [2]. The method of analysis presented here yields the 

rigorous TE field solution for this integrated structure assuming a staircase model of the 

dielectric wedge antenna. 

A single surface wave mode is assumed to be guided by a dielectric slab waveguide 

which evolves continuously into a dielectric wedge. The dielectric wedge is modeled by 

using the staircase approximation. The field scattered by each step discontinuity is then 
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rigorously formulated and solved numerically. The method of solution is based on the 

step-transition method introduced by Marcuse [10, 11], who applied it to step-tapered 

transitions between waveguides of different, but uniform cross-sections. 

Many methods have been developed to study taper transitions between dielectric 

guides or fibers. Several approaches, including the couple mode theory, the step-transition 

method and the propagating-beam methods are reviewed in [12], which also introduces 

the so called "exact numerical method" that we have chosen to use. This method is based 

on Marcuse's step-transition method, but applies orthogonality relations to obtain a sparse, 

diagonally dominant matrix that allows for repeatable, efficient and accurate numerical 

solution of the linear system of equations which is obtained at each step discontinuity. It 

showed be noted, however, that the "exact numerical method' as presented in [12] was 

done incorrectly. The correct formulation is developed in Chapter 2. The numerical 

method used is described in Chapter 3 and numerical results are presented in Chapter 4. 

Because the "corrected exact numerical method" in Chapter 2 depends on the accuracy 

that is obtained at a single step discontinuity, comparisons are made in Chapter 4 with the 

published results of Rozzi and others [13 - 15] for the single step discontinuity problem. 

Finally, in Chapter 4, the radiation patterns of power gain for the integrated slab 

waveguide/wedge radiator are presented for various wedge lengths and for different 

dielectric materials. 



CHAPTER 2 

FORMULATION  

The physical geometry under consideration is a lossless, semi-infinite, dielectric slab 

waveguide of thickness 2D1  which, beginning at z = 0, is tapered to a point at z = L. A 

model for this tapered dielectric is depicted in Figure 1, wherein the smooth tapered 

portion is replaced by short slab waveguide segments of equal length Az and uniform 

cross-sectional areas of progressively smaller widths 2D, i = 2, ..., M-1, with DM  = 0, for 

z > L. In Figure 1, only four uniform slab waveguides are shown and the tapered section 

is modeled by three slab waveguides of successfully smaller widths D2, D3, and D4  such 

that D1  > D2  > D3  > D4  > D5  = 0. The regions of space where the electromagnetic field is 

to be found number 5; the semi-infinite slab waveguide occupies the region z < 0 (region i 

= 1), the taper is segmented into three regions (i = 2, 3, and 4), while the semi-infinite free 

space region is identified as region M = 5. Each region i, i = 1, 2, ..., 5, is further separated 

into 3 sub-regions identified by Ii, IIi, IIIi, where IIi is occupied by the dielectric and sub-

regions Ii and IIIi are free space above and below the dielectric, respectively. The last 

region in Figure 1 is such that II5  does not exist since the dielectric is taken to truncate at 

z = L with a finite width 2D4. 

A fundamental, even TE surface wave mode of an infinite uniform dielectric stab 

waveguide is assumed to be incident in the +z direction from z = -co. This mode, 

normalized to unity incident power, does not experience cutoff and can propagate along 

very thin slab waveguides. Because of this excitation and the staircase approximation for 

the wedge geometry, it is assumed that the field is TE everywhere. Hence, the field 

components in each region are Eyi, Hxi  and Hzi . Since the geometry and excitation of the 

structure in Figure 1 are independent of the y-coordinate, all field quantities are 

independent of the y-coordinate. Hence, the time harmonic, source-free Maxwell field 

equations for the TE field with respect to the z-axis in each region (i) take the form : 

3 



Figure 1 Staircase approximation. 
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η0Hxi  

= 

1/ jk0  ∂Eyi/ ∂z , η0Hzi  

= - 1/ jk0  ∂Eyi / ∂x, 

 

 η0[∂ H xi/∂ z - ∂ Hzi /∂ z] = jk0[ ki(x)/ k0]1/2 E yi  , 

 

(2.1a) 

(2.1b) 

where 

{k0                    │x│
> 

Di 
 

ki (x) = {k │x│< Di 
 

(2.1c) 

k = k0εr 1/2 = ω(µ0ε0εr )1/2  , η0 

= 

(µ0ε0)1/2  ,   (2.1d) 
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The quantity a is the angular frequency, (µ0, ε0  ) the permeability and permittivity of free 

space and εr  is the dielectric constant. The above fields assume a time-dependence of 

exp(j ω t) which is suppressed. 

Substitution of (2.1a) into (2.1b) yields the reduced wave equation+ 

[∂2 / ∂x2  + ∂2 / ∂z2 + ki2
(x)]Eyi = 0,                                    (2.2) 

 

  

where ki2(x) is given in (2.1c). Once Ey, is determined from (2.2), the other components 

Fix, and Hz, follow from (2.1a). 

Before discussing the consequences of the step discontinuities, it is first necessary 

to present the complete orthonormal set of modes which are supported by an infinite, 

lossless, dielectric slab waveguide of arbitrary thickness 2D. Since excitation and slab 

geometry are symmetric about the z-axis, only even surface and even radiation modes are 

included in the complete set. Hence, an arbitrary, even TE field in each region (i) of 

Figure 1 can be expressed in terms of these modes, with. D replaced by D, and with 

parameters identified by the subscript "i". 

The slab modes are found by solving Maxwell's source-free field equations subject 

to the appropriate boundary conditions. The boundary conditions are the continuity of the 

tangential electric and magnetic fields at interfaces located at x = ±D. Analytic 

expressions for these modes are well known [11] and will only be summarized in the 

discussion to follow. 

2.1 Even TE Modes of the Dielectric Slab Waveguide of Thickness 2D  

Note that the subscript "i" which appears in (2.1) and (2.2) has been dropped for 

convenience since only one waveguide of thickness 2D is being considered here. 
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Let 

Ey = v(z)ɸ(x). 	 (2.3) 

Substitution of (2.3) into (2.2) yields 

d2v/dz2 + β2v = 0 	(2.4a) 
 

 
 d2ɸ/dx2 + k2(x)-β 	(2.4b) 

 

with 

kx2 = k2(x)

-β2 	(2.4c) 

where k(x) is defined in (2.1c) which means that the parameter kx  is also different in the 

regions │x│> D and │x│< D. 

Solving (2.4a) gives 

v(z),  Ae-jBz + BejBz 	 (2.5) 

with unknown complex constants A and B. These constants will be determined later by 

applying the boundary conditions of continuity of tangential electric and magnetic fields 

at the step discontinuities. 

Solutions to (2.4b) must satisfy the boundary conditions of continuity of the 

tangential electric and magnetic fields across the interfaces at x = ±D. These boundary 

conditions yield continuity at x = ±D of β , ɸ (x) and dɸ  / dx. The continuity of the 

propagation constant β  is a statement of Snell's law of refraction and dictates that/3 is a 

constant for all x. Depending on the allowable value of the one dimensional reduced 

wave equation (2.4b), subject to the afore mentioned boundary conditions, yield different 

modal solutions. 

2.1.1 Even Surface Wave Modes  

For β  real in the range  k0 ≤ β ≤ k, solutions to the reduced wave equation (2.4b) which 

satisfy the boundary conditions are standing waves in the slab cross section and 
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evanescent fields in the surrounding air regions. The associated potential solutions are 

[11] 

ɸ(x) 

= 

{Cn cos(kxnD)e-axmIxI-D) 	 D ≤ │x│ < ∞  
(2.6) 

{C„ cos(kx) 	 — D ≤  x ≤  D, 

with 

Cn  

= 

[α xn  / 1+ α xnD]1/2 (2.6a) 	  

kxn 

= 

[

k2 - βn2]1/2 (2.6b) 

 

α = [βn2 — k02]1/2 	(2.6c) 

 

and the dispersion relation (eigenvalue equation) is 

kx„ tan ( kx„D) = αxn. 	 (2.7) 

The dispersion relation specifies allowable, discrete, real values β  = βn , n = 0, 1, 

2,..., that identify even surface wave modes. The potential functions ɸn (x) are 

orthogonal and satisfy the relation 

∫∞∞ ɸm (x)ɸn (x)dx = δmn , 	(2.8) 

where δmn is the Kronecker delta function. 

2.1.2 Even Radiation Modes 

The complete set of modes of the dielectric slab waveguide consists of a finite, discrete 

spectrum of surface wave modes plus an infinite, continuous spectrum of propagating and 

evanescent radiation modes. Propagating radiation modes correspond to β  real in the 

range 0 13 ko , while evanescent radiation modes occur when β  = -j│β│for 0<│β│<∞ . 

Radiation modes consist of standing waves both inside and outside the slab. Such waves 

satisfy Maxwell's equations and boundary conditions on the slab surfaces at x = ±D. 

Radiation modes can be thought of as being excited by a source atz = —∞  which extends 

over the range D <ixi< OD [11]. 
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In contrast to surface wave modes, the satisfaction of boundary conditions do not 

yield for the radiation modes a dispersion equation for β. Thus, all values of β  in the 

ranges specified above are allowed and each corresponds to a radiation mode. The 

radiation modes are derivable from the wave equation (2.4b), subject to the continuity 

conditions at x = ±D. The even radiation potential solutions are given by [11] 

ɸ(x,u) = {C(u)[cos(vD)cos(u(│

x

│ — D))- v/u(vD)sin(vD)sin(u(│

x

│ — D))] 

D ≤  │x│ 
< 

∞           {C(u)[cos(vx) -D ≤ │

x│≤ ∞                                                                                                             (2.9)                                    

with    

C(u)={π/2[cos

2

(vD)

+(v/u) 2 (2.9a) 

u = (

k

02 - β2

)

1/2 ,                                                                  (2.9b) 

v= (

k

2 - β2

)

1/2 = k2 - k02 + u2)1/2. (2.9c) 

 

Since u ≥ 0 for radiation modes, (2.9b) substantiates that β is real when 0 ≤ u ≤ 

k

0

, 

while 

β = - f│β│when k0 ≤ k02 < ∞; see (2.12c). 

 

The potential functions ɸ(x,u) are orthonormal and satisfy the relation 

∫0∞ ɸn (x)ɸ (x,u)dx = δ(u-u'),  	

(2.10) 

where δ(u — u' ) is the Dirac delta function. In addition, the surface wave modes and the 

radiation modes are mutually orthogonal, i.e., 

∫-∞∞ ɸn(x)ɸ(x,u)dx = 2∫0∞ ɸn(x

)ɸ(x,u)dx = 0 	(2. 1 1) 

2.2 Arbitrary, Even TE Field of a Slab Waveguide  

Returning to the geometry of Figure 1, the electric field in each region (i) is represented 

by the expansion [11] 

 
Eyi = ΣNn=0vin(z)ɸin(x

)+∫0∞vi(z,u)ɸi(x

,u)dx 	(2.12) 
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From (2.5), 

vin  (z) = Ain  e-βinz  + Bin-jβinz  	(2.12a) 

vi (z,u) = Ai (u)e-jβinz + Bi(u)e-jβi(u)z 	(2.12b) 

and from (2.9b), 

{ (k02 - u2                         k 02 > u2 

βi(u) 

= { 0                     

k

02 = u2 (2.12c) 

{ -j(u2 - 

k 02)1/2                  k 02 < u2 

 

 

 

and βin  for Di  are determined from (2.6b), (2.6c) and (2.7), the eigenvalue equation. The 

summation over the integer n in (2.12) identifies all the propagating even surface wave 

modes and the integral over u represents the continuous spectrum of even radiation 

modes. 

Substituting (2.12) into (2.1a) gives 

N 
η0Hxi = Σiin (z)ɸin(x) + ∫0∞ii (z,u)ɸi(x,u)du, 	(2.13a) 

n=0  
η0Hzi = 1/-jk0 [ Σiin (z)ɸin(x) + ∫0∞ii (z,u)ɸi(x,u)du, 	(2.13b) 

n=0 

where 

iin (z) = 1/jk0  dvin (z)/dz = -βin/k0 [Aine-jβinz] (2.13c) iin ( z,u) = 1/jk0  ∂vi(z,u )/dz 

= 

Aine- jβi(u)z-βin(u)e jβi(u)z]. (2.13d) 

 

Recall that the field components Eyi, Hxi and Hzi, as represented by (2.12) and (2.13), exist 

in each region (i), i = 1,...5, of Figure 1. To find the unknown expansion coefficients in 

each region (i), the boundary conditions of the continuity of tangential electric field and 

tangential magnetic field at the step discontinuities Bi, i = 1,...4, must be imposed. 
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To find the rigorous field solution, however, it is convenient to find partial fields 

first and then to construct the rigorous field solution as a superposition of the partial 

fields. A partial field is a field that is established due to a single step discontinuity, i.e., 

the effect of subsequent steps discontinuities are ignored. This construction will now be 

clarified with reference to Figure 2. 

Figure 2  First forward partial field wave constituents at each step discontinuity. 

2.3 Partial Fields  

Initially, an incident even TE surface wave mode (labeled A, in Figure 2) is guided by a 

slab waveguide of thickness 2D1  in region 1 (z < 0). When this incident wave strikes the 

step discontinuity at z = 0 (boundary plane B1 ), transmitted (A2 = τ1A1) and reflected 
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(B1 =Γ1

, 

A1 ) surface waves as well as forward (A2 (u) = τ1(u)A1 ) and backward 

(B1(u)= Γ1  (u)/A1) radiation modes get excited. Assume that only then = 0 surface wave 

mode is non-zero, and ignore for the moment in region 2 both the backward going surface 

wave (B, =FA) and backward going radiation modes (B2 (u) = 

 

Γ2  (u)A2) which are 

established because of the step discontinuities to the right at 

B

1 , i = 2,...,4. Under these 

conditions, the unknown parameters (Γ1 ,Γ1 (u)) are reflection coefficients and (τ1,τ1 (u)) 

are transmission coefficients for the single step discontinuity at z = 0. The partial fields in 

region 1 (z < 0) take the forms 

E f1xi 

= 

v1(z)ɸ1(x)+ ∫0∞v1 

(

z,u)ɸ1

(x,u)

du = A1 {[e-jβ1z + Γ1e jβ1z]ɸ1

(

x)+∫0∞Γ1(u)ejβ1(u)zɸ1

(x,u)du}, 

 

 

η0H f1xi = - A1 /k0 {β1[e-jβ1z - Γ1ejβ1z]ɸ1

(

x) - ∫0∞β1(u)ejβ1(u)zɸ1

(x,u)

du}, 

 

η0H f1zi = jA1 /k0 {[e1[e-jβ1z + Γ1ejβ1z]dɸ1

(x)/dx + 

∂/∂x ∫0∞Γ1(u)ejβ1(u)zɸ1

(x,u)du}, 

 

(2.14a) 

(2.14b) 

(2.14c) 

where normalization to unity power of the incident even TE0  surface wave mode gives 

 

│A1│= 2η0k0  / β1

)

1/2 The partial fields in region 2 (0 < z < Az) are given by 

E f1y2 = v2(z)ɸ2

(

x)+∫0∞ v2(z,u)ɸ2(x,u)du    

= A1 {[τ1e-jβ2zɸ2

(

x)+∫0∞τ1(u)e-jβ1(u)zɸ2

(x,u)du], 

 

η0H f1x2  = - A1 /k0[β2τ1e-jβ1(u)zɸ2(x)+∫0∞β2(u)τ1(u)e-jβ1(u)zɸ2(x,u)du], 

- 
 

η0H f1z2  = jA1 /k0τ1e-jβ2zd ɸ2

(x)/dx

+ ∂/∂x ∫0∞τ1(u)ejβ1(u)zɸ2

(x,u)du]. 

 

 

(2.14d) 

(2.15a) 

(2.15b) 

(2.15c) 

The subscripts "1" and "2" define the regions where the partial fields exist, whereas the 

superscript "f1" identifies the first forward partial field contributions to the rigorous field 
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solution. The use of the term "forward" signifies that the step discontinuities to the right 

are considered sequentially. To be discussed later, a "backward" partial field contribution 

arises by considering wave progression back from the tip toward the step discontinuities 

to the left sequentially. 

2.3.1 Reflection and Transmission Coefficients at a Step Discontinuity  

The unknown reflection and transmission coefficients at each step discontinuity are found 

following the procedure discussed in [12]. However, significant differences in the 

formulation are introduced. Firstly, the parameters τ(u = 0), Γ(u = 0), τ(u = ko ) and 

Γ(u = k0 ) are not assumed to be zero as had been done in [12]. Secondly, in the numerical 

evaluation of the infinite integral, truncation is taken to include evanescent radiation 

modes. Thirdly, as will be seen shortly, certain double integrals are evaluated correctly, 

whereas in [12] these integrals were evaluated incorrectly. Finally, normalized parameters 

are introduced; [12] did not include comparison of results with other published data 

because their formulation was not properly normalized. 

We chose the method in [12] to solve the problem of scattering at a single step 

discontinuity because the system of linear equations obtained involves a numerically 

efficient matrix that is sparse and diagonally dominant and because a similar system of 

equations is obtained at each subsequent step discontinuity. 

Before implementing the method, we define the following normalized parameters: 

k0 = k0 D1, k1 = k1 D1,  k xn = k xnD1,   α xn = α xD1 n , β n = β n D1, u1 = ui D1,     vi = vi D1,   β n (ui) = β n(ui) D1,   x = x/D1,     z = z/D1,     ρ = ρ/ D1,     Ri = Di / D1 , 

Γ1 = Γ1, τ1   = τ1, Γ1 (u) = Γi(u)/√D1 ,  τ (u) = τ1 (u)/√D1,  
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Eyi   (x,z) = 	√D i  Eyi   (x,z), H yi (x,z) = √ D i  Eyi   (x,z), Hzi  (x,z)  = √ D1H yi (x,z)                       

i = 1, 2, .... 	(2.16) 

Introducing the normalized parameters (2.16) into (2.14) and (2.15), substituting 

into the continuity boundary conditions 

Ey1   (

x,z = 0) 

= Ey2    

(x,z = 0), Hx1 

 (x,z = 

0) = Hx2 (x,z = 0) (2.17)  	 

gives 

(1 + Γ1)ɸ(

x) + ∫0∞Γ1(ū)ɸ1(x,ū)dū 

= τ1ɸ2

(x

)+

∫0∞τ1(ū)ɸ2(x

,ū)dū (2.18a) β(1 + Γ1 )ɸ1

(x)-∫0β1 (ū)Γ1(ū)ɸ1(x,ū)dū 

= β2τ1ɸ2

(x

)+∫0∞β2

(

ū)τ1(ū)ɸ2(x,ū)dū (2.18b) 

 

where (β1,β1(ū)) and (β2,β2(ū))  are normalized propagation constants in regions i = 1 

and i = 2, respectively; β1  and β2  are determined from the eigenvalue equation (2.7) for 

D1  and D2 , respectively, while β1(ū), β2(ū) are both given by (2.12c); both (2.7) and 

(2.12c) are reformulated using normalized parameters. In addition, 

ɸi = D1ɸ1(x), 	ɸ1 = 

(x

,ū) = ɸ1(x,ū), 	(2.18c) 

with 

Ci  = √DICi

, 

 	Ci

(

ū) = Ci

(

ū) 	(2.18d) 

see (2.6), where ɸn (x) is rewritten as ɸi (x), the integer n = 0 being suppressed and the 

integer "i" introduced to identify uniform waveguide regions; see also (2.9), where ɸi

(x

,ū) is given and ɸi

(

x,ū)  is obtained by replacing D with Di. 

Multiplying (2.18a) by ɸ1

(

x) and (2.18b) by ɸ2

(

x)  integrating over 

x 

 from - ∞  

to + ∞  interchanging the order of the integrations over ū and x  and using the 

normalized versions of the orthogonality relations (2.8) and (2.11) yield, respectively, the 

computationally more efficient relationships  

1+Γ1 = τ1 I12 + ∫0∞τ1(ū)I12(ū)dū, 	(2.19a) 
 

β1(1-Γ1)

I12 = τ1β2 

+ ∫0∞ β1(ū)Γ1(ū)Γ1(ū)dū, (2.19b)      
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where 

I12  = ∫0-¥∞ɸ2(x)dx, 		(2.19c) 

	  

I12 (u j) = ∫0- ¥∞ ɸ1 ( x)ɸ 2( x,ū j)dx.                                        (2.19d) 

 

21 2         1  

To solve (2.19), the integrals over z are first evaluated explicitly. Next, the 

remaining integrals are truncated at ū = ūN =  2k0  and discretized. The value of uA, = 2k0  

insures that both propagating and evanescent radiation modes are included . Following the 

procedure used in [12], Simpson's one - third rule approximation is used. For example, the 

integral in (2.19a) is approximated as: 

∫0∞τ 1(ū)I12(ū)dū ≡ ∫0∞ f 1(ū)dū ≈ ∫0∞ūN f1(ū)dū 

≈ ∆ū /3[ f

1

(ū0)+4ΣN-1m=1 f1(ūm)+ f1(ūN)].        (2.20a) 

odd              

where 

f(ūm) = τ1(ū m) I12 (ū m), 

∆ū = ūN /N, ūm 

= m

∆ū, m=0, 1, 2, ...N (N = even). (2.20b) 

Similarly, the integral over u in (2.19b) is evaluated approximately: 

∫0∞β1(ū)Γ1(ū)I 2 1 (ū)dū ≡ ∫0∞g1 (ū0)+4ΣN-1m=1(ū m)+g1 (ū)dū 

(2.21a) 

≈ ∆ū /3[g1 (ū 0)+4ΣN-1m=1g1 (ū m)+2ΣN-2m=2 g1 (ū m)+ g1 (ū N)]. ,            even 

where     

g1(ūm) = β1(ūm)Γ 1 (ūm)I21(ūm)                                               (2.21b)      

It is now necessary to determine 2N+4 unknowns, namely,Γ

1

, τ1, Γ

1 (ūm),τ1(ūm),   

m =  0, 1, 2, ...,N. However, we have only two equations, (2.19a) and (2.19b) with  (2.20) 

and (2.21). To obtain additional equations, multiply (2.18a) by 

ɸ1 (x,ūj) and  

(2.18b) by 
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ɸ2 

(

x,ū) , integrate the resulting equations over x  from - ∞ to + ∞ and evaluated the 

resultant double integral as shown in Appendix A to obtain: 
2Γ 1(ūj) = τ1I21(ūj)+(∫0∞aj-8+∫∞aj+δ)τ1(ū)I2

1(ū,ūj)dū+τ

1

(ū j)T12(ū j),          (2.22a) 

β 1(1-Γ1)I21(ūj) = 2β2(ūj)τ 1(ūj)+(∫0∞aj-8+∫∞aj+δ)∫0∞β1(ū)Γ1(ū)I12(ū,ū)dū +β1(ū)Γ1(ū)I12(ū j) , 

j= 0, 1,2,...,N,R 

where 

T12(ū j) = πC 1(ūj){cos(ūj(1-R21))[cos(vjcos(vjR21) 

+(v j/u j)2sinv jsin(v jR21)]+v j/u jsin(ū(1-R21))sin(v j(1-R21))},          (2.22c) I12(ū,ū j) = (∫0∞-∞ɸ1(x,ū)ɸ2(x,ū j)dx , I12(ū j)=I12(ū j)│ū=ūj  , (2.22d) 

and 0 < δ << 1. As before, the integrals over ū in (2.22) are truncated at ū  = ūN = 2k0 and 

discretized using Simpson's one - third approximation to give 

(∫0ūj-δ + ∫∞ū j+δ)β

1

(ū)Γ1(ū)I12(ū,ū j)dū ≡ (∫0ū j-δ + ∫∞ū j+δ)h1(ū,ū j)dū (2.23a) 

≈ ∆ū/3[h1(ū0,ūj)+4ΣN-1m=1oddh1(ūm,ūj)+h1(ūN,ūj)] and 

(∫0ū j-δ + ∫∞ū j+δ)β1(ū)Γ1(ū)I12(ū,ūj)dū ≡ (∫0ūj-δ + ∫∞ū j+δ)h1(ū,ūj)dū 

≈ ∆ū/3[h1(ū0,ū j)+4ΣN-1m=1oddh1(ūm,ū j)+h1(ūN,ū j)], (2.23b) 

where the infinite limit is truncated at ūN  and 

h1(ūm,ūj) = τ1(ūm)I21(ūm,ūj),           ūm ≠ ūj,                      (2.23c) e1(ūm,ū j) = β1(ūm)Γ

1

(ūm)I12(ūm,ū j), ūm ≠ ū j, (2.23d)  
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and I 12 

(ūm, ūj

) and  I12 

(

ūm

, 

ū j ) are given by (2.21d) with a replaced by ūm  Thus, the 

system of linear equations (2.19a), (2.196) and (2.22a), (2.22b) together with (2.20), 

(2.21), and (2.23) permit the determination of the 2N+4 unknowns, namely 

Γ 1, τ1, Γ1 

(ūm

), and τ 1

(ūm

), m = 1, 2, ..., N. 

From (2.9) it follow that A(ū = ū0) = 0); hence, (2.19d) give I

1

2 (ū0) = 0 and I

12 

(ū0) = 0. 

Thus from (2.20b),  f

1

(

ū0

) 

= 0). Thus from (2.20b), f

1

(ū0

) 

= τ

1

(ū0

) = 0 and from (2.21b), g1

(

ū0 ) = 

 

β1

(ū0

) Γ 1

(ū0

)I 1

2 (ū0

) 

= 0. Also, from the normalized form of (2.12c), it follows that β

1

(

ū0 = k0) = 0; therefore, (2.21b) gives g

1

(ūm = k0) = β

1

(ūm = k0)Γ

1

(

ūm = k0)I21(ūm = k0) = 0. Hence, only 2N+1 unknowns can be found at β

1 

 since 

f

1

(ū0

)

,g1 (ū0

) 

and g1

(

ūm = k0) are zero. This means that we use (2.19) and (2.22) to find 

Γ 1,τ1, Γ1 

(ūm

) and τ 1

,(ūm

)

, m = 1, 2, ..., N, with the exception of Γ

1

(

ūm = k0) and that τ

1

(ūm = k0) and that τ

1

(ū0 

= 0),Γ

1

(

ūm = k0) cannot be determined. 

The procedure is repeated at each step discontinuity. The difference in the 

formulation, at β2  in Figure 2 for example, is that the non-zero wave constituents assumed 

to strike the discontinuity at z = ∆z include now both a single guided surface wave mode, 

represented by A2

, 

plus the forward traveling radiation modes, represented by A2

, 

plus the forward traveling radiation modes, represented by A2(ū

)

A2 (ū

) = τ 1

(ū

)=τ 1

(

ū )A1

, ū≤0<∞). As before, both the reflected surface wave mode (B2=Γ2A2

) 

and the reflected radiation modes (B2(ū

)

=Γ2 (ū

)A2, 0≤ū<∞) in region 3 are neglected. Thus, the normalized transverse field components in region 2 are now: / 

Ef1y2 = A2 {[e-jβ2z]ɸ2(x)+∫0∞Γ2(ū

)

e-jβ2(ū)zɸ2

(

x,ū)dū} (2.24a) 

+A1∫0∞τ1(ū

)

e-jβ2(u)zɸ2(x,ū)dū, 

η0H f1y2 = -A2/k0{β2[e-jβ2z -Γ2ejβ2z]ɸ2

(

x)-∫0∞β2(ū)Γ2(ū)ejβ2(ū)zɸ2(x,ū)dū} 

-A1/k0 ∫0∞β2(ū

)

τ1 (ū

)

e-jβ2(u)zɸ2

(

x,ū)dū, (2.24b) 
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and the transverse field components in region 3 (neglecting reflected waves from steps to 

the right) are : 

Ef1y3 = A2{[e-jβ2z]ɸ3(x)+∫0∞τ2(ū

)

e-jβ2(ū)zɸ3

(

x,ū)dū} (2.24a) 

η0H f1x3 = -A2/k0{β3τ2e-jβ2zɸ3(x)+∫0∞τ2(ū

)

e-jβ2(ū)zɸ3(x,ū)dū]. (2.25b) 

 

Applying the boundary conditions of the continuity of Ey  and Hx  at z = ∆z , noting 

that A2 = τ1A1, truncating the integrals over ū  at ūN = 2k0, discretizing the remaining 

integral over finite limits of integration from ū = 0 to ū  = ūN  and using the orthogonality 

relations in a similar fashion as was done previously at Bl  yield the following system of 

2N+1 linear equations for the 2N+1 unknowns Γ2, τ2, Γ2  and τ2  

(

ūm), m = 1, 2, ..., 	  N

, not including Γ2 

(

ūm = k0

): - 

e-jβ2∆z + Γ2jβ2∆z 

= τ2e-jβ2∆zI23+∫0∞τ2(ū

)

e-jβ3(ū)∆zI23(ū)dū, (2.26a) τ1β2(ejβ2∆z - Γ2jβ2∆z

)

I23+∫0∞[τ1(ū)e-jβ2(ū)∆z -τ1Γ2(ū)e-jβ2(ū)∆z]β2(ū)I23(ū)dū =τ1τ2β3e-jβ3∆z, (2.26b) 

 

  
 

2[τ1(ū j)e-jβ2(ūj)∆z+τ1Γ2(ū j)e-jβ2(ūj)∆z] 

=τ1τ2(ū j)e-jβ3(ūj)∆zT23(ū j), (2.26c) 
 

(e- °2°1  —r2e-f - A2-  )43  + Jo 	1 (,7)e-j52(uw 	41)°Y  ];"-p, (U)T„(u--)clu--  

J Pad' — 
= TiT2133e 	, 

(2.26b) 

2[-T1 (7/-1 )e-l5'(6')  

= L1L,e 133 (i7j )Ai  /32 	) -4- (J: 	tc„ )7E, 7f2  (U)e-j 53°7)AI 42 01,f j )dfi 

+-Ei'f i (fii )e-' 53°7' 1'Y-1-3  (17; ), 

(2.26c) 
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=τ1β2 (e-jβ2∆z - Γ2ejβ2∆z)I23(ū j ) +(∫0ū-δ +∫∞aj+δ)[τ

1

Γ2 (ū )e-jβ2(ū)∆z -τ

1

Γ2 (ū )ejβ2(ū)∆z]β2 (ū )I23 (ū,ūj )dū +[τ

1

(ūj )e-jβ2(ū)∆z -τ

1

Γ2 (ū )ejβ2(ū)∆z]β2 (ū )T23 (ūj )dū =2τ

1

τ2 (ūj )β3 (ūj )e-jβ3(ūj)∆z                                                                       j = 1,2, ....,N 

where 

T23 (ūj ) = πC2 (ūj )C3 (ū j){cos(ū j(R21- R31))[cos(v jR33) +(v j/ū j )2sin(v jR21)sin(v jR31)]+v j/ū jsin(ū j( R21- R31))sin(v j( R21- R31 ))}, 

(2.26e) and 

I23 = ∫∞-¥ɸ2(x )ɸ3(x )dx ,                                                        (2.26f) I23(ūj ) = ∫∞-¥ɸ2(x ) ɸ3(x,ūj ) dx ,                                                    (2.26f) I32(ūj ) = ∫∞-¥ɸ3(x ) ɸ2(x,ūj ) dx  ,                                                    (2.26f) I32 (ū,ūj ) = ∫∞-¥ɸ3 ( x,ū )ɸ2 ( x,ūj )dx   ,                                                (2.26f) 

 
with 0 < δ <<1 

The remaining two step discontinuities at B3  and B4  in Figure 2 yield similar linear 

systems of equations so that the partial fields in regions 3, 4 and 5 can also be found. The 

overlaps integral encountered in (2.19) and (2.26) are evaluated in Appendix B.+ 

2.4 Rigorous Field Solution 

In Section 2.3 , the first forward partial fields in regions 1 and 2 were found explicitly by 

applying boundary conditions at B1  and B2, respectively. The scatter processes involved 
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were approximate in that certain reflected fields were ignored. It was pointed out that the 

process was repeated and boundary conditions were applied at B3  and B4  in a similar 

fashion to obtain the remaining first forward partial fields in regions 3, 4 and 5. In all 

cases, the backward surface and radiation modes were taken to be zero to the right of 

Bi

, i 

= 1, ..., 4, when the forward partial fields 

E f1yi , H f1xi and H f1zi 	i = 1, 2, ..., 5, 	(2.27) 

were determined; the subscript "i" identifies the region where the field is located and the 

superscript "f1" identifies each constituent as being the "first forward" partial field 

contribution to the rigorous field solution. 

To obtain a more accurate description of the total field, the waves which progress to 

the left (in the backward direction) that were ignored in the above formulation must be 

considered. This is accomplished by considering both of the backward surface wave mode 

and the backward radiation modes scattered by the abrupt termination at B4  to be scattered 

by the step discontinuity at B3  Now, however, by considering wave progression to the left 

and applying boundary conditions at each step discontinuity B3, B2, and B1(in this order), 

the "first backward" partial field components are obtained; these are designated 

E f1yi 

, Hb1xi and Hb1zi   , 	i = 1, 2, 3, 4. 

See Figure 3 for a schematic of the wave constituent in each region "i" as the wave field 

progress in the forward direction (Figure 3(a)), then progresses in the backward direction 

(Figure 3(b)) and progresses once again in the forward direction for a second time (Figure 

3(c)). This processes can be repeated as often as needed to approximate the total field to 

the desired order of accuracy. Using only the wave processes depicted in Figure 3,i.e., the 

first and second forward progressions(identified by the superscripts f1 and f2 

respectively) and the first backward progression(identified by the superscripts bl), the 

total fields constituents in each region (i) can be formally approximated as follows: 
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In region 1: 

ETotaly1  ≡ E f1y1 + Eb1y1 ,   HTotalx1  ≡ H f1x1 + Hb1x1 ,   HTotalz1  ≡ H f1z1 + Hb1z1,  
 

In region 2, 3, 4:, ETotal y1  ≡ E f1 y1 + Eb1 y1 + E f2 y1 , HTotal x1  ≡ H f1 x1 + Hb1 x1 + H f2z1, HTotal z1  ≡ H f1 zi + Hb1 zi + H f1 zi 

 
 

i = 2, 3, 4., 
In region 5:+ 

ETotaly1  ≡ E f1y5 + E f2y5 ,   HTotalx5  ≡ H f1x5 + H f2x5 ,   HTotalx5  ≡ H f1z5 + H f2z5,  
 

The accuracy of the total field will depend on how many forward and backward 

partial fields are included in the final results. 

Figure 3  Partial field wave constituents at each step discontinuity (a) first forward (b) 
first backward (c) second forward.  



Figure 3 (Continued) 
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CHAPTER 3 

NUMERICAL METHOD  

The computer program essentially solves the linear system of equation in matrix form 

which is obtained at each step discontinuity. At the first step discontinuity, for example, 

the matrix equation is obtained from (2.19) and (2.22) with (2.20), (2.21) and (2.23); at 

the second step it is obtained from (2.26). Note that only first forward partial fields were 

considered in the derivation of these equations. The programs were written in ANSI 77 

FORTRAN and executed on VAX/VMS system. LOTUS-I23 was used to construct 

tables and figures. The program for solving the single step discontinuity is listed in 

Appendix E whereas the complete program is listed in Appendix F 

In the program (Appendix E or Appendix F), the subroutine named DISPER uses 

bi-section method [16] to solve the dispersion equation. The bi-section method was 

chosen because data was obtained in a few cases for dielectric materials of nearly equal 

refractive indices, which caused the Newton-Raphson method [16] not to converge. 

The program is separated into five parts. The first part is the initial parameters 

setup. The parameters are 

N: The number used to determine the size of ∆ū ; see (2.20b), 

C: The size of the matrix (C = 2N+1), 

NO: The integer one or two which multiples ūN, 

KD: The normalized slab width k0D1

, 

 

ER: The dielectric constant of the tapered slab, 

NS: The dielectric constant of the material external to the tapered slab which usually 

is air, so that NS = 1. 

In order for the main program to treat more than one step, the following parameters  are 

also specified: 

22 
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STEP: The number of step discontinuities, 

KL: The normalized wedge length 

k0L, 

 

ITER: The number of forward and backward progressions. 

The second part of the main program calculates expressions and overlap integrals 

for the matrices. In the program, the FIND_UN subroutine finds the parameters ui,  

and βi

(

ūi

) 

for a radiation mode; GUIDED, GDRAD, and RADRAD are the subroutines 

for solving the overlap integrals. The third part of the program constructs the matrix 

equations. The subroutine named FORWARD is used when the wave transmits in the 

forward direction. The subroutine named BACKWARD is used when the wave transmits 

in the backward direction. The fourth part of the program solves the matrix equation using 

Gaussian Elimination decomposition. This is done in the COEF subroutine. The last part 

of the program calculates the guided and radiated powers by using the formulas in 

Appendix C, and calculates the radiation pattern of power gain which is solved by the 

subroutines PATTERNT and PATTERNR to determine the forward (0 < θ  < π/2) and 

backward (π/

2 

 < θ  < π) radiation patterns of power gain, respectively, by using the 

formulas in Appendix D. LOTUS-123 is used to plot the radiation patterns of power gain . 

For the computer system used (VAX/VMS), it takes one minute to calculate a 242x 

242 matrix; four minutes to calculate a 402 x 402 matrix(the times mentioned here are all 

CPU time and for the single step solution). The CPU charged time for multiple steps is 

obtained by multiplying the number of steps with the single step CPU charged time. 



CHAPTER 4 

NUMERICAL RESULTS  

Recall that the dielectric wedge is approximated by a sequence of short slab segments of 

progressively smaller widths. Hence, a more accurate determination of the field scattered 

by the wedge geometry is obtained via the method presented in Chapter 2 by increasing 

the number of segments used. In theory, the method developed yields a rigorous solution 

provided the field solution at a single step discontinuity is accurately determined. To 

ascertain this accuracy, comparisons were made with the published data for scattering 

from a single step discontinuity. 

Tables 1 - 4 compare data with that of P. G. Suchoski, Jr. and V. Ramaswamy [12].  

Table 1 describes scattering at a step discontinuity which is modest, but not small since 

D2/D1  = 0.6, and for dielectric media with indices of refraction that are numerically close, 

which is of interest in the design of integrated optical devices. In Table 1 observe that, as 

far as conservation of power is concerned, the corrections made to [12] which are 

implemented here yield a significant redistribution of power, although conservation of 

power is well satisfied in both cases. Note that the power contained in the reflected 

surface wave mode(PGref ) is over twice as large, the power carried by the transmitted 

radiation mode(PRADtrans) is about 10% smaller and the power in the reflected radiation 

modes(PRADref) is approximately two orders of magnitude smaller than that of [12]. See 

Appendix C for the various power expressions. To facilitate comparison, truncation was 

taken at uN  = 2

k0

D

1; as was done in [12]. Data is also presented in Table 2 for truncation at 

both uN 

 = 

k0

D

1  and 

uN  = 2

k0

D

1;  note that N is twice as large for the latter to insure that 

the same number of propagating radiation modes are considered. Observe in Table 2 that 

the power in each mode remains nearly invariant even when evanescent waves are 

considered. This shows that our expressions possess good convergence properties. 

24 
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Table 1  Comparison of result with P. G. Suchoski, Jr. and V. Ramaswamy at a modest 
step discontinuity. The refractive index of the two dielectric slabs is n1  = 1.54, that of the 

surrounding medium is n2  = 1.52, free space wavelength λ0  = 0.6328µm, D1  = 0.5µm, D2  

 = 0.3µm for (a) P. G. Suchoski, Jr. and V. Ramaswamy; (b) the present method; 
(c) percentage difference between the present method and Suchoski, Jr. / Ramaswamy. 

N = PGtrans  PGref  
P RADtrans  

P RADref  
PTOTAL  

50 0.99161766 0.0000011 0.00739380 0.00097930 0.99999190 

70 0.99161685 0.0000011 0.00739540 0.00098020 0.99999360 

100 0.99161620 0.0000011 0.00739630 0.00098080 0.99999440 

120 0.99161626 0.0000011 0.00739670 0.00098120 0.99999530 

150 0.99161630 0.0000011 0.00739690 0.00098130 0.99999560 

(a)  

N = PGtrans  PGref  PRADtrans 
 P RADref  PTOTAL  

50 0.99339604 0.00000239 0.00658774 0.00001153 0.99999770 

70 0.99339542 0.00000239 0.00658849 0.00001202 0.99999832 

100 0.99339464 0.00000239 0.00658915 0.00001249 0.99999868 

120 0.99339429 0.00000239 0.00658943 0.00001272 0.99999883 

150 0.99339390 0.00000239 0.00658974 0.00001297 0.99999899 

(b)  

N = PGtrans  PGref  
 

P RADtrans  
PRADref  

PTOTAL  

50 0.179% 117.273% 10.902% 98.823% 0.001% 

70 0.179% 117.273% 10.911% 98.774% 0.000% 

100 0.179% 117.273% 10.913% 98.727% 0.000% 

120 0.179% 117.273% 10.914% 98.704% 0.000% 

150 0.179% 117.273% 	10.912% 98.678% 0.000% 

(c)  

Table 2 Use different truncation maximum for the single step discontinuity problem with 
index of refraction n1  = 1.54 for the slabs and n2  = 1.52 for the surrounding medium,= 

λ0  = 0.6328µm, D1  = 0.5µm, D2  = 0.3µm for (a) uN = k0D1  (b) uN  = 2k0D2  .  

N = 

 PGtrans  
 PGref          PRADtrans  PRADref  

 
PTOTAL  

50 0.99339604 0.00000239 0.00658774 0.00001153 0.99999770 

70 0.99339542 0.00000239 0.00658849 0.00001202 0.99999832 

100 0.99339464 0.00000239 0.00658915 0.00001249 0.99999868 

120 0.99339429 0.00000239 0.00658943 0.00001272 0.99999883 
150 0.99339390 0.00000239 0.00658974 0.00001297 0.99999899 
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Table 2 (continued) 

N = 

 PGtrans   
PGref   

PRADtrans  
PRADref 

 
PTOTAL  

1 00 0.99339482 0.00000241 0.00658781  0.00001174 0.99999678 

140 0.99339438 0.00000241 0.00658860 0.00001225 0.99999764 

200 0.99339372 0.00000242 0.00658930-  0.00001275 0.99999819 

240 0.99339342 0 00000242    0.00658960 0.00001298 0.99999841 

300 0.99339306 0.00000242 0.00658992 0.00001325 0.99999865 

(b) 

For the same dielectric media, Tables 3 and 4 show conservation of power at a step 

discontinuity that is large since D2 /D1  = 0.2. In this case, the results show a significant 

redistribution of power for all wave constituents, even though conservation of power is 

again satisfied. Hence, justification of results based solely on conservation of power can 

be misleading as was illustrated in Table 1. 

Table 3  Comparison of result with P. G: Suchoski, Jr. and V. Ramaswamy at a large step 
discontinuity. The refractive index of the two dielectric slabs is n1  = 1.54, that of the 

surrounding medium is n2  = 1.52, free space wavelength λ0  = 0.6328µm, D1  = 0.5µm, 

D

2  = 0.1µm for (a) P.G. Suchoski, Jr. and V. Ramaswamy; (b) the present method; 
(c) percentage difference between the present method and Suchoski, Jr. / Ramaswamy. 

N = 

PGtrans  PGref 
  PRADtrans  P RADref  PTOTAL  

50 0.73635 0.000081 0.24162 0.02596 1.00401 

70 0.73728 0.000093 0.24199 0.02385 1.00321 

100 0.73742 0.000099 0.24262 0.02243 1.00257 

120 0.73743 0.000102 0 24300   0.02139 1.00192 

150 0.73744 0.000103 0.24310 0.01949 1.00013 

(a)  

N = 

 PGtrans  
PGref  

 
P RADtrans  

PRADref 
 

PTOTAL  

50 0.79408 0.000015 0.20508 0.00014 0.99931 

70 0.79526 0.000014 0.20472 0.00007 1.00007: 
100 0.79535 0.000014 0.20470 0.00004 1.00011 

120 0.79533 0.000014 0.20471 0.00003 1.00009 
150 0.79530 0.000014 0.20472 0.00003 1.00007 

(b)  
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Table 3 (continued) 

N = 

 PGtrans  PGref 
 P RADtrans      P RADref                 PTOTAL  

50 7.840% 80.901% 15.125% 99.467% 0.468% 

70 7.864% 84.989% 15.399% 99.703% 0.313% 

100 7.856% 85.828% l 5 629% 99.817% 0.246% 

120 7.852% 86.176% 15.756% 99.844% 0.183% 

150 7.847% 86.262% 15.786% 99.862% 0.006% 

(c) 

Table 4 Use different truncation maximum for the single step discontinuity problem with 

index of refraction n1  = 1.54 for the slabs andn2 = 1.52 for the surrounding medium, 

λ0 = 0.6328 µm, D I  = 0.5µm, D2  = 0.1µm for (a) uN = k0D1 (b) uN = 2k0D1, 

N = 

 PGtrans  PGref   P RADtrans       
PRADref 

 PTOTAL  

50 0.79407806 0.00001547 0.20507549 0.00013831 0.99930732 

70 0.79525757 0.00001396 0.20472562 0.00007085 1.00006800 

100 0.79535123 0.00001403 0.20469998 0.00004110 1.00010634 

120 0.79532966 0.00001410 0.20471231 0.00003332 1.00008938 

150 0.79530572 0.00001415 0.20472383 0.00002694 .  1 00007064 

(a)  

N = 

 PGtrans  

 
PGref  

 

P RADtrans  
PRADref 

 

PTOTAL  

100 0.79407805 0.00001549 0.20507542 - 	0.00013831 0.99930726 

140 0.79525756 0.00001398 0.20472556 0.00007085 1.00006796 

200 0.79535123 0.00001406 0.20469993 0.00004110 1.00010631 

240 0.79532965 0.00001412 0.20471226 0.00003332 1.00008936 

300 0.79530572 0.00001418 0.20472379 0.00002694 1.00007062 

(b)  

Table 5 compares results with K. Hirayama and M. Koshiba [15]. They used a 

combination of the finite-element and boundary-element methods. Observing that 

discrepancies appear only in PGref  , the power in the reflected surface wave mode, and that 

conservation of power are satisfied better in our case for the larger discontinuity of D2/D

1 = 0.2. Again, there is very good agreement for the distribution of power among the 
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modes which indicates that evanescent modes need not be considered when only power 

conservation is being verified and N 

Table 5 Comparison of results with K. Hirayama and M. Koshiba for εR  = 5, 

µN  = 2k0

D1 = 1 and N = 400 

 

D2/ D1=0
.04 

  PGtrans           
 

PGref  
 

PRAD          
 

PTOTAL 
 

Hirayama/Koshiba 0.36200 0.01000 0.6278 0.9998 

Present method 0.35692 0.01255 0.6305 1.0010 

Percentage 
Difference 

-1.403% 25.500% 0.430% 0.120% 

(a)  

D2/D1 =0.2 PGtrans   PGref  
 

P RAD 
 

PTOTAL 
 

Hirayama/Koshiba 0.88660 0.04160 0.07150 0.9996 

Present method 0.87877 0.04973 0.07149 0.9998 

Percentage 
Difference 

-0.872% 19.543% -0.014% 0.020% 

(b)  

Many papers in the literature have treated the problem of scattering from a single 

step discontinuity [13 - 15, 17 - 27].) Several of these papers compare their results  with T. 

E. Rozzi who used a rigorous variational approach [13]; this is done here in  Figure 4 and 

Figure 5. In Figure 4, the radiated power (PRADtrans+ PRADtrans) (normalized to  the incident power 

that is carried by the fundamental TE mode incident either from the left  (z < 0) or from 

the right (z > 0) is plotted versus D2/D1 ; the larger slab cross-section  (2D1) is taken to the 

left, which differs from Rozzi [13] who placed the narrower slab  on the left. In our 

formulation, incident power is taken to be unity. The magnitude of  the reflection and 

transmission coefficients looking to the right (│Γf│+ │Γτ f│) and to the left  (│Γf│+ │Γτ f│ )  are also 
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plotted in Figure 4. As is evident, excellent agreement is obtained between our result and 

that of Rozzi. 

1)2/D1 

Figure 4  The normalized radiated powers and the amplitudes of the reflection and 
transmission coefficients of a step discontinuity between two slab waveguides versus 

relative step height for k0D1  =1, εr  = 5, uN  = 2k0D1 and N = 400. 

Figure 5 is a plot of the radiation pattern of power gain due to a step discontinuity, 

where the power gain G(θ) is normalized to the incident power; see Appendix D for the 

derivation of the expression for power gain in the two regions z < 0 and z > L, where L is 

the wedge length. Results in Figure 5 show good agreement between the three methods 

plotted; see [26]. Note that a discontinuity appears in the region near θ = 90°; this was to 

be expected because different field expressions and hence different integrals were 

asymptotically evaluated in the two regions z > L, 0 < θ  < 90° and z < 0, 90° < θ  < 180°.  
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Figure 5 Radiation pattern of power gain for single step discontinuity for 

k0 D1

= 

1

, 

εr  = 5, 

 

uN  = 2

k0 D

1  and N = 400. 

In Figure 6 - 9, the radiation patterns of power gain of different dielectric wedges 

are presented. The material chosen is silicon (ε

r 

= 12) and lucite (ε

r 

= 2.56). In Figure 6, 

the wedge parameters are 

(ε

r  

= 2.56

, L/λ0 = 0.25, 
D
1/λ0 

 

= 1/

2π) , uN  = 
k0 D

1  and N = 

150. For this relatively short wedge (quarter-wavelength), the radiation pattern of power 

gain is obtained for three different numbers of steps, namely, 32, 64 and 128, and only the 

first forward partial field contribution to the total field needed to be calculated and is 

plotted in the forward direction (0° < θ  < 90°), but the first forward and first backward 

partial wave constituents are needed in the backward direction (90° < θ  < 180°)./ Figure 

6(a) shows the pattern in the range from 0 = 0° to 0 = 90°, while Figure 6(b) gives the 

backscatter pattern over the range from 0 = 90° to 0 = 180°. Values of the gain function 

are not valid near θ  = 0° and θ  = 180° because the first-order stationary phase method is 

not valid when a stationary phase point is near an endpoint. Figure 6(a) shows that in 

determining the forward radiation pattern of power gain, only 32 steps are needed for 
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convergence. In Figure 6(b), the gain decreases when the number of steps increased, 

except at the point near θ  = 90° where it increases. 

Figure 6  Radiation pattern of power gain of the slab/wedge for 

εr  = 2.56, 

L/λ

0 

= 0.25, 

D1/λ 0 

= 

1 /(2π) uN = k0 D1 

a

nd N = 150 for (a)z >L, 0° <θ < 90°, (b) z >0, 9 0° (c) 0° < θ < 180° in dB scale. 
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For comparison 

εr 

 is now taken to' be 12 while the slab/wedge geometry remains 

identical to the one used in Figure 6. As before, the radiation pattern of power gain is 

obtained for three different numbers of steps, namely, 32, 64 and 128. Again, only the 

first forward partial field is need for the forward radiation pattern of power gain (0° < θ  < 

90°), but both the first forward and first backward partial fields are needed for the 

backward radiation pattern of power gain. Figure 7(a) shows the pattern in the range from θ 

 = 0° to θ  = 90°, while Figure 7(b) gives the backscatter pattern over the range from θ  = 

90° to θ  = 180°. Again, the values of the gain function are not valid near θ  = 0° and θ  = 

180°. A comparison with Figure 6 shows that numerical results become worse for the 

quarter wavelength wedge when εr = 12. This occurs because the difference between the 

dielectric constants of the wedge and the surrounding medium (air) is large, which affects 

the accuracy of the numerical solution. 



Figure 7  Radiation pattern of power gain of the slab/wedge for 

εr  = 

12,    L/λ

0 

= 

1/(2π), uN = k0 D1 

a

nd N = 150 for (a)z >L,0° < θ < 90°, (b) z > 0, 90° <  θ  < 180° in dB scale. 
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A comparison of the radiation pattern of power gain for the five wavelength long 

wedge for the two materials ( 

εr  

= 2.56 and 12) are presented in Figures 8 and 9, 

respectively. In Figure δ,  

εr  

= 

2.56, 

L/λ

0 
= 5,

D1
/λ

0 
= 1/(2π ), uN = k0D1 and N = 150. 

Figure 8(a) shows the pattern in the range from θ  = 0° to θ  = 90°, while Figure 8(b) 

gives the backscatter pattern over the range from θ  = 90° to θ  = 180°. A comparison to 

Figure 6 shows that for 

εr 

= 

 2.56 the longer taper produces more gain, a narrower 

beamwidth, again minimal side lobes and appears to connect smoothly across the θ  = 90° 

plane, as it should. 
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Figure 8  Radiation pattern of power gain of the slab/wedge for 

εr  = 

2.56,    L/λ

0 

= 

1/(2π), uN = k0 D1 

a

nd N = 150 for (a)z >L,0° < θ < 90°, (b) z > 0, 90° <  θ  < 180° in dB scale. 
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On comparing Figure 9 to Figure 7, it is apperent that the radiation patterns of power gain 

are smoother for the five wavelength wedge than for the quarter wavelength wedge and 

that the higher dielectric is not as deleterious as was the case in Figure 7. 

Figure 9  Radiation pattern of power gain of the slab/wedge for 

εr  = 

12,    L/λ

0 

= 

1/(2π), uN = k0 D1 

a

nd N = 150 for (a)z >L,0° < θ < 90°, (b) z > 0, 90° < θ  < 180° in dB scale. 
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Figures 10, 11 and 12 yield a more comprehensive examination of the relationship 

between the length of the wedge and the value of its dielectric constant. For 

εr 

 = 2.56, 

Figure 10 shows that a larger length wedge increases the maximum gain of the antenna, 

narrows the beamwidth and lowers the side lobe levels (although, these remain in-

consequential for all the lengths considered). Figure 11 shows that a larger εr causes the 

maximum gain to increase, but also created a wider main lobe beam and produces a 

greater discontinuity to occur in the vicinity of the 

 

θ  = 90° plane. Only for the L = 10

λ 0 

 

case do the forward and backscatter patterns tend to join smoothly across the θ  = 90° 

plane. 

Figure 10 Radiation pattern of power gain of the slab/wedge for 

εr = 

12,    L/λ

0 

= 

1/(2π), uN = k0 D1 

a

nd N = 150 for (a)z >L,0° < θ < 90°, (b) z > 0, 90° <  θ  < 180° in dB scale. 

 

 



Figure 10 (Continued) 
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Figure 11 Radiation pattern of power gain of the slab/wedge for 

εr = 12, 

D1/λ 0 

= 

1 /(2π), uN = k0 D1 

a

nd N = 150 for (a)z >L, 0° <θ < 90°, (b) z >0, 9 0° (c) 0° < θ < 180° in dB scale. 
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Figure 11 (Continued) 

A closer examination of this particular case is depicted in Figure 12 for εr = 2.56 

and 12. The choice of 64 steps ensures convergence and truncation at uN  = 

k0 D

1 , is 

sufficient because of the conclusion that evanescent modes need not be included at each 

step discontinuity; see Table 2 and 4. 
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Figure 12 Normalized radiation pattern of power gain (in dB) versus angle θ of the slab/wedge for 

εr = 2.56 εr = 12, with L/λ

0 

= 10, 

D1/λ 0 

= 1/(2π), uN = k0

D

1, Step = 64 and N = 150  

 



CHAPTER 5 

CONCLUSIONS  

The radiation pattern of power gain for a dielectric slab feeding the staircase model of a 

dielectric wedge has been determined rigorously. In the model, the wedge region is 

approximated by short, uniform slab waveguide segments. Using the rigorous solution to 

scattering from a single step discontinuity, the field scattered by multiple steps is found in 

term of partial fields. The partial fields are determined by first considering waves 

progressing toward the tip, then back from the tip toward the semi-infinite slab waveguide 

region, toward the tip a second time, and so on until sufficient accuracy is reached. In this 

way, the total field, be it in the near or far zone, is found as a superposition of partial 

fields. The result is approximate only in that infinite integrals are truncated and 

numerically determined. The radiation pattern in the forward direction was shown to be 

smooth and highly directive. These results had not been previous proved [2]. The 

procedure can be applied to a considerable array of different geometries and is currently 

being applied to the dielectric cylindrical waveguide feeding the staircase model of the 

dielectric cone radiator. 
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APPENDIX A 

DERIVATION OF (2.22)  

Multiplying (2.18a) by ɸ

1 

(x,ūj) and integrating over AT- from -∞ to +∞ gives 

(1+Γ 1 ∫∞- ¥ɸ1( x)ɸ1( x,ū j)dx+∫∞- ¥[ ∫∞- ¥Γ1(ū j)ɸ1( x,ū)dū]ɸ1( x,ū)dx          =τ1 ∫∞- ¥ɸ2( x)( x)ɸ1( x,ū j)dx+∫∞- ¥[ ∫∞0Γ1 τ1(ū j)ɸ2( x,ū)dū]ɸ1( x,ū)dx                (A.1) 

 

 

The orthogonality relation (2.11) permits setting the first integral on the left-hand side of 

(A.1) to zero. The overlap integral I21(ūj), which is defined in (2.22d), appears in the  first 

integral on the right hand side of (A.1) and is evaluated explicitly in  Appendix B. The 

remaining two double integral must be evaluated carefully  because the range of 

integration over ū includes ūj. The last double integral in  (A.1) was not evaluated 

correctly in [12, 14, 28]. 

Consider the double integral on the right hand side of (A.1) and separate the 

integration over Fr into three ranges as follows: 

IR  = 2[IR1 + IR2 + IR3], 	(A.2) 

where 

IR1  = ∫0∞[∫ū j-δ0τ

1

(ūj)ɸ2(x,ū)dū]ɸ1(x,ū)dx 	(A.2a) IR2  = ∫0∞[∫ū j+δ0τ1(ū j)ɸ2(x,ū)dū]ɸ1(x,ū)dx (A.2b) 	

 

IR3  = ∫0∞[∫ū j+δū j+δτ1(ū j)ɸ2(x,ū)dū]ɸ1(x,ū)dx (A.2c) 

  

Note that the integration over 5c-  is taken from zero to infinite, which is a consequence of 

symmetry. In the double integrals (A.2a) and (A.2c), the order of integration can be 

interchanged because u1  is excluded from the range of integration. Hence, they become 

 IR1  = ∫0ū j-δτ1(ū)I21(ū,ū j)du (A.3a) IR3  = ∫∞ū j+δτ1(ū)I21(ū,ū j)du (A.3b) 
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where the overlap integral I21(ū,(ū j)  is given in (2.22d) and explicitly evaluated  in 

Appendix B. The remaining double integral (A2b) is evaluated by setting all terms in the 

integrand of the integral over ū to their value at ū  = ūj except for the oscillatory terms narrow 

cos (x - Rj) and sin ū(x - Rj). This is done because the range of integration over ū is narrow  about ūj and the x-integration range extends to infinity. The sinusoidal terms are obtained  

from the normalized form of the potential functions which are founded in (2.9). 

Evaluating the  resultant integrals and taking the limit as δ  ---> 0, yields-¥  

IR2 =  τ1(ū j)T12(ū j),   	(A.4) 

where T12(ūj)  is given by (2.22c). The double integral on the left hand side of (A.l) is 

evaluated in a similar fashion with the result that 

∫-¥∞[∫∞0Γ

1

(ū)ɸ1(x,ū)dū]ɸ1(x,ū)dx=2Γ1(ūj).  	 (A.2a) 

 

Hence, (A.1) reduces to (2.22a). In like fashion, (2.22b) can be derived. 



APPENDIX B 

OVERLAP INTEGRALS 

In the linear system of equations (2.19) and (2.22). there are several overlap integrals that 

are evaluated explicitly. Overlap integrals are defineed below for the 17th  step 

discontinuity between regions n  and n+l, where n = 1, 2, ... . The nth region contains the 

larger slab waveguide segment , i.e., Rn  > Rn+1 , where Rn  ≡  Dn  / D1. The integrand of an 

overlap integral involves a product of the potential solutions given in (2.6) and/or (2.9). 

The four types of overlap integrals are  

1. Guided modes in both the n and n+1  regions 

	In,n+1 = ∫-¥∞ɸn(x)ɸn+1(x)dx = 

2CnCn+1(J1 + J2 + J3)       (B.1) 

J1 

= 

[kx,n sin(x,n Rn+1)cos(kx,n+1Rn+1)-kx,n+1cos(kx,n+1Rn+1)sin(kx,nRn+1)] / k2x,n-k2x,n+1    (B.2) 

J2 = cos(kx,n+1

Rn+1)/k2x,n

+

αx,n+12 {[kx,nsin(kx,nRn)-αx,n+1cos(kx,nRn+1)]e-α n+1( Rn-Rn-1) 

(B.3) 

-kx,nsin(kx,n Rn+1)-αx,n+1cos(kx,nRn+1)} 

J3 = cos(kx,n

R

n)cos(kx,n+1

Rn+1)e-α n+1( Rn-Rn-1) / αx,n

+αx,n+1                                                (B.4) 

2. Guided mode in region 

n 

 and a radiation mode in region 

n+1 

In,n+1(ū) = ∫-¥∞ɸn(x)ɸn+1(x)dx = 2CnCn+1(J4 + J5 + J6)                                                                   (B.5) 

J4 

= 

kx,nsin(kx,n+1 Rn+1)cos(vRn+1)-vcos(kx,n+1Rn+1)sin(vR

n+1) / k2x,n - v-2 (B.6) 
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J5 = 1/(k2x,n - u-2){cos(v Rn+1)[kx,nsin(kx,n+1Rn)cos(ū(Rn-Rn+1))      -ūcos(kx,n Rn)sin(ū(Rn-Rn+1))-kx,nsin(kx,nRn+1)]   - v/ū sin(v Rn+1)[kx,nsin(kx,nRn)sin(ū(Rn-Rn+1))                                           (B.7) +ū cos(kx,n Rn)cos(ū(Rn-Rn+1))-ū cos(kx,n Rn+1)]} J6 = -cos(kx,n Rn)/ū+α-2x,n{cos(vRn+1)[ūsin(ū(Rn-Rn+1))-α-2x,ncos(ū(Rn-Rn+1))] 

(B.8) 

+v/ū sin(v Rn+1)[αx,nsin(ū(Rn-Rn+1)) + ūcos(ū(Rn- Rn+1))]}              

3. Radiation mode in region n  and a  guided mode in region n+1  

In+1,n(ū) = ∫-¥∞ɸn+1(x)ɸn(x,ū)dx 

= 2Cn+1Cn(ū)(J7 + J8 + J9)                                                                (B.9) 

J7 

= 

kx,n+1sin(kx,n Rn+1)cos(vRn+1)-vcos(kx,nRn+1)sin(vRn+1) / k2x,n+1) / k2x,n+1 - v-2                (B.10) J8 = cos(kx,n+1 Rn+1)/v-2 + α-2x,n+1 cos(vRn)]e-α n+1( Rn-Rn-1) 

(B.11) 

-vsin(v Rn+1)+αx,n+1cos(v Rn+1)} J9 = cos(kx,n+1 Rn+1)/u-2 + α-2x,n+1cos(vRn)-vsin(vRn)]e-α n+1( Rn-Rn-1)                                     (B.12) 
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4. Radiation modes in both the n and n+1 regions In.n+1(ū, ūj) = ∫-¥∞ɸn(x,ū)ɸn+1(x, ūj)dx = 2Cn(ū)Cn+1(ū j) {J10 + J11 + J12            ,when ū ≠ ū j (B.13) Tn,n+1 ,when ū = ū j 

J10 = vsin(v Rn+1)cos(v jRn+1)-v jcos(v Rn+1sin( v jRn+1) / v-2 - v-2 j                                            (B.14) J11 = vsin(v Rn)cos(ū j( Rn - Rn+1))-ū jcos(v Rn)sin(ū j( Rn - Rn+1))-vsin( v jRn+1) / v-2 - ū -2 j    (B.15) J12 = 1/(ū-2 - ū j-2){sin(ū j( Rn - Rn+1))[ū jcos(v Rn)cos(v jRn+1)+vv j/ū jsin(v jRn)sin(v jRn+1)] +cos(ū j(ū j( Rn - Rn+1))[v j cos(v jRn+1)-vsin(vRn)cos(v jRn+1)]}      

(B.16)      

Tn,n+1 = π/2{cos(ūj( Rn - Rn+1))[cos(v jRn+1)+(v j/ū j)2 sin(v jRn)sin(v jRn+1)] + v j/ū j sin(ū j( Rn - Rn+1))sin(vj(Rn - Rn+1))]} 

(B.17) where j = 1, 2, ....,N 

 



APPENDIX C 

POWER CALCULATIONS 

In Chapter 4, calculations of the various powers scattered at a single step discontinuity are 

presented. The expressions for these power calculations will now be derived. Consider 

the single step discontinuity between region I with slab thickness 2D1  and region 2 with 

slab thickness 2D2  in Figure 2. The even, transverse TE field components in these regions 

for the first forward progression are given by (2.14a), (2.14b), (2.15a) and (2.15b). Let  
Ey1f1 = EGy1,inc + EGy1,ref  + ∫-¥∞ ERADy1,ref du, (C.1a) Hx1f1 = HGx1,inc + HG x1,ref  + ∫-¥∞ HRADx1,ref du, (C.1b) where EGy1,inc = A1e-jβ1zɸ1(x),                                                                    (C.1c) 

EGy1,ref = A1Γ1ejβ1zɸ1(x),                                                                   (C.1d) ERADy1,ref = A1Γ1(ū) ejβ1(ū) zɸ1(x,u),                                                       (C.1e) 

HGx1,ref = A1β1/η0k0 e-jβ1(ū) zɸ1(x), (C.1f) 

HGx1,ref = A1β1/η0k0Γ1ejβ1(ū) zɸ1(x), (C.1g) 

HRADx1,ref = A1β1(ū)ejβ1(ū) zɸ1(x,u),                                                          (C.1h)  and let  E f1y2,inc = EGy2,trans + ∫0∞ ERADy2,transdu, (C.2a) H f1x2 = HGx2,trans + ∫0∞ HRADx2,transdu, (C.2b) where EGy2,trans = A1τ1e-jβ1(ū) zɸ2(x), (C.2c)  ERADy2,trans = A1τ1(u)e-jβ1(ū) zɸ2(x,u), (C.1d)                 
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HGx2,trans = A1β2/η0k0τ1e-jβ zɸ2(x),                                                   (C.2e) HRADx2,trans = A1β2(u)/η0k0τ1e-jβ zɸ2(x,u).                                            (C.2f) 

From conservation of power, 

Pin = Pout 

, (C.3) 

where the power into a volume bounded by a surface S enclosing the step discontinuity 

equals the incident power carried by the even TE0  mode and the power out of the volume 

is determined from the Poynting Vector by the expression 

Pout = 1/2  Re(ES  x HS )·ndS ,                                               (C.4) 

where the scattered field (ES , HS )  is defined to be the total field minus the incident field 

and  the underbars signify vector quantities. For convenience, choose S = S1  + S2  ,where S1  

is the  planar surface z = 0 - δ  -∞  < x < ∞, 0 ≤  y ≤ 1  and S2  is the planar surface z = 0 + δ, -

∞ <  x < ∞, 0 ≤ y ≤ 1  with 0 < δ  << 1„ and take 

S

1 and S2 to close at infinity. Hence, (C.4) 

reduces to 

Pout  = P1,out  + P2,out ,  

where P1,out  = 1/2 ∫01∫-¥∞Re(E1S  x H1S )│0-δ·(-z)dxdy ,                        (C.5a) P2,out  = 1/2 ∫01∫-¥∞Re(E2S  x H2S )│0-δ·(-z)dxdy ,                        (C.5b) 

Substituting (C. la), (C. lb), (C.2a) and (C.2b) into (C.5a) and (C.5b) give 

P1,out  = ∫01Re[(EGy1ref + ∫-¥∞ ERAD y1,refdu)(HGx1ref + ∫-¥∞ HRAD x1,refdu)*]z=0-δdx,             (C.6a) P2,out  = ∫0∞Re[(EGy2trans + ∫0∞ ERAD y2,transdu)(HGx1,trans + ∫-¥∞ HRAD x1,trans du)*]z=0-δdx,     (C.6b) 
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Using (C.1c) - (C.1h), (C.2c) - (C.2f), the orthogonality relations (2.8) and (2,11) and the 

normalization (2.14d) give 

P1,out  =  PG1,ref + PRAD1,ref , P2,out  = PG2,trans + PRAD2,trans , (C.7) 

where 

PG1,ref = │τ1│2                                                                                                             (C.7a) 

PG1,ref = 2/β1 ∫ko0 β1(u)

│2 du (C.7b) PG2 = β2 / β1│τ1│2     (C.7d) 

PRAD2,trans = 2/β1 ∫ko0 β2(u)│τ1 (u )

│2 du (C.7e) 

 

  

 



APPENDIX D 

POWER GAIN  

The radiation pattern of power gain for the slab/wedge geometry of Figure 1 is given by 

the power gain formula   

G5(θ) = 2πρS5 ff (ρ,θ)/PIN , z > L ,                            (D.1) 

and 

G1(θ) = 2πρS1ff (ρ,θ)/PIN , z > 0 ,                            (D.2) 

where the observation point P in polar coordinate (ρ,θ)  is measured from the origin of the 

xz-plane; PIN  = Pinc =  1 and S1,5ff represent the time-average power density or Poynting 

Vectors in  the far field in region 1 and 5, respectively. Since 

S1,5 ff 

 

= 1/2η0 │E ffy1,5 │2   ,                                                     (D.3) 

it is necessary to find the far field intensities E ffy1  and E ffy5  in region 1 and 5, respectively. 

Considering only the first forward progression and the partial wave fields of Figure 

3(a), the radiation  electric fields in region 1 and 5 using the normalized quantities defined 

in (2.16) give, respectively, 

Ey1(x,z) = A1∫0∞Γ1(ū)e-jβ1(ū)z ɸ1(x,ū)

d

ū ,             z > 0 ,                            (D.4a) 

and 

Ey5(x,z) = A4∫0∞τ1(ū)e-jβ1(ū)z ɸ5(x,ū)

d

ū ,              z > L ,                            (D.4b) 

where 

│A1│= (2η0k0/β1)1/2                                            A4 = τ1 τ2 τ3A1                    (D.4c) 

A first-order stationary phase [291 evaluation of (D.4a) and (D.4b) and using (D.3) give 

for (D.1)     and (D.2) 
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G5(θ) = 2πk0/β1cos2θ│τ1 τ2 τ3 τ4 (k0sin θ)│2 ,      0 < θ < π/2,                  (D.5a) G5(θ) = 2πk0/β1cos2θ│Γ1(k0sin θ)│2,                 π/2 < θ < π.                  (D.5b) 

Because only the first-order stationary phase formula was used, the result in (D.5a) is not 

valid near θ  = 0° and in (D.5b), it is not valid near θ  = π. Note that the gain functions are 

symmetric about the z-axis. 

In the above, only the first forward progression is considered. If the first forward, 

first backward and second forward partial fields are included in the expressions for the 

radiation intensities Ey1.5, then the gain functions G1.5(θ)  can be shown to take the forms 
G5(θ) = 2πk0/β1cos2θ│P f1τ4 f1(k0sin θ)+P f1b1 f2τ4 f2(k0sin θ)│2,  0 < θ < π/2,           (D.6a) G5(θ) = 2πk0/β1cos2θ│P f1τ4 f1(k0sin θ)+P f1b1 f2τ4 f2(k0sin θ)│2,  π/2 < θ < π,           (D.6b) 

where 

P f1  = τ3 f1 τ2 f1 τ1 f1 ,       P f1b1 = τ2b1 τ3b1Γ4 f1 P f1,      P f1bf2 = τ3 f2 τ2 f2Γ1b1P f1b1,            (D.6c) 

 

 

 

 

 

 



APPENDIX E 

PROGRAM for SINGLE STEP DISCONTINUITY 

(Wave Incident from Wider Waveguide to Narrower Waveguide) 

PROGRAM NORMALIZED 

REAL*8 KD, NO 
PARAMETER (N=400, NO=2, C=2*N+2,PI=3.14159265358979) 

REAL*8 LENDA 
REAL*8 KO, ER, DI , D2, NS, NE, RATIO 
REAL*8 KX1 , KX2, AX1, AX2, BETA1 , BETA2 
REAL*8 KEPAF, KEPA 
REAL*8 DELTU, D, DELTUN 

REAL*8 UN(N), VN(N) 
COMPLEX*16 BNC(N) 

REAL*8 S1, S2, S3, S4, S5 
REAL*8 P(N) 
REAL*8 Q1 , Q2 
REAL*8 AU1(N), AU2(N) 
REAL*8 AMP1, AMP2 
REAL*8 G, R, GG 
REAL*8 F(N), DY 
REAL*8 GR(N), RG(N) 
REAL*8 RR(O:N, O:N), RY(O:N, O:N) 

COMPLEX*16 A(C,C), B(C), COEFY(C), COEFX(C), COEF(C) 
COMPLEX* 16 X R 
REAL*8 PREF, PTRANS, RPREF, RPTRANS, PTOTAL 
REAL*8 PREFS, PTRANSS, RPREFS, RPTRANSS 
COMPLEX*16 A L(C,C) 

INTEGER*4 W, X, Y, Z, T, TKO, CK0, L, FLAG 

COMMON /SET1/ KEPAS, ER, KEPAF 
COMMON /SET2/ KX1, KX2, AX I , AX2 
COMMON /SETS/ SI, S2, S3, S4, S5 
COMMON /SET4/ DELTU 
COMMON /SETS/ RATIO 
COMMON /SET6/ P 
COMMON /SET7/ UN, VN, BNC 
COMMON /SETS/ GG 
COMMON /SET9/ G, R 

'**** OPEN THE DATA FILE 

OPEN (5, FILE='CEFNORM.DAT, STATUS='NEW', FORM='FORMATTED) 
OPEN (6, FILE='NORM.DAT, STATUS='NEW', FORM='FORMATTED') 
OPEN (7, FILE='COEFN.DAT, STATUS='NEW', FORM=FORMATTED) 
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OPEN (8, FILE='BOUNDN.DAT, STATUS='NEW', FORM='FORMATIED') 

WRITES OUT ALL OF THE INITIAL VALUES 

KD = d0 
NS = 1.D0 
NE = DSQRT(5.D0) 
RATIO = .02 

KEPAF = KD * NE 
KEPAS = KD * NS 
ER = NF ** 2 / NS **2 

WRITE(5,5) 
5 FORMAT(7X, Values:') 

WRITE(5,15) 'KD=', KD, 'Er=', ER, 'N= ', N 
WRITE(5,14) 'KEPAF=', KEPAF, 'KEPAS=', KEPAS 

15 	FORMAT(3X, A3, IX, D15.8, 3X, A3, 1X, D15.8, 3X, A3, 14) 
14 	FORMAT(3X, A6, IX, D15.8, 3X, A6, IX, D15.8) 

WRITE(5,*) 

CALCULATES THE GUIDED PROPAGATION COEFFICIENTS 
IN DIFFERENT REGIONS 

WRITE (5,25) 
25 	FORMAT(7X, 'In Guided Mode:') 

D= I. 
CALL DISPER(KX1, AX1, BETA 1 , D) 

WRITE(5,35) DI =', D, 'Kx 1 =', KX1, 'Axl =', AX], 
C 	'BETA] =', BETA1 

D = RATIO 
IF (D .EQ. 0) THEN 
KX2 = 0. 
AX2 = 0. 
BETA2 = 0. 
ELSE 
CALL DISPER(KX2, AX2, BETA2, D) 
ENDIF 

WRITE(5,35) 'D2=', D, 	KX2, 'Ax2=', AX2, 
C 	'BETA2=', BETA2 

35 	FORMAT(3X, A3, 1X, D15.8, 2(3X, A4, 1X, D15.8), 
C 	3X, A6, 1X, D15.8 ) 

WRITE(5,*) 
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CALCULATES THE RADIATION PROPAGATION COEFFICIENTS 
IN DIFFERENT STEPS 

DELTU = NO * KEPAS / FLOATJ(N) 
CK0 = N 

DO 10 I = 1, N 
UN(I) = I * DELTU 

CALL FINDUN(UN(1), VN(I), BNC(I), FLAG) 

IF (FLAG .EQ. ]) THEN 
CK0 = I 

ENDIF 

10 CONTINUE 

SI =K(1 
S2 = KX1 *RATIO 
S3 = KX2 
S4 = KX2 * RATIO 
S5 AX2 * (RATIO - 1) 
S5 = DEXP(S5) 

CALCULATES THE AMPLITUDE OF THE GUIDED MODE 

AMP1 =(AX1)/(1 +AX1) 
AMP] = DSQRT(AMPI) 

AMP2 = (AX2) / (1 + (AX2 * RATIO)) 
AMP2 = DSQRT(AMP2) 

WRITE(5,105) 'AMP1= ', AMP1 , 'AMP2= ', AMP2 
105 	FORMAT(7X, A6, D12.6, 3X, AG, D12.6) 

WRITE(5,*) 

CALCULATES THE OVERLAP INTEGRAL 
BOTH SIDES OF STEP HAVE IN GUIDED MODE 

CALL GUIDE 
GG = 2 * AMP1 * AMP2 * GG 

WRITE(5,65)112=', GG 
65 	FORMAT(7X, A4, 1X, D12.6) 

WRITE(5,*) 

CALCULATES THE OVERLAP INTEGRAL 
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ONE SIDE OF STEP HAS GUIDED MODE AND THE OTHER HAS RADIATION MODE 

DO 20 I = 1 , N 
P(I) = VN(I) / UN(I) 
Q1 = VN(I) 
Q2 = VN(I) * RATIO 

CALCULATES THE AMPLITUDE OF RADIATION MODE 

AUl( I) = DCOS(QI) * DCOS(QI) P(I) * P(I) * DSIN(Q 1 ) * DSIN(Q1) 
AU1(I) = PI * AU I (I) / 2. 

AU I (I) = DSQRT(AU1(I)) 
AU1(I)= I. / AU1(1) 

AU2(I) = DCOS(Q2) * DCOS(Q2) + P(I) * P(1) * DSIN(Q2) * DS1N(Q2) 
AU2(I) = PI * AU2(I) / 2. 
AU2(I) = DSQRT(AU2(I)) 
AU2(I) = I . I AU2(I) 

CALL GDRAD(UN(I), VN(I), P(I), G, R) 

GR(I) = 2 * AMP1 * AU2(I) * G 
RG(I) = 2 * AUI (I) * AMP2 * R 

20 CONTINUE 

CALCULATES THE OVERLAP INTEGRAL 
BOTH SIDES OF STEP HAVE RADIATION MODE 

RR(0,0) = 0. 
RY(0,0) = 0. 

DO 40 I = I , N 
DO 50 J = 1, N 

CALL RADRAD( UN(I), UN(J), VN(I), VN(J), P(J) 
C 	, AU1 (I), AU2(J), RY(I,J)) 

RR(1,J) = G 

IF (R .NE. 0.) THEN 
F(I) = R 
ENDIF 

50 CONTINUE 
40 CONTINUE 

D041 1= 1, N-1 
WRITE(5,51) 'RY(', I, I, ')= RY(I,I) 
WRITE(5,51) 'RR(', I, I, ')= RR(I,I) 

DY = (RY(I+1,I+1) - RY(I-1, I-1)) / (2. * DELTU) 
RR(I,I) = RR(I,I) + DY 
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41 CONTINUE 

WRITES DOWN THE NUMERCIAL MATRIX 

****** THE FIRST FOUR TERMS: A(1,1) , A(1,2) , A(2,1), A(2,2) 

A(1,1) =-1.D0 
A(1,2) = GG 

A(2,1) = BETA I * GG 
A(2,2) = BETA2 

****** CALCULATE SOME CONSTANT COEFFIC1ENCES 

DELTUN = DELTU / 3.D0 

X=N+2 
Y = X + 1 

****** CALCULATE FROM A(1,3) ... A(2,(N+2)) 

DO 60 J = 3, X 
M=J- 2 

IF (M .EQ. N) THEN 
A(1,J) = DELTUN * GR(M) 
ELSE 

L = JMOD(M , 2) 
IF (L .EQ. 0) THEN 

A(1,J) = DELTUN * GR(M) * 2.D0 
ELSE 

A(1,J) = DELTUN * GR(M) * 4.D0 
ENDIF 

ENDIF 

A(2,J) = 0.D0 
60 CONTINUE 

****** CALCULATE FROM A(1 ,N+3) A(2,2N+2) 

DO 70 J Y, C 
A(1,J) = 0.D0 
M = J - X 

L = JMOD(M ,2) 

IF (L 	0) THEN 
A(2,J) = DELTUN * BNC(M) * RG(M) * 2.D0 

ELSE 
A(2,J) = DELTUN * BNC(M) * RG(M) * 4.D0 

ENDIF 

70 CONTINUE 
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****** CALCULATE FROM A(3,1) ... A((N+2), 2) 

DO 80 1 = 3,X 
M 	- 2 
A(1,1) = 0.D0 
A(1,2) = RG(M) 

80 CONTINUE 

****** CALCULATE FROM A((N+3), 1) ... A(2N+2, 2) 

DO 90 I = Y, C 
M =1 - X 
A(1,2) = 0.D0 
A(1,1) = BETA1 * GR(M) 

90 CONTINUE 

****** CALCULATE FROM A(3, (N+3)) ... A((N+3), 2N+2) 

DO 110 1 = 3,X 

DO 120 J = Y, C 
M = J - X 
L = I - 2 

IF ( M .EQ. L) THEN 
A(I,J) = -2.D0 

ELSE 
A(I,J) = 0.D0 

ENDIF 

120 CONTINUE 

110 CONTINUE 

****** CALCULATE FROM A((N+3), 3) ... A(2N+2, (N+2)) 

DO 130 I = Y, C 

1)0 140 J = 3, X 
M= J - 2 
L = I - X 

( M .EQ. L) THEN 
A(I,J) = 2. * BNC(M) 

ELSE 
A(I,J) = 0.DO 

ENDIF 

140 CONTINUE 

130 CONTINUE 

****** CALCULATE FROM A(3,3) ... A((N+2), (N+2)) 
and A((N+3), (N+3)) A((2N+2), (2N+2)) 

DO 150 I = 3,X 
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DO 160 J = 3, X 
L = I - 2 
M = J - 2 
T = I + N 
W = J + N 

IF (M 	N) THEN 
CI = 1.D0 

ELSE 

Z = JMOD(M,2) 
IF (Z .EQ. 0) THEN 
CI = 2.D0 
ELSE 
CI = 4.D0 

ENDIF 

ENDIF 

IF (L .EQ. M) THEN 
A(I,J) = DELTUN * RR(L,M) * CI + F(L) 
A(T,W) = (DELTUN * RR(M,L) * CI + F(L)) * BNC(M) 

ELSE 
A(I,J) = DELTUN * RR(L,M) * CI 
A(T,W) = (DELTUN * RR(M,L) * CI) * BNC(M) 

ENDIF 

160 CONTINUE 

150 CONTINUE 

****** THE MATRIX ON THE RIGHT HAND SIDE 

B(1) = 1.D0 
B(2) = BETAI * GG 

DO 180 1 = 3, X 
13(I) = 01)0 

180 CONTINUE 

DO 190 I =Y, C 
M = I - X 
B(I) = BETA1 * GR(M) 

190 CONTINUE 

****** ADJUST THE MATRIX (ERASE TAU(K0) ITEM) 

IF (CKO .NE. N) THEN 
Z = C - 1 
T=CK0 +N+ 3 
GO TO 199 

ELSE 
Z = C - I 
GO TO 201 

ENDIF 
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199 D01911= I, C 
DO 192 J T, C 
A(I,J-1) = A(I,J) 

192 CONTINUE 
191 CONTINUE 

DO 193 J= 1, C-1 
DO 194 1 = T, C 
A(I-1, J) = A(I,J) 

194 CONTINUE 
193 CONTINUE 

DO 195 I = T, C 
B(I-1) = B(I) 

195 CONTINUE 

USING GAUSSIAN ELIMINATION TO SOLVE THE MATRIX 

201 	IF (RATIO .EQ. 0) THEN 

DO 202 I = I, Z 
DO 203 J = 3, Z 
A(I,J-1)=A(I,J) 

203 CONTINUE 
202 CONTINUE 

DO 204 J = I, Z-1 
DO 205 I = 3, Z 
A(I-1, J) = A(I,J) 

205 CONTINUE 
204 CONTINUE 

DO 206 1 = 3, Z 
B(I-1 ) = B(I) 

206 CONTINUE 

Z = Z - 1 
ENDIF 

DO 200 W = 1, Z 

DO 210 X = (W+1), Z 
AL(X,W) = A(X,W) A(W,W) 

D0220Y=W,Z 
A(X,Y) = A(X,Y) - AL(X,W)*A(W,Y) 

220 CONTINUE 

210 CONTINUE 

200 CONTINUE 

DO 221 I = 1, Z 
AU(I,I) = 1.D0 
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221 CONTINUE 

****** LU FACTORY CALCULATION 

COEFY(1)= B(1)/ AL(1,1) 

DO 230 1 = 2, Z 
XR = 0. 

DO 240 J = 1, I-1 
XR = AL(I,J) * COEFY(J) + XR 
COEFY(I) = (B(1) - XR) / AL(I,I) 

240 CONTINUE 

230 CONTINUE 

COEFX(Z) = COEFY(Z) A(Z,Z) 

DO 250 I =Z-1, 1,-1 
XR = 0. 

DO 260 J = Z, 1+1, -1 
XR = A(I,J) * COMM + XR 

• COEFX(I) = (COEFY(I) - XR) / A(I,I) 
260 CONTINUE 

250 CONTINUE 

IF (RATIO .EQ. 0) THEN 

DO 251 I = Z, 2, -1 
COEFX(I+1) = COEFX(I) 

251 CONTINUE 

COEFX(2) = 0. 
Z = Z + 1 

ENDIF 

TKO = CKO + N + 2 

IF (Z. .EQ. C-1) THEN 

DO 270 I = Z, TKO, -I 
COEFX(I+1) = COEFX(I) 

270 CONTINUE 

COEFX(TKO) = 0. 

ENDIF 

WRITE(7,124) 'GUIDED REFLECTED COEF. =', COEFX(1) 
WRITE(7,124) 'GUIDED TRANSMITTED  COEF. =', COEFX(2) 

124 	FORMAT(2X, A30, (D15.8, 3X, D15.8)) 

62 



WRITE(7, *) 'TRANSMITTED RADIATION COEFFICIENTS :' 

DO 280 1 = 1, N 
J = I + 2 
WRITE(7, 125) 'COEF(', I, ')= COEFX(J) 

125 	FORMAT(2X, AG, 14, A3, (D15.8, 3X, D15.8)) 
280 CONTINUE 

WRITE(7,*) 
WRITE(7,*) 'REFLECTED RADIATION COEFFICIENTS :' 

DO 281 1 = I, N 
J = I + N + 2 
WRITE(7,125) 'COEF(', I, ')= COEFX(J) 

281 CONTINUE 

CALCULATES THE TRANSMITTED & REFLECTED POWER 
of 

GUIDED & RADIATION MODES 

PREF = (CDABS(COEFX(1))) ** 2 
P MANS = ((CDABS(COEFX(2))) ** 2) * BETA2 / BETA1 

RPTRANS = 0. 
RPREF = 0. 

DO 1000 1= 3, CK0+1 
L = I - 2 
RPTRANS = RPTRANS + ((CDABS(COEFX(I))) ** 2) * CDABS(BNC(L)) 

1000 CONTINUE 

DO 1100 I = N+3, TKO-1 
L = I - N - 2 

RPREF = RPREF + ((CDABS(COEFX(I)))** 2) * CDABS(BNC(L)) 
1100 CONTINUE 

RPTRANS = 2. * RPTRANS * DELTU / BETA] 
RPREF = 2. * RPREF * DELTU / BETA1 
PTOTAL = PTRANS + PREF + RPTRANS + RPREF 

WRITE(6,2) 'K0D =', KD, '?*K0 =' , NO 
2 	FORMAT(5X, 2(A6, F5.2, 6X)) 

WRITE(6,*) 
WRITE(6,1) 'D1= KD*2., 'D2= ', KD*RATIO, 'NS=', NS, 'NF=', NF 

C, 'N= N 
FORMAT (2(A4, D10.4, 2X), 2(A4, F10.8, 2X), A3, 13) 

WRITE(6,*) 

WRITE(6,1005) 'TRANSMITTED POWER IN GUIDED MODE = PTRANS 
WRITE(6,*) 
WRITE(6,1005) 'REFLECTED POWER IN GUIDED MODE = PREF 
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WRIIE(6,*) 
WRITE(6,1005) 'TRANSMITTED POWER IN RADIATION MODE = RPTRANS 
WRITE(6,*) 
WRITE(6,1005) 'REFLECTED POWER IN RADIATION MODE = RPREF 
WRITE(6,*) 

WRITE(6,1005) 'TOTAL POWER IN THIS MODEL = PTOTAL 
1005 FORMAT(3X, A40, F12.8) 

WRITE(6,*) 

CASEI = 1.0D0 - PTRANS - PREF 
CASEII = RPTRANS RPREF 
DIFF = CASEI - CASEII 

WRITE(6,*) 'FOR CASE I: ' 
WRITE(6,*) ' RADIATION POWER = 1 - GUIDED MODE POWER' 
WRITE(6,1006) 'RADIATION POWER = CASEI 

WRITE(6,*) 
WRITE(6,*) 'FOR CASE II: ' 
WRITE(6,*) ' RADIATION POWER = TRANSMISSION POWER + REFLECTION 

C POWER IN RADIATION MODE' 
WRITE(6,*) 
WRITE(6,1006) 'RADIATION POWER =', CASEII 

WRITE(6,*) 
WRITE(6,*) 'THE DIFFERENCE BETWEEN TWO CASES IS :', DIFF 

1006 FORMAT(3X, A20, F10.8) 

CLOSES THE DATA FILE 

CLOSE(8) 
CLOSE(7) 
CLOSE(6) 
CLOSE(5) 

STOP 
END 

SUBROUTINE FOR 
CALCULATING THE OVERLAP INTEGRAL 

BOTH SIDES OF STEP HAVE RADIATION MODE 

SUBROUTINE RADRAD(U1, U2, V1, V2, P, Al, A2, T12) 

PARAMETER (PI = 3.14159265358979) 
REAL*8 U1, U2, VI, V2, P, Al, A2 
REAL*8 WI, W2, W3, W4, W5 
REAL*8 T10, T11, T12, F, Y 
REAL*8 RR, RATIO 

COMMON /SETS/ RATIO 
COMMON /SET9/ RR, F 
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W1 =V1 
W2 = V1 * RATIO 
W3 = V2 
W4 = V2 * RATIO 
W5 = U2 * (1. - RATIO) 

IF (V1 .EQ. U2) THEN 
T11 =0. 
ELSE 
T1 1 = (DCOS(W4) * ( VI * DSIN(W1) * DCOS(W5) - U2 * DCOS(W1) 

C 	* DSIN(W5) - VI * DSIN(W2) ) - P * DSIN(W4) * 
C 	( V1 * DSIN(W1) * DSIN(W5) + U2 * DCOS(W1) * DCOS(W5) 

- U2 * DCOS(W2) ) ) / ( V1 * VI - U2 * U2 ) 
ENDIF 

Y = ( U2 * DCOS(W 1) * DCOS(W4) * DSIN(W5) 
C 	+ V2 * DCOS(W1) * DSIN(W4) * DCOS(W5) 
C 	- VI * DSIN(W1) * DCOS(W4) DCOS(W5) 
C 	+P * V1 * DSIN(W1) * DSIN(W4) * DSIN(W5)) / (U1 +1J2) 

IF ( U 1 .EQ. U2 ) THEN 
F = (( DCOS(W1) * DCOS(W4) + (V1 / UI)* P * DSIN(W1) * 

C 	DSIN(W4)) * DCOS(W5) + ((VI /U1) * DSIN(W1) * 
C 	DCOS(W4) - P * DCOS(W1) * DSIN(W4)) * DSIN(W5)) 
C 	* PI * A1 * A2 

T10 = ( ( DSIN(2 * W2) / (2 * VI) ) + RATIO ) / 2. 

T12 Y * 2. *Al *A2 
RR = 2. *A1 *A2 * (T10 + T11) 

ELSE 
F = O. 

T10 = (VI * DSIN(W2) * DCOS(W4) - V2 * DCOS(W2) * DSIN(W4)) 
C 	/ (V I * V1 - V2 * V2) 

T12 = Y / (U1 - U2) 

RR = A1 * A2 * 2. * (T10 + T11 + T12) 
ENDIF 

RETURN 
END 

SUBROUTINE FOR 
CALCULATING THE OVERLAP INTEGRAL 

ONE SIDE OF STEP HAS GUIDED MODE AND 
THE OTHER HAS RADIATION MODE 

 

SUBROUTINE GDRAD(U, V, P, G, R) 

REAL*8 K1, K2, Di , D2, Al, A2, RATIO 
REAL*8 S6, S7, S8 
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REAL*8 T4, T5, T6, T7, T8, T9 
REAL*8 U, V, P 
REAL*8 G, R 
REAL*8 S1, S2, S3, S4, S5 

COMMON /SET2/ K1, K2, Al, A2 
COMMON /SET3/ SI, S2, S3, S4, S5 
COMMON /SETS/ RATIO 

S6 = V 
S7 = V * RATIO 
S8 = U * (1. - RATIO) 

GUIDED MODE IN REGION I & RADIATION MODE IN REGION II 

T4 = (K1 * DSIN(S2) * DCOS(S7) - V * DCOS(S2) * DSIN(S7)) 
(K1 * K1 - V * V) 

T5 = ( DCOS(S7) * ( K1 * DSIN(S1) * DCOS(S8) - U * DCOS(S1 ) 
C 	 * DSIN(S8) - K1 * DSIN(S2) ) 
C 	- P * DSIN(S7) * (K1 * DSIN(S1) * DSIN(S8) + 
C 	 U * DCOS(S1) * DCOS(S8) - U * DCOS(S2) ) ) 
C 	/(K1 * K1 - * U) 

T6 = -1.* DCOS(SI) * (DCOS(S7) * (U *DS1N(S8) - Al * DCOS(S8)) 
C 	+ P * DSIN(S7) * ( Al * DSIN(S8) +U * DCOS(S8))) 
C 	/(Al *A1 +U*U) 

G = T4 + T5 + T6 

RADIATION MODE IN REGION 1 & GUIDED MODE IN REGION II 

17 = ( K2 * DSIN(S4) * DCOS(S7) - V * DCOS(S4) * DSIN(S7) ) 
C 	/ (K2 * K2 - V * V) 

T8 = DCOS(S4) * ( ( V * DSIN(S6) - A2 * DCOS(S6) ) * S5 
C 	 - ( V * DSIN(S7) - A2 * DCOS(S7) ) ) 
C 	/ (A2 * A2 + V * V) 

T9 = ( A2 * DCOS(S6) - V * DSIN(S6) ) * DCOS(S4) * S5 
C 	/ (A2 * A2 + U * U) 

R =T7 + T8 + T9 

RETURN 
END 

SOLVE THE DISPERSION EQUATION 
KxnTan( Kxn D) = α  

FOR GUIDED MODES 

SUBROUTINE DISPER(KX, AX, B, R) 

PARAMETER(PI = 3.14159265358979) 
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REAL*8 K0, K1, R 
REAL*8 KX, AX, B 
REAL*8 FIN, VAR1, VAR2 
REAL*8 K, EN, T 
REAL*8 KEPAS, ER, KEPAF, P 
REAL*8 KLEFT, KRIGHT 

COMMON/SET1/KEPAS, K2, ER, KEPAF 

K0 = KEPAS 
ER = ER 
K1 = KEPAF 

K0 = KO * R 
EN = ER - 1 
K1 = K1*  R 

T = 1 + ( PI * PI / 4.) 
KRIGHT = DSQRT(EN) * KO 
KLEFT = KRIGHT / DSQRT(T) 

DO 20 I = 1,100 

KX = (KLEFT + KRIGHT) / 2. 

VAR1 = KX - K0 * DSQRT(EN) * COS(KX)  
P = DABS(VAR1) 

IF (P .LT. 0.5D-6) THEN 
GO TO 95 

ENDIF 

IF (VAR] .GT. 0) THEN 
KRIGHT = KX 

ELSE 
KLEFT = KX 
ENDIF 

20 CONTINUE 

95 	KX = KX / R 

K0=K0/R 
K1 = K1 IR 

B = K1 * K1 - KX * KX 
AX B - K0 * K0 
B = DSQRT(B) 

IF (AX .LT. 0.) THEN 
AX = KX * KX * R 
ELSE 
AX = DSQRT(AX) 

ENDIF 
RETURN 

END 

SUBROUTINE FOR CALCULATING 
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THE RADIATION  PROPAGATION COEFFICIENTS IN DIFFERENT REGIONS 

SUBROUTINE FINDUN(X, Y, Z, C) 

REAL*8 X, Y 
COMPLEX*16 Z, IMAGE 
REAL*8 P, S 
REAL*8 K0, K 
REAL*8 DU 
REAL*8 KEPAS, ER, KEPAF 
INTEGER*4 C 

COMMON /SET1/ KEPAS, ER, KEPAF 

K0 = KEPAS 
K = KEPAF 

IMAGE = CMPLX(0,-1) 

P = K0 * K0 - X *X 
Y=K*K-P 
Y = DSQRT(Y) 

IF (DABS(P) .LT. 0.5D-2) THEN 
Z = 0. 
C = 1 

ELSE 

IF (P .LT. 0) THEN 
S = DABS(P) 

S = DSQRT(S) 
Z = IMAGE * S 

ELSE 
Z = DSQRT(P) 
ENDIF 

C = 0 
ENDIF 

RETURN 
END 
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SUBROUTINE FOR CALCULATING THE OVERLAP INTEGRAL 
BOTH REGIONS HAVE GUIDED MODE 

SUBROUTINE GUIDE 

REAL*8 K1, K2 
REAL*8 TI, T2, T3 
REAL*8 Al, A2 
REAL*8 SI , S2, S3, S4, S5 
REAL*8 GG 

COMMON /SET2/ K1 ,K2, A1, A2 
COMMON /SETS/ S1, S2, S3, S4, S5 
COMMON /SETS/ GG 

T1 = ( K1 * DSIN(S2) * DCOS(S4) - K2 * DCOS(S2) * DSIN(S4)) 
C 	/(K1*K1-K2 *K2) 

T2 = DCOS(S4) * ((K1 * DSIN(S1) - A2 * DCOS(S1) ) * S5 - 
C 	 (KI * DSIN(S2) - A2 * DCOS(S2))) 
C 	/ (K1 * K1 + A2 * A2) 

T3 = ( DCOS(S1) * DCOS(S4) * S5 ) / (A1+A2) 

GG = T1 + T2 + T3 

RETURN 
END 



APPENDIX F 

PROGRAM for MANY STEPS DISCONTINUITIES  

PROGRAM NORM MAIN 

INTEGER*4 STEP, ITER, N, NO, C, DIR, X, FLAG, CK0, FLAGP, RATION 
REAL*8 PI, KD, ER, NS, LENGTH, RATIO 

PARAMETER(STEP=128, I I ER=3, N=150, NO=1, C=2*N+2, PI=3.14159265) 
PARAMETER (KD=1, ER=2.56, NS=1 ) 

REAL*8 KEPAS, KEPAF, DELTA_Z, DELTA_U, RATIO] , RATIO2 
REAL*8 ZZ, DELTA_UN, BI, B2 
REAL*8 UN(N), VN(N), R(STEP+1) , P(N) 
REAL*8 KX(STEP+I), AX(STEP+1), BETA(STEP+1) 
COMPLEX*16 BNC(N) 
REAL*8 AU1 (N), AU2(N), Q1, Q2, AMP I , AMP2 
REAL*8 S1, S2, S3, S4, S5, SS 
REAL*8 GG, GR(N), RG(N), RR(N,N), RY(0:N,0:N), DY 
COMPLEX*16 A(C,C), B(C), COEFX(C), PREV(C) 
COMPLEX*16 PEXPB1Z, PEXPB2Z, NEXPB1Z, NEXPB2Z 
COMPLEX*16 PEXPBU(N), NEXPBU(N), IMAGE 
REAL*8 G, H 
COMPLEX*16 TRANS(N), REF(N), TCOEF 
REAL*8 PREF, PTRANS, RPTRANS, RPREF, PTOTAL, DIF_P 
REAL*8 PINC, PTPREV 

COMMON /SET1 / KEPAS, KEPAF 
COMMON /SET3/ S1, S2, S3, S4, S5 
COMMON /SET4/ RATIO1, RATIO2 
COMMON /SETS/ GG, GR, RG, RR 
COMMON /SET6/ A, B 
COMMON /SET7/ PEXPB1Z, PEXPB2Z, NEXPB1Z, NEXPB2Z, PEXPBU, NEXPBU 
COMMON /SET9/ PREY 
COMMON /SET10/ COEFX 
COMMON /SETH/ TRANS 
COMMON /SET12/ REF 
COMMON /SET13/ BNC 

OPEN (6, FILE='CONSERV.DAT, STATUS='NEW', FORM=FORMATTED') 
OPEN (7, FILE='PATTER.DAT , STATUS='NEW', FORM='FORMATTED') 
OPEN (8, FILE='COEF.DAT', STATUS='NEW', FORM='FORMATTED' ) 

KEPAS = KD * NS 
KEPAF = KD * DSQRT(ER) 
LENGTH = PI * 10. 

Z = STEP 

IF (Z .EQ. 1) THEN 
DELTA_Z = 0. 
ELSE 
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DELTA_Z = LENGTH / (Z - 1) 
ENDIF 

DELTA_U = NO * KEPAS / N 
RATIO = KD / STEP 

CK0 = N 
RATION = N / NO 
DO 100 I= 1,N 
UN(I) = I * DELTA_U 
IF (I .EQ. RATION) THEN 
BNC(I) = 0. 
VN(I) = KEPAF 
CK0 = I 
ELSE 
CALL FINDUN (UN(I), VN(I), BNC(I)) 
ENDIF 

100 CONTINUE 

R(1) = 1. 
WRITE(8,2) 'R(',1, ') = R(1) 
DO 120 I = 2, STEP 

R(I) = R(I-I) - RATIO 
120 CONTINUE 

DO 1301 = 1, STEP 
CALL DISPER(KX(I), AX(I), BETA(I), R(I), ER) 

130 CONTINUE 

R(STEP+1) = 0. 
KX(STEP+1) = 0. 
AX(STEP+1) = 0. 
BETA(STEP+1) = 0. 

PTPREV = 1. 
PREV(1) = 0. 
PREV(2) = 1. 
PINC = 1. 
TCOEF = 1. 
DO 140 I = 3, C 
PREV(I) = 0. 

140 CONTINUE 

DO 1000 X = 1, ITER 
DIR = JMOD(X,2) 
IF (X .EQ. 1) THEN 

II=1  
JJ = STEP 
KK = I 
FLAGP = 1 

ELSE 
IF (DIR .EQ. 0) THEN 

II = STEP - I 
JJ = 1 
KK = -1 
FLAGP = 2 

ELSE 
II = 2 
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JJ = STEP 
KK = 1 
FLAGP = 3 

ENDIF 
ENDIF 

DO 150 I=II, JJ, KK 
RATIO1 = R(I) 
RATIO2 = R(I+1) 

S1 = KX(I) * RATIO1 
S2 = KX(I) * RATIO2 
S3 = KX(I+1) * RATIO1 
S4 = KX(I+1) * RATIO2 
S5 = AX(I+1) * (RATIO2 - RATIO1) 
S5 = DEXP(S5) 

AMP1 = AX(I) /(1 + AX(I) * RATIO1) 
AMP1 = DSQRT(AMP I ) 
AMP2 = AX(I+1) / (1 + AX(I+1) * RATIO2) 
AMP2 = DSQRT(AMP2) 

CALL GUIDE(KX(I), AX(I), 10(0+1), AX(I+1), GG) 
GG = 2. * AMP1 * AMP2 * GG 

DO 170 J = 1,N 
P(J) = VN(J) / UN(J) 
Q1 = VN(J) * RATIO1 
Q2 = VN(J) * RATIO2 

AU1(J) = DCOS(Q1) *DCOS(Q1) +P(J) *P(J) *DSIN(Q1) *DSIN(Q1) 
AU1(J) = PI * AU1(J) / 2. 
AU1(J) = 1. / DSQRT(AUI(J)) 

AU2(J) = DCOS(Q2) *DCOS(Q2) +P(J) *P(J) *DSIN(Q2) *DSIN(Q2) 
AU2(J) = PI * AU2(J) / 2. 
AU2(J) = I . / DSQRT(AU2(J)) 

CALL GDRAD(KX(I),AX(I),KX(I+1),AX(I+1),VN(J),UN(J),P(J),G,H) 

GR(J) = 2. * AMP1 * AU2(J) * G 
RG(J) = 2. * AU1(J) * AMP2 * H 

170 CONTINUE 

DO 190 L = 1,N 
DO 200 M = 1, N 

CALL RADRAD(UN(L), UN(M), VN(L), VN(M), P(M), 

	

C 	AU1(L), AU2(M), RR(L,M), L, M) 

	

200 	CONTINUE 

	

190 	CONTINUE 

ZZ = DELTA _Z * (I-1) 
IMAGE = CMPLX(0,1) 
PEXPB1Z = DCOS(BETA(I) * ZZ) + IMAGE * DSIN(BETA(I) * ZZ) 
PEXPB2Z = DCOS(BETA(I+1) * ZZ) + IMAGE * DSIN(BETA(I+1) *ZZ) 
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NEXPB1Z = DCOS(BETA(I) * ZZ) - IMAGE * DSIN(BETA(I) * ZZ) 
NEXPB2Z = DCOS(BETA(I+1) * ZZ) - IMAGE * DSIN(BETA(I+1) *ZZ) 
IF (CK0 .NE. N) THEN 
DO 210 J = 1, CK0 
SS = CDABS(BNC(J) * ZZ) 
PEXPBU(J) = DCOS(SS) + IMAGE * DSIN(SS) 
NEXPBU(J) = DCOS(SS) - IMAGE * DSIN(SS) 

	

210 	CONTINUE 

DO 220 J = CK0+1, N 
SS = DIMAG(BNC(J) * ZZ) 
PEXPBU(J) = DEXP(SS) 
NEXPBU(J) = DEXP(-1. * SS) 

	

220 	CONTINUE 

ELSE 

DO 230 J = 1, N 
SS = CDABS(BNC(J) * ZZ) 
PEXPBU(J) = DCOS(SS) + IMAGE * DSIN(SS) 
NEXPBU(J) = DCOS(SS) - IMAGE * DSIN(SS) 

230     CONTINUE 
ENDIF 

DELTA_UN = DELTA_U / 3. 

IF (DIR .EQ. 0) THEN 
CALL BACKWARD(BETA(I), BETA(I+1), DELTA_UN) 
B1 = BETA(I+1) 
B2 = BETA(I) 

WRITE(6,*) 'IT'S BACKWARD ON BOUNDARY, I,' , THE', X, 

	

C 	' TIME"S PROPAGATION!' 
ELSE 
CALL FORWARD(BETA(I), BETA(I+1), DELTA_UN) 
B1 = BETA(I) 
B2 = BETA(I+1) 
WRI 	I E(6,*) 'IT'S FORWARD ON BOUNDARY', I, ' , THE', X, 

	

C 	' TIME'S PROPAGATION!' 
ENDIF 

IF (I .EQ. STEP) THEN 
FLAG = 1 

ELSE 
FLAG = 0 

ENDIF 
CALL CAL_COEF(FLAG, CK0) 

PREF = ((CDABS(COEFX(1))) ** 2) * PTPREV 
PTRANS = ((CDABS(COEFX(2))) ** 2) * PTPREV * B2 / B1 
RPTRANS = 0. 
RPREF = 0. 

DO 240 J = 3, CK0+2 
L = J - 2 
K = J + N 
RPTRANS = RPTRANS + ((CDABS(COEFX(J))) ** 2) * CDABS(BNC(L)) 
RPREF = RPREF + ((CDABS(COEFX(K))) ** 2) * CDABS(BNC(L)) 
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240 CONTINUE 

RPTRANS = 2. * RPTRANS * DELTA _U * PTPREV / BI 
RPREF = 2. * RPREF * DELTA _U * PTPREV/ B1 
PTOTAL = PTRANS + PREF + RPTRANS + RPREF 
DIF_P = (PINC - PTOTAL) / PINC 

WRITE(6,*) 
WRITE(6,*) 'POWER DISTRIBUTION :' 
WRITE(6,*) 'GUIDED TRANSMITTED POWER =', PTRANS 
WRITE(6,*) 'GUIDED REFLECTED POWER =', PREF 
WRITE(6,*) 'RADIATED TRANSMITTED POWER =', RPTRANS 

WRITE (6,*) 'RADIATED REFLECTED POWER =', RPREF 
WRITE(6,*) 'TOTAL POWER AT TI-US STAGE =', PTOTAL 
WRITE(6,*) 
WRITE(6,*) 'INCIDENT POWER FROM PREVIOUS STAGE =', PINC 
WRITE(6,*) 
WRITE(6,*) 'THE PERCENTAGE ERROR OF TOTAL POWER =', DIF_P 

WRITE(8,*) 'PREVIOUS GUIDED POWER = PTPREV 
WRITE(8,*) 'PREVIOUS INCIDENT POWER = PINC 
WRITE(8,*) 'GUIDED TRANSMITTED COEFFICTENT = COEFX(2) 
WRITE(8,*) 'GUIDED REFLECTED COEFFICIENT = COEFX(1) 
WRITE(8,*) 'TRANSMITTED COEFFICIENT = TCOEF 

 
IF (FLAGP .EQ. I) THEN 
IF (I .EQ. 1) THEN 
PREV(1 ) = COEFX(1 ) 
PREV(2) = COEFX(2) 
DO 245 J = 3, N+2 
L = J + N 
REF(J-2) = COEFX(L) 
PREV(J) = COEFX(J) 

245 	CONTINUE 
CALL PATTERNR(DELTA_U, B1, X, RATION, TCOEF) 
PTPREV = PTRANS 
PINC = PTRANS + RPTRANS 
TCOEF = TCOEF * PREV(2) 

ELSE 
IF (I .EQ. STEP) THEN 
PREV( I ) = COEFX(1) 
PREV(2) = COEFX(1) 

DO 250 J = 3, N 
L = J + N 
TRANS(J-2) = COEFX(J) 
PREV(J) = COEFX(L) 

250 	CONTINUE 
CALL PATTERNT(DELTA_U, B1, X, RATION, TCOEF) 
PTPREV = PREF 
PINC = PREF + RPREF 
TCOEF = TCOEF * PREV(2) 

ELSE 
PTPREV = PTRANS 
PINC = PTRANS + RPTRANS 
TCOEF = TCOEF * COEFX(2) 
DO 260 = 1, C 

PREV(J) = COEFX(J) 
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260       CONTINUE 
ENDIF 

ENDIF 
ELSE 
IF ((FLAGP .EQ. 2) .AND. (I .EQ. 1)) THEN 
PREV(1) = COEFX(1) 
PREV(2) = COEFX(1) 
DO 265 J = 3, N 
L = J + N 
REF(J-2) = COEFX(J) 
PREV(J) = COEFX(L) 

265 	CONTINUE 
CALL PATIERNR(DELTA_U, B1, X, RATION ,TCOEF) 
PTPREV = PREF 
PINC = PREF + RPREF 
TCOEF = TCOEF * PREV(2) 

ELSE 
IF ((FLAGP .EQ. 3) AND. (I .EQ. STEP)) THEN 
PREV(1) = COEFX(1) 
PREV(2) = COEFX(1) 
DO 270 J = 3, N 
L = J + N 
TRANS(J-2) = COEFX(J) 
PREV(J) = COEFX(L) 

270 	CONTINUE 
CALL PATTERNT(DELTA_U, B1, X, RATION, TCOEF) 
PTPREV = PREF 
PINC = PREF + RPREF 
TCOEF = TCOEF * PREV(2) 

ELSE 
PTPREV = PTRANS 
PINC = PTRANS + RPTRANS 
TCOEF = TCOEF * COEFX(2) 
DO 280 J = 1, C 
PREV(J) = COEFX(J) 

280 	CONTINUE 
ENDIF 

ENDIF 
ENDIF 

150 CONTINUE 
1000 CONTINUE 

CLOSE(6) 
CLOSE(7) 
CLOSE(8) 

STOP 
END 
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THE RADIATION PROPAGATION COEFFICIENTS 
IN DIFFERENT REGIONS 

SUBROUTINE FINDUN(X, Y, Z) 

REAL*8 X, Y 
COMPLEX*16 Z, IMAGE 
REAL*8 P, S 
REAL*8 K0, K 
REAL*8 KEPAS, KEPAF 

COMMON /SET1/ KEPAS, KEPAF 

K0 = KEPAS 
K = KEPAF 

IMAGE = CMPLX(0,-1) 

P = K0 * K0 - X * X 
Y=K*K-P 
Y = DSORT(Y) 

IF (P .LT. 0) THEN 
S = DABS(P) 

S = DSQRT(S) 
Z = IMAGE * S 

ELSE 
Z = DSQRT(P) 

ENDIF 

RETURN 
END 

SOLVES THE DISPERSION EQUATION 
KxnTan(KxnD) = 

αxn      FOR GUIDED MODES 

SUBROUTINE DISPER(KX, AX, B, R, ER) 

PARAMETER(PI = 3.14159265358979) 
REAL*8 K0, K1, R 
REAL*8 KX, AX, B 
REAL*8 FIN, VAR1 
REAL*8 K, EN, T, P 
REAL*8 KEPAS, KEPAF, ER 
REAL*8 KLEFT, KRIGHT 

COMMON /SET1/ KEPAS, KEPAF 

K0 = KEPAS 
ER= ER 
K1 = KEPAF 
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K0 = K0 * R 
EN = ER - 1 
KI = K1 * R 

T=((PI*PI/4.)- 1.)/EN 
KRIGHT = K1 
KLEFT = 0. 

DO 10I = 1,100 

KX = (KLEFT + KRIGHT) / 2. 

VAR1 = KX - K0 * DSQRT(EN) * COS(KX) 
P = DABS(VARI) 

IF (P .LT. 0.5D-6) THEN 
GO TO 95 

ENDIF 

IF (VAR1 .GT. 0) THEN 
KRIGHT = KX 

ELSE 
KLEFT = KX 
ENDIF 

10 CONTINUE 

95 	KX = KX / R 
K0 = K0 / R 
K1 =K1 /R 

B = K1 * K1 - KX * KX 
AX B - K0 * K0 
B = DSQRT(B) 

IF (AX .LT. 0.) THEN 
AX = KX * KX * R 
ELSE 
AX = DSQRT(AX) 

ENDIF 
RETURN 

END 

SUBROUTINE FOR CALCULATING THE OVERLAP INTEGRAL 
BOTH SIDES OF STEP HAVE GUIDED MODE 

SUBROUTINE GUIDE(K1, Al, K2, A2, GG) 

REAL*8 K1, K2, Al, A2 
REAL*8 T1, T2, T3 
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REAL*8 S1, S2, S3, S4, S5 
REAL*8 GG 

COMMON /SET3/ S1, S2, S3, S4, S5 

TI = ( K1 * DSIN(S2) * DCOS(S4) - K2 * DCOS(S2) * DSIN(S4)) 
C 	/ ( K1 * K1 - K2 * K2 ) 

T2 = DCOS(S4) * ((K1 * DSIN(S1) - A2 * DCOS(S1) ) * S5 - 
C 	 (K1 * DSIN(S2) - A2 * DCOS(S2))) 
C 	/ (K1 * K1 +A2 * A2) 

T3 = ( DCOS(S1) * DCOS(S4) * S5 ) / (A1 + A2) 

GG = T1 + T2 + T3 

RETURN 
END 

SUBROUTINE FOR CALCULATING THE OVERLAP INTEGRAL 
ONE SIDE OF STEP HAS GUIDED MODE & THE OTHER SIDE HAS RADIATION MODE 

SUBROUTINE GDRAD(K1, Al, K2, A2, V, U, P, G, R) 

REAL*8 K1, K2, Al, A2, RATIO1, RATIO2 
REAL*8 S6, S7, S8 
REAL*8 T4, T5, T6, T7, T8, T9 
REAL*8 U, V, P 
REAL*8 G, R 
REAL*8 S1, S2, S3, S4, S5 

COMMON /SET3/ S1, S2, S3, S4, S5 
COMMON /SET4/ RATIO1, RATIO2 

S6 = V * RATIO1 
S7 = V * RATIO2 
S8 = U * (RATIO1 - RATIO2) 

GUIDED MODE IN REGION I & RADIATION MODE IN REGION II 

T4 = (K1 * DSIN(S2) * DCOS(S7) - V * DCOS(S2) * DSIN(S7)) 
/ (K1 * K1 - V * V) 

T5 = ( DCOS(S7) * ( K1 * DSIN(S1) * DCOS(S8) - U * DCOS(S1) 
C 	 * DSIN(S8) - K1 * DSIN(S2) ) 
C 	- P * DSIN(S7) * (K1 * DSIN(S1) * DSIN(S8) + 
C 	U * DCOS(S1) * DCOS(S8) - U * DCOS(S2) ) ) 
C 	/ (K1 * K1 - U * U) 

T6 = -1 .* DCOS(S1) * (DCOS(S7) * 	*DSIN(S8) - A1 * DCOS(S8)) 
C 	+ P * DSIN(S7) * ( A1 * DSIN(S8) + U * DCOS(S8))) 
C 	/(A1 *A1 +U*U) 

G = T4 + T5 + T6 
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RADIATION MODE IN REGION I & GUIDED MODE IN REGION II 

T7 = ( K2 * DSIN(S4) * DCOS(S7) - V * DCOS(S4) * DSIN(S7) ) 
C 	/ (K2 * K2 - V * V) 

T8 = DCOS(S4) * ( ( V * DSIN(S6) - A2 * DCOS(S6) ) * S5 
C 	- ( V * DSIN(S7) - A2 * DCOS(S7) ) ) 
C 	/ (A2 * A2 + V * V) 

T9 = ( A2 * DCOS(S6) - V * DSIN(S6) ) * DCOS(S4) * S5 
C 	/ (A2 * A2 + U * U) 

R =T7 + T8 + T9 

RETURN END 

SUBROUTINE FOR 
CALCULATING THE OVERLAP INTEGRAL 

BOTH SIDES OF STEP HAVE RADIATION MODE 

SUBROUTINE RADRAD(U1, U2, V1 , V2, P, A1, A2, RR, I, J) 

PARAMETER (PI = 3.14159265358979) 
REAL*8 U1, U2, V1, V2, P, Al, A2 
REAL*8 WI, W2, W3, W4, W5 
REAL*8 T10, T11, T12, Y 
REAL*8 RR, RATIO1, RATIO2 

COMMON /SET4/ RATIO I, RATIO2 

W1 = VI * RATIO1 
W2 = V1 * RATIO2 
W3 = V2 * RATIO1 
W4= V2 * RATIO2 
W5 = U2 * (RATIO1 - RATIO2) 

IF (V1 .EQ. U2) THEN 
T11= 0. 

ELSE 
T11 = (DCOS(W4) * ( V1 * DSIN(W1) * DCOS(W5) - U2 * DCOS(W1) 

C 	* DSIN(W5) - VI * DSIN(W2) ) - P * DSIN(W4) * 
C 	( V1 * DSIN(W1) * DSIN(W5) + U2 * DCOS(W1) * DCOS(W5) 
C 	- U2 * DCOS(W2) ) ) / ( V1 * VI - U2 * U2 ) 

ENDIF 

Y = ( U2 * DCOS(W1) * DCOS(W4) * DSIN(W5) 
C 	+ V2 * DCOS(W1) * DSIN(W4) * DCOS(W5) 
C 	- V1 * DSIN(W1) * DCOS(W4) * DCOS(W5) 
C 	+ P * VI * DSIN(W1) * DSIN(W4) * DSIN(W5)) / (U1 + U2) 

IF ( I .EQ. J) THEN 
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RR = (( DCOS(W1) * DCOS(W4) + (V1 / U1) * P * DSIN(W1) * 
C 	DSIN(W4)) * DCOS(W5) + ((VI / U1) * DSIN(W1) * 
C 	DCOS(W4) - P * DCOS(W1) * DSIN(W4)) * DSIN(W5)) 
C 	* PI * A1 *A2 

ELSE 
T10 = (V1 * DSIN(W2) * DCOS(W4) - V2 * DCOS(W2) * DSIN(W4)) 

C 	/ (V1 * VI - V2 *V2) 
T12 =Y / (U1 -U2) 

RR = Al *A2 *2. * (T10 + T11 +T12) 
ENDIF 

RETURN 
END 

SUBROUTINE FOR FORWARD PROPAGATION 
MATRIX CALCULATION 

SUBROUTINE FORWARD(B1, B2, DELTA_UN) 

PARAMETER(N = 150, C = 2*N+2) 
INTEGER*4 X, Y, Z, CI 
COMPLEX*16 REF, REF1 
COMPLEX*16 A(C,C), B(C) 

COMPLEX*16 PB1Z, PB2Z, N131 Z, NB2Z, PBU(N), NBU(N) 
REAL*8 GG, GR(N), RG(N), RR(N,N) 
COMPLEX*16 PREV(C) 
COMPLEX*16 BNC(N) 

COMMON /SETS/ GG, GR, RG, RR 
COMMON /SET6/ A, B 
COMMON /SET7/ PB1Z, PB2Z, NBIZ, NB2Z, PBU, NBU 
COMMON /SETS/ PREV 
COMMON /SET13/ BNC 

A(1,1)=-1. *PB1Z 
A(1,2) = NB2Z * GG 
A(2,1) = PREV(2) * PBIZ * B1 * GG 
A(2,2) = PREV(2) * NB2Z * B2 

X = N + 2 
Y = X + 1 

DO 10 J = 3, X 
M = J - 2 
Z = JMOD(M, 2) 
IF(M.EQ.N)THEN 
A(1 ,J) = NBU(M) * DELTA_UN * GR(M) 
ELSE 

IF (Z .EQ. 0) THEN 
A(1,J) = NBU(M) * DELTA_UN * GR(M) * 2. 

ELSE 
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A(1,J) = NBU(M) * DELTA_UN * GR(M) * 4. 
ENDIF 

ENDIF 
A(2,J) = 0. 

10   CONTINUE 

DO 20 J = Y, C 
A(1, J) = 0. 
M = J - X 
Z = JMOD(M, 2) 
IF (M .EQ. N) THEN 
A(2,J) = PREV(2) * PBU(M) * BNC(M) * DELTA_UN * RG(M) 
ELSE 
IF (Z .EQ. 0) THEN 
A(2,J) = PREV(2) * PBU(M) * BNC(M) * DELTA_UN * RG(M) * 2. 
ELSE 
A(2,J) = PREV(2) * PBU(M) * BNC(M) * DELTA_UN * RG(M) *4. 
ENDIF 

ENDIF 
20   CONTINUE 

DO 30 I = 3, X 
L I - 2 
J = I + N 
A(I,1) = 0. 
A(I,2) = PREV(2) * NB2Z * RG(L) 

A(J,1) = PREV(2) * PB1Z * B1 * GR(L) 
A(J,2) = 0. 

30   CONTINUE 

DO 50 I = 3, X 
L = I - 2 
DO 40 J = Y, C 
M = J - X 
IF (M .EQ. L) THEN 
A(I,J) = PREV(2) * PBU(M) * (-2.) 
ELSE 
A(I,J) = 0. 

ENDIF 
40   CONTINUE 
50   CONTINUE 

DO 70 I = Y, C 
L = I - X 
DO 60 J = 3, X 
M = J - 2 
IF (M .EQ. L) THEN 
A(I,J) = PREV(2) * NI3U(M) * 2. * BNC(M) 
ELSE 
A(I,J) = 0. 
ENDIF 

60   CONTINUE 
70   CONTINUE 
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DO 90 = 3, X 
L =I - 2 
T =I + N 
DO 80 = 3, X 
M J - 2 
W J N 
Z = JMOD(M, 2) 
IF (M .EQ. N) THEN 
CI =1 
ELSE 

(Z .EQ. 0) THEN 
CI =2 

ELSE 
CI =4 

ENDIF 
ENDIF 

IF (M .EQ. L) THEN 

A(I,J) = PREV(2) * NBU(M) * RR(L,M) 
A(T,W) = PREV(2) * PBU(M) * BNC(M) * RR(M,L) 
ELSE 
AGM = PREV(2) * NBU(M) * DELTA_UN * RR(L,M) * CI 
A(T,W) = PREV(2) * PBU(M) * BNC(M) *DELTA_UN * RR(M,L) * CI 
ENDIF 

80 CONTINUE 
90 CONTINUE 

B(1) =NB1Z 
REF = 0. 
DO 100 I = 1, N 
Z = JMOD(I, 2) 
IF (I .EQ. N) THEN 
CI = 1 
ELSE 
IF (Z .EQ. 0) THEN 
CI = 2 
ELSE 
CI = 4 
ENDIF 

ENDIF 

REF = REF + PREV(I+2) * NBU(I) * BNC(I) * RG(I) * DELTA_UN*CI 
100 CONTINUE 

B(2) = REF + PREV(2) * NB1Z *B1 * GG 

DO 110 = 3, X 
B(I) = PREV(I) * NBU(I-2) * 2. 

110  CONTINUE 

DO 130 I = Y, C 
L = I - X 
REF = 0. 
DO 120 J = 1, N 
Z = JMOD(J, 2) 
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IF (J .EQ. N) THEN 
CI = 1 

ELSE 
IF (Z .EQ. 0) THEN 
CI =2 

ELSE 
CI =4 

ENDIF 
ENDIF 

IF (J .EQ. L) THEN 
REF1 = PREV(J+2) * NBU(J) * BNC(J) * RR(J,L) 

ELSE 
REF1 = PREV(J+2) * NBU(J) * BNC(J) * RR(J,L) * DELTA_UN*CI 
ENDIF 

REF = REF + REM 
120 CONTINUE 

B(I) = REF + PREV(2) * NBIZ * B1 * GR(L) 
130 CONTINUE 

RETURN                                                                                                                          END 

SUBROUTINE FOR BACKWARD PROPAGATION 
MATRIX CALCULATION 

SUBROUTINE BACKWARD(B1, B2, DELTA_UN) 

PARAMETER(N = 150, C = 2*N+2) 
INTEGER*4 X, Y, Z, CI 
COMPLEX*16 REF, REF1 
REAL*8 BI, B2, DELTA_UN 
REAL*8 GG, GR(N), RG(N), RR(N,N) 
COMPLEX*16 A(C,C), B(C) 
COMPLEX*16 PBIZ, PB2Z, NB1Z, NB2Z, PBU(N), NBU(N) 
COMPLEX*16 PREV(C) 
COMPLEX*16 BNC(N) 

COMMON /SETS/ GG, GR, RG, RR 
COMMON /SET6/ A, B 
COMMON /SET7/ PBIZ,  PB2Z, NB1Z, NB2Z, PBU, NBU 
COMMON /SET9/ PREV 
COMMON /SET13/ BNC 

A(1,1) = -1. *NB2Z 
A(1,2) = PB1Z *GG 
A(2,1) = PREV(2) * NB2Z * B2 * GG 
A(2,2) = PREV(2) * PB1Z * B1 

X = N + 2 
Y = X + 1 

DO 10 J = 3, X 
M = J - 2 
Z = JMOD(M, 2) 



IF (M .EQ. N) THEN 
A(1,J) = PBU(M) * DELTA_UN * RG(M) 
ELSE 
IF(Z .EQ. 0) THEN 
A(1,J) = PBU(M) * DELTA_UN * RG(M) * 2. 
ELSE 
A(1,J)  = PBU(M) * DELTA_UN * RG(M) * 4. 
ENDIF 

ENDIF 
A(2,J) = 0. 

10  CONTINUE 

DO 20 J = Y, C 
A(1, J) = 0. 
M = J - X 
Z = JMOD(M, 2) 
IF (M .EQ. N) THEN 
A(2,J) = PREV(2) * NBU(M) * BNC(M) * DELTA_UN * GR(M) 

ELSE 
IF (Z.EQ.0) THEN 
A(2,J) = PREV(2) * NBU(M) * BNC(M) * DELTA_UN * GR(M) * 2. 

ELSE 
A(2,J) = PREV(2) * NBU(M) * BNC(M) * DELTA_UN * GR(M) * 4. 
ENDIF 

ENDIF 
20  CONTINUE 

DO 30 I = 3, X 
L = I - 2 
J = I + N 

A(I,1) = 0. 
A(I,2) = PREV(2) * PB1Z * GR(L) 

A(J,1) = PREV(2) * NB2Z * B2 * RG(L) 
A(J,2) = 0. 

30  CONTINUE 

DO 50 I = 3, X 
L = I - 2 
DO 40 J = Y, C 
M = J - X 
IF (M .EQ. L) THEN 
A(I,J) = PREV(2) * NBU(M) * (-2.) 
ELSE 
A(I,J) = 0. 
ENDIF 

40  CONTINUE 
50  CONTINUE 

DO 70 I = Y, C 
L = I - X 
DO 60 J = 3, X 
M = J - 2 
IF (M .EQ. L) THEN 
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A(I,J) = PREV(2) * PBU(M) * 2. * BNC(M) 
ELSE 

A(I,J) = 0. 
ENDIF 

60 CONTINUE 
70 CONTINUE 

DO 90 I = 3, X 
L = I - 2 
T =I + N 
DO 80 J= 3, X 
M = J - 2 
W = J + N 
Z = JMOD(M, 2) 
IF (M .EQ. N) THEN 
CI =1 

ELSE 
IF (Z .EQ. 0) THEN 
CI = 2 

ELSE 
CI = 4 
ENDIF 

ENDIF 

IF (M .EQ. L) THEN 
A(I,J) = PREV(2) * PBU(M) * RR(M,L) 
A(T,W) = PREV(2) * NBU(M) * BNC(M) * RR(L,M) 

ELSE 
A(I,J) = PREV(2) * PBU(M) * DELTA_UN * RR(M,L) * CI 
A(T,W) = PREV(2) * NBU(M) * BNC(M) * DELTA_UN * RR(L,M) * CI 

ENDIF 
80 CONTINUE 
90 CONTINUE 

B(1) = PB2Z 
REF = 0. 
DO 100 I = 1, N 
Z = JMOD(I, 2) 
IF (I .EQ. N) THEN 
CI =1 

ELSE 
IF (Z .EQ. 0) THEN 
CI =2 
ELSE 
CI =4 

ENDIF 
ENDIF 

REF = REF + PREV(I+2) * PBU(I) * BNC(I) * GR(I) * DELTA_UN *CI 
100 CONTINUE 

B(2) = REF + PREV(2) * PB2Z * B2 * GG 

DO 110 
I=3, X                                                                  B(I) = PREV(I) * PBU(I-2) * 2. 

110 CONTINUE 
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DO 130 I = Y, C 
L = - X 
REF = 0. 
DO 120 J = 1, N 

Z=JMOD(J,2) 
IF (J .EQ. N) THEN 
CI = 1 

ELSE 
IF (Z .EQ. 0) THEN 
CI = 2 
ELSE 
CI =4 

ENDIF 
ENDIF 

IF (J .EQ. L) THEN 
REF1 = PREV(J+2) * PBU(J) * BNC(J) * RR(L,J) 

ELSE 
REF1 = PREV(J+2) * PBU(J) * BNC(J) * RR(L,J) * DELTA_UN*CI 

ENDIF 

REF = REF + REF1 
120 CONTINUE 

B(I) = REF + PREV(2) * PB2Z * 132 * RG(L) 
130 CONTINUE 

RETURN 
END 

SUBROUTINE FOR CALCULATING MATRIX 

SUBROUTINE CAL_COEF(F, CK) 

PARAMETER(N=150, C=2*N+2) 
INTEGER*4 Z, F, CK, T 
COMPLEX*16 AL(C,C), COEFY(C), XR 
COMPLEX*16 A(C,C), B(C), COEFX(C) 

COMMON /SET6/ A, 13 
COMMON /SET10/ COEFX 

Z = C - 1 

IF (CK, NE.N) THEN 
T=CK+N+ 3 
GO TO 500 
ELSE 
GO TO 510 
ENDIF 

500 DO 20 I = 1, C 
DO 10 J = T, C 
A(1, J-1) = A(I,J) 

10 CONTINUE 
20 CONTINUE 
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DO 40 = J 1, C-1 
DO 30 1 = T, C 
A(I-1, J) = A(I,J) 

30 CONTINUE 
40 CONTINUE 

DO 50 I = T, C 
13(I-1) = B(I) 

50 CONTINUE 

510 	IF (F .EQ. 1) THEN 
DO 70 I=I,Z 
DO 60 J = 3, Z 
A(1, J-1) = A(I,J) 

60 CONTINUE 
70 CONTINUE 

DO 90 J = 1, Z-1 
DO 80 = 3, Z 
A(I-1, J) = A(I,J) 

80 CONTINUE 
90 CONTINUE 

DO 100 I = 3, Z 
B(1-1) = B(I) 

100 CONTINUE 

Z = Z - 1 
ENDIF 

DO 130 I = 1, Z 
DO 120 = I+1, Z 

AL(J,I) = A(J,I) / A(I,I) 
DO 110 K=I,Z 

A(J,K) = A(J,K) - AL(J,I) * A(I,K) 
110 CONTINUE 
120 CONTINUE 
130 CONTINUE 

DO 140 = 1, Z 
AL(I,I) = 1. 

140 CONTINUE 

COEFY(1)= B(1) /AL(1,1) 
DO 160 I= 2, Z 
XR = 0. 
DO 150J=1,1-1 
XR = AL(I,J) * COEFY(J) + XR 

150 CONTINUE 
COEFY(I) = (13(1) - XR) I AL(I,I) 

160 CONTINUE 

COEFX(Z) = COEFY(Z) A(Z,Z) 
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DO 180 I = Z-1, 1,-1 
XR= 0. 
DO 170 = Z, I+1, -1 
XR = A(I,J) * COEFX(J) + XR 

I 70 CONTINUE 
COEFX(I) = (COEFY(I) - XR) / A(I,I) 

180 CONTINUE 

117(F .EQ. 1) THEN 
DO 190 I = Z, 2, -I 
COEFX(I+1) = COEFX(I) 

190 CONTINUE 

COEFX(2) = 0. 
Z = Z + I 

ENDIF 

T=CK+N+2 
IF(Z .EQ. C-1) THEN 

DO 200 I =Z, T-1, -I 
COEFX(I+1) = COEFX(I) 

200 CONTINUE 
ENDIF 

COEFX(T) = 0. 

RETURN 
END 

SUBROUTINE FOR CALCULATING RADIATION PATTERN 
IN THE FORWARD DIRECTION 

SUBROUTINE PATTERNT(DELTA_U, BETA, X, FLAG, COEF) 

PARAMETER(PI = 3.14159265358979, N = 150) 
REAL*8 THETA, ANG, U, PRAD 
COMPLEX*16 TRANS(N), RR, COEF 
INTEGER*4 X, FLAG 
COMPLEX*16 BNC(N) 

COMMON /SET13/ BNC 
COMMON /SET11/ TRANS 

WRITE(7,2) 'THE ', X, 'TIME'S TRANSMI F! ED RADIATION PATTERN' 
2 	FORMAT(3X, A4,13, A36) 

DO 10 I = 1, FLAG 
U = DELTA_U * I 
THETA = DASIN(U) * 180 / PI 
RR = COEF * TRANS(I) 
PRAD = PI * (CDABS(BNC(I)) ** 2) * (CDABS(RR) ** 2)/ BETA 

WRITE(7,1) 'ANG = ', THETA, 'RADIATION PATTERN =', PRAD 
I 	FORMAT(7X, A6, F6.2, 5X, A21, D10.4) 
10 CONTINUE 

RETURN 
END 
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SUBROUTINE FOR CALCULATING RADIATION PATTERN 
IN THE BACKWARD DIRECTION 

SUBROUTINE PATTERNR(DELTA_U, BETA, X, FLAG, COEF) 

PARAMETER(PI = 3.I4159265358979, N=150) 
REAL*8 THETA, ANG, U, PRAD 
COMPLEX*16 REF(N), RR, COEF 
INTEGER*4 X, FLAG 
COMPLEX*16 BNC(N) 

COMMON /SET13/ BNC 
COMMON /SET12/ REF 

WRITE(7,2) THE', X, 'TIME"S REFLECTED RADIATION PATTERN 
2 	FORMAT(3X, A4, 13, A36) 

DO 10 I = FLAG, 1, -1 
U = DELTA U * I 
THETA = 180. -DASIN(U) * 180. / PI 
RR = COEF * REF(I) 
PRAD = PI * (CDABS(BNC(I)) **2) * (CDABS(RR) ** 2) / BETA 
WRITE(7,1) 'ANG = ', THETA, 'RADIATION PATTERN = PRAD 

1 	FORMAT(7X, A6, F6.2, 5X, A21, D10.4) 
10   CONTINUE 

RETURN 
END 
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