Copyright Warning \& Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

> Printing note: If you do not wish to print this page, then select "Pages from: first page \# to: last page \#" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

ABSTRACT
\section*{Rigorous TE Solution to the Staircase Model of the Dielectric Wedge Antenna}
by
Wan-Yu Chen

The rigorous TE solution to the staircase model of the dielectric wedge antenna is presented. The fundamental, even TE surface wave mode of the dielectric slab waveguide is taken to excite a dielectric wedge which is formed by symmetrically tapering the slab. The method of solution is based on Marcuse's step-transition method. Radiation patterns of power gain are presented which show increased maximum power gains and narrower main lobe beamwidths for longer wedges. For higher dielectric constant material, the main lobe beamwidth is increased. In all cases examined, negligible sidelobes were obtained.
> by
> Wan-Yu Chen

A Thesis
Submitted to the Faculty of New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of Master of Science in Electrical Engineering
Department of Electrical and Computer Engineering

October 1993

BIOGRAPHICAL SKETCH

Author: Wan-Yu Chen

Degree: Master of Science in Electrical Engineering

Date: October 1993

Undergraduate and Graduate Education:

- Master of Science in Electrical Engineering, New Jersey Institute of Technology, Newark, NJ, 1993
- Bachelor of Electrical Engineering, Chung-Yuan Christian University, Chung-Li, Taiwan, R.O.C., 1990

Major: Electrical Engineering

BIOGRAPHICAL SKETCH

Author: Wan-Yu Chen

Degree: Master of Science in Electrical Engineering

Date: October 1993

Date of Birth: November 25, 1968

Place of Birth: Kaohsiung, Taiwan, R.O.C.

Undergraduate and Graduate Education:

- Master of Science in Electrical Engineering, New Jersey Institute of Technology, Newark, NJ, 1993
- Bachelor of Electrical Engineering, Chung-Yuan Christian University, Chung-Li, Taiwan, R.O.C., 1990

Major: Electrical Engineering

This thesis is dedicated to
My Father, Mother, Brother and Sisters

ACKNOWLEDGMENT

The author wishes to express her sincere gratitude to her supervisor, Professor Gerald Whitman, for his insight, guidance, and assistance throughout this research. A special thanks is due to Professor Gary Wu for his friendship and helpful suggestions. Gratitude is also extended to Professors Edip Niver and Gary Wu for serving as members of the thesis committee

The author appreciates the advice about the VAX/VMS system that received from Mr. Henry Frystak, System Administrator VAX/VMS Usenet Newsmanager, NJT Computing Services Department.

Deep thanks to my sister, Wan-Ling Chen, and my brother-in-law, Ming-Wan Young, for their concern and help during the past two years.

And finally, thanks to my friend, Shee-Tuck Kwan, for use of his computer system and for his moral support during the last few months.

TABLE OF CONTENTS

Chapter Page
1 INTRODUCTION 1
2 FORMULATION 3
2.1 Even TE Modes of the Dielectric Slab Waveguide of Thickness 2D 5
2.1.1 Even Surface Wave Modes 6
2.1.2 Even Radiation Modes 7
2.2 Arbitrary, Even TE Field of a Slab Waveguide 8
2.3 Partial Fields 10
2.3.1 Reflection and Transmission Coefficients at a Step Discontinuity 12
2.4 Rigorous Field Solution 18
3 NUMERICAL METHOD 22
4 NUMERICAL RESULTS 24
5 CONCLUSIONS 43
Appendix A DERIVATION of (2.22) 44
Appendix B OVERLAP INTEGRALS 46
Appendix C POWER CALCULATIONS 49
Appendix D POWER GAIN 52
Appendix E PROGRAM for SINGLE STEP DISCONTINUITY 54
Appendix F PROGRAM for MANY STEPS DISCONTINUITIES 70
REFERENCES 90

LIST OF TABLES

Table
Page
1 Comparison of result with P. G. Suchoski, Jr. and V. Ramaswamy at a modest step discontinuity. The refractive index of the two dielectric slabs is $n_{1}=1.54$, that of the surrounding medium is $n_{2}=1.52$, free space wavelength $\lambda_{0}=0.6328 \mu \mathrm{~m}$, $D_{1}=0.5 \mu \mathrm{~m}, \mathrm{D}_{2}=0.3 \mu \mathrm{~m}$ for (a) P. G. Suchoski, Jr. and V. Ramaswamy; (b) the present method; (c) percentage difference between the present method and Suchoski, Jr. / Ramaswamy.

2 Use different truncation maximum for the single step discontinuity problem with index of refraction $n_{1}=1.54$ for the slabs and $n_{2}^{\prime}=1.52$ for the surrounding medium, $\lambda_{0}=0.6328 \mu \mathrm{~m}, \mathrm{D}_{1}=0.5 \mu \mathrm{~m}, \mathrm{D}_{2}=0.3 \mu \mathrm{~m}$ for (a) $u_{N}=k_{0} D_{1}$ (b) $u_{N}=2 k_{0} D_{1}$. 25

3 Comparison of result with P. G. Suchoski, Jr. and V. Ramaswamy at a large step discontinuity. The refractive index of the two dielectric slabs is $n_{1}=1.54$, that of the surrounding medium is $n_{2}=1.52$, free space wavelength $\lambda_{0}=0.6328 \mu \mathrm{~m}$, $D_{1}=0.5 \mu \mathrm{~m}, \mathrm{D}_{2}=0.1 \mu \mathrm{~m}$ for (a) P.G. Suchoski, Jr. and V. Ramaswamy; (b) the present method; (c) percentage difference between the present method and Suchoski, Jr. / Ramaswamy.

4 Use different truncation maximum for the single step discontinuity problem with index of refraction $n_{1}=1.54$ for the slabs and $n_{2}=1.52$ for the surrounding medium, $\lambda_{0}=0.6328 \mu \mathrm{~m}, \mathrm{D}_{1}=0.5 \mu \mathrm{~m}, \mathrm{D}_{2}=0.1 \mu \mathrm{~m}$ for (a) $u_{N}=k_{0} D_{1}$
\qquad

5 Comparison of results with K. Hirayama and M. Koshiba for $\varepsilon_{R}=5, u_{N}=2 k_{0} D_{1}$, $n_{2}=1$ and $\mathrm{N}=400$. 28

LIST OF FIGURES

Figure

Page

1 Staircase approximation. 4
2 First forward partial field wave constituents at each step discontinuity. 10
3 Partial field wave constituents at each step discontinuity (a) first forward (b) first backward reflection (c) second forward transmission. 20

4 The normalized radiated powers and the amplitudes of the reflection and transmission coefficients of a step discontinuity between two slab waveguides versus relative step height for $k_{0} D_{1}=1, \varepsilon_{r}=5, u_{N^{N}}=2 k_{0} D_{1}$ and $\mathrm{N}=400$.29

5 Radiation pattern of power gain for single step discontinuity for $k_{0} D_{1}=1, \varepsilon_{r}=5$, $u_{N}=2 k_{0} D_{1}$ and $N=400$.

6 Radiation pattern of power gain of the slab/wedge for $\varepsilon_{r}=2.56, L / \lambda_{0}=0.25$, $D_{1} / \lambda_{0}=1 /(2 \pi), u_{N}=k_{0} D_{1}$ and $N=150$ for (a) $z>L, 0^{\circ}<\theta<90^{\circ}$; (b) z >0, $90^{\circ}<\theta<180^{\circ}$; (c) $0^{\circ}<\theta<180^{\circ}$ in dB scale.

7 Radiation pattern of power gain of the slab/wedge for $\varepsilon_{r}=12, L / \lambda_{0}=0.25$, $D_{1} / \lambda_{0}=1 /(2 \pi), u_{N}=k_{0} D_{1}$ and $N=150$ for (a) $z>L, 0^{\circ}<\theta<90^{\circ}$; (b) z>0, $90^{\circ}<\theta<180^{\circ}$; (c) $0^{\circ}<\theta<180^{\circ}$ in dB scale.

8 Radiation pattern of power gain of the slab/wedge for $\varepsilon_{r}=2.56, L / \lambda_{0}=5$,

$$
\begin{aligned}
& D_{1} / \lambda_{0}=1 /(2 \pi), u_{N}=k_{0} D_{1} \text { and } N=150 \text { for (a) } z>\mathrm{L}, 0^{\circ}<\theta<90^{\circ} \text {; (b) z>0, } \\
& 90^{\circ}<\theta<180^{\circ} \text {; (c) } 0^{\circ}<\theta<180^{\circ} \text { in } \mathrm{dB} \text { scale. }
\end{aligned}
$$

9 Radiation pattern of power gain of the slab/wedge for $\varepsilon_{r}=12, L / \lambda_{0}=5$,

$$
\begin{align*}
& D_{1} / \lambda_{0}=1 /(2 \pi), u_{N}=k_{0} D_{1} \text { and } \mathrm{N}=150 \text { for (a) } \mathrm{z}>\mathrm{L}, 0^{\circ}<\theta<90^{\circ} \text {; (b) } z>0 \\
& 90^{\circ}<\theta<180^{\circ} ; \text { (c) } 0^{\circ}<\theta<180^{\circ} \text { in dB scale. .. } \tag{36}
\end{align*}
$$

10 Radiation pattern of power gain of the slab/wedge for $\varepsilon_{r}=2.56, D_{1} / \lambda_{0}=1 /(2 \pi)$, $u_{N}=k_{0} D_{1}$, Step $=64$, and $N=150$ for (a) $z>L, 0^{\circ}<\theta<90^{\circ}$; (b) $z>0$, $90^{\circ}<\theta<180^{\circ}$; (c) $0^{\circ}<\theta<180^{\circ}$ in dB scale.

Figure

Page

11 Radiation pattern of power gain of the slab/wedge for $\varepsilon_{r}=12, D_{1} / \lambda_{0}=1 /(2 \pi)$, $u_{N}=k_{0} D_{1}$, Step $=64$, and $N=150$ for (a) $z>L, 0^{\circ}<\theta<90^{\circ}$; (b) $z>0$,
$90^{\circ}<\theta<180^{\circ}$; (c) $0^{\circ}<\theta<180^{\circ}$ in dB scale..

12 Normalized radiation pattern of power gain (in dB) versus angle θ of the slab/wedge for $\varepsilon_{r}=2.56$ and $\varepsilon_{r}=12$ with $L / \lambda_{0}=10, D_{1} / \lambda_{0}=1 /(2 \pi), u_{N}=k_{0} D_{1}$, Step $=64$ and $N=150$

CHAPTER 1

INTRODUCTION

Current interest in tapered dielectric radiators stems from their compatibility with dielectric waveguides and the availability of both lowloss silicon and solid state energy sources, which permit integration for use in millimeter wave and integrated optical devices [1-3]. Millimeter wave devices usually involve open structures in which the electromagnetic field is not confined to a finite region of space. Hence, energy leakage occurs. For a structure to be a waveguide, the leakage has to be minimized. If the structure is an antenna then efficient coupling to the radiation field must be effected. By tapering a dielectric guide along it axis, a guided surface wave field gets transformed into a radiation field which is characterized by maximum intensity in the forward direction. It has been shown that tapering a dielectric guide, as "opposed to suddenly truncating it, improves the radiation characteristics (increased directivity and lower side lobe levels) over a wider frequency band [4-6].

Tapered dielectric antennas have been studied for some time; see [2] for a comprehensive list of references. Rigorous theoretical approaches to analyze these antennas, such as, the coupled mode theory or the full wave method [7-9] are available. However, they are mathematically very complex and usually require an iterative procedure just to obtain a solution to lowest order. In particular, the field of the two dimensional dielectric wedge antenna fed by a guide of the same material has eluded being completely determined [2]. The method of analysis presented here yields the rigorous TE field solution for this integrated structure assuming a staircase model of the dielectric wedge antenna.

A single surface wave mode is assumed to be guided by a dielectric slab waveguide which evolves continuously into a dielectric wedge. The dielectric wedge is modeled by using the staircase approximation. The field scattered by each step discontinuity is then
rigorously formulated and solved numerically. The method of solution is based on the step-transition method introduced by Marcuse [10, 11], who applied it to step-tapered transitions between waveguides of different, but uniform cross-sections.

Many methods have been developed to study taper transitions between dielectric guides or fibers. Several approaches, including the couple mode theory, the step-transition method and the propagating-beam methods are reviewed in [12], which also introduces the so called "exact numerical method" that we have chosen to use. This method is based on Marcuse's step-transition method, but applies orthogonality relations to obtain a sparse, diagonally dominant matrix that allows for repeatable, efficient and accurate numerical solution of the linear system of equations which is obtained at each step discontinuity. It showed be noted, however, that the "exact numerical method' as presented in [12] was done incorrectly. The correct formulation is developed in Chapter 2. The numerical method used is described in Chapter 3 and numerical results are presented in Chapter 4. Because the "corrected exact numerical method" in Chapter 2 depends on the accuracy that is obtained at a single step discontinuity, comparisons are made in Chapter 4 with the published results of Rozzi and others [13-15] for the single step discontinuity problem. Finally, in Chapter 4, the radiation patterns of power gain for the integrated slab waveguide/wedge radiator are presented for various wedge lengths and for different dielectric materials.

CHAPTER 2

FORMULATION

The physical geometry under consideration is a lossless, semi-infinite, dielectric slab waveguide of thickness $2 \mathrm{D}_{1}$ which, beginning at $z=0$, is tapered to a point at $z=\mathrm{L}$. A model for this tapered dielectric is depicted in Figure 1, wherein the smooth tapered portion is replaced by short slab waveguide segments of equal length Δz and uniform cross-sectional areas of progressively smaller widths $2 D_{i}, i=2, \ldots, M-1$, with $D_{M}=0$, for $z>L$. In Figure 1, only four uniform slab waveguides are shown and the tapered section is modeled by three slab waveguides of successfully smaller widths D_{2}, D_{3}, and D_{4} such that $D_{1}>D_{2}>D_{3}>D_{4}>D_{5}=0$. The regions of space where the electromagnetic field is to be found number 5 ; the semi-infinite slab waveguide occupies the region $z<0$ (region i $=1)$, the taper is segmented into three regions $(i=2,3$, and 4$)$, while the semi-infinite free space region is identified as region $M=5$. Each region $i, i=1,2, \ldots, 5$, is further separated into 3 sub-regions identified by $I_{i}, I_{i}, I I I_{i}$, where I_{i} is occupied by the dielectric and subregions I_{i} and H_{i} are free space above and below the dielectric, respectively. The last region in Figure 1 is such that II_{5} does not exist since the dielectric is taken to truncate at $z=L$ with a finite width $2 D_{4}$.

A fundamental, even TE surface wave mode of an infinite uniform dielectric slab waveguide is assumed to be incident in the $+z$ direction from $z=-\infty$. This mode, normalized to unity incident power, does not experience cutoff and can propagate along very thin slab waveguides. Because of this excitation and the staircase approximation for the wedge geometry, it is assumed that the field is TE everywhere. Hence, the field components in each region are $\mathrm{E}_{\mathrm{yi}}, \mathrm{H}_{\mathrm{xi}}$ and H_{zi}. Since the geometry and excitation of the structure in Figure 1 are independent of the y-coordinate, all field quantities are independent of the y-coordinate. Hence, the time harmonic, source-free Maxwell field equations for the TE field with respect to the z-axis in each region (i) take the form :

Figure 1 Staircase approximation.

$$
\begin{align*}
& \eta_{0} H_{x i}=\frac{1}{j k_{0}} \frac{\partial E_{y i}}{\partial z}, \quad \eta_{0} H_{z i}=-\frac{1}{j k_{0}} \frac{\partial E_{y i}}{\partial x}, \tag{2.la}\\
& \eta_{0}\left[\frac{\partial H_{x i}}{\partial z}-\frac{\partial H_{z i}}{\partial x}\right]=j k_{0}\left[\frac{k_{i}(x)}{k_{0}}\right]^{1 / 2} E_{y i}, \tag{2.1b}
\end{align*}
$$

where

$$
\begin{gather*}
k_{i}(x)= \begin{cases}k_{0} & |x|>D_{i} \\
k & |x|<D_{i},\end{cases} \tag{2.1c}\\
k=k_{0} \varepsilon_{r}^{1 / 2}=\omega\left(\mu_{0} \varepsilon_{0} \varepsilon_{r}\right)^{1 / 2}, \quad \eta_{0}=\left(\mu_{0} / \varepsilon_{0}\right)^{1 / 2} . \tag{2.1d}
\end{gather*}
$$

The quantity ω is the angular frequency, $\left(\mu_{0}, \varepsilon_{0}\right)$ the permeability and permittivity of free space and ε_{r} is the dielectric constant. The above fields assume a time-dependence of $\exp (j \omega t)$ which is suppressed.

Substitution of (2.1a) into (2.1b) yields the reduced wave equation

$$
\begin{equation*}
\left[\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial z^{2}}+k_{i}^{2}(x)\right] E_{y i}=0 \tag{2.2}
\end{equation*}
$$

where $k_{i}^{2}(x)$ is given in (2.1c). Once E_{yi} is determined from (2.2), the other components H_{xi} and H_{zi} follow from (2.1a).

Before discussing the consequences of the step discontinuities, it is first necessary to present the complete orthonormal set of modes which are supported by an infinite, lossless, dielectric slab waveguide of arbitrary thickness 2D. Since excitation and slab geometry are symmetric about the z-axis, only even surface and even radiation modes are included in the complete set. Hence, an arbitrary, even TE field in each region (i) of Figure 1 can be expressed in terms of these modes, with D replaced by D_{i} and with parameters identified by the subscript " i ".

The slab modes are found by solving Maxwell's source-free field equations subject to the appropriate boundary conditions. The boundary conditions are the continuity of the tangential electric and magnetic fields at interfaces located at $x= \pm D$. Analytic expressions for these modes are well known [11] and will only be summarized in the discussion to follow.

2.1 Even TE Modes of the Dielectric Slab Waveguide of Thickness 2D

Note that the subscript " i " which appears in (2.1) and (2.2) has been dropped for convenience since only one waveguide of thickness 2 D is being considered here.

Let

$$
\begin{equation*}
E_{y}=\mathrm{v}(z) \Phi(x) . \tag{2.3}
\end{equation*}
$$

Substitution of (2.3) into (2.2) yields

$$
\begin{align*}
& \frac{d^{2} v}{d z^{2}}+\beta^{2} v=0 \tag{2.4a}\\
& \frac{d^{2} \Phi}{d x^{2}}+k_{x}^{2} \Phi=0 \tag{2.4b}
\end{align*}
$$

with

$$
\begin{equation*}
k_{x}^{2}=k^{2}(x)-\beta^{2}, \tag{2.4c}
\end{equation*}
$$

where $k(x)$ is defined in (2.1c) which means that the parameter k_{x} is also different in the regions $|x|>D$ and $|x|<D$.

Solving (2.4a) gives

$$
\begin{equation*}
\mathrm{v}(z)=A e^{-j \beta z}+B e^{j \beta z} \tag{2.5}
\end{equation*}
$$

with unknown complex constants A and B. These constants will be determined later by applying the boundary conditions of continuity of tangential electric and magnetic fields at the step discontinuities.

Solutions to (2.4 b) must satisfy the boundary conditions of continuity of the tangential electric and magnetic fields across the interfaces at $x= \pm \mathrm{D}$. These boundary conditions yield continuity at $x= \pm \mathrm{D}$ of $\beta, \Phi(x)$ and $d \Phi / d x$. The continuity of the propagation constant β is a statement of Snell's law of refraction and dictates that β is a constant for all x. Depending on the allowable value of β, the one dimensional reduced wave equation (2.4b), subject to the afore mentioned boundary conditions, yield different modal solutions.

2.1.1 Even Surface Wave Modes

For β real in the range $k_{0} \leq|\beta| \leq k$, solutions to the reduced wave equation (2.4b) which satisfy the boundary conditions are standing waves in the slab cross section and
evanescent fields in the surrounding air regions. The associated potential solutions are [11]

$$
\Phi(x)=\left\{\begin{array}{lr}
C_{n} \cos \left(k_{x n} D\right) e^{-a_{s n}(|x|-D)} & D \leq|x|<\infty \tag{2.6}\\
C_{n} \cos \left(k_{x n} x\right) & -D \leq x \leq D,
\end{array}\right.
$$

with

$$
\begin{align*}
& C_{n}=\left[\frac{\alpha_{x n}}{1+\alpha_{x n} D}\right]^{1 / 2}, \tag{2.6a}\\
& k_{x n}=\left[k^{2}-\beta_{n}^{2}\right]^{1 / 2}, \tag{2.6b}\\
& \alpha_{x n}=\left[\beta_{n}^{2}-k_{0}^{2}\right]^{1 / 2} \tag{2.6c}
\end{align*}
$$

and the dispersion relation (eigenvalue equation) is

$$
\begin{equation*}
k_{x n} \tan \left(k_{x n} D\right)=\alpha_{x n} . \tag{2.7}
\end{equation*}
$$

The dispersion relation specifies allowable, discrete, real values $\beta=\beta_{n}, n=0,1$, $2, \ldots$, that identify even surface wave modes. The potential functions $\Phi_{n}(x)$ are orthogonal and satisfy the relation

$$
\begin{equation*}
\int_{-\infty}^{\infty} \Phi_{n:}(x) \Phi_{n}(x) d x=\delta_{m n} \tag{2.8}
\end{equation*}
$$

where $\delta_{m,}$ is the Kronecker delta function.

2.1.2 Even Radiation Modes

The complete set of modes of the dielectric slab waveguide consists of a finite, discrete spectrum of surface wave modes plus an infinite, continuous spectrum of propagating and evanescent radiation modes. Propagating radiation modes correspond to β real in the range $0 \leq|\beta| \leq k_{0}$, while evanescent radiation modes occur when $\beta=-j|\beta|$ for $0<|\beta|<\infty$. Radiation modes consist of standing waves both inside and outside the slab. Such waves satisfy Maxwell's equations and boundary conditions on the slab surfaces at $x= \pm D$. Radiation modes can be thought of as being excited by a source at $z=-\infty$ which extends over the range $D<|x|<\infty$ [11].

In contrast to surface wave modes, the satisfaction of boundary conditions do not yield for the radiation modes a dispersion equation for β. Thus, all values of β in the ranges specified above are allowed and each corresponds to a radiation mode. The radiation modes are derivable from the wave equation (2.4b), subject to the continuity conditions at $x= \pm D$. The even radiation potential solutions are given by [11]
$\Phi(x, u)= \begin{cases}C(u)\left[\cos (v D) \cos (u(|x|-D))-\frac{v}{u} \sin (v D) \sin (u(|x|-D))\right] & D \leq|x|<\infty \\ C(u) \cos (v x) & -D \leq x \leq D,\end{cases}$
with

$$
\begin{align*}
C(u) & =\left\{\frac{\pi}{2}\left[\cos ^{2}(v D)+\left(\frac{v}{u}\right)^{2} \sin ^{2}(v D)\right]\right\}^{-1 / 2}, \tag{2.9a}\\
u & =\left(k_{0}^{2}-\beta^{2}\right)^{1 / 2}, \tag{2.9b}\\
v & =\left(k^{2}-\beta^{2}\right)^{1 / 2}=\left(k^{2}-k_{0}^{2}+u^{2}\right)^{1 / 2} . \tag{2.9c}
\end{align*}
$$

Since $u \geq 0$ for radiation modes, (2.9b) substantiates that β is real when $0 \leq u \leq k_{0}$, while $\beta=-j|\beta|$ when $k_{0} \leq u<\infty$; see (2.12c).

The potential functions $\Phi(x, u)$ are orthonormal and satisfy the relation

$$
\begin{equation*}
\int_{0}^{\infty} \Phi(x, u) \Phi\left(x, u^{\prime}\right) d x=\delta\left(u-u^{\prime}\right) \tag{2.10}
\end{equation*}
$$

where $\delta\left(u-u^{\prime}\right)$ is the Dirac delta function. In addition, the surface wave modes and the radiation modes are mutually orthogonal, i.e.,

$$
\begin{equation*}
\int_{-\infty}^{\infty} \Phi_{n}(x) \Phi(x, u) d x=2 \int_{0}^{\infty} \Phi_{n}(x) \Phi(x, u) d x=0 \tag{2.11}
\end{equation*}
$$

2.2 Arbitrary, Even TE Field of a Slab Waveguide

Returning to the geometry of Figure 1, the electric field in each region (i) is represented by the expansion [11]

$$
\begin{equation*}
E_{y i}=\sum_{n=0}^{N} \mathrm{v}_{i n}(z) \Phi_{i n}(x)+\int_{0}^{\infty} \mathrm{v}_{i}(z, u) \Phi_{i}(x, u) d u \tag{2.12}
\end{equation*}
$$

From (2.5),

$$
\begin{gather*}
\mathrm{v}_{i n}(z)=A_{i n} e^{-j \beta_{i n} z}+B_{i n} e^{j \beta_{i n} z}, \tag{2.12a}\\
\mathrm{v}_{i}(z, u)=A_{i}(u) e^{-j \beta_{i}(u) z}+B_{i}(u) e^{j \beta_{i}(u) z}, \tag{2.12b}
\end{gather*}
$$

and from (2.9b),

$$
\beta_{i}(u)= \begin{cases}\left(k_{0}^{2}-u^{2}\right)^{1 / 2} & k_{0}^{2}>u^{2} \tag{2.12c}\\ 0 & k_{0}^{2}=u^{2} \\ -j\left(u^{2}-k_{0}^{2}\right)^{1 / 2} & k_{0}^{2}<u^{2}\end{cases}
$$

and $\beta_{i n}$ for D_{i} are determined from (2.6b), (2.6c) and (2.7), the eigenvalue equation. The summation over the integer n in (2.12) identifies all the propagating even surface wave modes and the integral over u represents the continuous spectrum of even radiation modes.

Substituting (2.12) into (2.1a) gives

$$
\begin{align*}
& \eta_{0} H_{x i}=\sum_{n=0}^{N} i_{i n}(z) \Phi_{i n}(x)+\int_{0}^{\infty} i_{i}(z, u) \Phi_{i}(x, u) d u \tag{2.13a}\\
& \eta_{0} H_{z i}=\frac{1}{-j k_{0}}\left[\sum_{n=0}^{N} v_{i n}(z) \frac{d \Phi_{i n}(x)}{d x}+\frac{\partial}{\partial x} \int_{0}^{\infty} v_{i}(z, u) \Phi_{i}(x, u) d u\right] \tag{2.13b}
\end{align*}
$$

where

$$
\begin{align*}
& i_{i n}(z)=\frac{1}{j k_{0}} \frac{d v_{i n}(z)}{d z}=-\frac{\beta_{i n}}{k_{0}}\left[A_{i n} e^{-j \beta_{i n} z}-B_{i n} e^{j \beta_{i n} z}\right], \tag{2.13c}\\
& i_{i}(z, u)=\frac{1}{j k_{0}} \frac{\partial v_{i}(z, u)}{\partial z}=-\frac{\beta_{i}(u)}{k_{0}}\left[A_{i}(u) e^{-j \beta_{i}(u) z}-B_{i}(u) e^{j \beta_{i}(u) z}\right] . \tag{2.13d}
\end{align*}
$$

Recall that the field components $E_{y i}, H_{x i}$ and $H_{z i}$, as represented by (2.12) and (2.13), exist in each region (i), $i=1, \ldots 5$, of Figure 1. To find the unknown expansion coefficients in each region (i), the boundary conditions of the continuity of tangential electric field and tangential magnetic field at the step discontinuities $\mathrm{B}_{\mathrm{i}}, \mathrm{i}=1, \ldots 4$, must be imposed.

To find the rigorous field solution, however, it is convenient to find partial fields first and then to construct the rigorous field solution as a superposition of the partial fields. A partial field is a field that is established due to a single step discontinuity, i.e., the effect of subsequent steps discontinuities are ignored. This construction will now be clarified with reference to Figure 2.

Figure 2 First forward partial field wave constituents at each step discontinuity.

2.3 Partial Fields

Initially, an incident even TE surface wave mode (labeled A_{1} in Figure 2) is guided by a slab waveguide of thickness $2 \mathrm{D}_{1}$ in region $1(\mathrm{z}<0)$. When this incident wave strikes the step discontinuity at $z=0$ (boundary plane $\left.\mathrm{B}_{1}\right)$, transmitted $\left(A_{2}=\tau_{1} A_{1}\right)$ and reflected
($B_{1}=\Gamma_{1} A_{1}$) surface waves as well as forward $\left(A_{2}(u)=\tau_{1}(u) A_{1}\right)$ and backward $\left(B_{1}(u)=\Gamma_{1}(u) A_{1}\right)$ radiation modes get excited. Assume that only the $n=0$ surface wave mode is non-zero, and ignore for the moment in region 2 both the backward going surface wave $\left(B_{2}=\Gamma_{2} A_{2}\right)$ and backward going radiation modes $\left(B_{2}(u)=\Gamma_{2}(u) A_{2}\right)$ which are established because of the step discontinuities to the right at $\mathrm{B}_{\mathrm{i}}, \mathrm{i}=2, \ldots, 4$. Under these conditions, the unknown parameters $\left(\Gamma_{1}, \Gamma_{1}(u)\right)$ are reflection coefficients and $\left(\tau_{1}, \tau_{1}(u)\right)$ are transmission coefficients for the single step discontinuity at $z=0$. The partial fields in region $1(z<0)$ take the forms

$$
\begin{align*}
E_{y 1}^{f 1} & =\mathrm{v}_{1}(z) \Phi_{1}(x)+\int_{0}^{\infty} \mathrm{v}_{1}(z, u) \Phi_{1}(x, u) d u \\
& =A_{1}\left\{\left[e^{-j \beta_{1} z}+\Gamma_{1} e^{j \beta_{1} z}\right] \Phi_{1}(x)+\int_{0}^{\infty} \Gamma_{1}(u) e^{j \beta_{1}(u) z} \Phi_{1}(x, u) d u\right\}, \tag{2.14a}\\
\eta_{0} H_{x 1}^{f 1} & =-\frac{A_{1}}{k_{0}}\left\{\beta_{1}\left[e^{-j \beta_{1} z}-\Gamma_{1} e^{j \beta_{1} z}\right] \Phi_{1}(x)-\int_{0}^{\infty} \beta_{1}(u) \Gamma_{1}(u) e^{j \beta_{1}(u) z} \Phi_{1}(x, u) d u\right\}, \tag{2.14b}\\
\eta_{0} H_{z 1}^{f 1} & =\frac{j A_{1}}{k_{0}}\left\{\left[e^{-j \beta_{1} z}+\Gamma_{1} e^{j \beta_{1} z}\right] \frac{d \Phi_{1}(x)}{d x}+\frac{\partial}{\partial x} \int_{0}^{\infty} \Gamma_{1}(u) e^{j \beta_{1}(u) z} \Phi_{1}(x, u) d u\right\}, \tag{2.14c}
\end{align*}
$$

where normalization to unity power of the incident even TE_{0} surface wave mode gives

$$
\begin{equation*}
\left|A_{1}\right|=\left(\frac{2 \eta_{0} k_{0}}{\beta_{1}}\right)^{1 / 2} \tag{2.14d}
\end{equation*}
$$

The partial fields in region $2(0<z<\Delta z)$ are given by

$$
\begin{align*}
E_{y 2}^{f 1} & =v_{2}(z) \Phi_{2}(x)+\int_{0}^{\infty} v_{2}(z, u) \Phi_{2}(x, u) d u \tag{2.15a}\\
& =A_{1}\left\{\left[\tau_{1} e^{-j \beta_{2} z} \Phi_{2}(x)+\int_{0}^{\infty} \tau_{1}(u) e^{-j \beta_{2}(u) z} \Phi_{2}(x, u) d u\right\},\right. \\
\eta_{0} H_{x 2}^{f 1} & =-\frac{A_{1}}{k_{0}}\left[\beta_{2} \tau_{1} e^{-j \beta_{2} z} \Phi_{2}(x)+\int_{0}^{\infty} \beta_{2}(u) \tau_{1}(u) e^{-j \beta_{2}(u) z} \Phi_{2}(x, u) d u\right], \tag{2.15b}\\
\eta_{0} H_{z 2}^{f 1} & =\frac{j A_{1}}{k_{0}}\left[\tau_{1} e^{-j \beta_{2} z} \frac{d \Phi_{2}(x)}{d x}+\frac{\partial}{\partial x} \int_{0}^{\infty} \tau_{1}(u) e^{-j \beta_{2}(u) z} \Phi_{2}(x, u) d u\right] . \tag{2.15c}
\end{align*}
$$

The subscripts " 1 " and "2" define the regions where the partial fields exist, whereas the superscript "fI" identifies the first forward partial field contributions to the rigorous field
solution. The use of the term "forward" signifies that the step discontinuities to the right are considered sequentially. To be discussed later, a "backward" partial field contribution arises by considering wave progression back from the tip toward the step discontinuities to the left sequentially.

2.3.1 Reflection and Transmission Coefficients at a Step Discontinuity

The unknown reflection and transmission coefficients at each step discontinuity are found following the procedure discussed in [12]. However, significant differences in the formulation are introduced. Firstly, the parameters $\tau(u=0), \Gamma(u=0), \tau\left(u=k_{0}\right)$ and $\Gamma\left(u=k_{0}\right)$ are not assumed to be zero as had been done in [12]. Secondly, in the numerical evaluation of the infinite integral, truncation is taken to include evanescent radiation modes. Thirdly, as will be seen shortly, certain double integrals are evaluated correctly, whereas in [12] these integrals were evaluated incorrectly. Finally, normalized parameters are introduced; [12] did not include comparison of results with other published data because their formulation was not properly normalized.

We chose the method in [12] to solve the problem of scattering at a single step discontinuity because the system of linear equations obtained involves a numerically efficient matrix that is sparse and diagonally dominant and because a similar system of equations is obtained at each subsequent step discontinuity.

Before implementing the method, we define the following normalized parameters:

$$
\begin{array}{llll}
\bar{k}_{0}=k_{0} D_{1}, & \bar{k}_{1}=k_{1} D_{1}, & \bar{k}_{x n}=k_{x n} D_{1}, \quad \bar{\alpha}_{x n}=\alpha_{x n} D_{1}, \quad \bar{\beta}_{n}=\beta_{n} D_{1}, \\
\bar{u}_{i}=u_{i} D_{1}, & \bar{v}_{i}=v_{i} D_{1}, & \bar{\beta}_{n}\left(\bar{u}_{i}\right)=\beta_{n}\left(u_{i}\right) D_{1}, \\
\bar{x}=\frac{x}{D_{1}}, & \bar{z}=\frac{z}{D_{1}}, & \bar{\rho}=\frac{\rho}{D_{1}}, & \bar{R}_{i}=\frac{D_{i}}{D_{1}} \\
\bar{\Gamma}_{i}=\Gamma_{i}, & \bar{\tau}_{i}=\tau_{i}, & \bar{\Gamma}_{i}(\bar{u})=\frac{\Gamma_{i}(u)}{\sqrt{D_{1}}}, & \bar{\tau}_{i}(\bar{u})=\frac{\tau_{i}(u)}{\sqrt{D_{1}}}
\end{array}
$$

$$
\begin{gather*}
\bar{E}_{y i}(\bar{x}, \bar{z})=\sqrt{D_{1}} E_{y i}(x, z), \bar{H}_{y i}(\bar{x}, \bar{z})=\sqrt{D_{1}} H_{y i}(x, z), \bar{H}_{z i}(\bar{x}, \bar{z})=\sqrt{D_{1}} H_{z i}(x, z) \\
i=1,2, \ldots \tag{2.16}
\end{gather*}
$$

Introducing the normalized parameters (2.16) into (2.14) and (2.15), substituting into the continuity boundary conditions

$$
\begin{equation*}
\bar{E}_{y 1}(\bar{x}, \bar{z}=0)=\bar{E}_{y 2}(\bar{x}, \bar{z}=0), \quad \bar{H}_{x 1}(\bar{x}, \bar{z}=0)=\bar{H}_{x 2}(\bar{x}, \bar{z}=0) \tag{2.17}
\end{equation*}
$$

gives

$$
\begin{gather*}
\left(1+\bar{\Gamma}_{1}\right) \bar{\Phi}_{1}(\bar{x})+\int_{0}^{\infty} \bar{\Gamma}_{1}(\bar{u}) \bar{\Phi}_{1}(\bar{x}, \bar{u}) d \bar{u}=\bar{\tau}_{1} \bar{\Phi}_{2}(\bar{x})+\int_{0}^{\infty} \bar{\tau}_{1}(\bar{u}) \bar{\Phi}_{2}(\bar{x}, \bar{u}) d \bar{u}, \tag{2.18a}\\
\bar{\beta}_{1}\left(1-\bar{\Gamma}_{1}\right) \bar{\Phi}_{1}(\bar{x})-\int_{0}^{\infty} \bar{\beta}_{1}(\bar{u}) \bar{\Gamma}_{1}(\bar{u}) \bar{\Phi}_{1}(\bar{x}, \bar{u}) d \bar{u}=\bar{\beta}_{2} \bar{\tau}_{1} \bar{\Phi}_{2}(\bar{x})+\int_{0}^{\infty} \bar{\beta}_{2}(\bar{u}) \bar{\tau}_{1}(\bar{u}) \bar{\Phi}_{2}(\bar{x}, \bar{u}) d \bar{u}, \tag{2.18b}
\end{gather*}
$$

where $\left(\bar{\beta}_{1}, \bar{\beta}_{1}(\bar{u})\right)$ and $\left(\bar{\beta}_{2}, \bar{\beta}_{2}(\bar{u})\right)$ are normalized propagation constants in regions $i=1$ and $i=2$, respectively; $\bar{\beta}_{1}$ and $\bar{\beta}_{2}$ are determined from the eigenvalue equation (2.7) for D_{1} and D_{2}, respectively, while $\bar{\beta}_{1}(\bar{u}), \bar{\beta}_{2}(\bar{u})$ are both given by (2.12c); both (2.7) and (2.12c) are reformulated using normalized parameters. In addition,

$$
\begin{equation*}
\bar{\Phi}_{i}(\bar{x})=\sqrt{D_{1}} \Phi_{i}(x), \quad \bar{\Phi}_{i}(\bar{x}, \bar{u})=\Phi_{i}(x, u) \tag{2.18c}
\end{equation*}
$$

with

$$
\begin{equation*}
\bar{C}_{i}=\sqrt{D_{1}} C_{i}, \quad \bar{C}_{i}(\bar{u})=C_{i}(u) ; \tag{2.18~d}
\end{equation*}
$$

see (2.6), where $\Phi_{n}(x)$ is rewritten as $\Phi_{i}(x)$, the integer $n=0$ being suppressed and the integer " i " introduced to identify uniform waveguide regions; see also (2.9), where $\Phi(x, u)$ is given and $\Phi_{i}(x, u)$ is obtained by replacing D with D_{i}.

Multiplying (2.18a) by $\bar{\Phi}_{1}(\bar{x})$ and (2.18b) by $\bar{\Phi}_{2}(\bar{x})$, integrating over \bar{x} from $-\infty$ to $+\infty$, interchanging the order of the integrations over \bar{u} and \bar{x}, and using the normalized versions of the orthogonality relations (2.8) and (2.11) yield, respectively, the computationally more efficient relationships

$$
\begin{align*}
1+\bar{\Gamma}_{1} & =\bar{\tau}_{1} \bar{I}_{12}+\int_{0}^{\infty} \bar{\tau}_{1}(\bar{u}) \bar{I}_{12}(\bar{u}) d \bar{u}, \tag{2.19a}\\
\bar{\beta}_{1}\left(1-\bar{\Gamma}_{1}\right) \bar{I}_{12} & =\bar{\tau}_{1} \bar{\beta}_{2}+\int_{0}^{\infty} \bar{\beta}_{1}(\bar{u}) \bar{\Gamma}_{1}(\bar{u}) \bar{I}_{21}(\bar{u}) d \bar{u}, \tag{2.19b}
\end{align*}
$$

where

$$
\begin{gather*}
\bar{I}_{12}=\int_{-\infty}^{\infty} \bar{\Phi}_{1}(\bar{x}) \bar{\Phi}_{2}(\bar{x}) d \bar{x}, \tag{2.19c}\\
\bar{I}_{12}\left(\bar{u}_{j}\right)=\int_{-\infty}^{\infty} \bar{\Phi}_{1}(\bar{x}) \bar{\Phi}_{2}\left(\bar{x}, \bar{u}_{j}\right) d \bar{x} . \tag{2.19d}
\end{gather*}
$$

To solve (2.19), the integrals over \bar{x} are first evaluated explicitly. Next, the remaining integrals are truncated at $\bar{u}=\bar{u}_{N}=2 \bar{k}_{0}$ and discretized. The value of $\bar{u}_{N}=2 \bar{k}_{0}$ insures that both propagating and evanescent radiation modes are included. Following the procedure used in [12], Simpson's one - third rule approximation is used. For example, the integral in (2.19a) is approximated as:

$$
\begin{align*}
\int_{0}^{\omega} \bar{\tau}_{1}(\bar{u}) \bar{I}_{12}(\bar{u}) d \bar{u} & \equiv \int_{0}^{\omega \infty} \bar{f}_{1}(\bar{u}) d \bar{u} \approx \int_{0}^{z_{N}} \bar{f}_{1}(\bar{u}) d \bar{u} \\
& \approx \frac{\Delta \bar{u}}{3}\left[\bar{f}_{1}\left(\bar{u}_{0}\right)+4 \sum_{\substack{m=1 \\
\text { oid }}}^{N-1} \bar{f}_{1}\left(\bar{u}_{m}\right)+2 \sum_{\substack{m=2 \\
\text { even }}}^{N-2} \bar{f}_{1}\left(\bar{u}_{m}\right)+\bar{f}_{1}\left(\bar{u}_{N}\right)\right], \tag{2.20a}
\end{align*}
$$

where

$$
\begin{align*}
& \bar{f}\left(\bar{u}_{m}\right)=\bar{\tau}_{1}\left(\bar{u}_{m}\right) \bar{I}_{12}\left(\bar{u}_{m}\right), \\
& \Delta \bar{u}=\frac{\bar{u}_{N}}{N}, \quad \bar{u}_{m}=m \Delta \bar{u}, m=0,1,2, \ldots, N \quad(N=\text { even }) . \tag{2.20b}
\end{align*}
$$

Similarly, the integral over \bar{u} in (2.19b) is evaluated approximately:

$$
\begin{align*}
\int_{0}^{\infty} \bar{\beta}_{1}(\bar{u}) \bar{\Gamma}_{1}(\bar{u}) \bar{I}_{21}(\bar{u}) d \bar{u} & \equiv \int_{0}^{\infty} \bar{g}_{1}(\bar{u}) d \bar{u} \approx \int_{0}^{\bar{u}_{N}} \bar{g}_{1}(\bar{u}) d \bar{u} \\
& \approx \frac{\Delta \bar{u}}{3}\left[\bar{g}_{1}\left(\bar{u}_{0}\right)+4 \sum_{\substack{m=1 \\
\text { odd }}}^{N-1} \bar{g}_{1}\left(\bar{u}_{m}\right)+2 \sum_{\substack{m=2 \\
\text { vevn }}}^{N-2} \bar{g}_{1}\left(\bar{u}_{m}\right)+\bar{g}_{1}\left(\bar{u}_{N}\right)\right], \tag{2.21a}
\end{align*}
$$

where

$$
\begin{equation*}
\bar{g}_{1}\left(\bar{u}_{m}\right)=\bar{\beta}_{1}\left(\bar{u}_{m}\right) \bar{\Gamma}_{1}\left(\bar{u}_{m}\right) \bar{I}_{21}\left(\bar{u}_{m}\right) \tag{2.21~b}
\end{equation*}
$$

It is now necessary to determine $2 \mathrm{~N}+4$ unknowns, namely, $\bar{\Gamma}_{1}, \bar{\tau}_{1}, \bar{\Gamma}_{1}\left(\bar{u}_{m}\right), \bar{\tau}_{1}\left(\bar{u}_{m}\right)$, $m=0,1,2, \ldots, N$. However, we have only two equations, (2.19a) and (2.19b) with (2.20) and (2.21). To obtain additional equations, multiply (2.18a) by $\bar{\Phi}_{1}\left(\bar{x}, \bar{u}_{j}\right)$ and (2.18b) by
$\bar{\Phi}_{2}\left(\bar{x}, \bar{u}_{j}\right)$, integrate the resulting equations over \bar{x} from $-\infty$ to $+\infty$ and evaluated the resultant double integral as shown in Appendix A to obtain:

$$
\begin{align*}
& 2 \bar{\Gamma}_{1}\left(\bar{u}_{j}\right)=\bar{\tau}_{1} \bar{I}_{21}\left(\bar{u}_{j}\right)+\left(\int_{0}^{\bar{u}_{j}-\delta}+\int_{\bar{u}_{j}+\delta}^{\infty}\right) \bar{\tau}_{1}(\bar{u}) \bar{I}_{21}\left(\bar{u}_{j} \bar{u}_{j}\right) d \bar{u}+\bar{\tau}_{1}\left(\bar{u}_{j}\right) \bar{T}_{12}\left(\bar{u}_{j}\right), \tag{2.22a}\\
& \bar{\beta}_{1}\left(1-\bar{\Gamma}_{1}\right) \bar{I}_{12}\left(\bar{u}_{j}\right)=2 \bar{\beta}_{2}\left(\bar{u}_{j}\right) \bar{\tau}_{1}\left(\bar{u}_{j}\right)+\left(\int_{0}^{\int_{j}-\delta}+\int_{\bar{u}_{j}+\delta}^{\infty}\right) \bar{\beta}_{1}(\bar{u}) \bar{\Gamma}_{1}(\bar{u}) \bar{I}_{12}\left(\bar{u}_{,} \bar{u}_{j}\right) d \bar{u} \tag{2.22b}\\
& +\bar{\beta}_{1}\left(\bar{u}_{j}\right) \bar{\Gamma}_{1}\left(\bar{u}_{j}\right) \bar{T}_{12}\left(\bar{u}_{j}\right) \\
& j=0,1,2, \ldots, \mathrm{~N},
\end{align*}
$$

where

$$
\begin{align*}
& \bar{T}_{12}\left(\bar{u}_{j}\right)=\pi \bar{C}_{1}\left(\bar{u}_{j}\right) \bar{C}_{2}\left(\bar{u}_{j}\right)\left\{\operatorname { c o s } (\overline { u } _ { j } (1 - \overline { R } _ { 2 1 })) \left[\cos \bar{v}_{j} \cos \left(\bar{v}_{j} \bar{R}_{21}\right)\right.\right. \\
& \left.\left.+\left(\frac{\bar{v}_{j}}{\bar{u}_{j}}\right)^{2} \sin \bar{v}_{j} \sin \left(\bar{v}_{j} \bar{R}_{21}\right)\right]+\frac{\bar{v}_{j}}{\bar{u}_{j}} \sin \left(\bar{u}_{j}\left(1-\bar{R}_{21}\right)\right) \sin \left(\bar{v}_{j}\left(1-\bar{R}_{21}\right)\right)\right\}, \tag{2.22c}\\
& \bar{I}_{12}\left(\bar{u}, \bar{u}_{j}\right)=\int_{-\infty}^{\infty} \bar{\Phi}_{2}(\bar{x}, \bar{u}) \bar{\Phi}_{2}\left(\bar{x}, \bar{u}_{j}\right) d \bar{x}, \quad \bar{I}_{21}\left(\bar{u}_{j}\right)=\left.\bar{I}_{12}(\bar{u})\right|_{\bar{u}=\bar{u}_{j}}, \tag{2.22d}
\end{align*}
$$

and $0<\delta \ll 1$. As before, the integrals over \bar{u} in (2.22) are truncated at $\bar{u}=\bar{u}_{N}=2 \bar{k}_{0}$ and discretized using Simpson's one - third approximation to give

$$
\begin{align*}
& \left(\int_{0}^{\bar{u}_{j}-\delta}+\int_{\bar{u}_{j}+\delta}^{\infty}\right) \bar{\tau}_{1}(\bar{u}) \bar{I}_{21}\left(\bar{u}_{,}, \bar{u}_{j}\right) d \bar{u} \equiv\left(\int_{0}^{\bar{u}_{j}-\bar{\delta}}+\int_{\bar{u}_{j}+\delta}^{\infty}\right) \bar{h}_{1}\left(\bar{u}_{,}, \bar{u}_{j}\right) d \bar{u} \\
& \quad \approx \frac{\Delta \bar{u}^{2}}{3}\left[\bar{h}_{1}\left(\bar{u}_{0}, \bar{u}_{j}\right)+4 \sum_{\substack{m=1 \\
\text { odd }}}^{N-1} \bar{h}_{1}\left(\bar{u}_{m}, \bar{u}_{j}\right)+2 \sum_{\substack{m=2 \\
\text { even }}}^{N-2} \bar{h}_{1}\left(\bar{u}_{m}, \bar{u}_{j}\right)+\bar{h}_{1}\left(\bar{u}_{N}, \bar{u}_{j}\right)\right] \tag{2.23a}
\end{align*}
$$

and

$$
\begin{align*}
& \left(\int_{0}^{\bar{u}_{j}-\delta}+\int_{\bar{u}_{j}+\delta}^{\infty}\right) \bar{\beta}_{1}(\bar{u}) \bar{\Gamma}_{1}(\bar{u}) \bar{I}_{12}\left(\bar{u}, \bar{u}_{j}\right) d \bar{u} \equiv\left(\int_{0}^{\bar{u}_{j}-\delta}+\int_{\bar{u}_{j}+\delta}^{\infty} \bar{e}_{1}\left(\bar{u}_{u}, \bar{u}_{j}\right) d \bar{u}\right. \\
& \quad \approx \frac{\Delta \bar{u}_{3}}{3}\left[\bar{e}_{1}\left(\bar{u}_{0}, \bar{u}_{j}\right)+4 \sum_{\substack{m=1 \\
\text { odd }}}^{N-1} \bar{e}_{1}\left(\bar{u}_{m}, \bar{u}_{j}\right)+2 \sum_{\substack{m=2 \\
\text { vel } \\
\text { ven }}}^{N-1} \bar{e}_{1}\left(\bar{u}_{m}, \bar{u}_{j}\right)+\bar{e}_{1}\left(\bar{u}_{N}, \bar{u}_{j}\right)\right], \tag{2.23b}
\end{align*}
$$

where the infinite limit is truncated at \bar{u}_{N} and

$$
\begin{array}{ll}
\bar{h}_{1}\left(\bar{u}_{m}, \bar{u}_{j}\right)=\bar{\tau}_{1}\left(\bar{u}_{m}\right) \bar{I}_{21}\left(\bar{u}_{m}, \bar{u}_{j}\right), & \bar{u}_{m} \neq \bar{u}_{j} \\
\bar{e}_{1}\left(\bar{u}_{m}, \bar{u}_{j}\right)=\bar{\beta}_{1}\left(\bar{u}_{m}\right) \bar{\Gamma}_{1}\left(\bar{u}_{m}\right) \bar{I}_{12}\left(\bar{u}_{m}, \bar{u}_{j}\right), & \bar{u}_{m} \neq \bar{u}_{j} \tag{2.23d}
\end{array}
$$

and $\bar{I}_{12}\left(\bar{u}_{m}, \bar{u}_{j}\right)$ and $\bar{I}_{21}\left(\bar{u}_{m}, \bar{u}_{j}\right)$ are given by (2.21d) with \bar{u} replaced by \bar{u}_{m}. Thus, the system of linear equations (2.19a), (2.19b) and (2.22a), (2.22b) together with (2.20), (2.21) and (2.23) permit the determination of the $2 \mathrm{~N}+4$ unknowns, namely, $\bar{\Gamma}_{1}, \bar{\tau}_{1}, \bar{\Gamma}_{1}\left(\bar{u}_{m}\right)$, and $\bar{\tau}_{1}\left(\bar{u}_{m}\right), m=1,2, \ldots, N$.

From (2.9) it follow that $\bar{A}\left(\bar{u}=\bar{u}_{0}=0\right)=0$; hence, $(2.19 \mathrm{~d})$ give $\bar{I}_{12}\left(\bar{u}_{0}\right)=0$ and $\bar{I}_{21}\left(\bar{u}_{0}\right)=0$. Thus from $(2.20 \mathrm{~b}), \bar{f}_{1}\left(\bar{u}_{0}\right)=\bar{\tau}_{1}\left(\bar{u}_{0}\right) \bar{I}_{12}\left(\bar{u}_{0}\right)=0$ and from $(2.21 \mathrm{~b}), \bar{g}_{1}\left(\bar{u}_{0}\right)=$ $\bar{\beta}_{1}\left(\bar{u}_{0}\right) \bar{\Gamma}_{1}\left(\bar{u}_{0}\right) \bar{I}_{21}\left(\bar{u}_{0}\right)=0$. Also, from the normalized form of $(2.12 \mathrm{c})$, it follows that $\bar{\beta}_{1}\left(\bar{u}_{m}=\bar{k}_{0}\right)=0 ;$ therefore, $(2.21 \mathrm{~b})$ gives $\bar{g}_{1}\left(\bar{u}_{m}=\bar{k}_{0}\right)=\bar{\beta}_{1}\left(\bar{u}_{m}=\bar{k}_{0}\right) \bar{\Gamma}_{1}\left(\bar{u}_{m}=\bar{k}_{0}\right)$ $\bar{I}_{21}\left(\bar{u}_{m}=\bar{k}_{0}\right)=0$. Hence, only $2 \mathrm{~N}+1$ unknowns can be found at B_{1} since $\bar{f}_{1}\left(\bar{u}_{0}\right), \bar{g}_{1}\left(\bar{u}_{0}\right)$ and $\bar{g}_{1}\left(\bar{u}_{m}=\bar{k}_{0}\right)$ are zero. This means that we use (2.19) and (2.22) to find $\bar{\Gamma}_{1}, \bar{\tau}_{1}, \bar{\Gamma}_{1}\left(\bar{u}_{m}\right)$ and $\bar{\tau}_{1}\left(\bar{u}_{m}\right), m=1,2, \ldots, N$, with the exception of $\bar{\Gamma}_{1}\left(\bar{u}_{m}=\bar{k}_{0}\right)$ and that $\bar{\tau}_{1}\left(\bar{u}_{0}=0\right), \bar{\Gamma}_{1}\left(\bar{u}_{0}=0\right)$ and $\bar{\Gamma}_{1}\left(\bar{u}_{m}=\bar{k}_{0}\right)$ cannot be determined.

The procedure is repeated at each step discontinuity. The difference in the formulation, at B_{2} in Figure 2 for example, is that the non-zero wave constituents assumed to strike the discontinuity at $\bar{z}=\Delta \bar{z}$ include now both a single guided surface wave mode, represented by \bar{A}_{2}, plus the forward traveling radiation modes, represented by $\bar{A}_{2}(\bar{u})$ $\left(\bar{A}_{2}(\bar{u})=\bar{\tau}_{1}(\bar{u}) \bar{A}_{1}, \quad 0 \leq \bar{u}<\infty\right)$. As before, both the reflected surface wave mode $\left(\overline{B_{2}}=\bar{\Gamma}_{2} \bar{A}_{2}\right)$ and the reflected radiation modes $\left(\overline{B_{2}}(\bar{u})=\bar{\Gamma}_{2}(\bar{u}) \bar{A}_{2}, 0 \leq \bar{u}<\infty\right)$ in region 3 are neglected. Thus, the normalized transverse field components in region 2 are now:

$$
\begin{align*}
\bar{E}_{y 2}^{f 1}= & \bar{A}_{2}\left\{\left[e^{-j \bar{\beta}_{2} \bar{z}}+\bar{\Gamma}_{2} e^{j \bar{\beta}_{2} \bar{z}}\right] \bar{\Phi}_{2}(\bar{x})+\int_{0}^{\infty} \bar{\Gamma}_{2}(\bar{u}) e^{j \bar{\beta}_{2}(\bar{u}) \bar{z}} \bar{\Phi}_{2}(\bar{x}, \bar{u}) d \bar{u}^{\prime}\right\} \\
& +\bar{A}_{1} \int_{0}^{\infty} \bar{\tau}_{1}(\bar{u}) e^{-j \bar{\beta}_{2}(\bar{u}) \bar{z}} \bar{\Phi}_{2}(\bar{x}, \bar{u}) d \bar{u}, \tag{2.24a}\\
\eta_{0} \bar{H}_{x 2}^{f 1}= & -\frac{\bar{A}_{2}}{\bar{k}_{0}}\left\{\bar{\beta}_{2}\left[e^{-j \bar{\beta}_{2} \bar{z}}-\bar{\Gamma}_{2} e^{j \bar{\beta}_{2} \bar{z}}\right] \bar{\Phi}_{2}(\bar{x})-\int_{0}^{\infty} \bar{\beta}_{2}(\bar{u}) \bar{\Gamma}_{2}(\bar{u}) e^{j \bar{\beta}_{2}(\bar{u})} \overline{\Phi_{2}}(\bar{x}, \bar{u}) d \bar{u}\right\} \\
& -\frac{\bar{A}_{1}}{\bar{k}_{0}} \int_{0}^{\infty} \bar{\beta}_{2}(\bar{u}) \bar{\tau}_{1}(\bar{u}) e^{-j \overline{B_{1}}(\bar{u}) \bar{z}} \bar{\Phi}_{2}(\bar{x}, \bar{u}) d \bar{u}, \tag{2.24b}
\end{align*}
$$

and the transverse field components in region 3 (neglecting reflected waves from steps to the right) are :

$$
\begin{align*}
& E_{y 3}^{\rho_{1}}=\bar{A}_{2}\left\{\left[\bar{\tau}_{2} e^{-j \bar{B}_{3} \bar{z}} \bar{\Phi}_{3}(\bar{x})+\int_{0}^{\infty} \bar{\tau}_{2}(\bar{u}) e^{-j \bar{B}_{3}(\bar{u}) \bar{z}} \bar{\Phi}_{3}(\bar{x}, \bar{u}) d \bar{u}\right\},\right. \tag{2.25a}\\
& \eta_{0} \bar{H}_{x 3}^{f l}=-\frac{\bar{A}_{2}}{\bar{k}_{0}}\left[\bar{\beta}_{3} \bar{\tau}_{2} e^{-j \overline{\bar{m}}_{3} \bar{\tau}} \bar{\Phi}_{3}(\bar{x})+\int_{0}^{\infty} \bar{\beta}_{3}(\bar{u}) \bar{\tau}_{2}(\bar{u}) e^{-j \bar{\beta}_{3}(\bar{u}) \bar{z}} \bar{\Phi}_{3}(\bar{x}, \bar{u}) d \bar{u}\right] . \tag{2.25b}
\end{align*}
$$

Applying the boundary conditions of the continuity of E_{y} and H_{x} at $\bar{z}=\Delta \bar{z}$, noting that $\bar{A}_{2}=\bar{\tau}_{1} \bar{A}_{1}$, truncating the integrals over \bar{u} at $\bar{u}=\bar{u}_{N}=2 \bar{k}_{0}$, discretizing the remaining integral over finite limits of integration from $\bar{u}=0$ to $\bar{u}=\bar{u}_{N}$ and using the orthogonality relations in a similar fashion as was done previously at B_{1} yield the following system of $2 \mathrm{~N}+1$ linear equations for the $2 \mathrm{~N}+1$ unknowns $\bar{\Gamma}_{2}, \bar{\tau}_{2}, \bar{\Gamma}_{2}\left(\bar{u}_{m}\right)$ and $\bar{\tau}_{2}\left(\bar{u}_{m}\right), m=1,2, \ldots$, N, not including $\bar{\Gamma}_{2}\left(\bar{u}_{m}=\bar{k}_{0}\right)$:

$$
\begin{align*}
& e^{-j \bar{\beta}_{2} \Delta \bar{z}}+\bar{\Gamma}_{2} e^{j \bar{\beta}_{2} \Delta \bar{z}} \\
& =\bar{\tau}_{2} e^{-j \bar{\beta}_{3} \Delta \bar{z}} \bar{I}_{23}+\int_{0}^{\infty} \bar{\tau}_{2}(\bar{u}) e^{-j \bar{\beta}_{3}(\bar{u}) \Delta \bar{z}} \bar{I}_{23}(\bar{u}) d \bar{u}, \tag{2.26a}\\
& \bar{\tau}_{1} \bar{\beta}_{2}\left(e^{-j \bar{\beta}_{2} \Delta \bar{z}}-\bar{\Gamma}_{2} e^{j \bar{\beta}_{2} \Delta \bar{z}}\right) \bar{I}_{23}+\int_{0}^{\infty}\left[\bar{\tau}_{1}(\bar{u}) e^{-j \bar{\beta}_{2}(\bar{u}) \Delta \bar{z}}-\bar{\tau}_{1} \bar{\Gamma}_{2}(\bar{u}) e^{j \bar{p}_{2}(\bar{u}) \Delta \bar{z}}\right] \bar{\beta}_{2}(\bar{u}) \bar{I}_{32}(\bar{u}) d \bar{u} \\
& =\bar{\tau}_{1} \bar{\tau}_{2} \bar{\beta}_{3} e^{-j \bar{\beta}_{3} \Delta \bar{z}}, \tag{2.26b}
\end{align*}
$$

$$
\begin{align*}
& 2\left[\bar{\tau}_{1}\left(\bar{u}_{j}\right) e^{-j \bar{\beta}_{2}\left(\bar{u}_{j}\right) \Delta \bar{z}}+\bar{\tau}_{1} \bar{\Gamma}_{2}\left(\bar{u}_{j}\right) e^{j \bar{\beta}_{2}\left(\bar{u}_{j}\right) \Delta \bar{z}}\right] \\
& =\bar{\tau}_{1} \bar{\tau}_{2} e^{-j \bar{\beta}_{3}\left(\bar{u}_{j}\right) \Delta \bar{z}} \bar{I}_{32}\left(\bar{u}_{j}\right)+\left(\int_{0}^{\bar{u}_{j}-\delta}+\int_{\bar{u}_{j}+\delta}^{\infty}\right) \bar{\tau}_{1} \bar{\tau}_{2}(\bar{u}) e^{-j \bar{\beta}_{3}(\overline{\bar{u}}) \Delta \bar{z}} \bar{I}_{32}\left(\bar{u}, \bar{u}_{j}\right) d \bar{u} \\
& +\bar{\tau}_{1} \bar{\tau}_{2}\left(\bar{u}_{j}\right) e^{-j \bar{\beta}_{3}\left(\bar{u}_{j}\right) \Delta \bar{z}} \bar{T}_{23}\left(\bar{u}_{j}\right) \tag{2.26c}
\end{align*}
$$

$$
\begin{align*}
& \bar{\tau}_{1} \bar{\beta}_{2}\left(e^{-j \bar{\beta}_{2} \bar{\alpha}}-\bar{\Gamma}_{2} e^{j \bar{\beta}_{2} \Delta \bar{x}}\right) \bar{I}_{23}\left(\bar{u}_{j}\right) \\
& +\left(\int_{0}^{\bar{u}_{j}-\bar{\delta}}+\int_{\bar{u}_{j}+\bar{\sigma}}^{\omega}\right)\left[\bar{\tau}_{1}(\bar{u}) e^{-j \bar{\beta}_{2}(\bar{u})\langle\bar{z}}-\bar{\tau}_{1} \bar{\Gamma}_{2}(\bar{u}) e^{j \bar{\beta}_{2}(\bar{u}) \lambda \bar{x}}\right] \bar{\beta}_{2}(\bar{u}) \bar{I}_{23}\left(\bar{u}_{,} \bar{u}_{j}\right) d \bar{u} \\
& +\left[\bar{\tau}_{1}\left(\bar{u}_{j}\right) e^{-j \bar{\beta}_{2}\left(\bar{u}_{j}\right) \Delta \bar{z}}-\bar{\tau}_{1} \bar{\Gamma}_{2}\left(\bar{u}_{j}\right) e^{j \bar{\beta}_{2}\left(\bar{u}_{j}\right) \Delta \bar{a}}\right] \bar{\beta}_{2}\left(\bar{u}_{j}\right) \bar{T}_{23}\left(\bar{u}_{j}\right) \\
& =2 \bar{\tau}_{1} \bar{\tau}_{2}\left(\bar{u}_{j}\right) \bar{\beta}_{3}\left(\bar{u}_{j}\right) e^{-j \bar{\beta}_{3}\left(\bar{u}_{j}\right) \Delta \bar{z}}, \tag{2.26d}\\
& j=1,2, \ldots, N
\end{align*}
$$

where

$$
\begin{align*}
\bar{T}_{23}\left(\bar{u}_{j}\right)= & \pi \bar{C}_{2}\left(\bar{u}_{j}\right) \bar{C}_{3}\left(\bar{u}_{j}\right)\left\{\operatorname { c o s } (\overline { u } _ { j } (\overline { R } _ { 2 1 } - \overline { R } _ { 3 1 })) \left[\cos \left(\bar{v}_{j} \bar{R}_{21}\right) \cos \left(\bar{v}_{j} R_{31}\right)\right.\right. \\
& \left.\left.+\left(\frac{\bar{v}_{j}}{\bar{u}_{j}}\right)^{2} \sin \left(\bar{v}_{j} \bar{R}_{21}\right) \sin \left(\bar{v}_{j} R_{31}\right)\right]+\frac{\bar{v}_{j}}{\bar{u}_{j}} \sin \left(\bar{u}_{j}\left(\bar{R}_{21}-\bar{R}_{31}\right)\right) \sin \left(\bar{v}_{j}\left(\bar{R}_{21}-\bar{R}_{31}\right)\right)\right\}, \tag{2.26e}
\end{align*}
$$

and

$$
\begin{align*}
\bar{I}_{23} & =\int_{-\infty}^{\infty} \bar{\Phi}_{2}(\bar{x}) \bar{\Phi}_{3}(\bar{x}) d \bar{x}, \tag{2.26f}\\
\bar{I}_{23}\left(\bar{u}_{j}\right) & =\int_{-\infty}^{\infty} \bar{\Phi}_{2}(\bar{x}) \bar{\Phi}_{3}\left(\bar{x}, \bar{u}_{j}\right) d \bar{x}, \tag{2.26f}\\
\bar{I}_{32}\left(\bar{u}_{j}\right) & =\int_{-\infty}^{\infty} \bar{\Phi}_{3}(\bar{x}) \bar{\Phi}_{2}\left(\bar{x}, \bar{u}_{j}\right) d \bar{x}, \tag{2.26f}\\
\bar{I}_{32}\left(\bar{u}_{,}, \bar{u}_{j}\right) & =\int_{-\infty}^{\infty} \bar{\Phi}_{3}(\bar{x}, \bar{u}) \bar{\Phi}_{2}\left(\bar{x}, \bar{u}_{j}\right) d \bar{x}, \tag{2.26f}
\end{align*}
$$

with $0<\delta \ll 1$.
The remaining two step discontinuities at B_{3} and B_{4} in Figure 2 yield similar linear systems of equations so that the partial fields in regions 3,4 and 5 can also be found. The overlaps integral encountered in (2.19) and (2.26) are evaluated in Appendix B.

2.4 Rigorous Field Solution

In Section 2.3, the first forward partial fields in regions 1 and 2 were found explicitly by applying boundary conditions at B_{1} and B_{2}, respectively. The scatter processes involved
were approximate in that certain reflected fields were ignored. It was pointed out that the process was repeated and boundary conditions were applied at B_{3} and B_{4} in a similar fashion to obtain the remaining first forward partial fields in regions 3, 4 and 5. In all cases, the backward surface and radiation modes were taken to be zero to the right of $\mathrm{B}_{\mathrm{i}}, \mathrm{i}$ $=1, \ldots, 4$, when the forward partial fields

$$
\begin{equation*}
\bar{E}_{y i}^{f_{1}}, \bar{H}_{x i}^{f_{1}} \text { and } \bar{H}_{z i}^{f_{1}} \quad i=1,2, \ldots, 5, \tag{2.27}
\end{equation*}
$$

were determined; the subscript " i " identifies the region where the field is located and the superscript " $f 1$ " identifies each constituent as being the "first forward" partial field contribution to the rigorous field solution.

To obtain a more accurate description of the total field, the waves which progress to the left (in the backward direction) that were ignored in the above formulation must be considered. This is accomplished by considering both of the backward surface wave mode and the backward radiation modes scattered by the abrupt termination at B_{4} to be scattered by the step discontinuity at B_{3}. Now, however, by considering wave progression to the left and applying boundary conditions at each step discontinuity B_{3}, B_{2}, and B_{1} (in this order), the "first backward" partial field components are obtained; these are designated

$$
\bar{E}_{y i}^{b 1}, \bar{H}_{x i}^{b 1} \text { and } \bar{H}_{z i}^{b 1}, \quad i=1,2,3,4
$$

See Figure 3 for a schematic of the wave constituent in each region " i " as the wave field progress in the forward direction (Figure 3(a)), then progresses in the backward direction (Figure 3(b)) and progresses once again in the forward direction for a second time (Figure $3(\mathrm{c}))$. This processes can be repeated as often as needed to approximate the total field to the desired order of accuracy. Using only the wave processes depicted in Figure 3,i.e., the first and second forward progressions(identified by the superscripts $f 1$ and $f 2$, respectively) and the first backward progression(identified by the superscripts $b l$), the total fields constituents in each region (i) can be formally approximated as follows:

In region 1:

$$
E_{y 1}^{\text {Torai }} \cong E_{y 1}^{f 1}+E_{y 1}^{b 1}, \quad H_{x 1}^{\text {Total }} \cong H_{x 1}^{f 1}+H_{x 1}^{b 1}, \quad H_{z 1}^{\text {Toal }} \cong H_{z 1}^{f 1}+H_{z 1}^{b 1} .
$$

In region $2,3,4$:

$$
\begin{aligned}
& E_{y i}^{\text {Total }} \cong E_{y i}^{f 1}+E_{y i}^{b!}+E_{y i}^{f 2}, H_{x i}^{T o r a l} \cong H_{x i}^{f 1}+H_{x i}^{b 1}+H_{x i}^{f 2}, H_{z i}^{\text {Total }} \cong H_{z i}^{f 1}+H_{z i}^{b 1}+H_{z i}^{f 2} \\
& i=2,3,4
\end{aligned}
$$

In region 5:

$$
\begin{equation*}
E_{y 5}^{\text {Total }} \cong E_{y 5}^{f 1}+E_{y 5}^{f 2}, \quad H_{x 5}^{\text {Total }} \cong H_{x j}^{f 1}+H_{x 5}^{f 2}, \quad H_{z 5}^{\text {Toral }} \cong H_{z 5}^{f 1}+H_{z 5}^{f 2} \tag{2.29}
\end{equation*}
$$

The accuracy of the total field will depend on how many forward and backward partial fields are included in the final results.

(a)

Figure 3 Partial field wave constituents at each step discontinuity (a) first forward (b) first backward (c) second forward.

Figure 3 (Continued)

CHAPTER 3

NUMERICAL METHOD

The computer program essentially solves the linear system of equation in matrix form which is obtained at each step discontinuity. At the first step discontinuity, for example, the matrix equation is obtained from (2.19) and (2.22) with (2.20), (2.21) and (2.23); at the second step it is obtained from (2.26). Note that only first forward partial fields were considered in the derivation of these equations. The programs were written in ANSI 77 FORTRAN and executed on VAX/VMS system. LOTUS-123 was used to construct tables and figures. The program for solving the single step discontinuity is listed in Appendix E whereas the complete program is listed in Appendix F .

In the program (Appendix E or Appendix F), the subroutine named DISPER uses bi-section method [16] to solve the dispersion equation. The bi-section method was chosen because data was obtained in a few cases for dielectric materials of nearly equal refractive indices, which caused the Newton-Raphson method [16] not to converge.

The program is separated into five parts. The first part is the initial parameters setup. The parameters are
N : The number used to determine the size of $\Delta \bar{u}$; see (2.20b),
C : The size of the matrix $(C=2 N+1)$,
NO: The integer one or two which multiples \bar{u}_{N},
KD: The normalized slab width $k_{0} D_{1}$,
ER: The dielectric constant of the tapered slab,
NS: The dielectric constant of the material external to the tapered slab which usually is air, so that $\mathrm{NS}=1$.

In order for the main program to treat more than one step, the following parameters are also specified:

STEP: The number of step discontinuities,
KL : The normalized wedge length $k_{0} L$,
ITER: The number of forward and backward progressions.
The second part of the main program calculates expressions and overlap integrals for the matrices. In the program, the FIND_UN subroutine finds the parameters $\bar{u}_{i}, \bar{v}\left(\bar{u}_{i}\right)$ and $\bar{\beta}_{i}\left(\bar{u}_{i}\right)$ for a radiation mode, GUIDED, GDRAD, and RADRAD are the subroutines for solving the overlap integrals. The third part of the program constructs the matrix equations. The subroutine named FORWARD is used when the wave transmits in the forward direction. The subroutine named BACKWARD is used when the wave transmits in the backward direction. The fourth part of the program solves the matrix equation using Gaussian Elimination decomposition. This is done in the COEF subroutine. The last part of the program calculates the guided and radiated powers by using the formulas in Appendix C, and calculates the radiation pattern of power gain which is solved by the subroutines PATTERNT and PATTERNR to determine the forward $(0<\theta<\pi / 2)$ and backward ($\pi / 2<\theta<\pi$) radiation patterns of power gain, respectively, by using the formulas in Appendix D. LOTUS-123 is used to plot the radiation patterns of power gain .

For the computer system used (VAX/VMS), it takes one minute to calculate a $242 \times$ 242 matrix; four minutes to calculate a 402×402 matrix (the times mentioned here are all CPU time and for the single step solution). The CPU charged time for multiple steps is obtained by multiplying the number of steps with the single step CPU charged time.

CHAPTER 4

NUMERICAL RESULTS

Recall that the dielectric wedge is approximated by a sequence of short slab segments of progressively smaller widths. Hence, a more accurate determination of the field scattered by the wedge geometry is obtained via the method presented in Chapter 2 by increasing the number of segments used. In theory, the method developed yields a rigorous solution provided the field solution at a single step discontinuity is accurately determined. To ascertain this accuracy, comparisons were made with the published data for scattering from a single step discontinuity.

Tables 1-4 compare data with that of P. G. Suchoski, Jr. and V. Ramaswamy [12]. Table 1 describes scattering at a step discontinuity which is modest, but not small since $\mathrm{D}_{2} / \mathrm{D}_{1}=0.6$, and for dielectric media with indices of refraction that are numerically close, which is of interest in the design of integrated optical devices. In Table 1 observe that, as far as conservation of power is concerned, the corrections made to [12] which are implemented here yield a significant redistribution of power, although conservation of power is well satisfied in both cases. Note that the power contained in the reflected surface wave mode $\left(P_{r e f}^{G}\right)$ is over twice as large, the power carried by the transmitted radiation mode $\left(P_{\text {trans }}^{k A D}\right)$ is about 10% smaller and the power in the reflected radiation $\operatorname{modes}\left(P_{r e f}^{K A D}\right)$ is approximately two orders of magnitude smaller than that of [12]. See Appendix C for the various power expressions. To facilitate comparison, truncation was taken at $u_{N}=k_{0} D_{1}$ as was done in [12]. Data is also presented in Table 2 for truncation at both $u_{N}=k_{0} D_{1}$ and $u_{N}=2 k_{0} D_{1}$; note that N is twice as large for the latter to insure that the same number of propagating radiation modes are considered. Observe in Table 2 that the power in each mode remains nearly invariant even when evanescent waves are considered. This shows that our expressions possess good convergence properties.

Table 1 Comparison of result with P. G. Suchoski, Jr. and V. Ramaswamy at a modest step discontinuity. The refractive index of the two dielectric slabs is $n_{1}=1.54$, that of the surrounding medium is $n_{2}=1.52$, free space wavelength $\lambda_{0}=0.6328 \mu \mathrm{~m}, \mathrm{D}_{1}=0.5 \mu \mathrm{~m}$, $D_{2}=0.3 \mu \mathrm{~m}$ for (a) P.G.Suchoski, Jr. and V. Ramaswamy; (b) the present method; (c) percentage difference between the present method and Suchoski, Jr. / Ramaswamy.

$\mathrm{N}=$	$P_{\text {trans }}^{G}$	$P_{\text {ref }}^{G}$	$P_{\text {trans }}^{\text {RAD }}$	$P_{\text {ref }}^{\text {RAD }}$	$P^{\text {TOTAL }}$
50	0.99161766	0.0000011	0.00739380	0.00097930	0.99999190
70	0.99161685	0.0000011	0.00739540	0.00098020	0.99999360
100	0.99161620	0.0000011	0.00739630	0.00098080	0.99999440
120	0.99161626	0.0000011	0.00739670	0.00098120	0.99999530
150	0.99161630	0.0000011	0.00739690	0.00098130	0.99999560

(a)

$\mathrm{N}=$	$P_{\text {trans }}^{G}$	$P_{\text {re }}^{G}$	$P_{\text {trans }}^{\text {KAD }}$	$P_{\text {re }}^{\text {KAD }}$	$P^{\text {TOTAL }}$
50	0.99339604	0.00000239	0.00658774	0.00001153	0.99999770
70	0.99339542	0.00000239	0.00658849	0.00001202	0.99999832
100	0.99339464	0.00000239	0.00658915	0.00001249	0.99999868
120	0.99339429	0.0000239	0.00658943	0.00001272	0.99999883
150	0.99339390	0.00000239	0.00658974	0.00001297	0.99999899

(b)

$\mathrm{N}=$	$P_{\text {trans }}^{G}$	$P_{\text {ref }}^{G}$	$P_{\text {trans }}^{\text {KAD }}$	$P_{\text {ref }}^{R A D}$	$P^{\text {TOTAL }}$
50	0.179%	117.273%	10.902%	98.823%	0.001%
70	0.179%	117.273%	10.911%	98.774%	0.000%
100	0.179%	117.273%	10.913%	98.727%	0.000%
120	0.179%	117.273%	10.914%	98.704%	0.000%
150	0.179%	117.273%	10.912%	98.678%	0.000%

(c)

Table 2 Use different truncation maximum for the single step discontinuity problem with index of refraction $n_{1}=1.54$ for the slabs and $n_{2}=1.52$ for the surrounding medium, $\lambda_{0}=0.6328 \mu \mathrm{~m}, \mathrm{D}_{1}=0.5 \mu \mathrm{~m}, \mathrm{D}_{2}=0.3 \mu \mathrm{~m}$ for (a) $u_{N}=k_{0} D_{1}$ (b) $u_{N}=2 k_{0} D_{1}$.

$\mathrm{N}=$	$P_{\text {trans }}^{G}$	$P_{\text {ref }}^{G}$	$P_{\text {trans }}^{\text {RAD }}$	$P_{\text {rf }}^{\text {KAD }}$	$P^{\text {ToTAL }}$
50	0.99339604	0.00000239	0.00658774	0.00001153	0.99999770
70	0.99339542	0.00000239	0.00658849	0.00001202	0.99999832
100	0.99339464	0.00000239	0.00658915	0.00001249	0.99999868
120	0.99339429	0.00000239	0.00658943	0.00001272	0.99999883
150	0.99339390	0.00000239	0.00658974	0.00001297	0.99999899

(a)

Table 2 (continued)

$\mathrm{N}=$	$P_{\text {rrans }}^{G}$	$P_{\text {ref }}^{G}$	$P_{\text {rans }}^{\text {RAD }}$	$P_{\text {rf }}^{\text {RAD }}$	$P^{\text {TOTAL }}$
100	0.99339482	0.00000241	0.00658781	0.00001174	0.99999678
140	0.99339438	0.00000241	0.00658860	0.00001225	0.99999764
200	0.99339372	0.00000242	0.00658930	0.00001275	0.99999819
240	0.99339342	0.00000242	0.00658960	0.00001298	0.99999841
300	0.99339306	0.00000242	0.00658992	0.00001325	0.99999865

(b)

For the same dielectric media, Tables 3 and 4 show conservation of power at a step discontinuity that is large since $D_{2} / D_{1}=0.2$. In this case, the results show a significant redistribution of power for all wave constituents, even though conservation of power is again satisfied. Hence, justification of results based solely on conservation of power can be misleading as was illustrated in Table 1.

Table 3 Comparison of result with P. G. Suchoski, Jr. and V. Ramaswamy at a large step discontinuity. The refractive index of the two dielectric slabs is $n_{1}=1.54$, that of the surrounding medium is $n_{2}=1.52$, free space wavelength $\lambda_{0}=0.6328 \mu \mathrm{~m}, \mathrm{D}_{1}=0.5 \mu \mathrm{~m}$, $D_{2}=0.1 \mu \mathrm{~m}$ for (a) P.G. Suchoski, Jr. and V. Ramaswamy; (b) the present method; (c) percentage difference between the present method and Suchoski, Jr. / Ramaswamy.

$\mathrm{N}=$	$P_{\text {trans }}^{G}$	$P_{\text {ref }}^{G}$	$P_{\text {trans }}^{\text {KAD }}$	$P_{\text {ref }}^{\text {RAD }}$	$P^{\text {roTAL }}$
50	0.73635	0.000081	0.24162	0.02596	1.00401
70	0.73728	0.000093	0.24199	0.02385	1.00321
100	0.73742	0.000099	0.24262	0.02243	1.00257
120	0.73743	0.000102	0.24300	0.02139	1.00192
150	0.73744	0.000103	0.24310	0.01949	1.00013

(a)

$\mathrm{N}=$	$P_{\text {rrans }}^{G}$	$P_{\text {ref }}^{G}$	$P_{\text {rrass }}^{\text {RAD }}$	$P_{\text {ref }}^{\text {RAD }}$	$P^{\text {VOTAL }}$
50	0.79408	0.000015	0.20508	0.00014	0.99931
70	0.79526	0.000014	0.20472	0.0007	1.00007
100	0.79535	0.000014	0.20470	0.00004	1.00011
120	0.79533	0.000014	0.20471	0.00003	1.00009
150	0.79530	0.000014	0.20472	0.00003	1.00007

(b)

Table 3 (continued)

$\mathrm{N}=$	$P_{\text {rrans }}^{G}$	$P_{\text {ref }}^{G}$	$P_{\text {trans }}^{\text {RAD }}$	$P_{\text {ref }}^{\text {RAD }}$	$P^{\text {TOTAL }}$
50	7.840%	80.901%	15.125%	99.467%	0.468%
70	7.864%	84.989%	15.399%	99.703%	0.313%
100	7.856%	85.828%	15.629%	99.817%	0.246%
120	7.852%	86.176%	15.756%	99.844%	0.183%
150	7.847%	86.262%	15.786%	99.862%	0.006%

(c)

Table 4 Use different truncation maximum for the single step discontinuity problem with index of refraction $n_{1}=1.54$ for the slabs and $n_{2}=1.52$ for the surrounding medium, $\lambda_{0}=0.6328 \mu \mathrm{~m}, \mathrm{D}_{1}=0.5 \mu \mathrm{~m}, \mathrm{D}_{2}=0.1 \mu \mathrm{~m}$ for (a) $u_{N}=k_{0} D_{1}$ (b) $u_{N}=2 k_{0} D_{1}$.

$\mathrm{N}=$	$P_{\text {trans }}^{G}$	$P_{\text {ref }}^{G}$	$P_{\text {trans }}^{\text {KAD }}$	$P_{\text {ref }}^{\text {RAD }}$	$P^{\text {TOTAL }}$
50	0.79407806	0.00001547	0.20507549	0.00013831	0.99930732
70	0.79525757	0.00001396	0.20472562	0.00007085	1.00006800
100	0.79535123	0.00001403	0.20469998	0.00004110	1.00010634
120	0.79532966	0.00001410	0.20471231	0.00003332	1.00008938
150	0.79530572	0.00001415	0.20472383	0.00002694	1.00007064

(a)

$\mathrm{N}=$	$P_{\text {rans }}^{G}$	$P_{\text {ref }}^{G}$	$P_{\text {rrans }}^{\text {KAD }}$	$P_{\text {ref }}^{\text {RAD }}$	$P^{\text {YOTAL }}$
100	0.79407805	0.00001549	0.20507542	0.00013831	0.99930726
140	0.79525756	0.00001398	0.20472556	0.00007085	1.00006796
200	0.79535123	0.00001406	0.20469993	0.00004110	1.00010631
240	0.79532965	0.00001412	0.20471226	0.00003332	1.00008936
300	0.79530572	0.00001418	0.20472379	0.00002694	1.00007062

(b)

Table 5 compares results with K. Hirayama and M. Koshiba [15]. They used a combination of the finite-element and boundary-element methods. Observing that discrepancies appear only in $P_{\text {ref }}^{G}$, the power in the reflected surface wave mode, and that conservation of power are satisfied better in our case for the larger discontinuity of D_{2} / D_{1} $=0.2$. Again, there is very good agreement for the distribution of power among the
modes which indicates that evanescent modes need not be considered when only power conservation is being verified.

Table 5 Comparison of results with K . Hirayama and M . Koshiba for $\varepsilon_{R}=5$, $u_{N}=2 k_{0} D_{1}, n_{2}=1$ and $N=400$.

$\mathrm{D}_{2} / \mathrm{D}_{1}=0.04$	$P_{\text {trans }}^{G}$	$P_{\text {ref }}^{G}$	$P^{\text {RAD }}$	$P^{\text {rOTAL }}$
Hirayama/Koshiba	0.36200	0.01000	0.6278	0.9998
Present method	0.35692	0.01255	0.6305	1.0010
Percentage Difference	-1.403%	25.500%	0.430%	0.120%

(a)

$\mathrm{D}_{2} / \mathrm{D}_{1}=0.2$	$P_{\text {trans }}^{G}$	$P_{\text {ref }}^{G}$	$P^{\text {RAD }}$	$P^{\text {TOTAL }}$
Hirayama/Koshiba	0.88660	0.04160	0.07150	0.9996
Present method	0.87877	0.04973	0.07149	0.9998
Percentage Difference	-0.872%	19.543%	-0.014%	0.020%

(b)

Many papers in the literature have treated the problem of scattering from a single step discontinuity [13-15,17-27]. Several of these papers compare their results with T. E. Rozzi who used a rigorous variational approach [13]; this is done here in Figure 4 and Figure 5. In Figure 4, the radiated power $\left(P_{\text {trans }}^{R A D}+P_{\text {ref }}^{R A D}\right)$ (normalized to the incident power that is carried by the fundamental TE mode incident either from the left $(z<0)$ or from the right $(z>0)$) is plotted versus D_{2} / D_{1}; the larger slab cross-section $\left(2 D_{1}\right)$ is taken to the left, which differs from Rozzi [13] who placed the narrower slab on the left. In our formulation, incident power is taken to be unity. The magnitude of the reflection and transmission coefficients looking to the right $\left(\left.\bar{\Gamma}^{f}\right|_{,}\left|\bar{\tau}^{f}\right|\right)$ and to the left $\left(\left|\bar{\Gamma}^{b}\right|,\left|\bar{\tau}^{b}\right|\right)$ are also
plotted in Figure 4. As is evident, excellent agreement is obtained between our result and that of Rozzi.

Figure 4 The normalized radiated powers and the amplitudes of the reflection and transmission coefficients of a step discontinuity between two slab waveguides versus relative step height for $k_{0} D_{1}=1, \varepsilon_{r}=5, u_{N^{\prime}}=2 k_{0} D_{1}$ and $\mathrm{N}=400$.

Figure 5 is a plot of the radiation pattern of power gain due to a step discontinuity, where the power gain $G(\theta)$ is normalized to the incident power, see Appendix D for the derivation of the expression for power gain in the two regions $z<0$ and $z>L$, where L is the wedge length. Results in Figure 5 show good agreement between the three methods plotted; see [26]. Note that a discontinuity appears in the region near $\theta=90^{\circ}$; this was to be expected because different field expressions and hence different integrals were asymptotically evaluated in the two regions $z>\mathrm{L}, 0<\theta<90^{\circ}$ and $z<0,90^{\circ}<\theta<180^{\circ}$.

Figure 5 Radiation pattern of power gain for single step discontinuity for $k_{0} D_{1}=1$, $\varepsilon_{r}=5, u_{N}=2 k_{\theta} D_{1}$ and $\mathrm{N}=400$.

In Figure 6-9, the radiation patterns of power gain of different dielectric wedges are presented. The material chosen is silicon $\left(\varepsilon_{r}=12\right)$ and lucite $\left(\varepsilon_{r}=2.56\right)$. In Figure 6, the wedge parameters are $\varepsilon_{r}=2.56, L / \lambda_{0}=0.25, D_{1} / \lambda_{0}=1 /(2 \pi), u_{N}=k_{0} D_{1}$ and $\mathrm{N}=$ 150. For this relatively short wedge (quarter-wavelength), the radiation pattern of power gain is obtained for three different numbers of steps, namely, 32,64 and 128 , and only the first forward partial field contribution to the total field needed to be calculated and is plotted in the forward direction $\left(0^{\circ}<\theta<90^{\circ}\right)$, but the first forward and first backward partial wave constituents are needed in the backward direction $\left(90^{\circ}<\theta<180^{\circ}\right)$. Figure $6(\mathrm{a})$ shows the pattern in the range from $\theta=0^{\circ}$ to $\theta=90^{\circ}$, while Figure $6(\mathrm{~b})$ gives the backscatter pattern over the range from $\theta=90^{\circ}$ to $\theta=180^{\circ}$. Values of the gain function are not valid near $\theta=0^{\circ}$ and $\theta=180^{\circ}$ because the first-order stationary phase method is not valid when a stationary phase point is near an endpoint. Figure $\sigma(a)$ shows that in determining the forward radiation pattern of power gain, only 32 steps are needed for
convergence. In Figure 6(b), the gain decreases when the number of steps increased, except at the point near $\theta=90^{\circ}$ where it increases.

Figure 6 Radiation pattern of power gain of the slab/wedge for $\varepsilon_{r}=2.56$, $L / \lambda_{0}=0.25, D_{1} / \lambda_{0}=1 /(2 \pi) u_{N}=k_{0} D_{1}$ and $N=150$ for (a) $z>L, 0^{\circ}<\theta<90^{\circ}$; (b) z> $0,90^{\circ}<\theta<180^{\circ}$; (c) $0^{\circ}<\theta<180^{\circ}$ in dB scale.

Figure 6 (Continued)

(c)

For comparison ε_{r} is now taken to be 12 while the slab/wedge geometry remains identical to the one used in Figure 6. As before, the radiation pattern of power gain is obtained for three different numbers of steps, namely, 32, 64 and 128. Again, only the first forward partial field is need for the forward radiation pattern of power gain $\left(0^{\circ}<\theta<\right.$ 90°), but both the first forward and first backward partial fields are needed for the backward radiation pattern of power gain. Figure 7(a) shows the pattern in the range from $\theta=0^{\circ}$ to $\theta=90^{\circ}$, while Figure 7(b) gives the backscatter pattern over the range from $\theta=$ 90° to $\theta=180^{\circ}$. Again, the values of the gain function are not valid near $\theta=0^{\circ}$ and $\theta=$ 180°. A comparison with Figure 6 shows that numerical results become worse for the quarter wavelength wedge when $\varepsilon_{r}=12$. This occurs because the difference between the dielectric constants of the wedge and the surrounding medium (air) is large, which affects the accuracy of the numerical solution.

Figure 7 Radiation pattern of power gain of the slab/wedge for $\varepsilon_{r}=12, L / \lambda_{0}=0.25$, $D_{1} / \lambda_{0}=1 /(2 \pi), u_{N}=k_{0} D_{1}$ and $\mathrm{N}=150$ for (a) $z>\mathrm{L}, 0^{\circ}<\theta<90^{\circ}$; (b) z $>0,90^{\circ}<\theta<$ 180°; (c) $0^{\circ}<\theta<180^{\circ}$ in dB scale.

Figure 7 (Continued)

(c)

A comparison of the radiation pattern of power gain for the five wavelength long wedge for the two materials $\left(\varepsilon_{r}=2.56\right.$ and 12) are presented in Figures 8 and 9, respectively. In Figure $8, \varepsilon_{r}=2.56, L / \lambda_{0}=5, D_{1} / \lambda_{0}=1 /(2 \pi), u_{N}=k_{0} D_{1}$ and $\mathrm{N}=150$. Figure 8 (a) shows the pattern in the range from $\theta=0^{\circ}$ to $\theta=90^{\circ}$, while Figure 8 (b) gives the backscatter pattern over the range from $\theta=90^{\circ}$ to $\theta=180^{\circ}$. A comparison to Figure 6 shows that for $\varepsilon_{r}=2.56$ the longer taper produces more gain, a narrower beamwidth, again minimal side lobes and appears to connect smoothly across the $\theta=90^{\circ}$ plane, as it should.

Figure 8 Radiation pattern of power gain of the slab/wedge for $\varepsilon_{r}=2.56, L / \lambda_{0}=5$, $D_{1} / \lambda_{0}=1 /(2 \pi), u_{N}=k_{0} D_{1}$ and $\mathrm{N}=150$ for (a) z $>\mathrm{L}, 0^{\circ}<\theta<90^{\circ}$; (b) z>0, $90^{\circ}<\theta<$ 180°; (c) $0^{\circ}<\theta<180^{\circ}$ in dB scale.

Figure 8 (Continued)

(c)

On comparing Figure 9 to Figure 7, it is apperent that the radiation patterns of power gain are smoother for the five wavelength wedge than for the quarter wavelength wedge and that the higher dielectric is not as deleterious as was the case in Figure 7.

(a)

Figure 9 Radiation pattern of power gain of the slab/wedge for $\varepsilon_{r}=12, L / \lambda_{0}=5$, $D_{1} / \lambda_{0}=1 /(2 \pi), u_{N}=k_{0} D_{1}$ and $\mathrm{N}=150$ for (a) $z>\mathrm{L}, 0^{\circ}<\theta<90^{\circ}$; (b) $z>0,90^{\circ}<\theta<$ 180°; (c) $0^{\circ}<\theta<180^{\circ}$ in dB scale.

Figure 9 (Continued)

(b)

(c)

Figures 10,11 and 12 yield a more comprehensive examination of the relationship between the length of the wedge and the value of its dielectric constant. For $\varepsilon_{r}=2.56$, Figure 10 shows that a larger length wedge increases the maximum gain of the antenna, narrows the beamwidth and lowers the side lobe levels (although, these remain inconsequential for all the lengths considered). Figure 11 shows that a larger ε_{r} causes the maximum gain to increase, but also created a wider main lobe beam and produces a greater discontinuity to occur in the vicinity of the $\theta=90^{\circ}$ plane. Only for the $L=10 \lambda_{0}$ case do the forward and backscatter patterns tend to join smoothly across the $\theta=90^{\circ}$ plane.

(a)

Figure 10 Radiation pattern of power gain of the slab/wedge for $\varepsilon_{r}=2.56$, $D_{1} / \lambda_{0}=1 /(2 \pi), u_{N}=k_{0} D_{1}$, Step $=64$, and $N=150$ for (a) $z>L, 0^{\circ}<\theta<90^{\circ}$; (b) z >0, $90^{\circ}<\theta<180^{\circ}$; (c) $0^{\circ}<\theta<180^{\circ}$ in dB scale.

Figure 10 (Continued)

(b)

(c)

Figure 11 Radiation pattern of power gain of the slab/wedge for $\varepsilon_{r}=12$, $D_{1} / \lambda_{0}=1 /(2 \pi), u_{N}=k_{0} D_{1}$, Step $=64$, and $N=150$ for (a) $z>L, 0^{\circ}<\theta<90^{\circ}$; (b) z>0, $90^{\circ}<\theta<180^{\circ}$; (c) $0^{\circ}<\theta<180^{\circ}$ in dB scale.

Figure 11 (Continued)

A closer examination of this particular case is depicted in Figure 12 for $\varepsilon_{r}=2.56$ and 12. The choice of 64 steps ensures convergence and truncation at $u_{N}=k_{0} D_{1}$ is sufficient because of the conclusion that evanescent modes need not be included at each step discontinuity; see Table 2 and 4.

Figure 12 Normalized radiation pattern of power gain (in $d B$) versus angle θ of the slab/wedge for $\varepsilon_{r}=2.56$ and $\varepsilon_{r}=12$ with $L / \lambda_{0}=10, D_{1} / \lambda_{0}=1 /(2 \pi), u_{N}=k_{0} D_{1}$, Step $=64$ and $\mathrm{N}=150$.

CHAPTER 5

CONCLUSIONS

The radiation pattern of power gain for a dielectric slab feeding the staircase model of a dielectric wedge has been determined rigorously. In the model, the wedge region is approximated by short, uniform slab waveguide segments. Using the rigorous solution to scattering from a single step discontinuity, the field scattered by multiple steps is found in term of partial fields. The partial fields are determined by first considering waves progressing toward the tip, then back from the tip toward the semi-infinite slab waveguide region, toward the tip a second time, and so on until sufficient accuracy is reached. In this way, the total field, be it in the near or far zone, is found as a superposition of partial fields. The result is approximate only in that infinite integrals are truncated and numerically determined. The radiation pattern in the forward direction was shown to be smooth and highly directive. These results had not been previous proved [2]. The procedure can be applied to a considerable array of different geometries and is currently being applied to the dielectric cylindrical waveguide feeding the staircase model of the dielectric cone radiator.

APPENDIX A

DERIVATION OF (2.22)

Multiplying (2.18a) by $\bar{\Phi}_{1}\left(\bar{x}_{,} \bar{u}_{j}\right)$ and integrating over \bar{x} from $-\infty$ to $+\infty$ gives

$$
\begin{align*}
& \left(1+\bar{\Gamma}_{1}\right) \int_{-\infty}^{\infty} \bar{\Phi}_{1}(\bar{x}) \bar{\Phi}_{1}\left(\bar{x}, \bar{u}_{j}\right) d \bar{x}+\int_{-\infty}^{\infty}\left[\int_{0}^{\infty} \bar{\Gamma}_{1}(\bar{u}) \bar{\Phi}_{1}(\bar{x}, \bar{u}) d \bar{u}\right] \bar{\Phi}_{1}\left(\bar{x}, \bar{u}_{j}\right) d \bar{x} \\
& \quad=\bar{\tau}_{1} \int_{-\infty}^{\infty} \bar{\Phi}_{2}(\bar{x}) \bar{\Phi}_{1}\left(\bar{x}, \bar{u}_{j}\right) d \bar{x}+\int_{-\infty}^{\infty}\left[\int_{0}^{\infty} \bar{\tau}_{1}(\bar{u}) \bar{\Phi}_{2}(\bar{x}, \bar{u}) d \bar{u}\right] \bar{\Phi}_{1}\left(\bar{x}, \bar{u}_{j}\right) d \bar{x} \tag{A.1}
\end{align*}
$$

The orthogonality relation (2.11) permits setting the first integral on the left-hand side of (A.1) to zero. The overlap integral $\bar{I}_{21}\left(\bar{u}_{j}\right)$, which is defined in (2.22d), appears in the first integral on the right hand side of (A.1) and is evaluated explicitly in Appendix B. The remaining two double integral must be evaluated carefully because the range of integration over \bar{u} includes \bar{u}. The last double integral in (A.1) was not evaluated correctly in [12, 14, 28].

Consider the double integral on the right hand side of (A.1) and separate the integration over \bar{u} into three ranges as follows:

$$
\begin{equation*}
I_{K}=2\left[I_{R 1}+I_{R 2}+I_{R 3}\right], \tag{A.2}
\end{equation*}
$$

where

$$
\begin{align*}
& I_{R 1}=\int_{0}^{\infty}\left[\int_{0}^{\bar{u}_{j}-\delta} \bar{\tau}_{1}(\bar{u}) \bar{\Phi}_{2}(\bar{x}, \bar{u}) d \bar{u}\right] \bar{\Phi}_{1}\left(\bar{x}, \bar{u}_{j}\right) d \bar{x}, \tag{A.2a}\\
& I_{R 2}=\int_{0}^{\infty}\left[\int_{\bar{u}_{j}-\delta}^{\bar{u}_{j}+\delta} \bar{\tau}_{1}(\bar{u}) \bar{\Phi}_{2}(\bar{x}, \bar{u}) d \bar{u}\right] \bar{\Phi}_{1}\left(\bar{x}, \bar{u}_{j}\right) d \bar{x}, \tag{A.2b}\\
& I_{R 3}=\int_{0}^{\infty}\left[\int_{\bar{u}_{j}+\delta}^{\infty} \bar{\tau}_{1}(\bar{u}) \bar{\Phi}_{2}(\bar{x}, \bar{u}) d \bar{u}\right] \bar{\Phi}_{1}\left(\bar{x}, \bar{u}_{j}\right) d \bar{x} . \tag{A.2c}
\end{align*}
$$

Note that the integration over \bar{x} is taken from zero to infinite, which is a consequence of symmetry. In the double integrals (A.2a) and (A.2c), the order of integration can be interchanged because \bar{u}_{j} is excluded from the range of integration. Hence, they become

$$
\begin{align*}
& I_{R 1}=\int_{0}^{\bar{u}_{j}-\delta} \bar{\tau}_{1}(\bar{u}) \bar{I}_{21}\left(\bar{u}, \bar{u}_{j}\right) d \bar{u}, \tag{A.3a}\\
& I_{R 3}=\int_{\bar{u}_{j}+\delta}^{\infty} \bar{\tau}_{1}(\bar{u}) \bar{I}_{21}\left(\bar{u}, \bar{u}_{j}\right) d \bar{u}, \tag{A.3b}
\end{align*}
$$

where the overlap integral $\bar{I}_{21}\left(\bar{u}, \bar{u}_{j}\right)$ is given in (2.22d) and explicitly evaluated in Appendix B. The remaining double integral (A.2b) is evaluated by setting all terms in the integrand of the integral over \bar{u} to their value at $\bar{u}=\bar{u}_{j}$ except for the oscillatory terms $\cos \bar{u}\left(\bar{x}-\bar{R}_{j}\right)$ and $\sin \bar{u}\left(\bar{x}-\bar{R}_{j}\right)$. This is done because the range of integration over \bar{u} is narrow about \bar{u}_{j} and the \bar{x}-integration range extends to infinity. The sinusoidal terms are obtained from the normalized form of the potential functions which are founded in (2.9). Evaluating the resultant integrals and taking the limit as $\delta \rightarrow 0$, yields

$$
\begin{equation*}
I_{R 2}=\bar{\tau}_{1}\left(\bar{u}_{j}\right) \widehat{T}_{12}\left(\bar{u}_{j}\right), \tag{A.4}
\end{equation*}
$$

where $\bar{T}_{12}\left(\bar{u}_{j}\right)$ is given by (2.22c). The double integral on the left hand side of (A.1) is evaluated in a similar fashion with the result that

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left[\int_{0}^{\infty} \bar{\Gamma}_{1}(\bar{u}) \bar{\Phi}_{1}(\bar{x}, \bar{u}) d \bar{u}\right] \bar{\Phi}_{1}\left(\bar{x}, \bar{u}_{j}\right) d \bar{x}=2 \bar{\Gamma}_{1}\left(\bar{u}_{j}\right) . \tag{A.5}
\end{equation*}
$$

Hence, (A.1) reduces to (2.22a). In like fashion, (2.22b) can be derived.

APPENDIX B

OVERLAP INTEGRALS

In the linear system of equations (2.19) and (2.22). there are several overlap integrals that are evaluated explicitly. Overlap integrals are defineed below for the $n^{t h}$ step discontinuity between regions n and $n+1$, where $n=1,2, \ldots$. The $n^{\text {th }}$ region contains the larger slab waveguide segment, i.e., $\bar{R}_{n}>\bar{R}_{n+1}$, where $\bar{R}_{n} \equiv D_{n} / D_{1}$. The integrand of an overlap integral involves a product of the potential solutions given in (2.6) and/or (2.9). The four types of overlap integrals are:

1. Guided modes in both the n and $n+1$ regions

$$
\begin{align*}
& \bar{I}_{n, n+1}=\int_{-\infty}^{\infty} \bar{\Phi}_{n}(\bar{x}) \bar{\Phi}_{n+1}(\bar{x}) d \bar{x} \tag{B.1}\\
&=2 \bar{C}_{n} \bar{C}_{n+1}\left(\bar{J}_{1}+\bar{J}_{2}+\bar{J}_{3}\right) \\
& \bar{J}_{1}= {\left[\bar{k}_{x, n} \sin \left(\bar{k}_{x, n} \bar{R}_{n+1}\right) \cos \left(\bar{k}_{x, n+1} \bar{R}_{n+1}\right)-\bar{k}_{x n+1} \cos \left(\bar{k}_{x, n+1} \bar{R}_{n+1}\right) \sin \left(\bar{k}_{x, n} \bar{R}_{n+1}\right)\right] } \tag{B.2}\\
& \bar{k}_{x, n}^{2}-\bar{k}_{x, n+1}^{2}
\end{aligned} \quad \begin{aligned}
& \bar{J}_{2}= \frac{\cos \left(\bar{k}_{x, n+1} \bar{R}_{n+1}\right)}{\bar{k}_{x, n}^{2}+\bar{\alpha}_{x, n+1}^{2}}\left\{\left[\bar{k}_{x, n} \sin \left(\bar{k}_{x, n} \bar{R}_{n}\right)-\bar{\alpha}_{x, n+1} \cos \left(\bar{k}_{x, n} \bar{R}_{n}\right)\right] e^{-\bar{\alpha}_{x+n}\left(\bar{R}_{n}-\bar{R}_{n+1}\right)}\right. \tag{B.3}\\
&\left.\quad-\bar{k}_{x, n} \sin \left(\bar{k}_{x, n} \bar{R}_{n+1}\right)-\bar{\alpha}_{x, n+1} \cos \left(\bar{k}_{x, n} \bar{R}_{n+1}\right)\right\} \\
& \bar{J}_{3}= \frac{\cos \left(\bar{k}_{x, n} \bar{R}_{n}\right) \cos \left(\bar{k}_{x, n+1} \bar{R}_{n+1}\right) e^{-\bar{\alpha}_{x n+1}\left(\bar{R}_{n}-\bar{R}_{n+1}\right)}}{\bar{\alpha}_{x, n}+\bar{\alpha}_{x, n+1}} \tag{B.4}
\end{align*}
$$

2. Guided mode in region n and a radiation mode in region $n+1$

$$
\begin{align*}
& \bar{I}_{n, n+1}(\bar{u})= \tag{B.5}\\
& =\int_{-\infty}^{\infty} \bar{\Phi}_{n}(\bar{x}) \bar{\Phi}_{n+1}(\bar{x}, \bar{u}) d \bar{x} \\
& =2 \bar{C}_{n} \bar{C}_{n+1}(\bar{u})\left(\bar{J}_{4}+\bar{J}_{5}+\bar{J}_{6}\right) \tag{B.6}\\
& \bar{J}_{4}=\frac{\bar{k}_{x, n} \sin \left(\bar{k}_{x, n} \bar{R}_{n+1}\right) \cos \left(\bar{\nu} \bar{R}_{n+1}\right)-\bar{v} \cos \left(\bar{k}_{x, n} \bar{R}_{n+1}\right) \sin \left(\bar{v} \bar{R}_{n+1}\right)}{\bar{k}_{x, n}^{2}-\bar{v}^{2}}
\end{align*}
$$

$$
\begin{align*}
& \begin{aligned}
\bar{J}_{5}= & \frac{1}{\left(\bar{k}_{x, n}^{2}-\bar{u}^{2}\right)}\left\{\operatorname { c o s } (\overline { v } \overline { R } _ { n + 1 }) \left[\bar{k}_{x, n} \sin \left(\bar{k}_{x, n} \bar{R}_{n}\right) \cos \left(\bar{u}\left(\bar{R}_{n}-\bar{R}_{n+1}\right)\right)\right.\right. \\
& \left.\quad \bar{u} \cos \left(\bar{k}_{x, n} \bar{R}_{n}\right) \sin \left(\bar{u}\left(\bar{R}_{n}-\bar{R}_{n+1}\right)\right)-\bar{k}_{x, n} \sin \left(\bar{k}_{x, n} \bar{R}_{n+1}\right)\right] \\
& \quad-\frac{\bar{v}}{\bar{u}} \sin \left(\bar{v} \bar{R}_{n+1}\right)\left[\bar{k}_{x, n} \sin \left(\bar{k}_{x, n} \bar{R}_{n}\right) \sin \left(\bar{u}\left(\bar{R}_{n}-\bar{R}_{n+1}\right)\right)\right. \\
& \left.\left.+\bar{u} \cos \left(\bar{k}_{x, n} \bar{R}_{n}\right) \cos \left(\bar{u}\left(\bar{R}_{n}-\bar{R}_{n+1}\right)\right)-\bar{u} \cos \left(\bar{k}_{x, n} \bar{R}_{n+1}\right)\right]\right\}
\end{aligned} \\
& \begin{aligned}
\bar{J}_{6}=\frac{-\cos \left(\bar{k}_{x, n}\right.}{\bar{u}_{n}^{2}}+\bar{\alpha}_{x, n}^{2} & \left\{\cos \left(\bar{v} \bar{R}_{n+1}\right)\left[\bar{u} \sin \left(\bar{u}\left(\bar{R}_{n}-\bar{R}_{n+1}\right)\right)-\bar{\alpha}_{x, n} \cos \left(\bar{u}\left(\bar{R}_{n}-\bar{R}_{n+1}\right)\right)\right]\right. \\
& \left.+\frac{\bar{v}}{\bar{u}} \sin \left(\bar{v} \bar{R}_{n+1}\right)\left[\bar{\alpha}_{x, n} \sin \left(\bar{u}\left(\bar{R}_{n}-\bar{R}_{n+1}\right)\right)+\bar{u} \cos \left(\bar{u}\left(\bar{R}_{n}-\bar{R}_{n+1}\right)\right)\right]\right\}
\end{aligned} \tag{B.7}
\end{align*}
$$

3. Radiation mode in region n and a guided mode in region $n+1$

$$
\begin{align*}
& \bar{I}_{n+1, n}(\bar{u})=\int_{-\infty}^{\infty} \bar{\Phi}_{n+1}(\bar{x}) \bar{\Phi}_{n}(\bar{x}, \bar{u}) d \bar{x} \\
& \quad=2 \bar{C}_{n+1} \bar{C}_{n}(\bar{u})\left(\bar{J}_{7}+\bar{J}_{8}+\bar{J}_{9}\right) \tag{B.9}\\
& \bar{J}_{7}=\frac{\bar{k}_{x, n+1} \sin \left(\bar{k}_{x, n+1} \bar{R}_{n+1}\right) \cos \left(\bar{v} \bar{R}_{n+1}\right)-\bar{v} \cos \left(\bar{k}_{x, n+1} \bar{R}_{n+1}\right) \sin \left(\bar{v} \bar{R}_{n+1}\right)}{\bar{k}_{x, n+1}^{2}-\bar{v}^{2}} \tag{B.10}
\end{align*}
$$

$\overline{J_{8}}=\frac{\cos \left(\bar{k}_{x, n+1} \bar{R}_{n+1}\right)}{\bar{v}^{2}+\bar{\alpha}_{x, n+1}^{2}}\left\{\left[\bar{v} \sin \left(\bar{v} \bar{R}_{n}\right)-\bar{\alpha}_{x, n+1} \cos \left(\bar{v} \bar{R}_{n}\right)\right] e^{-\alpha_{x, n+1}\left(\bar{R}_{n}-\bar{R}_{n+1}\right)}\right.$

$$
\begin{equation*}
\left.-\bar{v} \sin \left(\bar{v} \bar{R}_{n+1}\right)+\bar{\alpha}_{x, n+1} \cos \left(\bar{v} \bar{R}_{n+1}\right)\right\} \tag{B.11}
\end{equation*}
$$

$$
\begin{equation*}
\bar{J}_{9}=\frac{\cos \left(\bar{k}_{x, n+1} \bar{R}_{n+1}\right)}{\bar{u}^{2}+\bar{\alpha}_{x, n+1}^{2}}\left[\bar{\alpha}_{x, n+1} \cos \left(\bar{v} \bar{R}_{n}\right)-\bar{v} \sin \left(\bar{\nu} \bar{R}_{n}\right)\right] e^{-\bar{\alpha}_{x, n+1}\left(\bar{R}_{n}-\bar{R}_{n+1}\right)} \tag{B.12}
\end{equation*}
$$

4. Radiation modes in both the n and $n+1$ regions

$$
\begin{align*}
& \bar{I}_{n, n+1}\left(\bar{u}, \bar{u}_{j}\right)=\int_{-\infty}^{\infty} \bar{\Phi}_{n}(\bar{x}, \bar{u}) \bar{\Phi}_{n+1}\left(\bar{x}, \bar{u}_{j}\right) d \bar{x} \\
& =2 \bar{C}_{n}(\bar{u}) \bar{C}_{n+1}\left(\bar{u}_{j}\right) \begin{cases}\bar{J}_{10}+\bar{J}_{11}+\bar{J}_{12} & , \text { when } \bar{u} \neq \bar{u}_{j} \\
\bar{T}_{n, n+1} & \text {, when } \bar{u}=\bar{u}_{j}\end{cases} \tag{B.13}\\
& \bar{J}_{10}=\frac{\bar{v} \sin \left(\bar{v} \bar{R}_{n+1}\right) \cos \left(\bar{v}_{j} \bar{R}_{n+1}\right)-\bar{v}_{j} \cos \left(\bar{v} \bar{R}_{n+1}\right) \sin \left(\bar{v}_{j} \bar{R}_{n+1}\right)}{\bar{v}^{2}-\bar{v}_{j}^{2}} \tag{B.14}\\
& \bar{J}_{11}=\frac{\bar{v} \sin \left(\bar{v} \bar{R}_{n}\right) \cos \left(\bar{u}_{j}\left(\bar{R}_{n}-\bar{R}_{n+1}\right)\right)-\bar{u}_{j} \cos \left(\bar{v} \bar{R}_{n}\right) \sin \left(\bar{u}_{j}\left(\bar{R}_{n}-\bar{R}_{n+1}\right)\right)-\bar{v} \sin \left(\bar{v} \bar{R}_{n+1}\right)}{\bar{v}^{2}-\bar{u}_{j}^{2}} \tag{B.15}
\end{align*}
$$

$\bar{J}_{12}=\frac{1}{\left(\bar{u}^{2}-\bar{u}_{j}^{2}\right)}\left\{\sin \left(\bar{u}_{j}\left(\bar{R}_{n}-\bar{R}_{n+1}\right)\right)\left[\bar{u}_{j} \cos \left(\bar{v} \bar{R}_{n}\right) \cos \left(\bar{v}_{j} \bar{R}_{n+1}\right)+\frac{\bar{\nu} \bar{v}_{j}}{\bar{u}_{j}} \sin \left(\bar{v} \bar{R}_{n}\right) \sin \left(\bar{v}_{j} \bar{R}_{n+1}\right)\right]\right.$ $\left.+\cos \left(\bar{u}_{j}\left(\bar{R}_{n}-\bar{R}_{n+1}\right)\right)\left[\bar{v}_{j} \cos \left(\bar{v} \bar{R}_{n}\right) \sin \left(\bar{v}_{j} \bar{R}_{n+1}\right)-\bar{v} \sin \left(\bar{v} \bar{R}_{n}\right) \cos \left(\bar{v}_{j} \bar{R}_{n+1}\right)\right]\right\}$

$$
\begin{align*}
\bar{T}_{n, n+1}= & \frac{\pi}{2}\left\{\cos \left(\bar{u}_{j}\left(\bar{R}_{n}-\bar{R}_{n+1}\right)\right)\left[\cos \left(\bar{v}_{j} \bar{R}_{n}\right) \cos \left(\bar{v}_{j} R_{n+1}\right)+\left(\frac{\bar{v}_{j}}{\bar{u}_{j}}\right)^{2} \sin \left(\bar{v}_{j} \bar{R}_{n}\right) \sin \left(\bar{v}_{j} R_{n+1}\right)\right]\right. \\
& \left.\left.+\frac{\bar{v}_{j}}{\bar{u}_{j}} \sin \left(\bar{u}_{j}\left(\bar{R}_{n}-\bar{R}_{n+1}\right)\right) \sin \left(\bar{v}_{j}\left(\bar{R}_{n}-\bar{R}_{n+1}\right)\right)\right]\right\} \tag{B.17}
\end{align*}
$$

where $j=1,2, \ldots, N$

APPENDIX C

POWER CALCULATIONS

In Chapter 4, calculations of the various powers scattered at a single step discontinuity are presented. The expressions for these power calculations will now be derived. Consider the single step discontinuity between region 1 with slab thickness $2 \mathrm{D}_{1}$ and region 2 with slab thickness $2 \mathrm{D}_{2}$ in Figure 2. The even, transverse TE field components in these regions for the first forward progression are given by (2.14a), (2.14b), (2.15a) and (2.15b). Let

$$
\begin{align*}
& E_{y 1}^{f 1}=E_{y 1, n c c}^{G}+E_{y 1, r e f}^{G}+\int_{0}^{\infty} E_{y 1, r e}^{R A D} d u, \tag{C.Ia}\\
& H_{x 1}^{f 1}=H_{x 1, i n c}^{G}+H_{x 1, r e f}^{G}+\int_{0}^{\infty} H_{x 1, r e f}^{R A D} d u, \tag{C.1b}
\end{align*}
$$

where

$$
\begin{align*}
& E_{y 1, n c}^{G}=A_{1} e^{-j \beta_{1} z} \Phi_{1}(x) \tag{C.1c}\\
& E_{y 1, r e f}^{G}=A_{1} \Gamma_{1} e^{j \beta_{1} z} \Phi_{1}(x), \tag{C.1d}\\
& E_{y 1, r e f}^{R A D}=A_{1} \Gamma_{1}(u) e^{j \beta_{1}(u) z} \Phi_{1}(x, u), \tag{C.le}\\
& H_{x 1, n c}^{G}=-\frac{A_{1} \beta_{1}}{\eta_{0} k_{0}} e^{-j \beta_{1} z} \Phi_{1}(x), \tag{C.1f}\\
& H_{x 1, r e f}^{G}=\frac{A_{1} \beta_{1}}{\eta_{0} k_{0}} \Gamma_{1} e^{j \beta_{1} z} \Phi_{1}(x), \tag{C.lg}\\
& H_{x 1, r, f}^{R A D}=\frac{A_{1} \beta_{1}(u)}{\eta_{0} k_{0}} \Gamma_{1}(u) e^{j \beta_{1}(u) z} \Phi_{1}(x, u), \tag{C.1h}
\end{align*}
$$

and let

$$
\begin{align*}
& E_{y 2}^{f 1}=E_{y 2, \text { rrans }}^{G}+\int_{0}^{\infty} E_{y 2, \text { rrans }}^{R A D} d u, \tag{C.2a}\\
& H_{x 2}^{\Omega}=H_{x 2, \text { rans }}^{G}+\int_{0}^{\infty} H_{x 2, \text { rrans }}^{R A D} d u, \tag{C.2b}
\end{align*}
$$

where

$$
\begin{align*}
& E_{y 2, r r \pi s}^{G}=A_{1} \tau_{1} e^{-j \beta_{2} z} \Phi_{2}(x), \tag{C.2c}\\
& E_{y 2, \text { rrans }}^{R A D}=A_{1} \tau_{1}(u) e^{-j \beta_{2}(u) z} \Phi_{2}(x, u), \tag{C.1d}
\end{align*}
$$

$$
\begin{align*}
& H_{x 2, \text { trars }}^{G}=-\frac{A_{1} \beta_{2}}{\eta_{0} k_{0}} \tau_{1} e^{-j \beta_{2} 2} \Phi_{2}(x), \tag{C.2e}\\
& H_{x 2, \text { rrans }}^{R A D}=-\frac{A_{1} \beta_{2}(u)}{\eta_{0} k_{0}} \tau_{1}(u) e^{-j \beta_{2}(u z z} \Phi_{2}(x, u) . \tag{C.2f}
\end{align*}
$$

From conservation of power,

$$
\begin{equation*}
P_{\text {in }}=P_{\text {out }}, \tag{C.3}
\end{equation*}
$$

where the power into a volume bounded by a surface S enclosing the step discontinuity equals the incident power carried by the even TE_{0} mode and the power out of the volume is determined from the Poynting Vector by the expression

$$
\begin{equation*}
P_{\text {out }}=\frac{1}{2} \oiint{ }_{S} \operatorname{Re}\left(\underline{E}^{s} \times{\underline{H^{s}}}^{\bullet}\right) \cdot \hat{n} d S, \tag{C.4}
\end{equation*}
$$

where the scattered field $\left(\underline{E}^{S}, \underline{H^{S}}\right)$ is defined to be the total field minus the incident field and the underbars signify vector quantities. For convenience, choose $S=S_{1}+S_{2}$, where S_{1} is the planar surface $z=0-\delta,-\infty<x<\infty, 0 \leq y \leq 1$ and S_{2} is the planar surface $z=0+\delta$, $-\infty<x<\infty, 0 \leq y \leq 1$ with $0<\delta \ll 1$, and take S_{1} and S_{2} to close at infinity. Hence, (C.4) reduces to

$$
\begin{equation*}
P_{\text {out }}=P_{1 . \text { out }}+P_{2 . \text { out }}, \tag{C.5}
\end{equation*}
$$

where

$$
\begin{align*}
& P_{1, \text { out }}=\left.\frac{1}{2} \int_{0}^{1} \int_{-\infty}^{\infty} \operatorname{Re}\left(\underline{E_{1}^{s}} \times \underline{H_{1}^{s}}\right)\right|_{0-\delta} \cdot(-\hat{z}) d x d y, \tag{C.5a}\\
& P_{2, \text { out }}=\left.\frac{1}{2} \int_{0}^{1} \int_{-\infty}^{\infty} \operatorname{Re}\left(\underline{E_{2}^{s}} \times \underline{H_{2}^{*}}\right)\right|_{0+\delta} \cdot \hat{z} d x d y, \tag{C.5b}
\end{align*}
$$

Substituting (C.1a), (C.1b), (C.2a) and (C.2b) into (C.5a) and (C.5b) give

$$
\begin{align*}
& P_{1, \text { out }}=\int_{0}^{\infty} \operatorname{Re}\left[\left(E_{y 1, \text { ref }}^{G}+\int_{0}^{\infty} E_{y 11, \text { ref }}^{R A D} d u\right)\left(H_{x i, \text {,ef }}^{G}+\int_{0}^{\infty} H_{x 1, \text { ref }}^{R A D} d u\right)^{*}\right]_{z=0-\delta} d x, \quad \text { (C.6a) } \tag{C.6a}\\
& P_{2, \text { out }}=\int_{0}^{\infty} \operatorname{Re}\left[\left(E_{y 2, \text { srans }}^{G}+\int_{0}^{\infty} E_{y 2, \text { rrans }}^{R A D} d u\right)\left(H_{x 1, \text { rrans }}^{G}+\int_{0}^{\infty} H_{x 1, \text { rrans }}^{R A D} d u\right)^{*}\right]_{z=0+\delta} d x \text {, (C.6b) } \tag{C.6b}
\end{align*}
$$

Using (C.1c) - (C.1h), (C.2c) - (C.2f), the orthogonality relations (2.8) and (2.11) and the normalization (2.14d) give

$$
\begin{equation*}
P_{1, \text { out }}=P_{1, \text { ref }}^{G}+P_{1, r e f}^{R A D}, \quad P_{2, \text { out }}=P_{2, \text { rans }}^{G}+P_{2, \text { trans })}^{R A D} \tag{C.7}
\end{equation*}
$$

where

$$
\begin{align*}
& P_{1, r e f}^{G}=\left|\Gamma_{1}\right|^{2} \tag{C.7a}\\
& P_{1, r e f}^{R A D}=\frac{2}{\beta_{1}} \int_{0}^{k_{0}} \beta_{1}(u)\left|\Gamma_{1}(u)\right|^{2} d u \tag{C.7b}\\
& P_{2, \text { trans }}^{G}=\frac{\beta_{2}}{\beta_{1}}\left|\tau_{1}\right|^{2} \tag{C.7d}\\
& P_{2, \text { trans }}^{R A D}=\frac{2}{\beta_{1}} \int_{0}^{k_{0}} \beta_{2}(u)\left|\tau_{1}(u)\right|^{2} d u \tag{C.7e}
\end{align*}
$$

APPENDIX D

POWER GAIN

The radiation pattern of power gain for the slab/wedge geometry of Figure 1 is given by the power gain formula

$$
\begin{equation*}
G_{5}(\theta)=\frac{2 \pi \rho S_{5}^{/ f}(\rho, \theta)}{P_{N^{\prime}}}, \quad \quad \mathrm{z}>\mathrm{L} \tag{D.1}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{1}(\theta)=\frac{2 \pi \rho S_{1}^{/ f}(\rho, \theta)}{P_{I N}}, \quad z<0 \tag{D.2}
\end{equation*}
$$

where the observation point P in polar coordinate (ρ, θ) is measured from the origin of the xz-plane; $P_{I N^{\prime}}=P_{i n c}=1$ and $S_{1,5}^{/ F}$ represent the time-average power density or Poynting Vectors in the far field in region 1 and 5 , respectively. Since

$$
\begin{equation*}
S_{1,5}^{f f}=\frac{1}{2 \eta_{0}}\left|E_{y 1,5}^{f i}\right|^{2}, \tag{D.3}
\end{equation*}
$$

it is necessary to find the far field intensities $E_{y 1}^{f f}$ and $E_{y 5}^{f f}$ in region 1 and 5 , respectively.
Considering only the first forward progression and the partial wave fields of Figure $3(a)$, the radiation electric fields in region 1 and 5 using the normalized quantities defined in (2.16) give, respectively,

$$
\begin{equation*}
\bar{E}_{y 1}(\bar{x}, \bar{z})=\bar{A}_{1} \int_{0}^{\infty} \bar{\Gamma}_{1}(\bar{u}) e^{j \bar{B}_{1}(\bar{u}) \bar{z}} \bar{\Phi}_{1}(\bar{x}, \bar{u}) d \bar{u}, \quad z<0, \tag{D.4a}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{E}_{y 5}(\bar{x}, \bar{z})=\bar{A}_{4} \int_{0}^{\infty} \bar{\tau}_{4}(\bar{u}) e^{-j \bar{j}_{5}(\bar{u}) \bar{z}} \bar{\Phi}_{5}(\bar{x}, \bar{u}) d \bar{u}, \quad \quad z>\mathrm{L}, \tag{D.4b}
\end{equation*}
$$

where

$$
\begin{equation*}
\left|\bar{A}_{1}\right|=\left(\frac{2 \eta_{0} \bar{k}_{0}}{\bar{\beta}_{1}}\right)^{1 / 2}, \quad \bar{A}_{4}=\bar{\tau}_{1} \bar{\tau}_{2} \bar{\tau}_{3} \bar{A}_{1} . \tag{D.4c}
\end{equation*}
$$

A first-order stationary phase [29] evaluation of (D.4a) and (D.4b) and using (D.3) give for (D.1) and (D.2)

$$
\begin{array}{ll}
G_{5}(\theta)=2 \pi \frac{\bar{k}_{0}^{2}}{\bar{\beta}_{1}} \cos ^{2} \theta\left|\bar{\tau}_{1} \bar{\tau}_{2} \bar{\tau}_{3} \bar{\tau}_{4}\left(\bar{k}_{0} \sin \theta\right)\right|^{2}, & 0<\theta<\pi / 2, \\
G_{1}(\theta)=2 \pi \frac{\bar{k}_{0}^{2}}{\bar{\beta}_{1}} \cos ^{2} \theta\left|\bar{\Gamma}_{1}\left(\bar{k}_{0} \sin \theta\right)\right|^{2}, & \pi / 2<\theta<\pi . \tag{D.5b}
\end{array}
$$

Because only the first-order stationary phase formula was used, the result in (D. 5a) is not valid near $\theta=0^{\circ}$ and in (D.5b), it is not valid near $\theta=\pi$. Note that the gain functions are symmetric about the z-axis

In the above, only the first forward progression is considered. If the first forward, first backward and second forward partial fields are included in the expressions for the radiation intensities $\bar{E}_{y 1,5}$, then the gain functions $G_{1,5}(\theta)$ can be shown to take the forms

$$
\begin{align*}
& G_{5}(\theta)=2 \pi \frac{\bar{k}_{0}^{2}}{\bar{\beta}_{1}} \cos ^{2} \theta\left|P_{f 1} \bar{\tau}_{4}^{\rho_{1}}\left(\bar{k}_{0} \sin \theta\right)+P_{f \mid b 1 / 2} \bar{\tau}_{4}^{f 2}\left(\bar{k}_{0} \sin \theta\right)\right|^{2}, \quad 0<\theta<\pi / 2, \tag{D.6a}\\
& G_{1}(\theta)=2 \pi \frac{\bar{k}_{0}^{2}}{\bar{\beta}_{1}} \cos ^{2} \theta\left|\bar{\Gamma}_{1}^{f_{1}}\left(\bar{k}_{0} \sin \theta\right)+P_{f 1 b 1} \bar{\tau}_{1}^{b 1}\left(\bar{k}_{0} \sin \theta\right)\right|^{2}, \quad \pi / 2<\theta<\pi, \tag{D.6b}
\end{align*}
$$

where

$$
\begin{equation*}
P_{f 1}=\bar{\tau}_{3}^{f 1} \bar{\tau}_{2}^{f 1} \bar{\tau}_{1}^{f 1}, \quad P_{f 1 b 1}=\bar{\tau}_{2}^{b 1} \bar{\tau}_{3}^{b 1} \bar{\Gamma}_{4}^{f 1} P_{f 1}, \quad P_{f 1 b 1 f 2}=\bar{\tau}_{3}^{f 2} \bar{\tau}_{2}^{f 2} \bar{\Gamma}_{1}^{b 1} P_{f b 1} . \tag{D.6c}
\end{equation*}
$$

APPENDIX E

PROGRAM for SINGLE STEP DISCONTINUITY

(Wave Incident from Wider Waveguide to Narrower Waveguide)

PROGRAM NORMALIZED

REAL*8 KD, NO
PARAMETER $(\mathrm{N}=400, \mathrm{NO}=2, \mathrm{C}=2 * \mathrm{~N}+2, \mathrm{PI}=3.14159265358979)$
REAL*8 LENDA
REAL* 8 K0, ER, D1, D2, NS, NF, RATIO
REAL*8 KX1, KX2, AX1, AX2, BETA1, BETA2
REAL*8 KEPAF, KEPA
REAL*8 DELTU, D, DELTUN

REAL* 8 UN(N), VN(N)
COMPLEX* $16 \mathrm{BNC}(\mathrm{N})$
REAL*8S1, S2, S3, S4, S5
REAL** P(N)
REAL*8 Q1, Q2
REAL*8 AU1(N), AU2(N)
REAL*8 AMP1, AMP2
REAL* $8 \mathrm{G}, \mathrm{R}, \mathrm{GG}$
REAL*8 F(N), DY
REAL* 8 GR(N), RG(N)
REAL* $8 \operatorname{RR}(0: \mathrm{N}, 0: \mathrm{N}), \operatorname{RY}(0: \mathrm{N}, 0: \mathrm{N})$
COMPLEX* 16 A(C,C), $\mathrm{B}(\mathrm{C}), \operatorname{COEFY}(\mathrm{C}), \operatorname{COEFX}(\mathrm{C}), \operatorname{COEF}(\mathrm{C})$
COMPLEX* 16 XR
REAL*8 PREF, PTRANS, RPREF, RPTRANS, PTOTAL
REAL* 8 PREFS, PTRANSS, RPREFS, RPTRANSS
COMPLEX* 16 AL(C,C)
INTEGER*4 W, X, Y, Z, T, TK0, CK0, L, FLAG

COMMON /SET1/ KEPAS, ER, KEPAF
COMMON /SET2/KX1, KX2, AX1, AX2
COMMON /SET3/S1, S2, S3, S4, S5
COMMON /SET4/ DELTU
COMMON /SET5/ RATIO
COMMON /SET6/P
COMMON /SET7/ UN, VN, BNC
COMMON /SET8/ GG
COMMON /SET9/G, R

OPEN THE DATA FLLE
OPEN (5, FILE='CEFNORMDAT, STATUS $=$ 'NEW', FORM $=$ 'FORMATTED')
OPEN (6, FLLE='NORM.DAT, STATUS='NEW', FORM='FORMATTED')
OPEN (7, FILE='COEFN.DAT, STATUS='NEW', FORM='FORMATTED')

OPEN (8, FLLE='BOUNDN.DAT, STATUS='NEW', FORM='FORMATTED')

WRITES OUT ALL OF THE INITIAL VALUES

$K D=1 . d 0$
$\mathrm{NS}=1 . \mathrm{D} 0$
$\mathrm{NF}=\mathrm{DSQRT}(5 . \mathrm{D} 0)$
RATIO $=.02$
KEPAF $=\mathrm{KD} *{ }^{*} \mathrm{NF}$
KEPAS $=K D * N S$
$\mathrm{ER}=\mathrm{NF} * * 2 / \mathrm{NS}^{* *} 2$

WRITE $(5,5)$
5 FORMAT(7X, 'Initial Values:')
WRITE $(5,15)^{\prime} \mathrm{KD}={ }^{\prime}, \mathrm{KD},{ }^{\prime} \mathrm{Er}=$ ' $, \mathrm{ER}, ~ ' \mathrm{~N}={ }^{\prime}, \mathrm{N}$
WRITE $(5,14)$ 'KEPAF $=$ ', KEPAF, 'KEPAS $=$ ', KEPAS
15 FORMAT(3X, A3, 1X, D15.8, 3X, A3, 1X, D15.8, 3X, A3, I4)
14 FORMAT(3X, A6, 1X, D15.8, 3X, A6, IX, D15.8)
WRITE(5,*)

WRITE $(5,25)$
25 FORMAT(7X, 'In Guided Mode:')
$\mathrm{D}=\mathrm{I}$.
CALL DISPER(KX1, AX1, BETA1, D)
WRITE(5,35) 'D1=', $\mathrm{D}, \mathrm{KXI}={ }^{\prime}, \mathrm{KX1},{ }^{3} \mathrm{Axl}={ }^{\prime}, \mathrm{AX1}$,
C \quad BETAl $=$ ', BETA
$D=$ RATIO
IF (D.EQ. 0) THEN
$K X 2=0$.
$\mathrm{AX} 2=0$.
BETA2 $=0$.
ELSE
CALL DISPER(KX2, AX2, BETA2, D)
ENDIF
WRITE(5,35) 'D2 $=$ ', $\mathrm{D}, ~ ' K \times 2=', \mathrm{KX} 2, ~ ' \mathrm{Ax} 2=$ ', AX 2 ,
C 'BETA2 $=$ ', BETA2
35 FORMAT(3X, A3, 1X, D15.8, 2(3X, A4, 1X, D15.8), 3X, A6, 1X, D15.8)
WRITE($5,{ }^{*}$)

CALCULATES THE RADIATION PROPAGATION COEFFICIENTS IN DIFFERENT STEPS

```
DELTU = NO * KEPAS / FLOATJ(N)
CK0=N
DO 101=1,N
UN(I) = I * DELTU
CALL FINDUN(UN(1), VN(I), BNC(I), FLAG)
IF (FLAG.EQ. ]) THEN
CK0=I
ENDIF
```

```
SI = KX1
```

SI = KX1
S2= KX1* RATIO
S2= KX1* RATIO
S3 = KX2
S3 = KX2
S4 = KX2 * RATlO
S4 = KX2 * RATlO
S5 = AX2 * (RATIO - 1)
S5 = AX2 * (RATIO - 1)
S5 = DEXIP(S5)

```
S5 = DEXIP(S5)
```

10 CONTINUE
CALCULATES THE AMPLITUDE OF THE GUIDED MODE
$A M P 1=(A X 1) /(1+A X 1)$
$\mathrm{AMPl}=\operatorname{DSQRT}(\mathrm{AMP} 1)$
$\mathrm{AMP2}=(\mathrm{AX} 2) /(1+(\mathrm{AX} 2 * \mathrm{RATIO}))$
$\mathrm{AMP} 2=\operatorname{DSQRT}(\mathrm{AMP} 2)$
WRITE (5,105) 'AMP1 = ', AMP1,'AMP2 = ', AMP2
105 FORMAT(7X, A6, D12.6, 3X, A6, D12.6)
WRITE(5,*)

CALCULATES THE OVERLAP INTEGRAL BOTH SIDES OF STEP HAVE IN GUIDED MODE

CALL GUIDE
$\mathrm{GG}=2$ * AMP 1 * $\mathrm{AMP} 2 * \mathrm{GG}$
WRITE $(5,65)$ ' $112=$ ', GG
65
FORMAT(7X, A4, IX, D12.6)
WRITE($\left(,^{*}\right)$

ONESDEGFESTEP HASGUMERMODEAND

```
DO \(20 \mathrm{I}=1, \mathrm{~N}\)
\(\mathrm{P}(\mathrm{I})=\mathrm{VN}(\mathrm{I}) / \mathrm{UN}(\mathrm{I})\)
    \(\mathrm{Q} 1=\mathrm{VN}(\mathrm{I})\)
    \(\mathrm{Q} 2=\mathrm{VN}(\mathrm{I}) * \mathrm{RATIO}\)
```

CALCULATES THE AMPLITUDE OF RADIATION MODE

```
AU1(I) = DCOS(Q1) * DCOS(Q1) + P(I) * P(I)* DSIN(Q1) * DSIN(Q1)
AUl(I)=PI*AUI(I)/2.
AUl(I)= DSQRT(AUl(I))
                AUl(I) = 1./ AUl(I)
AU2(I) = DCOS(Q2) * DCOS(Q2) + P(I) * P(I) * DSIN(Q2) * DSIN(Q2)
AU2(I) = PI *AU2(I)/2.
AU2(I)= DSQRT(AU2(I))
AU2(I) = 1./ AU2(I)
```

CALL GDRAD(UN(I), VN(I), P(I), G, R)
$\mathrm{GR}(\mathrm{I})=2 * \operatorname{AMP1*} \mathrm{AU} 2(\mathrm{I}) * \mathrm{G}$ $\mathrm{RG}(\mathrm{I})=2 * \operatorname{AU1}(\mathrm{I}) * \mathrm{AMP2} * \mathrm{R}$

CONTINUE

CALCULATES THE OVERLAP INTEGRAL BOTH SIDES OF STEP HAVE RADIATION MODE
$\operatorname{RR}(0,0)=0$.
$R Y(0,0)=0$.
DO $40 \mathrm{I}=1, \mathrm{~N}$
DO $50 \mathrm{~J}=1, \mathrm{~N}$

CALL RADRAD(UN(I), UN(J), VN(I), VN(J), P(J)
C
$R R(1, J)=G$
IF (R.NE. 0.) THEN
$\mathrm{F}(\mathrm{I})=\mathrm{R}$
ENDIF
CONTINUE
CONTINUE

DO $411=1, \mathrm{~N}-1$
WRITE(5,51) 'RY(', I, I, ') $=^{\prime}$, RY(1,I)
WRITE(5,51) 'RR(', I, 1, ')=', RR(I,I)
$\mathrm{DY}=(\mathrm{RY}(\mathrm{I}+1, \mathrm{I}+1)-\mathrm{RY}(\mathrm{I}-1, \mathrm{I}-1)) /(2 . *$ DELTU $)$
$R R(\mathrm{I}, \mathrm{I})=\operatorname{RR}(\mathrm{I}, \mathrm{I})+\mathrm{DY}$


```
****** CALCULATE FROM A(3,1) ... A((N+2), 2)
            DO 80I=3,X
                M=\ - 2
                A(I, ) =0.D0
                A(I,2)=RG(M)
    CONTINUE
****** CALCULATE FROM A((N+3),1) ... A(2N+2,2)
            DO90I=Y,C
            M=I-X
            A(1,2) = 0.D0
            A(I,1)= BETAI * GR(M)
90 CONTINUE
******* CALCULATE FROM A(3, (N+3)) ... A((N+3), 2N+2)
DO 110I=3,X
DO 120J=Y,C
            M=J-X
                L=I - 2
            IF ( M .EQ.L) THEN
                        A(I,J)= -2.DO
                ELSE
                A(I,J) =0.D0
                ENDIF
120 CONIINUE
110 CONTINUE
****** CALCUIATE FROM A((N+3),3) ... A(2N+2,(N+2))
        DO 130I = Y,C
        DO 140 J=3,X
            M=J-2
            L=I-X
            TF (M .EQ. L) THEN
                    A(I,J)=2.* BNC(M)
            ELSE
                A(I,J)=0.DO
            ENDIF
140 CONTINUE
130 CONTINUE
```

$$
\begin{aligned}
& \text { DO } 160 \mathrm{~J}=3, \mathrm{X} \\
& \mathrm{~L}=\mathrm{I}-2 \\
& \mathrm{M}=\mathrm{J}-2 \\
& \mathrm{~T}=\mathrm{I}+\mathrm{N} \\
& \mathrm{~W}=\mathrm{J}+\mathrm{N}
\end{aligned}
$$

IF (M.EQ. N) THEN
$\mathrm{CI}=1 . \mathrm{D} 0$
ELSE

$$
\begin{aligned}
& Z=\mathrm{MOD}(\mathrm{M}, 2) \\
& \mathrm{IF}(\mathrm{Z} \cdot \mathrm{EQ} \cdot 0) \mathrm{THEN} \\
& \mathrm{Cl}=2 . \mathrm{DO} \\
& \mathrm{ELSE} \\
& \mathrm{CI}=4 . \mathrm{D} 0 \\
& \mathrm{ENDIF}
\end{aligned}
$$

ENDIF

```
IF (L .EQ. M) THEN
        A(I,J)= DELTUN * RR(L,M) * Cl + F(L)
        A(T,W)=(DELTUN * RR(M,L)* CI +F(L))* BNC(M)
    ELSE
        A(I,J)= DELTUN * RR(L,M)*CI
        A(T,W)=(DELTUN *RR(M,L)*CI)* BNC(M)
    ENDIF
```

160 CONTINUE
150 CONTINUE
****** THE MATRIX ON THE RIGHT HAND SIDE

```
B(1)=1.D0
B(2)=BETA1 * GG
DO 180 I = 3, X
    B(I)=0.D0
```

180 CONTINUE

```
DO 190I=Y,C
    M = I - X
    B(I)= BETA1 * GR(M)
```

190 CONTINUE
****** ADJUST THE MATRIX (ERASE TAU(K0) ITEM)

IF (CK0 .NE. N) THEN
$\mathrm{Z}=\mathrm{C}-1$
$\mathrm{T}=\mathrm{CK} 0+\mathrm{N}+3$
GOTO 199
ELSE
$\mathrm{Z}=\mathrm{C}-1$
GOTO 201
ENDIF

CONTINUE DO 193 J $=1, \mathrm{C}-1$ DO 194 I = T, C $A(1-1, J)=A(1, J)$
194 CONTINUE
193 CONTINUE

DO $195 \mathrm{I}=\mathrm{T}, \mathrm{C}$ $B(I-1)=B(I)$
195 CONTINUE

USING GAUSSIAN ELIMINATION TO SOLVE THE MATRIX

IF (RATIO .EQ. 0) THEN
DO $202 \mathrm{I}=1, \mathrm{Z}$
DO $203 \mathrm{~J}=3, \mathrm{Z}$
$\mathrm{A}(\mathrm{I}, \mathrm{J}-1)=\mathrm{A}(\mathrm{I}, \mathrm{J})$
CONTINUE
CONTINUE
DO $204 \mathrm{~J}=1, \mathrm{Z}-1$
DO $205 \mathrm{I}=3, \mathrm{Z}$
$A(I-1, J)=A(I, J)$
CONTINUE
CONTINUE

$$
\text { DO } 206 I=3,2
$$

$$
\mathrm{B}(\mathrm{I}-1)=\mathrm{B}(\mathrm{I})
$$

CONTINUE

$$
Z=Z-1
$$

ENDIF

DO $200 \mathrm{~W}=1, \mathbb{Z}$
DO $210 \mathrm{X}=(\mathrm{W}+1), \mathrm{Z}$
$A L(X, W)=A(X, W) / A(W, W)$
DO $220 \mathrm{Y}=\mathrm{W}, \mathrm{Z}$
$A(X, Y)=A(X, Y)-A L(X, W)^{*} A(W, Y)$
CONTINUE
CONTINUE
CONTINUE
DO $221 \mathrm{I}=1,2$
$\mathrm{AL}(\mathrm{I}, \mathrm{I})=1 . \mathrm{D} 0$

```
****** LU FACTORY CALCULATION
        COEFY(1)=B(1)/AL(1,1)
        DO 230I=2,Z
            XR=0.
        DO 240 J = 1, 1-1
        XR = AL(I,J) * COEFY(J) + XR
        COEFY(I) = (B(I) - XR)/AL(I,I)
    CONTINUE
CONTINUE
        COEFX(Z)}=\operatorname{COEFY}(Z)/A(Z,Z
        DO 250 I = Z-1, 1, -1
        XR=0.
        DO 260 J = Z, I+1, -1
        XR}=\textrm{A}(\textrm{I},\textrm{J})*\operatorname{COEFX}(\textrm{J})+X
        COEFX(I) = (COEFY(I) - XR)/A(I,I)
        CONTINUE
    250 CONTINUE
        IF (RATIO EQ. 0) THEN
        DO 251I = 2, 2, -1
        COEFX(I+1)= COEFX(I)
        CONTINUE
        COEFX(2)=0.
        Z=Z+1
        ENDIF
        TK0= CK 0 + N +2
        IF (Z ,EQ. C-1) THEN
        DO 270 I = Z, TK0, -1
        COEFX(I+1) = COEFX(I)
CONTINUE
    COEFX(TK0)=0.
        ENDIF
        WRITE(7,124) 'GUIDED REFLECTED COEF. =', COEFX(1)
        WRITE(7,124) 'GUIDED TRANSMITTED COEF. =', COEFX(2)
```

 WRITE(7,*) 'IRANSMITIED RADIATION COEFFICIENTS :'
 DO 2801=1,N
 J=I +2
 WRITE(7, 125) 'COEF(', I, ')=', COEFX(J)
 FORMAT(2X, A6, 14, A3, (D15.8, 3X, D15.8))
 CONTINUE
 WRITE(7,*)
 WRITE(7,*) 'REFLECIED RADIATION COEFFICIENTS :'
 DO 281 I= 1,N
 J=I+N+2
 WRITE(7,125) 'COEF(', I, ')=',}\operatorname{COEFX}(J
 CONTINUE
 CALCULATES THE TRANSMTTTED & REFLECTED POWER
 of
 GUIDED & RADIATION MODES
 PREF = (CDABS(COEFX(1)))** 2
 PTRANS = ((CDABS(COEFX(2)))** 2)* BETA2 / BETA1
 RPTRANS = 0.
 RPREF = 0.
 DO 1000I= 3, CK0+1
 L}=\textrm{I}-
 RPTRANS = RPTRANS + ((CDABS(COEFX(I)))}\mp@subsup{}{}{**}2)*\operatorname{CDABS}(\textrm{BNC}(\textrm{L})
 1000
CONTINUE
DO 1100I =N+3,TK0-1
L}=\textrm{I}-\textrm{N}-
RPREF = RPREF + ((CDABS(COEFX(I)))** 2)* CDABS(BNC(L))
1 1 0 0
CONTINUE
RPTRANS = 2. * RPTRANS * DELTU/BETAl
RPREF = 2. * RPREF * DELTU/BETA1
PTOTAL = PTRANS + PREF + RPTRANS + RPREF
WRITE(6,2) 'KOD =', KD, '?*K0 =', NO
2 FORMAT(5X, 2(A6, F5.2, 6X))
WRITE(6,*)
WRITE(6,1)'Dl=',KD*2,' 'D2=', KD*RATIO, 'NS=',NS, 'NF=',NF'
C
1 FORMAT (2(A4, D10.4, 2X), 2(A4, F10.8, 2X), A3, I3)
WRITE(6,*)
WRITE (6,1005) 'TRANSMITTED POWER IN GUIDED MODE = ', PTRANS
WRITE(6,*)
WRITE(6,1005) 'REFLECTED POWER IN GUIDED MODE =', PREF

```

WRITE(6,*)
WRITE(6,1005) 'TRANSMITTED POWER IN RADIATION MODE = ', RPTRANS WRITE \(\left(6,{ }^{*}\right)\)
WRITE \((6,1005\) ) 'REFLECTED POWER IN RADIATION MODE \(=\) ', RPREF
WRITE \(\left(6,{ }^{*}\right)\)
WRITE(6,1005) 'TOTAL POWER DN THIS MODEL = ', PTOTAL
1005 FORMAT(3X, A40, F12.8)
WRITE(6,*)

CASEI \(=1.0 \mathrm{DO}-\mathrm{PTRANS}-\mathrm{PREF}\)
CASEII = RPTRANS + RPREF
DIFF \(=\) CASEI - CASEII
WRITE \((6, *)\) 'FOR CASE I:'
WRITE \((6, *)^{\prime}\) RADIATION POWER \(=1\) - GUIDED MODE POWER '
WRITE \((6,1006)\) 'RADLATION POWER \(=\) ', CASEI
WRITE(6,*)
WRITE( \(6, *\) ) 'FOR CASE II: '
WRITE( \(6, *\) ) ' RADIATION POWER \(=\) TRANSMISSION POWER + REFLECTION
C POWER IN RADIATION MODE'
WRITE(6,*)
WRITE(6,1006) 'RADIATION POWER \(=\) ', CASEII
WRITE( \(6,{ }^{*}\) )
WRITE \((6, *)\) 'THE DIFFERENCE BETWEEN TWO CASES IS :', DIFF
1006 FORMAT(3X, A20, F10.8)

CLOSES THE DATA FILE

CLOSE(8)
CLOSE(7)
CLOSE(6)
CLOSE(5)
STOP
END

\section*{SUBROUTINE FOR}

CALCULATING THE OVERLAP INTEGRAL
BOTH SIDES OF STEP HAVE RADIATION MODE

SUBROUTINE RADRAD(U1, U2, V1, V2, P, A1, A2, T12)
PARAMETER ( \(\mathrm{PI}=3.14159265358979\) )
REAL*8 U1, U2, V1, V2, P, A1, A2
REAL*8 W1, W2, W3, W4, W5
REAL* 8 T10, T11, T12, F, Y
REAL* 8 RR, RATIO
COMMON /SET5/ RATIO
COMMON /SET9/ RR, F
```

 Wl=V1
 W2 = V1 * RATIO
 W3 = V2
 W4 = V2 * RATIO
 W5 = U2 * (1. - RATIO)
 IF (V1 .EQ. U2) THEN
 T11=0.
 ElSE
 T11 = (DCOS(W4)* (V1 * DSIN(W1) * DCOS(W5) - U2 * DCOS(W1)
 C * DSIN(W5) - V1 * DSIN(W2)) - P * DSIN(W4)*
 C (V1 * DSIN(W1)* DSIN(W5) + U2 * DCOS(W1) * DCOS(W5)
 C - U2* DCOS(W2)))/(V1*V1-U2*U2)
 ENDIF
 Y=(U2 * DCOS(W1)* DCOS(W4)* DSIN(W5)
 C +V2*DCOS(W1)*\operatorname{DSIN}(W4)*\operatorname{DCOS}(W5)
 C}\quad-\textrm{V}1*\operatorname{DSDN}(\textrm{W}1) * DCOS(W4) * DCOS(W5)
 C +P*V1* DSIN(W1)* DSIN(W4)* DSIN(W5))/(Ul + U2)
 IF (U1 EQ. U2) THEN
 F=((DCOS(W1) * DCOS(W4)+(V1/U1) * P * DSIN(W1)*
 C DSIN(W4))* DCOS(W5)+((V1/U1)* DSIN(W1)*
 C DCOS(W4) - P * DCOS(W1)* DSIN(W4))* DSIN(W5))
 C * PI*Al*A2
    ```

```

 T12 = Y* 2.*A1*A2
 RR=2.*A1 * A2 * (T10 +T11)
 ELSE
 F=0.
 T10=(V1 * DSIN(W2) * DCOS(W4) - V2 * DCOS(W2) * DSIN(W4))
 C }\quad/(\textrm{Vl*V
 T12 = Y/(U1 - U2)
 RR=A1 * A2 * 2. * (Tl0 + Tl1 +T12)
 ENDIF
 RETURN
 END
    ```
                SUBROUTINE FOR
    CALCULATING THE OVERLAP INIEGRAL
ONE SIDE OF STEP HAS GUIDED MODE AND
    THE OTHER HAS RADIATION MODE

SUBROUTINE GDRAD(U, V, P, G, R)
REAL* 8 K1, K2, D1, D2, A1, A2, RATIO
REAL*8 S6, S7, S8

REAL*8 T4, T5, T6, T7, T8, T9
REAL*8U,V,P
REAL*8 G, R
REAL*8S1,S2,S3,S4,S5
COMMON /SET2/K1, K2, A1, A2
COMMON/SET3/S1, S2, S3, S4, S5
COMMON /SET5/RATIO

S6 = V
S7 \(=\mathrm{V} *\) RATIO
\(\mathrm{S} 8=\mathrm{U}\) * (1. - RATIO)
GUIDED MODE IN REGION I \& RADIATION MODE IN REGION II
\(\mathrm{T} 4=(\mathrm{K} 1 * \operatorname{DSIN}(\mathrm{~S} 2) * \operatorname{DCOS}(\mathrm{~S} 7)-\mathrm{V} * \operatorname{DCOS}(\mathrm{~S} 2) * \operatorname{DSIN}(\mathrm{~S} 7))\)
c \(\quad /\left(\mathrm{Kl} * \mathrm{Kl}-\mathrm{V}^{*} \mathrm{~V}\right)\)
\(\mathrm{T} 5=\left(\mathrm{DCOS}(\mathrm{S} 7) *\left(\mathrm{~K} 1 * \operatorname{DSIN}(\mathrm{~S} 1) * \operatorname{DCOS}(\mathrm{~S} 8)-\mathrm{U}^{*} \operatorname{DCOS}(\mathrm{~S} 1)\right.\right.\)
\(\mathrm{C} \quad * \operatorname{DSIN}(\mathrm{~S} 8)-\mathrm{K} 1 * \operatorname{DSIN}(\mathrm{~S} 2))\)
\(\mathrm{C} \quad-\mathrm{P} * \operatorname{DSIN}(\mathrm{~S} 7)^{*}(\mathrm{~K}] * \operatorname{DSIN}(\mathrm{~S} 1) * \operatorname{DSIN}(\mathrm{~S} 8)+\)
\(\mathrm{C} \quad \mathrm{U} * \operatorname{DCOS}(\mathrm{~S} 1) * \operatorname{DCOS}(\mathrm{~S} 8)-\mathrm{U} * \operatorname{DCOS}(\mathrm{~S} 2))\) )
\(\mathrm{C} \quad /\left(\mathrm{Kl}{ }^{*} \mathrm{~K} 1-\mathrm{U}^{*} \mathrm{U}\right)\)
\(\mathrm{T} 6=-1 . * \operatorname{DCOS}(\mathrm{~S} 1)^{*}(\mathrm{DCOS}(\mathrm{S} 7) *(\mathrm{U} * \operatorname{DSIN}(\mathrm{~S} 8)-\mathrm{Al} * \operatorname{DCOS}(\mathrm{~S} 8))\)
\(\left.\mathrm{C} \quad+\mathrm{P} * \operatorname{DSIN}(\mathrm{~S} 7)^{*}(\mathrm{~A} 1 * \operatorname{DSIN}(\mathrm{~S} 8)+\mathrm{U} * \operatorname{DCOS}(\mathrm{~S} 8))\right)\)
\(\mathrm{C} \quad /\left(\mathrm{Al} * \mathrm{Al}+\mathrm{U}^{*} \mathrm{U}\right)\)
\(\mathrm{G}=\mathrm{T} 4+\mathrm{T} 5+\mathrm{T} 6\)

RADIATION MODE IN REGION I \& GUIDED MODE IN REGION II
```

 T7 =(K2 * DSIN(S4) * DCOS(S7) - V * DCOS(S4) * DSIN(S7))
 C }\quad/(\textrm{K}2*\textrm{K}2-\textrm{V}*\textrm{V}
 T8 = DCOS(S4)* ((V * DSIN(S6) - A2 * DCOS(S6)) * S5
 -(V* DSIN(S7) - A2 * DCOS(S7)))
 C
T9=(A2 * DCOS(S6) - V * DSIN(S6)) * DCOS(S4)*S5
C }\quad/(\textrm{A}2*A2+U*U
R=T7+T8+T9
RETURN
END

```
```

 REAL*8 K0, K1, R
 REAL*8 KX, AX, B
 REAL*8 HN, VAR1, VAR2
 REAL*8 K, EN, T
 REAL*8 KEPAS, ER, KEPAF,P
 REAL*8 KLEFT, KRIGHT
 COMMON /SET1/ KEPAS, ER, KEPAF
 K0 = KEPAS
 ER=ER
 K1 = KEPAF
 K0= K0*R
 EN = ER - I
 Kl=KI*R
 T=1 +(PI* PI /4.)
 KRIGHT = DSQRT(EN)* K0
 KLEFT = KRIGHT / DSQRT(T)
 DO20I=1,100
 KX = (KLEFT + KRIGHT)/2.
 VAR1 = KX - K0 * DSQRT(EN) * COS(KX)
 P=DABS(VAR1)
 IF (P .LT. 0.5D-6) THEN
 GO TO 95
 ENDIF
 IF (VAR1 .GT. 0) THEN
 KRIGHT = KX
 ELSE
 KLEFT = KX
 ENDIF
 CONTINUE
KX = KX/R
K0=K0/R
K1=K1/R
B}=\textrm{Kl}*\textrm{Kl}-\textrm{KX}*\textrm{KX
AX = B - K0* K0
B= DSQRT(B)
IF (AX .LT. 0.) THEN
AX = KX * KX * R
ELSE
AX = DSQRT(AX)
ENDIF
RETURN
END

```

SUBROUTINE FINDUN(X, Y, Z, C)
```

REAL*8 X,Y
COMPLEX*IG Z,IMAGE
REAL*8P,S
REAL*8 K0, K
REAL*8 DU
REAL*8 KEPAS, ER, KEPAF
INTEGER*4 C

```
COMMON /SETI/ KEPAS, ER, KEPAF
\(\mathrm{K} 0=\mathrm{KEPAS}\)
\(\mathrm{K}=\mathrm{KEPAF}\)
\(\operatorname{IMAGE}=\operatorname{CMPLX}(0,-1)\)
\(\mathrm{P}=\mathrm{K} 0\) * \(\mathrm{K} 0-\mathrm{X} * \mathrm{X}\)
\(\mathrm{Y}=\mathrm{K} * \mathrm{~K}-\mathrm{P}\)
    \(\mathrm{Y}=\operatorname{DSQRT}(\mathrm{Y})\)
IF (DABS(P) LTT. 0.5D-2) THEN
\(\mathrm{Z}=0\).
\(\mathrm{C}=1\)
ELSE
    IF (P LTT. 0) THEN
        \(S=\operatorname{DABS}(P)\)
        \(\mathrm{S}=\mathrm{DSQRT}(\mathrm{S})\)
        \(Z=\) IMAGE \(* S\)
    ELSE
        \(\mathrm{Z}=\operatorname{DSQRT}(\mathrm{P})\)
    ENDIF
    \(\mathrm{C}=0\)
ENDIF
RETURN
END

\section*{SUBROUTINE GUIDE}

REAL*8K1, K2
REAL*8 T1, T2, T3
REAL*8A1, A2
REAL* \(8 \mathrm{~S} 1, \mathrm{~S} 2, \mathrm{~S} 3, \mathrm{~S} 4, \mathrm{~S} 5\)
REAL*8 GG
COMMON /SET2/K1, K2, A1, A2
COMMON /SET3/S1, S2, S3, S4, S5
COMMON /SET8/ GG

C
\(\mathrm{Tl}=(\mathrm{K} 1 * \operatorname{DSIN}(\mathrm{~S} 2) * \operatorname{DCOS}(\mathrm{~S} 4)-\mathrm{K} 2 * \operatorname{DCOS}(\mathrm{~S} 2) * \operatorname{DSIN}(\mathrm{~S} 4))\)
\(/(\mathrm{K} 1 * \mathrm{~K} 1-\mathrm{K} 2 * \mathrm{~K} 2)\)
\(\mathrm{T} 2=\mathrm{DCOS}(\mathrm{S} 4) *((\mathrm{~K} 1 * \operatorname{DSIN}(\mathrm{~S} 1)-\mathrm{A} 2 * \operatorname{DCOS}(\mathrm{~S} 1)) * \mathrm{~S} 5-\)
\((\mathrm{K} 1 * \operatorname{DSIN}(\mathrm{~S} 2)-\mathrm{A} 2\) * \(\operatorname{DCOS}(\mathrm{S} 2)))\)
C
\(\mathrm{C} \quad /(\mathrm{K} 1 * \mathrm{~K} 1+\mathrm{A} 2 * \mathrm{~A} 2)\)
\(\mathrm{T} 3=(\mathrm{DCOS}(\mathrm{S} 1) * \operatorname{DCOS}(\mathrm{~S} 4) * \mathrm{~S} 5) /(\mathrm{A} 1+\mathrm{A} 2)\)
\(\mathrm{GG}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3\)

RETURN
END

\section*{APPENDIX F}

\section*{PROGRAM for MANY STEPS DISCONTINUITIES}
```

PROGRAM NORM_MAIN
INTEGER*4 STEP, ITER, N, NO, C, DIR, X, FLAG, CK0, FLAGP, RATION
REAL*8 PI, KD, ER, NS, LENGTH, RATIO
PARAMETER(STEP=128,ITER=3,N=150,NO=1,C=2*N+2, PI=3.14159265)
PARAMETER(KD=1, ER=2.56,NS=1)
REAL*8 KEPAS, KEPAF, DELTA Z, DELTA_U, RATIO1, RATIO2
REAL*8 ZZ, DELTA_UN, B1, B2
REAL*8 UN(N),VN(N), R(STEP+1),P(N)
REAL*8 KX(STEP+1), AX(STEP+1), BETA(STEP+1)
COMPLEX*16 BNC(N)
REAL*8 AU1(N), AU2(N), Q1, Q2, AMP1, AMP2
REAL*8 S1, S2, S3, S4, S5, SS
REAL*8 GG, GR(N), RG(N), RR(N,N), RY(0:N,0:N), DY
COMPLEX*16 A(C,C), B(C), COEFX(C), PREV(C)
COMIPLEX*16 PEXPB1Z, PEXPB2Z, NEXPB1Z, NEXPB2Z
COMPLEX*16 PEXPBU(N), NEXPBU(N), IMAGE
REAL*8 G, H
COMPLEX*16 TRANS(N), REF(N),TCOEF
REAL*8 PREF, PTRANS, RPTRANS, RPREF, PTOTAL, DIF_P
REAL*8 PINC, PTPREV
COMMON /SETl/ KEPAS, KEPAF
COMMMON/SET3/S1, S2, S3,S4, S5
COMMON/SET4/ RATIO1, RATIO2
COMMON /SET5/GG, GR, RG, RR
COMMON /SET6/A, B
COMMON /SET7/ PEXPB1Z, PEXPB2Z, NEXPB1Z, NEXPB2Z, PEXPBU, NEXPBU
COMMON /SET9/ PREV
COMMON /SETIO/ COEFX
COMMON /SETII/ TRANS
COMMON/SET12/REF
COMMON /SET13/ BNC
OPEN (6, FILE='CONSERV.DAT, STATUS='NEW', FORM='FORMATTED')
OPEN (7, FLLE='PATTER.DAT , STATUS='NEW', FORM ='FORMATTED')
OPEN (8, FILE='COEF.DAT, STATUS='NEW', FORM='FORMATTED')
KEPAS = KD * NS
KEPAF =KD * DSQRT(ER)
LENGTH = PI * 10.
Z = STEP
IF (Z .EQ. 1)THEN
DELTA_Z=0.
ELSE

```
```

 DELTA_Z = LENGIH / (Z - 1)
 ENDIF
 DELTA_U = NO * KEPAS / N
 RATIO = KD / STEP
 CK0 = N
 RATION = N / NO
 DO 100I=1,N
 UN(I)=I* DELTA U
 IF (I .EQ. RATION) THEN
 BNC(I)=0.
 VN(I)= KEPAF
 CK0=I
 ELSE
 CALL FINDUN (UN(I), VN(I), BNC(I))
 ENDIF
 CONTINUE
 R(1)=1.
 WRITE(8,2) 'R(', 1,') = ', R(1)
 DO 120I=2,STEP
 R(I)=R(I-1) - RATIO
 CONTINUE
DO 130I = 1, STEP
CALL DISPER(KX(I), AX(I), BETA(I), R(I),ER)
CONTINUE
R(STEP+1) = 0.
KX(STEP+1) = 0.
AX (STEP+1) = 0.
BETA}(STEP+1)=0
PTPREV = 1.
PREV(1)=0.
PREV(2)=1.
PINC=1.
TCOEF=1.
DO 140I = 3, C
PREV(1)=0.
140 CONTINUE
DO 1000 X = 1, ITER
DIR = JMOD (X,2)
IF (X .EQ. 1) THEN
II =1
JJ=STEP
KK=1
FLAGP=1
ELSE
IF (DIR EQ. 0) THEN
II = STEP - l
JJ=1
KK=-1
FLAGP = 2
ELSE
II=2

```
```

JJ=STEP
KK=1
FLAGP = 3
ENDIF
ENDIF
DO 150I=II, J, KK
RATIO1 = R(I)
RATIO2 = R(I+1)
S1 = KX(I) * RATIO1
S2 = KX(I) * RATIO2
S3=KX(I+1)*RATIO1
S4 = KX(I+1)* RATIO2
S5 = AX(I+1)* (RATIO2 - RATIO1)
S5 = DEXP(S5)

```
\(\mathrm{AMPl}=\mathrm{AX}(\mathrm{I}) /(1+\mathrm{AX}(\mathrm{I}) * \mathrm{RATIO})\)
\(\mathrm{AMPl}=\mathrm{DSQRT}(\mathrm{AMP1})\)
\(\mathrm{AMP} 2=\mathrm{AX}(\mathrm{I}+1) /(1+\mathrm{AX}(\mathrm{I}+1) * \mathrm{RATIO} 2)\)
\(A M P 2=\operatorname{DSQRT}(\mathrm{AMP} 2)\)
CALL GUIDE(KX(I), AX(I), KX(I+1), AX(I+1), GG)
\(\mathrm{GG}=2\). * AMP1 * AMP2 * GG
DO \(170 \mathrm{~J}=1, \mathrm{~N}\)
\(\mathrm{P}(\mathrm{J})=\mathrm{VN}(\mathrm{J}) / \mathrm{UN}(\mathrm{J})\)
\(\mathrm{Q} 1=\mathrm{VN}(\mathrm{J}) *\) RATIOI
\(\mathrm{Q} 2=\mathrm{VN}(\mathrm{J}) * \mathrm{RATIO} 2\)
\(\operatorname{AUl}(\mathrm{J})=\operatorname{DCOS}(\mathrm{Q1}) * \operatorname{DCOS}(\mathrm{Q} 1)+\mathrm{P}(\mathrm{J}) * \mathrm{P}(\mathrm{J}) * \operatorname{DSIN}(\mathrm{Q} 1) * \operatorname{DSIN}(\mathrm{Q} 1)\)
\(\operatorname{AUl}(\mathrm{J})=\mathrm{PI} * \operatorname{AUl}(\mathrm{~J}) / 2\).
\(\operatorname{AUl}(\mathrm{J})=1 . / \operatorname{DSQRT}(\operatorname{AUl}(\mathrm{J}))\)
\(\operatorname{AU} 2(\mathrm{~J})=\operatorname{DCOS}(\mathrm{Q} 2) * \operatorname{DCOS}(\mathrm{Q} 2)+\mathrm{P}(\mathrm{J}) * \mathrm{P}(\mathrm{J}) * \operatorname{DSIN}(\mathrm{Q} 2) * \operatorname{DSIN}(\mathrm{Q} 2)\)
\(\operatorname{AU} 2(\mathrm{~J})=\mathrm{PI} * \operatorname{AU} 2(\mathrm{~J}) / 2\).
\(\operatorname{AU2}(\mathrm{J})=1 . / \operatorname{DSQRT}(\operatorname{AU2(J))}\)
CALL GDRAD(KX(I),AX(I),KX(I+1),AX(I+1),VN(J),UN(J),P(J),G,H)
```

GR(J)=2.**AMP1 * AU2(J)*G
RG(J) = 2. * AU1(J)* AMP2 * H

```

CONTINUE
DO \(190 \mathrm{~L}=1, \mathrm{~N}\)
DO \(200 \mathrm{M}=1, \mathrm{~N}\)
CALL RADRAD(UN(L), UN(M), VN(L), VN(M), P(M), AU1(L), AU2(M), RR(L,M), L, M)

CONTINUE
CONTINUE
```

ZZ=DELTA_Z*(I-1)
IMAGE = CMPLX (0,1)
PEXPBIZ = DCOS(BETA(I) * ZZ) +IMAGE * DSNN(BETA(I) * ZZ)
PEXPB2Z = DCOS(BETA(I+1)*ZZ) + IMAGE * DSIN(BETA(I+1)*ZZ)

```
```

NEXPB1Z = DCOS(BETA(I) * ZZ) - MMAGE * DSIN(BETA(I) * ZZ)
NEXPB2Z = DCOS(BETA(I+1)* ZZ) - IMAGE * DSIN(BETA(I+1)*ZZ)
IF (CK0 .NE. N) THEN
DO 210 J = 1, CK0
SS = CDABS(BNC(J)*ZZ)
PEXPBU(J) = DCOS(SS) + IMAGE * DSNN(SS)
NEXPBU(J) = DCOS(SS) - MMAGE * DSIN(SS)
CONTINUE
DO 220 J = CK0+1,N
SS = DIMAG(BNC(J)*ZZ)
PEXPBU(J)= DEXP(SS)
NEXPBU(J) = DEXP(-1 * SS)
CONTINUE

> ELSE

$$
\mathrm{DO} 230 \mathrm{~J}=1, \mathrm{~N}
$$

$$
\mathrm{SS}=\mathrm{CDABS}(\mathrm{BNC}(\mathrm{~J}) * \mathrm{ZZ})
$$

$$
\operatorname{PEXPBU}(\mathrm{J})=\mathrm{DCOS}(\mathrm{SS})+\mathrm{IMAGE} * \operatorname{DSIN}(\mathrm{SS})
$$

$$
\operatorname{NEXPBU}(J)=\operatorname{DCOS}(S S)-\operatorname{IMAGE} * \operatorname{DSIN}(S S)
$$

CONTINUE
ENDIF
DELTA_UN = DELTA_U/3.
IF (DIR .EQ. 0) THEN
CALL BACKWARD(BETA(I), BETA(I+1), DELTA_UN)
$\mathrm{Bl}=\mathrm{BETA}(\mathrm{I}+1)$
$\mathrm{B} 2=\mathrm{BETA}(\mathrm{I})$
WRITE $\left(6,{ }^{*}\right)$ 'IT'S BACKWARD ON BOUNDARY', I, ' , THE', X,
C ' TIME'S PROPAGATION!'
ELSE
CALL FORWARD(BETA(I), BETA(I+1), DELTA_UN)
$\mathrm{Bl}=\mathrm{BETA}(\mathrm{I})$
$\mathrm{B} 2=\operatorname{BETA}(\mathrm{I}+1)$
WRITE($6, *$) 'IT'S FORWARD ON BOUNDARY', I, ' , THE', X,
C 'TIME"S PROPAGATION!'
ENDIF

```

IF (I EQ. STEP) THEN
FLAG=1
ELSE
FLAG \(=0\)
ENDIF
CALL CAL_COEF(FLAG, CK0)
```

PREF = ((CDABS(COEFX(1)))** 2) * PTPREV
PTRANS = ((CDABS(COEFX(2))) ** 2) * PTPREV * B2 / B1
RPTRANS = 0.
RPREF =0.
DO 240J=3,CK0+2
L=J-2
K=J+N
RPTRANS = RPTRANS + ((CDABS(COEFXX(J)))**2)* CDABS(BNC(L))
RPREF = RPREF + ((CDABS(COEFX(K)))** 2)* CDABS(BNC(L))

```
```

 RPTRANS = 2. * RPTRANS * DELTA_U * PTPREV/B1
    ```
    RPREF \(=2 . *\) RPREF \({ }^{*}\) DELTA \(U *\) PTPREV/B1
    PTOTAL \(=\) PTRANS + PREF \(+\overline{\mathrm{R}}\) PTRANS + RPREF
    DIF_P \(=(\) PINC - PTOTAL \() / P I N C\)
WRITE( \(6, *\) )
WRITE( \(6, *\) ) 'POWER DISTRIBUTION :'
WRITE \(\left(6,{ }^{*}\right.\) ) 'GUIDED TRANSMITTED POWER \(=\) ', PTRANS
WRITE( \(6, *\) ) 'GUIDED REFLECTED POWER \(=\) ', PREF
WRITE \((6, *)\) 'RADIATED TRANSMTTED POWER \(=\) ', RPTRANS
WRITE \((6, *)\) 'RADIIATED REFLECTED POWER \(=\) ', RPREF
WRITE( \(6, *\) )'TOTAL POWER AT THIS STAGE \(=\) ', PTOTAL
WRITE( \(6,{ }^{*}\) )
WRITE \((6, *)\) 'INCDENT POWER FROM PREVIOUS STAGE \(=\) ', PINC
WRITE(6,*)
WRITE \((6, *)^{\prime}\) THE PERCENTAGE ERROR OF TOTAL POWER \(=\) =, DIF_ \(P\)
WRITE( \(8, *\) ) 'PREVIOUS GUIDED POWER \(=\) ', PTPREV
WRITE( \(8, *\) ) 'PREVIOUS INCIDENT POWER \(=\) ', PRNC
WRITE \((8, *)^{\prime}\) 'GUIDED TRANSMITTED COEFFICIENT \(=\) ', \(\operatorname{COEFX}(2)\)
WRITE(8,*) 'GUIDED REFLECTED COEFFICIENT = ', COEFX(1)
WRITE(8,*) 'TRANSMITIED COEFFICIENT \(=\) ', TCOEF
IF (FLAGP .EQ. 1) THEN
    IF (I .EQ. 1) THEN
    \(\operatorname{PREV}(1)=\operatorname{COEFX}(1)\)
    \(\operatorname{PREV}(2)=\operatorname{COEFX}(2)\)
    DO \(245 \mathrm{~J}=3, \mathrm{~N}+2\)
        \(\mathrm{L}=\mathrm{J}+\mathrm{N}\)
    \(\operatorname{REF}(\mathrm{J}-2)=\operatorname{COEFX}(\mathrm{L})\)
    \(\operatorname{PREV}(\mathrm{J})=\operatorname{COEFX}(\mathrm{J})\)
    CONTINUE
    CALL PATTERNR(DELTA_U, B1, X, RATION, TCOEF)
    PTPREV = PTRANS
    PINC \(=\) PTRANS + RPTRANS
    TCOEF \(=\) TCOEF \({ }^{*} \operatorname{PREV}(2)\)
ELSE
    IF (I .EQ. STEP) THEN
    \(\operatorname{PREV}(1)=\operatorname{COEFX}(1)\)
    \(\operatorname{PREV}(2)=\operatorname{COEFX}(1)\)
    DO \(250 \mathrm{~J}=3, \mathrm{~N}\)
    \(\mathrm{L}=\mathrm{J}+\mathrm{N}\)
    \(\operatorname{TRANS}(\mathrm{J}-2)=\operatorname{COEFX}(\mathrm{J})\)
    \(\operatorname{PREV}(J)=\operatorname{COEFX}(L)\)
    CONTINUE
    CALL PATTERNT(DELTA_U, B1, X, RATION, TCOEF)
    PTPREV = PREF
    PINC \(=\) PREF + RPREF
    \(\mathrm{TCOEF}=\mathrm{TCOEF} * \operatorname{PREV}(2)\)
    ELSE
    PTPREV \(=\) PTRANS
    PINC = PTRANS + RPTRANS
    TCOEF \(=\) TCOEF \({ }^{*} \operatorname{COEFX}(2)\)
    DO \(260 \mathrm{~J}=1, \mathrm{C}\)
                \(\operatorname{PrEV}(\mathrm{J})=\operatorname{COEFX}(\mathrm{J})\)
        CONTINUE
        ENDIF
        ENDIF
    ELSE
    IF ((FLAGP .EQ. 2) .AND. (1 .EQ. 1)) THEN
        PREV(1)=COEFX(1)
        PREV(2) = COEFX(1)
        DO 265 J=3,N
        L}=\textrm{J}+\textrm{N
        REF(J-2) = COEFX(J)
        PREV(J)= COEFX(L)
        CONTINUE
        CALL PATTERNR(DELTA_U, B1,X, RATION ,TCOEF)
        PTPREV = PREF
        PINC = PREF + RPREF
        TCOEF = TCOEF * PREV(2)
        ELSE
        IF ((FLAGP EQ. 3) AND. (I EQ. STEP)) THEN
        PREV(1) = COEFX(1)
        PREV(2) = COEFX(1)
        DO 270 J=3,N
        L}=\textrm{J}+\textrm{N
        TRANS(J-2) = COEFX(J)
        PREV(J)= COEFX(L)
        CONTINUE
        CALL PATTERNT(DELTA_U, B1, X, RATION, TCOEF)
        PTPREV = PREF
        PINC = PREF + RPREF
        TCOEF = TCOEF * PREV(2)
        ELSE
        PTPREV = PTRANS
        PINC = PTRANS + RPTRANS
        TCOEF = TCOEF * COEFX(2)
        DO 280 J=1,C
        PREV(J)=COEFX(J)
        CONTINUE
        ENDIF
        ENDIF
        ENDIF
150 CONTINUE
1000 CONTINUE
    CLOSE(6)
    CLOSE(7)
    CLOSE(8)
    STOP
    END
```

```
SUBROUTINE FINDUN(X, Y, Z)
REAL*8 X,Y
COMPLEX*16 Z, IMAGE
REAL*8 P,S
REAL*8 K0,K
REAL*8 KEPAS, KEPAF
COMMON /SETl/ KEPAS, KEPAF
K0 = KEPAS
K=KEPAF
IMAGE = CMPLX (0,-1)
P}=\textrm{K}0*\textrm{K}0-\textrm{X}*\textrm{X
Y = K* K - P
    Y = DSQRT(Y)
    IF (P .LT. 0) THEN
        S = DABS(P)
        S = DSQRT(S)
        Z = IMAGE * S
    ELSE
        Z= DSQRT(P)
    ENDIF
RETURN
END
```

SUBROUTINE DISPER(KX, AX, B, R, ER)
PARAMETER $(\mathrm{PI}=3.14159265358979)$
REAL*8 K0, K1, R
REAL* $8 \mathrm{KX}, \mathrm{AX}, \mathrm{B}$
REAL* 8 HN , VAR1
REAL* $8 \mathrm{~K}, \mathrm{EN}, \mathrm{T}, \mathrm{P}$
REAL*8 KEPAS, KEPAF, ER
REAL* 8 KLEFT, KRIGHT
COMMON /SET1/KEPAS, KEPAF
$K 0=\mathrm{KEPAS}$
$E R=E R$
$\mathrm{Kl}=\mathrm{KEPAF}$

```
K0=K0*R
EN=ER-1
Kl=Kl*R
T = ((PI*PI/4.)-1.)/EN
KRIGHT = Kl
KLEFT=0.
DO 10I=1,100
KX = (KLEFT + KRIGHT) / 2.
VAR1 = KX - K0 * DSQRT(EN) * COS(KX)
P = DABS(VAR1)
```

 IF (P LT. 0.5D-6) THEN
 GO TO 95
 ENDIF
 IF (VARI GT. 0) THEN
 KRIGHT \(=\mathrm{KX}\)
 ELSE
$\mathrm{KLEFT}=\mathrm{KX}$
ENDIF
CONTINUE
$95 \mathrm{KX}=\mathrm{KX} / \mathrm{R}$
$\mathrm{K} 0=\mathrm{K} 0 / \mathrm{R}$
$\mathrm{Kl}=\mathrm{Kl} / \mathrm{R}$
$\mathrm{B}=\mathrm{Kl}{ }^{*} \mathrm{Kl}-\mathrm{KX}{ }^{*} \mathrm{KX}$
$A X=B-K 0 * K 0$
$\mathrm{B}=\operatorname{DSQRT}(\mathrm{B})$
IF (AX LT. O.) THEN
$\mathrm{AX}=\mathrm{KX}^{*} \mathrm{KX} * \mathrm{R}$
ELSE
$\mathrm{AX}=\operatorname{DSQRT}(\mathrm{AX})$
ENDIF
RETURN
END
SUBROUTINE FOR CALCULATING THE OVERLAP INTEGRAL
BOTH SIDES OF STEP HAVE GUIDED MODE

SUBROUTINE GUIDE(K1, A1, K2, A2, GG)
REAL*8 K1, K2, A1, A2
REAL*8 T1, T2, T3

REAL* $8 \mathrm{~S} 1, \mathrm{~S} 2, \mathrm{~S} 3, \mathrm{~S} 4, \mathrm{~S} 5$
REAL* 8 GG

COMMON /SET3/ S1, S2, S3, S4, S5
$\mathrm{T} 1=(\mathrm{K} 1 * \operatorname{DSIN}(\mathrm{~S} 2) * \operatorname{DCOS}(\mathrm{~S} 4)-\mathrm{K} 2 * \operatorname{DCOS}(\mathrm{~S} 2) * \operatorname{DSIN}(\mathrm{~S} 4))$
C $\quad /(\mathrm{K} 1 * \mathrm{~K} 1-\mathrm{K} 2 * \mathrm{~K} 2)$
$\mathrm{T} 2=\mathrm{DCOS}(\mathrm{S} 4) *((\mathrm{~K} 1 * \operatorname{DSIN}(\mathrm{~S} 1)-\mathrm{A} 2 * \operatorname{DCOS}(\mathrm{~S} 1)) * \mathrm{~S} 5-$
(K1 * $\left.\operatorname{DSIN}(\mathrm{S} 2)-\mathrm{A} 2{ }^{*} \mathrm{DCOS}(\mathrm{S} 2)\right)$)
$\begin{array}{ll}\mathrm{C} & (\mathrm{K} 1 * \mathrm{DS} \\ \mathrm{C} & /\left(\mathrm{K} 1 * \mathrm{~K} 1+\mathrm{A} 2{ }^{*} \mathrm{~A} 2\right)\end{array}$
$\mathrm{T} 3=(\mathrm{DCOS}(\mathrm{S} 1) * \mathrm{DCOS}(\mathrm{S} 4) * \mathrm{~S} 5) /(\mathrm{Al}+\mathrm{A} 2)$
$\mathrm{GG}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3$
RETURN
END

SUBROUTINE FOR CALCULATING THE OVERLAP INTEGRAL
ONE SIDE OF STEP HAS GUIDED MODE \& THE OTHER SIDE HAS RADIATION MODE

SUBROUTINE GDRAD(K1, A1, K2, A2, V, U, P, G, R)
REAL*8 K1, K2, A1, A2, RATIO1, RATIO2
REAL*8 S6, S7, S8
REAL*8 T4, T5, T6, T7, T8, T9
REAL*8U,V, P
REAL*8 G, R
REAL*8S1,S2, S3, S4, S5

COMMON /SET3/ S1, S2, S3, S4, S5
COMMON /SET4/RATIO1, RATIO2
S6 $=\mathrm{V} *$ RATIO1
$\mathrm{S} 7=\mathrm{V} *$ RATIO2
$\mathrm{S} 8=\mathrm{U} *(\mathrm{RATIO1}-\mathrm{RATIO} 2)$

GUIDED MODE IN REGION I \& RADIATION MODE IN REGION II
$\mathrm{T} 4=\left(\mathrm{K} 1 * \operatorname{DSIN}(\mathrm{~S} 2)^{*} \operatorname{DCOS}(\mathrm{~S} 7)-\mathrm{V}^{*} \operatorname{DCOS}(\mathrm{~S} 2) * \operatorname{DSIN}(\mathrm{~S} 7)\right)$
c $\quad /\left(\mathrm{K} 1 * \mathrm{~K} 1-\mathrm{V}^{*} \mathrm{~V}\right)$
$\mathrm{T} 5=(\mathrm{DCOS}(\mathrm{S} 7) *(\mathrm{Kl} * \operatorname{DSIN}(\mathrm{~S} 1) * \operatorname{DCOS}(\mathrm{~S} 8)-\mathrm{U} * \mathrm{DCOS}(\mathrm{S} 1)$
C \quad * $\operatorname{DSIN}(\mathrm{S} 8)-\mathrm{K} 1$ * $\operatorname{DSIN}(\mathrm{S} 2))$
$\mathrm{C} \quad-\mathrm{P} * \operatorname{DSIN}(\mathrm{~S} 7)^{*}(\mathrm{~K} 1 * \operatorname{DSIN}(\mathrm{~S} 1) * \operatorname{DSIN}(\mathrm{~S} 8)+$
$\left.\mathrm{C} \quad \mathrm{U}^{*} \mathrm{DCOS}(\mathrm{S} 1)^{*} \operatorname{DCOS}(\mathrm{~S} 8)-\mathrm{U} * \operatorname{DCOS}(\mathrm{~S} 2)\right)$)
$\mathrm{C} \quad /\left(\mathrm{Kl}{ }^{*} \mathrm{Kl}-\mathrm{U}^{*} \mathrm{U}\right)$
$\mathrm{T} 6=-1 .{ }^{*} \operatorname{DCOS}(\mathrm{~S} 1)^{*}\left(\mathrm{DCOS}(\mathrm{S} 7)^{*}(\mathrm{U} * \operatorname{DSIN}(\mathrm{~S} 8)-\mathrm{A} 1 * \operatorname{DCOS}(\mathrm{~S} 8))\right.$
$\left.+\mathrm{P} * \operatorname{DSIN}(\mathrm{~S} 7) *\left(\mathrm{~A} 1 * \operatorname{DSIN}(\mathrm{~S} 8)+\mathrm{U}^{*} \operatorname{DCOS}(\mathrm{~S} 8)\right)\right)$
$\begin{array}{cc}\mathrm{C} & +\mathrm{P}^{*} \operatorname{DSIN}(\mathrm{~S} 7) \\ \mathrm{C} & /\left(\mathrm{Al}{ }^{*} \mathrm{Al}+\mathrm{U}^{*} \mathrm{U}\right)\end{array}$
$\mathrm{G}=\mathrm{T} 4+\mathrm{T} 5+\mathrm{T} 6$

```
            RADIATION MODE IN REGION I \& GUIDED MODE IN REGION II
    \(\mathrm{T} 7=(\mathrm{K} 2 * \operatorname{DSIN}(\mathrm{~S} 4) * \operatorname{DCOS}(\mathrm{~S} 7)-\mathrm{V} * \operatorname{DCOS}(\mathrm{~S} 4) * \operatorname{DSIN}(\mathrm{~S} 7))\)
    \(\mathrm{C} \quad 1\left(\mathrm{~K} 2 * \mathrm{~K} 2-\mathrm{V}^{*} \mathrm{~V}\right)\)
    \(\mathrm{T} 8=\mathrm{DCOS}(\mathrm{S} 4) *((\mathrm{~V} * \operatorname{DSIN}(\mathrm{~S} 6)-\mathrm{A} 2 * \operatorname{DCOS}(\mathrm{~S} 6)) * \mathrm{~S} 5\)
    \(\left.\mathrm{C} \quad-\left(\mathrm{V}^{*} \operatorname{DSIN}(\mathrm{~S} 7)-\mathrm{A} 2 * \operatorname{DCOS}(\mathrm{~S} 7)\right)\right)\)
    \(\mathrm{C} \quad /(\mathrm{A} 2 * \mathrm{~A} 2+\mathrm{V} * \mathrm{~V})\)
    \(\mathrm{T} 9=\left(\mathrm{A} 2 * \operatorname{DCOS}(\mathrm{~S} 6)-\mathrm{V}^{*} \operatorname{DSIN}(\mathrm{~S} 6)\right) * \operatorname{DCOS}(\mathrm{~S} 4) * \mathrm{~S} 5\)
    \(\mathrm{C} \quad /(\mathrm{A} 2 * \mathrm{~A} 2+\mathrm{U} * \mathrm{U})\)
    \(\mathrm{R}=\mathrm{T} 7+\mathrm{T} 8+\mathrm{T} 9\)
    RETURN
    END
                                    SUBROUTINE FOR
                        CALCULATING THE OVERLAP INTEGRAL
BOTH SIDES OF STEP HAVE RADIATION MODE
```

SUBROUTINE RADRAD(U1, U2, V1, V2, P, A1, A2, RR, I, J)
PARAMETER ($\mathrm{PI}=3.14159265358979$)
REAL*8 U1, U2, V1, V2, P, A1, A2
REAL*8 W1, W2, W3, W4, W5
REAL*8 T10, T11, T12, Y
REAL* 8 RR, RATIO1, RATIO2
COMMON /SET4/ RATIO1, RATIO2
$\mathrm{W} 1=\mathrm{Vl} *$ RATIO1
$\mathrm{W} 2=\mathrm{V} 1 *$ RATIO2
$\mathrm{W} 3=\mathrm{V} 2 *$ RATIO 1
$\mathrm{W} 4=\mathrm{V} 2 *$ RATIO2
$\mathrm{W} 5=\mathrm{U} 2 *(\mathrm{RATIO} 1-$ RATIO2 $)$

IF (V1 EQ. U2) THEN
$\mathrm{T} 11=0$.
ELSE
$\mathrm{T} 11=(\mathrm{DCOS}(\mathrm{W} 4) *(\mathrm{~V} 1 * \operatorname{DSN}(\mathrm{~W} 1) * \operatorname{DCOS}(\mathrm{~W} 5)-\mathrm{U} 2 * \operatorname{DCOS}(\mathrm{~W} 1)$
C $\quad * \operatorname{DSIN}(\mathrm{~W} 5)-\mathrm{V} 1 * \operatorname{DSIN}(\mathrm{~W} 2))-\mathrm{P} * \operatorname{DSIN}(W 4) *$
C $\quad(\mathrm{Vl} * \operatorname{DSIN}(\mathrm{WI}) * \operatorname{DSIN}(\mathrm{~W} 5)+\mathrm{U} 2 * \operatorname{DCOS}(\mathrm{~W} 1) * \operatorname{DCOS}(\mathrm{~W} 5)$
$\mathrm{C} \quad-\mathrm{U} 2 * \operatorname{DCOS}(\mathrm{~W} 2))) /(\mathrm{V} 1 * \mathrm{~V} 1-\mathrm{U} 2 * \mathrm{U} 2)$
ENDIF
$\mathrm{Y}=(\mathrm{U} 2 * \operatorname{DCOS}(\mathrm{~W} 1) * \operatorname{DCOS}(\mathrm{~W} 4) * \operatorname{DSIN}(\mathrm{~W} 5)$
$\mathrm{C} \quad+\mathrm{V} 2 * \operatorname{DCOS}(\mathrm{~W} 1) * \operatorname{DSIN}(\mathrm{~W} 4) * \operatorname{DCOS}(\mathrm{~W} 5)$
$\mathrm{C} \quad-\mathrm{V} 1 * \operatorname{DSIN}(\mathrm{Wl}) * \operatorname{DCOS}(\mathrm{~W} 4) * \operatorname{DCOS}(\mathrm{~W} 5)$
$\mathrm{C} \quad+\mathrm{P} * \mathrm{~V} 1 * \operatorname{DSIN}(\mathrm{~W} 1) * \operatorname{DSIN}(\mathrm{~W} 4) * \operatorname{DSIN}(\mathrm{~W} 5)) /(\mathrm{Ul}+\mathrm{U} 2)$
IF (I EQ. J) THEN

```
            RR=((DCOS(W1) * DCOS(W4) +(V1/U1)* P * DSIN(W1) *
C DSIN(W4))* DCOS(W5) +((V1/U1) * DSIN(W1)*
C DCOS(W4) - P * DCOS(W1) * DSIN(W4)) * DSIN(W5))
C * PI*A1*A2
ELSE
    T10=(V1 * DSIN(W2) * DCOS(W4) - V2 * DCOS(W2) * DSIN(W4))
C /(V1*V1-V2*V2)
    T12 = Y/(U1-U2)
    RR=A1*A2*2.* (T10 + T11 + T12)
ENDIF
```

RETURN
END

SUBROUTINE FORWARD(B1, B2, DELTA_UN)
PARAMETER($\mathrm{N}=150, \mathrm{C}=2 * \mathrm{~N}+2$)
INTEGER*4 X, Y, Z, CI
COMPLEX* 16 REF, REF1
COMPLEX* 16 A(C,C), $B(C)$
COMPLEX*16 PB1Z, PB2Z, NB1Z, NB2Z, PBU(N), NBU(N)
REAL*8 GG, GR(N), RG(N), RR(N,N)
COMPLEX* 16 PREV(C)
COMPLEX*16 BNC(N)
COMMON/SET5/GG, GR, RG, RR
COMMON /SET6/A, B
COMMON /SET7/ PB1Z, PB2Z, NB1Z, NB2Z, PBU, NBU
COMMON /SET9/ PREV
COMMON /SET13/ BNC
$A(1,1)=-1 . * P B 1 Z$
$A(1,2)=N B 2 Z * G G$
$\mathrm{A}(2,1)=\operatorname{PREV}(2)^{*} \mathrm{~PB} 12 * \mathrm{Bl}{ }^{*} \mathrm{GG}$
$A(2,2)=\operatorname{PREV}(2) * N B 2 Z * B 2$
$X=N+2$
$Y=X+1$
DO $10 \mathrm{~J}=3, \mathrm{X}$
$\mathrm{M}=\mathrm{J}-2$
$\mathrm{Z}=\mathrm{JMOD}(\mathrm{M}, 2)$
IF (M EQ. N) THEN
$A(1, \mathrm{~J})=\mathrm{NBU}(\mathrm{M}) *$ DELTA_UN * $\operatorname{GR}(\mathrm{M})$
ELSE
IF (Z.EQ. 0) THEN
$A(1, J)=N B U(M)$ * DELTA_UN * $\mathrm{GR}(\mathrm{M})^{*} 2$.
ares

```
            A(1,J)=NBU(M)* DELTA_UN * GR(M)*4.
            ENDIF
            ENDIF
    A(2,J)=0.
CONTINUE
```

 DO \(20 \mathrm{~J}=\mathrm{Y}, \mathrm{C}\)
 \(A(1, J)=0\).
 \(\mathrm{M}=\mathrm{J}-\mathrm{X}\)
 \(\mathrm{Z}=\mathrm{JMOD}(\mathrm{M}, 2)\)
 IF (M.EQ. N) THEN
 \(A(2, \mathrm{~J})=\operatorname{PREV}(2) * \operatorname{PBU}(\mathrm{M}) * \operatorname{BNC}(\mathrm{M}) *\) DELTA_UN * RG(M)
 ELSE
 IF (Z.EQ. 0) THEN
 \(\mathrm{A}(2, \mathrm{~J})=\operatorname{PREV}(2)^{*} \operatorname{PBU}(\mathrm{M}) * \operatorname{BNC}(\mathrm{M}) *\) DELTA_UN \(* \mathrm{RG}(\mathrm{M}) * 2\).
 ELSE
 \(\mathrm{A}(2, \mathrm{~J})=\operatorname{PREV}(2) * \operatorname{PBU}(\mathrm{M}) * \operatorname{BNC}(\mathrm{M}) * \mathrm{DELTA}_{-} \mathrm{UN} * \operatorname{RG}(\mathrm{M}) * 4\).
 ENDIF
 ENDIF
 CONTINUE
DO $30 \mathrm{I}=3, \mathrm{X}$
$\mathrm{L}=\mathrm{I}-2$
$\mathrm{J}=\mathrm{I}+\mathrm{N}$
$\mathrm{A}(\mathrm{I}, 1)=0$.
$\mathrm{A}(1,2)=\operatorname{PREV}(2) * \mathrm{NB} 2 Z * \operatorname{RG}(\mathrm{~L})$
$\mathrm{A}(\mathrm{J}, 1)=\operatorname{PREV}(2) * \operatorname{PB1Z}{ }^{*} \mathrm{Bl}{ }^{*} \operatorname{GR}(\mathrm{~L})$
$A(J, 2)=0$.
CONTINUE
DO $50 \mathrm{I}=3, \mathrm{X}$
$\mathrm{L}=\mathrm{I}-2$
DO $40 \mathrm{~J}=\mathrm{Y}, \mathrm{C}$
$\mathrm{M}=\mathrm{J}-\mathrm{X}$
IF (M .EQ. L) THEN
$A(I, J)=\operatorname{PREV}(2) * \operatorname{PBU}(M) *(-2$.
ELSE
$\mathrm{A}(\mathrm{I}, \mathrm{J})=0$.
ENDIF
CONTINUE
CONTINUE
DO $70 \mathrm{I}=\mathrm{Y}, \mathrm{C}$
$\mathrm{L}=\mathrm{I}-\mathrm{X}$
DO $60 \mathrm{~J}=3$, X
$\mathrm{M}=\mathrm{J}-2$
IF (M.EQ. L) THEN
$\mathrm{A}(\mathrm{I}, \mathrm{J})=\operatorname{PREV}(2)^{*} \mathrm{NBU}(\mathrm{M}) * 2 .^{*} \mathrm{BNC}(\mathrm{M})$
ELSE
$A(I, J)=0$.
ENDIF
60 CONTINUE

```
    DO 90I = 3, X
    L=I-2
    T=I+N
    DO 80 J=3,X
    M=J - 2
    W=J+N
    Z=JMOD(M, 2)
    IF (M .EQ N N THEN
        CI=1
        ELSSE
        IF (Z .EQ.0) THEN
        CI=2
        ELSE
        CI=4
        ENDIF
        ENDIF
        IF (M .EQ. L) THEN
        A(1,J)= PREV(2) * NBU(M) * RR(L,M)
        A(T,W)=PREV(2)* PBU(M)* BNC(M)*RR(M,L)
    ELSE
    A(I,J) = PREV(2) * NBU(M) * DELTA_UN * RR(L,M)* Cl
    A(T,W)=PREV(2)* PBU(M)* BNC(M)* DELTA_UN * RR(M,L)*CI
    ENDIF
80 CONTTNUE
90 CONTINUE
    B(1)=NB1Z
    REF=0.
    DO 100I=1,N
        Z= JMOD (I, 2)
        IF (I .EQ. N) THEN
        CI=1
        ELSE
        IF (Z.EQ.0) THEN
        CI=2
        ELSE
        CI=4
        ENDIF
        ENDIF
        REF = REF + PREV(I+2) * NBU(I) * BNC(I) *RG(I) * DELTA_UN*CI
CONTINUE
        B(2)=REF + PREV (2)*NB1Z * Bl *GG
    DO 110I=3,X
    B(I)= PREV(I)*NBU(I-2)*2.
CONTINUE
    DO 130I=Y,C
    L}=1-
    REF = 0.
    DO 120 J=1,N
    Z=IMOD(J,2)
```

```
            IF (J EQ. N) THEN
            CI=1
            ELSE
            IF (Z .EQ.0) THEN
            CI=2
            ELSE
            Cl=4
            ENDIF
            ENDIF
            IF (J .EQ. L) THEN
            REF1 = PREV (J+2) * NBU(J) * BNC(J) * RR(J;L)
            ELSE
                REF1 = PREV (J+2) * NBU(J) * BNC(J) * RR(J,L) * DELTA_UN*CI
                ENDIF
            REF = REF + REF1
    120 CONTINUE
            B(I)=REF + PREV (2) * NB1Z * B1 * GR(L)
    130 CONTINUE
    RETURN
    END
```

```
SUBROUTINE BACKWARD(B1, B2, DELTA_UN)
PARAMETER(N = 150, C=2*N+2)
INTEGER*4 X, Y, Z, CI
COMPLEX*16 REF, REF]
REAL*8 B1, B2, DELTA_UN
REAL*8 GG, GR(N),RG(N),RR(N,N)
COMPLEX*16 A(C,C), B(C)
COMPLEX*16 PB1Z, PB2Z,NB1Z, NB2Z, PBU(N),NBU(N)
COMPLEX*16 PREV(C)
COMPLEX*16 BNC(N)
```

COMMON /SET5/ GG, GR, RG, RR
COMMON /SET6/A, B
COMMON /SET7/ PB1Z, PB2Z, NB1Z, NB2Z, PBU, NBU
COMMON /SET9/ PREV
COMMON /SET13/BNC
$A(1,1)=-1 .{ }^{*}$ NB2Z
$\mathrm{A}(1,2)=\mathrm{PBlZ} * \mathrm{GG}$
$A(2,1)=\operatorname{PREV}(2) * N B 2 Z * B 2 * G G$
$A(2,2)=\operatorname{PREV}(2) * \operatorname{PBIZ} * B 1$
$\mathrm{X}=\mathrm{N}+2$
$Y=X+1$
DO $10 \mathrm{~J}=3, \mathrm{X}$
$\mathrm{M}=\mathrm{J}-2$
$\mathrm{Z}=\mathrm{JMOD}(\mathrm{M}, 2)$

```
    IF (M .EQ. N) THEN
    A(1,J)= PBU(M) * DELTA_UN * RG(M)
    ELSE
        IF (Z.EQ.0) THEN
        A(1,J)=PBU(M) * DELTA_UN * RG(M)* 2.
        ELSE
        A(1,J)= PBU(M) * DELTA_UN * RG(M) * 4.
            ENDIF
            ENDIF
        A(2,J) = 0.
CONTINUE
```

```
        DO 20J = Y,C
```

 DO 20J = Y,C
 A(1,J)=0
 A(1,J)=0
 M=J - X
 M=J - X
 Z= JMOD(M, 2)
 Z= JMOD(M, 2)
 IF (M .EQ. N) THEN
 IF (M .EQ. N) THEN
 A(2,J)= PREV(2) * NBU(M) * BNC(M) * DELTA_UN * GR(M)
 A(2,J)= PREV(2) * NBU(M) * BNC(M) * DELTA_UN * GR(M)
 ELSE
 ELSE
 IF (Z .EQ. 0) THEN
 IF (Z .EQ. 0) THEN
 A(2,J)= PREV(2) * NBU(M) * BNC(M) * DELTA_UN * GR(M)* 2.
 A(2,J)= PREV(2) * NBU(M) * BNC(M) * DELTA_UN * GR(M)* 2.
 ELSE
 ELSE
 A(2,J)= PREV(2) * NBU(M) * BNC(M)* DELTA_UN * GR(M)* 4.
 A(2,J)= PREV(2) * NBU(M) * BNC(M)* DELTA_UN * GR(M)* 4.
 ENDIF
 ENDIF
 ENDIF
 ENDIF
 CONTINUE

```
CONTINUE
```

 DO \(30 \mathrm{I}=3, \mathrm{X}\)
 \(\mathrm{L}=\mathrm{I}-2\)
 \(\mathrm{J}=\mathrm{I}+\mathrm{N}\)
 \(A(I, 1)=0\).
 \(A(1,2)=\operatorname{PREV}(2) * \operatorname{PB} 1 Z * \operatorname{GR}(\mathrm{~L})\)
 \(A(\mathrm{~J}, 1)=\operatorname{PREV}(2) * \operatorname{NB} 2 Z * B 2 * \operatorname{RG}(\mathrm{~L})\)
 \(A(J, 2)=0\)
 CONTINUE
DO $50 \mathrm{I}=3, \mathrm{X}$
$\mathrm{L}=\mathrm{I}-2$
DO $40 \mathrm{~J}=\mathrm{Y}, \mathrm{C}$
$\mathrm{M}=\mathrm{J}-\mathrm{X}$
IF (M.EQ. L) THEN
$\mathrm{A}(\mathrm{I}, \mathrm{J})=\operatorname{PREV}(2)^{*} \mathrm{NBU}(\mathrm{M})^{*}(-2$.
ELSE
$A(I, J)=0$.
ENDIF
CONTINUE
CONTINUE
DO $70 \mathrm{I}=\mathrm{Y}, \mathrm{C}$
$\mathrm{L}=\mathrm{I}-\mathrm{X}$
DO $60 \mathrm{~J}=3, \mathrm{X}$
$\mathrm{M}=\mathrm{J}-2$
IF (M.EQ. L) THEN

```
        A(I,J)= PREV(2) * PBU(M) * 2. * BNC(M)
        ELSE
        A(I,J)=0.
        ENDIF
    CONTINUE
    CONTINUE
        DO 90I = 3, X
        L=I-2
        T=I+N
        DO 80 J=3, X
        M=J - 2
        W=J+N
        Z = IMOD(M, 2)
        IF (M .EQ. N) THEN
        CI=1
        ELSE
        IF (Z .EQ. 0) THEN
        CI=2
        ELSE
        CI=4
        ENDIF
        ENDIF
        IF (M .EQ. L) THENN
        A(I,J)=PREV(2) * PBU(M)*RR(M,L)
        A(T,W)= PREV(2) * NBU(M) * BNC(M) * RR(L,M)
        ELSE
        A(I,J)= PREV(2) * PBU(M)* DELTA_UN * RR(M,L) * CI
        A(T,W)= PREV(2) * NBU(M) * BNC(M) * DELTA_UN * RR(L,M) * Cl
        ENDIF
    CONTINUE
CONTINUE
B(1) = PB2Z
REF=0.
DO 100I=1,N
Z= MMOD(I, 2)
        IF (I EQ. N) THEN
        CI=1
        ELSE
        IF (Z.EQ. 0) THEN
        CI=2
        ELSE
        CI=4
        ENDIF
        ENDIF
        REF = REF + PREV (I+2) * PBU(I) * BNC(I) * GR(I) * DELTAA_UN*CI
CONTINUE
        B(2)=REF + PREV (2) * PB2Z * B2 * GG
        DO 110I = 3, X
        B(I) = PREV(I) * PBU(I-2)*2.
CONTINUE
```

```
        DO 130I=Y,C
        L=I-X
        REF=0.
        DO 120J=1,N
        Z=JMOD(J, 2)
        IF (J .EQ. N) THEN
        CI=1
        ELSE
        IF (Z.EQ. 0) THEN
        CI=2
        ELSE
            CI=4
            ENDIF
            ENDIF
            IF (J .EQ. L) THEN
            REF1 = PREV(J+2) * PBU(J)* BNC(J) * RR(L,J)
            ELSE
            REFI = PREV(J+2) * PBU(J) * BNC(J) * RR(L,J) * DELTA_UN*CI
            ENDIF
            REF = REF + REFl
    120 CONTINUE
        B(I) = REF + PREV(2) * PB2Z * B2 * RG(L)
    CONTINUE
        RETURN
        END
```

SUBROUTINE CAL COEF(F, CK)
PARAMETER($\mathrm{N}=150, \mathrm{C}=2 * \mathrm{~N}+2$)
NTTEGER*4 Z, F, CK, T
COMPLEX* 16 AL(C,C), COEFY(C), XR
COMPLEX* $16 \mathrm{~A}(\mathrm{C}, \mathrm{C}), \mathrm{B}(\mathrm{C}), \mathrm{COEFX}(\mathrm{C})$
COMMON /SET6/A, B
COMMON /SETI0/ COEFX
$Z=C-1$
IF (CK .NE. N) THEN
$\mathrm{T}=\mathrm{CK}+\mathrm{N}+3$
GOTO 500
ELSE
GO TO 510
ENDIF
500 DO $20 \mathrm{I}=1, \mathrm{C}$
DO $10 \mathrm{~J}=\mathrm{T}, \mathrm{C}$
$\mathrm{A}(\mathrm{I}, \mathrm{J}-1)=\mathrm{A}(\mathrm{I}, \mathrm{J})$

```
        DO40J=1,C-1
        DO 30I I T,C
        A(I-1,J) = A(I,J)
    CONTINUE
    CONTINUE
        DO 50I=T,C
        B(I-I)=B(I)
    CONTINUE
    IF (F.EQ. 1) THEN
        DO 70I=1,Z
        DO 60J=3,Z
        A(I, J-1) =A(I,J)
    CONTINUE
    CONTINUE
        DO 90 J=1,Z-1
        DO 80I = 3,Z
        A(I-1,J) = A(I,J)
    CONTINUE
CONTINUE
        DO 100I=3,Z
        B(I-1)=B(I)
    CONTINUE
        Z=Z-1
        ENDIF
        DO 130I=1,Z
        DO 120 J = I+1,Z
        AL(J,I) = A(J,I)/ A(I,I)
        DO 110 K=I, Z
        A(J,K) = A(J,K) - AL(J,I) * A(I,K)
        CONTINUE
        CONTINUE
        CONTINUE
        DO 140I = 1,Z
        AL(1,I)=1.
CONTINUE
        COEFY(1)=B(1)/AL(1,1)
        DO 160I =2,Z
        XR=0.
        DO 150 J = 1,I-1
        XR=AL(I,r) * COEFY(J) + XR
CONTINUE
    COEFY(I)}=(\textrm{B}(\textrm{I})-\textrm{XR})/\textrm{AL}(\textrm{I},\textrm{I}
160 CONTINUE
    COEFX}(Z)=\operatorname{COEFY}(Z)/A(Z,Z
```

COEFX(I
CONTINUE
ENDIF
$\operatorname{COEFX}(\mathrm{T})=0$.
RETURN
END

SUBROUTINE PATTERNT(DELTA_U, BETA, X, FLAG, COEF)
PARAMETER $(\mathrm{PI}=3.14159265358979, \mathrm{~N}=150)$
REAL*8 THETA, ANG, U, PRAD
COMPLEX* 16 TRANS(N), RR, COEF
INTEGER*4 X, FLAG
COMPLEX* 16 BNC(N)
COMMON /SET13/BNC
COMMON /SET11/TRANS
WRITE $(7,2)$ 'THE ', X, 'TIME"S TRANSMITTED RADIATION PATTERN'
FORMAT (3X, A4, I3, A36)
DO $10 \mathrm{I}=1$, FLAG
$U=$ DELTA_U * I
THETA $=\operatorname{DA} \operatorname{SIN}(U) * 180 / \mathrm{PI}$
$\mathrm{RR}=\mathrm{COEF} * \operatorname{TRANS}(\mathrm{I})$
$\mathrm{PRAD}=\mathrm{PI} *\left(\mathrm{CDABS}(\mathrm{BNC}(\mathrm{I}))^{* *} 2\right)^{*}\left(\mathrm{CDABS}(\mathrm{RR}){ }^{* *} 2\right) / \mathrm{BETA}$
WRITE $(7,1)^{\prime}$ ANG $=$ ', THETA, 'RADIATION PATTERN $=$ ', PRAD
1 FORMAT(7X, A6, F6.2, 5X, A21, D10.4)
10 CONTINUE
RETURN
END

```
SUBROUTINE FOR CALCULATING RADIATION PATTERN
IN THE BACKWARD DIRECTION
```

SUBROUTINE PATTERNR(DELTA_U, BETA, X, FLAG, COEF)
PARAMETER $(\mathrm{PI}=3.14159265358979, \mathrm{~N}=150)$
REAL*8 THETA, ANG, U, PRAD
COMPLEX*16 REF(N), RR, COEF
INTEGER*4 X, FLAG
COMPLEX* 16 BNC(N)
COMMON /SET13/ BNC
COMMON /SET12/ REF
WRITE(7,2) 'THE ', X, 'TIME"S REFLECTED RADIATION PATTERN'
2
FORMAT(3X, A4, I3, A36)
DO $10 \mathrm{I}=\mathrm{FLAG}, 1,-1$
$\mathrm{U}=\mathrm{DELTA}_{-} \mathrm{U}$ I
THETA $=180 .-\operatorname{DASIN}(\mathrm{U}) * 180 . / \mathrm{PI}$
$\mathrm{RR}=\mathrm{COEF} * \mathrm{REF}(\mathrm{I})$
$\operatorname{PRAD}=\mathrm{PI} *(\operatorname{CDABS}(\mathrm{BNC}(\mathrm{I})) * * 2) *(\operatorname{CDABS}(\mathrm{RR}) * * 2) / \mathrm{BETA}$
WRITE $(7,1)$ 'ANG $=$ ', THETA, 'RADIATION PATTERN $=$ ', PRAD
1 FORMAT(7X, A6, F6.2, 5X, A21, D10.4)
10 CONTINUE
RETURN
END

REFERENCE

1 Levin, B. J. and Kietzer, J. E. "Hybrid Millimeter-Wave Integrated Circuits" Tech. Rept. ECOM-74-0577-F, Contract DAAB07-74-C-0577, performed for the U.S. Army Electronic Command, Fort Monmouth, N.J. by ITT Research Institute, Chicago, Ill., October 1975.

2 Lo, Y. T. and Lee, S. W., Antenna Handbood, Van Nostrand Rddnhold Co., N.Y., Chapter 17, 1988.

3 Jacobs, H. and Chrepta, M. M., "Electronic Phase Shifter Millimeter-Wave Semiconductor Dielectric Integrated Circuits," IEEE Trans. Microwave Theory and Tech., Vol. MTT-22, No. 4, April 1974.

4 Andersen, J. Bach, Metallic and Dielectric Antennas, Copenhagen:Polyteknisk Forlay, 1971.

5 James, J. R. "Engineering Approach to the Design of Tapered Dielectric-rod and Horn Antennas," Radio and Elelctronic Engineer, Vol. 42, No. 6, June 1972.

6 Tien, P. K., Smolinsky, G., and Martin, R. J., "Radiation Fields of a Tapered Film and a Novel Film-to-Fiber Coupler." IEEE Trans. Microwave Theory and Tech., Vol. MTT-23, No. 1, Jan. 1973.

7 Bahar, E., "Propagation of Radio Waves over a Non-Uniform Layered Medium," Radio Science, Vol. 5, July 1970.

8 Shevchenko, V. V., Contimuous Transitions in Open Waveguides, Golem Press, 1971.
9 Marcuse, D., Theory of Dielectric Optical Waveguides, Academic Press, N. Y., 1974.
10 Marcuse, D., "Radiation Losses of Tapered Dielectric Slab Waveguides," Bell System Tech. J., Vol. 49, No. 2, pp. 273-290, Feb. 1970.

11 Marcuse, D., Light Transmission Opfics, 2nd Edition, Van Nostrand Reinhold, 1982.

12 Suchoski, P. G., Jr. and V. Ramaswamy, "Exact Numerical Technique for the Analysis of Step Discontinuities and Tapers in Optical Dielectric Waveguides," J. Opt. Soc. Am. A/Vol. 3, No. 2, pp. 194-203, Feb. 1986.

13 Rozzi, T.E., "Rigorous Analysis of the Step Discontinuity in a Planar Dielectric Waveguide," IEEE Trans. Microwave Theory and Tech., Vol. MTT-26, No. 10, pp. 738-746, Oct. 1978.

Reference (continued)
14 Ramaswamy, V. and Suchoski, P.G. Jr., "Power Loss at a Step Discontinuity in an Asymmetrical Dielectric Slab Waveguide," J. Opt. Soc. Am. A/Vol. 1, No. 7, pp. 754-759, July 1984.

15 Hirayama, K. and Koshiba, M., "Analysis of Discontinuities in an Open Dielectric Slab Waveguide by Combination of Finite and Boundary Elements," IEEE Trans. Microwave Theory and Tech., Vol. MTT-37, N0. 4, pp. 761-768, April 1989.

16 Press, W. H., Flannery, B. P., Teukolsky, S. A. and Vetterling, W. T., Numerical Recipes - The Art of Scientific Computing, Cambridge University Press, N.Y., 1986.

17 Ittipiboon, A., "Scattering of Surface Waves at a Slab Waveguide Siscontinuity," Proc. Inst. Elec. Eng., Vol. 126, No. 9, pp. 798-804, Sept. 1979.

18 Rozzi, T. E. and in't Veld, G. H., "Variational Treatment of the Diffraction at Facet of d.h. Lasers and of Dielectric Millimeter Wave Antennas," IEEE Trans. Microwave Theory and Tech., Vol. MTT-28, No. 2, pp. 61-73, Feb. 1980.

19 Gelin, P., Petenzi, M. and Citerne, J., "New Rigorous Analysis of the Step Discontinuity in a Slab Dielectric Waveguide," Elec. Letters, Vol. 15, No. 12, pp. 355-356, June 1979.

20 Gelin, P., Toutain, S. and Citerne, J., "Scattering of Surface Waves on Transverse Discontinuities in Planar Dielectric Waveguides," Radio Sci., Vol. 16, No. 6, pp. 1161-1165, Nov. - Dec. 1981.

21 Hosono, T., Hinata, T. and Inove, A., "Numerical Analysis of the Discontinuities in Slab Dielectric Waveguides, " Radio Sci,. Vol. 17, No. 1, pp. 75-83, Jan.-Feb. 1982.

22 Uchida, K. and Aoki, K., "Scattering of Surface Waves on Transverse Discontinuities in Symmetrical Three-Layer Dielectric Waveguides," IEEE Trans. Microwave Theory and Tech., Vol. MTT-32, No. 1, pp. 11-19, Jan. 1984.

23 Nichimura, E., Morita, N. and Kumagai, N., "An Integral Equation Approach to Electromagnetic Scattering from Arbitrary Shaped Junctions Between Multilayered Dielectric Planar Waveguide," J. of Lightwave Tech., Vol. LT-3, No. 4, pp. 887-894, Aug. 1985.

24 Mahdjoubi, K. and Terret, C., "An Analysis of Piecewise Homogenious Dielectric Rod Antenna," IEEE Trans on Antennas and Propagation, Vol. AP-34, No. 4, April 1986.

Reference (continued)
25 Capsalis, C. N., Fikioris, J. G. and Uzumoglu, N. K., "Scattering from an Abruptly Terminated Dielectric-Slab Waveguide," J. Light. Tech. Vol. LT-3, No. 2, pp. 408-415, April 1985.

26 Hirayama, K and Koshiba, K., "Numerical Analysis of Arbitrarily Shaped Discontinuities Between Planar Dielectric Waveguides with Different Thicknesses," IEEE Trans. Microwave Theory and Tech., Vol. MTT- 38, No. 3, pp. 260-264, March 1990.

27 Morita, N., "A Rigorous Analytical Solution to Abrupt Dielectric Waveguide Discontinuities, ${ }^{\text {B }}$ IEEE Trans. Microwave Theory and Tech., Vol. MTT- 39, No. 8, pp. 1272-1278, Aug. 1991

28 Suchoski, P. G. Jr., "Analysis of Step Discontinuities and Tapers in Optical, Dielectric Waveguides," M.S. Thesis, University of Florida, 1985.

29 Felsen, L. B. and Marcuvitz, N., Radiation and scattering of waves Prentice-Hall, Inc., Englewood Cliffs, N.J., 1973.

