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ABSTRACT  

A Successive 
Approximation Algorithm 

to Solve Motion Planning Problems 

by 
Cheng-Ming Chang  

A successive approximation algorithm is presented to solve motion planning 

problems and optimal control problems. A motion planning problem is included in 

an optimal control problem and due to the heavily nonlinear and coulped differential 

equations describing the dynamics of the manipulator and several constraints imposed 

on the system, few efficient methods exist to solve this kind of problems. 

The successive approximation algorithm can decompose the global nonlinear 

problem into several nonlinear subproblems and each subproblem is solved by the 

nonlinear programming method with a highly convergent rate. Because the limited 

constraints and variables are included in each subproblem and only the trajectory 

and control sequence are needed to be stored in each iteration, the algorithm can be 

very easily implemented on the motion planning problems. 

The convergence and optimality of the algorithm are also discussed and the 

implementations on motion planning problems and optimal control problems are pre-

sented with excellent results. The computational results show its promise for future 

applications. 
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CHAPTER 1 

INTRODUCTION  

1.1 What is Motion Planning  

Robots are the most important tools for automation in industries today. Many facto-

ries applied a large number of robots in their production lines or other fields. Hence 

the topics of the robotic research become very popular recently. One of the most im-

portant topics in the robotic research is the motion control problem. A good controller 

for the robot can produce the following characteristics: [1] 

(1) The robot can successfully and precisely accomplish the tasks which are assigned 

by the people. 

(2) The robot can execute the versatile tasks in the different environments. 

(3) The robot can finish the tasks in the best way. 

Therefore, the controller is a very important element for the robot. 

In traditional, the motion control problem was divided into three smaller sub-

problems due to the highly nonlinear and coupled nature of the differential equations 

that describe the dynamics of the manipulator and several constraints imposed on 

the system which include the limitations on the amounts of torques/forces available 

from the actuators and the presence of the obstacles in the environment. The three 

subproblems have been described by Singh [1] as follows: 

Path Planning:  Given a manipulator and a description of its environment, plan a 

path between two specified positions, such that the path avoids collision with 

obstacles in the environment and is optimal with regard to a geometric perfor-

mance index, such as shortest path. 

1  
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Trajectory Planning: Given a path to be followed by the end-effector, the differen-

tial equations describing the manipulator dynamics and the constraints on the 

torques/forces avaiable from the actuators, find the time history of the positions 

and velocities along the path so that a given performance index is minimized. 

Trajectory Tracking: Given a reference trajectory to be tracked and the dynamics 

of the manipulator, design a feedback controller to accurately track the given 

trajectory. 

This division is not very reasonable, because the path planning problem consid-

ers only the geometric configurations in the environment but completely ignores the 

dynamics of the manipulator. On the other hand, the trajectory planning problem is 

concerned with only the dynamics of the manipulator by simply assuming that the 

path has already been planned and its task is only to plan the timming and velocity 

along this path. According to the above reasons, we can know that the path planning 

cannot account for the optimal control problems and the trajectory planning cannot 

obtain the real results for the optimal control problems. 

In recent research [1,2], the path planning problem and the trajectory planning 

problem have just been combined as a motion planning problem. Then the overall 

motion control problem of the robotic manipulator can be separated into two stages 

— the motion planning stage (planner) and the trajectory tracking stage (tracker). 

The idea of the overall motion control problem may be explained in Figure 1.1. [1] 

In the motion planning stage, the planner accepts overall informations which 

include the capabilities of the manipulator, the descriptions of the task and the con-

ditions of the environment at the beginning. Then the planner plans the complete 

task to obtain the desired trajectory which is the time history of the positions and 

velocities and goes to the second stage. In the trajectory tracking stage, the tracker 

accepts the desired trajectory as its input and precisely tracks this trajectory until 

the task accomplishment, but the planner does not accept any informations during  
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Figure 1.1  The Idea of the Motion Control Problem. [1] 

the tracker execution. 

The motion planning problem may be identified as follows. 

Motion Planning:  Given a manipulator and the differential equations that describe 

the dynamics of the manipulator, consider the constraints including the limi-

tations on the torques/forces available from the actuators and the presence of 

obstacles in the environment, find the time history of the positions and velocities 

between two specified positions so that a given performance index is minimized. 

1.2 Motion Planning and Optimality  

The idea of motion planning is extremely close to that of optimality. Because when 

we plan a task, we always hope the task will be accomplished in the most efficient way. 

"The most efficient way" is equivalent to the "optimality", such as the minimum time, 

the minimum energy and the shortest path. Therefore, we can say that the overall 

motion planning problem can be considered as a classic optimal control problem which 

may be formulated as follows: [1,3,4] 



(1.1) 

(1.2) 

(1.3) 

(1.4) 

(1.5) 

(1.6) 

4  

The performance measure 

subject to the dynamics 

and the constraints 

where 

and 

h : Rn → R 

l : Rn  → R 

V: Rn x Rm x R → R 

F : Rn x Rm x R → Rn  gp : Rn x Rm x R → 

R hq : Rn x Rm x R → 

R 

It should be noted that the boundary conditions are also included in the con-

straints. 
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1.3 The Methods for Solving Motion Planning Problem  

In the last section, we mentioned that the motion planning problem can be considered 

as an optimal control problem. Therefore, any methods, which can solve the optimal 

control problems, can also solve the motion planning problems. Today, there are 

three main methods for solving the optimal control problems, which are Pontryagin's 

minimum principle [5], dynamic programming [6] and nonlinear programming [7]. 

Each of them has the researchers to implement on the motion planning problems, but 

owing to the complex dynamics and heavy constraints, it is still extremely difficult 

to apply these methods to solve this kind of problems. 

In the following, we will discuss the advantages and disadvantages of each 

method. [3,8] 

• Pontryagin's Minimum Principle 

Advantage:  This method can get the accurate and continuous solutions for 

the motion planning problems. 

Disadvantage:  Due to the complex dynamics and heavy constraints, it can 

solve some simplified motion planning problems only. 

• Dynamic programming 

Advantage:  This method can handle the complex dynamics and heavy con-

straints by using numeric methods. 

Disadvantage:  When we consider the dynamic programming problems, high 

dimensionality and need for large storage capacity in digital computer often 

produce severe difficulty in computation. 

• Nonlinear programming 

Advantage:  This method can also handle the complex dynamics and heavy 

constraints. In addition, it doesn't need for large storage capacity in digital 
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computer. 

Disadvantage: When the number of the stages in the problem is increased, the 

constraints are also increased proportionally. This makes the computation 

more complicated. 

1.4 Successive Approximation Algorithm 

The successive approximation algorithm [3] is developed from the two-stage algorithm 

[9]. Both of them adopt the same principle; that is the two algorithms deal with the 

problems considering only two stages in each iteration. Among many techniques to 

tackle the difficulty of high dimensionality when the dynamic programming problems 

are considered, the two-stage algorithm is the most efficient, conceptually simple and 

easy to implement. 

For solving the optimal control problems, the two-stage algorithm applys the 

theory of the classic dynamic programming which is Bellman's principle of optimal-

ity [6]. By using the Bellman's principle of optimality, Howson and Sancho [9] have 

proved that the two-stage algorithm is convergent if the criterion function of a prob-

lem is strictly convex and if the dynamics can be inverted so that control was a 

function of state. On the other hand, the successive approximation algorithm does 

not apply the theory of the dynamic programming but applys the theory of the non-

linear programming. In this study, we can prove that by using the theory of the 

nonlinear programming, the successive approximation algorithm can solve a class of 

deterministic multistage decision problems with equality and inequality constraints on 

both state and control variables and with a general performance index that can cover 

both separable and nonseparable objective functions. Therefore, we can say that the 

successive approximation algorithm is different from the two-stage algorithm. 

Although the successive approximation algorithm is different from the two-stage 

algoritm, it still preserves the advantages of the two-stage algorithm. For example, 
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it can also tackle the difficulties of the classic dynamic programming problems. In 

addition, because the algorithm deals with the problems considering only two stages in 

each iteration, the constraints will remain invariant when the computation proceeds. 

In the next chapter, we will describe the proposed algorithm and discuss the 

convergence and optimality of this algorithm. 

1.5 Previous Works in Motion Planning Problem  

The motion planning problems have been extensively discussed by many researchers. 

In the earlier days, most planners did not account for the dynamics of the manipu-

lators, mainly because of the highly nonlinear and coupled nature of the dynamics 

and several constraints imposed on the system. They deal with only the geometric 

problems in the environment, such as the shortest path. This kind of problems have 

been widely researched and some results have been reported [10,11,12]. 

By using the Pontryagin's minimum principle, Kahn and Roth [13] studied the 

minimum time planning problem. They simplified this problem by considering the 

manipulator travelled from an initial point to a target point with the maximum 

torques/forces which were assumed to be constant. Niv and Auslander [14] applied 

the minimum principle to a more general problem which included the state and control 

constraints of the form.  

They simplified the problem by assuming that for the minimum time problem, the 

control would be extremal (bang-bang) all the time and the only unknowns would be 

the switching time for each joint actuator. Then the only task is to find the switching 

time for each joint actuator. 

By using the dynamic programming, Shin and Mckay [15] applied this method to 

the paths which could be parameterized. Singh [8] applied this method to the general 

motion planning problems which are described in Section 1.2. In his study, he solved 



8  

the minimum time, minimum energy and weighted time and energy minimization 

problems for the manipulators of one, two or three links. 

An attempt to introduce optimal planning with obstacle avoidance was made in 

Dubowsky et al [2]. Singh and Leu [16] used the distance function approach to solve 

the motion planning problem with obstacle avoidance. They first applied the dynamic 

programming to get a coarse solution and applied the nonlinear programming to get 

the accurate solution. But when the nonlinear programming was considered, there 

were more than three hundred constraints imposed on the system. They used the 

active set strategy to reduce the inequality constraints, but the maximum number of 

the inequality constraints at any time during the search was 36. 

1.6 Summary  

Robots are the most popular and primary tools for automation in industries. Many 

researchers have devoted themselves to robotic research. One of the most important 

topics in the robotic research is the motion planning problem which is considered as 

a classic optimal control problem. However, due to the highly nonlinear and coupled 

dynamics of the manipulator and several constraints imposed on the system, most of 

the methods are extremely difficult to solve this kind of problems. In this study, we 

propose a successive approximation algorithm to solve the motion planning problem 

and this method is efficient, conceptually simple and easy to implement. 

This thesis is organized as follows. Chapter 2 will describe the successive ap-

proximation algorithm and discuss the convergence and optimality of this algorithm. 

Chapter 3 will implement on an optimal control problem to explain the algorithm. 

Chapter 4 will simulate on the robotic manipulators. Chapter 5 will present our 

conclusions and some remarks for future research directions. 



(2.1) 

(2.2) 

(2.3) 

(2.4) 

and 

(2.5) 

CHAPTER 2 

SUCCESSIVE APPROXIMATION ALGORITHM  

2.1 Discrete Approximation of the Continuous system  

In Chapter 1, we have metioned that the motion planning problem can be consid-

ered as the optimal control problem which is formulated as Equations (1.1)-(1.6). In 

order to apply the numeric methods to solving this kind of problems, we must con-

vert a continuous system into a discrete system. This can be done by decomposing 

the time interval [0,T] into N intervals, and the discrete points may be defined as 

{t0, t1, . . . , t N},  where 

0 = t0  < t1  < . . . < t N  = T. 

Then the discrete optimal control problem can be formulated as follows: [1,3,4] 

The performance measure 

subject to the dynamics 

and the constraints 

In order to simplify these formulas, we assume 

9  



(2.6) 

(2.7) 

(2.9) 

(2.10) 
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Substituting Equation (2.4) into (2.1) and (2.5) into (2.2), the overall discrete optimal 

control problem can be reformulated as follows: 

The performance measure 

subject to the dynamics 

and the constraints 

where 

k = 0,1, . . . 	, N, 	(2.8) 

h : Rn  →  R 

l : Rn  →  R 

Vd  : Rn  ×  Rm  ×  R →  R 

Fd  : Rn  ×  Rm  ×  R → Rn  gp : Rn × Rm × R → 

R 

hq  : Rn  ×  Rm  ×  R → R 

and 



It should be noted that in the continuous system, is a vector function, but in 

the discrete system, the state is a finite dimensional vector which is given by 

11  

Similarly, the control vector Ū  is given by 

Ū  = {ū(0), ū(1), . . . , ū(N — 1)} ϵ  RmN 	 (2.12) 

For the variable-time problems where the final time T is not fixed, the control vector Ū 

 should be 

Ū  = {u0(0), u1(0),..., um(0),...,u0(N  — 1), u i ( N  — 1),...,um (N — 1), 

δt(0), δt(1), . . . , δt(N  — 1)} ϵ  R(m+1)N (2.13) 

 

 

2.2 The Successive Approximation Algorithm  

Consider the following deterministic multistage decision problem, which minimize the 

following general performance index 

and satisfy the dynamics and constraints 

where 



(i) Arbitrarily select 

(2.15) 

12 

k= 0, 1, . . . , N , 

Notice that the Equation (2.14) includes the Equation (2.6). 

If a trajectory satisfies the dynamics (2.7) and constraints (2.3), then the tra- 

jectory is called to be feasible, and we define 

Successive Approximation Algorithm:  [3] 

and set i = 0, k = 0. 

(ii) CASE I: Solve the following nonlinear subproblem (N LP)ik  

subject to 

Here the superscript i means that the values of the variables are to be fixed 

in the ith iteration. Assuming û(k — 1), .i(k) and ft (k) are the optimal so- 

lutions of this nonlinear subproblem, set iii (k — 1) = û(k — 1), 	(k) = x(k) 

and k = k 1. 



CASE II: If in case I, the values of the vectors ū(k — 1), and ū(k) have 

min 

(2.16) 

and û(k+1) are the optimal solutions of Assumming û(k - 1) 1), 

13 

only one possibility; i.e. these values are also to be fixed, then we can extend 

the subproblem (N LP)ik for one more stage as follows 

subject to 

this nonlinear subproblem, set ūi(k —1) = û(k -1),  and k k +1. 

CASE III: If in case II, the values of the vectors ū(k-1),:i.(k), ū(k), -±(k+1) and 

ū(k + 1) are also to be fixed, then we can continuously extend the subproblem 

(N LP)ik  for one more stage until these vectors can be varied. 

(iii) When k = N 1 in case I or k = N in case II, set  i 	i +1, k 	0 

and go to (ii); otherwise go to (ii) directly. 

If 	denotes the value of criterion function at the end of the ith iteration, the 

algorithm may terminate when IJi+1  — Jil < s, where E > 0 is small enough and 

preselected. 



(2.17) 

(2.18) 

(2.15) 

(2.19) 

(2.16) 

sequence can be obtained. Obviously, and 

14  

When the criterion function J takes the form 

we can use the following function 

instead of the function 

for case I or use the following function 

instead of the function 

for case II, to solve the nonlinear subproblem (NLP)ik. By this technique, a trajectory 

Here we can see that the original problem is decomposed into a group of simple 

subproblems and in case I each subproblem (NLP )ik  contains only one state vector 

and two control vectors ū(k - 1), ū(k); in case II each subproblem (NLP)ik  

contains only two state vector  and three control vectors ū(k - 1), ū(k), 

ū(k + 1). After understanding the idea of this algorithm, it is not difficult to give a 

more general procedure in which a problem can be broken into a group of subproblems; 

each of them may contain more than two state vectors or three control vectors and 

the number of state or control vectors in one subproblem may differ from that in 

another subproblem. 



is denoted by For 

For let 

The closed cone of tangents of a nonempty set A  at ϵ  A  is defined as 

15  

2.3 Discussions on Constraint Qualification  

In this section, we discuss a constraint qualification for the constraints belonging to 

S( k). This constraint qualification is used in Section 2.4 to show the convergence and 

optimality of the proposed algorithm. In the following, a trajectory W is treated as 

a point in R(n+m)( N+1)  when needed. 

First, some symbols and definitions are given below. 

where 

where 

k=0,1,...,N 

and 
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The positively normal cone of set A  is 

The following theorem explains the relationship between the holding for the 

global problem constraint qulification and that for every subproblem constraint quli-

fication. 

Theorem 2.1  For  the constraint qualification of the global problem (NLP)  

holds; i.e. 

if and only if the constraint qualification of every subproblem (NLP)k  holds; 

i.e. 

The proof of this theorem is similar to that in [17]. Here we omit the proof to 

avoid repetition. 

2.4 Convergence and Optimality Analysis  

In this section, we present the theorems of the convergence and optimality of the 

successive approximation algorithm. 

First, considering the nonlinear programming theory [7], for  the holding 

of the Kuhn-Tucker conditions of the problem discussed here means that there exist 

vectors λp  and βq  such that 

where 
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Similarly, if is a Kuhn-Tucker point of the subproblem 

min 

Then, the is a Kuhn-Tucker point of the global problem if 

and only if the is a Kuhn-Tucker point for every subproblem (NLP)k ; k = 

(ii) For and any real number a, set is bounded; 

k = 0,1, . . ., N,  

it holds that there exist λp  and βq  such that 

k= 0, 1, . . . , N. 

The following theorem indicates the relationship between a global Kuhn-Tucker 

point and those of subproblems (NLP)k.  

Theorem 2.2  Suppose that J,gp,hq  are continuously differentiable and, for 

D, the constraint qualification of the global problem holds; i.e. 

0, 1, . . ., N. 

Once again, the proof of this theorem is similar to that in [3]. We omit the proof 

to avoid repetition. 

According to the Theorem 2.1 and 2.2, we can easily prove the Theorems 2.3 

-2.5 by using the method similar to that in [17]. These theorems are described as 

follows: 

Theorem 2.3  Suppose that the following conditions are satisfied 

(i)  The solution to every subproblem (NLP)k  is unique; 



(a) is feasible; 

(c) If at 

holds, then is a Kuhn—Tucker point of the problem ( NLP). 

is pseudoconvex in then, for any is an optimum of the problem 

defined by (2.6),(2.7),(2.3) and converges to 

(iii) J,gp  and hq  are continuously differentiable over D. 

18  

Then, for the sequence 

sions hold.  

produced by the algorithm, the following conclu- 

(b) The accumulation point set, denoted by P, of  is not empty; 

the constraint qualification for the Kuhn—Tucker conditions 

Theorem 2.4  Suppose that the assumptions in Theorem 2.3 hold. If, in addition, 

every gp  is quasiconcave, every  hq  is both quasiconcave and quasiconvex, and J 

Theorem 2.5  Suppose that the constraint qualification and the conditions (ii) and 

(iii) in Theorem 2.3 hold. If, in addition, every gp  is quasiconcave and ev-

ery hq  is both quasiconcave and quasiconvex, J is strictly pseudoconvex, then, 

the sequence  converges to the unique optimum of the problem defined by 

(2.6),(2.7),(2.3). 

From Theorem 2.3, we know that the proposed algorithm is convergent un-

der certain conditions. Besides, according to the Theorem 2.4 and 2.5, generalized 

convexity will ganranutee that an optimum can be obtained by the algorithm.  



(3.1) 

(3.2) 

(3.3) 

CHAPTER 3 

IMPLEMENTATION ON AN OPTIMAL 

CONTROL PROBLEM  

3.1 Description of the Problem  

In this chapter we will take an optimal control problem to illustrate the successive 

approximation algorithm. This problem is a simplified optimal control problem. Con-

sider a car which is driven in a straight line from point 0 at time 0 to point E at time T. 

The distance between the two points is 1000 meters. The maximum speed of the car 

is 20 meters/second and the maximum acceleration of the car is ±1 meter/second2. 

This problem is shown in Figure 3.1. 

In this problem we will consider three different situations — the minimum time 

problem, the minimum quadratic acceleration problem and the weighted time and 

quadratic acceleration minimization problem. Each situation can explain some special 

features for the successive approximation algorithm. Certainly, this algorithm can 

also solve the problem with a more general performance index such as non-separable 

function. 

According to the Section 1.2, we can formulate this problem as follows: [4,8} 

The performance measures 

(1) for minimum time problem: 

(2) for minimum quadratic acceleration problem: 

(3) for weighted time and quadratic acceleration minimization problem: 
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Figure 3.1  An Optimal Control Problem. 

subject to the dynamics 

ẋ(t) = υ(t), 	(3.4)  

and the constraints 

0 ≤ υ(t ) ≤ 20, 	 (3.6) 

- 1 ≤ a(t )  ≤  1, 	 (3.7) 

where 

0 ≤ t  ≤ T 

and 

x : the position of the car, 

υ  : the velocity of the car, 

a  : the acceleration of the car. 

λ  : any positive real number, 

In addition, the boundary conditions for this problem are 

x(0) = 0, υ(0) = 0, 	 (3.8) 

x (T )  = 1000, υ(T )  = 0, 	 (3.9) 

which will be included in the constraints.  



(3.10) 

(3.11) 

(3.12) 
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In order to apply the numeric methods to solving this problem, we must convert 

this system into a discrete system (refer to the Section 2.1 for detail). Then the 

discrete optimal control problem can be formulated as follows: 

The performance measures 

(1)  for minimum time problem: 

(2)  for minimum quadratic acceleration problem: 

(3)  for weighted time and quadratic acceleration minimization problem: 

subject to the dynamics 

x (k + 1) = x (k ) + υ( k )  ×  δt( k ); 	 (3.13) 

υ(k + 1) = υ(k) + a( k)  ×  δt ( k); 	 (3.14)  

k = 0, 1, . . ., N  - 1 

and the constraints 

0 ≤ υ(k) ≤  20; k = 0, 1, . . ., N, 	 (3.15) 

- 1 ≤ a(k) ≤ 1; k = 0, 1, . . . , N - 1, 	(3.16) 

x(0) = 0, υ(0) = 0, 	 (3.17) 

x ( N ) = 1000, υ(N) = 0. 	 (3.18) 

For the variable-time problems, the time interval δt ( k ) will be considered as a 

control variable. Then the control vector for this problem should include the acceler-

ation and the time interval and the state vector for this problem should include the 



(3.19) 

(3.20) 

(3.21) 
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position and the velocity. These vectors can be expressed as follows: 

In the next three sections, we will solve the three different situations by using 

the successive approximation algorithm respectively. 

3.2 The Minimum Time Problem 

3.2.1 Formulation of the Problem  

According to the last section, the minimum time problem can be formulated as follows: 

The performance measure 

subject to the dynamics 

x1(k  + 1) = x1(k ) + x2( k ) ×  u2 (k ); 	 (3.22) 

x2( k  + 1) = x2 (k) + u1(k) ×  u2 ( k); 	 (3.23) 

k = 0, 1, . . ., N  - 1 

and the constraints 

0 ≤ x2(k ) ≤ 20; k  = 0, 1, . . . , N, 	(3.24) 

- 1 ≤ u1(k) ≤ 1; k  = 0, 1, . . ., N - 1, 	 (3.25) 

	

x1(0) = 0, x2(0) = 0, 	 (3.26) 

x1(N) = 1000, x2(N) = 0. 	(3.27) 

Notice that the performance measure in this problem matchs with the Equation 

(2.17). Therefore, we can use the Equation (2.18) instead of (2.15) to solve this 

problem. In addition, we will solve three different stage numbers (N = 6, N = 11 



min  (3.28)  
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and N  = 21)  to compare their results. 

3.2.2 The Procedure for Solving the Minimum Time Problem  

In this subsection, we will show how to apply the successive approximation algorithm 

to solving this problem. 

First consider the stage number N is equal to 6. 

Step 1:  Arbitrarily select an initial feasible sequence  

and set i = 0, k = 0.  

Step 2:  Solve the following nonlinear subproblem for the zeroth iteration  

where we use the Equation (2.18) instead of (3.28); i.e. 

min J0 = u2 (0), 

subject to  

= x1(0) + x2 (0) ×  u2 (0), 

= x2(0) + u1(0) ×  u2 (0),  

0 ≤ x2(0) ≤ 20, 

-1 ≤ u1(0) ≤ 1, 

x1(0) = 0, x2(0) = 0,  



min  

Assuming û(0), and û(1) are the optimal solutions of this nonlinear sub- 

problem, set and k = 2. 

min 
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where the superscript 0 means that in the zeroth iteration, the values of these 

variables are to be fixed and given. Assuming  and û(0) are the optimal 

solutions of this nonlinear subproblem, set and k = 1.  

Step 3:  Solve the following nonlinear subproblem for the zeroth iteration 

or 

min J0  = u2 (0) + u2(1), 

subject to 

= x1(1) + x2 (1) ×  u2 (1), 

= x2(1) + u1(1) ×  u2 (1), 

-1 ≤ u1(0) ≤ 1, 

0 ≤ x2(1) ≤ 20, 

-1 ≤ u1(1) ≤ 1. 

Continue this procedure by increasing k = k + 1 for each step. 

Step 8:  Solve the following nonlinear subproblem for the zeroth iteration 



Assuming û(5) and are the optimal solutions of this nonlinear subproblem, 

set 

min 

and û(0)  are the optimal solutions of this nonlinear subproblem, Assuming 

⁝ 

and k = 1. set 
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or 

min  J0  = u2 (5), 

subject to 

-1 ≤ u1(5) ≤ 1, 

0 ≤ x2(6) ≤ 20, 

x1 (6) = 0, x2(6) = 0. 

and i = 1, k = 0; go to the next iteration. 

Step 9:  Solve the following nonlinear subproblem for the first iteration 

or 

min J1  = u2 (0), 

subject to 

= x1(0) + x2 (0) x u2 (0), 

= x2(0) + u1 (0) x u2 (0), 

0 ≤ x2(0) ≤ 20, 

—1 ≤ u1(0) ≤ 1, 

x1(0) = 0, x 2(0) = 0. 



min  

or 

min  

x1(6) = 

x2(6) = 

Assuming û(5) and are the optimal solutions of this nonlinear subproblem, 

set 

otherwise, continue this procedure 
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Step 15:  Solve the following nonlinear subproblem for the first iteration 

subject to 

-1 ≤ u1(5) ≤ 1, 

0 ≤ x 2(6) ≤ 20, 

x1(6) = 0, x2(6) = 0. 

and i = 2, k = 0; go to the next iteration. 

When we accomplished each iteration, check |Ji+1  - Ji|  is less than ε or not, where 

ε > 0 is small enough and preselected. If |Ji+1 

 - J

i|  < ε, then the algorithm may be 

terminated and get the optimum sequence 

until |Ji+1 

 - J

i|  <  ε. 

According to the Theorem 2.3-2.5, we know that the optimum sequence 

for this problem is feasible and converges to the unique optimum sequence. 

For the stage number N = 11, we select the initial feasible sequence as 



(3.29) 

(3.30) 
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For the stage number N = 21, we select the initial feasible sequence as 

A single precision Fortran 77 program which applies the successive approxima-

tion algorithm to solving the minimum time problem for N  = 6 is shown in Ap-

pendix A. The program is executed on the VAX6430 computer running the VMS 5.3 

operating system at New Jersey Institute of Technology. The subroutine NCONF 

in the IMSL's Math/Library [18] is selected to solve each nonlinear subproblem in 

the algorithm. NCONF uses a successive quadratic programming method to solve 

the general nonlinear programming problems. Certainly, other existing subroutines 

which can solve nonlinear programming problems can also be selected to solve each 

nonlinear subproblem in the algorithm. 

3.2.3 Computational Results  

The results for the minimum time problem are almost perfect. This problem is a 

bang-coast-bang control problem. According to the results, the optimal control pol-

icy for the minimum time problem is that the car applies the maximum acceleration 

1 m/sec2  until it attaines the maximum velocity 20 m/sec at the beginning and re-

maines this velocity to save the elapsed time until it applies the maximum deceleration 

—1 m/sec2  and stops at the point E. 

The continuous time solution for this problem is list as follows: [41 



(3.31) 
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Tables 3.1, 3.2 and 3.3 show the results of the minimum time problem for the 

stage numbers N = 6, N = 11 and N = 21, respectively. Figures 3.2, 3.3 and 3.4 

show the optimum positions, the optimum velocities and the optimum accelerations 

for the minimum time problem, respectively. 

Notice that for the variable-time problems, the algorithm tends to "stretch" 

some time intervals and "compress" others. For example, in the Table 3.1 the time 

interval of the fourth stage is compressed to 0. This makes the fourth stage do not 

exist practically. This effect is very similar to that of the nonlinear programming. [1] 

In addition, there are some errors in the fourth stage and sixteenth stage of 

the minimum time problem for N = 21. The accelerations of the fourth stage and 

sixteenth stage should be 1 and -1 respectively but they have only 0.543 and -0.646 

respectively. These errors are caused by the limited accuracy for solving each nonlin-

ear subproblem. If we increase the accuracy of each nonlinear subproblem, then we 

can obtain the more accurate results for the global problem. 



Table 3.1  Results of the Minimum Time Problem for N = 6. 

Stage No. Time Interval 
(seconds) 

Position 
(meters) 

Velocity 
(m/sec) 

Acceleration 
(m/sec2) 

0 14.143 0 0 1 
1 5.857 0 14.143 1 
2 15.845 82.834 20 0 
3 10 399.730 20 0 
4 0 - - - - - - - - - 
5 20.014 599.730 20 -0.999 
6 

- - - 
1000 0 - - - 

The total travel time is 65.858 seconds. 

Analytic optimal J = 70. 

Approximative optimal J = 65.858. 
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Table 3.2  Results of the Minimum Time Problem for N = 11. 

Stage No. Time Interval 
(seconds) 

Position 
(meters) 

Velocity 
(m/sec) 

Acceleration 
(m/sec2) 

0 10 0 0 1 
1 7.320 0 10 1 
2  2.261 73.205 17.320 1 
3 0.418 112.372 19.582 1 
4 8.972 120.561 20 0 
5 5 299.998 20 0 
6 5 399.989 20 0 7 

5 499.989 20 0 
8 5 599.989 20 0 
9 10.001 699.989 20 -1  

10 10 900 10 -1  
11 - - - 1000 0 - - - 

The total travel time is 68.972 seconds.  

Analytic optimal J = 70. 

Approximative optimal J = 68.972. 
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Table 3.3  Results of the Minimum Time Problem for N = 21. 

Stage No. Time Interval 
(seconds) 

Position 
(meters) 

Velocity 
(m/sec) 

Acceleration 
(m/sec2) 

0 7.071 0 0 1 
1 4.184 0 7.071 1 

2 1.644 29.589 11.256 1 
3 3.550 48.095 12.900 1 
4 6.532 93.894 16.450 0.543 
5 0.883 201.349 20 0.002 
6  1.546 219.013 20 0 
7 5.169 249.927 20 0 
8 0.781 353.299 20 0.001 
9 1.562 368.918 20 0 

10 5.157 400.160 20 0 
11 0.781 503.298 20 
12 1.562 518.919 20 
13 5.157 550.159 20 
14 0.781 653.298 20 0.001 
15 1.562 668.919 20 0 
16 5.100 700.159 20 -0.646 
17  1.040 802.156 16.703 -1  
18 0.507 819.529 15.663 -1 
19  8.079 827.468 15.156 -1 
20 7.077 949.917 7.077 -1 
21 - - - 1000 0 - - - 

The total travel time is 69.726 seconds.  

Analytic optimal J = 70. 

Approximative optimal J = 69.726. 
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Figure 3.2 Optimum Positions for the Minimum Time Problem. 
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Figure 3.3 Optimum Velocities for the Minimum Time Problem. 
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Figure 3.4  Optimum Accelerations for the Minimum Time Problem. 
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3.3 The Minimum Quadratic Acceleration Problem 

3.3.1 Formulation of the Problem 

The minimum quadratic acceleration problem is not a variable-time problem where 

the total travel time T is to be fixed and the time interval of each stage should also 

be fixed to T/N seconds. Here we arbitrarily select the final time T = 100 seconds 

and the time interval of each stage should be fixed to 100/N seconds. According to 

the Section 3.1, the minimum quadratic acceleration problem can be formulated as 

follows: 

The performance measure 

subject to the dynamics 

x1(k + 1) = x1(k) + x2(k) x 100/N; 	(3.33) 

x2 (k + 1) = x2 (k ) + u1(k )  x 100/ N ; 	 (3.34) 

k = 0,1,..., N - 1 

and the constraints 

0 ≤ x2( k ) ≤ 20; k  + 0, 1, . . ., N, 

—1 < u1 ( k ) < 1; k  = 0, 1, . . ., N  - 1, 

x1(0) = 0, x 2(0) = 0, 

x1(N) = 1000, x2(N) = 0. 

Notice that the performance measure in this problem is also matchable to the 

Equation (2.17). However, we will use the Equation (2.19) instead of (2.16) to solve 

this problem. In addition, the time interval of each stage is fixed to 100/ N  seconds. 

Therefore, the control vector should exclude the time interval u2(k) and include the 

acceleration u1(k) only. 



subproblems, we will quickly find that the values of the vectors and 

where the values of the variables 

by: 

are to be fixed and given 
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In this section, we will also solve three different, stage numbers ( N  = 6, N  = 11 

and N  = 21) for comparison. 

3.3.2 Special Remark for the Problem  

For this problem, we cannot use Case I in the successive approximation algorithm to 

solve each nonlinear subproblem. Because when we use Case I to solve the nonlinear 

ū(k)  are also to be fixed; that means their values have only one possibility. Then we 

must use Case II instead of Case I to solve this problem. 

	

For example, consider the following nonlinear subproblem 

subject to 

-1 ≤ u1(0) ≤ 1, 

0 ≤  x2(1) ≤  20, 

-1 ≤ u1(1) ≤ 1. 
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Then we will quickly find that the values of the other variables u1(0), x1(1), x2(1) and 

u1(1) are also to be fixed; that means the values of these variables have only one 

possibility; i.e. 

u1(0) = 0.48, u1(1) = 0.4, 

x1(1) = 0, x2(1) = 8. 

Therefore, we cannot use Case I to find the optimal solution for this subproblem and 

we must use Case II instead of Case I to solve this problem. 

3.3.3 Computational Results  

The results for the minimum quadratic acceleration problem present the continuous 

time functions. In order to minimize the quadratic acceleration and accomplish this 

travel in the fixed time, the car applies the acceleration 0.6 m/sec2  at the beginning 

and reduces the acceleration to —0.6 m/sec2  linearly until it stops at the point E. 

The continuous time solution for this problem is list as follows: [4] 

x1(t )  =  -0.002t3 + 0.3t 2 , 	 (3.35) 

x 2 (t )  = -0.006t2 + 0.6t , 	 (3.36) 

u1(t) = -0.012t + 0.6, 	(3.37) 

where 

0 ≤ t ≤ 100. 

Tables 3.4, 3.5 and 3.6 show the results of the minimum quadratic acceleration 

problem for the stage numbers N = 6, N = 11 and N = 21, respectively. Figures 3.5, 

3.6 and 3.7 show the optimum positions, the optimum velocities and the optimum 

accelerations for the minimum quadratic acceleration problem, respectively. 



Table 3.4 Results of the Minimum Quadratic Acceleration Problem for N = 6. 

Stage No. Position 
(meters) 

Velocity 
(m/sec) 

Acceleration 
(m/sec2) 

0 0 0 0.514 
1 0 8.570 0.311 
2 142.833 13.756 0.108 
3 372.096 15.557 -0.110 
4 	631.386 13.726 -0.320  
5 860.151 8.391 -0.503 
6 1000 0 - - - 

The time interval for each stage is 16.667 seconds. 

Analytic optimal J = 12. 

Approximative optimal J = 12.348. 
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Table 3.5  Results of the Minimum Quadratic Acceleration Problem for N = 11. 

Stage No. Position 
(meters) 

Velocity 
(m/sec) 

Acceleration 
(m/sec2 ) 

0 0 0 0.596 
1 0 5.421 0.430 
2 49.284 9.328 0.286 
3 134.085 11.930 0.169 
4 242.538 13.467 0.091 
5 364.962 14.290 0.012 
6 494.874 14.401 -0.068 
7 625.789 13.781 -0.166 
8  751.074 12.269 -0.295 
9 862.614 9.584 -0.446 

10 949.746 5.528 -0.608 
11 1000 0 - - - 

The time interval for each stage is 9.091 seconds. 

Analytic optimal J = 12. 

Approximative optimal J = 12.250. 
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Table 3.6 Results of the Minimum Quadratic Acceleration Problem for N = 21. 

Stage No. Position 
(meters) 

Velocity 
(m/sec) 

Acceleration 
(m/sec2 ) 

0 0 0 0.762 
1 0 3.631 0.604 
2 17.289 6.506 0.464 
3 48.271 8.713 0.341 
4 89.764 10.339 0.238 
5 138.997 11.474 0.154 
6 193.633 12.209 0.091 
7 251.771 12.644 0.046 
8 311.980 12.862 0.025 
9 373.226 12.979 0.004 

10 435.031 12.996 0.006 
11 496.916 13.026 0.012 
12 558.942 13.084 -0.002 
13 621.248 13.074 -0.037 
14 683.505 12.899 -0.090 
15 744.929 12.469 -0.162 
16 804.307 11.696 -0.250 
17 860 10.507 -0.363 
18 910.032 8.779 -0.476 
19 951.835 6.511 -0.610 
20 982.838 3.604 -0.757 
21 1000 0 - - - 

The time interval for each stage is 4.762 seconds. 

Analytic optimal J = 12. 

Approximative optimal J = 13.197. 
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Figure 3.5  Optimum Positions for the Minimum Quadratic Acceleration Problem. 
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Figure 3.6  Optimum Velocities for the Minimum Quadratic Acceleration Problem. 



43  

Figure 3.7  Optimum Accelerations for the Minimum Quadratic Acceleration 
Problem. 
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3.4 The Weighted Time and Quadratic Acceleration 
Minimization Problem  

According to the minimum time problem and minimum quadratic acceleration prob-

lem, we can conjecture that the quadratic acceleration is almost inversely propor-

tional to the elapsed time. One technique for handling this situaion is to include 

both elapsed time and quadratic acceleration in the performance measure which has 

been shown in Equation (3.3). For λ → 0 the optimal system will resemble a free-

final-time, quadratic-acceleration-optimal control problem, whereas for λ → ∞ the 

optimal system will resemble a time-optimal control problem. For this problem we 

arbitrarily choose λ  = 1 and according to the Section 3.1, the weighted time and 

quadratic acceleration minimization problem can be formulated as follows: 

The performance measure 

subject to the dynamics 

x1(k  + 1) = x1(k) + x2(k ) × u2(k); x2(k  + 1) = x2(k) + x2(k ) × u2(k); 

k = 0, 1, . . . , N - 1 

and the constraints 

0 ≤ x2( k ) ≤ 20; k  = 0, 1, . . . , N, 

-1 ≤ u1(k) ≤ 1; k  = 0,1, . . . , N  - 1, 

x1(0) = 0, x2(0) = 0, x1

( N ) = 1000, x2( N ) = 0. 

Because this problem is also a variable-time problem, we will consider the control 

vector as 

ū(k) = [u1(k),u2(k)]T; k  = 0, 1, . . . , N  - 1  
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and the state vector as 

From the results of this problem, we can know that this car applies the maximum 

acceleration 1 m/sec2  at the beginnig and reduces the acceleration to -1 m/sec2  

linearly to minimize the elapsed time and quadratic acceleration until it stops at the 

point E. 

The continuous time solution for this problem is list as follows: [4] 

x1(t ) = —0.0043t3 + 0.5t 2 , 	 (3.39) 

x2 (t ) = —0.0129t 2 + t , 	 (3.40)  

u1(t) = —0.0258t + 1, 	(3.41) 

where 

0 ≤ t ≤ 77.460. 

Tables 3.7, 3.8 and 3.9 show the results of the weighted time and quadratic ac-

celeration minimization problem for the stage numbers N  = 6, N  = 11 and N = 21, 

respectively. Figures 3.8, 3.9 and 3.10 show the optimum positions, the optimum 

velocities and the optimum accelerations for the weighted time and quadratic accel-

eration minimization problem, respectively. 
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Table 3.7  Results of the Weighted Time and Quadratic Acceleration Minimization 
Problem for N  = 6. 

Stage No. Time Interval 
(seconds) 

Position 
(meters) 

Velocity 
(m/sec) 

Acceleration 
(m/sec2) 

0 7.875 0 0 1 
1 9.014 0 7.875 0.731 
2 10.073 70.985 14.460 0.454 
3 20.134 216.648 19.034 -0.083 
4 0 - - - - - - - - - 
5 23.056 599.863 17.355 -0.753 
6 - - - 1000 0 - - - 

The total travel time is 70.153 seconds. 

Analytic optimal J = 103.241. 

Approximative optimal J = 98.118. 
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Table 3.8  Results of the Weighted Time and Quadratic Acceleration Minimization 
Problem for N  = 11. 

Stage No. Time Interval 
(seconds) 

Position 
(meters) 

Velocity 
(m/sec) 

Acceleration 
(m/sec2) 

0 5.562 0 0 1 
1 6.335 0 5.562 0.801 
2 6.836 35.239 10.640 0.592 
3 6.074 107.971 14.688 0.427 
4 11.714 197.187 17.281 0.100 
5 5.421 399.627 18.458 -0.037 
6 5.478 499.692 18.258 -0.174 
7 5.780 599.712 17.303 -0.317 
8 6.472 699.731 15.469 -0.475 
9 0 - - - - - - - - - 

10 16.146 799.855 12.396 -0.768 
11 - - - 1000 0 - - - 

The total travel time is 75.820 seconds. 

Analytic optimal J = 103.241. 

Approximative optimal J = 100.806. 
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Table 3.9  Results of the Weighted Time and Quadratic Acceleration Minimization 
Problem for N = 21. 

Stage No. Time Interval 
(seconds) 

Position 
(meters) 

Velocity 
(m/sec) 

Acceleration 
(m/sec2) 

0 4.039 0 0 1 
1 4.566 0 4.039 0.861 
2 4.985 18.442 7.971 0.715 
3 7.864 58.176 11.534 0.447 
4 3.367 148.881 15.050 0.365 
5 3.073 199.550 16.279 0.291 
6 2.913 249.584 17.173 0.209 
7 2.813 299.605 17.781 0.141 
8 2.751 349.622 18.178 0.077 
9 2.719 399.634 18.391 0.016 

10 2.713 449.644 18.433 -0.044 
11 2.731 499.653 18.313 -0.104 
12 2.774 549.661 18.028 -0.165 
13 2.846 599.670 17.571 -0.227 
14 2.955 649.678 16.926 -0.292 
15 3.113 699.687 16.062 -0.362 
16 3.349 749.696 14.933 -0.440 
17 3.715 799.703 13.461 -0.527 
18 4.358 849.717 11.504 -0.628 
19 0 - - - - - - - - - 
20 11.423 899.855 8.767 -0.768 
21 - - - 1000 0 - - - 

The total travel time is 79.067 seconds.  

Analytic optimal J = 103.241. 

Approximative optimal J = 102.563. 
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Figure 3.8  Optimum Positions for the Weighted Time and Quadratic Acceleration 
Minimization Problem. 
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Figure 3.9  Optimum Velocities for the Weighted Time and Quadratic Acceleration 
Minimization Problem. 
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Figure 3.10  Optimum Accelerations for the Weighted Time and Quadratic 
Acceleration Minimization Problem. 
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3.5 Concluding Remarks 

In this section, we will conclude some remarks for appling the successive approxima-

tion algorithm. 

1. The error of the global nonlinear optimal control problem is proportional to 

the number of stages in the problem. For example, if the global nonlinear 

optimal control problem has 100 stages and the accuracy of each nonlinear 

subproblem is 10e  - 4, then the accuracy of the global nonlinear problem is 

100 ×  10e  - 4 = 10e  - 2. Therefore, if we want to increase the number of stages 

in the problem, we must increase the accuracy of each nonlinear subproblem 

proportionally. 

2. The computation time for solving the nonlinear optimal control problem is 

almost proportional to the number of stages in the problem.[3] According to 

the computational experience, the more the number of stages, the more the 

computation time. 

3. For the variable-time problems, the successive approximation algorithm tends 

to "stretch" some time intervals and "compress" others. This effect makes some 

stages disappear practically and has been explained in the Subsection 3.2.3. 

4. Because the discrete system is applied to the optimal control problem. We can 

conjecture that the larger the number of stages, the more accurate the results 

and the limiting case of infinite stages would yield the continuous time solution. 



joint and the state vector correspond to represent the vector 

CHAPTER 4 

SIMULATION ON ROBOTIC MANIPULATOR  

4.1 The Motion Planning Problem  

In Chapter 1, we have stated that the most important and difficult part for the 

motion planning problem is the dynamics describing the manipulator. Considering a 

n-degree-of-freedom manipulator, the dynamics of the manipulator can be calculated 

by iterative Newton-Euler dynamics algorithm [20] or Lagrangian equation [19] and 

has the general form: [1,20] 

where  

: the position vector of the generalized coordinate; 

: symmetric inertia matrix; 

: coriolis and centripetal torque or force vector; 

: gravity torque or force vector; 

: torque or force vector. 

Assuming that the control vector u represents the torque/force applied at each 

of joint positions and velocities respectively. Then the state equations describing the 

dynamics of the system are given by: [19] 

where 

In addition, there are several inequality constraints imposed on the system. Typ-

ically, these inequality constraints include the limitations on the actuator torques/forces 
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and on the joint velocities. For the purpose of generality, these inequality constraints 

can be expressed as 

where the constraints on the joint velocities have been represented as functions of joint 

positions and the constraints on the actuator torques/forces have been represented 

as functions of joint velocities and positions . The constraints on the joint velocities 

are expressed independently with the torque/force constraints, because the motion of 

the manipulator can become unstable at high speeds. 

The performance measure to be minimized can be expressed as 

For the minimum time problems, 

Then the overall motion planning problem can be formulated as follows: 

The performance measure 

subject to the dynamics 

and the constraints 

where 
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4.2 Simulation on One-Link Manipulator  

Figure 4.1  One-Link Manipulator. 

The one-link manipulator is shown in Figure 4.1, where the manipulator can arbitrar-

ily rotate at the joint O and the link has unit length and unit mass. Suppose that the 

torque is applied at the joint O and the gravity is applied along the inverse direction 

of the y-axis. Then the dynamics describing the system can be calculated as: [19,20] 

In this system, we assume the maximum angular velocity for this manipulator 

is ±30 degrees/second and the maximum torque available for this manipulator is ±5 

Newton-meter. 

Here, we want the manipulator to start from the y-axis (θ  = 90°) and stop on 

the x-axis (θ  = 0°) in the minimum time and the overall motion planning problem 

for one-link manipulator can be formulated as follows: 

The performance measure 
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Table 4.1  Results of the Motion Planning Problem for One-Link Manipulator. 

Stage No. Time Interval 
(seconds) 

Position 
(degrees) 

Velocity 
(degs/sec) 

Torque 
(Newton-meter) 

0 0.087 90 0 —5 
1 0.338 90 —30 0 
2 0.505 79.845 —30 0.864 
3 0.487 64.706 —30 2.095 
4 0.487 50.105 —30 3.145 
5 0.371 35.496 —30 3.992 
6 0.812 24.363 —30 5 
7 - - - 0 0 --- 

The total travel time is 3.087 seconds. 

subject to the dynamics 

and the constraints 

—30 ≤ ω ≤ 30, 

—5 ≤ u  ≤ 5, 

θ(0) = 90, ω(0) = 0, 

θ(T ) = 0, ω(T )  = 0. 

Table 4.1 shows the results of the motion planning problem for one-link ma-

nipulator. The manipulator applies the maximum torque -5 Newton-meter at the 

beginning and attains the maximum velocity -30 degrees/second to save time. In 

order to remain this velocity, the torques must be applied at each place to balance 

the gravity which is along the inverse direction of y-axis. Finally, the manipulator 

uses the maximum torque 5 Newton-meter to stop on the x-axis. 
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4.3 Simulation on Two-Link Manipulator  

Figure 4.2  Two-Link Manipulator. 

The two-link manipulator is shown in Figure 4.2. The both links are assumed with 

unit lengthen and unit masses and link 2 is attached at the end of link 1. The link 1 

and link 2 can arbitrarily rotate at the joint 1 and joint 2, respectively. The gravity is 

also applied along the inverse direction of y-axis. Then the dynamics of the two-link 

manipulator can be calculated as: [19,20] 

From the Equations (4.8) and (4.9), we can know that the dynamics of the two-link 

manipulator is nonlinear and coupled differential equations and the more complex the 

manipulator, the more nonlinear and coupled the dynamics. 

The maximum angular velocity for link 1 is ±30 degrees/second and for link 2 is 

±45 degrees/second. The maximum torque available for link 1 is ±20 Newton-meter 

and for link 2 is ±10 Newton-meter. 
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In this problem, we also want the manipulator to start from the y-axis (θ1  = 

90°, θ2  = 0°) and stop on the x-axis (θ1  = 0°, θ2  = 0°) in the minimum time. However, 

there is a disk obstacle in the environment. The manipulator must avoid the obstacle 

to accomplish this task. The obstacle can be described in the Cartesian coordinate 

system by: 

( x  — 1.5)2  + (y  — 1.5)2  ≤  0.4842. 	 (4.10) 

In order to make sure the manipulator lies outside the obstacle, the obstacle 

avoidance conditions must be included in the motion planning problem. These con-

ditions can be obtained by using the method described in [1] for detail and list as 

follows: 

[cos  θ1  + 0.25 × cos(θ1  + θ2)]2  + [sin θ1  + 0.25 × sin(θ1  + θ2 )]2  — 0.52  ≥ 0, 	(4.11) 

[cos θ1  + 0.50 × cos(θ1 + θ2 )]2  + [sin θ1  + 0.50 × sin(θ1  + θ2)]2  — 0.52  ≥ 0, 	(4.12) 

[cos θ1  + 0.75 × cos(θ1 + θ2)]2  + [sin θ1  + 0.75 × sin(θ1  + θ2)]2  — 0.52  ≥ 0, 	(4.13) 

[cos θ1  + cos(θ1 + θ2 )]2  + [sin θ1  + sin(θ1  + θ2 )]2  — 0.52  ≥ 0. 	(4.14) 

Then the motion planning problem for two-link manipulator can be formulated as 

follows: 

The performance measure 

subject to the dynamics 
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and the constraints 

—30 ≤ ω1  ≤ 30, —45 ≤ ω2  ≤ 45, 

—20 ≤ u1  ≤ 20, —10 ≤ u2  ≤ 10, 

θ1(0) = 90, θ2(0) = 0, ω1(0) = 0, ω2 (0) = 0, 

θ1(T) = 0, θ2 (T ) = 0, ω1 (T ) = 0, ω2 (T) = 0, 

[cos θ1  + 0.25 × cos(θ1  + θ2)] 2  + [sin θ1  + 0.25 × sin(θ1  + θ2)]2  — 0.52  ≥ 0, 

[cos θ1  + 0.50 × cos(θ1  + θ2)]2  + [sin θ1  + 0.50 × sin(θ1  + θ2 )]2  — 0.52  ≥ 0, 

[cos θ1  + 0.75 × cos(θ1  + θ2 )] 2  + [sin θ1  + 0.75 × sin(θ1  + θ2 )]2  — 0.52  ≥ 0, 

[cos θ1  + cos(θ1 + 	θ2 )]2  + [sin θ1  + sin(θ1  + θ2 )]2  — 0.52  ≥ 0. 

Figure 4.3 shows the motion strategy of the two-link manipulator to avoid the 

disk obstacle. Tables 4.2 and 4.3 show the results of the motion planning problem for 

link 1 and link 2, respectively. 

Notice that the initial estimated trajectory is made by observation. First the 

link 2 is folded from 00  to —90° to avoid obstacle while the link 1 keeps stationary and 

then the link 1 is folded from 90° to 0° completely while holding the link 2 stationary. 

Finally, the link 2 is folded from —90° to 0° and stops on the x-axis. 
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Figure 4.3  Motion Strategy of the Two-Link Manipulator to Avoid Disk Obstacle. 



Table 4.2  Results of the Motion Planning Problem for Link 1. 

Stage No. Time Interval 
(seconds) 

Position 
(degrees) 

Velocity 
(degs/sec) 

Torque 
(Newton-meter) 

0 0.065 90 0 -16.043 
1 0 - - - - - - - - - 

2 0.419 90 0 0 
3 0.254 90 0 1.681 
4 0.274 90 0 2.624 
5 0.338 90 0 3.525 
6 0.215 90 0 -1.539 
7 0.311 90 -30 7.060 
8 0.563 80.682 -30 7.691 
9 0.476 63.794 -30 11.027 

10 0.522 49.525 -30 13.308 
11 0.604 33.854 -30 14.946 
12 0.191 15.738 -30 18.876 
13 0.224 10.005 -30 18.442 
14  0.545 3.278 -7.405 16.700 
15 0.033 -0.756 3.272 15.030 
16 0.836 -0.647 1.219 17.051 
17 0.402 0.372 -13.086 20 
18 0.401 -4.891 12.181 18.144 
19 - - -  0 0 - - - 
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The total travel time is 6.674 seconds. 



Table 4.3  Results of the Motion Planning Problem for Link 2. 

Stage No. Time Interval 
(seconds) 

Position 
(degrees) 

Velocity 
(degs/sec) 

Torque 
(Newton-meter) 

0 0.065 0 0 -10 
1 0 - - - - - - - - - 
2 0.419 0 -45 0 
3 0.254 -18.833 -45 1.582 
4 0.274 -30.250 -45 2.469 
5 0.338 -42.593 -45 3.316 
6 0.215 -57.809 -45 1.487 
7 0.311 -67.500 -45 5.917 
8 0.563 -81.476 -12.383 5.018 
9 0.476 -88.447 -2.479 4.374 

10 0.522 -89.626 -0.574 3.624 
11 0.604 -89.926 -0.117 2.600 
12 0.191 -89.997 -0.005 4.590 
13 0.224 -89.998 44.961 2.172 
14  0.545 -79.917 45 1.437 
15 0.033 -55.400 45 1.530 
16 0.836 -53.904 45 2.507 
17 0.402 -16.278 45 4.360 
18 0.401 1.817 -4.527 4.354 
19 - - -  0 0 - - - 
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The total travel time is 6.674 seconds. 
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4.4 Simulation on Six-Degree-of-Freedom Manipulator  

The six-degree-of-freedom manipulator is found in [19] and called Stanford Manip-

ulator which is described by Paul in detail. The joints of the manipulator are all 

rotational except joint 3 which is prismatic. Table 4.4 lists the link parameters for 

the Stanford Manipulator, where d2  and d3  are supposed to be 0.1524 and 1 meter, 

respectively. 

A simplified dynamics describing this system is given by: [19] 

The maximum velocities for link 1 through link 6 are arbitrarily selected as 

±

15, 

±20, ±0.3 (meter/second), ±30, ±35 and ±40 degrees/second, respectively and the 

maximum torques available for link 1 through link 6 are arbitrarily selected as 

±

20, 

±120, ±75, 

±

10, ±5 and ±2 Newton-meter, respectively. 

In this problem, we want the manipulator to start from the initial point 

the initial point vector = [0°, 0°, 0, 0°, 0°, 00] 

and stop at the final point 

the final point vector = [90°,108°,0.9,144°,162°,180°] 
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Table 4.4  Link Parameters for Stanford Manipulator. [19] 

Link Variable α  a d cos α  sin α  
1 θ1  -90° 0 0 0 -1 
2 θ2  90° 0 d2  0 1 
3 d3  0° 0 d3  1 0 
4 θ4  -90° 0 0 0 -1 
5 θ5  90° 0 0 0 1 
6 θ6  0° 0 0 1 0 

in the minimum time. 

Tables 4.5, 4.6, 4.7 and Figures 4.4, 4.5, 4.6 show the optimum positions, the 

optimum velocities and the optimum torques of the motion planning problem for 

Stanford Manipulator. 

From the results of this problem, we find a very interesting conclusion; i.e. the 

optimal policy for this problem is that the slowest link applies the maximum velocity 

and the other links apply the equal but not maximum velocities to accomplish this 

task. Here we call the slowest link as a "control" link, because it can control the 

system behavior in the minimum time problems. Certainly, if we change the maximum 

velocity of the slowest link, then the "control" link will become another slowest link. 

For example, if we change the maximum velocity of link 1 in this problem as ±25 

degrees/second, then the "control" link should be link 2 but not link 1. 



Table 4.5  Optimum Positions of the Motion Planning Problem for Stanford 
Manipulator. 

Stage No. Time Interval 
(seconds) 

Optimum Positions (degrees) 
joint 1 joint 2 joint 3* joint 4 joint 5 joint 6 

0 0.094 0 0 0 0 0 0 
1 0.726 0 0 0 0 0 0 
2 0.649 10.891 13.069 0.109 17.426 19.604 21.782 
3 0.659 20.619 24.743 0.206 32.990 37.114 41.238 
4 0.664 30.502 36.603 0.305 48.804 54.904 61.004 
5 0.668 40.459 48.551 0.405 64.734 72.827 80.918 
6 0.673 50.475 60.570 0.505 80.761 90.856 100.951 
7 0.682 60.565 72.677 0.606 96.903 109.016 121.128 
8 0.790 70.801 84.961 0.708 113.281 127.441 141.602 
9 0.490 82.647 99.178 0.826 132.238 148.767 165.294 

10 - - - 90 108 0.9 144 162 180 

The total travel time is 6.094 seconds. 

* The unit of the optimum positin for joint 3 is meter. 
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Figure 4.4  Optimum Positions of the Motion Planning Problem for Stanford 
Manipulator. 



Table 4.6  Optimum Velocities of the Motion Planning Problem for Stanford 
Manipulator. 

Stage No. Time Interval 
(seconds) 

Optimum Velocities (degrees/second) 
joint 1 joint 2 joint 3*  joint 4 joint 5 joint 6 

0 0.094 0 0 0 0 0 0 
1 0.726 15 18 0.150 24 27 30 
2 0.649 15 18 0.150 23.999 27 30 
3  0.659 15 18.001 0.150 24.001 27.001 30 
4 0.664 15 18 0.150 23.999 27 30 
5 0.668 15 18 0.150 24.001 27 30 
6 0.673 15 17.999 0.150 23.999 26.999 29.998 
7 0.682 15 18 0.150 24 27.001 30.002 
8 0.790 15 18.002 0.150 24.004 27.003 30 
9 0.490 15 17.997 0.150 23.994 26.994 30 

10 - - - 0 0 0 0 0 0 

The total travel time is 6.094 seconds. 

* The unit of the optimum velocity for joint 3 is meter/second. 
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Figure 4.5  Optimum Velocities of the Motion Planning Problem for Stanford Manipulator 



Table 4.7 Optimum Torques of the Motion Planning Problem for Stanford 
Manipulator. 

Stage No. Time Interval 
(seconds) 

Optimum Torques (Newton-meter) 
joint 1 joint 2 joint 3 joint 4 joint 5 joint 6 

0 0.094 3.955 15.758 75 0.476 0.566 0.113 
1 0.726 0 0 63.443 0 0 0 
2 0.649 0 7.046 63.443 0.026 -0.139 0 
3 0.659 0 15.826 63.443 0.155 -0.302 0 
4 0.664 0 26.685 63.443 0.414 -0.486 0 
5 0.668 0 38.826 63.443 0.731 -0.607 0 
6 0.673 0 51.220 63.443 0.970 -0.557 0 
7 0.682 0 62.722 63.443 1.011 -0.275 0 
8 0.790 0 72.225 63.443 0.819 0.191 0 
9 0.490 -1.710 76.330 61.224 0.336 0.625 -0.022 

10 - - - - - - - - - - - - - - - - - - - - - 
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The total travel time is 6.094 seconds. 
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Figure 4.6  Optimum Torques of the Motion Planning Problem for Stanford 
Manipulator.  



feasible sequence For a more complex problem, it always takes much time to find 

Some skills which can be adopted to find the are suggested as follows: the 

CHAPTER 5 

CONCLUSION  

In this study, we propose a successive approximation algorithm to solve a class of 

complex optimal control problems or deterministic multistage decision problems, such 

as motion planning problems. 

For the motion planning problems, the planner accepts many informations to 

plan out the "best" trajectory. These informations include the capabilities of the 

manipulator, the descriptions of the task and the conditions of the environment and 

can be expressed as heavily nonlinear and coupled differential equations and several 

inequality and equality constraints imposed on the system. Therefore, many methods 

are extremely difficult to solve the motion planning problems. 

For the successive approximation algorithm, it can decompose the global non-

linear problem into several nonlinear subproblems. Each subproblem includes only 

limited constraints and variables to be solved. Although the details about how to 

solve each subproblem can be different, the nonlinear programming method with 

highly convergent rate is a very good choice to solve each subproblem. Therefore, 

the algorithm is conceptually simple and easy to implement on the motion planning 

problems. 

The successive approximation algorithm is not as perfect as we thought. It still 

have some drawbacks and limitations on the algorithm. 

First, the most difficult part for using the algorithm is how to find the initial 

1. In some problems, we can find the initial feasible sequence by using observa-

tion. For example, in Section 4.3, although the constraints for this problem are 

very complex, we are still able to find the initial feasible trajectory by using 
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observation. 

2. Use the simpliest numeric pattern to find the initial feasible sequence. For 

example, in Subsection 3.2.2, we select the initial feasible sequences in partial 

repetition patterns. 

3. Use some trajectory-finding algorithms to find the initial feasible sequence. For 

example, we can use the dynamic programming method to find a coarse solution 

first and then use the coarse solution as an initial feasible sequence to get the 

accurate solution by using the successive approximation algorithm. 

Secondly, the algorithm does not guarantee to obtain the global optimum. Ac-

cording to the Theorem 2.4, the algorithm may converge to a local optimum. There-

fore, more than one initial estimate sequence has to be used to check and choose 

the best trajectory. That one can use the dynamic programming method to find the 

coarse solution and use the successive approximation algorithm to get the accurate 

solution is also a good method. 

Thirdly, the algorithm cannot be applied in a class of problems with the "com-

mon" variables in each nonlinear subproblem. For example, in another kind of mini-

mum time problems, the time interval of each stage is equivalent; i.e. 

δt(0)  = δt(1) = . . . = δt(N) = T/N,  

where T is not fixed. We have stated that the time intervals in variable-time prob-

lems can be considered as control variables. Therefore, since the time intervals are 

equivalent in this kind of minimum time problems, we can call the time intervals as 

"common" variables in each subproblem. 

Because the time intervals must be equivalent in each subproblem, when some 

subproblems are solved, all the time intervals should be also changed. But for the 

other subproblems, the trajectory maybe becomes infeasible because the changed 



73  

time intervals do not match the original trajectory in these subproblems and these 

subproblems will have no solutions. Therefore, we cannot solve the problems with 

the "common" variables by using successive approximation algorithm. 

The future research directions about the successive approximation algorithm 

may focus on these drawbacks and limitations to improve the algorithm. First, we can 

develop a better and easier algorithm to find the initial feasible sequence. Secondly, 

we can make sure the results of the algorithm are global optimum. Thirdly, we can 

develop a new technique to solve the problems with the "common" variables by using 

successive approximation algorithm. 

In conclusion, the algorithm is still a good method to solve the complex optimal 

control problems or large-scale nonlinear programming problems and promise for 

future applications. 



APPENDIX A 

A PROGRAM USING SUCCESSIVE 

APPROXIMATION ALGORITHM  

In this appendix, we will show a single precision Fortran 77 program which uses 

successive approximation algorithm to solve the minimum time problem for N = 6 in 

Chapter 3. The program is basically divided into three parts. The first part solves the 

first nonlinear subproblem in each iteration (NLP)i0 which includes initial boundary 

conditions. The second part solves two through N  - 1 nonlinear subproblems in each 

iteration by using the recursive method. The third part solves the last nonlinear 

subproblem in each iteration ( NLP)iN  which includes final boundary conditions. 

The subroutine NCONF in the IMSL's Math/Library is selected to solve each 

nonlinear subproblem in the algorithm. The NCONF can solve the general nonlinear 

programming problems as follows: [18] 

min f (x), x ϵ  Rn  

subject to 

gj(x )  = 0, for j = 1,..., me , 

gj(x )  ≥  0, for j = me + 1, 	. . . , m, 

xl ≤ x ≤ xu. 

Therefore, we can match each nonlinear subproblem to this pattern and solve these 

subproblems. 

The main arguments of the program can be explained as follows: 

FCN 	User-supplied subroutine to evaluate the criterion function and 
constraints at a given point. 

M 	Total number of constraints in the subproblem. 
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ME 	Number of equality constraints in the subproblem. 

N 	Number of variables in the subproblem. 

XGUESS    Vector of length N containing an initial guess of the computed 
solution. 

IBYPE 	Scalar indicating the types of bounds on variables. 

XLB 	Vector of length N containing the lower bounds on variables. 
If there is no lower bound for a variable then the corresponding 
XLB value should be set to —1.0e6. 

XUB 	Vector of length N containing the upper bounds on variables. 
If there is no upper bound for a variable then the corresponding 
XUB value should be set to 1.0e6. 

XSCALE    .Vector of length N containing the diagonal scaling matrix for the 
variables. 

IPRINT 	Parameter indicating the desired output level. 

MAXITN    Maximum number of iterations allowed. 

X 	Vector of length N containing the computed solution. 

FVALUE    Scalar containing the value of the criterion function at the 
computed solution. 

NX 	Number of state variables. 

NU 	Number of control variables. 

NK 	Number of stages. 

X(NX,NK+1)  State variables. 

U(NU,NK)  Control variables. 

FIX(NX*2)  Fixed values for each subproblem. 

J             Values of criterion function for each stage. 

CJ 	Value of criterion function for the current iteration. 
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LJ 	Value of criterion function for the last iteration. 

DJ 	Difference between CJ and LJ. 

In this program, the state variables X(1,K), X(2,K) express the positions and veloci-

ties and the control variables U(1,K), U(2,K) express the time intervals and acceler-

ations, respectively. 

The program for solving the minimum time problem of stage number N = 6 is 

shown in the following: 



77  



78  



79  



80  

The results of the program are shown in Figure A.1. 
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Figure A.1  Results of the Program for the Minimum Time Problem of N = 6. 
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