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ABSTRACT 

Characterization of three-dimensional shear flows  

by 

Kurra Bhaswan  

This work investigates techniques to analyze and characterize the presence of microstructure 

in moderately dilute three-dimensional shear flows. In three dimensional shear flows, a distinct 

structure develops as the coefficient of restitution is lowered with the particles exhibiting a strong 

tendency towards the formation of clusters. There exists a need to automatically detect and 

characterize this microstructure in the given flow. Several methods are examined for effective 

characterization of the microstructure. The techniques employed are based on the classification of 

the data based on the properties of the Voronoi diagram constructed from the positional parameters 

of the two-dimensional slices of the 3d shear flows and on the extraction of quantitative descriptors 

from determining the fractal dimension. 

The fractal nature of the microstructure in three-dimensional shear flows lends itself to the 

application of several measures of the fractal dimension. The self-similarity property of fractals 

makes the fractal dimension particularly effective in distinguishing between nuances in the 

structure. The geometrical properties of Voronoi and Delaunay tessellations help describe the 

neighborhood of particles. In such a scheme, the statistics gathered from the properties involving 

the proximity relationships between particles is particularly significant because of the proven 

tendency of the particles to form clusters. The scheme involves discriminating between the 

statistical parameters obtained from the measures of the Voronoi polygons and Delaunay triangles. 

Methods such as the Fourier Transform techniques and variance analysis, shown by other 

researchers have suffered from either being severely computationally intensive or being relatively 

weak in discriminating between nuances in the miscrostructure. The techniques discussed are 

shown to be computationally efficient and to be successful in characterizing the microstructure. 

Thus a potentially effective set of methods are introduced that may be adapted to better detect and 

characterize the microstructure and may also be extendible to other spatial data analysis situations. 
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CHAPTER 1 

INTRODUCTION 

1.1 Objective  

In recent years a substantial increase of interest in the granular flow of materials has been 

seen. It can be applied to many industrial fields, such as in-plant and long-distance 

transport, manufacturing ceramics, casting of solid-fuel rocket propellant, pharmaceuticals, 

plastics, materials development, food, mineral processing operations and natural geological 

flows [1]. Lack of understanding the material property of the granular flows makes scaling 

from laboratory bench-top prototype operations to large-scale commercial plants very 

difficult. It is more of a "cut-and-try" art than a reasonable design process [2]. The highly 

nonlinear nature of the granular flow poses enormous difficulties in developing constitutive 

models to predict behavior over a range of conditions. Campbell [3] observed the formation 

of a distinct layered structure in particle simulations of very dense shear flows. Hopkins and 

Louge [4] described a dynamic micro-structure in simulations of two-dimensional shear 

flows of uniform disks caused by inelastic collisions. This inelastic micro-structure was 

characterized by dynamic clusters of disk on the order of 10 diameters in size. However the 

prevalent methods are weak and there exists a need for a better method to characterize the 

microstructure in three dimensional shear flows. The objective of this work is to investigate 

methods and techniques to characterize the microstructure present in moderately dilute 

three-dimensional shear flows. The emphasis is primarily on characterizing the 

miscrostructure. In doing so, the approach has been one of examining available methods 

currently being used and the investigation of techniques particularly suited to the problem 

on hand. The main requirements in such a process involve employing methods that are 

computationally efficient, fairly robust, discriminatory and are naturally applicable to the 

task of detection of microstructure.  

1  
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1.2 Methods/Techniques 

In the past, the methods to characterize the microstructure in the three-dimensional shear 

flows employed Fourier Transform techniques and Variance analysis techniques. These 

methods were based on certain assumptions. The Fourier transform technique is an 

accepted and effective method, but is computationally intensive and therefore not suitable 

for practical analysis of data. The variance analysis technique is prone to errors resulting 

from improper grid size and is unstable on account of its simplicity. It is particularly suspect 

when the grid size is arbitrarily chosen. The approach in this work has been to at least avoid 

the problems encountered by the methods mentioned above and to be able to provide new 

and efficient means of characterizing the resulting microstructure. 

1.3 Criteria for the methods employed 

The criteria that were used in choosing the methods may be listed as follows: 

a) computationally efficiency. 

b) robustness. 

c) consistency and accuracy. 

d) extensibility of the method/technique to other data analysis situations. 

1.4 Overview of the Remaining Chapters 

The next chapter examines some of the methods developed by researchers in the past and 

other methods that seem applicable. 

Chapter 3 introduces the concept of the fractal dimension and discusses several 

measures of the dimension and the results from their application. 

	

Chapter 4 discusses the construction of the Voronoi Diagram, its properties and the 

classification of the data based on the utilization of the second order statistics of the 

geometry resulting from the tessellation along with a discussion of the results. 

Chapter 5 concludes the work and points to directions for future research. 
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Appendix A gives a brief overview of object oriented design employed in the 

implementation of the voronoi diagram. 

Appendix B contains a brief description of the fundamental data structure used to 

store the information contained in the Voronoi diagram viz, the doubly connected edge list. 

Appendix C contains plots for the variance analysis scheme employing different 

grid dimensions. 

Appendix D contains histogram plots for two cases resulting from the geometrical 

properties of the Voronoi diagram. 



CHAPTER 2 

BACKGROUND 

2.1 Introduction  

This section examines the techniques used in the past and examines other techniques 

applicable to the problem on hand. The methods for classification were chosen based on 

the fact that the microstructure associated with the data resulting from three dimensional 

shear flows had some periodicity associated with it and is therefore suited to being 

exploited by methods that can extract characteristics from spatial analysis of the data. We 

start by describing the conditions under which the microstructure develops and observa-

tions made by other researchers regarding the nature of such flows. We briefly examine 

two of the methods used in the past and finally examine alternatives in the form of geo-

metric methods that can be used.  

2.2 The nature of granular shear flows  

Cambell[3] observed the formation of a distinct microstructure created by the layering of 

densely packed disks undergoing shear. In molecular dynamics, computer simulations 

have also revealed microstructures characterized by anisotropic radial distribution func-

tions, which are perturbations to the equilibrium isotropic radial distribution function 

caused by the imposed mean shear field. The fundamental microstructure, which is present 

to some degree in all granular flows of disks, depends on the dissipation of energy by 

inelastic collisions which will be referred to as inelastic microstructure. 

The basic feature of inelastic microstructure is the formation of local, anisotropic 

regions of particle concentration above and below the bulk average. As a result of these 

fluctuations in concentration, the stresses and other statistical measures of the flow may 

differ significantly from the values predicted by theories that postulate spatial homogene-

ity. Further, the  results of computer simulations of simple shear flows will depend on the 

size of the periodic domain relative to the size of the microstructure: small domains may  

4  
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inhibit the formation of inelastic microstructure. 

Particle simulations have been extensively used in numerical experiments with 

granular flows. Parametric studies of rapidly sheared granular flows have been performed 

by several researchers. Implicit in these studies is the assumption that given a reasonable 

number of particles, the statistical measures of the flow are independent of the size of the 

periodic domain. In this work we use the data obtained from computer simulation of parti-

cles. We used the code provided by Kim[5] to obtain data to be processed by the classifica-

tion schemes proposed herein. 

2.3 Fast Fourier Transform  

The Fourier Transform[7] is one of the most popular measures because the idea of decom-

posing a non-periodic signal into a a set of sinusoidal or harmonic signals is widely known 

among scientists and engineers. The assumption made in this method is that the periodic 

or non-periodic signal can be represented as a synthesis of sine or cosine signals 

where e  = cosωt  + sinωt  

Since F  (ω)  is often complex, the absolute value of | F (ω) | is used in graphical 

displays. When the motion is periodic or quasiperiodic, |F  (ω)| shows a set of narrow 

spikes or lines indicating that the signal can be represented by a discrete set of harmonic 

functions { e±iωkt} ,  where k = 1, 2, .... In general the function F  (ω)  is a complex func-

tion of co and to represent certain classes of signals f ( t) ,  the integration must be carried 

out along a path in the complex cti,  plane. Numerical calculation of F (ω) , given f ( t) , can 

often be very time consuming even on a fast computer. However, most modern spectrum 

analyzers use a discrete version of the equation along with an efficient algorithm called the 

fast fourier transform (FFT). Given a set of data sampled at discrete time intervals 
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{f ( tk) = f0,f1,f2,..., fk,... f N } , the discrete time FFT is defined by the formula 

where I  and J  are integers. Several points should be made here which may appear obvious. 

First, the signal f ( t) is time sampled at a fixed time interval τo  ; thus, information is lost 

for frequencies above 1/2τo. Second, only a finite set of points are used in the calcula-

tion, usually N  = 2n, and some built-in FFT electronics only for N  =512 or 1028 points. 

Thus information is lost about very low frequencies below 1/ Nτ0. Finally the representa-

tion having no information about F  ( t) before  t=t0  or after t =tN  essentially treats f  ( t) as 

a periodic function. In general, this is not the case and since f ( t ) ≠ f (tN) , the Fourier rep-

resentation treats this as a discontinuity which adds spurious information into F  (ω). This 

is called the aliasing errors and methods exist to minimize its effect in F  (ω) 

Hopkins et al [7] describe a method wherein the analysis of the spatial concentra-

tion field is carried out using a 3D fourier transform technique. The spatial concentration 

field is formed by dividing the control volume into cubical cells with a dimensionless 

width a  = w/d, where d  is the sphere diameter. The Fourier analysis is performed at regular 

intervals during the simulation. After each sphere is assigned to its respective cell in the 

grid, the concentration field is smoothed using a low pass filter. Using this smoothing 

function, a sphere in cell(i,j,k) contributes to the concentration in each grid cell. Finally 

the average concentration is subtracted from the concentration in each grid cell. The dis-

crete Fourier transform of the smoothed concentration field minus its average value is cal-

culated at regular intervals using a three-dimensional FFT algorithm. Hopkins et al. [7] 

state that the Fourier transform technique is particularly not practical for use over long 

periods of time. Thus although this method seems very well suited to the characterization 

of three dimensional flows, the efficiency of the method as a whole is not reasonable to 

warrant more work. 
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2.4 Variance Analysis Methods  

An alternative to the FYI used by Sanders and Ackermann is to divide the control volume 

into uniform cells, count the number of particle centers in each cell and calculate the 

average variance of the concentration field. Hopkins et al[7] use such a method wherein, 

the cubical control volume is divided into a 10x10x10 array of cubical cells. The variance 

of the concentration field for a given realization of the system is 

where ni  is the number of sphere centers in each cell and N is the total number of spheres 

in the control volume. A series of experiments were performed with 6859 (193)  spheres in 

which the coefficient of restitution was reduced from 0.9 to 0.2. The solid fraction υ  was 

0.2 and L/d = 26. 

Although Hopkins et al[7] use a fixed grid size, it is questionable if the same 

results can be achieved with other grid sizes. We decided to investigate the effect of grid 

resolution upon the value of the variance and how it affects the correlation between the 

coefficient of restitution and the variance. A set of grid sizes were selected and the results 

Figure 2.1 Variance versus time step for grid dimension of 5.  
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obtained. Figure 2.1 shows the results obtained for the case where the grid dimension was 

5(In other words the volume is divided into 5x5x5 cubical array). Results obtained for 

other grid dimensions ranging from 10 through 25 appear in Appendix C. As the plots 

show, the variance analysis scheme's level of satisfactoriness seems to depend on the 

value chosen for the grid dimension. It appears that in this particular case, we may be able 

to achieve some degree of classification even with an arbitrary grid size, but it remains to 

be seen if the variance analysis method as described is as robust as other methods that are 

invariant to the classification method parameters for a given data analysis situation. 

2.5 Geometric Methods  

The intuitive evidence from two-dimensional slices of the three-dimensional shear flows 

showing homogeneous spatial regions of varying shape and size within the slice for 

various values of coefficient of restitution indicates that geometric methods in the plane 

could provide quantitative measures with which to characterize the microstructure present 

within. Among the geometric methods, we chose to focus our attention on methods that 

attack the problem of proximity, as the very nature of granular shear flows show some 

form of grouping of particles, thus suggesting the need for extracting the proximity infor-

mation contained within. Preparata and Shamos[8] give an excellent description of funda-

mental algorithms that solve the proximity problem. As in most situations finding efficient 

algorithms for dimensions higher than two is fairly complex. As stated by Preparata and 

Shamos, "the status of this topic(proximity) of computational geometry is no exception to 

the by now familiar current standard: in the plane, powerful and elegant techniques are 

available while for the space - and even more in higher dimensions - very little is known 

and formidable difficulties lurk to suggest a negative prognosis". There exist several other 

geometrical objects that extract the properties of data in space such as the quadtree and 

octrees, but that do not really extract the proximity information. We use a single algorithm 

that discovers, processes, and stores compactly all of the relevant proximity information. 

To do this, we revive a classical mathematical object, the Voronoi diagram, and turn it into 
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an efficient computational structure that permits vast improvements over the best previ-

ously known algorithms. The Voronoi diagram, its properties and the application of the 

Voronoi diagram to the characterization of the microstructure in three-dimensional shear 

flows is discussed in detail in chapter 4. 

Yet another intuitive understanding of the underlying structure as perceived visu-

ally can be realized through the use of fractals[6]. We could interpret the microstructure 

observable in two-dimensional slices of the three-dimensional shear flows as a being 

fractal in nature. The variegated pattern that can be seen can be given meaning through 

fractals. Fractals are basically sets that appear to have complex structure no matter what 

scale is used to examine them. One consequence of this definition is that true fractals must 

be infinite sets. Often, but not always, fractals have the same granularity across scales, so 

that one tends to see the same quality of structure in a fractal as one zooms in on it. Well 

behaved fractals such as these are the ones that have a well behaved fractal dimension. 

The fractal dimension is essentially an indication of how much space a given set comes 

near 



CHAPTER 3 

FRACTALS 

3.1 Introduction  

In three-dimensional shear flows, examination of two dimensional slices of the flow reveals 

a mazelike, multisheeted structure. This threadlike collection of points seems to have 

further structure when examined on a finer scale. To describe such variegations in the 

structure, we use the term fractal. An attempt is made in what follows to explain the 

meaning of fractals and how they may be used to characterize such patterned structures. A 

purely rigorous treatment may be found in Mandelbrot[9] and Falconer[10]. Two simple 

and popular examples are described below as an introduction to examples of fractal curves 

and sets. 

3.1.1 Koch Curve:  

The example is chosen from the book by Mandelbrot[9] and was originally described by 

Von Koch in 1904. One begins with a geometric construction that starts with a straight line 

segment of length 1. After dividing the line into three segments, one replaces the middle 

segment by two lines of length 1/3 as shown in figure3.1.Thus, we are left with four sides, 

Figure 3.1 Partial construction of a fractal Koch curve. 

10  
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each of length 1/3 so that the total length of the new boundary us 4/3. To get a fractal curve, 

one repeats this process for each of the new four segments and so on. At each step, the 

length is increased by 4/3 so that the total length approaches infinity. 

After many steps, one can see that the curve looks fuzzy. In fact, the limit one has 

a continuous curve that is nowhere differentiable. In some sense, this new curve is trying 

to cover an area as a young child scribbling with crayons. Thus, we have the apparent 

paradox of a continuous curve that has some properties of an area. It is not surprising that 

one can define a dimension of this fractal curve which results in a value between 1 and 2. 

3.1.2 Cantor Set:  

The Cantor set is attributed to George Cantor (1845-1918), who discovered it in1883. If the 

Koch curve can be considered a process of adding finer and finer length structure to an 

initial line segment, then the Cantor set is the complement operation of removing smaller 

and smaller segments from a set of points initially from a line. 

The construction begins as in the previous example with a line segment of length 1 

which is subdivided into three sections as in figure 3.2. However, instead of adding two 

more segments as in the Koch curve, one removes the middle segment of points so that the 

total number of segments is increased to two, and the total length is reduced to 2/3. This 

Figure 3.2 Top to bottom: sequential steps in the construction of 
a Cantor set.  
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process is continued for the remaining line segments and so on. At each stage one throws 

away the middle segments but reducing the total length by 2/3. In the limit, the total length 

approaches zero, although as we shall see below, the fractal dimension of this set of points 

is between zero and one. 

3.2 Fractal Dimension 

3.2.1 Meaning of Fractal Dimension  

Fractal dimension could be described as a means of describing how much space a given set 

"comes near". For example a ball of twine appears 3-dimensional because it "comes near" 

enough the volume of a sphere to deceive our eyes. The Cantor set is another example, as 

described above, all its points lie on a straight line, but it is so full of gaps that no complete 

line segment, no matter how short, is contained in it. This is reflected in the fact that its 

fractal dimension is about 0.63. quite a bit less than 1. 

Thus far we have two examples of fractal sets, but we do not have any test to 

determine if a set of points is fractal. There are many measures of the dimension of a set of 

points. We will describe a very intuitive or geometric definition called the capacity as 

described in Moon[6]. Other definitions which incorporate deeper mathematical subtleties, 

may be found in Mandelbrot[9] or Farmer et al. [11] as well as in the next section. 

3.2.2 Pointwise Dimension  

Let us consider a long time trajectory in phase space as shown in figure 3.1. First we sample 

the motion so that we have large number of points per orbit. Second, we place a sphere or 

cube of radius or length r at some point on the orbit and count the number of points within 

the sphere. The probability of finding a point in this sphere is then found by dividing by the 

total number of points in the orbit N0; that is 
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Figure 3.3 Long time trajectory of motion in phase space showing the 
time-sampled data points and the counting sphere.  

For a one dimension orbit, such as a closed periodic orbit P(r)  will be linear in r as r->0, 

N0→ ꝏ  ; P(r)  = br. If  the orbit were quasiperiodic, for example, it lay on a  two dimensional 

toroidal surface in three-dimensional 

phase space, then the probability of finding a point on the orbit in a small 

cube or sphere of radius r would be P(r) = br2  . This leads one to define a dimension of an 

orbit at a point xi  (there xi  is a vector in phase space) by measuring 

the relative percentage of time that the orbit spends in the small sphere; that is 

For some attractors, this definition will be independent of the point 

xi. But for many, dp  will depend on xi  and an averaged pointwise dimension is 

best used. Also, for some sets of points such as a Cantor set, there will be gaps in the 

distribution of points so that. P(r)  is not a smooth function of r as r->0, as can be seen. 
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Figure 3.4 Covering procedure for linear distribution of points.  

Figure 3.5 Covering procedure for planar distribution of points.  

3.2.3 Capacity Dimension  

First consider a uniform distribution of N0  points along some line or one-dimensional 

manifold in a three-dimensional space, as shown in figure3.3. We then ask how we can 

cover this set of points with small cubes with sides of length ε. (one can also use spheres 

of radius ε.) To be more specific, we calculate the minimum number of such cubes N(ε ) to 

cover the set (N(ε ) < N0). When No  is large, the number of cubes to cover aline will scale as 
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Similarly, if we distribute points uniformly on some two-dimensional surface in 

three-dimensional space (see figure 3.4), we find that the minimum number 	(3.3) 

cover the set will scale in the following way. 

If the reader is convinced that this is intuitive, then it is natural to define the 

dimension followed by the following scaling law: 

Taking the logarithm of both sides of the equation above and adding a subscript to 

denote capacity dimension, we have 

Implicit in this definition is the requirement that the number of points 

in the set be large or N0. 

A set of points is said to be fractal if its dimension is noninteger - hence the term 

fractal dimension. 

In the two examples of the Koch curve and the Cantor set, the fractal dimension can 

be calculated exactly. For example, consider the nth iteration of the generalization of the 

Koch curve where we let the size of the cubes be equal to the length of the straight line 

segment. At the nth step in the construction, the number of segments is 

Nn  = 4n. 

while the size ε  is given 
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Replacing the limit E->0 with n → ꝏ  in equation one can easily see the Koch curve. 

Similarly, one can show that for the cantor set 

3.2.4 Correlation Dimension  

This measure of fractal dimension has been used successfully by experimentalists and in 

some ways is related to the pointwise dimension. An extensive study of this definition of 

dimension has been given by Grassberger and Proccacia[12]. 

As in the definition of pointwise dimension, one discretizes the orbit to a set of N 

points {xi} in the phase space. (One can also create a pseudo-phase-space; One then 

calculates the distances between pairs of points, say sij = | xi - x j | using either the 

conventional Euclidean measure of distance (square root of the sum of the squares of 

absolute value of vector components. A correlation function is then defined as 

For many attractors this function has been found to exhibit a power law dependence 

on r as r -> 0; that is, 

so that one may define a fractal or correlation dimension using the slope of the In C versus 

ln r curve: 

It has been shown that C(r) may be calculated more effectively by constructing a 

sphere or cube at each point xi  in phase space and counting the number of points in each 
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sphere; that is, 

where H(s) =1 if s > 0 and H(s) = 0 if s < 0. This differs from the pointwise 

dimension in that the sum is performed about every point. 

3.2.5 Information Dimension  

Many investigators have suggested another definition of fractal dimension 

that is similar to the capacity but tries to account for the frequency with which the trajectory 

visits each covering cube. As in the definition of capacity, one covers the set of points, 

those dimension one wishes to measure, with a set of B cubes of s size e. This set of points 

is again a uniform discretization of the continuous trajectory. (It is assumes that a long 

enough trajectory is chosen to effectively cover the attractor whose dimension one wants 

to measure. For examples, if the motion s quasiperiodic, the trajectory has to long enough 

to "visit" all regions on the toroidal surface of the attractor.) 

To calculate the information dimension, one count the number of points Ni  in each 

of the N cells and the probability of finding a point in that cell Pi  where 

where N0  is the total number of points in the set. Note that N0  

≠ N. The information entropy is defined by the expression 

[when log function is with respect to base 2, I() has the units of bits]. 

For small ε, it is found that I behaves as, 
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so that for small a we may define a dimension 

To see that this definition is related to the capacity, we note that if the probabilities 

Pi are equal for all cells, that is. 

then 

The information entropy is a measure of the unpredictability in a system. That is, 

for a uniform probability in each cell, Ni  = I/N, I is at a maximum. If all the points are 

located in one cell(maximum predictability) I = 0, as can be seen from the calculation. 

3.2.6 Properties of Fractal Dimension  

We can list the following properties of the fractal dimension: 

1. The fractal dimension describes how many new pieces of a set are resolved as the 

resolution scale is decreased. 

2. As fractals are self-similar, it follows that the fractal dimension can be evaluated by 

comparing properties between any two scales. 

3.3 Application of Fractal Dimension 

3.3.1 Introduction  

We have seen that there are several measures of the fractal dimension. We make use of the 

capacity, the information and the correlation dimensions. It would seem that the capacity 

dimension would intuitively provide us with the information contained in the 

microstructure. But, there are two criticisms of the use of capacity as measure of fractal 

dimension of strange attractors. - one theoretical and the other computational. First, 
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capacity dimension is a geometric measure; that is, it does not account for the frequency 

with which the orbit might visit the covering cube or ball. Second the process of counting 

a covering set of hypercubes in phase space is very time consuming computationally. We 

use the method described in Liebovitch and Toth[13] to determine the fractal dimension by 

box counting or the method for capacity dimension. The method they describe is fast, 

accurate and less dependent on data specific curve fitting criteria than the correlation 

dimension. 

3.3.2 Computation of the box dimension.  

To compute the box dimension[13], we need to count the number of boxes in a minimal 

cover that contain at least one element of the set. This is then carried out for a sequence of 

decreasing box sizes. The algorithm used does this by an efficient hashing to code all the 

points within one box with the same number and then to count the number of distinct 

values. Each of the N points of a set embedded in de  dimensions can be represented by a 

vector with coordinates {Xi; i  = 1, de}. The values of Xi  are normalized to cover the range 

(0,2k-1). The set is covered by a grid of de  dimensional cubes of edge size 2m, 0<=m<=k, 

called boxes. For each coordinate we form Y = (Xi  AND M) where AND is the binary 

construction of the corresponding bits in Xi  and M, and M is a binary number with I's in 

the first k-m places and 0's the remainder. Then for each n = 1 ,..., N we construct Zn  = 

Y1 + Y 2+Y 3+ ...+Yde, where the operation "+" indicates concatenation (for example, 

"10+01" = "1001"). All the points within the same box of size 2m will have coordinates that 

have identical binary digits in the first k- m  places. Thus, distinct Zn  correspond to points 

in distinct boxes. The number of distinct Z is counted in an efficient manner by ordering 

them using a quicksort or heapsort to order all N strings Zn, and then walk down the list 

once to count the number of times the value change. The procedure is then repeated for 

different boxes of edge size 2m, where m = k, k-1,..., 0 
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Figure 3.6 Coefficient of Restitution versus Fractal Measures  

Figure 3.7 Time step versus Fractal dimension  
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3.4 Results  

The code made available by Prof. John Sarraille of Computer Science Dept., CSU 

Stanislaus, CA was used to extract measures of the fractal dimension. Figure 3.6 shows the 

plot of the coefficient of restitution versus the fractal dimension. As can be seen, each of 

the three measures viz., the capacity dimension, the information dimension and the 

correlation dimension, has a different value for a specific value of the coefficient of 

restitution, but they all have the same trend thus indicating a well behaved fractal 

dimension. Figure 3.7 shows the plot of the fractal dimension for various time steps for 

different values of coefficient of restitution. As with the results obtained with the variance 

analysis scheme, these results clearly indicate the presence of a microstructure for different 

values of the coefficient of restitution, but the demarcation is improved and is independent 

of any artifacts of the method. 

3.5 Conclusion  

The fractal dimension used to characterize the structure in three-dimensional shear flows 

has been shown to be successful. Thus it would seem reasonable to infer that the fractal 

dimension is superior to other methods in several ways. The fractal dimension is fixed at 

any resolution as a result of the self similarity property of fractals. Fractals have the same 

granularity across scales, or are even self-similar across scales, so that one tends to see the 

same quality of structure as one zooms in on it. The fractal dimension is also independent 

of any parameters and in this respect it is better than the measure obtained through the 

variance analysis scheme. In summary, the fractal dimension as a classification tool holds 

great promise because it is relatively easy to estimate the fractal dimension of a set S, 

because we know that a chaotic system gave rise to the set S if this dimension is not an 

integer, and because the value of the dimension gives us some indication of what type of 

chaotic system gave rise to S. 



CHAPTER 4 

VORONOI DIAGRAM  

4.1 Introduction  

The microstructure to be found in three dimensional shear flows has been confirmed by 

other researchers[7] to have a distinct structure at low coefficients of restitution, where the 

formation of closely grouped aggregations dominate. The gestaltic nature of such micro-

structure indicates that an approach that extracts the proximity information contained 

within could classify variations in such structure based on the properties relating to prox-

imity. After surveying various algorithms for the proximity problem in computational 

geometry, we choose to use the Voronoi diagram[14] as it relates most to the task on hand. 

4.2 Voronoi Diagrams  

4.2.1 Loci of proximity  

The problem can be expressed as follows: Given a set S of N points in the plane, for each 

point pi  in S what is the locus of points (x, y) in the plane that are closer to pi than to any 

other point in S. 

Note that intuitively, the solution to the above problem is a partition of the plane 

into regions (each region being the locus of the points (x, y) closer to a point S than to any 

other point of S). We also note that, if we know this partition, by searching it(i.e., by locat-

ing a query point g in the region of this partition), we could directly solve the nearest 

neighbor search problem. We shall now analyze the structure of the partition of the plane. 

Given two points, pi  and pj, the set of points closer to pi than to pj  is just the half-plane 

containing pi  that is defined by the perpendicular bisector of pipj  Let us denote the half-

plane by H(pi, p j). The locus of points closer to pj  than to any other point, which we denote 

by V(i), is the intersection of N-1 half planes, and is convex polygonal region having no 

more than N-1 sides that is 

22  
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Figure 4.1 A Voronoi polygon. 

V(i) is called the Voronoi Polygon associated with pi. A voronoi polygon is shown 

in Figure 4.1. These N regions partition the plane into a convex net which we shall refer to 

as the Voronoi diagram, denoted as Vor(S), which is shown in Figure 4.1. The vertices of 

the Voronoi diagram are the Voronoi Vertices, and its line segments are Voronoi edges. 

Each of the original N points belongs to a unique Voronoi polygon; thus if (x, y)  ϵ  V(i), 

then pi  is a nearest neighbor of (x, y). the Voronoi diagram contains in a powerful sense, all 

of the proximity information defined by the given set. 

4.2.2 Construction of the Voronoi Diagram 

By constructing the Voronoi Diagram Vor(S) of a set of points S, we shall mean to produce 

a formal description of the diagram as a planar graph embedded in the plane consisting of 

the following items. 

1. The coordinates of the Voronoi vertices. 2. 

The set of edges (each as a pair of Voronoi vertices) and the two edges that are their 

counterclockwise successors at each extreme point (doubly connected-edge-list, see 

Appendix B). This implicitly provides the counterclockwise edge cycle at each vertex and 

the clockwise edge cycle. We consider first the question of time necessary for constructing 
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the Voronoi diagram. We assume now, and later substantiate, that in any case Step 1 can be 

carried out in time O(N). If we let T(N) denote the overall running time of the algorithm, 

then Step 2 is completed in time approximately 2T(N/2). Thus, if Vor(S1) and Vor(S2) can 

be merged in linear time to form the Voronoi diagram Vor(S) of the entire set, we will have 

a θ( N log N) optimal algorithm. 

Step 1. Partition S into two subsets S1 and S2, of approximately equal sizes, by median x-

coordinate. 

Step 2. Construct Vor(S1) and Vor(S2) recursively. 

Step 3'. Construct the polygonal chain SIGMA, separating S1 and S2. 

Step 3" . Discard all edges of Vor(S2) that lie to the left of SIGMA and all edges of Vor(S1) 

that lie to the right of SIGMA. The result is Vor(S), the Voronoi diagram of the entire set. 

Clearly their success of this procedure depends on how rapidly we are able to con-

struct SIGMA, since Step 3"  poses no difficulties. 

From a performance viewpoint, the initial partition of S according to the median of 

the x-coordinates can be done in O(N) by standard median finding algorithms. Moreover, 

Step 3"  can be carried out in time O(|S1| + |S2|) = O(N). 

4.2.3 Constructing the dividing chain.  

The first step in the construction of SIGMA is to find its semi-infinite rays. We observe that 

each ray of SIGMA is the perpendicular of a supporting segment of CH(S1) and CH(S2). 

We also note that, since S1 and S2 are linearly separated by hypothesis, there are just two 

supporting segments of CH(S1) and CH(S2)(thereby confirming that SIGMA(S1, S2) con-

sists of just one chain SIGMA). If we now assume inductively that these two convex hulls 

are available, their two supporting segments, denoted t1 and t2, are constructed in (at 

most) linear time[15] and the rays of SIGMA are readily determined (see Figure 4.2). 

Notice that as a by-product of this activity we also obtain CH(S), thereby providing the 

induction step for the availability of the convex hulls. Once we have found a ray of 
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Figure 4.2 Finding the rays of SIGMA, the dividing chain.  

SIGMA, the construction continues edge by edge, until the other ray is reached. 

The time required by the recursive merge procedure is described by the recurrence 

relation T(N) = 2T(N/2) + O(N) = O(NlogN). 

4.3 Application of Voronoi Diagram  

4.3.1 Geometrical measures of Voronoi primitives  

There are several measures that can be extracted from the Voronoi diagram primitives as 

discussed by Ahuja[16]. Examples of some joint properties that may be useful are: dis-

tance between neighbors, gradients of primitive features, and status of neighbors with 

respect to completeness of cells. Sibson[17] has suggested the use of areas and nucleus-

vertex distances of Voronoi polygons and the distances between neighboring points as sta-

tistics of a point pattern. For the microstructure contained in two dimensional slices of the 

three dimensional shear flows, we employ the following measures: 

1. Areas of the Voronoi Polygons and their inverses. 

2. Areas of the Delaunay triangles and their inverses. 

3. Edge lengths of the Delaunay triangles. 
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We choose these measures over other neighborhood properties as they succinctly summa-

rize the information relating to the structure between varying values of e. 

4.3.2 Classification based on statistical measures  

The classification scheme used here is based on identifying first and second order statistics 

relating to the measures outlined in 4.3.1. A histogram plot of these measures is taken to 

describe the distribution of the measures for a given structure. Figure 4.3 shows the data 

and the corresponding Voronoi diagram and Delaunay triangulation for the two extreme 

cases viz., e=0.2 and e=0.9. Table 4.1 summarizes the results of the classification scheme. 

Appendix D contains the plots describing the mean, the standard deviation, the median 

and the covariance of the various measures considered. The plots shown are taken from 

the data resulting from the two extreme cases viz., for the coefficient of restitution of 0.2 

where there exists a distinct structure and that for which the structure is less distinct. 

4.4 Results 

4.4.1 Evaluation of results  

The data shown in Figure 4.3 clearly is not readily perceivable as being different, yet the 

Voronoi diagram and Delaunay triangulations as seen in the figure, elicit the presence of 

structure. From Table 4.1, it can be seen from the numerical values that the scheme out-

lined above has been successful as is indicated by the variation among the statistical mea-

sures for the various plots between the two extreme cases 

Table 4.1 Summary of Results for Statistical 
Parameters from the Voronoi Diagram  

Coefficient 
of 

Restitution 

Polygon 
Areas 
Mean 

Triangle 
Areas 
Mean 

Triangle 
Lengths 
Mean 

0.2 32.0 7.6 4.8 

0.9 36.0 8.3 5.2 
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Figure 4.3 Two dimensional slice data, their corresponding Voronoi 
diagrams and Delaunay triangulations. 
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4.4.2 Limitations  

The measures we have utilized have been shown to work, but the scale of separation indi-

cates that they need further refinement to be able to produce a more nuanced discrimina-

tion between microstructures. Thus these methods are satisfactory for the data presented 

here, but would need to employ a classification scheme that can identify aggregate proper-

ties to better distinguish between microstructures. It should also be pointed out however, 

that as a result of the parameters in the data generation code[5], the data used in this work 

has a minor gradation in the structure from e=0.2 to e=0.9 compared to the marked grada-

tion reported by other researchers. 

4.5 Conclusions  

The measures introduced based on the extraction of properties relating to the proximity 

have been shown to be satisfactory. The Voronoi diagram and the Delaunay triangulations 

are indeed powerful geometric objects as applicable to the characterization of microstruc-

ture in three dimensional shear flows. However, the scheme introduced here would be par-

ticularly effective for data that has a clear gradation between the structures as reported by 

other researchers. The method introduced here has provided insight into how it may be 

better adapted to provide a more discriminatory classification and may also be used as a 

front-end for other schemes. 



CHAPTER 5 

CONCLUSION  

The goal of this thesis has been to investigate new methods to characterize the structure 

present in three-dimensional shear flows and address the problems faced by methods used 

in the past and to solve to some extent the problems faced by them. To this end, the meth-

ods introduced have been shown to be successful. The methods are efficient, robust and 

independent of any parameters of classification unlike the variance analysis method that 

seems to have questionable results with varying grid dimension. 

The extraction of the fractal dimension of the microstructure and the existence of 

distinct values for different coefficients of restitution indicates that this approach is partic-

ularly useful and could be used as a front end in future research for further refinement of 

the classification scheme for the problem. The statistical measures formed from the geo-

metric properties of the Voronoi diagram viz., the Delaunay edge lengths, the Voronoi 

polygon areas and the perimeters of the Voronoi polygon and Delaunay triangles have 

been to shown to work even in the case of marginal microstructure, thus indicating that 

future research can be directed towards employing the Voronoi diagram in aggregating 

group properties of characteristic regions of the microstructure. 

In summary two new methods have been introduced that have been shown to be 

successful. The new methods introduced are independent of the parameters of classifica-

tion and are computationally efficient (O(NlogN )) and fairly robust. These methods can be 

used as a front end for improving the classification scheme and could be easily extended to 

other data analysis situations of a similar nature. 
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APPENDIX A 

OBJECT ORIENTED DESIGN  

Object-orientation[18] is a way of thinking, not tied to any particular language, merely a 

mindset which is itself supported better by more recent languages. The object oriented 

paradigm, at its simplest, takes the standard components of any software system - data and 

procedures - but de-emphasizing the procedures, stressing instead the encapsulation, in an 

autonomous module of data and procedural features together, exemplified by the clear and 

concise specification of the module interface. In a systems decomposition based on an 

object oriented approach, the system is viewed as a collection of objects, sometimes 

referred to as entities. High level analysis and design is accomplished not only in terms of 

these objects but also in terms of the ways in which objects interact with each other via 

"messages" that pass information, invoking the objects to implement a procedures "behav-

ior") or to reply with details about its state. 

Detailed design, including procedure implementation and specification of data-

structures is deferred until much later in the development process and implementation 

details are generally private to the object, the "visible" characteristics being strictly lim-

ited and tightly controlled, thus adhering strictly to the concepts of information hiding as 

promulgated by Parnas. Consequently, algorithmic procedures and data structures are no 

longer "frozen" at a high level of system design. A system based upon object representa-

tion can remain more flexible since changes at the implementation level are more easily 

accomplished since implementation details tend to be hidden and therefore changes have 

highly limited impact on other parts of the program. It is important that data structures 

provide the basis of object identification around which an interface is then developed. 

Thus object development focuses on data abstraction rather than freezing specific data 

structures into object specification. 
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In contrast to the common structured systems analysis, based largely on top-down 

functional decomposition, object oriented(OO) design and analysis has many attributes of 

both top-down and, perhaps pre-dominantly, bottom up design. Since one of the aims of an 

OO implementation is the development of generic classes for storage in libraries (the soft-

ware engineering "holy grail" of the reusability), an approach that considers both top-down 

analysis and bottom-up design simultaneously is likely to lead to the most robust software 

systems 

Indeed several authors suggest that in reality, practitioners purporting to be follow-

ing a strictly top-down apporach actually utilize a mixed mode of operation between top-

down„ bottom-up, and middle-out. 

Since a significant portion of object oriented systems development is bottom up, 

the differentiation between program design and coding is much less distinct than in a pro-

cedurally based systems life cycle. However, at this,later stage, it would seem reasonable 

that within individual code modules the tools developed for high level functional decom-

position and top-down system design such as DFDs, can still be found to be useful. Other 

graphical tools that are useful at different stages within OO systems life cycle and object 

relationship graphs, client server diagrams, object design diagrams, class interface dia-

grams, inheritance charts, or collaboration graphs. 



APPENDIX B 

THE DOUBLY CONNECTED EDGE LIST(DCEL)  

The doubly-connected edge-list (DCEL) as described in Preparata and Shamos[] is partic-

ularly suited to represent a planar graph embedded in the plane. A planar embedding of a 

planar graph G = (V, E) is the mapping of each vertex in V to a point in the plane and each 

edge in E to a simple curve between the two images of extreme vertices of the edge, so 

that no two images of edges intersect except at the endpoints. 

Let V = {v1,..., vN} and {e1,..., eM } . The main component of the DCEL of a planar 

graph (V, E) is the edge node. There is a one-to-one correspondence between edges and 

edge nodes, i.e., each edge is represented exactly once. An edge node consists of four 

information fields V1, V2, F1 and F2, and two pointer fields P1 and P2: therefore the cor-

responding data structure is easily implemented with six arrays with the same names, each 

consisting of M cells. The meanings of these fields are as follows. The field V1 contains 

the origin of the edge and the field V2 contains its terminus; in this manner the edge 

receives a conventional orientation, the fields F1 and F2 of the edge oriented from V1 to 

V2. The pointer P1(resp. P2) points to the edge node containing the first edge encountered 

after the edge(V1, V2) when one proceeds counterclockwise around V1(resp. V2). Names 

Figure B1 Doubly connected edge list  
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of faces and vertices may be taken as integers. As an example, a fragment of a graph and 

the corresponding fragment of the DCEL are shown in the figure below. 

It is now easy to see how the edges incident on a given vertex or the edges enclos-

ing a given face can be obtained from the DCEL. If the graph has N vertices and F faces, 

we can assume we have two arrays HV[1:N] and HF[1:F] of headers of the vertex and face 

lists: these arrays can be filled by a scan of arrays V1 and F1 in time 0(N). The following 

straightforward procedure VERTEX(j), obtains the sequence of edges incident on vj  as a 

sequence of addresses stored in an array A. 

procedure VERTEX(j) 
begin a:= HV[j]; 

a0:= a; 
A[1]:= a; 
i:=2; 

if(V1[a] = j)then a:= P1[a] else a:= P2[a]; 
while(a != a0) do 

begin A[i]:= a; 

	

if(V1[a] = j) then a:= P1[a] else a:= P2[a]; 
i:= i + 1 

end 
end 

Clearly VERTEX(j) runs in time proportional to the number of edges incident on 

vj. Analogously, we can develop a procedure, FACE(j), which obtains the sequence of 

edges enclosing f j, by replacing HV and V1 with HF and F1, respectively, in the above 

procedure VERTEX(j). Notice that the procedure VERTEX traces the edges counterclock-

wise about a vertex while FACE traces then clockwise about a face. 



APPENDIX C 

VARIANCE ANALYSIS PLOTS  

Figure C1 Variance versus Time step for grid dimension of 10 

Figure C2 Variance versus Time step for grid dimension of 15  
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Figure C3 Variance versus Time step for grid dimension of 20 

Figure C4 Variance versus Time step for grid dimension of 25 
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APPENDIX D 

HISTOGRAM PLOTS OF VORONOI DIAGRAM MEASURES 

36 



Figure D2 Histogram plot for Delaunay triangle areas and their inverses for e=0.2  
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Figure D3 Histogram plot for Delaunay triangle edge lengths for e=0.2  
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Figure D4 Histogram plot for Voronoi polygon areas and their inverses for e=0.9  
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Figure D5 Histogram plot for Delaunay triangle areas and their inverses for e=0.9 40 



Figure D6 Histogram plot for Delaunay triangle edge lengths for e=0.9 
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