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ABSTRACT 

DETECTION OF PLANAR FACETS IN NOISY RANGE IMAGES 

by 

Ajey S. Atre 

Segmentation of the image is one of the major tasks of a machine vision 

system designed for constructing a three-dimensional representation of the object 

being imaged. A robust approach for segmenting planar surfaces from range 

images is presented in this paper. An algorithm based on clustering through fuzzy 

covariance matrices, which has been proposed by Gustafson and Kessel is con-

sidered for planar segmentation. However this algorithm performs poorly if the 

data is noisy, which is usually the case in real life applications. In order to handle 

noisy data, a robust modification, based on the "noise clustering" concept, is intro-

duced to the algorithm. This modification is found to work very well in noisy data. 

Another alogrithm called the Adaptive Fuzzy c-Elliptotypes has been used by 

Dave for detecting lines in 2-D digital images, this algorithm is also considered for 

range image segmentation. The robust modification of this algorithm is used for 

planar segmentation of 3-D range images and is found to perform well. Examples 

of range image data are included to show the effectiveness of the algorithms pro-

posed. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction to Segmentation of 3-D Range Images 

Generating a computer compatible mathematical model of an object is the first 

step in the CAD/CAM process which is normally achieved by using solid modeling 

softwares. This can become a time consuming and complicated step if the object 

to be modeled is intricate. In these situations it is possible to use 3-D information 

about the object to generate the required mathematical model. In some cases like 

reverse engineering and orthopedic biomechanics 3-D information is readily avail-

able and can be used. The use of range images for this purpose also looks prom-

ising. 

Range images and other types of 3-D data sets are being widely used in the 

fields of machine vision, computer aided design & computer aided manufacturing 

(CAD/CAM) and robotics. Range cameras are currently used in space and 

defense applications and are expected to be used for manufacturing applications 

in the near future. Other devices like coordinate measuring machines are already 

being used in the industry for generating 3-D data sets. Another form of 3-D data 

is the CAT scan image which is widely used in orthopedic biomechanics. 

A range images must first be processed to generate the desired mathemati-

cal model. The first step in this processing is segmentation of the image into sur-

face patches of complete surfaces, which can then be further processed for 3-D 

object recognition. The purpose of this work is to propose and evaluate methods 

to obtain planar segmentation of range images. Planar segmentation is consid-

ered since it is easy to represent an object with planar facets and is a standard 

method to do so in most of the CAD/CAM softwares. 

The usual format of range image is such that for each point on the surface of 
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the object, there is a real vector of XYZ coordinates. These surface points have to 

be grouped into meaningful clusters which can be used in further processing. 

Therefore, segmenting is essentially a clustering problem of unlabeled data 

points. 

1.2 Introduction to Cluster Analysis 

Clustering of a data set X means the identification of c clusters, 2 ≤ c < n, where n 

is the number of data points in X. The data points are clustered according to some 

common mutual relationship, so the clusters identified should be such that all the 

points in a single cluster share a common relationship which is stronger that their 

relationships with points classified into other clusters. The structure of the clusters 

sought dictated the relationship between points. A measure has to be established 

to enable the algorithm to classify the data set into clusters of a specific structure. 

This measure also called as the clustering criterion is based on some mathemati-

cal property of the points is the data set e.g distance, angle, curvature, symmetry, 

intensity etc. 

The importance of the right choice of clustering criterion is discussed by 

Bezdek[1]. The specification of a clustering criterion has to accompany a good 

clustering method for successful cluster analysis. The main classes of clustering 

methods are Hierarchical, Graph-Theoretic and Objective Function. The final 

issue to be considered is the type of memberships to be used in the analysis. The 

memberships can be hard or fuzzy. In the hard approach a data point can be 

assigned to one cluster only where as in the fuzzy approach a data point can be 

given a membership with respect to each cluster. Hence the fuzzy membership of 

a data point can have a value between 0 and 1, where as a hard membership has 

a value of 0 or 1. 
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1.3 Literature Review 

Various techniques for range image segmentation have been reported. These 

techniques can be broadly classified into region based and edge based tech-

niques. Region based techniques attempt to group data points into surface 

regions based on homogeneity or similarity of surface properties [2,3,4]. This 

approach assumes that parts of the object surface can be well approximated by a 

particular function. The edge based techniques try to extract discontinuities in the 

properties of the object surface to detect the closed boundary of the object [5,6,7]. 

A hybrid approach combining both these techniques has been reported by Yokoya 

and Levine [8]. 

Besl and Jain[2] have developed an algorithm that approximates the image 

data with bivariate functions to compute complete noiseless reconstruction. The 

algorithm first generates an initial coarse segmentation and this is refined using 

variable order surface fitting. This algorithm works well for images that can be rep-

resented by piecewise-smooth surfaces but the methods used for noise estima-

tion need to be improved. The hybrid approach proposed by Yokoya and Levine[8] 

is successful in identification of distinct surface regions that are adjacent. It pro-

vides a rich description of the surfaces detected. This approach requires several 

steps of processing and its performance in presence of noise is not documented. 

The region based approach is very popular, but Hoffmann and Jain [5] have 

used the edge approach over the region approach as the region approach tends 

to merge surfaces connected by smooth edges and the parameters involved are 

affected by noise. They have used a three stage procedure that detects surface 

patches in the first stage, classifies these patches as planar, convex or concave in 

the second stage and classifies boundries between these patches as crease or 

non-crease. Clustering techniques are used for surface patch detection but the 

effect of noise is not considered. 
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Jolion, Meer and Bataouche [9] have recently introduced a algorithm based 

on minimum volume ellipsoid robust estimators. This algorithm requires no apriori 

information about the number of clusters, it is successful in segmentation of range 

images and has a good tolerance to noise. But the clusters tend to loose their 

clarity as the amount of noise increases. This approach has managed to address 

all the issues involved in segmentation of range images and produce impressive 

results for simple objects. 

Various clustering techniques based on fuzzy objective functions have been 

reported [10],[11],[12]. These techniques work well when clusters are spherical (or 

hyper-spherical) in shape e.g fuzzy c-means (FCM) clustering algorithm reported 

by Bezdek[1]. Gustafson and Kessel [13] proposed an algorithm, (here after 

called GK algorithm) that used covariance matrices to detect clusters of different 

geometrical shapes in the same data set. This approach was applied by Krish-

napuram and Ferg[14] to detect linear and planar clusters. The algorithm provides 

good results on noise free range images. 

Edge detection techniques have been used on 2-D images. Petrou and Kit-

tler[20] have used ramp filters for edge detection. The Adaptive Fuzzy c-Ellipto-

type Clustering (AFC) algorithm proposed by Dave has been shown to work for 

segmenting lines from 2-D digital images[15,16]. 

Several researchers have addressed this problem of noise in cluster analy-

sis and have suggested methods to improve the performance of clustering algo-

rithms in such cases. Jain and Dubes[11] suggested a method for removing noise 

points from data sets before applying clustering algorithms. This, however, is very 

hard to achieve in many cases, because the structure of noise is generally 

unknown, and if there are many outliers, the task of identifying them apriori is very 

difficult. Jolion and Rosenfeld[17] proposed an approach that assigned weights to 

data points based on the relative local data density. Therefore, in principle, points 
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belonging to good clusters are assigned higher weights than noise points. The 

problem, however, in this approach is that it may be difficult to compute a mean-

ingful value of local data density for clusters other than spherical shapes. There 

are also several methods based on the principles from robust statistics [9], but in 

general the problem of noisy data remains rather difficult to handle. 

Recently, Dave[18] presented a novel method that assigned noise points to 

a cluster called the noise cluster thus reducing their effect on the clustering algo-

rithm. The idea is based on defining the noise as a prototype, and is applicable to 

all the objective function based clustering algorithms. 

1.4 Objective of this thesis 

The objective of this work is to propose a robust approach for segmentation of 

noisy range images into planar facets. This is to be achieved by developing robust 

algorithms for segmentation of noisy range data into planar clusters. The use of 

fuzzy objective functions as a method of clustering is proposed since these do not 

require multiple step processing of the data. An attempt is made to develop such 

algorithms by modifying existing algorithms. 

The GK algorithm has been proved to work for detecting planar clusters in 

range images. However, its performance in the presence of noise is very poor. 

This work will use the method proposed by Dave[18] to improve the performance 

of the GK algorithm. 

The AFC algorithm has been used for segmentation of lines in 2-D digital 

images[16]. This algorithm will be extended to 3-D to detect planar clusters in 

range images. The issue of noise will be addressed here also. 



CHAPTER 2 

FUZZY OBJECTIVE FUNCTION ALGORITHMS 

2.1 Introduction 

To partition a data set into clusters we should first know the clustering criterion. 

Thus we have to use some mathematical property like distance, curvature, inten-

sity etc. of the points in the data set that will enable us to detect clusters of a par-

ticular structure. Using objective functions allows a precise formulation of the 

clustering criterion [12]. So the extrema of the objective function will give us the 

optimal partitioning of the data. Since our approach is fuzzy these functions are 

called fuzzy objective functions. For example if one considers as the similarity 

measure the Euclidean distance of data points from the cluster center, and as a 

measure of cluster quality the overall within-group sum of squared errors, then the 

objective function is the sum of squared errors. This clustering criterion is called 

minimum variance objective. 

In this chapter the GK and AFC algorithms which use fuzzy objective func-

tions will be discussed. The FCM functional is described first as a stepping stone 

to explain the GK algorithm. The FCV functional is discussed next, followed by the 

AFC algorithm. 

2.2 The FCM Functional 

The generalization of the minimum variance objective mentioned earlier, leads to 

many infinite families of fuzzy clustering algorithms that have been developed and 

used by a number of investigators. The initial generalization of this squared error 

function and an algorithm akin to hard c-means was reported by Dunn[19]. The 

fuzzy c-means functional has been defined as 

Let Jm  : Mfc  x R°  be 
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Mfc is the fuzzy partition space, 

RCP is the cp-tuples of real numbers, 

U E Mfc  is a fuzzy c-partition of data set X, 

are the cluster centers of U, 

• is any inner product induced norm on Rp, 

c is the number of clusters, 

n is the number of data points in X and 

m E [ 1 , 	) is a weighting exponent. 

Examination of Jm  reveals that the dissimilarity measure dik, is the distance 

between each data point xk  and a cluster center vi; the squared distance is then 

weighted by (uik ) m = (ui  (xk) ) m, the mth power of xk's membership in the clus-

ter ui. Thus the minimization of Jm  will yield the least-squared error stationary 

points of Jm. The following theorem has been by Bezdek [12] for the minimization 

of Jm  with respect to the memberships and distances calculated. 

Theorem 1: 

Assume || • || to be inner product induced norm, fix m ϵ [1, o) and let X have 

n > c distinct points,define the sets 

may be globally minimal for Jm  only if 
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The proof of this theorem can be obtained in [12]. The FCM algorithm[1] that 

originates from the functional described above has been widely used for detection 

of well separated spherical or round clusters. 

2.3 The GK Algorithm 

Gustafson and Kessel [13] proposed a modification of the FCM algorithm in an 

attempt to recognize the fact that different clusters in the same data set may have 

different geometrical form. The norm controls the shape of all c clusters identified 

with Jm(U,v). An algorithm can be able to detect clusters of different shape in the 

same data set if the norm is varied for each individual cluster. As explained by 

Bezdek [12] mathematical realization of this idea is accomplished by considering 

the class of inner product norms induced on RP by symmetric positive definite 

matrices in vectors space p, where p is the dimension of the data set. Let us 

denote by A a c-tuple of matrices, so A = (A1,A2,...Ac). Let the weighted inner 

product induced by RP by A, be <x,x>A, = ||x||2A = xTAix. Thus the distance 

between x,y in RP in the weighted norm is ||x-y|| A . 
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Extending this idea to Jm we can define 

The clustering criterion employed by Jmgk  and Jm  are the same. The basic 

difference being that in Jm  all the distances in {dik} are measured by a prepre-

scribed norm where as in Jmgk  c different norms are sought by the functional. 

These distances are given by 

The minimization of Jmgk  with respect to A will yield the least-squared-error 

stationary points of Jmgk. To render the minimization of Jmgk  with respect to A trac-

table, each Ai  is constrained by requiring the determinant of Ai  to be fixed. Specifi-

cation of det(Aj) = pj  > 0 for each j = 1 to c amounts of constraining the volumes of 

cluster uj  along the jth axis. Allowing Aj  to vary while keeping its determinant fixed 

corresponds to seeking the optimal shape fitting the data points for a fixed volume 

for each cluster.The following theorem has been presented by Gustafson and 

Kessel for calculating the norm inducing matrix A. 

Theorem 2: 

If PDc  represents the c-fold cartesian product of a set of symmetric positive defi- 

nite matrices in vector space p x p. 

Where (U,v) satisfy equations 2.2, 2.3 and 2.4, under the hypothesis of theorem 1. 

If m > 1 and for each j, det(Aj) = pj  > 0 is fixed, then A is a local minimum of only 

if 
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Where, 

is the fuzzy scatter matrix of 

The proof of this theorem can be obtained in [1]. 

The GK algorithm based on the above mentioned theorem is as follows 

Algorithm 1 (GK). 

1. Fix c the number of clusters, 2 ≤ c ≤ n , where n' is number of data points; 

Fix fuzzifier m E ( 1 , ∞) 

Fix c volume constraints pi  E (0, ∞) , 1 < j <c 

Initialize membership matrix U (0) 

At steps I, I = 0,1,2, 	 

2. Calculate the c fuzzy cluster centers {vi } 1 using memberships U (I)  

3. Calculate c fuzzy scatter matrices { 	(I). Calculate their determinants and 

inverses. 

4. Calculate the norm inducing matrix {Ai} (1)  

5. Update U (1) to U(I+1) 

6. If (U (I+1) - U(I)) ≤ ɛ  stop, else return to 2 with I = 1+1. 

In step 2 we use equations 2.4 to calculate the cluster centers. In step 3 the 

fuzzy scatter matrices are calculated from equation 2.7 and the norm inducing 

matrices are calculated using equation 2.6. In step 5 we use equation 2.2 and 

2.5B to update the membership matrix. The GK algorithm is a simple Picard itera-

tion and it is stoped if the change in memberships in not significant in step 6.The 

ability of GK to detect clusters of different shapes in the same data set and its 

comparision to other algorithms is documented in [12]. 

The GK algorithm when used for clustering of 3-D range data yields very 

good results. This has been shown by Krishnapuram and Ferg[14] and verified in 
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this work. The clusters detected are essentially surface patches. In this case the 

data is 3-Dimensional and hence the value of p is 3. The norm inducing matrices 

and the scatter matrices will be of order 3 x 3. The eigenvector of each scatter 

matrix give the orientation of the cluster and the eigenvalues give the length of the 

cluster in direction of the corresponding eigenvector. 

2.4 The Fuzzy c-Varieties Functional 

Gustafson and Kessel attempted to improve the ability of Jm  to detect different 

cluster shapes in a fixed data set by locally varying the metric topology around a 

fixed kind of prototype namely the cluster centers which are prototypical data 

points in the real space of dimension p. Another attempt by Bezdek [12] to 

enhance the ability of Jm to detect nonhyperelliptically shaped substructures takes 

an approach which is in some sense opposite to that embodied by the GK algo-

rithm. In the fuzzy c-varieties functional defined by Bezdek the norm inducing 

matrix A is fixed globally, but allows the c prototypes to be r-dimensional linear 

varieties, 0 ≤ r ≤ p-1, rather than just points (cluster centers). 

This type of objective functional is most amenable to data sets which con-

sist essentially of c clusters, all of which are drawn from linear varieties of the 

same dimension. 

Definition 1 (Linear Variety). 

The linear variety of dimension r, 0 ≤ r ≤ p, Through point v E RP spanned by the 

linearly independents vectors {s1, s2,...,sr}, is the set 

In 2.8 if v is a zero vector, then V, is just the linear hull or span of the {si}, an 

r-dimensional linear subspace through the origin parallel to the set in 2.8. Linear 
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varieties of all dimensions are thought of as "flat" sets in real space of dimension p 

and r is the number of directions in which this "flatness" extends. Certain linear 

varieties have special names and notations: 

V0  (v.) = v 

Ø

	 "points" 	 (2.9) 

V1  (v;s) = 	(v;s) L 	 "lines" 	 (2.10) 

V2  (v; (s1, s2)) = P (v; (s1, s2)) 	"planes" 	 (2.11) 

So we call Vo  a point; V1  a line parallel to s; V2 a plane through v parallel to the 

plane spanned by {s1,s2}. 

A fuzzy clustering criterion which recognizes,varietal shapes can be based 

on distances from data points to prototypical linear varieties. Specifically the 

orthogonal(OG) distance (in the A norm of real space) from x to Vr, when {Sr}  are 

an orthonormal basis for their span, and the distance is given by 

The weighted objective function to be optimized in this case is the natural 

extension of the functional Jm  which measures the total weighted sum of squared 

OG errors from each point in the data set to each of the c r-dimensional linear 

varieties. 

Where U is the fuzzy c-partition of X and Dik is same as the distance given by 

2.12. An examination of 2.13 reveals that for r = 0, Jv0m  reduces to Jm  the FCM 

functional; for r = 1 we get Jv1m  which we will call J1  the fuzzy clines (FCL) func-

tional. Similarly for r = 2 we will get the fuzzy c-planes functional (FCP) J2 and fur-

ther values of r will give functionals for fuzzy hyperplanes. 
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2.5 The FCE Functional 

Bezdek [12] has shown that the fuzzy c-varieties algorithms are reliable for the 

detection and characterization of substructure in a data set when all c clusters are 

essentially r-dimensional and linear varietal in shape. There may be, however, a 

disadvantage of the FCV which is intrinsic to the variety itself, namely, "size". For 

example, lines (varieties of dimension 1) have infinite length, and it may be the 

case that colinear clusters that are widely separated would be identified by this 

functional as one cluster. An example of this can be obtained in [12]. 

Bezdek[12] has suggested that the utility of J1 can be considerably 

increased by forcing each cluster to contain a center of mass in or near its convex 

hull. Although the natural supposition stemming from there remarks would be to 

form a convex combination of Jm  and J1, it is a remarkable fact that arbitrary con-

vex combinations of all the Jvm's are minimized over choice of dimensionally dif-

ferent varieties simply by using the linear varieties which are necessary for 

minimization of the individual term of highest dimension. 

If we consider the convex combination of Jm  and J1, the new functional 

resulting called fuzzy c-elliptotype functional (FCE) can be defined as 

Where Jm  if the FCM functional and J1  is the FCL functional. This equation can be 

seen as a combination of two equations and can be written as 

Where Zik is the modified distance given by 

Where Dik is the distance of data points from the linear prototype (obtained by 

substituting r=1 in equation 2.12) and dik is the distance of the data points from the 

cluster center(obtained by substituting r=0 in equation 2.12). The mixing coeffi-

cient a, then defines the proportion in which the distance is measured from a 

point and a line for a 2-D case, thus defining the elliptotype clusters. 
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2.6 The AFC Algorithm 

The main short-coming of the algorithms based on the concept presented above 

is that one must have some knowledge about the cluster shapes in order to 

choose a value of the mixing coefficient. Since the same value of a is used for all 

the clusters, the algorithm will seek clusters of the same elliptotypical shape. 

Dave[16,21] and Gunderson[22] have addressed the problem of selection of a. In 

the approach used by Dave[17] each cluster can have a different value of a and 

can have any value between 0 and 1. This modification will change equation 2.16 

as follows 

Where a. is defined by Dave as 

Where 

In the above equations, λij's  are the eigen values of the scatter matrix. The above 

definition utilizes the information from scatter matrices to derive different dis-

tances for each cluster. 

The idea behind use of equation 2.18 is derived by Dave from the following 

argument. If we consider a 2-D case then the value of the mixing coefficient for a 

round cluster must be 0 and for a linear cluster it should be 1. In case of a round 

cluster the eigenvalues of the scatter matrix given by equation 2.7 should be 

equal, while for a linear cluster one eigenvalue should be zero or close to it. The 

above definition of the mixing coefficient will give the desired effect. This modifica-

tion of the FOE functional was called adaptive fuzzy c-elliptotpye (AFC) functional. 

The algorithm proposed by Dave is presented below. 
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Algorithm 2 (AFC). 

1. Fix c the number of clusters, 2 c n , where a is number of data points; 

Fix fuzzifier m E (1,00) 

Initialize value of mixing coefficient a1  E ( (0, 1), 1 	i c) 

Initialize membership matrix 

At steps I, I = 0,1,2, 	 

2. Calculate the c fuzzy cluster centers {v1 } I using memberships U (i)  

3. Calculate c fuzzy scatter matrices { Sfi  } (I) Calculate its eigen values and the 

corresponding mixing coefficient. 

+ 
4. Update U (1) to U(11)  

5. If (U 
(I+ 1) - 

 U
(I)

) ≤ ɛ stop, else return to 2 with I = 1+1. 

In step 2 we use equations 2.4 to calculate the cluster centers.ln step 3 the 

fuzzy scatter matrices are calculate from equation 2.7 and the mixing coefficients 

are calclulate from equation 2.18. In step 5 the memberships are calculated using 

2.2, the distances are given by equation 2.17. 

This algorithm has been shown[17] to work for detecting clusters of different 

shapes in the same data set. Its does have a tendency to pick longer clusters as 

explained by Dave. 



CHAPTER 3 

NOISE IN CLUSTERING 

3.1 Introduction 

The presence of noise in the data set to be analysed is a common problem in 

cluster analysis. Noise arising due to the statistical distribution of the data from the 

measuring instrument can be tackled but the noise that appears completely arbi-

trarily is of real concern. In some cases even a few noise points can severly dete-

riorate the performance of the algorithm. Several researchers[9,11,17] have 

addressed the problem of noise in cluster analysis and various techniques have 

been recommended for tackling this problem. 

The presence of noise in range data is very common. Hence the algorithms 

used for their segmentation should be able to handle noise. The techniques cur-

rently used do not perform well in noisy data and in some cases fail completely. 

The squared error type clustering algorithms are extremely susceptible to noise. 

Dave [18] has recommended a novel approach to improve the performance of 

these type of algorithms. This approach requires no preprocessing of the data set 

and has been shown to give excellent results for various type of 2-D data sets with 

multiple clusters. The approach will be used in this work by extending it to 3-D 

data sets to improve the performance of the existing GK algorithm for planar seg-

mentation in noisy data. This technique will also be used on the modified AFC 

algorithm to evaluate its performance. The approach proposed by Dave is 

explained in this chapter. 

3.2 Noise Prototype 

The performance of squared error type algorithms is highly susceptible to noise, 

this is because in these type of algorithms each point in the data set including the 

16 
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noise points have to be assigned to a cluster. This causes some of the noise 

points to be assigned to good clusters hence deteriorating the performance of 

these algorithms. To eliminate the necessity of classification of noise points into 

good clusters Dave has introduced a concept of noise cluster, a cluster in addition 

to the clusters being sought, into which all the noise points can be dumped. 

This approach is based on first defining a noise cluster and then defining a 

similarity (or dissimilarity) measure for the noise cluster. This measure will gauge 

the belonging of a point to the noise cluster. A scheme that allows the definition of 

noise as a prototype cluster is proposed in [18] where the noise prototype is 

defined as 

Definition 2 (Noise Prototype). 

Noise prototype is a universal entity such that it is always at the same distance 

from every point in the data set. Let vc  be the noise prototype, and xk  be the point 

in feature space, vc, xk  E RP . Then the noise prototype is such that the distance 

dck, of point xk  from vc  is 

The definition tells us that all the points in the data set are at a distance δ 

from the noise prototype, it does not however tell us about the value of δ.The fact 

that all the points in the data set are at the same distance from the noise prototype 

is explained by Dave as that it indicates that all the points in the data set have an 

equal apriori probability of being assigned to the noise cluster, and as the algo-

rithm progresses the good points increase their probability of being assigned to 

good clusters. Physically this means that the distance of good points from good 

cluster prototypes decreases below 8 as the algorithm progresses. 

If we consider that there are c - 1 clusters in a data set and let the cth cluster 

be the noise cluster. Then the functional JN  can be defined as 
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Where the distance dik  is defined as 

for all k and i = 1 to c-1, and, 

for i = c. 

Thus for a specified value of δ the minimization of JN  can proceed in the 

same manner as that of the functional described earlier. 

The issue of selection of a value for 8 was addressed in [18] and the follow-

ing discussion is offered. An examination of equation 2.2 shows that the member-

ship uik  of a point xk  with respect to a cluster i depends not only on the distance of 

this point from cluster i , but also on the distance from all other clusters. Thus a 

point will have the highest membership for the cluster that is closest. Thus if 8 is 

chosen very small, then most of the points will be classified to the noise cluster, 

while if 8 is chosen too large, then most of the point will be classified into clusters 

other than the noise cluster. A proper selection of δ will result in a classification 

where the points that are close to good clusters will be classified into good clus-

ters, while the noise points that are away from good clusters will get classified into 

the noise cluster. 

Prespecification of δ is not easy since information necessary for fixing the 

value is not available and that this value would be different for different problems. 

Taking this into consideration, a scheme based on average interpoint distances is 

proposed in {18]. Interpoint distances reflect structural realtionship among the fea-

ture points. The proposed formula is 
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where 2 is the value of multiplier used to obtain δ from the average distances. 

3.3 Noise Clustering Algorithm 

The algorithm based on the functional above with the fixed point iteration scheme 

is presented as follows [18]. 

Algorithm 3 (Noise). 

1. Fix c the number of clusters, 2 ≤ c ≤ n , where n is number of data points; 

Fix fuzzifier m ϵ  (1, ∞) 

Initialize value of δ 

Initialize membership matrix U (0) 

At steps I, I = 0,1,2, 	 

2. Calculate the c fuzzy cluster centers {v1 } I. 

3. Calculate the fuzzy memberships U (I)  and value δ 

4. Update U (1 to U(I+1) 

5. If (U 
(I +1) 

— U 
(I)

) 5 a stop, else return to 2 with I = 1+1. 

In step 2 we use equations 2.4 to calculate the cluster centers for i = 1 to c -

1 cluster. In step 3 memberships can be calculated using equation 2.2 the dis-

tance is given by equation 3.3 and 3.4, δ is calculated using 3.5. 

The algorithm mentioned above can be applied to a variety of clustering 

algorithms for cluster detection in noisy data. The proper selection of 2 is essen-

tial and can be generally achieved by trial and error. The process of integration of 

this algorithm with another algorithm is discussed in the next chapter. 



CHAPTER 4 

DEVELOPMENT OF NEW ALGORITHMS 

4.1 The NGK Algorithm 

The GK algorithm was used by Krishnapuram and Ferg[14] for planar segmenta-

tion of range data. This algorithm like other algorithms of its class perform very 

poorly in the presence of noise and hence some kind of techniques have to be 

used to improve the performance of this algorithm. The approach propose by 

Dave[18] to handle noise in cluster analysis is used. By integrating the GK algo-

rithm with the noise algorithm a new algorithm called the noise-GK algorithm 

(NGK) is developed. The process of integration is discussed in the following para-

graphs. 

As discussed earlier, the GK algorithm used a norm inducing matrix A, to 

identify clusters of different shapes in the same data set. If we consider that there 

are c-1 clusters in a range image and using Dave's approach allow the cth cluster 

be the noise cluster, then the objective function for this algorithm can be defined 

as 

Where the distance dik is defined as 

for all k and i = 1 to c-1, and, 

for i = c. 

In equation 4.2 A, is the norm inducing matrix given by equation 2.6.The 

algorithm corresponding to the minimization of this functional is as follows 
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Algorithm 4 (NGK). 

1. Fix c the number of clusters, 2 ≤ c ≤ n where n is number of data points; 

Fix fuzzifier m E (1, -0) 

Initialize value of S 

Fix c volume constraints pi  E (0, ∞), 1 j c 

Initialize membership matrix U (0) 

At steps I, I 	0,1,2, 	 

2. Calculate the c fuzzy cluster centers {v1 } I using memberships U ()  

3. Calculate c fuzzy scatter matrices {Sfi} (I).  Calculate their determinants and 

inverses. Calculate the value of S 

4. Calculate the norm inducing matrix {Ai} (I)  

+ 5. Update U (I) to U(I+1)  

6. If (U (I+ 1)  - U (I) ) ≤ ɛ  stop, else return to 2 with I = 1+1. 

In step 2 we use equations 2.4 to calculate the cluster centers for i = 1 to c - 

1 clusters . In step 3 the fuzzy scatter matrices are calculate from equation 2.7 

and S is calculated using 3.5.The norm inducing matrix is calculated in step 4 

using 2.6. In step 5 the membership matrix is updated using 2.2 and the distances 

are given by equations 3.3 and 3.4. 

This algorithm presented above is expected to perform well in the presence 

of noise. Its performance is discussed in the next chapter. 

4.2 The NAFC Algorithm 

The AFC Algorithm has been used by Dave[16] for detecting lines in 2-D digital 

images and was shown to provide results than the FCL algorithms. Moreover it 

was observed that if the mixing coefficient was fixed, the algorithm(i..e. FCE) failed 

to detect the correct lines in the images. These results indicate that the mixing 

coefficient has to be selected in an adaptive manner. As recommended by Dave, 
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the AFC algorithm can be extended to the 3rd dimension to detect planes in 3-D 

range data. In the AFC algorithm for 2-D, elliptotypical clusters were detected 

using a convex combination of the FCM and the FCL functional, where the mixing 

coefficient was selected in an adaptive manner. For 3-D range image segmenta-

tion. A functional which is a convex combination of FCM and the fuzzy c-planes 

(FCP) functional can be used as suggested by Dave. Using such a functional we 

should be able to detect elliptotypical clusters in 3-D data sets, thus enabling us to 

detect planar clusters in 3-D range images. This section discusses the extension 

of AFC to 3-D and its integration with the noise algorithm. 

Equation 2.17 is used in the AFC algorithm for distance calculations. In this 

equation Dik is the distance of a data point from the linear prototype and d,k  is the 

distance of the data point from the cluster center. The linear varieties used in this 

case are V1  and V0 given by equations 2.10 and 2.9 respectively. In our case for 3-

D we will be using V2  (equation 2.11) and V0 as prototypes for our distance calcu-

lations. At this point we can write the distance formula as 

where Dik is the distance of a data point from the planar prototype (obtained by 

substituting r = 2 in 2.12) and dik  is the distance of the data point from the cluster 

center. The next issue to be addressed it the method for calculating the mixing 

coefficienta.. It should be noted that now we have three eigen values compared to 

two in the 2-D case. When αi  is equal to 0 the cluster detected will be spherical 

and the cluster will be planar when ai  is very close to or equal to 1. This can be 

achieved by using the equation 

where 

In the above equations, λij's are the eigen values of the scatter matrix. A 
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closer look at this equation reveals that this is just the extension of equation 2.18 

to 3-D. The last issue to be discussed is the integration of the noise algorithm with 

the new proposed algorithm. This is achieved by using the same approach as that 

used for the GK algorithm. Thus we consider the range image to have c 1 good 

clusters and the cth cluster to be the noise cluster. Based on the discussion pre-

sented above we can now define the functional JNAFc as 

Where the distance 4 given by 4.4 and 4.5 for all k and i = 1 to c-1, and, 

for i = c. 

The algorithm for the minimization of the functional presented above can be 

achieved by the following algorithm. 

Algorithm 5 (NAFC). 

1. Fix c the number of clusters, 2 c n , where n is number of data points; 

Fix fuzzifier m E (1, 00) 

Initialize value of mixing coefficient a1  E ( (0, 1), 1 ≤ i ≤ 	c) 

Initialize value of 6 

Initialize membership matrix U (0) 

At steps I, I = 0,1,2, 	 

2. Calculate the c fuzzy cluster centers {vi}1 using memberships U ()  

3. Calculate c fuzzy scatter matrices {SO (),  Calculate its eigen values and the 

corresponding mixing coefficient. Calculate value of 6. 

4. Update U (I) to U (I+1) 

(I+1) 	- U(I)) 
5. If (U 	— U 	) 	E stop, else return to 2 with I = 1+1. 
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In step 2 we use equations 2.4 to calculate the cluster centers. In step 3 the 

fuzzy scatter matrices are calculate from equation 2.7 and the mixing coefficients 

are calculate from equation 4.5. In step 5 the memberships are calculated using 

2.2, the distances are given by equations 4.4 and 4.7. 

The above mentioned algorithm was coded and used for range image seg-

mentation. The results are presented in the next chapter. 



CHAPTER 5 

EXAMPLES 

5.1 Introduction 

The algorithms presented in the earlier chapter were coded using the "c" program-

ming language. Graphical interface was based on the HOOPS [23] graphics 

library subroutines. Linpack and Eispack [24] subroutines were used for eigen 

value calculations and matrix operations like calculating the inverse and determi-

nant. These codes were used for the segmentation of range images obtained from 

PRIP (Pattern recognition and Image Processing) lab at the Michigan State Uni-

versity. Random artificially generated noise was introduced into these data files to 

accentuate the effect of noise. The code used for introducing the noise is pre-

sented in the appendix. Results of the segmentation are presented in the following 

sections. Each cluster detected by the algorithms is shown in a different shades of 

grey in the figures. The value of m (weighing exponent or fuzzifier) is taken as 2 

for all the cases.The results obtained by using AFC with a fixed mixing coefficient 

(i.e. FOE) are not included to conserve space. 

5.2 Images with Planar Surfaces 

Figures 1,2,3 and 4 show the range image of a section of a staircase with four pla-

nar surfaces. The range image has 8477 data points. The noise points make up 

5% of the data points. The outliers can be seen distinctly in the image while the 

noise points closer to the surface points cannot be distinguished by the eye. Fig-

ure 1 shows the segmentation obtained by using the conventional GK algorithm. 

The number of clusters c is taken as 4. It can be seen that one planar surface is 

detected correctly but the algorithm fails to detect the other planar clusters. The 

algorithm detects three clusters on the remaining data points and noise. 
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Figure 1 Segmentation of "Staircase" image using GK algorithm. 

Figure 2 Segmentation of "Staircase" image using NGK algorithm. 
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Figure 3 Segmentation of "Staircase" image using AFC algorithm. 

Figure 4 Segmentation of "Staircase" image using NAFC algorithm. 
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Figure 5 Segmentation of "Jig" image using GK algorithm. 

Figure 6 Segmentation of "Jig" image using NGK algorithm. 
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Figure 2 shows the segmentation obtained by using the NGK algorithm. In 

this case all four facets of the object are clearly detected and the noise points are 

dumped into the noise cluster. Figure 3 shows the segmentation of the same 

image using the AFC (for 3-D) algorithm, it can be seen that the algorithm fails to 

detect even one cluster clearly. Figure 4 shows the segmentation form the NAFC 

algorithm and excellent segmentation is obtained as the algorithm picks all the 4 

facets correctly. 

Figures 5,6,7 and 8 have the image of a section of a jig showing the "V" with 

flat surfaces at the two ends of the "V". This range image has 21148 data points, 

5% of which are noise points. The image has 4 planar facets and ail the algo-

rithms used a value of c equal to 4. The segmentation obtained by the conven-

tional GK algorithm is shown in figure 5 and as can be seen the algorithm detects 

two surfaces correctly though the edge between them is not clearly distinguished. 

The two remaining planes are classified as one cluster and the fourth cluster is 

lost in the noise points.Figure 6 shows the segmentation obtained by the NGK 

algorithm. All the facets are clearly detected and all the edges can be clearly dis-

tinguished. Figure 7 shows the segmentation given by the AFC algorithm and as 

can be seen it fails to detect a single facet clearly. Figure 8 shows the segmenta-

tion of the same range image obtained by using the NAFC algorithm, all the facets 

are detected clearly and the outliers are classified into the noise cluster. 

5.3 Image with Cylindrical and Planar Surfaces 

Figures 9,10,11 and 12 show the image of a cylinder with one cylindrical (partial) 

surface and one planar surface. This image has 7975 data points with roughly 5% 

noise points. Figure 9 shows the segmentation obtained using the conventional 

GK algorithm and as can be seen the algorithm fails completely to detect the cor-

rect clusters. Figure 10 shows the segmentation given by the NGK algorithm. 
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Figure 7 Segmentation of "Jig" image using AFC algorithm. 

Figure 8 Segmentation of "Jig" image using NAFC algorithm. 
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Figure 9 Segmentation of "Cylinder" image using GK algorithm. 

Figure 10 Segmentation of "Cylinder" image using NGK algorithm. 
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Figure 11 Segmentation of "Cylinder" image using AFC algorithm. 

Figure 12 Segmentation of "Cylinder" image using NAFC algorithm. 
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The algorithm detects one cluster that is the planar surface of the cylinder, but 

more interestingly it detects 3 clusters on the cylindrical surface such that each 

defines a facet of the cylindrical surface. It can also be seen that the edge sepa-

rating the two facets on the cylindrical surface (away from the observer) is not a 

straight edge. 

Figure 11 shows the segmentation obtained using the AFC algorithm. The 

algorithm fails to detects any cluster clearly. Figure 12 shows the segmentation 

obtained using the NAFC algorithm. It can be seen that one cluster is detected as 

the planar surface of the cylinder and the other clusters are detected as facets on 

the cylindrical surface. This segmentation is better than the segmentation 

obtained from the NGK algorithm (figure 10) since here all the edges separating 

the facets on the cylindrical surface are straight. 

5A Image with a Conical Surface 

Figures 13,14,15 and 16 show the image of a cone with only a partial conical sur-

face (only the visible side of the cone was scanned into the range image). The 

image has 4578 points with about 5% noise points. Figure 13 shows the segmen-

tation obtained by using the conventional GK algorithm. The value of c was taken 

as 4. The algorithm is not able to detect four facets on the cone. Three clusters 

are detected on the conical surface but neither defines a facet clearly. The fourth 

cluster is not detected on the surface but is lost in the outliers. 

The NGK algorithm was used to segment the same data set for c equal to 4. 

The algorithm detected 2 facets clearly but the other two clusters failed to repre-

sent facets clearly. Figure 14 shows the segmentation obtained by using the NGK 

algorithm for c equal to 3, the segmentation is fair and the three clusters detected 

roughly define one facet each on the conical surface. 



Figure 13 Segmentation of "Cone" image using GK algorithm. 
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Figure 14 Segmentation of "Cone" image using NGK algorithm. 
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Figure 15 Segmentation of "Cone" image using AFC algorithm. 

Figure 16 Segmentation of "Cone" image using NAFC algorithm. 
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Figure 15 shows the segmentation obtained by using the AFC algorithm for 

c equal to 4. The algorithm detects all four clusters on the conical surface but 

none of them represent a facet clearly. Figure 16 shows the segmentation 

obtained using the NAFC algorithm, and as can be seen four facets are clearly 

detected on the conical surface. 



CHAPTER 6 

CONCLUSIONS 

6.1 Discussion 

Krishnapuram and Freg[14] have used the GK algorithm to detect a large number 

of surface patches. The surface patches are then merged, using properties 

(eigenvectors and eigenvalues) of the clusters as merging criterion, to construct 

the surface of the object. This work has used a different approach where an 

attempt is made to detect a planar surface as a single cluster and detect a curved 

surface as number of facets. The eigenvalues and the eigenvectors of these pla-

nar clusters can be directly used for mathematical modeling of the object. This is 

of particular importance since many CAD packages today use faceted descrip-

tions of objects to be modeled. In both the cases the number of clusters to be 

detected have to be decided apriori (step 1 of the algorithms). The approach used 

by this work eliminates the need for merging of clusters but makes the task of 

cluster number selection more difficult. 

The results presented earlier showed that the GK algorithm failed to perform 

well in the presence of noise. The NGK algorithm performed very well in the pres-

ence of noise especially when the objects have only planar clusters. The NGK 

algorithm was capable of detecting planar facets on objects with planar and cylin-

drical surfaces. As expected the AFC was not able to perform well on noisy data 

on its own. The NAFC algorithm managed to perform well not only in the presence 

of noise but also in the presence all types of surfaces, namely planar, cylindrical 

and conical. Though the fourth cluster tends to get lost in the noise points for GK 

and AFC algorithms, it should be evident tc the reader that by using c=5 is not 

going to solve the problem. 
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The actual runtime for the algorithms was not very different from each other 

and was highly affected by the initialization scheme used. The key factor in deter-

mining the runtime was the number of points in the data sets. The algorithms 

required 10 to 15 minutes for segmentation of the "staircase" image (8477 data 

points) and "cylinder" image (7975 data points), on the SUN SPARC station 10. 

The "jig" image (21148 data points) required 20 to 30 minutes for segmentation on 

the same machine, while the "cone" image (4578 data points) required 5 to 10 

minutes. The memory requirement for the proposed algorithms was low compared 

to the Hough Transform based algorithms. 

The NGK algorithm when used for segmenting the "Cylinder" image 

detected the facets correctly but the edge seperating two facets was not a straight 

edge. This algorithm did not provide a good segmentation of the "Cone" image 

compared to the NAFC algorithm. This can be attributed to the fact that the two 

algorithms use very different approaches for clustering. The NGK uses "points" or 

cluster centers as prototype for measuring distances and the shape of the cluster 

is controlled by the norm inducing matrix which is varied locally. Thus the NGK 

algorithm tends to detect hyper-ellipsoidal clusters (shape of a football rounded at 

the two sharp points). The NAFC on the other hand used "planes" and "points" as 

prototypes for measuring distance and the norm inducing matrix is an identity 

matrix for all clusters and hence tries to detect clusters that are "disc" shaped. The 

mixing coefficient plays an important role in the shape of these "discs", for lower 

values of a these tend to be round. As the value of a increases the "discs" are 

elliptical in shape and for value equal to or close 1 the algorithm detects planes 

(which is usually the case). 

It is important to mention at this point that for a fixed value of a (close to or 

equal to 1) the algorithm (which is essentially FOP or FOE) fails to detect the cor-

rect planar facets, which suggests that the value of a has to be selected in a 
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adaptive manner. This is in agreement to a similar observation made by Dave in 

detecting lines in 2-D digital images, where a fixed α failed to detect the correct 

lines in the image. 

6.2 Conclusions 

A robust approach for range image segmentation based on clustering is pre-

sented by proposing two algorithms (NGK and NAFC). This approach is capable 

of performing very well in the presence of noise and is successful in detecting pla-

nar facets on objects with planar, cylindrical and conical surfaces. It is established 

that the concept of "noise clustering" can be applied to any objective function 

based algorithms to yield very good results. The success of the proposed algo-

rithms suggests that clustering coupled with "noise clustering" is a very useful tool 

for range image segmentation. It is shown that the extension of AFC is equally 

successful in 3-D as it was in 2-D. The NAFC algorithm appears to perform 

equally well or better, compared to the NGK algorithm, this though is still an open 

issue of research. 

6.3 Scope for Future Research 

The work has concentrated on presenting a robust approach for segmentation 

that works well for noisy data and for simple objects. The issues of detecting 

unknown number of clusters in a data set still needs to be addressed. The perfor-

mance of the two proposed algorithms need to be compared by a more extensive 

study on different range images. The extension of this approach to more compli-

cated surfaces is also an area for further investigation. 



APPENDIX 

NOISE GENERATION PROGRAM 

/*PROGRAM FOR INTRODUCING NOISE POINTS IN PRIP DATA SETS*/ 

#include <math.h> 

#include <stdio.h> 

/*** VARIABLES ****/ 

#define P 3 

#define MAX_PTS 30000 

#define RAND_MAX 99800 

#defineFACTOR.2 

int n,c,i,k,j,a,b,p=3,num[50],count,flag[240][240]; 

int iter_flag=0; 

int noise,outlier; 

double u[50][MAX_PTS], x[MAX_PTS][P], d[50][MAX_PTS],v{50][P],s[P][ 

],fv1[P]; 

double rho[50],an[P],temp,clx[50][MAX_PTS],cly[50][10000],z[P][P]; 

doublemax[P],min[P],clz[50][MAX_PTS]; 

float frac; 

FILE *filename; 

char str[30],out[30],junk[60],sel[20]; 

double tem1 ; 

int numb = 1; 

double noise_per, out_per, noise_dev, out_dev; 

doublexmin,xmax,ymin,ymax,zmax,zmin,yvalmin[P],yvalmax[P],zi[P][P][50]; 
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main() 

{ 

/**** GETTING THE FILE NAME**********/ 

LO: 

printf("Give filename\n"); 

scanf("%s", str); 

filename=fopen(str,"r"); 

if (filename == NULL) { 

printf("File not found \n"); 

goto LO; 

} 

read_file(); 

generate(); 

write_file(); 

} 

/*****SUBROUTINE TO READ DATA FILE*********/ 

read_file() 

41 



/*READING THE DATA FILE*/ 

n=0; 

fscanf(filename,"%s %s\n",junkjunk); 

fscanf(filename,"%s %s\n",junk,junk); 

fscanf(filename,"%s %s %c %c %c %s\n",junk,junk,junk,junk,junk,junk); 

for(j=0;j<240;j++) 

for(i=0;i<240;i++) 

{ 

if(i<239){ 

fscanf(filename,"%d ",&flag[j][i]); 

} 

else{ 

fscanf(filename,"%d \n",&flag[j][i]); 

} 

/****READING THE X COORDINATES*******/ 

for(j=0;j<240;j++) 

{ 

for(i=0;i<240;i++) 

if(i<239){ 

fscanf(filename,"%G ",&tem1); 
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} 

else{ 

fscanf(filename,"%G \n",&tem1); 

if(flag[j][i]==1){ 

x[n][0]=tem1; 

n++; 

} 

} 

} 

/********READING THE Y COORDINATE ******/ 

a=0; 

for(j=0;j<240;j++) 

{ 

for(i=0;i<240;i++) 

if(i<239){ 

fscanf(filename,"%G ",&teml); 

else{ 

fscanf(filename,"%G \n",&tem1); 

} 

if(flag[j][i]==1){ 

x[a][1]=tem1; 

a++; 

} 
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} 

/***** READING THE Z COORDINATE *******/ 

a=0; 

for(j=0;j<240;j++) 

for(i=0;i<240,i++) 

{ 

if(i<239){ 

fscanf(filename,"%G ",&teml); 

else{ 

fscanf(filename,"%G \n",&teml); 

} 

if(flag[j][i]==1){ 

x[a][2]=tem1; 

a++; 

} 

printf("No. of points read %d\n",n); 

fclose(filename); 
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write_file() 

{ 

/***** WRITING THE OUTPUT FILE *****/ 

printf("Give name of output file\n"); 

scanf("%s",junk); 

filename=fopen(junk,"w"); 

fprintf(filename,"%d \n",(n+noise+outlier)); 

for(i=0;i<(n+noise+outlier);i++){ 

fprintf(filename,"%G %G %G \n",x[i][0],x[i][1],x[i][2]); 

printf("No. of total points written %d + %d + %d = %d\n",n,noise,outlier,n+ 

noise+outlier); 

fclose(filename); 

} 

generate() 

/**** GENERATING THE NOISE POINTS **************"*/ 

printf("Give percentage of noise points in decimals\n"); 

scanf("%G",&noise_per); 

printf("Give deviation ( 0.05 to 0.5) \n"); 

scanf("%G",&noise_dev); 

printf("Give percentage of outlier points in decimals\n"); 
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scanf("%G",&out_per); 

printf("Give deviation for outliers ( 1.0 to 5.0 )\n"); 

scanf("%G",&out_dev); 

noise = n * noise_per; 

outlier = n * out_per; 

for(i=0;i<noise;i++){ 

for(j=0;j<3;j++){ 

gen_rand(); 

numb = 500 - numb; 

frac = numb / 500.0; 

temp = (frac * noise_dev); 

gen_rand(); 

k = (int) (n * (float)(numb /1000.0)) ; 

x[n+1+i] j] = x[k][j] + temp; 

} 

} 

for(i=0;i<outlier;i++){ 
for(j=0;j<3;j++){ 

gen_rand(); 

numb = 500 - numb; 

frac = (float)numb I 500.0; 

temp = (frac * out_dev); 

gen_rand(); 
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k = (int)(n* (float)(numb / 1000.0)); 

x[n+1+1][j] = x[k][j] + temp; 

} 

gen_rand() 

/********** GENERATING A RANDOM NUMBER ********/ 

srand(numb); 

numb = rand(); 

numb = numb%1000 + 1; 

} 
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