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ABSTRACT 

Behavior of R/C Columns Under Nonproportional 
Variations in Axial and Lateral Loads 

By 
Kaniz Fatema Ahsan  

The study on the behavior of reinforced concrete columns subjected to the 

motion of earthquake suggests that the structure may experience nonproportional 

variations in axial and lateral forces. In order to assess the capacity of a reinforced 

concrete structure under nonproportional loadings, an analytical model is 

developed using the fiber modeling technique. 

The method is based on detailed analytical description of the geometry and 

material properties used in evaluating the behavior of the critical regions rather 

than a simplified and predefined set of hysteresis rules. The present study has two 

principal components of investigation. First, the analyses are done at the section 

level, to determine the influence of nonproportional axial and lateral loadings on 

the moment-curvature relationship for various loading level, P-M interaction 

diagram, degree of confinement of concrete, amount of reinforcing steel etc. 

Second, analyses on the response of R/C columns in terms of load-displacement 

hysteresis loops and curvature distribution along the height of the column 

subjected to nonproportinal variation in axial and lateral loads. Furthermore, the 

effect of degree of concrete confinement on the response of the R/C columns are 

also investigated. Finally, the model results are compared with experimental and 

other analytical models. 
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CHAPTER 1 

INTRODUCTION 

1.0 An Overview 

The reinforced concrete columns are a part of lateral force resisting system. In the 

region of high seismic risk, the response of reinforced concrete columns are very 

complicated due to complex loading histories that may occur under bi/tri-axial 

excitations of structure during earthquake motions. During a major earthquake, 

large uncoupled axial and lateral forces can be developed in the columns of 

reinforced concrete structures. 

Recent analytical and experimental studies indicate that uncoupled variations 

in the lateral and axial loads plays an important role in the inelastic behavior of 

R/C structures due to biaxial or triaxial earthquake motions. The complication in 

response is due to the fact that there are many phenomena which affect the 

behavior of R/C structures such as cracking and crushing of concrete, yielding of 

reinforcing steel, strain hardening, slipping and buckling of reinforcement, creep 

and shrinkage, degree of concrete confinement, etc. Furthermore, under cyclic 

loading other phenomena such as pinching of hysteresis loops, bond deteriorations 

and the Bauschinger effect significantly change the behavior of R/C structures. In 

addition, the axial load also affects the flexural strength, stiffness, ductility, and the 

energy dissipation capacity of the structures. 

Many early studies were performed on columns subjected to axial loads with 

little or no eccentricity by Fowler (1966), Kent (1969), Sheikh and Uzumeri (1980). 

They focussed on the effect of transverse reinforcement on the ultimate and post-

ultimate strength of reinforced concrete columns. Monotonic loadings are applied 

until failure and only moment due to eccentricity of the axial load are imposed on 

the column but no concentric or slightly eccentric loads represents a realistic load 
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path for a column subjected to strong ground motion. These studies were done 

under static loads and represents the column behavior under extreme loading 

conditions. Ramirez and Jirsa (1980) and Rabbat et al (1986) have done some 

investigations on the behavior of reinforced concrete columns under reversed 

cyclic constant loading. They have done the analyses for interior columns of frames 

whereas the exterior columns in frames are not well represented. It is shown that 

the hysteresis loops for columns under constant axial load are symmetric about the 

origin of the moment-drift diagram. When a column is under large deformation due 

to high axial loading, the capacity also decreases becuase of reduction in stiffness, 

ductility and effective size of section due to spalling of concrete. 

Gilbertsen and Moehle (1980) and Epp (1984) conducted the experimental 

investigations for columns subjected to cyclic axial and lateral loads with constant 

relative eccentricity. They studied the response of short columns under reversed 

cyclic lateral loads with both constant and varying axial loads. They emphasized 

their investigations on the effect of shear behavior of short columns. Epp (1984) 

used the loading history which had a constant relative eccentricity up to certain 

axial load at which point axial load was held constant and moment was increased. 

They wanted to simulate the behavior of an exterior column of a frame structure 

in the event that hinges were formed on the beams before the hinges developed 

at the base of the structure. But these studies were done with the axial loads less 

the balanced capacity of the section. 

Emori and Schnobrich (1978) and Keshavarizan and Schnobrich (1984) did 

the analytical study considering the effect of varying of axial load on the response 

of RIC frame-wall structures. But in these studies the axial force variation is 

proportional to moment or lateral load and the level of axial force was small 

compared to balanced load of the section. The experimental study on 

nonproportional variations in axial and lateral loads done by Linbeck and Kreger 

 

 



3  

(1986) has shown that behavior of reinforced concrete section is very much 

dependent on history of axial force. 

The analytical study by Saadeghvaziri and Foutch (1988) showed the effect 

of non-proportionally varying axial load on post-elastic response of R/C columns. 

The results of their study indicate that nonproportionally varying axial and lateral 

loads have significant effect on the post-elastic cyclic response. The hysteresis 

loops under nonproportional variations in loading does not follow a unique pattern 

due to phasing of loads. The causes of these behavioral characteristics are 

explained in the light of axial deformation and axial hysteresis energy. 

1.1 Literature Review 

So far most of the analytical works discussed on nonproportional loadings are 

done with current discrete element model which include a one to one 

correspondence between the elements of the actual frame and the idealized 

system. However, they are based on set of a predefined phenomenological rules 

which cannot simulate the interaction between axial and flexural deformation under 

complex uncoupled variations in axial and lateral loads. Furthermore, the extent 

and type of damage cannot be evaluated using these models. The experimental 

and analytical studies done to assess the capacity and performance of the 

reinforced concrete structures under proportional and nonproportional loadings are 

reviewed in this section (Kaba and Mahin (1984)). 

Gilbertsen (1967) used single component model with two concentrated 

flexural springs at the ends which modeled the inelastic deformation of a member. 

Otani and Sozen (1972) used a similar approach to study the response of concrete 

frame subjected to base acceleration. Takeda et al (1970) then proposed a 

hysteresis model which better conforms with the results of cyclic loading tests of 

reinforced concrete connections. The pinching effect associated with shear, bond 
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deterioration, unequal top and bottom reinforcements in beam and axial load 

effects in columns were not modeled in the original Takeda model. So a somewhat 

modified model was introduced by Takayangi and Schnobrich (1976). A thorough 

study was carried out by Saiidi and Sozen (1979). The shear deformation is 

neglected, infinitely rigid joints are assumed but the gravity load induced P-A are 

taken into account. Finally a Q-hyst model was developed for Saiidi's study (1979). 

It differs from Otani's mainly by using softened unloading and load reversal stages. 

These models did not account for axial load effects, pinching and change in elastic 

stiffness due to the presence of axial load. 

The concentrated spring model is proposed by Chen and Powel (1982) for the 

dynamic analysis of reinforced concrete frames. The model is capable of 

representing three dimensional behavior since it takes into account biaxial bending, 

torsion, and axial load effects. Lai, Will and Otani (1984) developed an analytical 

model to simulate hysteretic and stiffness degrading behavior of reinforced 

concrete members subjected to axial load and biaxial bending iteraction. The 

model seperates the member into two inelastic elements which are composed of 

individual spring elements simulate the inelastic effects of the member as well as 

cumulative slip of the anchored bars in the beam-column joint. This model may be 

used as a practical for three dimensional inelastic analysis and design of R/C 

structures. Jiang and Saiidi (1990) developed model which uses a hysteretic 

element consists of four axial springs to analyze the cyclic response of R/C 

columns subjected to bending and axial loads. The spring sections consist of steel 

for tensile forces and concrete and steel for compressive forces. The force-

deformation relationship is controlled by AQ-Hyst hysteresis model. This model 

appeared to be successful in simulating the overall response until the axial load 

is within balanced load limit. Another type of model is the parallel two component 

formulation proposed by Clough and Benuska (1965 and 1967) known as multi- 
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component parallel model. The model consists of an elastic element in parallel with 

an elasto-perfectly plastic element, hence it results in a conventional bilinear 

hysteresis rule. The elastic portion is assigned a fraction of the members assumed 

stiffness equal to the proposed post-yield hardening stiffness. The parallel two-

component model was used inmany early studies of reinforced concrete structures 

by Mahin (1974), Powel and Row (1976). The basic bilinear hysteretic formulation 

would not be expected to result in reliable response prediction for a particular 

structure and ground motions. Takizawa (1976) modified the two-component 

bilinear model to better reflect the softening observed on unloading from the yield 

range and used the modified model to analyze a three-story reinforced concrete 

frame. In the above two model it is assumed that plastic hinges are developed 

only at the ends of the members. 

Considering the length of plastic hinge region, Hsu (1974) and Takayangi and 

Schnobrich (1976) proposed a multiple spring model for analyzing wall members. 

For coupled reinforced concrete shear walls, used the shifting of primary curves 

technique to account for the interaction of varying axial loads with bending moment 

in the walls. Emori and Schnobrich (1978) in their study of frame wall structures 

used single component elements to model beams and columns and multiple spring 

elements to model the shear walls. Although the multi-spring serial model can 

represent the behavior of a frame element subjected to a relatively general 

moment distribution along its length, it still does not directly account for the effect 

of axial load on member behavior. Meyer et al (1981) proposed a nonlinear 

reinforced concrete beam element that accounts the spreading of the plastic 

regions. The model is based on a simplified Takeda moment-curvature 

relationship. 

Next, the analyses for reinforced concrete structures are done using finite 

element models by Agrawal, Jaeger and Mufti (1976), Schnobrich (1977) using the 
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plane stress inelastic type of element. Such studies are particularly suited to wall 

panels. Yuzugullu and Schnobrich (1973) have done the investigation of a shear 

wall frame under monotonically increasing loading. Suharwardy (1979) used the 

direct procedure that can take both axial force-biaxial bending moment interactions 

and stiffness degradation. To study the uniaxial behavior column under 

nonproportional loading, Saadeghvaziri and Foutch (1988) employed isoparametric 

plane stress elements for concrete and bar elements for concrete. Although the 

correlation with the experimental results were good, but such studies are 

extremely costly. This is due to the number of elements involved and the nonlinear 

behavior especially when loads reach significant high levels. To make a dynamic 

analysis for a large structure, finite element method is very expensive and time-

consuming. Though the method is being refined but due to the uncertainties 

involved in the material and stiffness formulations of the finite elements resulting 

in approximate results. 

1.2 Fiber Model 

The fiber model is somewhat more sophisticated than discrete models with a 

detailed analytical description of the geometry and material properties which are 

used to evaluate the behavior of critical regions rather than using 

phenomenological approach with a simplified and predefined set of hysteresis 

rules. The data necessary to define the fiber are the geometry of the member and 

section, the stress-strain relationships for concrete and reinforcing steel. Such data 

is easily available and reliable. The behavior of reinforced concrete structure is 

quite complicated and quite hard to quantify satisfactorily. The phenomena which 

effects the response of reinforced concrete structural elements include cracking 

and crushing of concrete as well as yielding, strain hardening, slipping and 

buckling of reinforcing steel. Fiber modeling technique is the simplest and 
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theoretically consistent method of analysis which includes the phenomena stated 

above and Bauchinger effect and pinching of hysteresis loops. Fiber model is less 

detailed than finite element model and thus require less storage and computational 

time. 

Mark and Roesset (1976), Ma et al (1976), Emori and Schnobrich (1978) 

have done an extensive study on fiber model approach to dynamic analyses. The 

purpose of their study was to investigate the applicability of the fiber model to 

predict the response of reinforced concrete structure tinder variations of loadings. 

Bazant and Bhat (1977) studied the hysteretic response of concrete members 

using triaxial material properties and deep beam bending theory with transverse 

shear. Kaba and Mahin (1984) did the dynamic analysis of R/C members with fiber 

model using multislice fiber element for predicting the inelastic cyclic behavior of 

R/C columns. The effects of axial loads on strength and stiffness and axial load-

bending moment interaction and the pinching of hysteresis loops due to 

compressive loads acting on the elements are accounted. 

It is seen from the studies made by Mark and Roesset (1976), Bazant and 

Bhat (1977) and Kaba and Mahin (1984) that fiber model is found to be a valuable 

tool for studying the hysteretic response of reinforced members. These studies 

included the comparisons of analytical and experimental results which showed that 

fiber model can provide results that are in good agreement with experiment results 

and more reliable than phenomenological models. 

The procedure is started by dividing member into slices which in turn is 

divided into concrete and steel fibers. Assuming plane section remains plane, the 

universal stress-strain history are detemined for each fiber from the given curvature 

or the strain given at any point of the section along with equilibrium requirement. 

Linear variation of stiffness between slices is assumed and the forces are 

calculated using material and sectional properties of the sections. Eventually 
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moment-curvature relationship are found out considering the effect of axial load. 

Finally the load-deflection relationship is obtained in element level using the 

integration method discussed elaborately in chapter 2. 

1.3 Objectives 

The objective of this study is to develop an analytical model to assess the inelastic 

response of the reinforced concrete section and/or column due to nonproportional 

variations in axial and lateral loads which may arise during the bi/tri axial motions 

due to earthquake loads. Furthermore, the effect of other parameters such as 

degree of confinement, variations in sectional properties, effect of different levels 

of nonproportional loading less or greater than balanced capacity of the columns 

are also investigated. 

The structural model is achieved by discretizing the columns into sections 

which are further discretized into fibers. The inelastic behavior of fibers is 

monitored by using the material models of concrete and steel. Here the constitutive 

relationships for concrete and steel are used to generate a model to represent the 

behavior of a reinforced concrete section which in turn is used to determine the 

overall response of an entire column. The reinforced concrete section and/or 

column must be modeled with the following objectives. 

a) The model should be capable of handling generalized cross-sections of simple 

and complex shapes (i,e built up members, composite sections) 

b) Complex loading conditions including reversals, sudden changes in loading 

conditions should be accounted for. 

c) It must be able to depict the effect of increase or decrease in stiffness of the 

columns as a result of the uncoupled variations in axial load and lateral load and 

its effect on the energy dissipation capacity of R/C member. 

 

d) 
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d) It should consider the effect of other parameters such as degree of confinement 

on the response of R/C members subjected to proportional and non proportional 

variations in the axial and lateral loads. 

e) It must be capable of depicting the extent and type of damage to be expected 

from the uncoupled variations in loadings. 

With these objectives in mind, the reinforced concrete section and/or column 

are modeled using fiber modeling technique. But certain limitations are adopted 

such as shearing deformations and bond slip will be disregarded at this stage. 

1.4 Scope of the Work  

The following chapters discuss the theory of the multi-slice fiber model and its use 

in the analyses of RIO sections and member under proportional and 

nonproportional axial and lateral loadings. Chapter 2 describes the material 

properties of concrete and steel and the development of the fiber model to analyze 

the structural sections to evaluate the general flexural characteristics of 

cross-section subjected to proportional or non proportional axial forces and/or 

uniaxial bending moments. Material properties are specified in terms of 

stress-strain curves using the Hognestad Model for concrete and Bilinear Model 

and Ramberg and Osgood Model for steel. Cyclic behavior can then be derived 

from the monotonic envelop using appropriate loading, unloading and load reversal 

rules. 

Chapter 3 discusses the influences of nonproportional axial and lateral 

loading on reinforced concrete section. Some analyses are done in order to 

investigate the effects of nonproportional loadings on P-M interaction diagrams. 

Also the effects on hysteresis loops are studied at different levels of axial loads 

considering different degrees of concrete confinement and the changes in  
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unloading/loading paths are also discussed. Some parametric studies are done 

considering nonproportional loading using sectional and material properties and 

different levels of axial load for specific curvature distribution of the section. These 

parametric studies are illustrated by moment curvature relationships and 

moment-axial load interaction diagrams. 

Chapter 4 discusses the analysis on the behavior of reinforced concrete 

columns due to nonproportional variation in axial loads and lateral loads and the 

resulting behavoral characteristics due to changes in strength, stiffness and 

ductility of the structure and comparisons with results of analyses using other 

available models. Finally conclusions and discussions are presented in chapter 5. 

 

 



CHAPTER 2 

MATERIAL MODELS AND METHOD OF ANALYSIS 

2.0 Introduction 

Most of the previous study on the behavior of reinforced concrete columns was 

limited to studies of flexural behavior of reinforced concrete columns under 

constant axial loads and proportional variations in lateral and axial loads. But 

recent experimental studies by Kreger and Linbeck (1986) and analytical studies 

by Saadeghvaziri and Foutch (1988) indicate that uncoupled variations in lateral 

and axial loads plays an important role in inelastic behavior of R/C columns. 

The moment-curvature relationship are generated by assuming the plane 

section remains plane after deformation. Analytical model developed here is 

capable of simulating both monotonic and cyclic behavior. Monotonic models 

considers the member to response to an imposed load or deformation without 

taking into account changes in the member which may have occurred due to 

previous loading. Cyclic on the other hand, includes the all behavioral 

characteristics of the inelastic response of a members. This type of analysis are 

very complicated and involved many hysteresis rules for determination of the 

member response based on both previous and current strain-stress relationships. 

2.1 Theoretical Development of Model 

For a reinforced concrete column, the analysis is done in three levels. Firstly the 

material level where the behavior of concrete and steel are defined by stress-strain 

curves which are determined experimentally. Secondly the section behavior is 

represented by moment-curvature relationship which is derived from the material 

stress-strain curves. Thirdly, column behavior is defined by load-deformation 

relationship which are derived from the moment-curvature relationship of the 
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section. Each of these levels are associated with nonlinearity which causes the 

changes in stiffness. On the material level, nonlinearity is due to nonlinear 

properties of steel and concrete. Concrete behaves inelastically from the very low 

strain level. Steel, although it is assumed to be linear in the post-elastic region, 

but practically it is nonlinear once the strain exceeds yield strain. On section level, 

nonlinearity results because section stiffness is very sensitive to axial load. On 

column level, the nonlinearity arises as the load-deflection relationship is 

determined from the nonlinear moment-curvature relationship of the sections in 

columns. The cross-section is divided into a number of fibers. A simple uniaxial 

state of stress is being assumed and the stress in the concrete and steel fibers are 

determined from the stress-strain curves. The stress was taken corresponding to 

the average strain in the fiber. From the stresses and the areas of concrete and 

steel in each of fiber, after performing the iterations to satisfy equilibrium, the 

section forces are determined. Furthermore perfect bond between concrete and 

steel is assumed. The effect of creep and shrinkage of concrete, the effect of 

temperature and geometric non-linear effects are excluded. The material models 

implemented in this study are complex enough to reproduce the important 

non-linear and strength characteristics of concrete and steel are discussed in the 

following sections. 

2.2 Concrete Model  

The Model incorporated in the program for evaluating the stress-strain is shown 

in Figure 2.1 (Saadeghvaziri and Foutch (1988)). It consists of an envelop curve 

in compression and in tension and a series of rules for cyclic loading. This Model 

is complex enough to produce the non-linear and strength characteristics of 

concrete. The Model uses a parabola to define compressive stresses 

corresponding to strains less than εc  (the strain at which the stress attains the  



Figure 2.1 Concrete Material Model 
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maximum compressive stress σc) given by Hognestad (1951). This initial parabolic 

portion is independent of confinement and given by the following expression. 

where, σi= concrete stress at the strain εi, σc= maximum allowable strength of 

concrete in compression, and εc= allowable strain at σc. 

Beyond εc  the descending portion of the stress-strain relationship is assumed 

linear with a slope β', β' is a function of εc, σc  and the tie size and spacing. Hence, 

the rate of decrease of stress with increasing strain, increases with larger tie 

spacing or smaller tie size. 

Unloading under compressive stress from any point of the envelop curve has 

slope E0  until the concrete stress reaches its maximum tensile strength at  (Figure 

2.2). Then it follows the slope E1  until εo  from plastic strain sp. Reloading from 

this point, the concrete could not take any stress until plastic strain, εp, is 

recovered. Then it follows the slope E0  until the previous maximum strain is 

reached. From this point on, the original envelop curve is followed. 

Under tensile stress, a bilinear stress-strain relationship is assumed for the 

concrete as shown in Figure 2.3. From zero to maximum tensile stress of concrete, 

at, the model assumes the slope of E0. At this point of stress a crack is initiated 

and after this point, a descending branch is assigned to the stress-strain curve. 

Beyond the strain ε0, the concrete is unable to take any stress and the crack is 



Figure 2.2  Loading and Unloading in Compression 
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Figure 2.3  Loading and Unloading under Tensile Stress 
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fully opened. After this strain, the fiber cannot take any stress and the crack is fully 

opened. Furthermore, it will only resist compression once the crack closes. It is 

suggested that when the reinforcing steel intersects the cracks at right angle, the 

value of εo  to be taken equal to the yield strain of the reinforcing steel. Modeling 

of post-cracking in this way accounts for 'tension stiffening' , i.e., the ability of intact 

concrete between adjacent cracks to carry tensile stress, but also contributes to 

the rate of equilibrium convergence. Unloading after initiation of a crack follows a 

slope equal to the secant modulus of the concrete at maximum tensile strain 

reached upon loading. Once a crack is closed, it can take compressive stress. 

2.3 Steel Model 

The steel models incorporated in the program can be referred to as the bilinear 

elastic-plastic model and the Ramberg and Osgood model . For the bilinear model 

as shown in Figure 2.4, the only required input are the initial and final slopes and 

the yield stress. When cyclic behavior is specified, unloading proceeds at a slope 

Es  until it reaches 2ερ  from where the unloading is started. Then it follows the 

strain hardening slope Esh  until the reloading is started. On reloading it proceeds 

with a slope Es  until it reaches 2ερ  from the point reloading starts and then it 

follows Esh  again. The model can include both isotropic and kinematic hardening. 

Kinematic hardening includes the Bauchinger effect which is much more similar to 

actual behavior of reinforcing steel. The difference between isotropic and kinematic 

hardening is shown in Figure 2.5 considering a hysteresis loop for the section 

shown in Figure 3.1 and for P=150 kips. 

The input of Ramberg-Osgood model are Es, fy, Esh, εmax, and σmax  (Figure 2.6) 

and in addition, a polynomial function is used when the stress reverses which was 

derived by Park, Kent and Sampson (1972). 
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Figure 2.4  Bilinear Material Models for Reinforcing Steel 
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Figure 2.5  Influence of Bilinear Steel Model with Different 
Types of Strain Hardening on Moment-Curvature 
Relationships  

Figure 2.6  Ramberg-Osgood Model for Reinforcing Steel 
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for odd numbered loading runs (n=1,3,5 	) 

for even numbered loading runs (n=2,4,6, 	) 

For a Ramberg-Osgood model, an iterative solution is required to evaluate 

the stress corresponding to a given strain. It is assumed that concrete cover 

provides sufficient restraint to prevent buckling of longitudinal steel and hence 

buckling only occur after the adjacent concrete spalls. The difference between 

bilinear and Ramberg-Osgood model for the reinforcing steel is shown in Figure 

2.7 considering the same reinforced concrete section shown in Figure 3.1. 

2.4 Model Idealization 

To study the response of reinforced concrete columns under proportional and 

non-proportional variations in axial and lateral loads, an analytical model is 

 

 



Figure 2.7  Influence of Ramberg-Osgood Steel Models 
on Moment-Curvature Relationships 
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required that can account for the effect of changes in the axial rigidity on the 

flexural behavior of the member. With these objectives, the R/C members are 

modeled using the fiber model. The fiber model although expensive and time 

consuming computationally, is capable of simulating the complex behavior of a R/C 

member under arbitrary loading conditions and histories. The versatility is due to 

the fact that no predefined phenomenological rules are involved for indicting overall 

hysteretic behavior of any cross-section. The state of stress is assumed as uniaxial 

which makes the model computationally more effective and only the stress-strain 

properties of the constituent materials are required to define the properties of any 

cross-sections. A computer program is developed to implement fiber model 

computations which assumes that a column segment consists of uniaxially 

stressed fibers along its long axis and the section must be symmetric about one 

axis and the neutral axis must remain perpendicular to the axis of symmetry. 

This analytical model is based on two idealizations of the section properties 

and one assumption about sectional response. First, reinforcing steel is assumed 

to be concentrated in layers. These layers are assigned an area equal to the 

actual area od reinforcing steel. The second idealization is the concrete 

contribution to the section can be represented as a multi-fiber stress zone. The 

stress zones for these concrete layers has the dimensions of the width of the 

section and the depth of the neutral axis. Solving for mechanical characteristics of 

a reinforced concrete section using the fiber model starts by defining the section 

in terms of layers to which geometric and material data are assigned. Assuming 

plane sections remain plane, the strains in the various layers of concrete and steel 

can be calculated from the given strain profile or the curvature of the section 

(Figure 2.8). Once the strains of the various layers are determined, the stresses 

can be calculated from the specified stress-strain relationship for concrete and 

steel. The axial load and the bending moment can be found out by proper 
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ASSUMPTIONS  

	

1. 	Linear Strain distribution 	2. 	Reinforcement concentrated 
over cross-section, i.e. plane 	 in layers 
sections remain plane. 

	

3. 	Material behaves as 
predicted by models 
discussed in sec 2.2 & 2.3 

Figure 2.8  Assumptions for Fiber Model 
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summation. The most important idealization of the section model is that plane 

section remain plane for all load combinations. This is a crucial assumption for two 

reasons. First, it implies that no shear deformation occurs in the column. This is 

rarely,. if ever true. However, shear deformation, in many cases is much smaller 

than flexural deformation and can be neglected for analysis purposes. Second, the 

plane-sections remains plane assumption implies a linear strain distribution over 

the cross-section. 

2.5 Section Model 

Determination of the axial load-moment-curvature relationship for a reinforced 

concrete section is accomplished in the following phases. First, limits of responses 

are calculated based on limits for failure depending on material and sectional 

properties. These limits keep the search for solutions both confined enough to 

allow the accurate representation of the response. Once limits have been obtained 

the next phase begins. In principle to accomplish this phase, sectional and/or 

column properties such as material properties of concrete and steel, dimensions 

of the section and/or column and reinforcement ratios are input through the file 

DATA . Column loads are entered by the data file LOAD and discretized into steps 

by the subroutine STEP. When the curvature distribution is given, the strain profile 

is generated by subroutine Profile. Material model are implemented as subroutines. 

The subroutine CONCRETE defines the stress-strain relationship for concrete 

whether confined or unconfined. This subroutine is later used by FORCE to 

determine the stresses in concrete fibers which on summation represents the 

concrete force in the R/C section. Steel stresses are determined by the subroutine 

STEEL calculated from the steel strain which in turn used by FORCE to determine 

the steel force in the section. MOMCAL is the routine which calculates the bending 

moment for a axial load and the specified curvature or strain profile. 
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2.5.1 Solution Strategies 

Several  types of analyses can be performed for determining axial load, moment-

curvature relationships on section level by using the following procedures: 

(a) A strain profile is specified, the program calculates the axial load and bending 

moments for a sets of neutral axis position. No iterations are involved in this type 

of analysis. 

(b) The axial load is specified which may be constant or varied and the strain is 

given at a point. The moment capacity with the distribution curvature is sought. An 

iterative approach is used on the strain profile for a neutral axis position until the 

calculated axial load converged to the specified value sought. This permits the 

evaluation of the cracking moments, the moment at which tension or compression 

reinforcements yields and also considers the options when the axial load varies 

nonproportionally during the steps. 

(c) The curvature and axial load is specified and the moment-curvature relationship 

under the axial loading is needed. The program calculates the bending moment 

when the initial curvature, the number and magnitude of curvature increment and 

the applied axial load/loads are specified. 

(d) The axial load and the lateral load are specified and the load-deflection 

relationship is sought. The program assumes an initial value of curvature and 

neutral axis and iterates on both to find the required value for axial load and the 

bending moment for the lateral load. With the options discussed above, relatively 

complex load histories can be considered. 

2.5.2 Determination of Strain Profile 

Since plane section are assumed to remain plane, the strain at any location of the 

fiber of the reinforced concrete section can be found out using the formulas 

discussed below adopted from Kaba and Mahin (1983) and Park and Pauley 
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(1975). It is to be noted that all distances considered are from top of the section. 

(a) When the strain at a given location and the curvature of the section is given, 

the strain at the center of a fiber i is given by 

εi=εg+ (yi-yg)ϕ 	(7) 

εi= the strain sought at distance Yi for fiber i 

εg= the given strain at location Yg 

ϕ= curvature of the section 

(b) When the neutral axis location is known along with the curvature, the strain at 

point i of the section is given by 

εi = ( Yi - Yna ) ϕ 	(8) 

Yna= distance to neutral axis from the top of the section. 

2.5.3 Analysis Methods 

(a) For noniterative analysis, the input consists of a specified strain profile or the 

strain given at specified location with neutral axis positions. The section is divided 

into a number of fibers. With the given strain distribution, the stresses are found 

out from the strain profile using the material stress-strain relationship of concrete 

and steel by using the routine CONCRETE and STEEL respectively. Total force 

is found out by summation of all forces for concrete and steel multiplied by the 

corresponding areas of concrete layers or reinforcing steels. 

	Axial load P as a summation of all forces in concrete and steel layers is 

given as 
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Then the bending moment M is determined by the routine MOMCAL which is 

defined as 

NC is total number of concrete fibers, NS is total number of steel fibers, Aci  is area 

of concrete fiber i, Asj  is area of steel fiber j, Yci is distance of concrete fiber i from 

the top of the section, Ysj is distance of the steel fiber j from the top of the section, 

Yp  is the distance of the plastic centriod from the top of the section, and σci  is the 

stress in concrete fiber due to the strain εi  at the fiber i, and σsj  is the stress in 

steel fiber due to the strain εj(=εi) at the fiber j (the flow chart is shown in Figure 

A-1) 

(b) For iterative analysis, two types of analyses are encountered such: 1) the axial 

load is specified with curvature or strain at any point and moment-curvature 

relationship is sought, and 2) the axial load and lateral load both are specified for 

which the load-deflection relationship is sought. For the first case, where the axial 

load and curvature distribution is given. The analysis starts with a given curvature 

or strain and a value for the neutral axis position, Yna, is assumed. The stresses 

in the fibers are computed for this strain profile. Consequently, the forces acting 

on the elements are calculated using the eq.9 and equilibrium is checked with the 

given axial load as follows: 

Pcal-Pgiven  = tolerance limit 

If the equilibrium is not satisfied, the estimated neutral axis position is 

adjusted using regular falsi method until the equilibrium of forces is achieved. 

Actually the following strategy is followed. Lower and Upper bounds (Ymin  and Ymax) 

are set on the possible position of the neutral axis. Corresponding axial loads (Pmin 
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and Pmax)  are determined. The bounds are expanded until the required axial load 

is bracketed by Pmax and Pmin. This is the point where the iteration starts by the 

following expression (the flow chart is shown in Figure A-2) 

Ytarget  = Ymin + (Ymax  - Ymin) (P - Pmin)/(Pmax - Pmin) 	(11) 

If the axial load corresponding to this neutral axis position does not fall within 

convergence tolerance, a reduced interval which brackets the solution is adopted 

and another iteration is performed. Having obtained the equilibrium, the bending 

moment for the corresponding axial load is determined using eq.10. In any case 

when the strain at a particular location is specified, the curvature is determined 

from the following equation 

ϕ = εg  I (

Yg 

 

- Yna

) 	 (12) 

εg= the specified strain at a location Yg, Yna= the distance of neutral axis position 

from the top of the section. 

For the second case when the axial and lateral load are given, the analysis 

starts with a value of assumed curvature and iterated over the neutral axis 

positions until the axial force is reached the user specified tolerance as stated 

before. Then the bending moment is determined for the calculated axial load and 

checked with the specified bending moment due to the lateral load and if not 

satisfied, the value of curvature is readjusted by the procedure adopted for finding 

neutral axis position until the computed bending moment reaches the specified 

bending moment ( the flow chart is shown in Figure A-3). 

To assess the accuracy of the analytical model, a test is being done with the 

experimental data from Kent (1969). The cross-section shown in Figure 2.9, has 

equal areas of tension and compression reinforcement. The longitudinal 

reinforcement consists of two No 4 bars for top and bottom reinforcements. The 

transverse reinforcement consists of No 2 bars at 2" on centers. The longitudinal 

steel has yield strength of 48.4 ksi. Concrete compressive strength of 6.95 ksi and 

 

 



Figure 2.9  Sectional and Material Properties for the 

Example Section 

2
8  
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a concrete tensile strength of 0.95 ksi was experimentally determined. 

The material properties are shown in Figure 2.9. Analytically determined 

moment-curvature curve are compared with the experimental curve in Figure 2.10. 

Comparison of the experimentally and analytically determined moment-curvature 

relationship indicates good agreement. As noted by Kent (1969) that under 

reversal loading after yielding, the section is often cracked over its entire depth in 

the working strength range and the behavior is completely governed by the steel 

couple. This accounts in part for the significant reduction in stiffness observed in 

this range. There is also an increase in stiffness when the section is under 

increased loading, eventually the crack closes on the compression face and the 

concrete starts to participate again. Bilinear model is used for reinforcing steel. 

Both models account for strain reversals in cyclic loadings. 

Next three analyses are made with P=0, P=16.75 kips and P=-16.75 kips 

respectively for the same curvature history. When P=0, the moment-curvature 

relationship shows that initially on loading and unloading phase, the curve is stiffer 

due to concrete action. Subsequently, on unloading, when the section starts 

cracking is incapable of carrying tension. As a result there is a reduction in 

stiffness and reduces moment capacity compared to the corresponding values in 

initial loading (Figure 2.11). For the second analysis the axial load is assumed as 

P=16.75 kips, the initial loading follows the same curve as the previous one with 

higher moment capacity but pinching effect is more prominent on unloading. As it 

is symmetrically reinforced concrete section, the crack on the compression side 

must be closed so that concrete fiber participates again before the steel on the 

tension side yields. This compression yielding and closing of the crack causes a 

sudden increase in the section stiffness which causes pinching action on the 

hysteresis loop as shown in Figure 2.12. In the third analysis axial force is P=-

16.75 kips, here concrete affects the section behavior at the initial phases of 

 

 



Figure 2.10  Comparison of Analytical and Experimental 
Moment Curvature Relationships under Constant Axial 
Loading 

Figure 2.11 	Moment-Curvature Relationships for 
Constant Axial Loading P=0 
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loading and unloading, beyond that concrete cracks and the section reduces to 

steel couple. At the initial phase of loadings, the tensile load makes the  section 

to crack and as the moment is applied, the crack closes on the other side 

increasing the effective stiffness of the section until the yielding of tensile steel as 

shown in Figure 2.13. 

2.6 Column Model 

In the present study, the column is divided into several slices/elements where the 

section in turn is divided into some fibers. To obtain the load deformation 

relationship for a reinforced concrete column, the material properties of concrete 

and steel are used to determine the moment-curvature relationship as described 

in section model. Then column model uses an iterative approach to solve for the 

lateral load-lateral displacement relationship. The flow chart of this method is 

shown on Figure A-4. The specified loading program is first divided into number 

of steps and the column is divided into a number of segments dx which are at a 

distance x from the free end of the column as shown in Figure 2.14. Each section 

has width b and depth h. Then, for each load step an estimate of the column end 

moment is made and equilibrium is satisfied individually for each segment. If the 

equilibrium is not satisfied, the curvature for the moment is revised and the 

procedure is repeated. The deflection for the column at the free end is determined 

by using the formula described below and its flow chart is shown in Figure A-5. 

2.6.1 Formulation for Load-Deflection Responses 

If the moment curvature relationship for the sections of a member are known, 

then theoretically, the rotation between any two points A and B is given by Park 

and Paulay (1975) as shown in Figure 2.14. 



Figure 2.12 Moment-Curvature Relationships tor 
Constant Axial Loading P=16.75 kips 

Figure 2.13 Moment-Curvature Relationships for 
Constant Axial Loading P=-16.75 kips 
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Figure 2.14  Load-Deflection Relationship for the Column 
Model  
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in which ds = an element of length of the member 

The transverse deflection of point A from the tangent to the axis of member at 

point B is given by 

Where, x is the distance of element dx from A.These equations ignores the 

effect of increase of stiffness of member due to tension caused by the diagonal 

tension cracks due to shear and by bond slip of the reinforcement. 

2.7 Convergence Criteria and Tolerance Limit 

In the Incremental methods which are used in the fiber model where nonlinear 

equations are used in the material models, a criteria should be set for the limit of 

iterations. Such criteria would indicate the signal whether it is the end of solution 

for that increment within the present tolerance limit or the solution is diverging 

away from the solution. There are two convergence criteria used in the program. 

For the analysis of moment-curvature relationship, only axial load convergence is 

checked if it is within a certain limit which is already set. For analysis of load-

deflection relationship, moment convergence for given axial and lateral loads also 

is checked through the iteration methods. There may arise problem with the 

criteria which happens when a small change in loads results in large displacement 

especially for a small increase in axial loads in elastic-plastic zone enters into the 

plastic zone. Increment size of loads, curvature/strains and neutral axis and 

tolerance limit are the important factors responsible for the convergence of an 
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iteration in the nonlinear analysis. 

2.7.1 Reasons for Nonconvergent Solutions 

The user should set a convergence tolerance for axial load and bending moment 

and the number of iterations and expansion limit for curvature and neutral axis to 

get the solutions. If no solution is found within the set number of iterations and 

expansions, it may be due to the following causes: 

(a) There may be no solution possible with specified section properties and the 

loading histories. 

(b) The load steps for axial load and lateral load may be too small or too big for 

the tolerance limit set for the equilibrium, which may be remedied by changing the 

loadsteps and convergence limits. 

(c) The initial pair of bounds for neutral axis or curvature may be too large. So the 

user can achieve solution by choosing smaller set of bounds and small bound 

expansion increments. 

(d) The number of bound expansion is insufficient in some cases, the solution may 

be obtained by increasing the number of bound expansions. 

(e) Sometimes the solution cannot be obtained after the neutral axis is bounded, 

it could be remedied by increasing the convergence tolerance or the number of 

iterations. 

(f) Solution cannot be obtained due to numerical problems, abrupt changes in 

material properties, specifying large curvature increment, which could be solved 

by decreasing the load step of axial or lateral load, changing iteration method, 

varying the bound expansions for neutral axis and curvature etc. 

 

(g) 
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2.8 Conclusion 

This technique has the disadvantage of being relatively slow in analyses, but it has 

the advantage of coping with the unusual stress and curvature distributions which 

result from cyclic proportional and non-proportional loadings and it is simple to 

alter the element forces for area reduction due to spalling and to record which 

elements have cracked.  



CHAPTER 3 

EFFECT OF NONPROPORTIONAL AXIAL LOADS ON R/C SECTIONS 

3.0 Introduction 

The axial load has a significant effect on the inelastic behavior of the reinforced 

concrete columns. The presence of axial load affects the flexural strength, energy 

dissipation capacity, stiffness and ductility of reinforced concrete members. Most 

of the previous research on the behavior of reinforced concrete columns are limited 

to the study of flexural behavior under constant or proportionally varying axial 

loads. However recently a limited analytical and experimental studies have 

considered the variation of axial load are by Saadeghvaziri and Foutch (1988), 

Abrams (1987) and Kreger and Linbeck (1986). Their study showed the importance 

of uncoupled variations of axial and lateral load on the response of a concrete 

column. When a structure is subjected to biaxial or triaxial earthquake motions in 

the horizontal plane, large uncoupled variations in axial and lateral loads may arise 

(for example in the corner column of a highrise building). Furthermore, 

Saadeghvaziri and Fouch (1988) have shown that vertical component of an 

earthquake motion can excite highway bridges which produces nonproportional 

variations in forces in piers and abutments. Thus, nonproportional axial and lateral 

forces can be developed in the columns of a structural system due to horizontal 

as well as vertical component of earthquake forces. 

The purpose of this chapter is to investigate the effect of nonproportionally 

varying axial and lateral loads on a reinforced concrete section. The effects of 

confinement, different levels of axial loads which are less or greater than balanced 

load Pb, capacity of a section represented by P-M interaction diagrams, the nature 

of hysteresis loop under nonproportional loadings are also investigated. The 

example section and properties are shown in Figure 3.1. This example section was 
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used in analytical tests by Saadeghvaziri (1990) under nonproportional axial and 

lateral loadings. 

3.1 Influence of Nonproportional Axial Load History  

Nonproportional axial load along with the lateral load has a significant effect on 

inelastic behavior of a reinforced concrete section. In this part of analysis, the 

objective is to investigate the effect of nonproportionally varying axial loads at 

different levels (less or greater than balanced load) on the moment capacity of the 

section. The effect of loading history is considered and the analysis is carried out 

for fully confined (εu=0.1, σu=  5500 psi), partially confined as 1% (σu=0.025, 

σu=0.0) and unconfined (εu=0.004, σu =0.0) concrete. 

The analysis is carried out in three phases, for proportional loadings, first the 

analysis is carried out for constant axial load P=0 and P=Px  , the value of axial 

load for which the analysis is conducted throughout the curvature distribution. For 

nonproportional loading, value of curvature is assumed and the bending moment 

corresponding to axial load P=0 is determined. Holding the curvature constant the 

axial load is increased to the value Px  assumed for proportional analysis. Taking 

account of strain-stress history for P=0 as the initial condition, the bending moment 

is found out for Px  . Thus for each curvature increment throughout the curvature 

distribution, the moment capacity for both proportional and nonproportional 

loadings are compared to see the effects of nonproportional loading. 

First, the analysis is done for proportional and nonproportional axial load with 

P=100 kips which is lower than balanced load for the section. For confined 

concrete, it is seen that the moment capacity for nonproportional case is 

significantly lower than the capacity anticipated for proportional axial loading at 

P=100 kips. After the curvature, ϕ= 0.0085 rad/in, the moment capacity for 
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Figure 3.1  Details of the Experimental specimen 
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nonproportional P=100 kips is less than that for P=0 (Figure 3.2), For unconfined 

concrete, the moment capacity for nonproportional loading is greater than that for 

P=100 kips as proportional loading till ϕ= 0.0045 rad/in. Then it decreases after 

ϕ=0.006 rad/in below the capacity at P=100 kips (proportional) as shown in Figure 

3.3. For 1% confined concrete, the moment capacity for nonproportional loading 

is greater than that at proportional loading P=0 kips and less than that for P=100 

kips (proportional) up to ϕ=0.0065 rad/in. After that the moment capacity for 

nonproportional loadings stays almost constant and having the same capacity as 

for P=100 kips (proportional) after ϕ=0.01 rad/in as shown in Figure 3.4. In Figure 

3.5, all the three curves for nonproportional loading are plotted. The moment 

capacity peaks higher for the greater confinement as anticipated. 

	Second, the analysis is done for P=200 kips which is around the balanced 

load. For confined concrete, the capacity for proportional and nonproportional 

loadings are same until) yield moment. Then the moment capacity due to 

nonproportional loading significantly reduces to almost the capacity at P=0 with 

increase of curvature after ϕ= 0.006 rad/in (Figure 3.6), For unconfined concrete, 

moment capacity for proportional and nonproportional loading decreases sharply 

after the yield moment with the increase of curvature as shown in Figure 3.7. The 

moment capacity for nonproportional loading reduces to zero at ϕ=0.0012 rad/in. 

For 1% confined concrete, the moment capacity is below the moment capacity for 

proportional axial load with P=200 kips, upto ϕ=0.00425 rad/in. Then it increases 

beyond the capacity for proportional loading P= 200 kips but far below that of 

moment capacity at P=0 as shown in Figure (3.8).The three curves of non-

proportional loading are plotted together, it is seen that upto ϕ=0.0045 rad/in, the 

moment capacity for 1% confined concrete is lagged by a small amount but 

beyond this curvature, the moment capacity decreases significantly than the 

capacity for the confined concrete (Figure 3.9). For unconfined concrete, the 



Figure 3.2 Moment-Curvature Relationships for 
Proportional and Nonproportional Loadings (P= 100 kips 
(P<Pb), Confined Concrete )  

Figure 3.3 Moment-Curvature Relationships for 
Proportional and Nonproportional Loadings (P= 100 kips 
(P<Pb), Unconfined Concrete ) 
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Figure 3.4 Moment-Curvature Relationships for 
Proportional and Nonproportional Loadings (P= 100 kips 
(P<Pb), 1% confinement) 

Figure 3.5  Moment-Curvature Relationships for Non-
Proportional Loadings at Different Degrees of Confinement 
(P= 100 kips)  



Figure 3.6 Moment-Curvature Relationships for 
Proportional and Nonproportional Loadings (P= 200 kips 
(P≈Pb), Confined Concrete) 

Figure 3.7 Moment-Curvature Relationships for 
Proportional and Nonproportional Loadings (P= 200 kips 
(P≈Pb), Unconfined ) 
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moment capacity drops right after the ultimate capacity and decreased to zero with 

a small increase in curvature. 

The axial load beyond the balanced load is used in this analysis as P=300 

kips. For confined concrete, the moment capacity for non-proportional loading for 

P=300 kips is significantly less than the capacity for P=300 kips as proportional 

loading throughout the curvature distribution having the same slope (Figure 3.10). 

For unconfined concrete, the moment capacity for proportional and nonproportional 

loadings decreases abruptly right after the yield moment and both of them reduce 

to zero at the same curvature ϕ=0.00065 rad/in. Actually they follow the same 

slope and are decreasing with the increase of curvature (Figure 3.11), whereas for 

1% confined concrete, moment capacity is slightly higher in case of 

nonproportional loading after ϕ=0.0017 rad/in and reduces to zero at ϕ=0.004 

rad/in (Figure 3.12). 

The moment-curvature relationships at different degrees of confinement for 

the nonproportional axial load are plotted in Figure 3.13. It is to be noted that 

moment capacity attains higher value with higher degree of confinement. For 

confined concrete, the moment capacity increases with curvature but for partially 

confined and unconfined concrete, the moment capacity start decreasing after the 

ultimate moment and reduces to zero after ϕ=0.003 rad/in. 

Then the analyses are made for nonproportional tensile axial loading. 

Different kind of behavior is observed during tensile loading. For non-proportional 

loading P=-20 kips, the moment capacity is higher than the moment capacity at 

P=0 and proportional P=-20 kips (Figure B-1) . It is to be noted that three curves 

for moment-curvature relationship followed the same slope with different capacity 

as curvature increases. But for unconfined concrete, the moment capacity for 

nonproportional loadings stays almost the same as that for proportional loadings 

 

 



Figure 3.8 	Moment-Curvature Relationships for 
Proportional and Nonproportional Loadings (P=200 kips 
(P≈Pb), 1% Confinement )  

Figure 3.9  Moment-Curvature Relationships for Non-
Proportional Loadings at Different Degrees of Confinement 

(P ≈ 200 kips) 
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Figure 3.10 	Moment-Curvature Relationships for 
Proportional and Nonproportional Loadings (P= 300 kips 
(P>Pb), Confined) 

Figure 3.11 	Moment-Curvature Relationships for 
Proportional and Nonproportional Loadings (P= 300 kips 
(P>Pb), Unconfined ) 
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with some nonlinearity in curves with the increase of curvature (Figure B-2). For 

1% confined concrete, the capacity for nonproportional loadings has little increase 

with the increase of curvature following the same slope as for the moment-

curvature relationships for P=0 and P=-20 kips (proportional) till ϕ=0.009 rad/in 

(Figure B-3). After curvature ϕ=0.009 rad/in, the three curves converge and follow 

the same curve with the increase of curvature. The moment-curvature relationship 

for different degree of confinement under nonproportional loading of are plotted in 

Figure B-4, it seems that curves for fully confined and 1% confined concrete follow 

the same slope with almost same moment capacity till ϕ=0.007 rad/in. After this 

curvature, the moment capacity for 1% confined concrete drops with nonlinearity 

in curvature. The moment capacity for unconfined concrete is the least among 

them for different degree of confinement. The moment capacity stays almost 

same with some nonlinearities in curve with the increase of curvature. 

When the tensile axial load increased to P=-40 kips the moment-curvature 

relationship appears to be different than that at P=-20 kips as nonproportional 

loadings. Here for confined concrete, the moment curvature curve for 

nonproportional loading P=-40 kips stays in the middle, lower than that for P=0 and 

higher than the capacity P=-40 kips as proportional loading (Figure B-5). These 

three curves follow the same slope with curvature distribution. For unconfined 

concrete, it is seen in Figure B-6 that the moment capacity for P=0, P=-40 kips 

(proportional) and P=-40 kips (nonproportional) increase with the increase of 

curvature till ϕ=0.0055 rad/in as the curve for nonproportional one stays in the 

middle.Then the capacity for nonproportional loadings virtually has the capacity for 

P=0 with the increase of curvature. For 1% confined concrete the moment 

curvature relationship for the axial load P=0, P=-40 kips (as proportional loading) 

and P=-40 kips (nonproportional) follow the same slope but moment capacity for 

nonproportional loading is less than the capacity for P= 0 and greater than that for 
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Figure 3.12 	Moment-Curvature Relationships for 
Proportional and Nonproportional Loadings (P= 300 kips 
(P>Pb), 1% Confinement ) 

Figure 3.13 	Moment-Curvature Relationships for 
Nonproportional loadings at Different Degrees of 
Confinement (P=300 kips) 
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P=-40 kips (proportional loading) as shown in Figure B-7. But after (k=0.0095 

rad/in, the moment capacity for proportional and nonproportional loadings P=-40 

kips converge and follow the same curve. The moment-curvature relationships for 

different degrees of confinement as discussed above are plotted for 

nonproportional loadings of P=-40 kips as shown in Figure B-8. It is seen that the 

moment capacity for confined and for 1% confinement have almost similar slope 

increasing with curvature till ϕ=0.006 rad/in after which the capacity for 1% 

confined concrete has a negative slope with the increase of curvature. The 

capacity for the unconfined concrete has the least capacity among them. 

Under the action of biaxial motions of earthquake in the horizontal plane, the 

exterior columns of the frame structure may experience these kinds of 

nonproportional loadings. It is seen that the capacity of a R/C section under 

nonproportional loadings is different than that for monotonic loadings neglecting 

previous history of loading practiced for design purposes. This can be explained 

if the first analysis in Figure 3.2 is considered. It is seen that for P=0 kip and 

ϕ=0.006 rad/in, the moment capacity is equal to 830 kips-in. If the column is 

assumed to be the exterior one and under the biaxial motion of earthquake and 

assuming that the column is under zero load due to the nature of seismic loading 

in the X-direction and has a curvature of ϕ=0.006 rad/in which corresponds to 

moment capacity 525 kips-in. 

Then it is assumed that the seismic loads in the Y-direction generate a 

compressive axial load in this column which is equal to P=100 kips. If the 

curvature in X-direction is assumed to stay constant and the current design 

method is considered, the moment capacity should be 830 kips-in. But this is not 

the actual capacity of the column at this stage of loading, if the history of loading 

at P=0 in X-direction is considered while calculating the moment capacity due to 

loading in Y-direction. If previous history of loading in X-direction is considered for 
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P=0, the moment capacity in Y-direction for P=100 kips comes as 675 kips-in. So 

it is seen that moment capacity under compressive nonproportional loading 

reduces significantly than that for proportional loading. The degree of confinement 

of concrete also effects the capacity of columns at different levels of 

nonproportional loading as depicted in Figures 3.3 and 3.4. At higher load levels, 

the stiffness of reinforced concrete column is very sensitive to the amount of 

concrete in the section under compression. For less confinement of concrete, 

loading beyond the ultimate strength, the stiffness and strength of concrete 

decreases rapidly which results in loss of overall stiffness of the section. 

3.2 Influence of Nonproportinal Loadings on P-M Interaction Diagrams 

The axial load influences the stiffness, flexural strength and ductility of a column. 

To design a column, the engineer should provide required amount of 

reinforcement to resist the axial loads and the bending moments due to lateral 

forces, one need to know what is governing the failure pattern whether 

compression or tension controls. The balanced load Pb  (this is the axial load at 

which the tension steel just reaches the yield strength and extreme fiber concrete 

compressive strain εc  reaches 0.003 at the same time) for a section is the 

controlling load which determines the failure pattern. The P-M interaction diagram 

shows the importance of axial load on the ultimate capacity of a section. It 

indicates that upto certain point (i.e., the balance point where Pb  and Mb are 

located), the flexural capacity increases as the axial load increases and vice versa. 

For P-M interaction diagram, a combination of axial load and bending moment 

are plotted. Here some analyses are done to see the effect of nonproportional 

loading on the P-M interaction diagram and compared with the P-M interaction 

diagram for proportional loading. P-M interaction diagram for proportional loading, 

it is assumed that loading starts from a phase where axial load and bending 
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moment are zero i.e., stress and strain of each fiber of the section are considered 

to be zero. For proportional loadings,the strain at the top fiber of the section 

(Figure 3.14a (i)) is εc=0.003 (Figure 3.14a (ii)) and bending moments are 

calculated for diffrent values of axial load. To generate P-M diagram for 

nonproportional loading, it is considered that initially the section is under loading 

where the top fiber strain εc=0.001 (Figure 3.14 (iii)) i.e, there exists some strains 

in the fibers of the section prior to the loading starts. The bending moments are 

found out for P=0, taking the stress-strain history of the fibers for top fiber strain 

εc=0.001 as initial loading condition. These stress-strain relationship is considered 

while computing the present stresses in the fibers of the section for the axial 

loadings for which the corresponding bending moments are determined 

considering top fiber strain εc=0.003 (Figure 3.14 (iv)). 

3.2.1 Effect of Proportional and Nonproportional Loadings on P-M Diagrams 

For the first analysis, the initial strain at top fiber is considered as εc=0.001 and 

final strain as εc=0.003, it is seen for proportional case, while the initial stress-

strain history is not considered (i.e, stresses and strains are zero in all fibers of the 

section), the balanced load and moment Pb  and Mb are 250 kips and 875 kips-in 

respectively and for nonproportional case where the previous history of stress-

strain for εc=0.001 are considered for final top strain εc=0.003 (Figure 3.15). In this 

case the balanced load and moment are 175 kips and 900 kips-in respectively. 

For εc=0.0015 to 0.003, as in Figure 3.16, Pb  and Mb  for nonproportional case 

are lower than nonproportional case in example 1 and the values are 95 kips and 

775 kips-in respectively. In third example, the initial strain is considered as 

εc=0.002 and final as εc=0.003, as in Figure 3.17, it is to be noted that P-M 

interaction diagram is significantly irregular around Pb-Mb  zone. There is a sharp 



Figure 3.14 Strain Distributions For Proportional and 
Nonproportional Loadings 
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Figure 3.15  P-M Interaction Diagrams (εc initial = 0.001 at 
P= 0, εc final = 0.003) 

Figure 3.16  P-M Interaction Diagrams ( εc initial = 0.0015 
at P= 0, εc final  = 0.003) 
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drop in moment capacity around the location of Pb  and Mb  and then the moment 

gradually increases with axial load. After the balanced load for proportional 

loading, the curve for nonproportional loading follows the normal curve as the 

proportional one but slightly upper than the previous one. In this case the Pb  and 

Mb  are 375 kips and 700 kips-in respectively. The Pb  is higher than that of 

proportional one but the Mb is relatively low at the same time (Figure 3.17). 

For fourth example as shown in Figure 3.18, the initial and final strains in the 

top fiber are εc=0.0025 and εc=0.003 respectively. It has the same pattern of P-M 

diagram and same Pb  and Mb  as the third example but with relatively higher 

Pb=375 kips and lower Mb=700 kips-in. But in this case the increase in P and M 

starts from relatively higher values after the drop relative to what happened in 

example 3. 

The nonlinearity in P-M interaction diagram occurs because of nonlinearity of 

the strain diagram occurs for considering initial strain history of the fibers of the 

section. This kind of behavior is due to the inelastic material properties of the 

section. It causes great change in the strain-stress relationship of the fibers while 

the initial strain increases from lower value to higher value and history of previous 

loading is accounted for. In Figure 3.19, to analyze the effect of nonproportional 

loading on P-M relationship, all four P-M interaction diagrams are plotted for 

nonproportional loading. It is to be noted that lower the values of initial strains, the 

less is nonlinearity observed in the P-M diagram with higher Pb  and Mb. As the 

initial top strains in the fibers increases untill εc=0.0015, the Pb  and Mb decreases 

but from initial top strain εc=0.002, the nonlinearity in P-M diagram is pronounced 

and P-M relationship around the balanced point also significantly varies. For initial 

top strain εc=0.002 P-M relationship starts deviating from the expected P-M curve 

at P=21 kips and M=560 kips-in as decreasing moment with increase of axial load 

untill P=180 kips and M=450 kips-in. Then axial load and moment both start 
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Figure 3.17  P-M interaction Diagrams (εc initial  = 0.002 at 
P= 0, εc final= 0.003) 

Figure 3.18  P-M interaction Diagrams (ε

c initial  = 

0.0025 at 

P= 0, 

εc final= 0.003) 

 



Figure 3.19  P-M interaction Diagrams for Nonproportional 
Loadings 
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increasing following the trend of a typical P-M interaction diagram. For top initial 

strain εc=0.0025, it follows the same relationship as the previous example but the 

curve becomes irregular earlier in the vicinity of balanced point . The moment 

starts decreasing with increasing axial load at relatively higher axial load and 

moment (i.e.,at P=60 kips and M=650 kips-in) and eventually the moment 

increases again from P=220 kips and M=570 kips-in along with the increase in 

axial load. 

3.2.2 Effect of Reinforcement Ratios for Various Shapes of R/C Sections 

Some analyses are done using different shapes of RIO sections with varying 

reinforcement ratios. The maximum compressive Strains ,εcm, allowed in the fibers 

of the section are .003 and .01. To study the effect of nonproportional loadings 

on P-M interaction diagram, for final strain in top fiber εcm=0.003, the initial top 

fiber strain is varied as 0.001 and 0.002. For εcm=0.01, the initial top fiber strain 

varied as 0.002 and 0.006 and the reinforcement ratio is varied in the range 1-3 

percent which is assumed for all shapes and strain conditions. The concrete is 

assumed to be perfectly confined. 

First analysis is made with the square section shown in Figure 3.20 (a). For 

εcm=0.003, the initial top fiber strain is varied from 0.001 and 0.002 to final strain 

0.003 respectively. For εc=0.001 (Figure 3.21), it is seen that P-M interaction 

diagrams with different reinforcement ratios follow the typical P-M curve with less 

Pb and higher Mb. For εc= 0.002, the lower the percentage of steel, the nonlinearity 

in the curve is prominent as shown in Figure 3.22. For ρ=1%, Pb is slightly lower 

than that for ρ=2% but Mb is almost the same for these two cases. For ρ=3%, Pb 

is significantly less that for ρ=1% and ρ=2% but Mb is 1.25 times greater than 

that for ρ=2% but the curve is of typical shape for proportional loadings. 
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Figure 3.20 Sectional Properties for Different Types of 
R/C Sections 



Figure 3.21 P-M Interaction Diagrams for Different 
Reinforcement Ratios for the Square R/C section ( εc  

initial=0.001 at P=0, εfinal=0.003) 

Figure 3.22 P-M Interaction Diagrams for Different 
Reinforcement Ratios for the Square R/C section ( εc  
initial=0.002 at P=0, εfinal=0.003) 
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Next, the maximum allowable strain is assumed εcm =0.01 instead of 0.003 and 

initial strain in the top fiber is varied from 0.002 to 0.01 and 0.006 to 0.01 

respectively. For nonproportional loadings, the initial strain in the top fiber is 

assumed as εc=0.002. For ρ=1%, the nonlinearity is prominent (Figure 3.23). 

Those with higher p , the balanced load and moment increase with reinforcement 

ratio following the typical P-M interaction curve. For initial strain, εc=0.006 to final 

strain, εc=0.01, for different reinforcement ratios, all three curves (Figure 3.24) 

started following the typical P-M curve but after certain interval, the moment starts 

to decrease with the increase of P upto certain interval. Then the moment starts 

to increase and ultimately follows the typical P-M curve for proportional loading. 

While the moment is increasing after this transition point, all the three curves follow 

the same path until the moment starts to decrease with increasing P. While the 

moment is decreasing, moment is the least for the lowest value of p for any value 

of P. For the nonlinear part of P-M diagram, the difference among the moments 

for same value of P are significantly different whereas at the second phase, the 

curve is similar to that for proportional loadings, moment for P is proportionally 

higher with the high ratio of reinforcement. 

Next, the similar analyses as described above are done with a rectangular 

section to examine the nature of P-M diagram and the capacity of the section 

under nonproportional loadings (Figure 3.20 (b)). For initial strain, εc=0.001 to final 

strain, εc=0.003, the P-M diagrams for the three different reinforcement ratios 

follow the typical pattern for the proportional loadings (Figure 3.25). From these 

analyses it is seen that with increase in reinforcement increase in balanced 

moment is significant but the balanced axial load remains almost the same for all 

cases. For initial strain, εc=0.002 to final strain, 0.003, it is seen in Figure 3.26 that 

for low reinforcement ratio such as p=1%, the P-M interaction diagram becomes 

irregular with Pb and Mb 40 kips and 730 kips-in. For ρ=2%, the P-M interaction 

 

 



Figure 3.23 P-M Interaction Diagrams for Different 
Reinforcement Ratios for the Square R/C section ( εc  

initial=0.002 at P=0, εfinal=0.01) 

Figure 3.24 P-M Interaction Diagrams for Different 
Reinforcement Ratios for the Square R/C section ( εc  

initial=0.006 at P=0, εfinal=0.01) 
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Figure 3.25 	P-M Interaction Diagrams for Different 
Reinforcement Ratios for the Rectangular R/C section ( εc  

initial=0.001 at P=0, εfinal=0.003) 

Figure 3.26  P-M Interaction Diagrams for Different 
Reinforcement Ratios for the Rectangular R/C section (εc  

initial=0.002 at P=0, εfinal=0.003) 
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diagram becomes slightly irregular after the balance point. In this case Pb and Mb 

are 75 kips and 1180 kips-in. For ρ=3%, the P-M diagram follows the normal 

pattern for proportional loadings having Pb and Mb are 112 kips and 1600 kips-in. 

Next the maximum allowable strain is assumed 0.01 and similar analyses are done 

as above. For initial strain, εc=0.002 to final strain, εc  0.01, the interaction 

diagrams are typical as for proportional loadings (Figure 3.27). For ρ=1 %, Pb and 

Mb are 240 kips and 1100 kips-in, ρ=2%, Pb and Mb are 200 kips and 1600 kips-

in and for ρ=3%, these values are 120 kips and 2100 kips-in i.e, the balanced axial 

load decreases and balanced moment increases with the increase of reinforcement 

ratios. For initial strain, εc=0.006 to final strain, εc=0.01, the P-M curve for ρ=1% 

is nonlinear with Pb and Mb 300 kips and 575 kips-in. For ρ=2% and ρ=3%, the 

P-M diagram is irregular after the balanced capacity. The balanced load and 

balanced moment of 75 kips and 1600 kips-in for ρ=2% and 50 kips and 1080 

kips-in for ρ=3% as shown in Figure 3.28. If the analyses for initial top strains εc= 

0.002 and εc=0.006 are compared, it is seen that the area bounded by P-M curve 

for εc=0.006 to 0.01 is less than that for the previous one. 

This analysis is done with L-shaped R/C section which sometimes is used as 

a section for exterior corner column as shown in Figure 3.20(c). For εc=0.001 to 

εc=0.003, the P-M interaction diagrams follow the typical pattern of P-M diagram 

for proportional loadings (Figure 3.29). For initial strain, εc=0.002 to final strain, 

εc=0.003, the P-M diagrams follow the similar path for proportional loading except 

for ρ=1%, which is slightly irregular after the balance point as seen in the Figure 

3.30. Balanced moment increases significantly and balanced axial load decreases 

with increase of reinforcement ratios. 

Then, the analyses are done with maximum allowable strain, εcm= 0.01. For 

initial strain εc=0.002 to final strain, εc=0.01, it is seen that the nature of the curves 

are similar to that for proportional loading with lower Pb and higher with increase 



Figure 3.27 	P-M Interaction Diagrams for Different 
Reinforcement Ratios for the Rectangular R/C section ( ε c 
initial=0.002 at P=0, εfinal=0.01) 

Figure 3.28 	P-M Interaction Diagrams for Different 
Reinforcement Ratios for the Rectangular R/C section (εc  

initial = 0.006 at P=0, εfinal=0.01) 
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Figure 3.29 	P-M interaction Diagrams for Different 
Reinforcement Ratios for the L-Shaped R/C section ( εc  

initial=0.001 at P=0, εfinal=0.003) 

Figure 3.30 	P-M Interaction Diagrams for Different 
Reinforcement Ratios for the L-Shaped R/C section ( εc  

initial=0.002 at P=0, εfinal=0.003) 
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of reinforcement ratios (Figure 3.31). For initial strain, εc=0.006 to final strain, 

εc=0.01, the balanced moment increases significantly shown in Figure 3.32. It is 

seen from Figure 3.31 and 3.32 that for lower values of initial strain the balanced 

load and moment does not vary significant for a constant reinforcement ratio 

whereas extent of area covered by P-M diagrams are different . 

Next, the analyses are done with another L-shaped section as shown in 

Figure 3.20 (d). For εc

=0

.001 to εc

=0

.003 (Figure B-9), the P-M interaction 

diagrams are different from the previous analyses with L-shape section. For ρ=1%, 

Pb and Mb are 187 kips and 1160 kips-in, for ρ=2%, Pb and Mb are 300 kips and 

1800 kips-in and for ρ=3%, the P-M interaction diagram is irregular with high Pb 

and low Mb (i.e, 450 kips and 900 kips-in respectively). For εc =0.002 to εc

=0

.003, 

the P-M interaction diagrams are nonlinear as shown in Figure B-10. For c=0.002 

to εc

=0

.01, the P-M diagrams follow the pattern of P-M diagram for proportional 

loading with some irregularity around the balance point as shown in Figure B-11. 

For ρ=1%, Pb and Mb are 330 kips and 1450 kips-in, for ρ=2%, Pb and Mb are 

330 kips and 1980 kips-in and for ρ=3%, Pb and Mb are 330 kips and 2540 kips-in 

respectively. For εc

=0

.006 to εc

=0

.01, the P-M interaction diagrams are highly 

nonlinear. For ρ=1%, Pb and Mb are 120 kips and 1330 kips-in, for ρ=2%, Pb and 

Mb are 120 kips and 2080 kips-in and for ρ=3%, Pb and Mb are 120 kips and 

2740 kips-in (B-12). 

3.2.3 Effect of Nonproportional Loadings on Different Shapes of R/C Sections 

Here some analyses are made under nonproportional loadings with different 

shapes of R/C sections varying the maximum allowable strain ,ε cm, in the fiber as 

0.003 and 0.01. For εcm

=0

.003, initial top fiber strain is varied from .001 to 0.003 

at the interval of 0.0005 and for εcm

=0

.01, initial top fiber is varied from 0.002 to 

0.01 at the interval of 0.002 for each P-M interaction diagram. 
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Figure 3.31 	P-M Interaction Diagrams for Different 
Reinforcement Ratios for the L-Shaped R/C section ( εc initial=0.002  

at P=0, εfinal=0.01) 

Figure 3.32 	P-M Interaction Diagrams for Different 
Reinforcement Ratios for the L-Shaped R/C section ( εc  

initial=0.006 at P=0, εfinal=0.01) 
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For section (a) of Figure 3.20, the interaction diagrams for εcm=0.003 are plotted 

in Figure 3.33. It is seen that for proportional loadings, Pb and Mb are higher than 

all the values for nonproportional loadings except the one where initial strain, 

εc=0.001 for nonproportional loadings. It is seen that for lower values of initial 

strain, the P-M interaction diagrams are similar to that for proportional loading but 

with higher value of initial strain,i.e, from 0.002, the P-M diagram becomes 

irregular in nature. For εcm

=0

.01, the balanced load and moment for proportional 

loadings are greater than that for nonproportional loadings except for εc

=0

.002 to 

εc =0

.01 which also follow the same pattern of P-M diagram for proportional 

loadings (Figure 3.34). The other three P-M diagram where the initial strain varies 

from 0.004, 0.006 and 0.008 to final strain 0.01, are nonproportional in nature. 

Next the same analyses are done with a rectangular section as shown in 

Figure 3.20 (b). For εcm

=0

.003, the balanced load and moment for nonproportional 

loadings are greater than that for proportional loadings in all cases (Figure 3.35). 

The last two interaction diagrams for initial strains of 0.002 and 0.0025 to final 

strain 0.003 are nonlinear in nature as shown in Figure. For εc

=0

.01, it is seen 

from Figure 3.36, that the balanced load and moment for proportional loadings is 

the least among them. 

Then, the analyses are done with a L-shaped section as shown in Figure 

3.20(c). For εcm

=0

.003, the balanced load and moment for proportional loadings 

is the least among them (Figure B-13). For higher the initial strains, lower the 

areas enclosed by the P-M curves. For εcm

=0

.01, similar nature of P-M diagrams 

as in previous example are obtained (Figure B-14). 

Lastly, the analyses are made with L-shaped section as shown in Figure 

3.27(d). For εcm

=0

.003, the balanced load and moment for nonproportional 

loadings for initial strain εc=0.001 to final strain εc=0.003 has the highest value and 

follows the nature of proportional loadings (Figure B-15). For initial strain 



Figure 3.33  P-M Interaction Diagram for Different initial 
strains in the Square R/C Section (εfinal=0.003) 

Figure 3.34  P-M Interaction Diagram for Different initial 
strains in the Square R/C Section (εfinal=0.01) 
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Figure 3.35  P-M Interaction Diagram for Different initial 
strains in the Rectangular R/C Section (εfinal=0.003) 

Figure 3.36  P-M Interaction Diagram for Different initial 
strains in the Rectangular R/C Section (εfinal=0.01) 
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εc=0.0015, 0.002 and 0.0025 to final strain 0.003, the curves are irregular and the 

areas enclosed by the curves decrease with higher value of initial strain in the 

section. For maximum allowable strain, εcm=0.01, the P-M diagrams are also 

irregular in nature (Figure B-16). 

From the above analyses, it can be concluded that what is assumed in 

current design practice that as long as the values of axial load and bending 

moment are within the P-M interaction diagram are safe. But this is not true if the 

history of loading is considered. So for design practice it is necessary to consider 

the extreme cases of these type of loading if the structure is to be safe under 

general loadings. 

3.3 Effect of Nonproportional Loadings on a Hysteresis loop 
during Loading and Unloading Processes 

Large uncoupled axial and lateral forces can be developed in the columns of 

reinforced concrete structures during the biaxial or triaxial motions of earthquake. 

Hysteresis loops may not be masing type for some patterns of nonproportional 

variation of axial and lateral loads. The nature of hysteresis loop is quite different 

under uncoupled fluctuations in axial and lateral loads than that for proportional 

loadings. Here some analyses are done at different levels of axial loads to see the 

effect of nonproportional variations of loadings on moment-curvature relationship 

of the section along with different degree of confinement of concrete. It is to be 

noted that the axial loads used here are less (i.e, P=100 kips),axial load around 

(i.e, P=200 kips) and greater (i.e, P=300 kips) than the balanced load for the 

section for both confined and 1% confined concrete. The tests are done at two 

curvature levels such as ϕ=0.005 rad/in and ϕ=0.01 rad/in respectively. 

The analysis is done in the following way, first the curvature is increased from 

zero to 0.005 rad/in or 0.01 rad/in with constant axial load P=0. Whatever level is 
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chosen for the analysis ϕ=0.005 rad/in or ϕ=0.01 rad/in, keeping the curvature 

constant the axial load is increased to P=100 kips or P=200 kips or P=300 kips 

and then the curvature is decreased for unloading or increased for loading with the 

constant axial loading of P=100 kips or P=200 kips or P=300 kips. The increment 

or decrement used for loading/unloading are 1%, 2%, 3%, 4% and 5% of the 

curvature (ϕ = 0.005 rad/in or ϕ=0.01 rad/in), at which point the changes in loading 

are made. Observations are made to see how the moment-curvature relationship 

is affected by the level of axial forces and curvatures while the unloading and 

reloading take place. 

For the first example, it is assumed that concrete is confined (i.e, εu=0.1 in/in 

and σu= 5500 psi) and the axial loads are chosen as P=100 kips (P<Pb), P=200 

kips (P= Pb) and P=300 kips ( P>Pb). This analysis is made at ϕ=0.005 rad/in and 

ϕ=0.01 rad/in to analyze the effect of unloading on the moment-curvature 

relationship. For ϕ=0.005 rad/in (Figure 3.37) when the axial load is increased from 

P=0 to P=100 kips, P=200 kips and P=300 kips separately, the moment capacity 

is greater with higher axial loads for the same curvature distribution due to 

increase in stiffness of the section for high compressive axial loads. For P=100 

kips (P<Pb), on loading from P=0 to P=100 kips at constant curvature ϕ=0.005 

rad/in, the moment increases from 623 kips-in to 643 kips-in. Then unloading 

starts, the system of M-ϕ  loop is generating small amount of energy rather than 

dissipating it. As the unloading is going on, the bending moment drops sharply 

from 643 kips-in to 175 kips-in within .0005 rad/in curvature difference. From that 

point on, the bending moment decreases slowly as the curvature decreases with 

constant P=100 kips during this unloading. For P=200 kips (P ~ Pb), at ϕ=0.005 

rad/in, the moment capacity decreases from 623 kips-in to 589 kips-in while the 

axial load increases from P=0 to P=200 kips. Unloading takes place with severe 



Figure 3.37         Moment-Curvature Relationships tor 
Nonproportionl Unloading (at ϕ= 0.005 rad/in, Confined 
Concrete ) 

Figure 3.38 	Moment-Curvature Relationships for 
Nonproportional Unloading (at ϕ= 0.01 rad/in, Confined 
Concrete ) 
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pinching in such a way that the enclosed area between loading and unloading 

curves is very small (Figure 3.37). For P=300 kips (P >Pb), at 4=0.005 rad/in, axial 

load increases from P=0 to P=300 kips, the moment capacity increases from 623 

kips-in to 750 kips-in. Upon unloading, it seems to generate energy rather than 

dissipating energy. After crossing the loading branch, unloading takes place with 

a pinch (Figure 3.37). 

Same analyses are done as discussed above at the curvature ϕ=0.01 rad/in 

(Figure 3.38). When the axial load (P) is increased from P=0 to P=100 kips and 

to P=200 kips respectively, the moment capacity decreases from 842 kips-in to 

673 kips-in and 745 kips-in respectively and for P=0 to P=300 kips, the moment 

capacity increased to 860 kips-in while the curvature is hold constant at ϕ=0.01 

rad/in. The nature of the unloading curves are similar as those at ϕ=0.005 rad/in 

except for P=300 kips. There is no significant negative energy dissipation loop as 

observed in the case with curvature ϕ=0.005 rad/in. 

To analyze the effect of nonproportional axial loading right after the axial load 

is increased from P=0 to P=100 kips, 200 kips and 300 kips etc while holding the 

curvature constant and then the same axial loading is continued proportionally 

throughout the curvature distribution. The analyses are done at ϕ=0.005 rad/in and 

ϕ=0.01 rad/in. For ϕ=0.005 rad/in, the moment capacity in all levels of axial loads, 

increases with curvature except for P=200 kips, it decreases by 10% while the 

curvature is held constant at ϕ=0.005 rad/in, then the moment capacity increases 

increase of curvature. Higher the axial load, higher is the capacity (Figure 3.39). 

Similar analysis is done with ϕ=0.01 rad/in, same type of moment-curvature 

relationship as in ϕ=0.005 rad/in for P=100 kips and P=200 kips i.e the moment 

capacity decreases while the curvature is kept constant as the axial load increases 

from P=0 to P=100 kips or P=200 kips. With the increase in curvature, the moment 

capacity increases with the constant axial loading of P=100 kips and P=200 kips. 
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Figure 3.39 	Moment-Curvature Relationships for 
Nonproportional Loadings (at ϕ= 0.005 rad/in, Confined 

Concrete ) 

Figure 3.40 	Moment-Curvature Relationships for 
Nonproportional Loadings (at ϕ= 0.01 rad/in, Confined 
Concrete ) 
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For P=300 kips, the moment capacity decreases shortly after ϕ=0.015 rad/in 

(Figure 3.40). Similar analyses are made with 1% confined concrete (εu=0.025 and 

σu= 0.0) to see influence of nonproportional loading on moment-curvature 

relationship for partially confined concrete section. From Figure B-17 and Figure 

B-18, it is evident for unloading, the hysteresis loops are different from that of 

confined concrete as discussed above. At ϕ=0.005 rad/in, axial load is increased 

nonproportionally from P=0 to P=100 kips, P=200 kips and P=300 kips, the 

moment capacity is decreased from 620 kips-in to 612 kips-in, 475 kips-in and 

120 kips-in respectively. Upon unloading the capacity decreases almost linearly 

with curvature for P=100 kips and P=300 kips. For P=200 kips, the unloading 

proceeds with a pinching in the loop with the decrease of curvature (Figure B-17). 

Same analysis is done at ϕ=0.01 rad/in, for increase of P=0 to P=100 kips, P=200 

kips and P=300 kips, the moment capacity drops abruptly to 420 kips-in and 133 

kips-in and 180 kips-in from 740 kips-in for axial load, P=0. On unloading, they 

follow a linear slope with the decrease of curvature (Figure B-18). Next the 

analysis is done for loading after the nonproportional axial load acted on the 

section which is 1% confined and is done at ϕ=0.005 rad/in and ϕ=0.01 rad/in. For 

ϕ=0.005 rad/in (Figure B-19), while loading from P=0 to P=100 kips, P=200 kips 

and P=300 kips, the moment capacity suddenly drops from 620 kips-in to 612 kips-

in, 475 kips-in and 120 kips-in respectively due to decrease in strength and 

ductility. On loading beyond ϕ=0.005 rad/in, the curve for P=100 kips shows some 

nonlinearities with a drop in moment capacity after ϕ=0.006 rad/in (Figure B-19). 

For P=200 kips, the moment capacity is decreased sharply at ϕ=0.005 rad/in and 

it starts increasing after ϕ=0.005 rad/in with increase in curvature. For P=300 

kips, the curve is different from other two. Moment capacity decreases while the 

axial load increases from P=0 to P=300 kips holding the curvature constant at 

ϕ=0.005 rad/in and the moment capacity starts increasing with increase in 
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curvature with the constant axial loading. For 49=0.01 rad/in same analysis is done 

(Figure B-20). Here the moment capacity for P=100 kips, P=200 kips and P=300 

kips directly drops from 740 kips-in at P=0 to 420 kips-in, 133 kips-in and 180 kips-

in respectively. While loading from this point, moment capacity increases with the 

increase of curvature. The curve for P=100 kips meets the curve for P=300 kips 

at ϕ=0.016 rad/in and follow the same curve with some nonlinearity till ϕ=0.018 

rad/in and then the curves for the two loading diverge. For P=100 kips, the 

moment capacity is less than that for P=300 kips. The curve for P=200 kips leads 

to the least moment capacity for the section among them. 

From these analyses done, it is seen that there are significant differences in 

the path they follow in the same level of loading for different curvatures and 

different confinement of concrete. As it is observed from these examples, varying 

axial and lateral forces have great influence on strength, stiffness, energy 

dissipation capacity of a reinforced concrete section. It is to be noted from the 

study for 1% confined concrete that moment capacity of a reinforced concrete 

section significantly changed when the concrete is not fully confined and is much 

more path dependent. 

 

 



CHAPTER 4 

EFFECTS OF NONPROPORTIONAL AXIAL LOADS ON R/C COLUMNS 

4.0 Introduction 

For a reinforced concrete column, the nature of hysteresis loop under uncoupled 

fluctuation in axial load is significantly different from what happens under 

proportionally varying axial load (i.e. masing type behavior). Such behavioral 

characteristics are due to changes in strength, stiffness and ductility of the column 

as a result of variations in axial load. One of the most important effects of varying 

axial load on the hystersis loop is that it causes a decrease in lateral 

displacement while the lateral load increases. This is due to the increase in 

stiffness of the column as a result of variation in the axial load. Therefore a model 

is developed on the basis of fiber representation of a section to make possible the 

analysis of reinforced concrete column indepently under nonproportional variations 

of axial and lateral loadings. 

The member is divided into slices and each slice is further discretized into 

concrete/steel fibers. The state of fibers are monitored and stresses are found out 

from the material properties of concrete and steel considering plane sections 

remain plane. Moment-curvature relationship is found out for each slice for the 

corresponding axial and lateral forces acting on the column. The deflection for the 

whole column is found out by integration over the length of the column assuming 

linear flexibily between slices. By monitoring the various fibers and slices, it is 

possible to obtain the local response at critical sections including moment-

curvature and shear histories. The model is capable to analyze: 

a) the effect of energy dissipation capacity of R/C members when the axial load 

varies non-proportionally. 

b) the effect of the parameters such as degree of concrete confinement on the 
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response of R/C members subjected to large uncoupled variations in the axial load 

and lateral load. 

4.1 Example Column  

The column shown in Figure 3.1 was used by Saadeghvaziri (1990) to analyze the 

effect of uncoupled variations in lateral and axial loads on R/C columns. Assuming 

the point of inflection to be at midheight, in the study half of the column is 

modelled as a cateliver column. The material properties were assumed to be: 

ρ=2%, σt=0.45 ksi, σc=5.5 ksi, εc=0.0025, σc=5.0 ksi, εu=0.006, fy=60 ksi and E=29 

ksi with 3% strain hardening. 

4.2 Analytical Investigations  

Three analysis are being done with this fiber model described above with the 

reinforced concrete column illustrated in section 4.1. The objective is to investigate 

the effect of nonproportionally varying axial load on the distribution of curvature 

along the length of column. Also, the effect of the degree of concrete confinement 

on the response of R/C column subjected to large uncoupled variations in axial 

and lateral loads are also investigated. 

In the first example, the column is analyzed under two different loading 

histories. Firstly, the column is subjected to lateral load in terms of shear force as 

20 kips and axial load of -50 kips. (tensile) respectively. Then in the second case, 

first a shear of 20 kips and an axial load of 250 kips are applied proportionally and 

then the shear is held constant but the axial force is decreased to -50 kips. Thus 

the final state of applied forces is same for both cases. The shear vs displacement 

curves are shown in Figure 4.1. It is seen from the curve that the nature of the 



Figure 4.1  Load-Deflection Relationships for Example 1 
(a) Saadeghvaziri (1990), (b) Present Study 
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displacement curve are sigficantly different and the response for the second case 

shows a softening portion due to the reduction in the stiffness of the column as a 

result of the decrease in the compressive axial load. The analysis is compared 

with Saadeghvaziri (1990), as shown in Figure 4.1, the load displacement curve 

is similar. The curvature distribution shown in Figure 4.2 for the first case is typical 

of a R/C member i.e, a significant plastic deformation happened over a distance 

which is about the same length of the depth of the cross-section. The curvature 

also decreases from the fixed end of high moment region to the free end of low 

moment region. The overall pattern of curvature distribution is in good shape and 

in good agreement with Saadeghvaziri (1990). But for the second case, curvature 

distribution is significantly different from that of Saadeghvaziri (1990). 

According to the results for analysis of the curvature distribution obtained by 

him, the plastic zone is not limited to a region equal to the depth of the cross 

section and in some region along the height of the column, the curvature is 

increasing while the moment is decreasing. But the analysis with the fiber model 

shows that for the uncoupled variations of the axial and lateral forces, the 

curvature distribution follows the overall pattern of typical R/C column i.e, plastic 

deformation occurs over a length equal to depth of cross-section and decreases 

towards the free end (Figure 4.2). In the second analysis, a R/C column is 

analyzed with adequate confinement. Two types of analyses are being done. For 

the first case, a shear force of 11 kips and an axial force of 230 kips are applied 

proportionally. In the second case, a shear force of 11 kips and an axial force of 

-50 kips are applied and then holding the shear constant, the axial force is 

increased to 230 kips. Thus the final state of applied forces are same for both 

cases. While the load-deformation curves (Figure 4.3) for both cases are analyzed, 

it is seen for second case, the lateral deformation decreases while applied shear 

is kept constant, The deflection for proportional loading is 0.031 in and for 
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Figure 4.2  Curvature Distributions along the Span 
for Example 1 (a) Saadeghvaziri (1990), 
(b) Present Study 
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Figure 4.3  Load-Deflection Relationships for Example 2 
(Confined Column) (a) Saadeghvaziri (1990), 
(b) Present Study 
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nonproportional loading, it is 0.052 in which is more or less consistent with 

Saadeghvaziri (1990) which are 0.037 in for proportional case and 0.061 in for 

non-proportional case. Whatever inconsistencies in the value of displacement 

came out may be removed by adjusting the convergence limit, discretizing the 

elements to smaller values and assuming smaller load steps. Furthermore, there 

is also insignificant variation in curvature distributions. The ratio between the 

curvature at the fixed end for non-proportional loading and proportional loading 

is 2.3 in present study by fiber model compared to 2.5 by Saadeghvaziri (1990) 

as shown in Figure 4.4. 

In the third example, the analysis is done to see the effect of nonproportional 

fluctuation in the axial load on the response of unconfined R/C columns. The same 

problem as the second one is solved using the concrete as unconfined (i.e; the 

ultimate strain (εu) of concrete is taken as 0.0028 in/in instead of 0.006 in/in which 

is for confined concrete). The load-deformation curves for both cases are shown 

in Figure 4.5. Under proportional variation, the column can carry 11 kips shear and 

230 kips of axial load and it appears that even it can carry more load. But under 

non-proportional variations of axial and lateral loads, the column can sustain only 

140 kips of axial load which is much smaller than intended maximum load of 230 

kips. That is under uncoupled variations in lateral and axial loads, the capacity of 

the member can be significantly smaller than the case in which the axial load is 

constant or for proportional variations. So for nonproportional axial and lateral 

loadings, the structure may fail below the design capacity which is estimated 

considering proportional loading. It is seen from Figure 4.6 that the curvature 

distribution is also different from example 2 in Figure 4.4 and the maximum 

curvature for the unconfined column is greater than that of example 2 for the 

confined column in both proportional and nonproportional case regardless of the 

nature of variations in axial and lateral forces. This is due to the failure of concrete 
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Figure 4.4 Curvature Distributions along the Span 
for Example 2 (a) Saadeghvaziri (1990), 
(b) Present Study 
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Figure 4.5  Load-Deflection Relationships for Example 3 
(Unconfined Column) (a) Saadeghvaziri (1990), 
(b) Present Study 
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Figure 4.6  Curvature Distributions along the Span 
for Example 3 (a) Saadeghvaziri (1990), 
(b) Present Study 
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material and its subsequent effect on the reduction in the effective depth of the 

cross-section. 

The results of the study in this chapter indicates that the load-deflection 

relationship of concrete column under proportional and nonproportional loadings 

are different. The phase-diffrence between the axial and lateral load makes the 

relationship more complicated. For example 1, the response under nonproportional 

loadings produced a softening portion which is due to the reduction in stiffness of 

the column as result of decrease in compressive loads. Although the input energy 

for proportional and nonproportional loadings are not equal but the area under the 

load deformation hysteresis loops are almost equal. This indicates that the 

energy dissipation capacity of the column under nonproportional loadings is not 

only proportional to the area bounded by lateral load-deformation hysteresis loops 

but also the other sources like axial hysteresis energy and axial load-deformation 

must be considered (Saadeghvaziri and Foutch (1988)). It is shown in example two 

and example three that for unconfined concrete, the capacity is significantly 

smaller than that for confined concrete under nonproportional loadings. 



CHAPTER 5 

CONCLUSIONS  

The fiber model is developed for the investigation of the effects of nonproportional 

axial loads on nonlinear response of reinforced concrete members. When the 

structure is subjected to earthquake motions, large uncoupled axial and lateral 

forces can be developed in the exterior columns of a frame structure. This model 

is capable of simulating the complex behavior of reinforced concrete columns 

when the loading pattern is not proportional. The versatility is due to the fact that 

no predefined rules are involved in dictating the overall hysteretic behavior of any 

cross-section. It is shown through different analyses in chapter three and chapter 

four that nonproportional fluctuations in the axial force have a significant effect on 

post-elastic response of reinforced concrete columns. 

The analytical fiber model developed in chapter two which demonstrates good 

ability in predicting ultimate strength and capacity of a R/C column and reasonably 

reproduced the hysteresis loops of the experimental study by Kent (1969). All 

characterstics of the inelastic response of R/C columns are incorporated through 

the material properties of concrete and steel. The material model of concrete 

includes the degree of concrete confinement, cracking and crushing and a set of 

hysteretic rules to simulate the cyclic behavior. For reinforcement, a bilinear 

elastic-plastic material model with kinematic hardening is incorporated in the 

model. 

The inelastic response of R/C section under nonproportionally varying axial 

loads are investigated in chapter three. Analyses are done to examine the effects 

of nonproportional loadings on stiffness, strength, ductility and energy dissipation 

capacity of a section along with the influence of different degree of concrete 

confinement. It is shown in the analyses that the capacity of the section under 
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nonproportional loading varies greatly depending on initial loading conditions, It is 

assumed in the design practice that if the axial load and moment are within P-M 

interaction loop, the design is safe. But while the section is under nonproportional 

loadings, the P-M diagram as well as the balanced load and balanced moment 

vary depending on the initial loading conditions. It is seen that for higher values of 

initial strain causes nonlinearity in P-M diagram which effects the capacity of a 

section. Some analyses are done to examine the nature of hysteresis loop under 

nonproportional loadings. It is shown that the hysteresis loop and energy 

dissipation capacity depends on the level of loadings, curvature and degree of 

confinement of concrete. 

The results of the study in chapter four indicates that large uncoupled 

variations in axial and lateral loads results in nonlinear type load-deflection 

relationships for reinforced concrete columns. Under nonproportional loadings, the 

changes in the behavior is attributed to the changes in the strength, ductility and 

stiffness of the column due to the uncoupled variations in axial and lateral loads. 

The Proportional case represents the behavior of a typically reinforced concrete 

member. But for nonproportional case, the response of the column is totally 

different from that for proportional loadings. The load-deformation relationship for 

uncoupled variations in axial and lateral loading, the capacity of the member is 

significantly different than a case when the axial load is constant or proportional. 

This an important factor that should be considered in seismic performances of the 

structure especially, the exterior columns of a frame system which may experience 

this kind of loading. During previous earthquakes, many columns are believed to 

have failed failed before they reached their design capacity. 
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SUBROUTINE P-M 

Figure A-1 Flow Chart for Subroutine P-M  



SUBROUTINE AXIAL LOAD 
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Figure A-2 Flow Chart for Subroutine AXIAL_LOAD  



SUBROUTINE PHY 
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Figure A-3  Flow Chart for Subroutine PHY 



SUBROUTINE MOMENT 
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Figure A-4  Flow Chart for Subroutine Moment 



SUBROUTINE DEFLECTION  
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Figure A-5 Flow Chart for Subroutine Deflection 
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Figure B-1 Moment-Curvature Relationships for 
Proportional and Nonproportional Loadings (P= 20 kips, 
Confined ) 

Figure B-2 Moment-Curvature Relationships for 
Proportional and Nonproportional Loadings (P=-20 kips, 
Unconfined ) 



Figure B-3 	Moment-Curvature Relationships for 
Proportional and Nonproportional Loadings (P=-20 kips, 
1% Confinement ) 

Figure B-4 	Moment-Curvature Relationships for 
Nonproportional Loadings at Different Degrees of 
Confinement (P=-20 kips ) 
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Figure B-5 	Moment-Curvature Relationships for 
Proportional and Nonproportional Loadings (P=-40 kips, 
Confined ) 

Figure B-6 	Moment-Curvature Relationships for 
Proportional and Nonproportional Loadings (P=-40 kips, 
Unconfined) 
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Figure B-7 Moment-Curvature Relationships for 
Proportional and Nonproportional Loadings (P=-40 kips, 
1% Confinement) 

Figure B-8 	Moment-Curvature Relationships for 
Nonproportional Loadings at Different Degrees of 
Confinement (P=-40 kips ) 
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Figure B-9  P-M Interaction Diagrams for Different 
Reinforcement Ratios for the L-Shaped R/C section ( εc  

initial=0.001 at P=0, εfinal=0.003) 

Figure B-10  P-M Interaction Diagrams for Different 
Reinforcement Ratios for the L-Shaped R/C section ( εc  
initial=0.002 at P=0, εfinal=0.003) 



Figure B-11 	P-M Interaction Diagrams for Different 
Reinforcement Ratios for the L-Shaped R/C section ( εc initial=0.006 at P=0, εfinal=0.01) 

 

Figure B-12  P-M Interaction Diagrams for Different 
Reinforcement Ratios for the L-Shaped R/C section ( εc initial=0.006 at P=0, εfinal=0.01) 
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Figure B-13  P-M Interaction Diagram for Different initial 
strains in the L-Shaped R/C Section (εfinal=0.003) 

Figure B-14  P-M Interaction Diagram for Different initial 
strains in the L-Shaped R/C Section (εfinal=0.01) 
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Figure B-15  P-M Interaction Diagram for Different initial 
strains in the L-Shaped R/C Section (εfinal=0.003) 

Figure B-16  P-M Interaction Diagram for Different initial 
strains in the L-Shaped R/C Section (εfinal=0.01) 
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Figure B-17 	Moment-Curvature Relationships for 
Nonproportional Unloading (at ϕ= 0.005 rad/in, 1% 
confinement ) 

Figure B-18  Moment-Curvature Relationships for 
Nonproportional Unloading (at ϕ= 0.01 rad/in, 1% 

confinement ) 
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Figure B-19 	Moment-Curvature Relationships for 
Nonproportional Loadings (at ϕ= 0.005 rad/in, 1% 
confinement) 

Figure 8-20 	Moment-Curvature Relationships for 
Nonproportional Loadings (at ϕ=  0.01 rad/in, 1% 
confinement ) 
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