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A B ST R A C T

Investigation of 
the Consum er Electronics Bus

by
Jaesoo Yang

The objectives of this dissertation are to investigate the performance of the 

Consumer Electronics Bus (CEBus) and to develop a theoretical formulation of the 

Carrier Sense Multiple Access with Contention Detection and Contention Resolution 

(CSM A/CDCR) with three priority classes protocol utilized by the CEBus.

A new priority channel assigned multiple access with embedded priority resolu

tion (PA M A /PR) theoretical model is formulated. It incorporates the main features 

of the CEBus with three priority classes. The analytical results for throughput and 

delay obtained by this formulation were compared to simulation experiments. A close 

agreement has been found thus validated both theory and simulation models.

Moreover, the performance of the CEBus implemented with two physical media, 

the power line (PL) and twisted pair (TP) communication lines, was investigated by 

measuring message and channel throughputs and mean packet and message delays. 

The router was modeled as a node which can handle three priority levels sim ultane

ously. Satisfactory performance was obtained.

Finally, a gateway joining the CEBus to ISDN was designed and its perfor

mance was evaluated. This gateway provides access to ISDN-based services to the 

CEBus. The ISDN and CEBus system network architecture, gateway wiring, and 

d a ta  and signaling interface between the CEBus and ISDN were designed, analyzed, 

and discussed. Again, satisfactory performance was found.
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CHAPTER 1 

INTRODUCTION

1.1 Background

The Consumer Electronic Bus (CEBus) for the intelligent home, sponsored by the 

Electronic Industries Association(EIA) [1], is a local area network for communication 

and control w ithin a house. The CEBus is intended to support home communication 

for remote sensing and control, status indication, security monitoring and control, 

energy m anagem ent, entertainm ent facilities, lighting autom ation, home appliances, 

etc. It provides a standardized communications interface to six different physical 

communication media [l]-[5]: PLBus (Power Line Bus), TPBus (Tw isted-Pair Bus), 

CXBus (Coaxial Bus), SRBus (Infrared, or Single-Room Bus), RFBus (Radio Fre

quency Bus) and FOBus (Fiber-Optic Bus). It uses existing 60 Hz power lines as 

the main retrofit medium in the home. Since every house in the world is wired for 

electricity, the PL CEBus network is easy and inexpensive to install.

The EIA Consumer Electronics Group [4] began in 1984 an effort for the formula

tion of a standard for a home communication network focused on consumer products. 

Subsequently, a technical steering committee was formed under the Engineering Policy 

Council of the EIA to provide overall guidance and adm inistration of the standards. 

Portions of the draft specification began being released for review in 1989. A revised 

specification was released in 1992. The CEBus standard sets out to achieve several 

objectives. First, it should be easy to retrofit. Also, it should be expandable over
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time as new media and new technologies are adopted. The m ajor technical develop

ment goals are versatility with both distributed and centralized control, simplicity of 

operation w ithout special training or knowledge, low cost, com patability regardless 

of m anufacturer, support of multiple m edia and media independence.

A new language, the Command Application Language (CAL), has been specif

ically designed for the CEBus. It provides com patability among supported devices. 

It also allows for extendability over tim e as new features and services are introduced.

The CEBus protocol utilizes Carrier Sense M ultiple Access w ith Contention 

Detection and Contention Resolution (CSM A/CDCR) for channel access. The round 

robin queueing scheme, based on the queueing state, has been employed in order 

to provide equal opportunity to transm it within a priority. Three priority classes of 

messages HIGH, STANDARD, and DEFERRED are supported in the CEBus protocol 

and play an im portant part in its design philosophy. O ther im portant characteristics 

are data communications1, fast response, priority, and fairness.

The CEBus Architecture, which follows the ISO /O SI seven-layer network model, 

will be described briefly in the next chapter. The CEBus standard uses the OSI (Open 

Systems Interconnect) model for data communications interchange. However, it uses 

only four of the seven OSI layers [1], [4]. Some of the functionality associated w ith the 

Transport Layer has been built into the CEBus Network and Application Layers. The 

Session and the Presentation Layers of the OSI model are not required for the  CEBus, 

so they have been om itted to minimize both  packet length and device complexity.

In the literature  [9] - [16], several perform ance evaluations of the CEBus pro

tocol have been carried out. B. R. B ertan [9] has used a modified CSMA protocol 

to bound the delay for lower priority frames. Bounded delay can be achieved by 

increasing the access time of higher priority nodes. Pakkam and Manikopoulos [10]

P rovisions have been provided for the exchange o f data (non control information) between CEBus 
devices using available bandwidth or other physical resources of the CEBus medium outside of that 
used for control communications.
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have investigated the CEBus performance based on the  Power Line (PL) by studying 

delay versus offered load and throughput for a  num ber of high priority nodes. Yang 

and Manikopoulos [11] - [13] have studied the performance for two physical media 

connected w ith a router. However, the work considers the router as one of the three 

priorities. It was assumed that the date ra te  of the PL was 1,000 ONE b /s  and that 

of the T P  was 10,000 ONE b/s. The literature [12] and [13] contain the router as 

a controlled router. The philosophy behind the design of the controlled router is to 

limit the possibly excessive channel access by the router when demanded by high 

inter-network traffic originating in other medium.

Markwalter, et al., [14] have tested the CEBus proposed design by using a proto

type router implemented with computer hardware. However, the priority assignment 

of packets utilized was limited to HIGH in order to keep channel access delays con

sistent.

Yang and Manikopoulos [15] - [16] have also investigated the desirable range of 

packet length and buffer sizes.

1.2 Contributions o f th is D issertation

The main objectives of this dissertation are to investigate the performance of the 

CEBus and to form ulate a theoretical analysis for it by m athem atical models.

In order to evaluate the performance of the Power Line (PL) in the CEBus, a 

mathem atical formulation has been carried out. A priority channel assigned m ulti

ple access with embedded priority resolution (PA M A /PR) has been developed which 

incorporates the main features of the CEBus network. Several schemes have been 

studied incorporating priority classes and collision avoidance in the literature. These 

schemes have been classified into several categories in this thesis. The scheme used in 

numerical analysis, i.e., PA M A /PR based on the main concept of the CSM A/CD, con
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tains prioritization (3 priorities) of the channel access, persistent channel access, and 

deference to  higher priority class as a non-preemptive scheme. The analytic results 

by the m athem atical model have been verified by com puter simulation experiments.

In addition, the performance of the CEBus, implemented with two physical 

media interconnected through a router, has been investigated. The router is modeled 

as a node which can handle three priority levels simultaneously. The physical media 

employed here are the Power Line (PL) and Twisted Pair (TP) media communication 

lines. The delay and throughput characteristics of each of the three priority classes 

of messages have been measured in term s of message and channel throughputs and 

mean packet and total (message) delays.

Finally, an ISDN-based home information system using the CEBus has been 

proposed by employing basic rate interfaces. ISDN supplied application services for 

the CEBus such as home information, security, energy management, remote home 

control/m onitoring, call management, and video telephony have been discussed. The 

ISDN/ CEBus network structure, data  and signaling interface between the CEBus 

and ISDN, as well as gateway wiring have been designed. Simulation experiments 

have been carried out in a study of traffic through a gateway between the CEBus and 

the ISDN. The gateway provides 16 K b/s for the ISDN and 10 K “1” b it/s  for the 

home CEBus network. A study of the network sensitivity to the propagation delay 

between the ISDN and the CEBus has been carried out.

1.3 Outline of the D issertation

Following this introduction, chapter 2 describes the architecture and protocols of the 

CEBus briefly in which the details can be found in the literature [1] - [6].

Chapter 3 describes the CEBus theoretical analysis. A m athem atical model for 

the CEBus protocol is formulated. Also, numerical analyses for priority resolution
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using priority channel assigned m ultiple access are carried out. For these analyses, 

embedded Markov chains and generating functions are employed. In order to evaluate 

throughput and delay, the expected length of cycle and the backlogs of each priority 

are calculated. The m athem atical model does not include some aspects of the CEBus 

protocol such as contention resolution during the preamble field of 8 bits and queue

ing state  in each station, which were deemed intractable in the scope of this thesis. 

However, the simulation experiments do include all the parts of the CEBus protocol. 

So the simulation work is not object to any limitations th a t may be present in the 

theoretical model. At the same tim e it verifies the results obtained in the m athem at

ical model, which in turn validates the simulation model itself. The close agreement 

found between the analysis and the simulation results strengthens both models.

The objective of chapter 4 is to conduct simulation experiment studies for the 

throughput and delay performance of traffic between the Power Line (PL) and the 

Twisted Pair (T P) media interconnected by a  router which is assigned to handle all 

three priority classes. The router architecture of the CEBus is layered in the same 

m anner as a node. However, it has two Medium Access Control (MAC) Sublayers 

and Logical Link (Control) Sublayers using the same Network Layer. Priority based 

channel access enables a higher priority message to preem pt a lower one while the 

la tte r is waiting for channel access.

The data  rate of the CEBus for the home environment network is quite low, 

the Power Line (PL) and Twisted Pair (TP) each employ 10 K b/s, which is the data 

rate utilized in the simulation experiments. However, generally speaking, local area 

networks using wire pairs can operate up to a few of M b/s. The standard operating 

rate for coaxial cable is in the neighborhood of 10 M b/s. For optical fiber, it is more 

than 50 M b/s. If lasers and single-mode fibers are deployed, the range of bandwidth 

is far higher, in the G b/s range. Given this low channel capacity in the CEBus, 

relatively large delays may be expected in comparison with other high bandwidth
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networks.

In chapter 5, a CEBus gateway is designed to join the CEBus to ISDN (Inte

grated Services Digital Network). Such a gateway is utilized in the simulation model. 

A home information system may feature ISDN-based services such as remote home 

control, multim edia including audio, data, and video, security monitoring, and energy 

management. A CEBus gateway plays a key role in the successful connection of ISDN 

to the home. ISDN residential service can be accessed with low speed terminals, per

sonal computers, and digital telephones through the Basic R ate Interface (BRI), For 

fast facsimile, and slow motion video terminals, the Prim ary Access Interface may 

be utilized. Included in the gateway capabilities is the ability to  convert term inal 

keypress sequences into commands, and to transm it the generated commands to  the 

appropriate media. The gateway is used to convert CEBus signals to ISDN ones and 

vice versa, and to provide 16 K b/s signalling through the D-channel for the ISDN 

network and 10 K ONE b it/s  for the home CEBus network.



CHAPTER 2

CEBUS ARCHITECTURE  
AND PROTOCOLS

2.1 Background

This chapter describes the architecture and protocol of the CEBus briefly as proposed 

in [1] - [6]. The standard  also provides a comparison of supported media, a functional 

description of the utilized constituent layers and requirements. The details may be 

referred to the documents.

The CEBus is a local area network which provides a standardized communica

tion facility for the exchange of control information among devices and services in the 

home. Prim ary consideration in the development of the CEBus is low cost and ease 

of operation. It addresses both of these issues by providing a standard communica

tions interface to six supported media (power line,twisted pair, fiber optic, coaxial 

cable, RF, and infrared). In particular, use of the existing 60 Hz power line as a 

communications medium in consumer applications reduces the costs of installation of 

inter-room wiring between devices.

The CEBUS architecture [1] is similar to the OSI model, but has only some of 

the layers. Some of the functionality associated with the Transport Layer has been 

built into the CEBus Network and Application Layers. Since the Session and the 

Presentation Layers of the OSI model are not required for the CEBus, they have 

been omitted to minimize both packet length and device complexity.
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2.2 Channel Access P rotocol

The CEBus [1] employs three different priorities HIGH, STANDARD and DE

FERRED. The s ta te  of the m edium may be classified as IN FER IO R  or SUPERIOR 

[l]-[3]. For the PL control channel, the encoded symbols will be represented by the 

alternating presence of either SU PERIO R state phase in the message body, or alter

nating SU PERIO R and IN FERIO R states during the preamble. Examples of encod

ing during the preamble portion and during the non-preamble portion of the message 

are shown in Fig. 2.1. To make detection of the preamble easier, the unit symbol 

tim e (UST) is longer during the preamble than during the message portion of the 

packet. W hile the unit symbol tim e is longer (114/xs vs. 100/ts), the SUPERIOR01 

carrier sweep tim e remains constant throughout the packet. The carrier on the PL 

consists of a sinusoidal wave form th a t is swept linearly from 203 KHz to 400 KHz 

for 19 cycles, back to 100 KHz in one cycle, then back to 203 KHz in 5 cycles during 

a lOO^sec interval.

The preamble ends with a special preamble EOF symbol th a t divides the pream

ble from the non-preamble portion of the message. The following Table 2.1 is for the 

three CEBus encoded symbols used during the preamble. The preamble EOF consists 

of eight SU PER IO R 01 states in a row of 100/xs each (no intervening inferior state). 

Then the body of the message immediately follows the preamble EOF.

During the non-preamble portion of the message, the transm itter is continually 

outputing a frequency swept carrier in either the SU RPERIO R01 sta te  phase or the 

SU PER IO R 02 state  phase, as shown in Fig. 2 (b).

The CEBus symbols are indicated by “1”, “0” , “EO F” (End of Frame), and 

“E O P” (End of Packet). The signal encoding for the PL control channel is Non 

Return to Zero (NRZ), using Pulse W idth Encoding. These symbols are encoded 

using a swept frequency carrier coupled to the power line. For the TP, CX, or IR 

control channel, the SUPERIOR s ta te  is represented by the presence of either a
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(b). Non-preamble Encoding Example 

F ig. 2.1  Power Line (PL) Control Channel.
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Table 2.1: Symbol Duration of the Preamble

SYMBOL Duration Margin
ONE 114/isec ±114ns

ZERO 228/zsec ±228ns
Preamble EOF 800^sec ±800ns

positive or a negative differential voltage, while the INFERIOR state  as the absence 

of any voltage swing. The T P  control channel occupies a bandwith from 1 to 64 KHz. 

The T P  signal is a differential bipolar signal making use of three levels to encode the 

symbols. The CX signal characteristic is Non R eturn to Zero (NRZ) Pulse W idth 

Encoding (PW E). The encoded symbols will am plitude key a sinusoidal waveform 

carrier coupled to the coaxial cable.

In order to transm it a frame, the medium should remain in the IN FERIO R state. 

The nodes for each priority transm it packets and wait a certain amount of tim e as 

follows:

• Successful transmission:

If the channel is sensed idle, the node may start transmission of a packet. Even 

if a collision occurs while the node is transm itting a SUPERIOR state, the 

transm itting node succeeds in completing the transmission. This procedure 

will be described again in item  e.

• Unsuccessful transmission:

If the node senses the channel busy or gets involved in a collision, then it 

defers the transmission a ttem pt according to a random tim e delay, prioritization 

and queueing state. The packet of the backlogged node becomes ready for 

retransmission again in some later slot.

To reduce the probability for unsuccessful communication, the CEBus uses sev

eral different methods to access the channel [l]-[3]. The medium channel access
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F ig . 2 .2  Channel Access Wait Time of Prioritization and Queuing Scheme, 

m ethod is reviewed briefly below:

2.2.1 Prioritization

Fig. 2.2 illustrates the channel access wait tim e of prioritization and queueing scheme. 

According to the priority of the message and sources, the CEBus employs HIGH, 

STANDARD and DEFERRED priorities [1]. The lower priority nodes will always 

yield to the higher priority nodes and defer to  them. After the end of a packet (EOP) 

and minimum channel access delay time, HIGH priority, imposes no additional access 

delay. STANDARD priority imposes 4 USTs (Unit Symbol Times) access delay, while 

DEFERRED requires 8 USTs access delay. This does not include the random  access 

delay time. Therefore, higher priority frames do not have to contend for channel 

access with lower priority ones, as shown in Fig. 2.2.1.
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2.2.2 M inim um  C hannel A ccess D elay (S tate D eference)

After a minimum of 6 unit symbol times (USTs) have elapsed following an EOP, 

an immediate acknowledgment (IACK) or a retransmission without conflict can take 

place. W hen the Physical layer sends an EOP (4 USTs) symbol, it readies the D ata 

Link Layer (DLL) to transm it [1], [2].

In the case of IACK, the originating node expects to hear the beginning of the 

IACK preamble within the first 4 USTs after sending its EOP symbol. This sequence 

of events happens within the minimum wait time (6 USTs). If the originating node 

does not detect the beginning of an IACK within 4 USTs after the end of its frame, 

a retransmission will s tart before the 5th UST has elapsed. During this period, the 

originating node still owns the channel and avoids any contention. However, the 

receiving node must begin transmission of the IACK Preamble within 2 USTs of 

the end of the received originating frame. If a received IACK at the source denotes 

bad reception at the destination, the originating node m ust begin its retransmission 

within 5 USTs of the end of the faulty IACK.

2.2.3 Q ueueing and Round-robin Scheduling

The use of the round-robin scheme within the same priority level ensures that the 

contending nodes have equal opportunity  to access the channel.

- Queued State

Once a transm itting node completes a transmission successfully, the node will be 

placed in the Queued state from an Unqueued state. The effect of being in the 

queued state  is to repeatedly defer channel access to all unqueued nodes at the same 

priority level. If the queued node confirms th a t no other unqueued nodes a ttem pt to 

send a message during the 4 UST of its queued s ta te ’s delay, it may then a ttem pt to 

send a message.
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- Unqueued State

This state  occurs in one of the following two circumstances:

1. If the station has no message to send or the medium is sensed idle for the maximum 

channel access time (22 USTs).

2. If none of the Queued nodes complete a transmission during the following 4 UST 

slots.

2.2.4 R andom ization

A random  delay of either 0, 1, 2, or 3 USTs is used for the control of each node’s 

transmission start tim e [1], which results in reduction of contention probability during 

each of the priority queueing time slots. By this m ethod, the channel throughput can 

be improved significantly. This randomization of s ta rt times described above is a 

clever and simple mechanism designed to reduce the probability of contention, which 

is quite successful.

2.2.5 C ontention D etection  and its R esolution

Although the above rules cover all situations and while the Data Link Layers of the 

nodes are designed to avoid contention over the channel, some nonzero probability 

of contention still exists when two or more nodes try  to transm it simultaneously in 

the same time slot [7], [8]. Fig. 2.3 shows an example of contention detection and 

contention resolution.

• Contention Detection:

The Power Line Symbol Encoding (PLSE) sublayer provides all the necessary encod

ing of the CEBus symbols into the required requests for SUPERIOR or IN FERIO R 

states on the media. So, the Physical Layer by the use of SUPERIOR and IN FERIO R 

medium states enables contention detection. A node, while transm itting as SUPE-
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F ig . 2 .3  Example of Contention Detection and. Contention Resolution.

RIOR state on the medium, will dom inate any a ttem pt to transm it an IN FERIO R 

state  by any other transm itting nodes. This dominance of the SU PERIOR state  

makes it possible for the nodes transm itting a SU PERIO R state  to keep transm itting 

in preference over the  IN FERIO R state  nodes. Fig. 2 shows an example of contention 

detection and contention resolution. In the CEBus, collisions occur only when two or 

more stations win contention during the period of preamble transmission.

• Contention Resolution:

The node which detects a contention while transm itting  an INFERIOR state  will stop 

transm itting immediately and continue to defer transmission until after the frame has 

been sent. The value of the Preamble field is a Pseudo-random  bit sequence (8 pulses) 

which allows for contention resolution by the D ata Link Layer [1], This Preamble 

activates contention detection and resolution as part of the channel access protocol. 

For example, after two nodes have a collision, they will try  to transm it their packets

SUPERIOR
INFERIOR

-0
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by sending a random bit sequence of SU PERIO R and IN FERIO R states by the 

Physical Layers to the medium. Of course, each node would begin its transmission 

in the SU PERIOR state. However, at some time, one of the colliding nodes will 

transm it an IN FERIO R state  while the other is transm itting  a SU PERIO R one. The 

SUPERIOR state  must be able to override the IN FERIO R state ( “listening s ta te” ), 

allowing a node in IN FERIO R state to detect any other node’s SU PERIO R state  over 

the medium [14], [15]. So, the conflict among the transm itting nodes can be resolved 

during the Pream ble slot w ithout losing any information. However, in rare occasions 

for some reason such as noise on the medium, device interference, or by chance, the 

contention may survive past the preamble. This will cause either the transm ission to 

be aborted and retransm itted  or a bad packet to be received.

2.2.6 Error D etection

Cyclic Redundancy Check (CRC) is a powerful error-detecting m ethod. These re

dundancy bits do not carry any information; they are merely used to determ ine the 

correctness of the bits carrying the information.

Here, all the characters in a message block are treated as a serial string of 

bits representing a binary number. This number is then divided modulo 2 by a 

predetermined binary number and the rem ainder of this division is appended to the 

block of characters as a cyclic redundancy check (CRC) character. The CRC is 

compared with the check character obtained in similar fashion at the receiving end. 

If they agree, the message is assumed correct. If they disagree, the receiving term inal 

will demand a retransmission. This is usually called the ARQ (A utom atic Repeat 

Request) m ethod of error control and is very commonly used in d a ta  communication. 

The CRC character is also called the cyclic check sum, or simply the check sum 

character.

The Power Line protocol employs “error detection” performed a t the Sym
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bol Encoding sublayer level, i.e. PLSE (Power Line Symbol Encoding Sublayer). 

For error correction, the status service primitive, PH_CC_STATUS. indicate (e.g., 

GOOD_FRAME or BAD_FRAME) is passed up at the end of every received packet 

(at the end of CRC) [4]. T hat is, the Frame check Sequence (FCS) is computed over 

the Unit Symbol Times(UST) by treating 01 as logical Is and 0 2  as logical Os. Here 

one phase is called 01 , and the opposite phase is called 0 2  from either SUPERIOR 

01 or SU PERIO R 02. For reference, the PREAM BLE EOF and the  rest of the frame 

are encoded by state  changes between one of two phases of an elemental waveform. 

Media tha t do not use Symbol Encoding Sublayer error detection do not have this 

primitive value. The specific Frame check sequence used is a 16-bit CRC standard, 

known as 1 +  X 2 +  X 15 +  X 16 [4].

Bits are shifted into the CRC com putation starting with the 0 2  UST that must 

follow the PREAM BLE EOF. The PREAM BLE EOF will always be transm itted  as 

8 01 pulses. A 0 is the first bit into the CRC computation. Each transm itted  UST 

(01 or 0 2  pulse) shifts another bit into the CRC. This process, as explained in [4], 

continues until the last of 4 EOP USTs is processed. At this tim e the CRC will 

contain the 16bits tha t will result in a 0 in the CRC register.

At the end of the EOP, the PLSE immediately transm its the 16 USTs encoding 

the 16 CRC bits. The most significant bit of the CRC16 is transm itted  first. A PL 

medium will always end with four EOP USTs plus 16 CRC USTs. After handling of 

USTs and error checking, the CRC is cleared and each UST after the PREAM BLE 

EOF shifts a new bit to the CRC com putation. After the last UST, an error free 

frame will result in 0 in the 16 bits of the CRC.



CHAPTER 3

CEBUS THEORETICAL 
ANALYSIS

3.1 General

One characteristic of a local area network is th a t all attached users (or stations) on 

its medium m ay a ttem pt simultaneously to gain access to the transmission facilities. 

Gold and Franta [21] have categorized multi-access protocols, based on two general 

criteria (a) the level of node cooperation demanded by the protocol along with the 

information the nodes employ and (b) the degree to which they adapt to changes in 

demand for the channel, as follows:

1) Fixed Assignment

2) Random Assignment

3) Demand Assignment

One of the most widely used random access protocols is Carrier Sense Multiple 

Access with Collision Detection (CSM A/CD). This provides excellent channel u ti

lization and low packet delays under light traffic loads. However, in order to provide 

a priority function in the channel access recently prioritized channel access mecha

nisms have been considered. According to the type of the packets transm itted  such as 

data files, e-mail, interactive data, rem ote control, emergency reporting and system 

management, different delay times and throughputs are required.
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In order to resolve collisions, several schemes have been studied for incorporating 

priority classes and collision avoidance. Those schemes proposed in the literature 

can be classified into several categories, on the basis of the objectives and approach 

methods, as follows:

A. P r io r i ty  Q u e u e in g  A p p ro a ch

In the priority queueing scheme at station buffers, each station organizes a pri

ority queue with Head-of-Line (HOL) discipline. Accordingly, the packet at the head 

of the buffer will be the longest-waiting packet of the highest priority class, at any 

instant. A new arrival packet to the buffer, with greater than the current highest 

priority, will displace the packet currently at the head of the queue.

•  Preemptive/Non-preemptive Priority Queueing;

Priority Queues (preemptive or non-preemptive) [51], and CSM A/CD-P [52] are ex

amples of such a priority queueing scheme. In the Preemptive Priority Queueing 

System  [53], two-classes of customers were considered. The high priority class has pre

emptive head of the line priority over the low priority customers. In Non-preemptive 

Priority Queueing System [53], [54], the preemption is not allowed. In order to com

pute the s ta te  probabilities in priority queueing systems, the recursive formulas as 

well as the generating function of the number of customers in the system  are derived.

• Prioritized Virtual Time CSMA (P VT-C SM A);

In PVT-CSMA [55], the packets in the network arrive with a priority queueing mech

anism, following the head-of-line principle. The higher priority transm its packets 

ahead of the lower priority. W ithin a priority class, the packets must be transm itted 

in the order th a t they were received.

B. R e s e rv a tio n -b a se d  P r io r i ty

This scheme employs a channel reservation by allowing a portion of the channel
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bandwidth at the end of a transmission. Priority-Ethernet [56], Modified CSMA/CD 

with MP [57], and DAMA [58] all follow this scheme. CSMA with message-based pri

ority [59] allows reservation of the channel partitioned into two blocks: first, the high 

priority class messages at the end of a transmission contend for the channel access. 

Second, the users with messages of lower priority axe inhibited from attem pting  chan

nel access if a higher priority message is waiting to be transm itted. Noel Gonzalez- 

Cawley and F.A. Tobagi [60] have formulated a message-based priority function in 

non-preemptive Priority-CSMA, the semi-preemptive and fully-preemptive P-CSMA.

• Ordered-Access Bus Approach

As an example of a bus system employing ordered access, we can consider the 

reservation-type scheme MLMA (multilevel m ultiple access) proposed by Rothauer 

and Wild [61]. In the MLMA, each station attached to the bus owns one bit within the 

request slot. By setting its private bit, a station indicates tha t it wants to transm it a 

packet within this frame. At the end the request cycle, all stations know which of the 

stations will use this frame. Packets from all stations form the distributed queue Q q .  

At this point, all packets within Q q  simultaneously obtain a scheduling time (batch 

service), in which the scheduling tim e T3 may have to be significantly longer than the 

pure transmission tim e of the request slot. As a result, the transm ission sequence is 

given by a priority assignment known to all stations. The MLMA m ethod is similar 

in concept to a bus access which has been analyzed by Mark [62], and to a contention 

resolution m ethod for com puter-interrupt systems proposed by Taub [63].

C. Conflict-Free Approach

In contrast to contention protocols such as ALOHA [22]-[27], CSMA [26]-[33] 

and CSM A/CD [36]-[45], medium access in conflict-free protocols is granted to exactly 

one user at a time. The Controlled Token, Time-Division Multiple Access (TDMA), 

Frequency- Division Multiple Access (FDMA) [80], [19] Distributed Scheduling Mul
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tiple Access [66] and Mini-slotted A lternating Priorities [67] belong to the category 

of the conflict-free protocols. The controlled token scheme w ith sepaxate token cycle 

will be described in case E.

The CEBus protocol [1] makes use of this scheme for channel assignment of 

different priority. The CEBus also employs a conflict-free scheme by using the SU

PE R IO R  state  deference during the preamble bits.

Similarly, the collision problem may also be solved with hardware by using a 

collision avoidance switch, as described in the next section.

D. N o d e  P a r t i t io n in g  A p p ro a ch

The NP-CSMA [65] approach establishes a threshold priority level at the end 

of each successful transmission. The packets of greater priority may contend for the 

channel a t the next idle slot, whereas ready users with packets of priority less than 

the threshold are inhibited from contention until the greater priority users are idle or 

empty. In this mechanism, the set of ready users is partitioned into two blocks: one 

for contending channel access, and the other for being inhibited from contention.

E. P a ra m e tr ic  a n d  S e p a ra te  T oken  C ycle  A p p ro a ch

This approach employs a different set of access param eters to provide each pri

ority. P-CSMA based on staggered delays [69], retransmission delay [43], and P- 

Dynamic CSM A/CD [70] have no strict partitioning as in the other overhead due 

to reservation. Separate token cycle approach can be found in Karvelas [32] which 

utilized separate token cycles to provide access to different traffic classes, high (voice) 

and low (data).

F. C o llis io n  A v o id an ce  S w itch  A p p ro a c h

This approach uses hardware implemented collision avoidance switches to pre

vent collisions by arbitrating random access to a communication channel. Broadcast
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star network has been studied by Albanese [71], Lee and Boulton [72], Suda, Yemini 

and Schwartz [73] and Morris and Niguyen [74], Y. Yemini [75] and T. Suda and 

K. Gota [76]. For example, each station is connected to a  central switch by a full 

duplex channel comprising an uplink and a downlink. The switch may be viewed 

functionally as containing two components: the selector for uplinks from stations and 

the broadcaster for downlinks to stations. M urata and Takagi [84] proposed priority 

queueing systems with p classes of messages. In the first, the class of message to 

be served next is the highest priority class existing at the beginning of the current 

service. It was assumed th a t the  message service tim e distribution and the switchover 

tim e distribution are identical for all classes. In the second model, the next service is 

scheduled at the end of the current service. In the third discipline, the next service 

is given to the highest priority class at the end of the switchover time, and its service 

is immediately started.

G. H y p e rc h a n n e l In te rfa c e  A ccess A p p ro ach

Hyperchannel interfaces [79] are designed to provide for message-assigned pri

orities. The extension requires little  additional new hardware but instead employs a 

replication in each interface of existing hardware. The hyperchannel BIU 1 protocol 

is characterized as:

•  giving priority to BIU sending ACK or NAK messages.

• providing distributed access control so that nodes can be easily added or deleted 

from the network.

• avoiding single points of failure.

• being responsive to the burst transmission needs of network nodes.

• mitigating the differences in speed between connected nodes.

d ev ices  known as Bus Interface Units (BIU) or network adapters. The BIU basic structure is 
composed of Bus Access interface, Interface logic and Device interface.
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• providing priority access control for BIUs wishing to transm it.

The hyperchannel BIU design provides four features; transm itter disabled, fixed delay, 

unique tim e slot delay and contention.

H. Timer Controlled Random Access Approach

The high-speed local network (HSLN) is designed to provide high end-to-end 

throughput between high-speed (50 Mbps) devices, such as mainframes and mass 

storage devices including bulk data  transfer and autom atic back up, with a limited 

num ber of devices (10-20) over a relatively small distance (less than 1 km) [80].

This scheme can be described in term s of the ANSI (American National Stan

dards Institu te) draft standard [81]; the algorithm for HYPERchannel is very sim

ilar. The protocol follows an ordered logical sequence (P O R T (l), PORT(2), 

PO RT(N )), which need not correspond to the physical sta te  of the medium. Follow

ing initialization P O R T (I+ l) waits until after PORT(I) has had a chance to transm it. 

The wait tim e consists of

(a) the earliest time at which PO RT(I) could begin transm itting (which depends on 

the transmission opportunity for PO R T(I-l)), plus

(b) a port delay time during which PORT(I) has the opportunity  to transm it, plus

(c) the propagation delay between the two ports.

The timers which reach a specified maximum value are said to  have expired. 

They are composed of the priority access timer, arbitrated  access tim er and resyn

chronization timer. Many parts of this technique seem well suited to the CEBus 

scheme.

Among the priority functions and collision avoidance [55]-[82], the analysis ap

proach of this thesis is similar to those followed in [40], [45], and [68]. In summary, 

PA M A /PR  methodology of this dissertation employs a) priority channel assignment 

for partitioning channel access on the network, b) embedded priority reservation at
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the EOP (End of Packet), c) random start time delay within the same priority class, 

d) m inim um  channel access time, and e) round-robin scheme for fairness of access 

within the same priority class.

In order to analyze the message interdeparture tim e, message delay and system 

states, one will make use of the moment generating functions (MGF). The MGF 

processes were studied in [36] for non-persistent CSM A/CD with the delayed first 

transm ission operation under the unslotted scheme. They were also studied for CSMA 

and CSM A/CD for the persistent and non-persistent operations [44], [64]. In [59], 

they are used for CSMA with message-based priority functions.

In deriving the MGF, the transition probabilities, the probability mass function 

of the embedded slots and the steady state  probabilities are applied, as obtained in 

section 2.

3.2 Priority Channel A ssigned M ultiple A ccess
w ith  Em bedded Priority R eservation

3.2.1 A nalysis M ethodology and A lgorithm

The CEBus channel access scheme is designed to minimize the probability of conflict

ing transmissions. The prim ary methodology [1] is composed of 4 steps as follows:

1. Prioritization of the channel access

2. Random ization of start time delay interval within each priority and queueing 

state

3. Round-robin queueing state  to ensure equal (fair) access within a priority level

4. Deference to other channel traffic (SUPERIOR state  deference)
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For simplicity in the analysis of the CEBus protocol, several assumptions have 

been made for priority channel assigned multiple access with embedded priority reser

vation and resolution (PA M A /PR) as follows:

• slotted axis. The channel axis is slotted, w ith the slot size equal to 1 U S T . Here 

1 U S T  stands for unit symbol time (ONE) and represents the tim e needed to 

transm it the shortest symbol. The ZERO symbol requires two USTs. Therefore 

in order to transm it 1 b it, which is equally likely to be ONE or ZERO, it actually 

takes an average 1.5 USTs, i.e., 1.5 slots through the MAC layer. However, for 

simplicity in the analysis, it is assumed to take 1 slot to transm it 1 b it length 

(actual values may be calculated by multiplying 1.5 times the results of the 

numerical analysis). Here the effect of £ and £ is neglected2, where £ denotes 

the time it takes a station to detect interference once the interference reaches 

the station, £ denotes the tim e period used for collision reenforcement, and r  is 

the propagation delay. However, these param eters including r  are assumed to 

be less than 1 slot time.

• Synchronization to the same time axis. All stations are synchronized to a uni

versal tim e axis. They transm it messages only at slot boundaries.

• Finite size of the population and a single buffer a t each station. An idle user may 

generate a message in a slot with probability gp (and does not with probability 

1 — gp), where p refers to one of the three priorities and 0 <  gp < 1. We call 

this a geometric arrival process. An arriving message that finds the buffer fully 

occupied is lost. A backlogged user or station will reschedule its transmission 

according to a geometric process with probability vp. A single buffer a t each 

station is assumed because models with larger buffer structures are very difficult 

to analyze.

2The detailed meaning £, and r are described in [45] with figures.
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• persistent protocol. In order to randomize the start of transm ission during 

channel access delay for each priority, the persistent protocol is adopted. It is 

activated following the beginning of the priority channel assignment at which 

the channel goes idle. When the channel is sensed busy, the station monitors 

the channel, i.e., it persists until the channel becomes idle, and then

1. it initiates transmission of the message w ith probability vv.

2. It defers transmission by 1 U S T  w ith probability 1 — vp. If the channel is 

sensed idle after a tim e delay, the station  repeats step 1 and 2 , otherwise, 

it schedules retransmission of the message to some later time.

• All messages of each priority are assumed to be of constant length.

At any observation instant, a user may be in one of two states; (a) thinking 

s ta te  if it does not have a message to transm it, and (b) backlogged if it has a message 

awaiting or it is undertaking transmission. In this scheme, the rescheduling delay of a 

backlogged message, as noted in [40], [76], is assumed to be geometrically d istributed 

with mean 1/ v  slots. In other words, a backlogged station senses the channel and, if 

idle, transm its in the current slot with the probability v.

If a collision is detected during transmission, the station aborts the transmission 

and schedules its message for retransmission. In a collision case, a minim um  trans

mission duration called the collision detection interval, T ^ , is required. A possible 

collision is resolved by the priority channel assignment scheme.

For the sake of simplicity and without loss of generality, the sta te  of the user,

i.e., queued s ta te  or unqueued state, is assumed to  be fixed as one of the two states. 

However, in the steady state the delay performance is predominatly affected by the 

priority of the message, i.e., the priority access delay assignment. In Fig. 3.1 the 

priority contention resolution and embedded slots in slotted persistent priority  are 

illustrated.
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So, the CEBus performance is analyzed by this simplified queueing state  w ithout 

losing the broad picture of the overall performance. The limitations which m ay be 

present in the analysis do not exist in the simulation experiments of the scheme, as 

shown in the results. The difficulty in analyzing the CEBus scheme arises from the 

fact tha t the system ’s service is dependent on the system ’s evolution in tim e in term s 

of the activity of the users and the mix of the priorities in the messages. The tim e 

required to transm it a message is a function of the num ber of contending users and 

the accumulated higher priority messages during the lifetime of the current message. 

As the profile of users and messages evolves performance changes. This prevents us 

from using conventional queueing techniques directly, w ithout modifications. The 

techniques and results appearing in the literature [25], [45], [59] have been adapted 

to handle transition probabilities for the CEBus. In order to find the expected delay 

lengths of three priorities and the expected size of each priority’s backlogs, Tobagi’s 

Massage-Based Priority Functions (M BPF) [59] have been recast to employ the CE- 

Bus’s three priorities. Tobagi’s model differs from this analysis prim arily in the 

following items:

1. The CEBus scheme supports 3 instead of 2 priorities.

2. In the M BPF, following EOC (End of Carrier), if the carrier is detected in the 

first reservation slot, the access right is given to class i, and then the user trans

mits a packet over the channel access period (CA P). However, in the CEBus, 

following EOP, if there is a higher priority station contending, the access right 

will be granted to the higher priority. But it must wait for a minimum waiting 

time (wm), and then transm it a packet during its priority channel access (PCA) 

period.

3. In the M BPF if no carrier is detected prior to the j th (here 2nd) reservation- 

slot, where j  — v(h), then user h transm its a short burst of unm odulated carrier



28

of duration 7  at the beginning of reservation-slot j ,  and utilizes the channel 

immediately following this reservation-slot. However, in PA M A /PR  the users 

must wait up to wm and then contend for channel access, according to their 

priority during the PCA period. Therefore, users between different priority 

classes cannot have a chance to collide.

4. Following EOC in the M BPF, if no carrier is reserved and there are two or more 

users they will have a collision, regaxdless of priority. In PA M A /PR, following 

an EOP, if no carrier is reserved, even if there are three users but of different 

priority, they will have no collision. Also, in PA M A /PR , even if there is only one 

higher priority arrival in the midst of many lower priority arrivals, the higher 

one wins and does not contend with those of lower priority.

In this analysis, the performance depends on the nature of the embedded Markov 

chain processes, the regenerative process, the delay-cycle analysis and the priority 

channel access assigned delay.

Algorithm

The Priority Channel Assigned Multiple Access with Priority Resolution algorithm 

(PAM A /PR) is used for the CEBus. It operates as follows;

1. Initialize.

2. Generate messages.

3. Monitor the channel state to determine w hether there is a backlogged user or 

not, at the end of EOP. If there is no priority reservation, or no backlogged 

user,

then go to step 4, 

else go to step 8 .
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4. Contend for channel access.

(a) if the message is of High priority, then go to step 5,

(b) if S tandard priority, then go to step 6,

(c) if Deferred priority, then go to step 7.

5. Wait a  minimum wait time (6 slots) plus 0 high priority access delay time, 

then in itiate  transmission of the message w ith probability Vh.. The various 

situations in high priority transmission procedure are shown in Fig. 3.2.

(a). If a collision is detected then the transmission aborts after a collision 

recovery tim e, T ^ . Then, repeat steps 3-8 to be retransm itted.

(b). Else, the transmission proceeds.

6 . W ait a minimum wait time of 6 slots plus 4 slots standard priority access delay 

time,

then in itia te  transmission of the message with probability u3. The time sequence 

o f events fo r  standard priority message transmission is depicted in Fig. 3.3.

The remaining steps are the same as Step 5.(a) and 5.(b).

7. W ait a minimum wait time of 6 slots plus 8 slots deferred priority access delay

time,

then initiate  transmission of the message with probability Ud- 

The rest of the steps are the same as Steps 5.(a) and o.(b).

8. When the channel is sensed busy, then the user awaits the EOP signal mark. If

the backlogged message is of high priority, then go to step 5.

If standard priority, go to step 6 .

If deferred priority, go to step 7.

Following the end of EOP, the higher priority message gains the access right. 

If at the end of EOP there is no high and/or standard priority, then the back-
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logged deferred priority message will reserve the channel access, as shown in 

Fig. 4.4.(a). The complete time sequence o f events fo r  the deferred priority 

message transmission is depicted in Fig. 3.4.

In this nonpreemptive priority, when a higher priority message arrives during 

the waiting time, the higher priority is not granted access right until the next 

EOP, at which time it regains the access right.

9. Exit.

At the end of EOP, if there is no backlogged user of the higher priority, but there is a 

backlogged user of the lower priority, then the la tte r reserves the channel, and channel 

access is given to the reserved lower priority. During the waiting time, even if some 

other higher priority user generates a new message, this priority cannot preempt the 

lower priority message which already reserved the channel access right at the end of 

transmission. This higher priority will regain the channel access right to transm it, 

but only following the next EOP.

If, following EOP, no priority reservation or no new arrival message over the 

minimum wait time plus priority channel access delay time, (wm +  Ah + A , 4- Ad) 

occurs, all users regardless of their priority can access the channel freely until a new 

EOP is detected.

3.2.2 Transition M atrices

O ne S te p  T ra n s it io n  M a tr ic e s  fo r P ro c e sse s  of 3 P r io r i t ie s

To analyze the system state, a two-dimentional embedded Markov chain process 

model is used for the transition m atrix P .

One dimension of the model is the number of backlogged users, i, and the other 

dimension is the number of ready users, j .  Here ready user means all users who are
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attem pting transmission from an already backlogged buffer and new arrival users who 

join the backlogged state  when the channel is idle or ready to transm it. Thus the 

s ta te  of the system is given by (*, j ) .  This state is defined at embedded points as

1. the end of a successful transmission, or

2. the end of a collision,

3. a transition point from an initial state  of the system  m ( t e) =  i, to a final state  

a t the start of the corresponding transmission period, m ( t e +  1) =  k. Here k — i 

new users have joined the backlog in the last slot of the idle period.

Case 3 is an embedded point in the narrow sense. In case 1 and 2, the channel is sensed 

idle by all users one slot after the end of transmission by the station transm itting last. 

This means that the length of the successful and collision transmission intervals are 

Th + l and Tch +  1 slots, respectively.

The m atrix  P  is the product of all previously considered single-slot transition 

matrices in a cycle. Therefore, the transition m atrix element at two embedded slots 

[P P)i,k can be expressed by

B b  =  f r { " . 0  =  ‘ W ? ) = i ]

The subscript p represents the 3 priorities, h for High, s Standard and d Deferred 

priority, respectively. The symbol tp indicates the tim e of end of carrier, i.e., EOP 

(End of Packet).

Since the length of the busy period depends on the num ber of users which become 

ready in slot tp + I  — 1, the r-step transition probability m atrix  over the busy period

following the analysis presented in [45], [68], can be expressed els

Sij — P r { m tp+i =  j  Sz Successful Transmission |m tp+/_i =  i} (3.1)

f i j  =  P r { m tp+[ = j  & U nsuccessful T ransm ission  |m tp+/_ i  =  i} (3.2)
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Let us define a\p\ k ) , b\p\ k )  and dk, respectively as follows:

a\p\ k )  =  pobability th a t k users in the thinking state  transm it in a slot when 
the backlogged user is i, within priority p

b\p\ k )  =  probability th a t k backlogged users transm it in a  slot when the back- 
logged user is i, w ithin priority p

di =  probability of having no users transm itting  in a slot when the backlog
is i,

where

«!’>(*:) =  (  M ’ ~  ' )  SJ(1 -  J p )" '- -4 (3.3)

b f ( k )  =  (  • )  *,‘ (1 -  vTr k (3.4)

<4p) =  a jp)(0)6jp)(0) (3.5)

It is assumed that the arrival ra te  gp of each of M  — i users in a slot with priority p 

is geometrically distributed. The param eters are defined as

T  =  num ber of time slots
M  = number of the to tal users
i = num ber of backloged users at the beginning of transmission
k =  num ber of backloged users at the end of transmission
k  — i =  number of new arrivals
M  — k =  number of idle users at the end of transmission
gv = new arrival rate per user with priority p
up =  probability tha t the terminal transm its the packet

(implying probability (1 — up) the term inal delays the transmission)

Here, as previously mentioned, p as a subscript or a superscript in a param eter denotes

its priority. During the minimum wait time, the priority channel access delay, and

the transmission period, all new arrivals join the backlog. A new arrival sensing the 

channel idle may transm it with probability one. Therefore, the (i, k)th  element of
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m atrix S for the transition probability from state  i to state k is given as

i,k

i - d f r -  A- i +  1

0 k >  i +  1

where the probability tha t no user becomes ready during slot t is given by dt- =  

(1 — t,), ( l — g)M~ \  given m p(t) =  i. The probability tha t one or more becomes ready 

during slot t is equal to 1 — d,-. The average length of the idle period is found to be 

given by

jto) _  1
i -  4 p)

1
(3.7)

1 -  (1 -  vPY ( l  -  gp)Mp~' 

where p again denotes h (High), s (Standard) and d (Deferred) priorities.

The m atrix Q represents the increase in backlog due to some of the thinking 

stations becoming backlogged on finding the channel busy. During the minimum 

wait, priority channel access delay, and transmission period, all new arrivals join the 

backlog. This is a simple Bernoulli type arrival process. Fig. 3.5 shows the arrival 

transition during the minimum wait and priority channel access delay time, where 

a (.),&(.), and c(.) are defined in Eq. (3.16) - (3.18). Therefore, the arrival transition 

probabilities are given by

\Qvkk  =  { a (p)(Jb _  k >  . (3.8)

Let Q j  be the probability tha t we have k — i new arrivals among M  — i users 

in T  slots. Using the geometric arrival rate gp for each of M  — i users in a slot, the 

probability m atrix  element may be w ritten as

k — i

(3.9)



37

Qh ” • QhQh QhQh — QhQh — Qh
Q s  "• Q s Q s  •" Q s Q s  •" Q s Q s  " Q 3

Qd "• QdQd •" QdQd — QdQd — Qd

M e s s a g e
. . .  I L . . I  1 1 1 1 I . . i I . . . . ! 1 1 !

( 6 ) ( 4 ) (4 ) ( 4 )

H i g h... a {  ) . ,

S ta n d a r d

b ( . ) D e f e r r e d

c  ( . }

F ig . 3 .5  Arrival Transition during the Minimum W ait and Priority Channel 

Access Delay Time.

Note th a t for k <  i, [Qp\i,k =  0.

F  is the transition probability m atrix  from state i to k with unsuccessful trans

mission. The elements of F  are given by

0

[Fp] i'k — <

aip)( Q ) [ l - 6 ip)(Q )-6 ip)(l)] 
1 -  d\p) 

ajp)( l ) [ l - ^ ( 0 ) ]
1 -  d\p) 

a f \ k  — i)
i - d p)

k < i 

k= i

k = i+ l

k > i + 1

(3.10)

J  represents the decrease in backlog after a successful transmission at the instant 

the backlogged station reenters the thinking mode. The elements of m atrix J  are 0 

except when k  =  i — 1 when they are 1. Therefore, the elements of the departure 

m atrix Jv are given by
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[Jvkk -  |  Q ot]ierwise (3-n )

Here M, cr, and v are assumed to  be time-invariant as in [40], [45], and [46].

D erivation of the Transition M atrix Ph

The transition probability matrices denoted by P  between consecutive observation 

points can be computed from one-slot transition m atrices S, Q , F , and J ,  in a similar 

m anner to [25], [45] and [68]. An example of the embedded Markov chain model is 

also found in [47].

Given th a t ih =  ™,h(i p̂h)i the probability th a t +  wm) =  i' is simply

[Q T "]w - According to the above methodology, the transition matrices are w ritten 

for 2 cases as follows:

Case 1. ih =  rrih(tP) ^ 0

[ft,].',.* =  f t r W l « ; +1>) =  =  >„}
k+i

-  £ [ <2n . '„ i '[ A .e ? '+ iA ]M

<'=«h

Here, rnv(tp) is the number of the backlogged stations at time tp, and Th +  1 

refers to the length of the successful transmission. The additional slot accounts for 

the propagation delay since the channel axis is slotted. If the transmission of the 

message is unsuccessful, then the transmission period TPh becomes Tch + 1. Actually, 

the collision recovery time, Tcp slots, is defined as the tim e elapsed from the instant 

the first colliding message starts transmission to the instant that the last colliding 

message ceases transmission.
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In all cases which contain the elements [iS'p],,lj and [«/p]i,fc, note that the maximum 

valueof j  +  1 or k +  1 in the summation is up to the to tal number of messages in th a t 

priority.

Case 2. ik =  rrih(tp) = 0

Pr{mh(t'p) = k ,m s(t'p) = ks, m d(tp) =  kd\mh( t $ )  = 0 ,m ,( t^ )  =  0 ,771^^) =  0}
M ,  M d

0(5=0 a d—0

M 5 M d k

ors=0 a d=0 <*/,=2
M d

a d=0 
M d M ,

ck̂ =:0 a s=2 
M h

+ J 2  [c(°; «*; o- m Q l d+1U A Q l d+1]o,kAQdd+1Jd]i,kd (3.13)
o /.=0 

M h M d

O h=0 a d =2

and

Pr{mh{tp) = k ,m s{tp) = ks, m d(tp) = kd\mh{ t$ )  = 0, ms(tJ,rA)) ^  0,ro«*(tJjI) #  0}
M ,

= E  j. [^ lU s )x ^ (Q h) + (i -  p&u.))xH>(Qh)]0je (3.i4)
js=ii

Md

+ E  iQdm+4+%ddd[^l(jd)y}fm(Qh) + (i -  p (sil{U))Y}Pm{Qh) ]0tJfc
jd=‘d

Here a(.), b(.), and c(.) are defined in Eqs. (3.16) -  (3.18). Therefore, removing 

the condition m 3(tpfl) — is, or m d(tp =  id by simply noting tha t, in steady state, 

the probability of this event is 7̂ ,  or ttq^, and reusing the above probabilities, we 

have
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[Ak* = Pr{mh( t ^ l)) = k\ = 0}
M ,  M s  M d M ,

= E E Z E  { H h a ^ a M Q ^ J k h A Q l ^ M Q ^ 1] ^
ats—O k ,= a ,  a d=0 kd= ad

k

a h= 2

M s  M d M d

+4<)- ( E  E  E [ i(o,i,aj)i[<3f+1w er-+1J.ii.t,[eJ-+1i.„iJ
k ,= 0  kd= ad atd=0 

M ,  M d M ,  M d

+ E  E  E  E t 6(°’a^ ad)]^ rcj+1M Q rc>+1]aj^[Q lc,+1]ad̂ )
k ,= a ,  kd= a d a , =2 a d=0 

M s  M d M h

^ ■ ( E  E  E 1 w l d + lU A Q J d+1)o ,k .[qJd+1 J d )h k d
k , = 0  kd = 0  Q h = 0 

iVfj M d M h M d

+ E  E  E  E w 0'“‘i0’QJi[«f'+1w.4<5r“+1]o,t,wJ“+1].^)(3.i5)
k 3= 0 k d= a d a h= 0 a d= 2 

M, A/,
+^!:) • E  E  [ ^ m+4].w. + (i -  ^ ( i . ) ) ^ j / )*«?&)]0,Jfe

>j=l j s = i s

M d M d

+ *ii] • E  E  ^ r +4+4].-d,i,k(ul(^)^)*(Q/l) + (i -  ^(ul(jd))y//)*(Qo]0,,
>d=l j d = * d

where a(a/,, a 3, a d), b(ah, a s, a^) and Cwm-Mh+^.fe a , ,  c^) are defined as 
follows

[a(ah,a 3,ad)} i  [Qwhm]o<ah[ Q ^  )0,a, { Q T  ]„.«< (3.16)

[6( a fc, a „  a,)] ^  [ $ r +4 +V . [ 0 r '+4]o.o,d (3.17)

[ c ( i ) . i Q f t ; a „  a ^ ) ]  =  C u ,m + ^ h + ^ , ( i h ; a / , ; a „ a ti )

= wr''"‘]o,,l[<2jj,„»jor+4+,]o.»,[«r+''+4]o.„J p.is)

and X {j 3)* , X {/ )*,Y}3)m,YJU)\  and are defined in Eqs. (3.23), (3.24), (3.32),

(3.33), and (3.64), respectively.
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Derivation of the Transition Matrix Pa

The idle period in the CVsubcycle is a function of the backlog stations at the end 

of the minimum wait tim e (wm) plus the priority access delay (Ad). Given that 

m h.(iyh +  wm) =  k, the  length of the idle period, denoted by l j f  \  is geometrically 

distributed.

The transform  I ^ * ( z )  of the probability mass function of 1 ^  is derived in 

Appendix B and is found to be expressed as

=  (3.19)
fc 1 -  d ^ z

where superscript (p) indicates the priority of the messages and is equal to (1 — 

vp) kp( 1 -  gp) Mp~ kp.

Given th a t m,h(t^  +  wm) = k , the length of the Ch-cycle denoted by Ok relies 

on the success or failure in the transmission. In case of successful transmission, 0 ^  

is equal to wm +  ljeh'> +  2 \  + 1  and has a moment generating function [17], [20] 0 ^ * ( z )  

w ritten as

(] -  d W '\z1+ w"'+T>'+1

° * w  =  — r i i i   <3-20>l - d l ’ z

Similarly, Oj/^ may be defined for the case of failure as 0 ^  =  wm + 1 ^  +  Tch 4- 1 

and its moment generating function is given by

... (1   Aty'igl+Wm+Tch + l
w  =  ■— r «   <3-21)l - d \ ’ z

Let us define qh-i,j as the length of the CVsubcycle, given that rrih(tj^) = i and 

m fc(ij,rfc+1)) =  j .  Therefore, qh-i,j becomes where fj^, tph’1'1 are two consec

utive embedded points. Let denote the generating function of the probability

mass function of qh-,i,j- This generating function can be expressed as

"  h  irn k j 0 t  ( z H h  i t s ;  ‘  w
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k=i 1 ~ ak z

b  ®
Let us define Lnh =  TpJ+1* — t p to be 0,  conditioned on m/,(ip) =  nh. Here 0  is 

the num ber of tim e slots it takes for the process mh(tPh) to reach sta te  0, starting in 

state  rih, and t p denotes the time of the first EOP, following Tp3\  If nh = 0, then 

L0 =  0 w ith probability 1. Given th a t m,h(tp) — rih and L nh =  0,  the transition 

m atrix of M a(t) over the entire sequence of (7/,-subcycles is simply Q f. If we remove 

the condition on 0,  this becomes L*h(Qs). By the recursive Markov chains, (see 

Appendix A) the generating function Lnh{z ) for L nh can be given by

E (3.23)
j=nh- 1

Note th a t for =  0, Lq =  1. All messages of high priority in a C3 subcycle will 

accumulate at the end of the (7,-subcycle. So, the higher message initiates the new 

sequence of consecutive CVsubcycles until there is no message.

Given th a t m 3(tpJ +  wm +  4) =  k, the length of the C3-cycle denoted by X ^  

is equal to wm +  4 +  I ^  +  T3 +  1 in case of successful transmission. Its moment 

generating function X ^ m(z) is given by

-----------  (3-24)
l - d \ ’z

Where 1 ^  has the same distribution as 1 ^  with param eter d^  =  (1 — v3)k,(l  — 

gajM,-k, Similarly, in case of failure, the moment generating function X ^ ’ (z) of the

Xj/^  may be w ritten as

... (] _  J 3))z l+wm+4+Tc,+l
r(/)v„\ _  11 °k )z____________
k {z) =  — 7 T p : -----------  (3,25)

Let us define a transient moment generating function X lm(z) during I slots over
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the Standard priority as

. (1 - 4 * V  n „f x
w "  i  (3 ' 26)

If we assume the length of the C,-subcycle is x  slots, the probability tha t

m h(tp) =  can be expressed as [<3£]o,nh-

Transition probabilities between tpJ  and t' are w ritten in 2 cases:

C ase  1. m 3(tp) =  i3 ^  0

=  i.}
J+l - Mu ,

=  (3.27)
k=i nh=0

j  p M h  -

+ I e  ]w

Removing the condition on x  from [QS]o,nhJ the probability is given by [^fc^*(62/i)]o, 

in case of success, and [X\.P * (Q h.)\o,nh in case of failure. Therefore,

[■p*]i.d =  -Pr{ro,(<£+1)) =  =  *,}
■7+1 p Mi, _

=  <3 -28>
k , = i ,  n h =  0

2 r Mh i

k , = i ,  nh=Q

Case 2. i 3 = m 3( tp) =  0
Transition probabilities between tp? and t p may be written as

Pr {mh(tp) =  k h, m 3(tp) = k3, m d(t'p) = kd\m h( t f f )  = 0, m , ( t f f )  =  0, m d( t $ )  = 0}

~  Pr\ps + Pr\pa +  Pr\pa (3.29)
where

PT\ps =  P? { m h(tp) =  k h, m 3{t'p) =  k 3, m d(tp) =  k d\mh( t f f )  = 0 , m 3( t $ )  = 0 , m d(tj,rJ )  = 0 } 
M ,

~  X j X j [a^ ’asi a d)][Qhf'+ ^h\\,kh[Q^hJrl]a„k,[Q d 'Jr la.j.i-H (3.30)
<*5=0 ad= 0

M ,  M ,  M d

+ E  E  E  (“(“*■
<*h=2 <*a=0 <*d=0



44

P^p3 =  P ? {m h(tp) =  k h, m 3(t'p) = k„  m d(tp) = kd\m h( t $ )  =  0, m ,^ * )  =  0, =  0}
Md

= Y . [6(0,l,arf)][Of+1]o.fch[gr ,+V .]1,fc. [ g f +1]a<lljfe(l (3.31)
atd=0

M ,  M d

a s=2 ctd=0

P r\pa =  p r {"»fc(*p) =  *fc. " * » ( ^ )  =  "»«/(*(,) =  *dl "» * (*$?) =  ° » m *( t p »)  =  0 , rnd{ t $ )  =  0}
M h

= Y  [c(0;a/l;0,l)][Q p+1]ah,Ah[gp -t-1]o,i,[(9jd+1J(i]iî  (3.32)
orh=0

Mh Md
+ E Ew°i“«0’“̂ wf-+1i»»ABJ','+,io.i.t«3'-+1UA,)

ah=Oord=2

Pr|p3 =  p r {n»,(4 <+1)) = j«l™fc(<S}) = 0, m a( t $ )  = 0, m d( t $ )  = id #  0}

Md
= E  +  (1 -  ^ £ ( i r f ) )3 i /)’ (0 .) ]0j -i(3.33)

Jd=»d

Here, a ( a h ,a 3,ad ), b(oth,cc3, a d) and c(z^; a/,; a s, a d) are defined by Eqs. (3.16), 

(3.17) and (3.18), respectively.

Removing the condition m d(tp̂ ) = id by simply noting th a t, in steady state, the 

probability of this event is tt̂ , we get

[P.Joj = Rr{m3(i(;+1)) = ;|ms(t(;)) = 0}
M d

= E  Pr{mh(ip) = 0, m3(tp) = j, md(t'p) = kd
kd= 0

=  O . m * ^ )  =  °’md(tpl) =  ° }
M h j  M d

+ E  E  E  P?{mh{tp) = kh,m3(t'p) = k3,md(tp) = kd
kn= 1 kg=0 kd=  0

I m ^ )  = 0 ,m .(#> ) = 0, md(t^J) = 0}[XJh(O,)]fcj-
M d

+ Y  Pr{mh{t'p) = 0,ro4( )̂ = j ,m d(t'p) = &d 
i d = 0

|mfc(£>) = 0, m . ( $ )  = 0,**(<£>) = 0}
Wh j  M d

+ E  E E  r̂6{mfc(*p) = kh,ms{t'p) = k3,md{t'p) = &d
i.*h =  l A:3z=0 Ar^=0
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Inn i t Q )  = 0,771,(4;)) = 0,m d(4 ;)) =  0}[Xfch(Q,)]ik„j 
M d

+ 7rod) ’ ( E  Pr i m h(tp) = °> m*(4 ) = h  m d(tp) = kd
kd=ad

I m h ( t$ )  = 0,771,(4;)) = o,777d(4;)) =  0}
M h j  M d

+ J  2  E  r̂CW 4 ) =  kh, m 3(t'p) = ks, m d(t'v) = kd
£h= l k ,= Q  k d= 0

l " » f c ( 4 - ) )  =  ° ’ ^ ^ p a )  =  °>  m d{  4 ^ )  =  ° } )  ( 3 ' 3 4 )

M d

• E  pr{m,(4;+1)) = j
« ' d = 1

|n»fc(4;>) = 0,771,(4;)) = 0,m(i(<{;)) = id}

where id i=- 0 .

Derivation of the Transition M atrix P d

The Transition m atrix [ P d\ i d ,i is a function of Cj-subcycle immediately following tpJ,  

and a succession of C^-subcycles for as long as rrih(tp) 0 and C3-subcycles for as

long as 777, ( 4 ) 0. Let us first define qnh,jh,n, ,j .  as the length of the combination of

Ch and C3-subcycles, given tha t 777^(4^) =  77/,, 777>l(4/,+1)) =  jh,  777,(4^) =  n 3 and 

777,(4ra+1)) =  j s • Therefore qnhj h;na,j} becomes the combination of (4/i+^  — 4 a )  a n (^ 

(4s+1) ~ t p s  ), where t $ ,  4*+1* are two consecutive embedded points. Let qnh,jhin „ j t ( z ) 

denote the generating function of the probability mass function of qnh,jh-,n„ j ,■ This 

generating function can be expressed as

if 77/, 0

^nh,jh-,n3,j3 ( z ) =

=  y  y  [ g r i . . f a [ g y l n . . t . 1 ^ 0 f ' ' + 1 A h w , [ 0 r >+1k . . i .  

t S i f c S .  W w ,[y .)» .j .
(1 -  d £ ) z 1+Wm+Th+1 

1 - d hkz

+ y  y
u ~ ,  [P < i]ljh [P » ]n ,j,
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(1 _  dh^z l+Wm+Tch + \

1 - d hk Z

(3.35)

if n/i =  0 
*

tjh»Haijs

Let L nhin, =  ^ +1) ~  =  u > conditioned on rrih(tp) =  and m,(fp) =  ra,. Here

u is the time in slots th a t it takes for the processes mh(tph) and m 3(tpa) to reach state 

0, starting in state  nh and n ,, at the end of the transmission. The tim e of the instant 

t'p denotes the tim e of the first EOP, following TprJ .  Let, Ljhti, =  0 with probability 1 

for jh =  j 3 =  0. Given tha t ) =  n/,, m 3(tp) =  n 3 and Lnhtns = u , the transition

m atrix  of Md(t) over the entire sequence of Ch and C3 -subcycles is simply Q%. If we 

remove the condition on u, this becomes L* (Qd). By the recursive Markov chains, 

the generating function L Mnh<ns(Qd) for Lnh>n, can be computed by

^ n h,n , ( z )
Mh M,

=  X/ {Pk')nh<jh[P3}n.,js(lnh,jh-,n„j.(2 ) L j h' j , ( z ) (3.37)
J h = n h - 1  H = n ,- l

Note that [Pk}nh,jh =  0 for j h < n k -  1, [Pa\nmj 3 =  0 for j 3 < n s -  1, and L]htit(z) = 1 

for j h =  0 and /o r j 3 =  0, respectively. Since L q0(z ) =  1, we get Ll  0(Qd) =  Q°d =  Id- 

Expression (4.28) can be computed numerically using successive iterations given the 

initial distributions since it results in M s equations with M s unknowns.

(*)

W o a IpJ i j .
(1 -  dak)z1+Wm+Th+1

1 -d%z  

(1 -  di)z1+Wm+Th+l
  T — Ts----------  3.361 — diz
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All messages of higher priority in a Cd subcycle will accumulate at the end of the 

Cj-subcycle. So, the higher messages will initiate a new sequence of consecutive Ch. 

and C3-subcycles until no more remain. During all Ch and C'5-subcycles, new message 

arrivals of Deferred priority become backlogged.

Given th a t r r i d ( t +  wm +  8) and the transmission period TPd , the length of the 

Cd-cycle denoted by Yk is equal to wm -I- 8 + 1 ^  + T P d -f 1. Here, TPd indicates Td+1  

in case of success and Tcd +  1 in case of failure. The moment generating function 

Y ^ * ( z )  of the Yk with successful transmission can be expressed as

, . M — d(‘d))zWm+T*+1°
n W’M  =  1 T T S   (3-38)

1 ~  H  2

Similarly, Y ^  can be defined for the case of failure as Y ^  — wm + 1 ^  + T cd + 1 and 

its moment generating function is w ritten by

M _  d(d)\z wm+Tcd+io

w  =  -— r h s >---------  (3-39>l - d l ’z

Let us denote a transient moment generating function during / slots over the 

Deferred priority as Y l*(z) so th a t we have

( i  -  < # y
A3
l k

If we assume the length of the Cd-subcycle is y slots, the transition probabilities 

m h(t'p) =  n h and m 3(t'p) = n s over the y slots become [Qfc]o,nh and [Qyh]0,„h.

Case 1. id ^  0

The (id, l)th element of m atrix  Pd can be written as

r  Mh m ,

Y t i * )  =  ------- 7 T -  (3-40)
1 -  d[a)z K '

[PdhdJ =  ^ 2 [ Q 7 m+Ah+A% ^ [ t ^  I l l Q l h n h m o , n , S d Q T/ +1JdQz\kdtl
kd=id nh= 0n3=0

I r Mh M,
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Removing the condition on y from [Q]]o,nh and [Qjjo.n,, the probabilities are 

K (j’)*(<5 /i)]o,nll and [5/fcd3)*(<53)]0,„J in case of success, and [ Y ^ *  {Q h)]o,nh and [Y^d )m(Qa) ]0l„, 

in case of failure. Therefore, the (id, l)th  element of m atrix  [Pj] for id ^  0 is given by

I+l . Mh M.

k^=id nh=0n,=0
(3.42)

Mh Ma -

+ E E • F‘Qi"+1k >, ».(<?4)J w
n / ,= 0  n , = 0

Case 2. id =  m d ( tp) =  0

Transition probabilities between tp ]  and t p are w ritten as

P r { m h(t'p) =  n h, m 3(t'p) = n3,md( t 'p) =  n d\mh( t^ ])  =  0, =  0, m d(t£J) = 0}

= f t U  +  ft**  +  f t l*  (3-43)

Here, P ^ pd , P ^ pd and P ^ pd are similar to the expressions provided in Eqs. (4.30) 

to (4.32) except tha t in the expression for t^],  instead of &/,, k3 and kd, the param eters 

rih, n 3 and rid are used, respectively.

Similarly, the (0, /) element of m atrix [Pd]  for id =  0 is found to be given by the 

lengthy expression

[ f t  ]o,l =  P r  W & +1’) =  'K ( < £ f )  =  0}
= P “{m^(tp) = 0,m a(i(,) = 0 , m d(t'p) = I

\ m h( t $ )  =  0 , m s(t(prJ )  =  0 , m d ( t (prJ )  =  0}
l

+ X Fr { m h(tp) = l,rns(tp) = 0,md(tp) = nd
ni=ad

= 0,ms(4ra}) = 0, m d( t $ )  = 0 } [ L ’nh=Un3=Q(Qd) \n d,i
I

+ X Pr i m h(tp) =  0,m4(i') = l ,md{ t 'p) = nd
n d=oid

\ m h( t {; ] )  =  0 , m 3(tj,rJ )  =  0 =  0 } [£ Z hSsO,n .= i(Q d )1 n ,,,/
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M h M ,  I

+ E  E  E  pr { m h(tp) = nh, m 3(t'p) = ns, m d(tp) =  77,
n / , = l  n s = l  n d = a d

=  0  , 7 7 7 , ( 4 ? )  =  0 , 7 7 7 , ( 4 ? )  =

+ i ,r6 { m ^ ( f p )  =  0 ,  7 7 7 , ( 4 )  =  0 ,  7 7 7 , ( 4 )  =  /

\ ^ h  ( 4 ^ )  =  0 , 7 7 7 , ( 4 ? )  =  0 , 7 7 7 , ( 4 ? )  =  0 }

I

+ ] T  P*{mh(t'p) = l , m 3(t,p) = Q,md(t,p) = nd
n d= a d

|mfc(ij;)) = o,m 3(4,;>) =  0,777,(4?) = 0}[z ;h=ltn<3!O(g ,) ]ndl/
i

+ ^ 2  Pr{m h^p)  =  0, 777,(4) = X> m<i(4) =  Ud
nd=ofd

I ™ , ( 4 ? )  =  0 , 7 7 7 , ( 4 ? )  =  0 , 7 7 7 , ( 4 ? )  =  ^ } [ L n h= 0 , n , = \ { Q  d)]nd ,l

M h M ,  I

+ E  E  E  -Pr{7T7h(4) =  n h,TTl3(tp) = 77„ 777,(4) =  nd
n j , = l  n a = l  n d = a d

| r w i k ( 4 ? )  =  0 , 7 7 7 , ( 4 ? )  =  0 , 7 7 7 , ( 4 ? )  =  0 } [ L * h ,n , ( Q d ) ] n d,l 

+  P?{mh(tp) =  0 , 7 7 7 , ( 4 )  =  0 , 7 7 7 , ( 4 )  =  I

|777,(4?) = 0, 777,(4?) = °» m d ( &  = 0} (3-44)
I

+ ^ W ( * p )  = i ,m ,(4 )  = 0,777,(4) =  77,
n d= a d

1777,(4 ? )  = 0 ,m .(4 ? ) = 0,777,(4?) = 0}[L:h=hns=o(Qd)]nd,t
I

+  ^ 2  P r { m h { t p )  =  0 , 7 7 7 , ( 4 )  =  i ,  7 7 7 , ( 4 )  =  71 d
n d = a d

l " » f c ( 4 ? )  =  0 ,  7 7 7 , ( 4 ? )  =  0 ,  m rf( 4 * ) )  =  0 } [ ^ n h = O , n 5= l ( Q d ) ] n d ,/

M h M ,  I

+ E  E  E  PrC{777,(4) = 77,, 777,(4) =  77,, 777,(4) = Ud
nh=l n ,  =  1 n d= a d

1 ^ ( 4 ? )  =  0 , 7 7 7 , ( 4 ? )  =  0 , 7 7 7 , ( 4 ? )  =  0  } [ L l h ,n , i Q d ) \ nd ,l

3.2.3 E xpected  Length o f C ycles and Backlogs o f each Pri
ority

E x p e c te d  L e n g th  o f a  C ,-C y c le

The methods of finding the expected length of cycles and backlogs of each priority are 

similar to those employed in [59]. Tim e axis slotting and Markov chain analysis are
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used to determ ine the channel backlog in a cycle. A cycle includes the minimum wait 

time, priority channel access delay and the transmission tim e between two consecutive 

embedded points.

C a s e  1 .  m h( t =  4 ^ 0

= E  +  I a h +  P&{<*h)(Th + 1) ( 3 . 4 5 )

+ ( l - P sW (aO  )(TC,  + 1)]

C a s e  2 .  m f c ( i J j J )  =  i k =  0

E  [ # + x> -  = ih. = 0] = wm + a(0,0 ,0)7o
M ,  M d  Mt, M ,  M d

+  E  E  [a ( l ,a s,ad)]7 \ +  E  E  E  [a(afc,a„arf)]rcA
as=0ad—0 a^=2 a3—0 ad=0

M d M ,  M d

+ E  +  e  E w ° ’a « a -)]T«
ar<j=0 ot 3 = 2

M h M h M 4

+ E W 0;a,*;0>1)]?’<i+ E  E  [c(° ;a />; ° ,<xd)]TCd

+ E ^ r n ^ k +4+ +  p£cti)(Ts  +1) ( 3 . 4 6 )

+  ( l  - P & U )  ) ( T „  +  1 ) ]

+  E [ Q r + 8 ] . - , / [ « ' m  +  4  +  4  +  +  pW (l ) (T d +  1 ) ( 3 . 4 7 )

+ )cr„ , +  i)]

Here, / 0 is given by

1 -  (1 -  gh)Mh{ 1 -  gs)M’{ 1 -  gd)Mi (3.48)

where a(a*, a s, a j)  was given in Eq. (4.16).
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E x p e c te d  S u m  o f H ig h  P r io r i ty  B ack lo g s  o v e r a  C ^-C ycle

The expected sum of the backlog over the cycle is provided for 2 cases, given that 

ih 7̂  0 and ih = 0, respectively.

C ase  1. m h(tQ)  =  i h ^  0

,(r+i)-1 lPh
E [ E  m h ^  Im h ^ p h )  =  i h  # °] =

t=t ph

— [ ( A  +  Q h  +  Q h  + ------- 1- Q h ) B h ] i h
M h

+ E
ĥ=>h
M h j.

+ E  N 7* 4-<4 4-<3* 4-• • • 4- Q lh)Bh
kh=ih

+ F h ( I h  +  Q h  +  Q h  +  h Q h ch) B > i \ kh (3.49)

where

Ikh l -  (l -  vh)k*(i -  gh)Mh~kh (3'50)

and Hh is the column vector made up of the index values of the messages, i.e., its

transpose is Hj[ = (0 ,1,2 , • • • Mh).

C ase  2 . =  4  =  0

, ( r+ l)- l

E  L E  =  ih = °] =
ph

= [(4  + Qh 4- Qh + • • • 4- Ql)Hh] o
M , M d

+ E  E  a^ ’ as’ a <*)[(4 + Qh +  Qa +  1- Qhh)Bh] l
ot a—0 oj=0
A*,, AT, Afd

+  E  E  E  a(a/l> a 4 [ ( 4  +  Qh +  Q\  +  1- QhCh)Hh\ah
ah=2 Of j —0 ard=0

M d

4* E  a ^)[(4 4- Qh 4- Q/i 4- • • • 4- Q'fr1')Hh]o
ard=0
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M , M d

+  E  E  6 ( 0 , a s , a d ) [ ( / / i  +  Q h  +  Q \  +  • • • +  Q ^ ch)H h ] o
a ,= 2 a d=0 

M h

+ E  c(0; a^,  0, l)[(//i +  Qh 4- Qh +  f- Q%h)Hh]o
a h = o  

M h M d

+  ^ E  [ c ( 0 ;  ah', 0 ,  o y ) ] [ ( i ) »  +  Qh +  Qh +  •  • '  +  QhcH)S[h]o ( 3 . 5 1 )
a h =Oad=2
M s M ,  12+ T ,

t ,= l  k = i ,  1=1

M ,  M ,  124-Tcj

+ E E K m+4b (1-^W)[fc+ E X l ( Q h) H h)L
«', =  1 j =«5 1=1

M d M d 16+ T d

+ E E ^ r+8].--.*̂ (*)[(/.+ E y*w*)̂ )]o
ij—i fc— /"i 
M d  M d  1 6+Tcj

+ E Ew”"+8]iJ,i(i--f'2(*))[(-f.+ E n'(Q*)j*)]o
«d=l &=»d 1=1

E xpected  Length of a C^-Cycle

In a m anner analogous to that of the high priority method, the expected length of 

the standard priority’s cycle can be found in two cases as follows:

Case 1. i s ^  0

e  \ <«ri l - < £ w & ,) = <. * o i
M, f

ks~ia

(  Mh
+ P ^ c(ks)[T s  +  l +  E ^ ^ ^ k n ^ n J  (3.52)

nh = 0

Mh — 1
+ (l -  P^c(ks))(Tc3 + 1 + E  l 4 ? m(Qh)]o,nhLnh)}-

nh=0

Case 2. is =  0

E  ( 47“ ’ - ‘S W # )  = *'. = 0!
= wm +  4 +  6(0, 0, 0)/o
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M h M ,  M d

k h = 0  a 3= 0 a d= 0  

k M ,  M d

ah=2 orj=0 or3=0
Afd _

+ ^ [ 6(0, l , a d)][g ^ +1]o)fch( r 3 + ZfcJ
Ofd=0
A/, Md

+ e  E[6(°’a-̂ )]̂ rcj+i]o,̂ m3+ifcj
a , = 2  a d=Q

M h _
+  £  [c(0;afc;0 ,l)][g J ’-+1]afclfch(r fc +  ZfcJ  (3.53)

ah=0
Mh Md _

+ E Eic(0;Q̂0’̂ ^ fd+1U ( r̂ £o}
aj,=0 ̂ =2  
Md

+ E ra“m+4+4],W„h» + 4 + 4 + + 1)
id-id

+(1  -  P^U d)){Tcd + 1)] 

where b(ah,as,ad)  was defined in Eq. (3.17).

E xpected  Sum of Standard Priority Backlogs over a C , - C y c l e

The expected sum of the backlog over the cycle can be found in a m anner analogous 

to th a t of high priority m ethod, and it is provided for 2 cases, when it is given tha t 

is ^  0 or th a t i3 =  0, respectively.

C ase  1 . m 3(tp j ) =  is ^  0

.(r+ U -lcp«
E l E TOsw = *» t4 °] =

t=*y
=  [ { l s  +  Q 3 +  Q l  +  - - -  +  Q T + z ) H 3]i,

Ms
+ E wr-+4kik.*./fc

ks—i$
M s  r

+ E wr,+4].-..*. [ S ' V ' + Q* + Q l + • ■ ■ + Q T, ‘+ l ) B '
kj=i9
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+FS(I3 + +  Q, + • — h Q^c‘+1)Hs (3.54)
12+ T ,  M h

+ S . Q ? +1( l . +  E  Y . \ . X t{Qh)]o,nhL l h{Qs) ) H ,
i = l  n h = 0

12+ T „  M h ,

+f , q ? +i ( i 3 + £  E i - Y£ w * )]o .» ^n fc( o - ) ) ^ J fei
(= 1  n h = 0

C ase 2 . m s(tp j ) = i3 = 0

t ( r + l ) - l

E[ ‘̂ 2  m 3(t) |m,(*J?) = is = o] =

=  [(i3 +Q3 + g^ +  --- +  Q rm+3W o
M ,  M d M h

+ E E a(l, <*., «*)[(/.+ E
 rt   ri  n0*3 = 0  ctd=0 n / ,= 0

M„

+ •••+ EWfck̂]l,ah<??b̂(<3-))-ff.Jo
n /,= 0

Mh M , M d M h

+ E E E a(â ,a3,ad)[(/3 +
a h=2 a 3=0 c»d=0 n/,=Qh

M.
+•••+ E Mb'U .^ ^ n.))*.],,

nh=°>h

M d M h

+ £  6( o , i ,ad) [ ( /s + E ^ i W h Q X ^ ^ )
£*d=0 n / ,= 0

+• • • + E w»,+1!o.»»o2',+1i;.«3.))
Tlh=0

M , M d Mh

0,nhQ s ^ n h  ( Q s )
a , = 2 otd=0 nh= 0

Mh

+ • • • + E [or“+I]o.».«J“+'i;.(c.))ff.]„.
n h=0

Mh Mh
+ 2 > ( 0;a * ;0, i ) ] [ ( / ,+  E )[« i]o ,nhQ jx ;h(QJ)

ath=0 nh=0
Mh

+• •• + E i«r'‘+1)».n.<?f''+li;.(e-))̂ ]o
nh=0

Mh Md Mh

+ E  X > ( o ; a * ; ° ,  « .< )][(/.+  E ^ ° - » ^ x "h(G*)
ah=0ad—2 nh= 0
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Mh \ t
+  • " +  E W f * l+1]o."fĉ e,,+lx«fcW - ) ) XrJ 0 (3-55)

nh=0
M d M d 16+rd

+EEw””+s].w-pSu)[h.+ E ŵ*))JJo
»'d=i j=>d /=i
M d M d 16+Tcd

+ E E [ c +8y i - ^ ! ( i ) ) [ ( u  E  Yj(Q. j )H .]0
«d=i i=«d /=i

Expected Length of a C d - C y cle 

Case 1. id ^  0

E  { 4 t , ) - 4 W © = i ^ 0 ]  =
M d ,

= E  W m+4+4] . ^  { «»m +  4 + 4 + /fc.
fcs=»d

/ Mfo Ms v
+  + 1 +  £  K (;>-(e*)]o,«l  E  J

rih = 0  n 3= 0
/  Mf, Ms v -v

+(1  -  p « H h ) ) { T *  +  1 + 2  E  j |
r»h=0 n,=0

(3.56)

Case 2. id =  m d{tj,rJ) = 0

E  I 4 +11- 4 W © ^  = «] =
= wm +  4 + 4 +

-^[Cwn+Ah+A. (0; 0; 0,0 )]/0 
M h  M s y- M s  M d

+ E  E  {  E  E w i ' a -’a '<)iw f,+,'/‘ i>-»»w?,,+1]«.,».(r* +  r» „„ .)
7 ih = 0 n s = 0  a3=0ad=0

k  M s  M d

+ E  E  '$2[a(°‘h ,a a,ad)}[Qlc,'+1 ]“h,nh [Q^h+Xs.ns(Tcll + L
0*̂ =2 aj=0 or̂ =0

M d

+ Y ,  mh<Xd)}{Ql’+Xnh[Q*3+1Js]l,n.(T3 + Lnh>n,)
ad=0

M ,  M d

+ E  E f 6(0’a - a 4)][Qr“ +1]o.nh[gr“ +1k .n s(TC3 + I nh,nj)
ar3= 2 ard= 0

+  Ys k o ; ^ ; o . i ) ] [ Q ? +1k . n h [ ^ d+1]o,ns( ^  +  l nh,ns) (3.57)
£»)i=0
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M \, M d  ..

+ 2 3  2 3  ah' a d)iQ h°d+ ]“h.»»h[̂ red+1]o,n, (Tc<i + Z’nh,n<) J
ah=0 ctd=2

where

e(0;a*;0,l) = [<3r+1o.oW t]o.«W r+4+4]o,oW r+'l+4]o,, 

c(0 ; a k:0,o j )  = [ Q r +4]o .o M ]o ,« JO r+4+4]o.o[<3r+4+4]o<.J

E xpected  Sum of Deferred Priority Backlogs over a Cd-Cycle 

Case 1. m d( t $ )  =  i d ^  0

(pd

E [ 2 3  = id ±  o]
H I

= [(/«* + 0 rf +  G2 + - "  + G r +r)JU \,
M d

+ E
kd=*d

M d  r

+ E  lQdm+4+% , k d [$<(/«< +  Qd +  Ql  +  --- +  Q ? ) H d h
kd=id

+  [Fd(Id + Qd + Qd +   ̂Q'd^Hdjid
.  16+ T d M h

+ s JQ ^ ' { i i +  E E Pt(«»)]o«
/= 1  n h = 0  

M, v

n s = 0
y 16+TC(i Mh

+ f ' i Q f d+l{ i * +  E E in'‘(e*)]o.».
/=1 n/i=0

•Efyfi(o.)]o...i;,.».(Oi))̂ ]l■*d n,=  0

.c+o-i
E=V> m dtt)\m d(t[p l )  = irf = o]

pd

(3.58)

(3.59)

(3.60)
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[{Id  +  Q d  +  Q d  +  ■ • • +  Q d m + 7 ) H d ]  0

M ,  M d  M h  M ,

+  2  L  a(i> ^s, ctd h U  +  E  wiA)*,™  E
a , = 0  O |j= 0  rih= 0  n , —a ,

M h  M ,

+  • ■ • +  E W ? A ] i . „ h E  [ Q Ts hH . Q Ta h K h,n , { Q s ) ) H a]Q 
n .|,= 0  n s= o rs

M h M ,  M d M h M s

+ E E Z  <*(«*,«., <*)[(/,+ E  E  [Q%s^QldKh,n.{Q3)
a h = 2  o r j= 0  a/d=0 n h = 0!h n , = a ,

M h M s

+ • • • +  E  [««*)»».". E  [ o f ) . . ,» .o J '* i ^ ( o . ) ) f f . ] 0
n h = o‘h n ,= o t ,

M d M h  M ,

+ E  *(o,i, <*.*)[(/,+ E  W Uw E  {Q\J>HQdL«h,nSQ>)
ad—0 n ; ,= 0  n , = o t,

M h  M s

+ • ' • +  E ^ ^ ] 0,nh E  [ Q ^ n , Q ^ n n3{Qs))H3\0
rih = 0  n , = a s

M s M d  M h  M s

+ E  E  w , « „ a d)[( ia + e ^ a W ,  E
a s= 2 a t(= 0  ^(>=0 n , = a ,

M h  M s

+ • • • + E  [Qha h.nk E  [QT*cn n,Q Ts"L'nh,n,{Qs))H3J0 (3.61)
n h = 0  n , = a ,

M h r  M h M s  -I

+ E  c(0;a /,;0,
a h = 0  n^otfx n 5—0

iW/» iWj -j

nh =a hn ,= Q
M h M h  r  M/, M ,  •.

+ E  E  c(0; ^ , o , «<)[(.id +  E
<*h=0ad=2 n h = a h n s=  0

M h M ,  -j

E  E  io k“|] . . . » , [ o f " k . . o ^ ^ . . . ( o ^ j j . J ,iad 
nh=ah n,=  0

3.2.4 T hroughput and D elay Perform ance

Given the network model which is a priority channel assigned multiple access and 

priority reservation at embedded points (at the end of EOP) scheme, the quantities



58

of the ergodic Markov chain [17], [18] can be determined from

OO

1 = ]C *3
j=o

and

W”  = E ^ f t  I*  (3-62)
i = °

If we denote the steady state  probability distribution of m p{tp) at the embedded points 

as n  =  [7r0,7Ti, • • •, 7rjifp], n  can be evaluated by the recursive method of n  =  I I P .  

Here n  is an (M p +  l)-dimensional row vector, and m atrix  P  is an (M p + 1) x (M p + 1) 

m atrix, where each of its elements is also an (M p +  1) x (Mp +  1) m atrix  for each 

priority. Let P w ( i )  denote the probability of a successful transmission during a 

Cp-cycle in a given m p(tp =  i.

M, Md
-pi‘ >(o) =  E  >* =  o (3.63)

aa=0 Qd—0
Md

p £ (  0) = E W ”m+4]o.o(<3”” +4I o , .K r +'‘]o^ i, =  0 (3.64)
ad=0 
Mh

PH\0)  =  E [<3 r +V [ « ] o .» ,W r +8lo,o[07” +8]o.i h  =  o C3.6S)
ah=0
Mh

P^(ik)  =  E W r u . d 2 ( * » )  (3.66)
ĥ=*h
M,

p £ ( i . )  =  > . / 0  (3.67)
k$= is

Md
p i ? M  = i d ^ °  (3.68)

k d= i d

Here Psu(k)  is the probability of a successful transmission in a cycle given that 

m p(tp) = k. It is expressed as

i  -
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Since m p(tp) is a regenerative process, the average steady sta te  channel through

put Sp and the average channel backlog N p of each priority, as noted in [59], are given

by

_ E t W M  e ;:'[m " ‘ ’» r ( 0 K ( 4 ' )) =  >•]

N "  ~  -  4 r , K ( 4 " )  = ; ]  (3 ' n )

Let S denote the ratio of the average tim e tha t the channel is carrying Cp-

successful-transmissions over the Cp-cycle to the average length of th a t period. N  is

the average ratio of the sum of backlogs over all slots in a priority Cp-cycle to the 

length in slots of th a t period. Therefore to tal average steady s ta te  channel throughput 

S and average channel backlog N  of the 3 priorities are given by

S  = S h + S 3 + Sd (3.72)

N  =  N h + N s +  N d (3.73)

By L ittle’s result [75], the average delay of each priority (normalized with respect 

to packet length Tp) is simply

N
= <3-74)J p

3.3 N um erical A nalysis and D iscussion

In this section, numerical analysis for priority contention resolution in priority chan

nel assigned multiple access is provided. Moreover, a comparison of performance of
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throughput and delay is shown for both theoretical analyses and simulation experi

ments.

It is difficult to evaluate the effect tha t several param eters have simultaneously 

on a system ’s performance. Let us assume that the num ber of stations for each 

priority is 5, thus making the to ta l num ber of stations equal to 15. In this chapter, 

we focus on numerical results pertaining to the priority function and the effect of 

various system param eters on its performance. The packet lengths for all priorities 

are equal to each other, i.e., Tk =  Ta — Td — T.  The values employed for the packet 

length are either 50, 200, 300, 500, or 1,000 bits. The value of up for the persistent 

protocol is chosen as 0.25 to represent a random start tim e between 0 and 3 (use of 

one out of a to tal of 4 tim e slots). The values of 0.125 and 0.5 were utilized as well in 

order to study the sensitivity of packet throughput and delay to vv. Tcp is assumed 

to be 2 bits, and it denotes the collision detection tim e required.

The channel access scheme proposed incorporates a priority mechanism with a 

different time assignment according to each priority and a P-persistent procedure 

with param eter up for each priority.

Any possible limitations on some aspects of the model, in theoretical analysis, 

such as the random start delay within 4 bits, contention resolution during the pream 

ble field of 8 bits, and the queueing state of each node are handled by simulation 

experiments. For consistent comparisons, it is assumed for both the numerical analy

sis and simulation experiments to take 1 slot (UST) to transm it 1 bit length. Actual 

values may be calculated by multiplying 1.5 times the results of the values. It is found 

tha t the simulation experiments verify the results obtained in the m athem atical model 

closely, which further validates the simulation model itself.

The sim ulator employed for system and protocol modeling in these experiments 

was w ritten in C language using the C-Library functions provided by LANSF [83]. 

The network configuration is specified in a data file which is interpreted by the simu-
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Table 3.1: Example of Param eters and Numerical Values

Tp
bits

Ap
Packet/sec

Am 
Packet/sec

G
(Norm.)

3r
(Norm.)

Delay (Analysis) Delay(Simulation)
HI ST DE HI ST DE

200 16.67 50 1.0 0.00033 347 1740 11500 330 640 7700
200 50 150 3.0 0.001 930 800K oo 800 120K 00

indicates “normalized” .

lation facility. The programming interface to LANSF is UNIX/C. For the numerical 

analysis, the m athem atical development was w ritten in C and the program ran in the 

UNIX system.

The channel through-put calculated in the sim ulation is measured as the ratio 

of the total number of information bits successfully transm itted  through the link to 

the simulation time. The average packet delay D  in the theoretical analysis as well 

as the simulation experiments is defined as the average tim e incurred from when a 

packet is ready to be transm itted until it is successfully received. Delay D  of the 

theoretical analysis is denormalized to packet length T  for consistent comparison 

with simulation results. In order to investigate total or message delay which includes 

queueing delay at the buffer, two types of delay, i.e., packet and message delay are 

studied and compared by simulation. Here packet delay was measured as the time 

elapsing from the moment the packet became ready to be transm itted to the moment 

the entire packet was successfully received at its destination, and message delay was 

measured as the time elapsing from the moment the message was queued in the buffer 

at the sending node to the moment the entire message is successfully received at the 

destination including the message queueing time.

The param eter gp is the new arrival rate per user in a slot for priority p; it relates 

to total offered load G. The la tter is normalized to the channel capacity as follows:

^hTh 4* A3T,, +  AjTj
G = (3.75)

where the param eter Ap (here p denotes one of the 3 priorities) characterizes the
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Poisson distribution describing the arrival of messages. We may write

\ M = \ h +  Aa -f Ad =  3A [pkt/sec] (3.76)

where it is assumed th a t

Xh = X, = Xd = X (3.77)

It is further assumed that all packet lengths are equal, i.e., T\ =  T, = Td = T  

[bits]. Let c be the channel capacity or da ta  rate in bits/sec. From Eq. (3.75),

A = Y T  [pkt/ secl

= (pkt/slotl (3'78)

Here M v denotes the number of stations of priority p and M p = Mh =  M a == M d = 5, 

thus the total number of stations is 15. An example of numerical values is shown in 

Table 3.1.

Both numerical and simulation studies of throughput and delay have been carried 

out and the results have been plotted. Heavy as well as light loads have been used. 

Light load is defined as a network loading level in which any station ready for packet 

transmission will find the bus idle w ith a very high probability (i.e., with probability 

«1 ). Thus under very light loads, an idle station upon changing to ready can start its 

packet transmission immediately. By contrast heavy loads result in a lot of contention.

In examining the results, shown in Figs. 3.6 and 3.7, we find tha t at light 

loads the numerical results for throughput are almost identical to and just slightly 

higher than  the experimental results. The latter is due to persistent channel access 

in the theoretical model as compared to the utilization of a random start time in the 

simulation experiments.

Under heavy traffic load, the numerical analysis shows a slightly lower through

put than th a t of the simulation experiments. The reason is tha t during the priority 

channel access (PCA) of 4 USTs (tim e slots) the theoretical algorithm  (PAM A/PR)
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1.2
T h r o u g h p u t .  S

1 . 0

0.8

0.6

0 . 4

0.2

0.0

A n a l y s i s  --------------
S i m u l a t i o n ---------- 2 0 0  b i t s

Mh=Mj=Md=5
T. = T  = T .  =  5 0 ,  2 0 0  b i t s

5 0  b i t s

- 0.2
10-2 10' 10u 10'

N o r m a l i z e d  O f f e r e d  L o a d ,  G

1.2  

1 . 0  

0.8 

0.6  

0 . 4  

0.2

0.0 

- 0.2
10~2 10"' 10° 101 

N o r m a l i z e d  O f f e r e d  L o a d ,  G

T h r o u g h p u t ,  S

1 0 0 0  b i t s

T o t a l  M = 1 5  s t a t i o n s

T  = T  = T , =  5 0 0 .  1 0 0 0  b i t s

eh cd
5 0 0  b i t s

A n a l y s i s  ---------
S i m u l a t i o n  —

F ig . 3 .6  Compar
isons of Throughput 
by Numerical Analy
sis and Simulation as 
a Function of Offered 
Load when Packet 
Lengths are 50, 200 
bits, respectively.

F ig . 3 .7  Compar
isons of Throughput 
by Numerical Analy
sis and Simulation as 
a Func
tion of Offered Load 
when Packet Lengths 
are 500, 1000 bits, re
spectively.
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starts the transmission with probability P  for each priority while the simulation ex

perim ent employs random start delay among 4 USTs. In addition, while the the

oretical analysis includes m inim um  wait time for channel access of 6 slots, priority 

channel access, and persistent transmission compatible to random  start tim e, the sim

ulation experiments while incorporating all the PA M A /PR  already plus the CEBus 

contention resolution scheme during the 8 bits of the preamble field and the effect 

of queueing state (queued or unqueued) of the station. The contention, even after 

going through the priority channel access assignment and random  start transmission 

phases of the protocol unsuccessfully could still be resolved during the preamble field 

of 8 bits in the CEBus protocol, which is carried out in the simulation, but not in the 

analysis.

In Fig. 3.6 the maximum achievable throughput in the simulation is 0.6 when 

the packet length is 50 bits, whereas the theoretical analysis shows a slightly lower 

value than tha t of the simulation due to more collisions and retransmissions in the 

theory than in the simulation models under heavy traffic load. The throughput of the 

theoretical analysis, when the packet length is equal to 200 bits, achieves maximum 

value 0.83 while the simulation result is 0.87, indeed quite close. In Figs. 3.6 and Fig. 

3.7 it is shown that the maximum value of the throughput increases with packet size. 

This dependence is strong for small values of packet size as seen in the large increase 

from size 50 to 200 bits but saturates at a size of about 1,000 bits. In the study of 

throughput,

It should be noted th a t theory and experiment are in fairly close agreement. The 

difference in maximum achievable throughput in all four curves between theory and 

experiment is less than approximately 5% while analysis consistently underestim ates 

the experimental result.

Maximum achievable throughput overall was observed to be 0.95 approximately 

through the simulation. Even if we increase the packet size more, the throughput
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sis and Simulation as 
a Function of Offered 
Load when Packet 
Length is 50 bits.

F ig . 3 .9  Com
parisons of Delays 
by Numerical Analy
sis and Simulation as 
a Function of Offered 
Load when Packet 
Length is 200 bits.
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hardly increases at all. The throughput increases linearly w ith load in general until 

the offered load reaches 0.8, approximately, if the packet length is larger than 200 bits. 

As the packet length increases, the achievable maximum throughput also becomes 

larger due to the smaller num ber of channel access contention instances, for a given 

throughput resulting from the larger packet length.

Figs. 3.8 -  3.11 show the result for delay vs offered load for the 3 priorities with 

packet length values of 50, 200, 500, and 1,000 bits, respectively. Delay increases as 

the packet size becomes larger. The increase in the delay D is greater initially as 

packet length T increases. In Fig. 3.8, as soon as the offered load exceeds 0.1 the 

delay for the DEFERRED priority increases sharply, while for STANDARD priority 

rapid increases in delay occur much later and for HIGH delay increases are very small 

and occur later yet.only a little.

Overall there is good agreement between theory and experiment on the resultant 

delays for the 3 priorities. For load values G  <  0.8 the difference in results for delay 

between analysis and simulation are insignificant, less than 2%. At high values of 

normalized offered load, G >  0.8, the discrepancy is small, about 5%. Therefore, it 

may be concluded that theory and experiment are in good agreement in the results 

for delay for the 3 priorities, as seen in Figs. 3.8 - 3.11. This is combined with the 

equally good agreement found for throughput, as seen is Figs. 3.6 -3.7 if may be 

surmised th a t all the theoretical analysis and the simulation experiment results for 

the 3 priorities support each other and vouch for each o ther’s validity.

The curves of the numerical analysis manifest a somewhat larger delay than 

tha t of sim ulation experiments as the traffic load increases. This is due to the more 

frequent retransmissions in the theoretical analysis in comparison with those in the 

simulation experiments. In the la tte r the protocol is fine tuned for collision avoidance 

to a greater degree using the random  sta rt access and queueing state  of the node as 

the traffic increases.
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Fig. 3.9 also shows packet delay as a function of the offered load when the packet 

length utilized is 200 bits. When the offered load exceeds approximately 30% of the 

network capacity the delay of each priority starts to increase with different rate, and 

when the load reaches 60% of the network capacity, the DEFERRED priority delay 

increases dramatically, STANDARD increases moderately, and HIGH only slightly. 

At more than 80% of channel capacity, DEFERRED priority message transmission 

effectively cuts out due to continuous deference to higher priority.

Figs. 3.10 and 3.11 also exhibit packet delay performance with packet length 500, 

and 1,000 bits, respectively. In both figures, as the traffic load increases m athem atical 

model analyses show larger delays than those of the simulation. In light load analysis 

results of each priority displays the same or slightly smaller delays than those of 

simulation experiments. This is most likely due to the use of the persistent channel 

access scheme in analysis instead of random start delay up to 4 USTs along with an
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additional delay up to 4 USTs according to the queued state of the node, as used in 

simulation.

Throughout the Figs. 3.8 - 3.11, it was observed as the packet length becomes 

larger, th a t the delay increases initially because any priority message requires a t least 

its own transm ission time, so a larger packet needs more time. This is plotted in Fig. 

3.12 which shows delay as a function of packet size. The delay of all messages and for 

all priorities also increases with traffic load. As the packet length becomes smaller, 

and for m oderate values of traffic load, in the middle range (0.1 to 0.7), the messages 

have behaved properly in a reasonable manner, and according to their priority class.

Fig. 3.12 shows delays in slots as a function of packet size for the full load delay 

(FLD), half load delay (HLD), and zero load delay (ZLD). Here, full load is defined 

as the value of 1.0 in the offered load, i.e., the offered load is 100% of the channel 

capacity. Half load is also defined at 0.5 in the offered load, i.e., the traffic load is 

50% of channel capacity. Zero load means tha t the offered load is very light, tending 

to zero. The H, S, and D inside the parenthesis stands for HIGH, STANDARD, and
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DEFERRED priority message. The ZLD rises linearly as the packet size increases 

and the ZLD curve represents delay for all priority messages. So to speak, all of the 

message priorities have the same delays approximately under the condition of very 

low traffic loads because all priorities are able to transm it a  packet fairly. For the FLD 

(High) and FLD (Standard), the difference between the two values becomes larger as 

the packet size increases. At a half load, i.e. offered load 50% of the channel capacity, 

the range of packet sizes used all result in plausible distributions in which messages of 

any priority are able to transm it a packet. However, the messages experience different 

delays according to priority. For a packet size of 50 bits, the delay of each priority 

does not show great difference as a function of traffic loads. W hereas, at packet 

size of 1,000 bits, large differences in delay appear as the load varies. However, the 

CEBus requires as minimum packet size 96 bits which m ust be available to provide 

the source address, destination address, house address, frame check sequence, and 

some m odicum  of data.

A study has been conducted on the sensitivity of delay and throughput to the 

P -persisten t channel access param eter i/p. The results are shown in Figs. 3.13 - 3.15. 

In Figs. 3.13 - 3.15 packet delay versus offered load as well as throughput is shown 

for the proposed protocol (PA M A /PR) w ith packet length T=50, 200, and 1,000 bits.

The P-persistent channel access procedure allows ready stations to randomize 

the s ta rt of transmission following the instant at which the channel goes idle while 

using the priority scheme. Fig. 3.13 shows the packet delay as a function of offered 

traffic load for the P-persistent strategy at packet length 50 and 200 bits, respectively. 

Decreasing P  or vp in light loads leads to small increases of packet delay D. However, 

when the channel load exceeds some threshold, larger P  incurs a higher packet delay.

Also in order to study the sensitivity of packet delay to z/p, the packet delay 

versus normalized throughput for three different P-persistent values with param eter 

up is shown in Figs. 3.14 and 3.15. In heavy load, smaller values of P , i.e., vp, achieve
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slightly higher maximum channel throughput and lower delay. When the offered load 

increases further, the smaller value of P  will refrain from decreasing the throughput, 

while the larger value of P  results in higher delay due to increased collisions. As 

the value of P  in heavy loads increases, the throughput starts  to decrease after the 

achievable maximum throughput is reached. It is seen th a t, in general, the channel 

throughput and delay are fairly insensitive to changes in P  falling in the range 0.2 

-  0.7. This behavior is not surprising and in agreement to the known results of P- 

persistent P-CSMA-CD scheme on a broadcast bus with two classes of priority [24],

[59]-

In order to investigate the difference of delay tim e in the CEBus simulation 

experiments, two types, i.e., packet and message delay are plotted in Fig. 3.16.

In heavy offered load, the difference between message and packet delay is large. 

Thus if we consider the queueing delay, it is not desirable to have an offered load 

more than  2.5. Overall, considering packet and message delays for each priority we 

may require the offered load to be less than 0.7 when using a  packet size of 300 bits.

3.4 Summ ary

In this thesis a new theory for the m ulti-priority CSM A/CD protocol of the 

CEBus has been developed. The proposed PA M A /PR  (Priority Channel Assigned 

Multiple Access with Priority Reservation) protocol employs demand priority channel 

access, minimum wait time, persistent start of transm ission to redress collisions, and 

contention resolution based on priority. An exact theoretical formulation has been 

w ritten for it. It has turned out to be m athem atically complex. The resultant com

plexity has stemmed mostly from the fact packet departure times are dependent on a 

priority basis, i.e., the lower priority level is dependent on the higher priority and node 

state. In addition, the use of the attribu te  of queueing state, i.e., whether a station
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is in a unqueued or queued state, and collision resolution during the preamble field, 

make the analysis more difficult. However, the employment of the queueing sta te  of 

a station for each priority as well as contention resolution during the preamble bits 

can be accounted for easily in the simulation experiments.

The simulation results have shown a somewhat more efficient performance over 

the m athem atical model of the CEBus protocol at heavy loads. There are several 

aspects of the CEBus protocol which have not been fully and identically treated  in 

the m athem atical formulation. In particular the m athem atical formulation of the 

queueing state  mechanism along with contention resolution using an 8 bits preamble 

within each priority has been found difficult to carry out.

Through the analysis, it has been observed tha t the priority scheme has behaved 

well in handling messages for each priority. In light load the messages of all the 

priorities have remained low and bounded and have shown similar, almost identical, 

delay distributions. Even, in heavy load, the HIGH priority message delay continues 

to stay low and bounded while DEFERRED delay rises drastically and STANDARD
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shows only mild delay increases. At or slightly more than offered load of 0.5, i.e., 50% 

of channel capacity, for a wide range of of packet sizes we find reasonable distributions 

in which messages for any of the 3 priorities may be transm itted  even though each 

priority experiences quite different delay times.

Another informative experiment was to  observe delay performance by adjusting 

P  in order to vary the length of the contention period and accordingly the probability 

of a successful transmission. In heavy traffic load, smaller values of P , i.e., up, achieve 

slightly higher maximum values for channel throughput and lower delay. In further 

offered load, lower value of P  will refrain from decrease of the throughput, while higher 

value of P  results in higher delay due to collisions. As the value of P  in heavy loads 

increases, the throughput starts to decrease after achievable maximum throughput is 

reached. In light load, the P-persistent procedure does not effect the delay as much 

as the delay in heavy load. It is seen th a t in general the channel throughput and 

delay are fairly insensitive to changes in P  w ithin middle range of 0.2 -  0.7. When, 

therefore, very heavy loads are expected, the small value of P-persistent procedure 

may be required.

The change in performance as a function of load could be investigated in asym

metric traffic configurations. Also, the effect of the number of stations with respect 

to delay-throughput characteristics could be studied with both the analytical and 

the simulation models. In the network several messages of the sam e priority class 

may be simultaneously present and should be able to contend for the channel with 

equal right (fairness within each priority). This contention problem was resolved by 

the persistent mechanism in the analysis, and by random start delay of 4 slots and 

contention resolution in the preamble field in the simulation.

Some difficult aspects of the CEBus protocol encountered in the theoretical for

mulation of the model have been handled effectively. Of course, the simulation model 

has employed random start delay for each priority and the contention resolution in the
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8 bit preamble field. The P-persistent scheme has been used in the m athem atical for

m ulation. The high complexity in the exact analysis may be reduced by approxim ate 

expressions.

In the analysis the number of packets accumulated at the end of a transmission 

period is simply the number of arrivals during tha t transm ission period. In other 

words, the packets which were already buffered at the beginning of the transmission 

period are discarded. Instead, in the simulation experiments all the accumulated 

packets may be kept in the buffer until they are successfully transm itted . Thus, the 

num ber of packets accumulated during a transmission period would depend on the 

packets already buffered at the beginning of the transm ission period.

In order to investigate the variation in delay time, packet delay and message 

delay are shown in Fig. 3.16 CEBus simulation experiments. In heavy offered load, 

the difference between message and packet delay is large. Thus, if the queueing delay 

is included, it is not desirable to engage an offered load of value more than  2.5. Overall 

considering packet and message delays for each priority we may require offered load 

less than 0.7 for a packet size of 300 bits.

In this chapter, the results of numerical analyses based on a m athem atical for

mulation of the CEBus protocol were shown to be in close agreement to the results 

of the simulation experiments. The performance characteristics showed only slight 

difference of the two mostly at heavy traffic due to several departures in the two 

models, as explained earlier. In addition, the theoretical analysis may be enhanced 

by incorporating an acknowledgement service.



CHAPTER 4

PERFORMANCE WITH  
THREE PRIORITY ROUTER

4.1 General

The Consumer Electronics Bus (CEBus) is intended to provide economically to the 

home a shared local communication network which carries relatively short digital 

messages. An implementation of the CEBus on some physical medium is able to 

co-exist with every other implementation of it. Every device should be capable to 

communicate with all other CEBus devices on any of the supported physical media, 

which are the Power Line, Twisted Pair, Coaxial Cable, Infrared, Radio Frequency, 

and Fiber Optic.

The protocol layering of the CEBus corresponds with the Open System In

terconnection (OSI) architectural model of the International Organization for Stan

dardization (ISO). By this required specification, the CEBus can be extended and 

interconnected to various media through a router, a bridge, or a gateway. The ob

jective of this chapter is to provide simulation results for the throughput and delay 

behavior between the Power Line (PL) and the Twisted Pair (TP) physical media 

interconnected by a router which can handle three priority messages.

The router architecture of the CEBus is layered in the same m anner as a node. 

However, it features two Medium Access Control (MAC) Sublayers and Logical Link 

(Control) Sublayers using the same Network Layer. The use of a priority algorithm
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with three priorities, enables a higher priority message to preem pt a lower one while 

the la tte r is waiting for channel access.

4.2 B rief D escription of the CEBus P rotocol

The CEBus imposes restrictions on the use of a priority request attached to a packet. 

The effect of a priority  level is to delay the transmission of a message for an additional 

period of time as follows:

a). HIGH Priority

A High priority message will not cause any additional delay to the transmission 

of tha t message. These applications include light switches, telephone services, 

security and /o r emergency controls and alarms, Audio/Video equipment con

trol, and others.

b). STANDARD Priority

A standard priority will impose 4 unit symbol times (USTs) of additional delay 

to a message transmission. These applications include Resource Allocation, 

sensor activated HVAC devices, and closed loop control. Many examples of this 

level may be found in kitchen devices and laundry facilities.

c). DEFERRED Priority

A Deferred priority level will require an additional 8 USTs. The lower priority 

nodes will always listen for the higher priority nodes and defer to them . These 

activities include background traffic, autom atic controls which do not require 

immediate response, and da ta  logging.

A transm itting node is considered to be in either a “Queued” or an “Unqueued” 

state. This round-robin queueing scheme ensures th a t contending nodes each have an 

equal opportunity for channel access. The effect of the queueing process is to remove
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the successful nodes from contention w ith those which have not yet been able to get 

a message through.

A node which has already successfully completed a transmission will be placed in 

the Queued state. This state  introduces an additional delay of 4 USTs into a node’s 

channel access. The Unqueued State, which requires no additional delay, is assigned 

delaya node which has not yet successfully transm itted  a packet.

Randomization  is employed to reduce the probability of contention whenever 

more than one node may be in the same priority level and queueing state. A randomly 

assessed delay of either 0, 1, 2, or 3 USTs is added to each transm itting node’s channel 

access delay. The delay is set to the sum of the least significant two bits of the current 

Preamble value and the least significant two bits of the local address.

Contention detection is accomplished with the use of SU PERIO R and INFE

RIOR media states. It is essential to the process of contention detection tha t a 

SUPERIOR state  dom inate the medium over an IN FERIO R one. The Preamble, po

sitioned at the beginning of the frame, serves to provide a contending signal pattern  

and to shield the information from being lost during contention.

Contention resolution is employed in the CEBus. The Physical Layer of any 

node which detects a SUPERIOR state  on the medium, while attem pting  to transm it 

an INFERIOR state, immediately ceases its transmission without collision. In CEBus 

terminology, a collision is defined as overlapping transmissions after the Preamble.

The Physical Layer then sends a PH-CC-DATA. confirm service prim itive to the 

D ata Link Layer (DLL) to abort its transmission, begin receiving, and defer until the 

end of the frame which retained the channel [4]. Once the EOP symbol is received, 

the deferring nodes begin counting their channel access delays. Signal rates for the 

Power Line (PL) and Twisted Pair (T P) are both 10,000 ONE b/s. Here ONE repre

sents a unit symbol time (UST) which is the width of the smallest symbol, a logical

1. A UST is 100 fis, and logical 0 stands for 2 USTs.
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4.3 Sim ulation Experim ents

4.3.1 R outer

A router is a device which bridges two implemented media in a  CEBus network. 

Routers may be designed which bridge more than two media. As described in the OSI 

reference model, a CEBus router connects network segments which may communicate 

using the same Network Layer protocol but different D ata  Link Layers. Routers 

forward packets from one medium to another, if doing so moves the packet closer to 

its destination. A router must receive packets from one medium, buffer the packets, 

and decide whether or not to forward each packet onto the next medium, based on a 

routing algorithm and a list of other criteria [4].

The architecture of the CEBus router is layered in the same m anner as the 

CEBus nodes. However, it has two Medium Access Control (MAC) Sublayers and 

Logical Link Control(LLC) Sublayers; each of them  is attached to the PL and TP 

networks, respectively. In the CEBus network, each router must communicate with 

the other routers to  m aintain the network topology in a tree structure [6]. However, 

the simulation model compromises a router which connects two media, the PL and 

TP. The simulation utilizes an unacknowledged connectionless service which provides 

an exchange of da ta  between peer Network Layers without use of an acknowledgment 

mechanism to verify the success of the transmission.

Packet priority is used by a transm itting  MAC sublayer to set self-imposed 

channel access delay. W ithin the Network Layer of a router, the priority enables a 

priority queueing scheme to take place in the router forwarding buffer. In order to 

handle three priority messages, the router is assumed to have three infinite buffers to 

store and forward the packet for each priority. Priority also enables a higher priority 

request to preempt a lower priority request while the la tte r is waiting for channel
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access. However, once the lower priority message starts to deliver its data, the higher 

priority request is no longer able to preem pt it.

4.3.2 N etw ork M odel and Traffic Patterns

The data  rate of the CEBus for the home environmental network is quite low. The 

Power Line (PL) and Twisted Pair (T P) physical media each employ 10 K b/s, re

spectively. In the simulation experiments, this data rate of 10 K b/s has been utilized 

for both media. Generally speaking, local area networks using wire pairs may operate 

up to a couple of M b/ s range. The standard operating ra te  for coaxial cable is in the 

neighborhood of 10 M b/s. For optical fiber, it is several hundred M b/s and rising. If 

lasers and single-mode fibers are deployed, the range of bandw idth is far higher, in the 

G b/s. By reason of this low channel capacity in the home environment, large delay 

and high normalized channel throughput may be predicted in comparison to other 

networks with high bandwidth. However, the channel throughput turns out to be 

substantial. This high throughput is due to relatively larger packet sizes with respect 

to the network capacity. For the simulation studies, the LANSF protocol modeling 

facility [83] has been utilized.

The flowcharts of the transm itter and receiver process for the CEBus are plotted 

in Figs. 9.1 and 9.2 along with functional descriptions of the layers of a node. In the 

CEBus functions, the data service primitives for unacknowledged connectionless ser

vice are composed XX-DATA.request, XX-DATA.indication, and XX-DATA.confirm. 

Here “X X ” represents one of the N, LL, MA, and PH. For example, N-DATA.request 

is the d a ta  transmission request prim itive from the Network Layer (NL) to the LLC 

Sublayer in a transm itting node when the NL entity wishes to send an LSDU (LLC 

Service D ata  Unit) to one or more rem ote NL entities using unacknowledged connec

tionless service.

An example of LL-DATA. con firm  is the data  transmission confirmation primitive
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for unacknowledged connectionless service. This prim itive is generated by the local 

LLC entity  of the transm itting node and is passed to the NL entity. The queued 

message in the buffer cannot be released unless the Application Layer (AL) gets the 

service prim itive of ALDATA.confirm.

As an example of the indication service, the LLJDATA.indication  service prim 

itive is sent from the LLC Sublayer to the NL in a receiving node signifies data 

reception whenever the LLC entity has received a LSDU which is destined for the 

NL.

The assumptions used to develop the model are as follows:

• Independent Poisson arrival process a t each station with ra te  A packets/sec;

• The packet lengths are exponentially distributed with mean L bits;

• The end-to-end propagation delay around the CEBus network is ignored 1 ;

• The bit ra te  on the channel is c b/s;

• There are M nodes on the network.

The to tal num ber of nodes, M, utilized in the simulation is 18 plus 1 for the 

router, there are 9 nodes on each medium; 3 nodes are assigned to one of the three 

priority classes on each medium. All the generated messages are sym m etric for each 

priority class, thus each of the 18 nodes employs the same rates to get access to 

the medium. The offered load is measured in terms of the three groups as following 

relations:

—  ^ P L - ~ P l L v  +  AP L - * T p L v  -I- AP L * - T p L p

c
— ^TP—T p L p  +  A TP—PL-Lp +  A  TP*-Pl L v . .

c

=  G t p

the home environments, a parameter a defined by (propagation/ packet transmission time) 
is ignorable since the propagation delay is much smaller than packet transmission time.

Gpl

G t p

G p l
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Here c is the channel capacity or data rate in b it/sec , L p =  =  L 3 =  Ld is

same packet length in bits, Ap l - .pl denotes the arrival rate from the PL to itself, 

Apl-+tp  denotes the arrival ra te  from the PL to the TP, and \ p l~ tp  is the traffic rate 

in the reverse direction, At p -*t p  denotes the arrival rate from the T P  to itself. These 

groups have the same arrival rates, i.e., Apl—pl  =  Apl-~t p  =  Ap l<-tp  =  Ax -~y - Each 

direction group is composed of the three priority classes so tha t \x -*Y  =  A/t +  A, +  A<*, 

where \ h = \ s = \ d = Ap. Here the subscript p denotes one of the three priorities: 

h=H IG H , s=STANDARD, and d=D EFER R ED . In this simulation study the packet 

length employed is 300 bits.

• M easures o f System  Perform ance

There are basically four performance aspects of the system that we consider in 

this work.

(a). M essage D elay which was measured as the tim e elapsing from the moment 

the message was queued at the sending node to the moment the entire message is 

successfully received at the destination (including the message queuing time).

(b). Packet D elay was measured as the time elapsing from the moment the packet 

became ready to be transm itted to the moment the entire packet is successfully re

ceived at its destination.

(c). M essage Throughput was calculated as the ratio of the total number of bits 

received at the destination address to the number of bits generated at the source .

(d). C hannel Throughput was measured as the ratio of the total number of infor

m ation bits successfully transm itted  through the link to the simulation time. This 

sometimes is also referred to  as effective throughput of a link, in that it includes not 

only the bits tha t were received on the link, but also the bits that were successfully 

relayed to some other link, e.g., to the router.

In this simulation message and channel throughput, and mean message and
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packet delay have been investigated in terms of normalized offered load for the intra- 

and inter-network traffic through a router. The router is assumed capable of handling 

all three priority classes. In order to evaluate the performance of the CEBus, the 

Power Line (PL) and the Twisted Pair (TP) media are interconnected via a router.

Fig. 4.3 explains message and channel throughput versus normalized offered 

load for intra- and inter-network traffic with packet length 300 bits. The channel 

throughput increases continually as the offered load increases up to 1.0 approximately, 

and then it starts to decline slowly after a while. Message throughputs of the inter

network traffic for all priority classes are worse than those of intra-network traffic 

communicating each other on the PL bus. For example, the message throughput 

of the DEFERRED priority message for the intra-network traffic starts to decrease 

sharply at 85% of the channel capacity, while th a t for the inter-network traffic starts 

to decline at 55% of the capacity.

Fig. 4.4 is the similar to Fig. 4.3, but indicates the  intra-network traffic for the 

T P  network and inter-network traffic from the TP to the PL medium. The maximum 

achievable throughput is 0.88 in the case of packet length equal to 300 bits. According 

to the priority level, the message throughput of the lower priority message starts to 

decrease in smaller traffic load than the higher priority message as shown in figure. 

Even for the HIGH priority message, the message throughput starts to decrease at 

offered load values around 4.0.

In Fig. 4.5, message and packet delays in m s are plotted in terms of normal

ized offered load with packet length 300 bits for the intra-network traffic on the 

PL medium. In heavy traffic load, HIGH priority message delay which includes the 

queueing tim e in the buffer, becomes excessively large, while the packet delay, which 

accounts for just channel access plus transm itting time, remains small and bounded. 

The curves of the message delay start to exceed the curves of the packet delay at 

larger values than about 0.5 to 0.6 in offered load.
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Fig. 4.6 shows the message and packet delay for inter-network traffic from the 

PL to the TP with packet length equal to 300 bits. For traffic through the router, 

message delay and packet delay do not show any big difference, mostly because after 

a message succeeds in reaching the router, it usually fails to access the channel on 

the other side immediately so it has to wait in the router buffer and then try  access 

the channel again. For inter-network traffic between the PL and the TP, the delays 

for each priority s ta rt to increase at 50% to 60% of the channel capacity. The delay 

performance for inter-network traffic from the T P  to the PL as well as for intra- 

network traffic on the T P  as a function of throughput is shown in Fig. 4.6. On 

the whole, inter-network traffic shows higher delay values initially compared with 

those of intra-network traffic. Thus in light traffic load, the packet delay for inter

network traffic amounts to 100 m s  initially, while the initial delay for intra-network 

traffic is about 30 to 40 m s. The packet delay of both groups starts to increase 

with different rates at the throughput value of 0.6. Furthermore, it should be noted 

tha t the DEFERRED priority message for inter-network traffic is no longer able to
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transm it a packet as soon as normalized throughput reaches 0.8.

Fig. 4.7 displays the mean packet delay in m s  versus normalized throughput for 

the intra-network traffic on the T P  and for the inter-network traffic from the T P  to the 

PL. After the normalized throughput reaches 0 . 6 5 ,  the curves for both groups start to 

show big delays according to priority level. Near the maxim um  achievable throughput 

( 0 . 9  approximately) as the load increases further, the H I G H  priority packet delay 

for the intra-network traffic stays bounded while the delay for inter-network traffic 

increases to very high values.

In contrast to Fig. 4.7, Fig. 4.8 shows mean message delay in m s  in terms of 

the normalized throughput. In light load, message and packet delays show similar 

distribution curves, however, as the traffic load rises further, i.e., as the throughput 

nears the maximum point, the delay for all of the messages increase dramatically.
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4 . 4  S u m m a r y

A performance evaluation has been carried out by simulation experiments when router 

traffic is present between the PL and T P  media. The message and channel through

put, and message and packet delay have been studied for a range of offered traffic 

loads; channel throughput and offered load are normalized to channel capacity. The 

router, which can handle three priority levels, has behaved well, according to mes

sage priority. The inter-network traffic has showed larger delay than  intra-network 

traffic. Thus in light loads the inter-network message delay was m easured at about 

100 m s  while the intra-network traffic for the same network showed much smaller 

delay, approximately 30 m s  to 40 m s.  Thanks to the lower priority message’s defer

ence to higher priority ones, the HIGH priority message for the intra-network traffic 

has shown satisfactory delay characteristics all the way up to the 3.0 value of offered 

load, keeping the delay tim e to less than  500 m s,  whereas the HIGH priority message 

for inter-network traffic exhibits acceptable performance up to approximately 0.95 

of offered load, keeping the delay under 500 m s.  At offered load values larger than 

55% of the channel capacity, the DEFERRED priority message for the inter-network 

traffic can no longer transm it a packet with bounded delay, and cuts out for intra

network traffic at offered loads approxim ately 70% to 80% of the  channel capacity. 

Using simulation experiments, the message throughput for each priority intra- and 

inter-network traffic was investigated. W ith the packet length fixed a t 300 bits, the 

channel throughput first rose to 0.9 approximately, as the offered load increased, 

and then started  to  decline due to rising channel access contention. In conclusion, 

the CEBus protocol with a 3-priority router is observed to be very suitable for light 

traffic not exceeding 60% to 70% of channel capacity. It can be concluded that the 

CEBus can provide satisfactory performance for the HIGH priority as well as offering 

reasonable capacity to share the lower priorities.



CHAPTER 5

CEBUS TO ISDN GATEWAY
DESIGN

5.1 Back Ground

The CEBus supports communication for appliances and devices in the home. A 

Local Area Network (LAN) could connect Routers to each other or to offices. In the 

networking domain the integrated services digital network (ISDN) is being developed 

so th a t true integration of voice and data  may be provided using a common standard 

interface and common cabling.

In the early 1980s the detailed recommendations for an integrated services digital 

network (ISDN) was developed, with the goal of eventually producing a network 

capable of using the same switching and communications equipment for a whole range 

of traffic, in particular voice, data, text, and some video.

The typical commercial LANs provide at least 1 M bit/s da ta  rates. They are 

also subclassified into broadband or high speed baseband. The interfaces and their 

converter protocols have been developed in order to support a diverse variety of LANs. 

The CEBus, a home environment LAN employs very low da ta  ra te , i.e., 10 K bits/sec, 

exactly 10K ONE b/s. In this context, ONE stands symbolically as a time unit and 

represents the time needed to transm it the shortest symbol, have known as a UST 

(Unit Symbol Time).

In the late 1980s, basic rate systems already became available in several countries,
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and so-called primary rate is fast being applied at 2 M bits/sec. The most im portant 

part, as far as the user is concerned, is the user interface and access scheme to the 

ISDN. In support of this CCITT has developed the I-series protocols which define the 

user interface to the ISDN.

It will be of considerable utility  to connect the CEBus, a home to the ISDN 

lines. In the ISDN there are two types of channel, B channels for voice and data  and 

D channels for signalling and system use (control). D channel allows network systems 

functions so-called out-band signalling such as call setup and error indications to  be 

passed using a separate channel from the data/voice channels. The D channel can 

also be used to convey user data  if required. By the way of contrast, consider the 

present (analogue) telephone system, where call setup and voice transmission use the 

same channel, a t different times.

In connecting the CEBus to ISDN, Basic rate interfaces may be used which are 

a combination of B  and D  channels, i.e., 2B  +  D. They provide two data/voice chan

nels each capable of 64 K bits/sec operation, plus a signalling channel of 16K bits/sec.

5 . 2  T h e  I S D N

5.2.1 IS D N  Interfaces

Quite often it is desirable to connect two LANs or a LAN and a WAN to each other. 

This is the case with the CEBus, a LAN servicing and individual home, and the 

ISDN, a network serving a large m ultitude of homes and business.

Repeaters may be used to connect two common LANs, which in this case, are 

off the regenerative type. For example in order to provide a  500-m extension segment 

in CSM A/CD, a repeater is required at the segment end bridging it to the original 

section which can also be up to 500 m long. Up to five segments may be spliced 

together for a total extension of 2.5 km for an Ethernet-CSM A /CD  LAN.
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The first two of OSI layers are required for the 802 series LANs and FDDI. Thus 

a bridge has to carry out a conversion of OSI layers 1 and 2 so th a t the protocols will 

interface at each peer level and the two LANs will be capable of interworking. The 

higher levels are indeed m ade com patible peer to peer.

Since the ISDN has been intended to access the existing public telephone net

work, including circuit and packet switched networks, along with the telex network, 

and other public or private facilities dedicated to particular types of telecommunica

tion services. Home terminals such as a PC, a m aster telephone set, and a TV may be 

connected w ith the ISDN through a properly designed interface. Fig. 5.1 illustrates 

user-to-network interface types, which include basic access, primary, and broadband 

access interfaces.

A gateway provides an interface between a LAN and an external data  network 

through a common Application Layer.The goal of ISDN is to provide an integrated 

facility to incorporate each of the services listed on a common 64-Kbps channel and/or 

a combination of 64-and 16-Kbps channels [86], [98]. ISDN has been developed for 

integration of all services; these include digital voice, high-speed data  both circuit 

and packet switched, telex/teletex, telemetry, facsimile, and slow-scan video.

The CEBus may have an interface to  incorporate ISDN services and bandwidth. 

In ISDN, in-band signaling and framing have downgraded the basic 64 Kbps channel 

to lower speeds. As a result integrating other services, such as com puter data, have 

required a  drop back to 56 Kbps or less for the North America PCM. Typical of such 

a reduction is A TT’s DDS (Digital D ata System), which can offer only 56 Kbps, not 

the more desirable 64 Kbps [88]. W hereas 4 KHz was the basic building block of 

analog telephony, 64 Kbps is the basic building block of ISDN.
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5.2.2 IS D N  User C hannels

In order to build an interface for the CEBus to communicate with ISDN and to bring 

in the ISDN services to the home, it is useful to understand the ISDN user channels. 

The. following defines the standard transmission structures for user access links [87], 

[87]:

• A-channel: 4 KHz analog VF channel.

• B-channel: 64 Kbps.

•  C-channel: 8 or 16 Kbps.

• D-channel: 16 Kbps.

•  E-channel: 64 Kbps variant of D-channel.

• H-channel:

HO - 384 Kbps (6xB ).

H l l  - 1536 Kbps for 1544 Kbps prim ary rate.

H12 - 1920 Kbps for 2048 Kbps prim ary rate.

This H-channel is used for a  variety of user information stream s, but not for 

signaling.

The B-channel operates at a synchronous data rate of 64 K b/s in full duplex 

mode. Its prim ary purpose is to carry information between a specific pair of end-users 

across the S, T, or U reference points of the UNI (User-to-Network Interfaces) [85]. 

The B-channel which is the basic user channel serves any one of the following traffic 

types:

•  PCM -based digital voice channel (Encoded at 64 K b/s, according to CCITT 

Rec. G.711).
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•  Computer digital data, either circuit or packet switched.

• A mix of multiplexed lower da ta  ra te  traffic (0.6, 1.2, 2.4, 4.8, 9.6, 48, and 64

K b/s), digital low data  ra te  voice, and lower da ta  rate com puter d a ta  (CCITT

Rec. X .l).

The D-channel operates at synchronous d a ta  rates of either 16 K b/s or 64 K b/s 

in full duplex mode. The prim ary purpose is to carry the signaling inform ation for 

the  control of circuit switched connections involving one or more B-channels between 

the user and the network. The services the D-channel structure provides are:

•  User signaling channel.

• Lower-speed data  connectivity to the network.

•  Telemetry signals, priority access for call control signals.

The A-channel structure serves as a transitional expedient to provide nominal 4 

KHz analog connectivity to the network.

The C-channel may be incorporated to  the A-channel to form hybrid access 

arrangement.

The E-channel is a 64 Kbps variant of the D channel, signaling for circuit switch

ing. It is only used with multiple access configurations.

The H-channel which does not carry signaling information provides a service for 

higher user data  rates, such as slow-scanning video for teleconferencing, fast facsimile, 

and packet switched data  bit streams. H-channels are designed to carry the types 

of user information requiring data  rates in excess of 64 K b/s and up to several 100 

M b/s, as multiple of the B-channel or the HO-channel (384 Kb/s).
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5.2.3 B asic and Prim ary Interfaces

In order to design an interface for the CEBus -  ISDN connection, it is desirable to 

investigate the  currently existing ISDN user interface. The basic interface is made up 

of two B-channels and a D-channel, i.e., 2B+D. At this interface the D-channel is 16 

Kbps. C CITT Rec. 1.412 states th a t the basic access may also be B +D  or D.

The prim ary rate B-channel interface are composed of n  B-channels and one 

D-channel, where the D-channel in this case is 64 Kbps, as follows:

•  1.544 Mbps =  23B +  D.

Generally, ISDN channel =  nHO + m B  +  D  

where the integers n and m  range over the values 

0 <  n  <  3, 0 <  m  <  23, 6ra +  m  < 23 

or in the form

nHO +  m B  where 0 <  n <  4, 0 <  m <  24, 6n +  m < 24.

• 2.048 Mbps =  30B +  D.

Generally, nHO - f -  m B  +  D

where 0 <  n <  5, 0 < m <  30, 6 n + m  < 30.

From a transmission point of view, ISDN is designed to offer the worldwide 

availability of end-to end connections over digital circuits at bit rates and qualities 

far in excess of those generally obtainable from the existing analog voice network 

or even from networks with a significant infrastructure of digital circuits such as 

T1 carriers. Perhaps the most interesting applications of the CEBus toward ISDN 

relate to the traditional voice communication services, da ta  inform ation for remote 

home control, and teleshopping such as home shopping, home banking, and home 

reservation. Among these are calling party  identification, m ultilocation ringing, call 

waiting, call forwarding, and call charging reports, to mention just a few.

A d d itio n a l app lica tions  are  th e  p rov ision  of secure voice tra n sm iss io n , personal
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and private voice mail services, and other existing and planned voice store and forward 

services such as prerecorded announcements from the home autom ated functions to 

the network. By introducing optical fibers into the home, video telephony and other 

m ultim edia communications involving simultaneous voice and video can be provided 

as well. Because of the high data  ra te  characteristic of video, many of these applica

tions require the availability of broadband ISDN (B-ISDN), unless the data are highly 

compressed.

The other data communications requirements of the m odern office or home of

fice lead to different category of applications such as tex t and graphics message com

munications, including telex, teletex, videotex, facsimile, electronic mail, and video 

conferencing. O ther uses such as local area network (LAN) interconnection, remote- 

access to LANs, PC-to-PC communications, document storage and retrieval, and 

word processing are also readily supported by the ISDN. Another potential class of 

applications is to be found in the intelligent home. Im portant services benefiting from 

the ISDN features here include building or home access control, security monitoring, 

smoke detection, tem perature sensing and control, energy management, ventilization, 

HVAC control, and entertainm ent access and control.

5.2.4 U ser-to-U ser Signaling

The principle of functional layering inherent in the open systems interconnection 

reference model has led to the representation of the to tal communications capability 

of a functional group. Both the user-to-user signaling information flows as well as the 

control information flows are carried over the D channel.

We point out that user-to-user signaling is essentially independent of any other 

activities. In particular, it may be carried out with or without the existence of a 

connection over the B channels. In cases where the D channel is required for the
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control of a B-channel connection, the user-to-user signaling flow shares the capacity 

of the D channel and the CCSN (Common Channel Signaling Network) with the 

control information flow for the connection. It m ay then be appropriate to impose 

priorities on the two types of use and to  preem pt one of the flows when the higher 

priority flow is present. Care must, of course, be taken to assure th a t this preemption 

does not result in a loss of data.

For d a ta  communications equipment, the most im portant of these standards 

is RS-232D, developed by EIA within the United States and adapted internation

ally by the C CITT as Recommendations V.24/V.28 and X.21. O ther significant 

designs include the more recent EIA standards RS-422/423/449 and the  physical 

layer of C C ITT Recommendation X.21. The home network is assumed to  utilize a 

Carrier Sense M ultiple Access with Contention Detection and Contention Resolution 

(CSM A/CDCR) proposed by the EIA for the CEBus [1], [4].

5.3 ISD N  Hom e Inform ation Services

ISDN-based home information system will flower intelligent home such as remote 

home control, m ultim edia services including a variety of audio, data, and video ser

vices, security monitoring, and energy management. A CEBus gateway could play 

a key role in the successful connection of ISDN to the home. Fig. 5.2 shows the 

network structures between ISDN and CEBus. ISDN residential service can be ac

cessed for low speed terminals, personal computers, and digital telephones through 

the Basic R ate Interface (BRI). For fast facsimile, and slow motion video terminals, 

the Prim ary Access Interface may be utilized for ISDN home information systems 

[94].

An RS232 port maybe used to provide for da ta  to either the CEBus or ISDN 

employing the appropriate terminal devices and software functions. The gateway
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should provide band ra te  adaption, signal conversion, buffering and medium access 

to the network. The CEBus employs the power lines while ISDN uses the telephone 

line. The gateway function may contain priority access such as high, standard , and 

deferred. On the ISDN side, higher priority is given to  voice communications. This 

may be accomplished by off-hook detection circuitry. In order to comply w ith the 

ISDN requirements, the International Organization for Standardization (O SI)/O pen 

System Interconnection (OSI) reference model can be used as the CEBus gateway 

toward ISDN. ISDN is actually capable of supporting access to a  wide range of services 

such as voice, data, tex t, and video by using standard  digital network user interfaces

[92].

The objective of CCITT (International Telegraph and Telephone Consultative 

Com m ittee) is to define minimum requirements of interfaces and protocol standards 

between the access node and the users. As mentioned before, there are two CCITT 

recommended ISDN interfaces for user access; one is the Basic Rate Interface (BRI), 

while the other is the Prim ary Rate Interface (PRI) [98]. The former provides two 64 

K b/s B  channels for voice and /o r da ta  and 16 K b/s D  channel for signaling and data; 

the la tte r provides 23 or 30 (Europe) 64 K b/s B  channels for voice and /o r d a ta  and 

a 64 K b/s D  channel for signaling. There is also a much higher bandwidth service 

called Broadband ISDN (B-ISDN) under development, specified as CCITT SG18, in

tended prim arily for video or image data. In the long run extensive the video services, 

e.g., video-on-demand and high quality teleconferencing and video telephony may be 

offered to the home. Thanks to the optic fiber-based technologies which can provide 

enormous am ounts of bandwidth high bandwidth video transmission services will be 

provided by the “Fiber-to-the-Hom e” (FTTH) technologies [93].
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System  Features

According to the definition of “Telematique (Telematic)” given by the CCITT (In

ternational Telegraph and Telephone Consultative Committee) recommendation X .l, 

Telematique CEBus which connects PSTN  (Public Switched Telephone Network) ter

minals and CEBus devices should be the one which facilitates not only the conven

tional telephone service but the services such as com puter data, images and facsimile 

communications.

5.3.1 ISD N  A pplications for th e CEBus

Before we investigate the applicable services of the ISDN to the home, the features 

of ISDN are described briefly below. The CCITT Common Channel Signaling No. 7 

(CCS7) for the ISDN User Part (ISUP) and the Signaling Connection Control P art 

(SCCP) [95] support end-to-end ISDN communication. The Transaction Capability 

(TCAP) supports communication between the network switches and the network 

application nodes. The interworking service for ISDN and CCS7 protocols is provided 

by the ISDN switches to serve a larger public da ta  network. The ISDN Central Office 

(CO) will become the information access center for home users, and the Customer 

Premises Equipm ent (CPE) will be endowed with advanced digital signal processing 

and computing technologies for sophisticated home services.

The ISDN capabilities for the ISDN Home Information Services (IHIS) are 

home information, security, energy management, remote home control/m onitoring, 

call m anagements, third party access, and video telephony. In home information 

services, the standardization of the ISDN makes it relatively easy to support the 

home da ta  users access various information services, e.g. da ta  base access, PC-to-PC 

communications, and multimedia. By the OSI standard models ISDN based home 

information systems will be also used for electronic-mail and home-based business as 

well as home shopping.
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For security and energy management ISDN will interface home users to providers 

such as gas, electric, water and utilities, telephone companies, police, fire departm ent, 

etc. A bridge may be utilize to send data bidirectionally.

Remote control/monitoring service will bring da ta  to and from the home to 

m onitor, change, and otherwise control the status of various appliances and systems 

from a remote term inal or ISDN equipment. The residential customers can also 

monitor and control their home security status or appliance conditions by using a 

rem ote telephone or data  terminal.

Call management services capability is the feature in telecommunications m an

agement provided by the PTN  (Public Telephone Network) and new ISDN system. 

The call management services will have the ability to selectively accept, reject, block, 

or identify the caller. Lin [96] [97] has proposed expanding the number of voice chan

nels from two to four in a basic rate interface by using Adaptive Differential Pulse 

Code Modulation (ADPCM ) transcoding scheme in order to provide a virtually non- 

blocking voice communications for ISDN residence users.

Teleservice Access is a mechanism that allow the outside users to access home 

devices for remote m eter reading, remote ticketing and home shopping as well as 

home banking. This ISDN capability will allow an outside user to call into the home 

and retrieve information from connected devices or appliances in the home. As an 

im portant example, a home device will transm it data  generated by utility  m eter 

encoder to the servicing companies as requested.

Video Telephony has two major applications, the two-way video telephone and 

the video conference. M ultimedia services based on the ISDN features are capable 

to support simultaneously the transmission of voice, audio, data, and video or still 

images. ISDN-based-home information systems will provide continuous monitoring 

and auto-dial out. This service capability requires the home surveillance device to 

evaluate the security conditions, and initiate auto-dial (or auto calling) out following
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preprogram m ed scenarios. A 64 K b/s channel can provide acceptable quality video 

telephony [94].

In the future the Intelligent Network (IN) will offer m odular functionality, which 

will allow adjustm ents in response to varying traffic demands and user requirements. 

The IN [102] will support various advanced network-based services in which network 

elements are interconnected by data communication links, such as CCS7 (Common 

Channel Signaling # 7 )  and X.25. The functions tha t are currently being developed 

include N911, Voice mail system, Electronic directory, Fax catalog, and 800 Informa

tion Forwarding service for Pay-Per-View Cable Television [94].

5.3.2 G atew ay W iring and ISD N  H om e Inform ations Sys
tem  A rchitecture

ISDN based home informations system will need to accommodate multimedia infor

m ation service through gateways to other media and devices. Included in the gateway 

capabilities is the ability to convert term inal keypress sequences into commands, and 

to transm it the generated those commands to the appropriate media. On the side of 

the CEBus network, the gateway is required to convert ISDN da ta  into pulse width 

m odulation (PW E) signals. A Home Network Controller (HNC) may be located in

side the D istribution Device (DD), as shown in Fig. 5.3. As shown in (a), the HNC is 

connected to one passive bus and shares the passive bus with o ther ISDN terminals. 

As shown in (b), the HNC is serially connected to the Network Termination. The 

DD (D istribution Device) contains the necessary means for connection of TP 1-3 to 

the same T P  1-3 in other branches of the network.

The HNC supports both an ISDN port and an analog port. In the two wiring 

configurations the second one may be preferred because of installation of its flexibility; 

the DD can be installed at the entrance of the house, in the basement, or in the utility 

room. Another advantage in the second wiring configuration is that all the system
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features can be centralized in the DD and HNC. The HNC may contain some common 

components th a t serve all of the system ’s functionalities such as the system ’s single 

touch-tone generator, global line status, ring detectors, and ISDN protocol circuit. 

The HNC can also route the incoming call to the particular rem ote station and ring the 

called station or send messages. An incoming call can be broadcasted to all stations 

by the Directory Number (DN) of the HNC or Routing Tables of the Gateway.

The BRI wiring of the home network ISDN can adapt the point-to multipoint 

configuration. A point-to-m ultipoint wiring configuration allows more than  one Ter

minal Equipm ent (TE) to be simultaneously active at an S or T  reference [98] point. 

The passive bus, which is a four-wire bus, could provide the ISDN BRI point-to- 

multipoint wiring configuration.

In the future, the fiber optics technology will allow the connection of the home 

autom ation network attached to narrow-band ISDN (BRI and PRI) to  broadband 

ISDN. These High quality video and high speed data access will be provided by the 

fiber optics networks.

5.4 CEBus Gateway D esign and Its Interface to
the ISD N

To execute various communication services between the CEBus and PSTN (Pub

lic Switched Telephone Network), an interface is required to convert signal schemes 

and to control different data rates. Since the CEBus terminals are generally iso

lated from those of PSTN or ISDN, and different from PSTN in their transmission 

method, it is impossible to communicate with each other without signal conversion. 

So a converter, i.e.,a gateway to which a control channel communication protocol is 

incorporated, is required. This aspect will be described in detail later.

A slightly more difficult problem is the implementation of the speed match be
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tween the CEBus and the ISDN networks. If a terminal on the ISDN system sends 

a large number of packets into the home, i.e., CEBus, the packets may arrive at the 

gateway much faster then the gateway can pass them  on to the home information 

network(CEBus). Even if the data rates of both sides (home and ISDN side) are 

the same, the home side (CEBus) itself is effectively about 1.5 times slower than the 

ISDN network. The reason is tha t one bit of the CEBus protocol has duration of 1 or 

2 USTs. This randomizes the frame duration. Thus 1 bit of the layered system needs 

on average a time length of 1.5 USTs or approximately 1.5 bits on the network.

Some mechanism will be required to prevent the gateway from exhausting its 

buffer space or to provide enough buffer size to compensate the  different data rate 

or transmission speed. It leaves unanswered the question of how additional features 

may be implemented, such as complex flow control, protocol conversion, and buffering 

m anagem ent. The development of a number of com puter networking technologies has 

been driven. The differences in both requirements and environments between designs. 

From the point of view in the layered protocol architecture, a gateway should provide 

a network protocols and internet protocol. At present, the International Standards 

Organization (ISO) adopts X.25 as their main network sublayer, and has proposed 

their own protocol for the transport layer [104], [105]. The TCP is currently used as a 

transport protocol, the IP as an Internet protocol and X.25 as the network protocol in 

a m anner which mirrors the ISO proposals. Although X.25 is a virtual circuit interface 

protocol, X.75 [107] is an interface intended for use between public networks. A paper 

[106] presented a conversion strategy between the TC P and ISO Transport protocols 

as a m ethod of achieving interoperability between data  communications systems

Even if, in a gateway design, there may be many possible protocols and schemes, 

in this scenario, ISO-based ISDN is assumed for the CEBus-based home network. 

Thus when the signal of the CEBus network flows to the ISDN, or vice versa, the 

gateway has a capability to convert the four layered architecture of the CEBus to the
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7 layer ISO reference model for the ISDN, or vice versa.

Gateway development is complex because of dissimilarities between the two ar

chitectures. Despite superficial similarities, their im plementations include radical 

differences:

® The CEBus employs 4 layers (AL, NL, DLL, PL), whereas ISDN network users 

7 layers.

•  At the DLL layer level the CEBus uses PW E encoding signal, which ISDN does 

not support.

• At the equivalent layers of the OSI network, the CEB provides connectionless 

service but ISDN provides connection-oriented service.

Fig. 5.4 shows ISDN data  and signaling interfaces between user equipment and 

network. As the figure indicates, the user will be given more control over the network 

by being given access to signaling functions. User signaling will be transm itted  via
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the D or E channels, with da ta  usually transm itted via B (or H for broad bandwidth) 

channels. The common channel signaling facilities are available only to  the network 

provider.

5.5 Sim ulation N etw ork M odel

In the simulation model, a gateway between the CEBus and the ISDN is utilized. It 

is used to  to  convert CEBus signals to  ISDN ones and vice versa. It provides 16 K b/s 

for the ISDN network and 10 K ONE b it/s  for the home CEBus network. Simulation 

has been performed using the LANSF, a protocol modeling environment system for 

investigating the performance of communication networks [83]. The LANSF, written 

in C, runs under UNIX.

The simulation network model is shown in Fig. 5.5. The service discipline 

for messages originating from ISDN sources towards the CEBus network is first-in, 

first-out, i.e., FIFO, for each priority. However, higher priority messages will take 

precedence over all lower ones, while the la tter are waiting in the buffer. The buffer 

size of the router as well as th a t of each node is assumed to be of infinite capacity. 

The Gateway is assumed to have three buffers, one for each priority, on each of its two 

sides, the one attached to the ISDN and the other serving the CEBus network. Thus 

the messages originated from the ISDN and/or from the CEBus networks access the 

channel according to their priority, i.e., higher priority messages will be transm itted  

first.

The propagation delay between the instant packet is sent out from the ISDN side 

towards the home the generation of an incoming signal to the CEBus is assumed to 

take either 0, 1, or 5 bits, i.e., 0 sec, 62.5 ps, or 0.31 ms. End-to-System delays of the 

ISDN network such as connecting, switching, and processing times are not specifically 

included in this simulation. However, those times may be added on to the simulation
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experiment results based on the literature [100]. As an example, the literature [100] 

shows mean delay of about 70 m s  utilizing a link with capacity 56 K b/s and data 

length of 500 bits at traffic intensity 0.65. If we include the ISDN processing time, the 

to tal delay time may be computed by adding a delay value of about 70 m s,  adjusted 

somewhat according to the traffic load as it differs from the 0.65 value of the traffic 

intensity. We can also refer to the literature [101] for studies of the delay of the ISDN 

D-channel access protocol. It has been shown th a t there is a mean signalling delay 

of approximately 900 bits when the packet and signal utilization value is about 0.4.

According to the protocol recommended by CCITT for ISDN, the basic access 

structure of the user-network interface consists of two B-channels, each operating at 

64 K b/s, and one D-channel operating at 16 K b/s. The prim ary function of the D- 

channel is the transmission of the signalling messages needed for the control of the 

circuit-switching in the B-channels. Telemetry (remote home control and /o r remote
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home utilities measuring) and low-speed packet messages may share the D-channel 

w ith the signalling messages.

A . Traffic Patterns;
The traffic patterns are given in two cases; case 1 utilizes as the packet lengths of 

200 bits while case 2 employes a length of 1,000 bits for both networks. This includes 

the header as well as control information. Each priority message is generated with 

the  same probability, th a t is, each priority takes 33.3% of the offered load.

The offered traffic load is categorized into three groups, i.e., (a) from the ISDN 

to the C EB us/PL (7 —*• C ) direction, (b) from the C EB us/PL to the ISDN (7 —♦ C ), 

and (c) from the C EB us/PL  to itself. Here, (a) and (b) make up the inter-network 

traffic, while (c) is the intra-network traffic. The three priorities use the same ratio of 

packet generation and a ttem pt channel access to their destination. In other word, the 

offered load is assumed to be symmetric for each group, i.e., q p l ^ p l  — 9p l - ~ i s d n  —  

gPL<-ISDN-

The CEBus backbone network is considered to be the power line bus. The 

num ber of stations for each priority is 5 for a total of 15 on the CEBus. It is also 

assumed th a t the frame information length is 10 while the preamble length is 8 bits. 

In comparison to the delay incurred in travelling the distance between the outgoing 

point (telephone office) of the ISDN and the incoming point (home) at the CEBus, 

the propagation delay incurred for a packet while moving around in the home toward 

its destination on the CEBus network may be quite reasonably assumed to be zero, 

for all practical purpose. The packet length utilized is 200 bits. Most often the packet 

length employed for the ISDN network is 1,000 bits; in fact it has been shown that 

the optim um  packet is 1,200 bits [103]. However, the optimum packet format of the 

CEBus [4] uses a length which is less than 400 bits, i.e., preamble 8 bits, control 8 

bits, destination address 16 bits, destination house code 16 bits, source address 16
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bits, message information varying up to 32 bytes, and cyclic redundancy check 16 

bits. An additional reason to choose the CEBus packet length equal to 200 bits is 

th a t the CEBus channel capacity or data  rate is ra ther low, 10 K b/s.

The offered traffic pa ttern  is given by identical or symmetrical arrival rates, i.e., 

)?PL—PL ~  ^PL—ISDN =  ^ Pp l* -ISD N  ~  ^ X '  Here is the arrival rate of priority

p  for the intra-network traffic on the Power Line (PL) medium, while X p l —i s d n  is 

the arrival ra te  of priority p  for the inter-network messages flowing from the PL to the 

ISDN. The Ap l * - i s d n  indicates the reverse direction. The traffic load is calculated 

in term s of arrival rates as follows:

gpL-PL  =  3A £>£,_p£

gPL~ISD N  — ^ ^ Pp L —I S D N ~
C

gPL—ISDN =  3A Pp L ^ iS D N ~  (5-1)
C

gPL =  gPL—PL +  gPL—ISDN +  gPL*-ISDN

Here, superscript or subscript p  indicates one of the three priorities. The packet 

length is denoted by Lv =  L h  =  Ls  =  L q , where priority High, Standard, and De

ferred is indicated by H,S, and D, respectively.

B. Perform ance M easures. The delays and throughputs are measured as 

follows:

• M essag e  D e lay  is measured as the tim e elapsing since the message was queued 

at the sending node to the moment the entire message is successfully received at the 

destination (including the message queuing time).

• P a c k e t D e lay  is measured as the time elapsing since the packet became ready to 

be transm itted  to the moment the entire packet is successfully accepted at its desti

nation.

• M essag e  T h ro u g h p u t is calculated as the ratio of the to tal number of bits re
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ceived at the destination address to the num ber of bits generated at the source.

•  C h a n n e l T h ro u g h p u t  is measured as the ratio of the total num ber of bits re

ceived through the link to the simulation time. This throughput reflects not only the 

bits that are received on the link for intra-network traffic, but also the bits th a t are 

successfully received at the destination for inter-network traffic.

5.6 Sim ulation M easurem ents

In the sim ulation experiments, the propagation delay on the CEBus was ignored while 

it was included in the considerations of inter-network traffic from the ISDN to the 

CEBus network. As mentioned before, all the offered loads for the  three priority 

levels and the three traffic groups are configured symmetrically. Also, the channel 

throughput is normalized to the CEBus channel capacity.

Fig. 5.6 illustrates message and channel throughput on the Power Line of the 

CEBus (C EB us/PL) as a function of offered traffic load for packet of length 200 

bits. On the  Power Line (PL), when the offered load, including inter-network traffic 

through the gateway reaches the 3.0 of the traffic load, the HIGH priority message 

throughput for intra-network traffic starts  to decline, while the D EFERRED  priority 

message throughput starts to decline sharply at 0.75 of the offered load. The channel 

throughput on the PL increases monotonically until it reaches the m axim um  value of 

0.88, in which occurs for the offered loads in the a neighborhood of 1.2. After that, 

the channel throughput starts to decline slightly due the greater num ber of collisions 

resulting from the increased number of simultaneous attem pts of transmission.

Fig. 5.7 shows the message throughput for inter-network traffic through the 

gateway versus offered load for the ISDN to the CEBus/PL direction and reversely; 

here the packet length is 200 bits and there is zero propagation delay. On the whole, 

inter-network traffic generated from the ISDN source and arriving to the CEBus
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shows lower throughput than th a t of the reverse direction. This is especially true 

for STANDARD and DEFERRED priority message for inter-network traffic which 

manifest lower throughput than those of intra-network traffic when the offered load 

is larger than  90% of the network capacity.

Fig. 5.8 shows the mean message delay for inter-network versus traffic load from 

the CEBus to ISDN (C  — ► I )  and vice versa w ith 200 bits packet length and zero 

propagation delay. For the most part, the messages for I  —► C  direction show higher 

delay than those of the reverse direction under heavy load. This reason is th a t the 

ISDN side has only one port toward CEBus while the CEBus has three ports for 

three priority messages. So, the messages in one port may have less opportunity to 

transm it than  those in three ports. However, in traffic load less than  70% of the 

channel capacity, the messages arriving from ISDN to the CEBU S/PL ( I  —+ C) show 

lower delay than  th a t of the reverse direction traffic. When 200 bits are utilized for 

the packet length, the minimum delay (zero load) is 50 m s  for inter-network traffic 

through the gateway.

In Fig. 5.9, the mean message and packet delays for intra-network traffic are 

plotted in term s of the offered load. Until the normalized offered load reaches about 

0.4 in total, we find th a t the message and packet delays are small and bounded.

The delay in HIGH priority for both packet and messages rem ain close to each 

other until the offered load reaches about 1.5 at which point the values of delay 

diverge sharply; as the traffic load increases further, the packet delay for channel 

access increases mildly while the message delay which includes queueing delay in the 

buffer approaches infinity. Generally, message delay reaches much higher values than 

packet delay of the same priority in heavy traffic load, as shown in Fig. 5.9.

Fig. 5.10 illustrates channel and message throughput as well as mean message 

delay as a function of the offered load with no propagation delay when the packet 

length is 1000 bits. The maximum channel throughput reaches the value of 0.97. In
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fact throughput remains very high between the values of 1.0 and 3.0 of the offered 

load, and then it s tarts to decline slowly due to collisions. In comparison with the 

throughput for packet length 200 bits, shown in Fig. 5.6, the channel throughput here 

is higher thanks to the large packet length in relation to the channel capacity. Even 

though the channel throughput increases, it is not advantageous to rely on larger 

packets because the number of transmissions per unit time, i.e., the frequency of 

message delivery drops drastically and delays rise sharply. The message throughput 

shows a similar distribution to the case which employed 200 bits packet length.

In light traffic load, less than 40% of the channel capacity, it takes 100 - 200 m s 

in order to deliver a intra-network message of 1,000 bits on the PL medium regardless 

of the priority, whereas it takes 20 - 30 m s  for 200 bit packet length within the PL 

medium,as shown in Fig. 5.9. At offered load of 75% of channel capacity, the HIGH 

priority message shows 150 m s  delay, the STANDARD priority message shows 200 

ms, while the DEFERRED one goes up to 500ms. As the load increases further, the
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delay of lower priority messages increases greatly in comparison to higher priority.

Fig. 5.11 shows the mean message throughput for inter-network traffic through 

the gateway as a function of normalized offered load when the  packet length is 1,000 

bits and the propagation delay is zero. In general, message throughput for I  —► C  is 

somewhat smaller than tha t for C —► I  because ISDN side has only one port toward 

the CEBus while the CEBus side has three ports for each priority toward the ISDN.

At 9.0 of the offered load, the I  —► C  throughput for HIGH priority message 

shows 15% successful transmission HIGH priority messages, while the C —* I  shows 

35%.

In Fig. 5.12, global message and channel throughput are plotted as a function of 

traffic load, w ith propagation dealt as a param eter between ISDN and CEBus when 

the packet length is 200 bits. In the figure, P0 represents 0 propagation delay, P I 

represents 1 bit delay, i.e., 62.5 pis delay, and P5 represents 5 bits, i.e., 0.31 m s  delay. 

It is found th a t the channel and message throughput are affected quite strongly by 

propagation delay, as shown in Fig. 5.12. Generally, the channel throughput shifts to 

the right, and for a given offered load, the channel throughput declines as propagation 

delay increases. Global message throughput, defined as all messages of all priorities 

arrived to the destination divided by all messages generated from all stations, is also 

sensitive to  propagation delay. The global message throughput in case of P5 starts  

to decline earlier at about of 0.5 of offered load, while the P0 and P I cases are only 

slightly affected and show similar distributions.

Figs. 5.13 and 10.14 show mean message throughput for inter-network traffic 

through the gateway as a function of offered load, for three propagation delay values, 

when the packet length is 200 bits. Fig. 5.13 shows the throughput I  —► C  message 

traffic while Fig. 10.14 depicts the case of C  —> I  message transmission. The prob

ability of successful I  —► C  message delivery is lower than th a t of C  —> /  message 

delivery in heavy traffic load.The reason may be tha t outgoing message from the ISDN



M
es

sa
ge

 
T

hr
ou

gh
pu

t 
fo

r 
In

te
r 

ne
tw

or
k 

M
es

sa
ge

 
T

hr
ou

gh
pu

t 
fo

r 
In

te
r—

ne
tw

or
k

121

F r o m  ISDN to  CEBUS/PL  po

P5

0.8

0.6

0.4

0.2

- HIGH 
■ STANDARD
- DEFERRED

0.0

- 0.2
o

N o rm a l ize d  Offered Load, G

F ig . 5 .13 Mes
sage Throughput 
through Gateway 
from ISDN to CE
Bus as function 
of Normalized Of
fered Load with 
Packet Length 200 
bits and Different 
Propagation.

.2
P 0F r o m  CEBUS/PL to  ISDN 

,    ,   --.0
P 5

.8

.6

0.4

0.2

HIGH 
STANDARD 
DEFERRED

o

F ig . 5 .14 Mes
sage Throughput 
through Gateway 
from CEBus to 
ISDN as function 
of Normalized Of
fered Load with 
Packet Length 200 
bits and Different 
Propagation.

Normalized Offered Load, G



M
e

a
n

 
M

e
s

s
a

g
e

 
D

e
l

a
y

,
 

m
s

 
M

e
a

n
 

M
e

s
s

a
g

e
 

D
e

l
a

y
,

122

CO
6

4
0

F r o m  I S D N  

t o  C E B U S / P L

3 _  P a c k e t  
j  L e n g t h  

-  = 2 0 0  b i t s

0

P 5
20

H I G H

S T A N D A R D

D E F E R R E D

- p o

10 o

N o r m a l i z e d  O f f e r e d  L o a d ,  G

F ig . 5.15 Mean 
Message De
lay through Gate
way from ISDN to 
CEBus as function 
of Normalized Of
fered Load with 
Packet Length 200 
bits and Different 
Propagation.

0

F rom  CEBUS/PL  
to  ISDN

3 _  P a c k e t  
:  L e n g t h  

I  = 2 0 0  b i t s

0

P 5  •  •  •  •  

P I -  -  

P 0 -----

P 5
20

H I G H

S T A N D A R D

D E F E R R E D

•po

0
o

F ig . 5.16 Mean 
Message De
lay through Gate
way from CEBus 
to ISDN as func
tion of Normalized 
Offered Load with 
Packet Length 200 
bits and Different 
Propagation.

Normalized Offered Load, G



123

to the home I  —► C  all utilize has one port even if the higher priority message takes 

precedence over lower one in a buffer (but no preemptive scheme), while the gateway 

toward the ISDN has three ports for each priority to access medium. Besides, each 

priority message for C  —► I  may be ready to transm it a packet from each station and 

the gateway toward ISDN in comparison to one port of ISDN toward CEBus even 

though the gateway for I  —► C direction message has three ports to access the PL 

medium. W hen it takes 5 bits (0.25 m s) in the distance between the ISDN and the 

CEBus, the message throughput deteriorates sharply and greatly due to  a very high 

collision probability even if the offered load is low.

Fig. 5.15 and 5.16 depict the behavior of mean message delay for different prop

agation delays between the ISDN and the CEBus with packet length 200 bits. Fig. 

5.15 shows the /  —> C  inter-network traffic through the gateway , while Fig. 5.16 

gives the I  —> C  traffic. For 1 bit delay, since the propagation delay is much smaller 

than  the packet transm ission time, the ratio a of propagation delay to packet trans

mission time is a very small quantity, on the order of 0.005. In this case there is 

little  difference w ith the results of zero propagation delay case. However, for 5 bits 

propagation delay, a is about 0.025 and now the delay and throughput performances 

deteriorate greatly. In order to show the behavior of message delay in low traffic the 

lower left corner of Fig. 5.15 is magnified and shown in Fig. 5.17. As the propagation 

delay increases, the message delay also increases initially. Moreover, delay increases 

as the priority gets lower. The delay may be large even in light offered load for low 

priority and large propagation delay.

5.7 Sum m ary

A wide variety of schemes for allowing nodes to gain access to a local area network have 

been proposed, analyzed, and implemented by numerous researchers. These protocols
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may be generally classified as contention methods (or random  access techniques) 

or controlled (or deterministic) methods. In this chapter, a Carrier Sense Multiple 

Access with Contention Detection and Contention Resolution (CSM A/CDCR) is used 

for the home network, CEBus. A gateway is incorporated which handles three priority 

class messages for either directions. The gateway connects the CEBus to ISDN. The 

ISDN side sending messages to the CEBus has one port, which is assumed to use a 

priority scheme, so high priority messages are taking precedence over lower priority 

messages in a infinitive buffer.

The m ain performance considerations for a LAN are the packet/ message through

put, the channel utilization and the delay characteristics. In this sim ulation, message 

and channel throughputs and packet and message delays have been studied in terms 

of the offered load for intra-network traffic in the CEBus and inter-network traffic to 

ISDN through the gateway.

It has been observed that the maximum achievable throughput was increased
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from 0.89 to 0.97 as the packet length rose from 200 bits to 1,000 bits. However, 

in increasing packet length it was found that the the performance of message delay 

deteriorated. The delay of 200 bit packets was found to be about 20 m s  to 30 m s  for 

intra-network traffic within the CEBus. As a result of simulation experiments, when 

we design the system, the packet length and the packet form at should be determined 

considering network performance metrics, such as delay and throughput.

It has been shown that delay for inter-network traffic for any priority level is 

much higher than  a t of intra-network traffic due to waiting tim e in the buffers of 

the gateway and the different data  rates existing between the ISDN and the CEBus 

sides of the gateway. On the whole, the delay from the ISDN to the CEBus direction 

has shown lower delay than th a t from the CEBus to the ISDN in light traffic load. 

However, in heavy traffic load, larger than 70% of network capacity, message traffic 

from ISDN to the CEBus experienced higher delay than  in the reverse direction.

We have studied the network sensitivity to the propagation delay, or, equiva

lently, the distance between the telephone office in which the ISDN system is installed 

and the house in which the gateway and CEBus are installed. The overall, global 

message throughput was observed to decline sharply at about 50% to 60% of the 

channel capacity for large propagation delay 5 bits or 0.31 m s, while the global mes

sage throughput started  to decline at about 90% of the capacity when there was no 

propagation delay. Small propagation delay (1 bit or 62.5 /J,s) gave simulation results 

to almost zero propagation delay. It is generally recognized tha t system  utilization 

or channel throughput deteriorate for longer propagation delay. This is especially 

true for message throughput for inter-network traffic for any priority. In such cases, 

extremely low successful delivery to the destination has been found, as well as large 

delay tim e due to collisions owing to the high propagation delay.

Therefore, a residence which is located a long distance away from the office 

providing ISDN services, so th a t large propagation delay is expected, may require an
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acknowledgement from repeaters instead of end-term inal acknowledgement, different 

frequency bandwidth for transmission and reception, or hybrid circuits on the gateway 

and the outgoing stage of the ISDN, respectively. Under ideal situations, i.e., for zero 

propagation delay, proper packet length such as 300 to 500 bits approximately, and 

light traffic less than 70% of the offered load (including inter-network traffic via the 

gateway), the simulation has shown that the CEBus system interconnected by the 

ISDN behaves well w ithout deteriorating system performance.



CHAPTER 6 

CONCLUSIONS

6.1 R esearch Summ ary

In this dissertation an extensive investigation of the Consumer Electronics Bus, a 

com puter network for the intelligent home has been carried out. This study has in

cluded theoretical analyses and simulation experiments. A numerical analysis of a 

m athem atical model of the CEBus protocol based on the Carrier Sense M ultiple Ac

cess w ith Contention Detection and Contention Resolution (CSM A/CDCR) has been 

carried out. In addition, a three priority router, connecting the Twisted Pair (TP) 

to the power line (PL) physical medium, have been studied and their performance 

evaluated. Moreover, a  gateway connecting the CEBus to ISDN has been designed 

and evaluated.

The architecture of the CEBus, its protocol, and its layers and their functions 

have been presented briefly.

In order to handle the resolution of collisions, several approach methods have 

been studied for incorporating priority classes and collision avoidance. Those schemes 

proposed in the  literature have been classified into several categories, on the basis 

of objectives and methods. Those are Priority Queueing Approach, Reservation- 

based Priority, Conflict-Free Approach, Node Partitioning Approach, Param etric and 

Separate Token Cycle Approach, Collision Avoidance Switch Approach, Hyperchannel 

Interface Access Approach, and Tim er Controlled Random Access Approach.

127
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In order to evaluate the performance of the CEBus protocol, a new theoretical 

analysis has been proposed. For compromising the prim ary channel access protocol 

of the CEBus, a m athem atical model named Priority Channel Assigned Multiple 

Access w ith Embedded Priority Resolution (PAM A /PR) has been developed. In 

summary, the PA M A /PR  methodology of this thesis employs (a) priority channel 

assignment with three priority classes for partitioning a channel access on the network, 

(b) embedded priority reservation a t the EOP (End of Packet), (c) persistent channel 

access w ithin each priority class, (d) minimum waiting tim e, and (e) round-robin 

scheme for fairness of access within the same priority class.

The exact numerical analysis of PA M A /PR  has been found to be m athem atically 

complex. The complexity has stem med prim arily from the fact th a t packet departure 

times dependent on their priorities, i.e., the lower priority must defer to the higher 

one. In addition, the assignment of queueing state, i.e., unqueued or queued sta te  of 

a station, makes the analysis more difficult. However, the queueing state  of a station 

for each priority as well as contention resolution during the preamble bits, do not 

present much difficulty in the simulation experiments. The simulation results have 

shown slightly improved performance over the m athem atical model of the CEBus 

protocol at heavy loads.

Through the analysis, it has been observed th a t the priority functions have 

behaved well in handling message priorities. In light load all of the priority message 

delays have remained bounded and have shown similar distributions. However, in 

heavy load, the HIGH priority message delay continues to stay low and bounded 

while the DEFERRED shows a drastic increase in delay and STANDARD shows 

only mild delay rise.

Related to the theoretical model, an im portant issue is the sensitivity of the 

persistent model to the value of P  or up. It was found th a t in general the channel 

throughput and delay are fairly insensitive to changes in P  falling in the range 0.2 -
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0.7 for light or moderate loads. However, in very heavy loads, a small value of P  or 

an adaptive algorithm may be required.

In the analysis the number of packets accumulated a t the end of a transmission 

period is simply the number of arrivals during th a t transm ission period. In other 

words, the packets which were already buffered at the beginning of the transmission 

period are discarded. Instead, in the simulation experiments all the accumulated 

packets may be kept in the buffer until they are successfully transm itted. Thus the 

num ber of packets accumulated during a transmission period would depend on the 

packets already buffered at the beginning of the transmission period. In order to 

investigate the difference in delay tim e, packet delay and message delay have been 

investigated by the CEBus simulation experiments. Overall, the analytical results 

obtained by this method were validated by the simulation experiments closely.

In order to investigate a behavior of the network in which a router can handle 

three priority classes when router traffic is present between the PL and the TP, a sim

ulation has been carried out in terms of message and packet delays, and message and 

channel throughputs. The inter-network traffic has showed larger delay than intra- 

network traffic. Thus in light loads the inter-network message delay was measured 

at about 100 m s  while the intra-network traffic for the same network showed much 

smaller delay, approximately 30 m s  to 40 m s. Thanks to the lower priority message’s 

deference to higher priority ones, the HIGH priority message for inter-network traffic 

showed acceptable performance up to approximately 0.95 of offered load, keeping the 

delay under 500 ms. At offered load values larger than 55% of the channel capacity, 

the DEFERRED priority message for the inter-network traffic effectively cuts out.

In the near future, an ISDN-based home information system may support the 

intelligent home with such services as remote home control, multim edia services in

cluding a variety of audio, data, and video services, security monitoring, and energy 

m anagement. A CEBus gateway could play a key role in the successful connection of
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ISDN to the home.

A gateway connecting the CEBus to ISDN has been designed. A simulation 

study has been carried out using the gateway between the CEBus and the ISDN. 

The gateway is used to to convert CEBus signals to ISDN ones and vice versa and 

to provide 16 K b/s for the ISDN network and 10 K ONE b it/s  for the home CEBus 

network. It has been shown tha t delays of inter-network traffics for any priority level 

are much higher than  those of intra-network traffic due to waiting tim e in the buffers 

of the gateway and the two different data rates supported. On the whole, the delay 

from the ISDN to the CEBus direction was smaller than tha t from the CEBus to 

the ISDN in light traffic load. In heavy traffic load, larger than 70% of the network 

capacity, message delay from ISDN to the CEBus was longer than  in the  reverse 

direction. We have also studied the network performance sensitivity to propagation 

delay, i.e., the distance between the telephone office in which ISDN system is installed 

and the house in which a gateway and CEBus are installed. It was found tha t the 

system utilization or channel throughput deteriorated with propagation delay. This 

was especially true for message throughput for inter-network traffic for all priorities.

It was concluded, therefore, that a residence which is far away (high propagation 

delay) from the office providing the ISDN services, i.e., the telephone office, may 

require an acknowledgement from repeaters instead of end-terminal acknowledgement, 

different frequency bandwidth for transmission and reception, or hybrid circuits on the 

gateway and the outgoing stage of the ISDN, respectively. Under ideal conditions, i.e., 

zero propagation delay, proper packet length such as 300 to 500 bits approximately, 

and light intra- and inter- network traffic less than 70% of the offered load, the 

simulation showed that the CEBus system when connected to the ISDN behaves well 

w ithout deteriorating the system performance.

The overall goals of the CEBus are to control home appliances intelligently us

ing the existing house power line as the main physical medium. The CEBus not only
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supports an ergonomic and aesthetic working environment which increases produc

tivity, and provides maximum degree of safety, theater-like home entertainm ent, and 

rigorous energy control and management, but also offers a wide range of services and 

conveniences based on recent advances in the VLSI, com puter, and telecommunica

tion and network technologies.

6.2 Suggestions for Further Study

During the course of this dissertation work, it has been found tha t several prob

lems require further study. They are listed below.

(1) In developing an exact theoretical analysis, it was found difficult to evaluate the

effect th a t several param eters have on the system ’s performance. The proposed 

PA M A /PR  (Priority Channel Assigned Multiple Access with Priority Resolu

tion) protocol employs dem and priority channel access, minimum wait time, 

persistent s ta rt of transmission to redress collisions, and to provide contention 

resolution based on three priorities. However, in order to incorporate all the 

features of the CEBus, i.e., random  sta rt delay within 4 USTs instead of per

sistent procedure, contention resolution during the preamble field of 8 bits, and 

queueing state, i.e., unqueued or queued state  of a station, further work in need 

in the development of the m athem atical expression.

(2) The message delay which includes the number of packets accumulated at the 

end of a transmission period, in other words, the packets which were already 

buffered at the beginning of the transmission period, could be measured, using 

a new m athem atical formulation. Also, the difference in delay tim e for packet 

and message delay may also be calculated by this model.

(3) The arrival traffic is characterized by the Bernoulli process, and the geometric
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distribution. Instead of these patterns, a Poisson arrival ra te  and exponential 

distribution may be utilized for numerical analysis.

(4) The exact analysis for the CSM A /CD CR of the CEBus is complex in the m ath

em atical development. Thus, an approximate analysis m ay be developed and 

utilized..

(5) In this PA M A /PR , an Unacknowledgment mechanism is utilized. However, an

Immediate Acknowledgment scheme may enable the transm itting  station to de

term ine the success of failure of its message across a single medium. Therefore, 

the Im m ediate Acknowledgment mechanism could be incorporated in the m ath

em atical model or simulation.

(6) In this dissertation, all traffic patterns are assumed to be symmetric case. This

assum ption contends that all nodes and three priority groups will have an op

portunity  to transm it packets w ith same probability or ra te  in order to allow for 

consistent comparisons in the study of the priority mechanism. Furthermore, 

the traffic may be configured in an asymmetric or unbalanced traffic pattern  

based on a realistic scenario.

(7) In the simulation experiment, the effect of the number of nodes either overall 

or for specific priority groups could be investigated in terms of throughput and 

delay performance.
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