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ABSTRACT
Kinematic Synthesis
of Adjustable Four-Bar Mechanisms
for Multi-Phase Motion Generation

by
Shao Jie Wang

A four-bar linkage can satisfy up to five prescribed positions for the
motion generation problem. The adjustable four-bar linkage, on the other
hand, can satisfy more than five given positions by making some of the
parameters adjustable.

Limited work had been done in the area of motion generation problems
of kinematic synthesis of adjustable four-bar linkages until Wilhelm
introduced the concept of multiple adjustments.

This study considers for the first time, the adjustment of a moving
pivot, and the problems of three phases of motion. Various combinations of
the number of prescribed positions for the motion generation problems are
solved here until the prescribed positions reach the maximum permissible
number. These solutions are developed for two and three phase adjustable
moving pivot problems, two phase adjustable moving pivot and crank length
problems, three phase adjustable crank length problems, and three phase
adjustable fixed pivot problems. Equations are also developed for the most
complicated cases, which are two phase adjustable moving pivot problems
with three positions in each of the two phases, and three phase adjustable
crank length problem with two positions in each of the three-phases.

Six synthesis example problems are presented which represent various
topics covered in this study. Several Turbo Pascal programs are developed
for solving the synthesis problems. Many user—defined AutoLISP functions

and commands are specially designed for this work.
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Chapter 1

Introduction

1.1 Tasks of Kinematic Synthesis
In kinematic analysis, a given mechanism is investigated for kinematic
characteristics, such as degrees of freedom, velocity, acceleration, etc. for a
given position and an input motion. Kinematic synthesis, on the other hand,
is to choose the type and determine the dimensions of a mechanism in order
to accomplish a prescribed task. In other words, kinematic synthesis is to
design a new mechanism.

There are three kinds of problems in kinematic synthesis: function
generation, path generation, and motion generation problems.

In function generation, the motions of driving and driven links need to
be correlated by a function y = fix). An example ideal function y = f{x) is
shown in Figure 1.1 for the given range a < x £ b. However, a four-bar
linkage can only satisfy a given function at a limited number of prescribed
precision points. As shown in Figure 1.1, the curve representing the actual
motion intercepts the curve of ideal motion at a limited points Py, Py, P3, and
P,. The actual motion approximates the ideal motion at other points.

A path generation task needs a point on a coupler to trace a prescribed
path with respect to the fixed reference. The prescribed precision points on
the path may need to be correlated with either driving link positions or time.
In this case, the task is called path generation with prescribed timing.

Motion generation or rigid-body guidance requires that a moving body
be guided through a series of prescribed positions. The body to be guided

usually is a part of a coupler.



Since a linkage has only a finite number of significant dimensions, the
designer may only prescribe a finite number of precision points. That is, for
all three kinds of synthesis tasks, only a finite number of precision points
could be satisfied.

—-

ideal Functon y = f(x)
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Figure 1.1 Function generation problem

1.2 Review of Adjustable Linkages
Adjustable linkages are important in varying the behavior of a linkage.
Achieving varied outputs from one set of "hardware" with simple adjustments
is a definite advantage in engineering design.

In the area of path generation, Tao [1, 2, 3] has published a
considerable amount of work. Tao and Amos [1] developed a technique which
provides a flexible means of synthesizing an adjustable four-bar linkage to
satisfy a specified change in the direction of a straight line segment traced by

a coupler point. They presented a simple and straightforward graphics



technique to change the direction of the straight line motion through a
specified angle by simply adjusting a fixed pivot. Tao and Krishnamoorthy
[2] investigated the adjustable four-bar linkage with a double point, and
developed a graphical synthesis method for tracing "figure—eight" with
approximate straight line segments at double point by adjusting the fixed
pivot.

Tao and Yan [3] developed a synthesis technigue of adjustable linkages
to generate symmetrical coupler curves with tangential circular arcs and
concentric circular arcs by adjusting a fixed pivot or a circle pivot.

Beaudrot [4] presented his synthesis technique to meet the following
design requirements: (1) Design a four-bar linkage such that two points on
the coupler plane each trace two straight-line motions, but at different
specified angular displacements, for an adjustment of a fixed pivot. (2)
Design a four-bar linkage such that one point on the coupler plane will trace
three straight-line motions for three specified adjustments of a fixed pivot.

Bonnell and Cofer [5] extended complex-number method of plane
kinematic synthesis developed by Sandor for adjustable linkages by adjusting
either of the fixed pivot on a circular arc or adjusting the crank length.

McGovern and Sandor [8, 9] extended the work of Bonnell and Cofer
[5] to geared linkages and high order synthesis. They developed a technique
to obtain analytical and closed form solutions for arbitrary adjustable paths
of a coupler point by means of adjusting a fixed pivot. The complex—number
method could also be applied to function generation problt;ms. The linkage
considered are a four-bar, a geared five-bar, and a geared six-bar
mechanism.

In the case of adjustable linkages for motion generation, the published

work is limited. Ahmad and Waldron [10, 11] developed a technique for a



four-bar linkage with adjustable driven fixed pivot. They solved two phase
problems with a maximum total number of five positions. Wilhelm [12]
developed synthesis techniques for two phase motion generation problems of
adjustable four-bar linkages. He solved various combination of positions for
adjustable fixed pivot problems, adjustable crank length problems, and
multiple adjustment of the two. Also, the total number of positions of the

synthesis tasks reached their maximum possible value.

1.3 Objective of This Research
As mentioned in the last section, not much work had been done in the area of
motion generation problems of kinematic synthesis of adjustable four-bar
linkages. Ahmad and Wilhelm made significant contributions, but their
research did not cover the adjustment of moving pivot and the problems of
more than two phases.

This research develops solutions for the first time to the following
problems: two and three phase adjustable moving pivot, two phase adjustable
moving pivot and crank length, three phase adjustable crank length, and
various three phase motion generation synthesis problems.

The synthesis problems of various combinations of the prescribed
position numbers for all different kind problems mentioned above are going
to be solved in this study until the total number of positions reaches the
maximum permissible number.

A motion generation problem is to guide a rigid body, which is usually
part of the coupler to take a series of prescribed positions in a prescribed
order by means of a linkage. The maximum number of prescribed positions
for synthesizing a four-bar linkage is five. This maximum number is

increased when an adjustment is made to a four-bar linkage. The bigger the



maximum number the more prescribed positions could be satisfied by an
adjustable linkage. One of the objective is to determine the maximum
allowable number of prescribed positions for each of the cases.

The final goal of this research is to code this work into programs, so
that the user can solve their synthesis problems on an IBM compatible
personal computer by means of Turbo Pascal, AutoCAD, and AutoLISP.
Many user—defined AutoLISP functions and commands need to be developed

for this research.



Chapter 2

Motion Generation Problems

2.1 Basic Equations
This chapter covers the motion generation problems for a normal four-bar
linkage.

As shown in Figure 2.1, the position of a moving body (coupler) in
general plane motion could be specified by a point (A) and an angle (6) of a
line (AX") passing through it. In the figure, the moving reference X'AY" is
fixed to the coupler and moves along with it wherever it goes. A crank with a
center pivot S (P,Q) and a circle pivot C (X,Y) is also shown in the figure. The
following equations are valid for all positions of the crank if the fixed pivot,
the crank length are not made adjustable:

(X;-P)2 + (Y; - Q)2 =R? i=1,.,n (21)
where X; and Y; are coordinates of circle pivot C with respect to the fixed
frame, P and Q are the coordinates of the fixed pivot with respect to the fixed
frame, R is the crank length, and n is the number of precision positions.

Also,

X;=a;+pcosf;—qsin;

Y; =b; + psin 6; + q cos 6; i=1,..n (22)
where p and q are coordinates of the circle pivot C with respect to the moving
reference X'AY', a; and b; are coordinates of the origin of the moving
coordinate system with respect to the fixed reference.

As mentioned before, a motion generation problem is to guide a rigid
body, which is usually part of the coupler to take a series of prescribed

positions in a specified sequence by means of a linkage. With equations (2.1)



and (2.2), the prescribed positions could thus be represented by a;, b; and 6,
where i = 1, ... ,n. n is the number of prescribed positions. Substitution of
equations (2.2) into (2.1) to eliminate X; and Y; leaves us with five unknowns:
P, Q, p, q, and R. Hence, the maximum number of prescribed positions for

synthesizing a normal four-bar linkage is five.

Figure 2.1 The moving and fixed references

An ideal motion of the coupler can only be approximated by several
discrete precision positions. The linkage can create the motion precisely at
these positions and will approximate the ideal motion at other positions. The
more precision positions used, the closer to the ideal motion is the actual
motion of the coupler. But the problem is more difficult to solve as the
number of precision positions is increased. Fortunately, many real world
problems only need several critical positions to be satisfied precisely.

Tolerance is usually allowed at other positions.



2.2 Synthesis Problems of Three
Finitely Separated Positions

For a problem of three prescribed precision positions, equation (2.1) becomes

X;-P)2+ (Y;-Q?2=R2 i=1,2,3 (2.3
Eliminate R, we get
(Xg - P)2+(Y5-Q)2 =(X; -P)2 + (Y, - Q)? (2.4)
(X3-P)2+(Y3-Q)2=(X; -P)2+ (Y, - Q)2 (2.5)
Substitute equation (2.2) into (2.4) and (2.5), we have
LoP + MgQ + Np =0 (2.6)
LsP +M3zQ +Ng=0 (2.7)

where L, M, and N are functions of a, b, 0, p, and 6.

We have two free choices of parameters. P and Q can be solved by
means of equations (2.6) through (2.7) after choosing p and q. R can be
solved by equation (2.3).

Figure 2.2 Three prescribed positions and the Waldron Image Pole Circles



Graphically, equations (2.6) and (2.7) represents right bisectors. The
center point S would be at the intersection of the right bisectors of the
segments C;Cy and C5C3 (Figure 2.2). Similarly, choose another circle point
D, and plot bisectors to intersect another center point T as shown in Figure

2.4. The resulting linkage is also shown in Figure 2.4.

2.3 The Branch Defect for Problems
of Three Prescribed Positions

The solution procedure in the last section does not guarantee that the
resulting linkage can be moved through all three prescribed positions. It
might be necessary to disconnect it and reassemble it in a different
configuration to reach one of the positions. This behavior is associated with
the appearance of branches in the coupler curves of the linkage. Hence, the
defect is called a branch problem. The two different ways in which it is’
possible to connect the coupler and driven crank for a given driving crank
angle are called geometric inversions. The branch defect arises whenever it
is not possible to move the linkage from one geometric inversion to the other
without disconnecting.

In order to avoid a branch defect for a three finitely separated position
problem, a two steps graphical procedure was developed by Waldron [13, 14,
15] and Filemon [16]. 4

For the driven circle point C;, the alternate hatched area of the
Waldron Image Pole Circles shown in Figure 2.2 gives the'non—permissible
area. For the driving circle point D;, on the other hand, the hatched region
of the Filemon construction shown in Figure 2.3 represents the forbidden

region.
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Figure 2.4 The resulting linkage
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The restriction of the technique is that the resulting linkage must be a
crank-rocker or a drag-link. A solution for the sample problem is shown in

Figure 2.4, which is a drag-link.

2.4 Synthesis Problems of Four
Finitely Separated Positions

For four positions, equation (2.1) becomes

X;-P)2+ (Y;- Q)2 =R2 1=1,2, 3,4 (2.8)
Eliminate R, we get
Xy -PPR+ (Yo -Q2=(X; -P2+(Y,-Q)? (2.9)
X3-PR+(¥3-Q2=X;-P)2+(Y;-Q)»2 (2.10)
(X4 -PP+(Y,-Q2=(X;-P2+(Y;-Q)? (2.11)
substitute equation (2.2) into (2.9) through (2.11), collect term in P and Q, we
have
LoP + MoQ + Ng =0 (2.12)
L3P +M3Q + N3 =0 (2.13)
L,P+MQ+Ny=0 (2.14)

where L, M, and N are functions of a, b, 6, p, and 6.
For nontrivial solutions, the determinant of the coefficient matrix must
be equal to zero.
L, M, N,
L3 Mg N3 | =0
Ly My Ny (2.15)
This leads to the following circle point curve equation.
(Ap + Bq)(ps + q2) + Cpq + Dpg + Eqo + Fp + Gq+ H =0 (2.16)
where A, B, ... ,H are functions of a, b, and 6. Figure 2.5 shows the circle

point curve for a sample problem. Every point on the curve should satisfy
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equations (2.8) and (2.2). That is, a circle point on the curve and its positions
for prescribed positions 2, 3, and 4 should all lie on the same circle. The
center of the circle is the center point.

Four prescribed positions of an example problem are shown in Figure
2.5. The circle point curve is plotted by running Turbo Pascal program
CIRC_PT.PAS [12]. Pick two circle points C; and D; for the driving and
driven cranks respectively. Find two center points S and T at the center of
the circles passing through the circle points. The resulting linkage is shown
in Figure 2.5. Neither a branch problem nor an order defect is found for the
resulting linkage by inspection. It is a drag-link mechanism by its
dimensions.

Similarly, collect term in p and q after substituting equation (2.2) into

(2.9) through (2.11), we get center point equation and the center point curve.

Figure 2.5 Synthesis problem of four prescribed positions
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We are using only one free choice of parameter while picking a point on
the curve. It is usually good to have one free choice, since the designer will
have the flexibility to choose the parameters of the linkage in order to avoid
the possible defects, and optimize the design to meet the overall requirement
from the engineering point of view.

The branch defect is also possible in four prescribed position problems.
Besides, an order problem may also occur for the four given position
problems. In order to avoid the defects, some special points Tj;, Uy;, Q;5, and

Image poles must be found on the circle point curve [13, 14, 15, 16, 17].



Chapter 3

Two Phase Adjustable
Moving Pivot Problems

3.1 Introduction
In the previous two chapters the background for the synthesis of a four-bar
linkage and the motion generation problems has been described. The
technique for synthesizing an adjustable four-bar linkage is going to be
discussed in this chapter.

Chapter 3 deals with the adjustable moving pivot problem. The given
data for a motion generation problem are represented by a consistent method
in this research. That is, position i of the coupler is represented by a;, b;, and
8;, where a; and b; are X and Y coordinates of a point A on the coupler, and 6;
is the directional angle of a line starting at A.

The synthesis of one crank of an adjustable four-bar linkage will be
covered in the next four chapters, which means one side of the complete
adjustable linkage only. The technique for adding another crank to complete
a linkage design will be shown in chapter 8.

Eight adjustable moving pivot problems listed in Table 3.1 are going to
be solved in this chapter. For a two phase problem, at least two positions are
included in one phase. The last two problems in the table deal with seven
positions, which is the maximum possible value for the problem. The
number of shared positions is zero or one.

The problem with shared position 12-23 is considered the same as the
problem 12-13. Similarly, the problem 123-345 is the same as the problem
123-145.

14



Table 3.1 Adjustable moving pivot problems

15

ph1 POV Bhared poc. i Ban chaiogs
1,2 34 0 4 3
1,2 2,3 1 4 3
1,2,3 4,5 0 5 2
1,2,3 3.4 1 5 2
1,2,3 45,6 0 6 1
1,2,3 3,4,5 1 6 1
1,2,3,4 5,6,7 0 7 0
1,2,3,4 4,5,6 1 7 0

3.2 Positions 12-34

For the case of two positions in each of the two phases with no position

shared, the following equations should be satisfied:
(X;-P)2 +(Y;-Q)2=R2
Xy - P)2 + (Yo - Q)2 =R2
(X3-P2+(Y3-Q?2=R?
X;-P2+(Y4-Q?2=R2

Equation (2.2) for phase 1 takes the form of

and that for phase 2 is

X; = a; + p; cos §; — q; sin 6;
Y; =b; + p; sin 6; + q; cos 6;

X, = a; + py cos 6; — gy 5in 6;
Yi=bi+pzsinei+q2cos6i

i=12
i=1,2

i=3,4
i=3,4

(3.1)
(3.2)
(3.3)
(3.4)

(3.5)
(3.6)

(3.7
(3.8)
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Seven parameters, P, Q, p;, q;, P2, q2, and R, are involved in four
equations. Thus, this problem can be solved with three free choices of
parameters, and has infinite solutions. Either an algebraic method or a
graphic method can solve this problem.

The graphic method used with computer and software packages is
straightforward, simple, fast, and with high precision, because it is an
algebraic method internally.

Figure 3.1 represents a good solution of this problem. Choose p; and
q; to locate C;. Locate Cy by plotting a similar triangle. Draw a right
bisector for line segment CCy. Choose crank length R. Draw a circle with
center C; and radius R; this circle intersects the bisector at center point S.
Invert triangle A;B,S into position 3 to get point S;. Draw a circle with
center S and radius R; this circle intersects the right bisector for line segment
SS, at point D3, which is the circle point for the second phase at position 3.
D4 can be found by plotting a similar triangle A4B,D,.

Figure 3.2 represents another good solution of this problem. P, Q, and
R are chosen as the three free choices at this time. Locate center point S
after choosing P and Q. Invert center point S of position 2 into position 1 to
get Sg. Choose R. Draw a circle with center S and radius R; this circle
intersects the right bisector for line segment SS, at point C;, which is the
circle point of phase 1 at position 1. Locate point Cy by plotting a similar
triangle. Invert center point S of position 4 into position 3 to get point S4.
Plot a right bisector for line segment SS,; this bisector intersects the circle at
point Dg, which is the circle point of phase 2 at position 3. Finally, D, can be
found by plotting a similar triangle.

Similarly, this problem could also be solved by choosing ps, q5, and R

as the three free choices.



Figure 3.2 Another good solution for adjustable moving pivot 12-34
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3.3 Positions 12-23
For the case of two positions in each of the two phases with one position

shared, the following equations should be satisfied:

(X;-PR2+(Y;-Q)2=R? (3.9)

(Xg-P2 + (Yo-Q)2 =R? (3.10)

(X3-PR +(Y3-Q)2 =R2 (3.11)
Equation (2.2) for phase 1 takes the form of

X, = a; + p; cos 6; — q sin 6; i=1,2 (3.12)

Y; =b; + p; sin 6; + q; cos 6, i=12 (3.13)
and that for phase 2 is

X, = a; + py cos 6; — qq sin 6; i=2,3 (3.14)

Y; = b; + py sin 6; + qq cos 6; i=23 (3.15)

The number of unknowns is still seven: P, Q, pj, 43, Pg, 99, and R. The
number of equations is still four, because at the shared position, X3 and Y,
are relating to p; and q; in equations (3.12) and (3.13), and to py and gy in
equations (3.14) and (3.15). Thus, this problem still can be solved with three
free choices of parameters, and has infinite solutions. Either an algebraic
method or a graphic method can solve this problem.

Figure 3.3 represents a good solution of this problem. Choose p; and
q; to locate C;. Locate Cyp by plotting a similar triangle. Draw a right
bisector for line segment C;Cy. Choose crank length R. Draw a circle with
center C; and radius R; this circle intersects the bisector at center point S.
Invert triangle A3B3S to position 2 to get point S3. Draw a circle with center
S and radius R; this circle intersects the right bisector for the line segment
SSg at point Dy, which is the circle point for phase 2 at position 2. D3 can be

found by plotting a similar triangle.
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Figure 3.3 Adjustable moving pivot 12-23

Similar to the problem in the last section, the three free choices of

parameters could be either P, Q, and R or py, g5, and R.

3.4 Positions 123-45
For the case of three positions in one phase, two positions in the other phase

with no position shared, the following equations should be satisfied:

(X; -P)2+ (Y, -Q)2=R2 (3.16)
Xz -P)2+(Yy-Q)2=R2 (3.17)
(X5-P)»2+ (Y;-Q)2=R2 (3.18)
(X4-P2+ (Y- Q2 =R2 (3.19)
X5 -P)2+ (Y5 - Q)2 =R2 (3.20)

Equation (2.2) for phase 1 takes the form of
X, = a; + p; cos 6; — q; sin 6; i=1,2,3 (3.21)
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Y; =b; + p; sin 6; + q; cos 6; i=1,2,3 (3.22)
and that for phase 2 is

X; = a; + pg cos 6; — g sin 6; i=4,5 (3.23)

Y; =b; + py sin 6; + qq cos 6; i=4,5 (3.24)

Seven parameters, P, Q, pj, q;, P2, g9, and R, are involved in five
equations. Thus, this problem can be solved with two free choices of
parameters, and has infinite solutions. Either an algebraic method or a
graphic method can solve this problem.

Figure 3.4 represents a good solution of this problem. Choose p; and q;
to locate C;. Locate C; and Cg by plotting similar triangles. Intersect two
bisectors for line segments C;C5 and C5C5 at center point S.

Invert point S from position 5 into position 4 to get point S;. Draw a
circle with center S passing through points C;, Cg, and C3. Draw a right
bisector for the line segment SSg; this bisector intersects the circle at point
D4, which is the circle point for phase 2 at position 4. Dy can be found by
plotting a similar triangle AgBgDs.

P and Q could also be chosen as the two free choices. As shown in
Figure 3.5, the center point S is inverted from position 2 and 3 into position 1
to get points Sy and S3. Intersect bisectors for line segments SS, and SoS3 at
point C,, which is the circle point at position 1 of phase 1. Locate Cy and C;
by plotting similar triangles.

In order to find a circle point for phase 2, draw a circle passing through
Cj, Cg, and C3 with the center point S. Invert point S from position 5 into
position 4 to get poini: Ss. Draw a right bisector for the line segment SSg; this
bisector intersects the circle at Dy, which is the circle point at position 4 of

phase 2. Dg can be found by plotting a similar triangle.
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Figure 3.4 Adjustable moving pivot 123—-45

Figure 3.5 Another good solution for adjustable moving pivot 123—45
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3.5 Positions 123-34
For the case of three positions in one phase, two positions in the other phase

with one position shared, the following equations should be satisfied:

(X; - P2 + (Y; - Q2 = R? (3.25)
(Xp - P)2 + (Yo - Q)2 = R2 (3.26)
(X3 - P)2 + (Y5 - Q)2 =R2 (3.27)
(X4 -P)22+ (Yy - Q2 =R2 (3.28)

Equation (2.2) for phase 1 takes the form of
X, = a; + pp cos 6; — q; sin 6; i=1,2,3 (3.29)
Y; =b; + p; sin 6; + q; cos 6; i=1,23 (3.30)
and that for phase 2 is
X; = a; + py cos O; — gg sin 6; i=3,4 (3.31)
Y; =b; + py sin 6; + qg cos 6; i=3,4 (3.32)

Seven parameters, P, Q, p;, 41, P2, 49, and R, are involved in five
equations. Thus, this problem can be solved with two free choices of
parameters, and has infinite solutions. Either an algebraic method or a
graphic method can to solve this problem.

Figure 3.6 represents a good solution of this problem. Choose p; and q;
to locate C;. Locate Cy and Cg3 by plotting similar triangles. Intersect two
bisectors for line segments C;Cy and C9C3 at center point S. Invert point S
from position 4 into position 3 to get point S,. Draw a circle passing through
Cj, Cy, and Cg with center S; this circle intersects the right bisector for the
line segment SS, at point D3, which is the circle point at position 3 of phase
2. D4 can be found by plotting a similar triangle A;B,D,.

P and Q could also be chosen as the two free choices of parameters
(Figure 3.7). Invert center point S from positions 2 and 3 into position 1 to
get points Sy and S3. Draw bisectors for line segments SS; and SoS3 to get



their intersection point C;, which is the circle point at position 1 of phase

Locate Cy and Cj3 by plotting similar triangles.

Figure 3.7 Another solution for adjustable moving pivot 123-34
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In order to find a circle point for phase 2, invert point S from position 4
into position 3 to get point S,. Draw a right bisector for the line segment
SSy; this bisector intersects the circle passing through C; and Cy at Dj,
which is the circle point at position 3 of phase 2.

3.6 Positions 123-456
3.6.1 Basic Equations
For the case of three positions in each of the two phases with no position

shared, the following equations should be satisfied:

(X;-P)2+(Y; -Q)2 =R2 (3.33)
(X5 -P)2 + (Y, - Q)2 =R2 (3.34)
(X3 -P)2+ (Y;-Q)2 =R2 (3.35)
(X4 -P2+ (Y -Q)2 =R2 (3.36)
(X5 -P)2 + (Y5 - Q)2 =R2 (3.37)
Xg-P)2+(Yg-Q)2 =R2 (3.38)
where
X; =a; + pj cos 8; —qp sin 6, (3.39)
Xy = ag + py cos 63 — qq sin 6y (3.40)
X3 = ag + pj cos 03 — q; sin 63 (3.41)
Y; =b; + p; sin 6; + q; cos 6; (3.42)
Yy = by + py sin 05 + q; cos 64 (3.43)
Y3 =bg + p; sin 63 + q; cos 63 (3.44)
and :
X4 =a4+ pgcos 0y —qysin 6 (3.45)
X5 = ag + pg cos 05 — qg sin Oy (3.46)
Xg = ag + pg cos O — qg sin O (3.47)

Y4 = h4 + p2 sin 94 + Q2 COS 64 (348)
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Y5 = bs + py sin 65 + q5 cos 05 (3.49)

Yg = bg + Py sin O + g5 cos B¢ (3.50)

Seven unknowns, P, Q, p;, q1, P2, 49, and R, are included in six
equations. Thus, the equations can be solved with one free choice of

parameter, and have infinite solutions.

3.6.2 Solutions at Poles

There are six rotation poles for six given positions in two phases, that is Py,
Py3, Pog, Pys, Pyg, and Psg. Generally, any one of them is a good center point
which satisfies the basic equations for the adjustable moving pivot problem
123-456.

Suppose six given positions are shown in Figure 3.8, and the rotation
pole Py (point S in Figure 3.8) is picked as the center point. Invert the
center point S from positions 5 and 6 into position 4 to get points Sg and Sg.
Draw two bisectors for line segments SSy and S5Sg and intersect them at
point D4, which is the circle point at position 4 of phase 2. D5 and Dg can be
found by plotting similar triangles.

Draw a circle passing through points Dy, Dg, and Dg with center S.
The radius of the circle is the crank length R. Invert center point S from
positions 2 and 3 into position 1 to get points S; and S3. Notice that S,
coincides with S, because S is the rotation pole for positions 1 and 2. Draw a
right bisector for line segment SSg; this bisector intersects the circle at C;,
which is the circle point at position 1 of phase 1.

This indicates that Pole P;5 satisfies the basic equations for the
adjustable moving pivot 123—456 problem and so do the rest 5 rotation poles.

Thus, in general, there is a solution at each of the six rotation poles.
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In order to find the solution set for the adjustable moving pivot 123-

456 problem, a numerical method will be used in the next section with the

solutions at poles as its initial values.
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Fig‘uré 3.8 A solution at pole P4 for adjustable moving pivot 123-456

3.6.3 Derivation of Equations

This section derives equations for the solutions at poles. Let us find the

solution at rotation pole Py,.

Eliminate R from equations (3.33) and (3.34), we have

Xo-PR2+ (Yo -Q)2=(X; -P)2 + (Y; - Q)2 (3.51)
Similarly,

(X3 -P2+(Y3-Q2=(X; ~-P)2 + (Y, - Q)2 (3.52)

X5-PR+(Y5-Q2=X,-P2+(Ys-Q)? (3.53)

Xe-P2+(Ys-Q2=X,-P)2+ (Y- Q)2 (3.54)
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Substitute equations (3.39), (3.40), (3.42), and (3.43) into equation (3.51), we
have
ag2 + by? + py2 + q2 + P2 + Q2 - 2Pa, ~ 2Qb, + sin 65 ( 2bgp; -
- 2a3q; + 2Pq; -~ 2Qp; ) + cos 85 ( 2a5p; + 2boq; - 2Pp; —2Qq; )
=a;2+b;2 +p;2 +q,2 + P2 + Q2 - 2Pa, - 2Qb; + sin 6; (2b;p; -

- 281Q1 + 2Pq1 - 2Qp1 ) + cos 91 ( 231}')1 + 2b1q1 - 2Pp1 - 2Qq1 )

(3.55)
collect terms in p; and q,, we get
Lisp; +Mj5q;+Ny2=0 (3.56)
Similarly,
Lizp;+Mj3q9;+Ny3=0 (3.57)
Lys pa + Mysqo + Nys =0 (3.58)
L4 P2 + Myg qo + Nyg=0 (3.59)
where
L9 = (~cos 6y + cos 65) P + (-sin 61 + sin 85) Q +
+ a; cos 0; — ap cos By + by sin 6, — by sin 6, (3.60)
Mg = (sin 8; — sin 85) P + (—cos 87 + cos 85) Q -
—aj sin 03 + ag sin 64 + by cos 6; — by cos 6, (3.61)
Nig = (-a; + ag) P+ (-b; + by) Q + (a2 + b2 — a2 -~ by2) / 2 (3.62)
Lj3 = (-cos 0; + cos 63) P + (-sin 6, + sin 63) Q +
+ aj cos 0; — ag cos 03 + by sin 8; — b3 sin 63 (3.63)
M;3 = (sin 0; — 5in O3) P + (~cos 01 + cos 63) Q ~
—ay sin 03 + ag sin 63 + by cos 6; — bg cos 63 (3.64)
Ny3 =(-a; + ag) P + (-b; + bg) Q + (a;2 + b;2 — ag2 - bs?)/ 2 (3.65)
L45 = (—cos 84 + cos 65) P + (—sin 64 + 5in 65) Q +
+ a4 cos 64 — ag cos 05 + by sin 64 — b sin 65 (3.66)

M5 = (sin 84 ~ sin 85) P + (—cos 64 + cos 65) Q -



~a4 sin 64 + ag sin 85 + by cos 84 — by cos 65
Ny5 = (-a4 + a5) P+ (-by + bs) Q + (842 + by2 - az2 - bg2) /2
L4g = (—cos 64 + cos 8g) P + (-sin 6,4 + sin 65) Q +

+ a4 cos B4 — ag cos Og + by sin 64 — bg sin O
Mg = (sin 8,4 — sin 6g) P + (—cos 64 + cos 6¢) Q —

—ay4 sin 64 + ag sin B¢ + by cos 64 — bg cos B¢

Nyg = (-a4 + ag) P+ (-by + bg) Q + (a2 + by - ag2 —bg?) / 2
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(3.67)
(3.68)

(3.69)

(3.70)
(3.71)

Simultaneous equations (3.58) and (3.59) can be used to solve for p,

and qy, while any of the poles P9, P13, and Py3 is picked as the center point

at which an initial solution is calculated. Similarly, p; and q; can also be

solved by simultaneous equations (3.56) and (3.57), while an initial solution

is calculated at poles Py, P4q, and Py
In the former case,
P2 = (Ngg Mys5 — Ny5 Myg) / (Liys Myg — Liyg My5)
92 = (Lyg Nys5 — Ly5 Nyg) / (L5 My — Liyg Mys5)
Solve for crank length R with equation (3.36)
R=[(Xs-P2+(Ys-Q2105
where X4 and Y, can be solved by equations (3.45) and (3.48).
Solve pj by equations (3.33), (3.39), (3.42), and (3.56)
p11=[-B+(B2-4AC)05]/(24A)
p1o=[-B-(B2-4AC)05]/(2A)
where p; ; and p;  are the first and second roots for p;, and
A=G2+E?
B=[2G(D-P)+ 2E(F-Q)]
C=(D-P2+(F-Q2-R2
D=a;+Njpsin6; /Mo

E = sin 91 - L12 CO0S 91 /M12

(3.72)
(3.73)

(3.74)

(8.75)
(3.76)

(3.77)
(3.78)
(3.79)
(3.80)
(3.81)
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F=b;~-Njocos8;/Mjs (3.82)
G =cos 8; + L158in 6, / Mo (3.83)
Two corresponding values of q; can be solved by the following two equations:
Q1,1 = (-L12 P11 ~ N3}/ My (3.84)
Q1,2 = (-L12 P12~ N39) / My (3.85)

Thus far, all seven unknown parameters have been determined. Note
that we solve p, and qq prior to solving p; and q;, because equations (3.56)
and (3.57) can not be used to solve p; and q; while the solution is calculated
at poles Py5, P13, and Py3. The geometric explanation is simple. No right
bisector can be constructed for two points which coincide with each other, and
inverting a rotation pole results in coincident points. Geometrically, each one
of equations (3.56) through (3.59) represents a right bisector.

Algebraically, the coefficients L5 and My, in equation (3.56) equal to
zero when Py is picked as the calculation point, which makes this equation
meaningless. Likewise, the coefficients L3 and M;3 also equal to zero while
solving at pole P3.

Similarly, we should solve p; and q; by equations (3.56) and (3.57)

prior to solving py and qo while calculating at poles P55, P4g, and Pgg.

3.6.4 More Solutions
We have six solutions at six poles so far. In order to find more solutions for
the adjustable moving pivot 123-456 problem, a numerical method similar to
that developed by Wilhelm [12] can be used to solve this problem.

Let Functions F; equal to the following equations derived from
equations (3.33) through (3.38) and equations (3.39) through (3.50)

F; = (a; + pj cos 6; — q; sin 6; — P)2 + (b; + p; sin 6; +
+qyc086;-Q2-R2=0 i=12,3 (3.86)
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F; = (a; + pg cos 6; — gy sin 6; - P)2 + (b; + pp sin 6; +
+Qgcos6;-Q)2-R2=0 i=4,5,6 (3.87)

Seven parameters are included in the above six equations. The
number of the parameters is reduced to six after assigning a value to R.
Substitute a solution at pole into above equations. All six equations should
be satisfied and equal to zero.

Suppose the value of R is increased or decreased by aR. The above six
equations will no longer be equal to zero. In order to satisfy the basic
equations of this problem, the values of the rest six parameters should be
increased or decreased properly by an increment or decrement to make the
six equations back to zero again. The modified values of the seven
parameters constitute a new solution point other than the pole point, but
pretty close to it.

The new solution point is used as a new initial point, and the new
values of the seven parameters are treated as the new initial values in the
next iteration of calculation to find another solution point which is close to it.

The solution points appear starting at each rotation poles in four
different directions. As shown in Figure 3.9, two groups of values of py, qj,
pg, and qg along with increment and decrement of R result in four branches
of curves at each pole of the sample problem.

Equations (3.86) and (3.87) consists of six equations, but we can also
think they are six functions to be solved for solutions every time R gets an
increment or decrement aR.

The Newton-Raphson Method has been used to get the solutions
numerically. The following simultaneous equations should be solved for the

numerical solutions:



e e

dP

dQ

—

= -2 (a; + pj cos 6; — q; sin 8,-P)

= -2 (b; + p; sin 6; + q; cos 6; - Q)

= 2 cos 6; (a; + py cos 8; —q; sin 6; - P) +

+ 2 sin 8; (b; + p; sin 6; + q; cos §; — Q)

= -2 sin 6; (a; + p; cos 6; — q; sin 6; = P) +

+ 2 cos 8 (b; + py sin 6; + q; cos 6; - Q)

aFl aFl aFl aFl aFl aFl
oP 0Q 9p1 891 oP2 942
dF, 8F, 98F, 8F, 8F, 8F,
oP 8Q 9p; 841 4Pz 0Q2
oFy aF3 dF; dF3 dF3; aFj
0P 98Q 9p; 891 4P2 48Qe
oF, o0F4 oF,y oF, 8F, aF,
dP 3Q 48p; 941 3P2 842
6F5 an an an 8F5 8F5
0P 0Q op; 691 4Pz daz
an‘ aFG aFG GFG BFG aFG
8P 06Q g4gp; 0691 8P2 44
where

aF;

oP

aF,

aQ

aF;

P

aF;

LAY

aF

d P2

8F o

ddsz

aF,

oP

i=1,2,3

= -2 (a; + pg c0s 6; — qg sin 6; — P)
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(3.88)

(3.89)
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g_g = -2 (b; + pg sin 6; + g, cos 6, — Q)
dF; .
Ps = 2 cos 6; (a; + py cos 6; — g, 65in 6; - P) +
+ 2 sin 6; (b; + py sin 6; + qq cos 6; — Q)
oF, , .
TS = -2 sin 6; (a; + p cos 6; — g sin 6; - P) +
2
+ 2 cos 8; (b; + pg sin 6; + gg cos 6; — Q)
% o
dP1
dF; .
— =0 1=4,5,6 (3.90)
aq)

Program MP_3_3.PAS is designed to find center points numerically
with solutions at all six poles as the initial solutions.

Figure 3.10 represents a good solution of a sample problem. A center
point S is chosen on the center point curve in the figure. The circle points C;
and E4 can be found by kinematic inversion. Circle points Cy, Cg, Eg, and Eg

can be found by geometric similarity.

As shown in Figure 3.10, circle points C and E for phases 1 and 2 are
two distinct points, and their positions C,, Cy, C3, E4, Es, and Eg lie on the
same circle with a unique center point S and radius R, which satisfies the
given requirement. This indicates the validity of both the method and the
program MP_3_3.PAS.

It is also found by inspection that Figure 3.10 is not only a solution of

the equations but also a good solution without order defect.
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3.7 Positions 123-345
For the case of three positions in each of the two phases with one position

shared, the following equations should be satisfied:

(X;-PR2+(Y;-Q)2=R? (3.91)

Xy -P)2 + (Yo -Q)2 =R? (3.92)

(X3-P2 + (Y3-Q)2=R2 (3.93)

X4-PR+(Y4-Q)2=R2? (3.94)

(X5-P)2+ (Y5-Q)2 =R2? (3.95)
where

X; = a; + p; cos 6, — qq sin 6;

Y; = b; + p; sin 6; + q; cos 6; i=1,2,3 (3.96)
and

X, = a; + py cos 6; — g sin 6;
Y;=b;+pysin®;+qocos8; i=34,5 (3.97)

Seven unknowns, P, Q, p;, 491, P2, g9, and R, are included in six
equations. Thus, the equation set can be solved with one free choice of
parameter, and has infinite solutions.

The discussion in section 3.6 also applies for this case with a little
modification. Similar to the program MP_3_3.PAS, the Turbo Pascal
program MP_3_3_1.PAS is designed to find good center points which satisfy
the basic equations above.

An example problem is shown in Figure 3.11, in which five prescribed
positions are drawn. The center points for problem MP_3_3_1 are displayed
by running program MP_3_3_1.PAS and calling user-defined AutoLISP
function PTS_+. Every point represented by a cross sign in the figure is a

good point which satisfies the basic equations.
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Figure 3.11 Center points for adjustable moving pivot 123-345
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A center point S is picked along the curve in Figure 3.12. The circle
points C; and E3 can be found by kinematic inversion for phase 1 and 2
respectively. The circle points for other positions C,, Cg, E4 and Eg are
found by means of geometric similarity.

As shown in the figure, circle points C and E for phases 1 and 2 are
two distinct points, and their positions Cj, Cg, C3, E3, E4, and Ej lie on the
same circle with a unique center point S and radius R, which satisfies the
given requirement. This indicates the validity of both the method and the
program MP_3_3_1.PAS.

It is also found by inspection that Figure 3.12 is not only a solution of

the equations but also a good solution without order defect.

3.8 Positions 1234-567
For the case of four positions in the first phase and three positions in the

second phase with no position shared, the following equations should be

satisfied:
(X; -P)2 +(Y;-Q)?=R2 (3.98)
(Xg-PR +(Y5-Q)2=R2? (3.99)
(X3-PR +(Y3-Q)2=R2 (3.100)
(X4-PR+(Y4-Q)2=R2 (3.101)
X5 -P)2 +(Y5-Q)2 =R2 (3.102)
(Xg - P2 + (Yg- Q)2 =R2 (3.103)
(X7-P)2 + (Y;-Q)2=R2 (3.104)

where

X, =a;+ p; cos 0; ~q; 5sin 6;
Y; =b; + p; sin 6; + q; cos 6; 1=1,23,4 (3.105)
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and
X, = a; + pg cos 6; — gy sin 6;
Y; =b; + py 5in 6, + g4 cos 6; 1=5,6,7 (3.106)

Seven unknowns, P, Q, p;, q;, Pg, 99, and R, are involved in seven
equations. The number of positions reaches its maximum value. Thus, the
equation set has no free choice of parameter.

Suppose seven given positions are shown in Figure 3.13. Plot center
points in the figure for positions 123-567 by means of Turbo Pascal program
MP_3_3.PAS and user-defined AutoLISP function PTS_+. Every center
point in the figure satisfies the basic equations of the MP 123-567 problem.

Plot center point curve in Figure 3.14 for positions 1234 by using the
Turbo Pascal Program CENT_PT.PAS. Figure 3.15 overlays Figure 3.13 with
Figure 3.14 to get the intersection points. A good center poirt for the
problem is found at the intersection point S of the two curves. Figure 3.16 is
an enlarged view in the vicinity of the intersection point.

Call user—defined AutoLISP function INVERT for both phases 1 and 2
to display the solution. As shown in Figure 3.15, C and E are distinct circle
points for phases 1 and 2 respectively. The circle with a center at the
unique center point S and radius R precisely passes through seven circle
points Cy, Cg, C3, C4, E5, Eg, and Eq, which satisfies the given requirement.
This indicates the validity of both the method and the programs.

Also, no order defect occurs in Figure 3.15 by inspection, which

indicates that it is a good solution.



Figure 3.13 Seven given positions and the center point curve for MP 123-
567

Figure 3.14 Center point curve for positions 1, 2, 3, and 4

40



41

Figure 3.15 A solution for problem MP 1234-567
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intersection point picked

/

center points
MP123-567

Figure 3.16 An enlarged view at an intersection point of center point curves

MP 123-567 and CENT_PT 1234

3.9 Positions 1234-456

For the case of four positions in the first phase and three positions in the

second phase with one position shared, the following equations should be

satisfied:
(X;-P2+(Y;-Q)?2=R2
Xp-PR + (Yo - Q)2 =R2
(X3 -P2 +(Y3-Q)2=R2
Xy-PR+(Y4-Q2=R2
(X5 -P2 + (Y5 - Q)2 =R2

(3.107)
(3.108)
(3.109)
(3.110)
(3.111)
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Xg—-P)2+ (Yg-Q)2=R2 (3.112)
where

X; = a; + p; cos 6; ~ q; 5in 6;

Y; = b, + p; sin 6; + q; cos 6; i=12,34 (3.113)
and

X, = a; + py cos 6; — qg 5in 6;
Y; =b; + py sin 6; + g4 cos 6; i=4,5,6  (3.114)

Seven unknowns, P, Q, p;, 41, P2, g2, and R, are involved in seven
equations. The number of positions have reached its maximum value. Thus,
the number of free choice of parameter is zero.

Suppose seven given positions are shown in Figure 3.17. Plot center
points in the figure for positions 123-456 by means of Turbo Pascal program
MP_3_3.PAS and user-defined AutoLISP function PTS_+. Every center
point in the figure satisfies the basic equations of the MP 123-456 problem.

Plot center point curve in the same figure for positions 1234 by using
the Turbo Pascal program CENT _PT.PAS. A good center point for the
problem is found at the intersection point S of the two curves. Figure 3.18 is
an enlarged view in the vicinity of the intersection point.

Call user—defined AutoLisp function INVERT for both phases 1 and 2
to display the solution at S. As shown in Figure 3.17, C and E are distinct
circle points for phases 1 and 2 respectively. The circle with a center at the
unique center point S and radius R precisely passes through seven circle
points C;, Cy, Cg, C4, Ey4, E5, and Eg, which satisfies the given requirement.
This indicates the validity of both the method and the programs.

Also, no order defect occurs in Figure 3.17 by inspection, which

indicates that it is a good solution.
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Chapter 4

Two Phase Adjustable Moving
Pivot and Crank Length Problems

4.1 Introduction
This chapter deals with the problem of adjustable moving pivot and crank
length. In the last chapter, the adjustable parameters are p and q, which are
the relative coordinates of the circle point. In the problem of this chapter,
one more adjustable parameter, the crank length R is added. Thus, eight
parameters are needed to be determined, they are P, Q, py, q;, P2, 92, Ry, and
Ro.

Similar to the last chapter, only one side of an adjustable four-bar
linkage will be considered in this chapter. The technique of adding one more
crank to complete a linkage design will be shown in chapter 8.

Twelve adjustable moving pivot and crank length problems listed in
Table 4.1 are solved in this chapter. The minimum number of prescribed
positions included in one phase is considered to be two. The maximum
number of prescribed positions included in one phase is five, which is the
maximum allowable number. The last four problems in the table deal with
eight prescribed positions, which is the maximum allowable value for the

problem. The number of shared positions is zero or one.

4.2 Positions 123456
For the case of three positions in each of the two phases with no position

shared, the following equations should be satisfied:
(X, -P2 + (Y, -Q)2=R;2 (4.1)

46
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Xo-PR + (Yy-Q)2 =R;2 (4.2)
(X3-PR+(Y3-Q)»2=R,2 (4.3)
Xy -PR+ (Y, -QR=Ry2 (4.4)
X5 - PR+ (Y5 - QP =Ry2 (4.5)
Xg - P2+ (Yg - Q)2 =Ry2 (4.6)

Equation (2.2) for phase 1 takes the form of
X; =a; + pj cos 6; —qq sin 6;
Y;=b; + p; sin 6; + q; cos 6; i=1,2,3 4.7)

and that for phase 2 is
X, = a; + py cos 6; — qo sin 6;

Table 4.1 Adjustable moving pivot and crank length

positions number of number of number of

ph.1 ph.2 shared pos. unknowns free choices

1,2,3 4,5,6 0 6 2

1,2,3 3,4,5 1 6 2

1,2,3,4 5,6 0 6 2

1,2,34 4,5 1 6 2

1,2,3,4 5,6,7 0 7 1

1,2,3,4 45,6 1 7 1

1,2,3,4,5 6,7 0 7 1

1,2,3,4,5 5,6 1 7 1

1,2,3,4 5,6,7,8 0 8 0

1,2,34 4,5,6,7 1 8 0

1,2,34,5 6,7,8 0 8 0

1,2,3,4,5 5,6,7 1 8 0
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Y; = b; + p, sin 6; + qg cos 6; i=4,5,6 (4.8)

Eight parameters, P, Q, p;, q;, P2, g2, R;, and Ry, are involved in six
equations. Thus, the equations can be solved with two free choices of
parameters, and have infinite solutions. Either an algebraic method or a
graphic method can solve this problem.

The two free choices could be the absolute coordinates of the center
point (P, Q), the relative coordinates of the circle point of phase 1 (py, q;), or
that of phase 2 (py, qo).

Suppose six prescribed positions are shown .in Figure 4.1, and the
relative coordinates of the circle point C; are chosen as the two free choices.
Find Cy and C3 by geometric similarity after locating C;. Intersect right
bisectors for line segments C;Cy and CoCg at point S, which is the center
point. Invert point S from positions 5 and 6 into position 4 to get points Sg
and Sg. Intersect right bisectors for line segments SSg and S5S¢ at E4, which
is the circle point at position 4 of phase 2. Eg and Eg can be found by

geometric similarity.

4.3 Positions 123-345
For the case of three positions in each of the two phases with one position

shared, the following equations should be satisfied:

(X1 -P2+(Y;-Q2=R,;2 (4.9)
Xy -P32 + (Y5 -Q)2=R,2 (4.10)
(X3-PR +(Y3-Q)2=R,2 (4.11)
(X3-P)2 + (Y3-Q)2=Ry2 (4.12)
(X4 -PP + (Yq4- Q)2 =Ry2 (4.13)
(X5 -P2 + (Y5 - Q)2 = Ry? (4.14)

Equation (2.2) for phase 1 takes the form of
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X, = a; + pj cos 6, — qy sin 6;

Y; =b,; + p; sin 6; + q; cos 6; i=12,3 (4.15)
and that for phase 2 is

X; = a; + py cos 6; — g sin 6,

Y;=b;+pysin6;+qgcos®; i=345 (4.16)

Eight parameters, P, Q, py, 43, P2, 4o, R;, and Ry, are involved in six
equations. Thus, the equations can be solved with two free choices of
parameters, and have infinite solutions. Either an algebraic method or a
graphic method can solve this problem.

The two free choices could be the absolute coordinates of the center
point (P, Q), the relative coordinates of the circle point of phase 1 (p, 1), or
that of phase 2 (ps, g9).

Suppose five prescribed positions are shown in Figure 4.2. The
coordinates of the center point S are chosen as the two free choices in this
case, although it can be solved in the same way as that for the problem MC
123-456 in the previous section. '

Choose center point S on the plane. Invert point S from positions 2
and 3 into position 1 to get points Sp and S3. Intersect right bisectors for line
segments SSy and S35 at point C;, which is the circle point at position 1. Co
and C3 can be found by geometric similarity.

Similarly, invert point S from positions 4 and 5 into position 3 to get
points S4 and S;. Intersect right bisectors for line segments SS; and S;Sg at
point Eg, which is the circle point at position 3 of phase 2. E4 and Ej can be

found by geometric similarity.



Figure 4.2 Adjustable moving pivot and crank length 123-345
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4.4 Positions 1234-56
For the case of four positions in the first phase and two positions in the

second phase with no position shared, the following equations should be

satisfied:
X;-P2+(Y;-Q?2=R,2 (4.17)
(Xg~-P2 +(Yy - Q)2 =R;2 (4.18)
(X3-P2+(Y3-Q2=R;2 (4.19)
X4~-P)2+(Y,-Q?2=R,;2 (4.20)
X5 -P)2+ (Y5 - Q)2 = Ry2 (4.21)
(Xg-P2+ (Y- Q)2 = Ry2 (4.22)

Equation (2.2) for phase 1 takes the form of

X; =a; + pj cos B, —qq sin 6;

Y; =b; + p; sin 6; + q; cos 6, i=1234 (4.23)
and that for phase 2 is

X, =a;+ pycos ;- gy sin 6;

Y; = b; + pg sin 6; + gy cos 6; i=5,6 (4.24)

Eight parameters, P, Q, py, 43, P2, g2, Ry, and Ro, are involved in six
equations. Thus, the equations can be solved with two free choices of
parameters, and have infinite solutions. Either an algebraic method or a
graphic method can solve this problem.

Suppose six prescribed positions are shown in Figure 4.3. Plot the
center point curve for positions 1, 2, 3, and 4 by means of program
CENT_PT.PAS [12], and choose a center point S on it. Locate the circle
points C;, Cy, Cg, and C, by kinematic inversion and geometric similarity.
This is done by calling a user-defined AutoLISP function INVERT. Invert

point S from position 6 into position 5 to get point Sg. Draw a right bisector
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for line segment SSg. Pick a point E5 on the bisector as the circle point for
position 5. Find Eg by geometric similarity.

The first free choice of parameter in the above solution steps is P, the
X coordinate of center point S, and the second free choice is R,, the crank

length for phase 2.

4.5 Positions 1234-45
For the case of four positions in the first phase and two positions in the

second phase with one position shared, the following equations should be

satisfied:
(X;-P2+(Y;-Q)2=R,2 (4.25)
X3 -P22 +(Yo—-Q)2=R,? (4.26)
(X3 -P)2 + (Y3-Q)2=R;2 (4.27)
X4-P)2+(Y4-Q2=R;2 (4.28)
(X4-P)2+ (Y4-Q)2Z=Ry2 (4.29)
(X5 -P)2 + (Y5-Q)2 = Ry?2 (4.30)

Equation (2.2) for phase 1 takes the form of

X, = a; + p; cos 6; — q; sin 6,

Y; =b; + p; sin 6; + q; cos 6; i=1234 (4.31)
and that for phase 2 is

X; = a; + pg cos 6; — qy sin 6;

Y; =b; + py sin 6; + qq cos 6; i=45 (4.32)

Eight parameters, P, Q, p;, q;, Pg2, 92, Ry, and Ry, are involved in six

equations. Thus, the equations can be solved with two free choices of
parameters, and have infinite solutions. Either an algebraic method or a

graphic method can solve this problem.
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Five prescribed positions and a solution for this problem are shown in
Figure 4.4. The solution steps for this problem are similar to that in the

last section.

4.6 Positions 1234-567
For the case of four positions in the first phase and three positions in the

second phase with no position shared, the following equations should be

satisfied:
X;-P2+(Y;-Q?2=R;2 (4.33)
(Xg -P2 + (Y- Q)2 =R,;2 (4.34)
(X3~-PR+(Y3-Q)2=Ry2 (4.35)
(X4 -PR+ (Y4-Q)2 =R;2 (4.36)
(X5 - P)2 + (Y5~ Q)2 = Ry? (4.37)
(Xg-P)2 + (Yg - Q)2 = Ry2 (4.38)
(X7-P2+(Y;-Q)2 =Ry? (4.39)

Equation (2.2) for phase 1 takes the form of
X; = a; + p; cos 6; — q; sin 6;
Y; =b; + p; sin 6; + q; cos 6; i=1,234 (4.40)
and that for phase 2 is
X, = a; + py cos 6; ~ g, sin 6
Y; =b; + ps sin 6; + g, cos 6; i=5,6,7 (4.41)
Eight parameters, P, Q, p;, q;, P2, 42, R;, and Ry, are involved in seven
equations. Thus, the equations can be solved with one free choice of
parameters, and have infinite solutions.
Suppose seven prescribed positions are shown in Figure 4.5. Plot the
center point curve for positions 1, 2, 3, and 4 and choose a center point S on

it. Locate the circle points C;, Cy, C3, and C4 by kinematic inversion and
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geometric similarity. This is done by calling a user-defined AutoLISP
function INVERT. Invert point S from positions 6 and 7 into position 5 to
get points Sg and S;. Intersect right bisectors for line segments SSg and SgS,
at point Eg, which is the circle point at position 5. Circle points Eg and E,

can be found by geometric similarity.

1557, LSS
Ae

B

Figure 4.5 Adjustable moving pivot and crank length 1234-567
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4.7 Positions 1234456
For the case of four positions in the first phase and three positions in the

second phase with one position shared, the following equations should be

satisfied:
(X;-PR +(Y;-Q)2 =R;2 (4.42)
Xz -P2 + (Yo-Q)2=R,y2 (4.43)
(X3 - PR + (Y3~ Q)2 =R;2 (4.44)
X4 -P2+(Y4-Q2=R,2 (4.45)
(X4 -P)2 + (Y - Q)2 =Ry2 (4.46)
(X5 -P)2 + (Y5 - Q)2 = Ry? (4.47)
(Xg - P2 + (Yg - Q)2 = Ry2 (4.48)

Equation (2.2) for phase 1 takes the form of

X;=a; + py cos 6; — q; sin 6;

Y; =b; + p; sin 6; + q; cos 6; i=1234 (4.49)
and that for phase 2 is

X; = a; + py cos 6; — qq 5in 6;

Y; =b; + p, sin 6; + g5 cos 6; i=4,56 (4.50)

Eight parameters, P, Q, py, 43, P2, 92, Ry, and Ry, are involved in seven
equations. Thus, the equations can be solved with one free choice of
parameters, and have infinite solutions.

Suppose seven prescribed positions are shown in Figure 4.6. Plot the
center point curve for positions 1, 2, 3, and 4 and choose a center point S on
it. Locate the circle point C; by kinematic inversion. Find C,, C3, and C4by
geometric similarity. Invert point S from positions 5 and 6 into position 4 to
get points Sy and Sg. Intersect right bisectors for line segments SS; and S5Sg
at point E4, which is the circle point at position 4 of phase 2. Circle points

E;5 and Eg can be found by geometric similarity.



Figure 4.6 Adjustable moving pivot and crank length 1234-456
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4.8 Positions 12345-67
For the case of five positions in the first phase and two positions in the

second phase with no position shared, the following equations should be

satisfied:
(X;-P2+(Y;-Q?2=R,2 (4.51)
(X - P2 + (Yo - Q)2 =R,2 (4.52)
(X3 -PR2+(Y3-Q)2=R;2 (4.53)
X4-PR+ (Y, -Q2=R;2 (4.54)
(X5 - P2+ (Y5-Q)2 =R,2 (4.55)
(Xg - P2+ (Yg - Q)2 = Ry2 (4.56)
(X7 -PP2+ (Y7-Q2 =Ry2 (4.57)

Equation (2.2) for phase 1 takes the form of

X; = a; + p; cos 6; ~ q; sin 6;

Y; =Db; + p; sin 6; + q; cos 6; i=1,2,34,5 (4.58)
and that for phase 2 is

X; = a; + pg cos 6; — qg sin 6;

Y; =b; + py sin 6; + qq cos 6; i=6,7 (4.59)

Eight parameters, P, Q, py, 43, P2, 4o, Ry, and Ry, are involved in seven
equations. Thus, the equations have one free choice of parameter.

Suppose seven prescribed positions are shown in Figure 4.7. Plot two
center point curves: one for positions 1, 2, 3, and 4, another one for positions
1, 2, 4, and 5 as shown in the figure. Try to pick a intersection point S of the
two curves as the center point. Invert point S from positions 2, 3, 4, and 5
into position 1 by means of kinematic inversion to find point C;, which is the
circle point at position 1. Find circle points Cy, Cg, C4, and Cj by geometric
similarity. As shown in the figure, no order defect occurs for the five

positions of phase 1, which indicates that it is a good solution.
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For the second phase, invert point S from position 7 into 6 to get point
Sq. Plot the right bisector for the line segment SS;. Any point on the bisector
satisfies the basic equations of the problem. Now it is time to use the only
free choice of parameter. Choose a crank length R, for phase 2. Draw a circle
with center S and radius equal to Rp; this circle intersects the bisector at
point Eg, which is the circle point at position 6 of phase 2. E; can be found by

geometric similarity.

CENT 1245

CENT 1234

Figure 4.7 Adjustable moving pivot and crank length 12345-67
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There are four different combinations of the position numbers in which

the center point curves can be plotted. They are 1234, 1235, 1245, and 1345.

Note that position number 1 should be included, because plane number 1 is

our working plane, everything is inverted into position 1 and the circle point

at position 1 is our goal of this solution step.

4.9 Positions 12345-56

For the case of five positions in the first phase and two positions in the

second phase with one position shared, the following equations should be

satisfied:
(X;-P2+(Y;-Q)2 =R,2
(Xg-PP + (Yo - Q)2 =R,2
X3-P2 +(Y3-Q)2 =R,2
(X4-PP2+(Y,4-Q2=R,2
X5 -P)2+(Y5-Q)2 =R,;2
(X5 - P2+ (Y5 - Q)2 =Ry2
Xg-P)22 + (Y- Q)2 =Ry2

Equation (2.2) for phase 1 takes the form of

(4.60)
(4.61)
(4.62)
(4.63)
(4.64)
(4.65)
(4.66)

X, = a; + p; cos 6; - q; sin 6;

Y; =b; + p; sin 6; + q; cos 6

and that for phase 2 is

; i=1234,5 (4.67)

1

X, = a; + pg cos ; — qq sin 6;
Y;=b;+py8in6; +qycos8; i=5,6 (4.68)

Eight parameters, P, Q, py, 41, P2, 42, Ry, and Ry, are involved in seven

equations. Thus, the equations have one free choice of parameter.
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Suppose six prescribed positions are shown in Figure 4.8. Since the
five prescribed positions of phase 1 are the same as that for the example in
the last section, the work for phase 1 is the same as that in Figure 4.7.

The work for the second phase is similar to that for the last example.
Invert center point S from position 6 into position 5 to get Sg. Draw a right
bisector for line segment SSg. Pick a circle point Ej for position 5 of phase 2

on the bisector. Find Eg by geometric similarity.
{

CENT 1245

CENT 1234

Figure 4.8 Adjustable moving pivot and crank length 12345-56
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4.10 Positions 1234-5678
For the case of four positions in each of the two phases with no position

shared, the following equations should be satisfied:

X;-P2+ (Y, -Q)2=R,2 (4.69)
Xz -P2 + (Yo - Q)2 =R,;2 (4.70)
(X3 -P2 + (Y3 - Q)2 =R,2 (4.71)
(X4 -P2+ (Y, -Q)2=R,2 (4.72)
X5-PR+(Y5-Q)2=R,2 (4.73)
(Xg-P2 + (Yg - Q2 =Ry2 (4.74)
(X7 -P2+(Y;-Q)2 =Ry2 (4.75)
(Xg -P)2 + (Yg - Q)2 =Ry2 (4.76)

Equation (2.2) for phase 1 takes the form of
X, = a; + p; cos 8, — q; sin 6;
Y; =b; + p; sin 8; + q; cos 6, i=1,2,34 (4.77)
and that for phase 2 is
X; = a; + pg cos 6; — qp sin 6;
Y,=b;+pysinf;+qycos8; i=5,6,78 (4.78)

Eight parameters, P, Q, p1, q;, P2, 43, Ry, and Ry, are involved in eight
equations. There is no free choice of parameter, and the number of positions
have reached the maximum value.

Suppose eight prescribed positions are shown in Figure 4.9. Plot two
center point curves: one for positions 1, 2, 3, and 4, another one for positions
5,6, 7, and 8. Pick a center point S at the intersection point of the two
curves. Invert S for phase 1 to get circle point C4, and for phase 2 to get
circle point E5. Find circle points Cg, C3, Cy4, Eg, Eq, and Eg by geometric

similarity. A good solution is found in the figure since no order defect occurs.
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4.11 Positions 12344567
For the case of four positions in each of the two phases with one position

shared, the following equations should be satisfied:

X;-P2+(Y,-Q)2 =R;2 (4.79)
Xy - P2+ (Yy - Q2 =R,2 (4.80)
X3-P2+ (Y3 -Q)2 =R,2 (4.81)
X, -P2+(Y,-Q?2=R,2 (4.82)
(X4 -PR + (Y, -Q)2 =Ry2 (4.83)
(X5 - P)2 + (Y5 - Q)2 = Ry? (4.84)
Xg-P2+(Yg-Q)2=Ry2 (4.85)
(X7 -P32+ (Y;-Q)2 =Ry? (4.86)

Equation (2.2) for phase 1 takes the form of
X; = a; + p; cos 6; — q; s5in 6;
Y; =b; + p; sin 6; + q; cos 6; i=12,34 (4.87)
and that for phase 2 is
X, = a; + py €0s 0; ~ g, sin 6,
Y;=b;+pysin6;+qpcos8; i=4,567 (4.88)

Eight parameters, P, Q, p1, q;, P2, 99, Ry, and R, are involved in eight
equations. There is no free choice of parameter, and the number of positions
reaches the maximum value.

Suppose eight prescribed positions are shown in Figure 4.10. Plot two
center point curves: one for positions 1, 2, 3, and 4, another one for positions
4, 5, 6, and 7. Pick center point S at the intersection point of the two curves.
Invert S for phase 1 to get circle point C;, and for phase 2 to get circle point
E4. Find circle points Cg, C3, C4, E5, Eg, and E; by geometric similarity. A

good solution is found in the figure since no order defect occurs.
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CENT 1234

Figure 4.10 Adjustable moving pivot and crank length 1234-4567

4.12 Positions 12345-678
For the case of five positions in the first phase and three positions in the
second phase with no position shared, the following equations should be
satisfied:
X;-P2+(Y;-Q)2=R,2 (4.89)
X -P)32 + (Yo - Q)2=R,2 (4.90)
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CENT 1245 --""""' CENT 1234

Figure 4.11 Adjustable moving pivot and crank length 12345-678

(X3 -P2 + (Y3 - Q)2 =R,2
Xy -P2+(Y,-Q)2=R,y2
X5-P2+(Y5-Q)2=R,2
(Xg - PR + (Yg - Q)2 = Ry2
X7 -PR2+ (Y;- Q)2 =Ry2
(Xg - P)2 + (Yg - Q)2 =Ry2
Equation (2.2) for phase 1 takes the form of

(4.91)
(4.92)
(4.93)
(4.94)
(4.95)
(4.96)
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X, = a; + pj cos 6; — gy sin 6;

Y; =b; + py sin 6; + q; cos 6; 1=1,234,5 (4.97)
and that for phase 2 is

X = g; + py cos 6; — g, 6in 6;

Y; =b; + ps sin 6; + qq cos 6; 1=6,7,8 (4.98)

Eight parameters, P, Q, py, q;, P2, 92, R1, and Ry, are involved in eight
equations. There is no free choice of parameter. The number of positions
reaches the maximum value, the number of positions in phase 1 also reaches
its maximum value.

Suppose eight prescribed positions are shown in Figure 4.11. Plot two
center point curves: one for positions 1, 2, 3, and 4, another one for positions
1, 2, 4, and 5. Pick center point S at the intersection point of the two curves.
Invert S for phase 1 to get circle point C;, and for phase 2 to get circle point
Eg. Find circle points Cy, Cg, Cy4, Cs, E4, and Eg by geometric similarity. A

good solution is shown in the figure since no order defect occurs.

4.13 Positions 12345-567
For the case of five positions in the first phase and three positions in the

second phase with one position shared, the following equations should be

satisfied:
X;-P2+(Y;-Q)2=R,2 (4.99)
Xy -PR + (Y3 - Q)2 =R,2 (4.100)
(X3-P)2 + (Y3- Q)2 =R,2 ’ (4.101)
Xy -PR+(Y4-Q2=R,;2 (4.102)
(X5 -P2 + (Y5 -Q)2 =R,2 (4.103)
X5 -P)2 + (Y5 - Q)2 = Ry2 (4.104)

(Xg - P)2 + (Yg - Q)2 = Ry2 (4.105)
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CENT 1245—-""' CENT 1234

Figure 4.12 Adjustable moving pivot and crank length 12345-567

(X7 -PR2 + (Y7-Q)2=Ry2 (4.106)
Equation (2.2) for phase 1 takes the form of

X, =a;+ pjcos 6;-q; sin6;

Y;=b;+p;sin6;+q;cos0; i=1,234,5 (4.107)
and that for phase 2 is

X, = a; + py cos 6; ~ g sin 6;

Y; =b; + py sin 6; + g5 cos 6; i=5,6,7 (4.108)
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Eight parameters, P, Q, p;, 41, P2, @9, Ry, and Ry, are involved in eight
equations. There is no free choice of parameter. The number of positions
reaches the maximum value, the number of positions in phase 1 also reaches
its maximum value.

Suppose eight prescribed positions are shown in Figure 4.12. Plot two
center point curves: one for positions 1, 2, 3, and 4, another one for positions
1, 2, 4, and 5. Pick center point S at the intersection point of the two curves.
Invert S for phase 1 to get circle point C;, and for phase 2 to get circle point
Es. Find circle points Cy, C3, Cy4, Cs, Eg and E4 by geometric similarity. A

good solution is shown in the figure since no order defect occurs.



Chapter 5

Three Phase Adjustable
Moving Pivot Problems

5.1 Introduction
Chapters 3 and 4 dealt with two phase problems. Three phase problems are
discussed in chapters 5, 6, and 7. This chapter deals with the problem of
three phase adjustable moving pivot. Nine parameters need to be
determined for this group of problems, which are P, Q, p;, 41, P2, 92, P3: 43,

and R. Thus, the maximum prescribed positions would be nine.

Table 5.1 Three phase adjustable moving pivot problems
positions shared unknowns free
ph.1 ph.2 ph.3 pos. choices
1,2 3,4 5,6 0 6 3
1,2 3,4 4,5 1 6 3
1,2,3 4,5 6,7 0 7 2
1,2,3 4,5 5,6 1 7 2
1,2,3 4,5,6 7,8 0 8 1
1,2,3 4,5,6 6,7 1 8 1
1,2,3 3,4,5 6,7 1 8 1
1,2,3 3,4,5 5,6 2 8 1
1,2,3 4,5,6 7,8,9 0 9 0
1,2,3 34,5 6,7,8 1 9 0
1,2,3,4 5,6,7 8,9 0 9 0

72
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Eleven problems listed in Table 5.1 are solved in this chapter. The
minimum number of prescribed positions included in one phase is two, and
the maximum number is four. The maximum total number of positions is
nine, which is the maximum possible value. Some problems with shared
positions are also included in the table.

The method for solving three phase adjustable moving pivot problems
is based on the method for two phase problems in chapter 3. In other words,
the method in chapter 3 could be extended for solving three phase problems

of the same kind.

5.2 Positions 12-34-56
For the case of two positions in each of the three phases with no position

shared, the following equations should be satisfied:

(X;-P)2 +(Y; -Q)2=R2 (5.1)
(X9 -P)2 + (Yo - Q)2 =R2 (5.2)
(X3 -P)2+(Y3-Q)2=R2 (5.3)
(X4-PR +(Y,-Q)2=R2 (5.4)
(X5~P)2 + (Y5-Q)2=R2 (5.5)
(Xg-P)2 + (Yg-Q)2 =R2 (5.6)

Equation (2.2) takes the form of
X; = a; + p; cos 6; — q; sin 6;
Y; = b; + p; sin 6; + q; cos 6; 1=12 (56.7)
X; = a; + py cos 0; — gy sin 6;
Y; = b; + pg sin 6; + gy cos 6; i=3,4 (5.8)
X =a; + p3 cos 6; —q3 sin 6;
Y; = b; + p3 sin 6; + g3 cos 6; i=5,6 (5.9)
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Nine parameters, P, Q, p;, 43, P2, 42, P3, 93, and R, are involved in six
equations. Thus, the equations can be solved with three free choices of
parameters, and have infinite solutions. Either an algebraic method or a
graphic method can solve this problem.

Suppose six prescribed positions are shown in Figure 5.1, and the
relative coordinates of the circle point C; are chosen as two free choices.
Find Cy by geometric similarity after locating C;. Draw a circle with center
C; and a chosen radius R; this circle intersects the right bisector for line
segment C;Cg at S, which is the center point. Invert point S from position 4
into position 3 to get point S,. Draw a circle passing through points C; and
C, with center S; this circle intersects the right bisector for the line segment
SS4 at Dg, which is the circle point at position 3 of phase 2. Find D4 by

geometric similarity.

Figure 5.1 Adjustable moving pivot 12-34-56
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Similarly, invert point S from position 6 into position 5 to get point Sg.
Draw a right bisector for line segment SSg; this bisector intersects the circle
at point E5, which is the circle point at position 5 of phase 3. Finally, Eg can

be found by geometric similarity.

5.3 Positions 12-34-45
For the case of two positions in each of the three phases with one position

shared, the following equations should be satisfied:

X;-P)2+(Y;-Q2=R2 (5.10)
(X5 -P)2 + (Yo-Q)2=R2 (5.11)
(X3-P)2+ (Y3-Q)?2=R? (5.12)
Xy -P2+ (Y4-Q)2=R2 (5.13)
(X5-P2 + (Y5- Q)2 =R2 (5.14)

Equation (2.2) takes the form of
X; = a; + py cos 6; — qq sin 6;
Y; =b; + pg sin 6; + q; cos 6; i=12 (5.15)
X, = a; + pg cos 6; — gg sin 6;
Y; = b; + py sin 6; + qq cos 6; i=34 (5.16)
X; = a; + pg €0s 6; — q3 sin 6;
Y; = b; + pg sin 6; + q3 cos 6; i=4,5 (5.17)

The method in the last section could also be used to solve this problem.
The position could be shared either by phases 1 and 2, or by phases 2 and 3.
Figure 5.2 represents an example for the latter case.

In this example, position 4 is shared by phases 2 and 3. The solution
steps for this problem are basically the same as that in the case of no shared
position except the last few steps for phase 3. As shown in the figure, invert
center point S from position 5 into position 4 to get point S5. Plot the right
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bisector for line segment SSg; this bisector intersects the circle passing

through points C; and Cy at E4, which is the circle point at position 4 of

phase 3.

Figure 5.2 Adjustable moving pivot 12-34—45

5.4 Positions 123-45-67

This problem needs three positions in phase 1 and two positions in both

phases 2 and 3 with no position shared. The following equations should be

satisfied:
(X, -PR+(Y,-Q?2=R2
Xy -P32 + (Yo - Q)2 =R2
(X3-P2+(Y3-Q2=R2?
X4 -PR+(Yy-Q)2 =R2
(X5 -P)2+(Y5-Q?2=R?

(5.18)
(5.19)
(5.20)
(5.21)
(5.22)
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(Xg-PP + (Yg-Q2=R? (5.23)

X7-P2+(Y;-Q?2=R? (5.24)
Equation (2.2) takes the form of

X, = a; + pj cos 6; — q sin 6;

Y; =b; + p; sin 6; + q; cos 6; 1i=1,2,3 (5.25)

X, = a; + pg cos 6; - qp sin 6;

Y; =b; + p3 sin 6; + g cos 6; i=4,5 (5.26)
X, = a; + pg cos §; — q3 sin 6;
Y; =Db; + p3 sin 6; + q3 cos 6; 1=6,7 (5.27)

Nine parameters, P, Q, p1, 91, P2, 92, P3; 93, and R, are involved in
seven equations. Thus, the equations can be solved with two free choices of
parameters, and have infinite solutions. Either an algebraic method or a
graphic method can solve this problem.

Suppose seven prescribed positions are shown in Figure 5.3, and the
relative coordinates of the circle point C; are chosen as the two free choices.
Find C; and C3 by geometric similarity after locating C;. Construct two
right bisectors for line segments CoC3 and C;Cy to get their intersection
point S, which is the center point. Construct a circle with center S passing
through circle points C4, Cy, and C3. The radius of the circle is the crank
length R.

Invert S from position 5 into position 4 to get point S5. Construct a
right bisector for line segment SSg; this bisector intersects the circle at Dy,
which is the circle point at position 4 of phase 2.

Similarly, Invert S from position 7 into position 6 to get point S
Construct a right bisector for line segment SSy; this bisector intersects the

circle at Dg, which is the circle point at position 6 of phase 3.
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Figure 5.3 Adjustable moving pivot 123-45-67

5.5 Positions 123-45-56

This problem needs three positions in phase 1 and two positions in both

phases 2 and 3 with one position shared by phases 2 and 3. The following

equations should be satisfied:
X;-PR2+(Y;-Q)?2=R2
Xy - P2 + (Yo - Q)2 = R2
(X3-PR+(Y3-Q)?2=R2
(X4 -P2+(Y,-Q)2=R2
(X5 -P2 + (Y5-Q)2=R2
Xg-P)2 + (Yg- Q2 =R2

Equation (2.2) takes the form of
X;=a; + p;j cos §; — q; sin 6;
Y; =b; + p; sin 6; + q; cos 6;

i=1,2,3

(5.28)
(5.29)
(5.30)
(56.31)
(5.32)
(5.33)

(5.34)
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J_SSS _LSSs

Figure 5.4 Adjustable moving pivot 123-45-56

X, = a; + py cos 6; — qg sin 6;
Y; =b; + py sin 6; + g5 cos 6 i=4,5 (5.35)
X = a; + p3 cos 6; — q3 sin 6;
Y; =b; + p3 sin 6; + q3 cos 6 i=5,6 (5.36)
In the example of Figure 5.4, position 5 is shared by phases 2 and 3.
The solution steps for this problem are basically the same as that in the case
of last section except the last few steps for phase 3. As shown in the figure,
invert center point S from position 6 into position 5 to get point Sg. Plot a
right bisector for line segment SSg; this bisector intersects the circle passing
through points C;, C,, and C3 at E5, which is the circle point at position 5 of
phase 3.
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5.6 Positions 123-456-78
This problem needs three positions in both phases 1 and 2, and two positions

in phase 3 with no position shared. The following equations should be

satisfied:
(X;-PP+(Y;-Q)2=R2 (5.37)
Xy -P2 +(Yo-Q)2=R2 (5.38)
(X3-P)P+(Y3-Q)?2=R? (5.39)
(X4 -PP+(Y4-Q)2=R? (5.40)
(X5-P)2 + (Y5-Q)2=R2 (5.41)
(Xg- P2+ (Yg-Q)2=R2 (5.42)
(X7 -P)2+ (Y;-Q)2=R2 (5.43)
(Xg - P)2 + (Yg - Q)2 = R2 (5.44)

Equation (2.2) takes the form of
X; = a; + pj cos 6; — q; sin 6;
Y; = b; + p; sin 6; + q; cos 6; i=1,2,3 (5.45)
X;=a; + pg cos 6; — qq sin 6;
Y; =b; + pg sin 6; + qq cos 6; i=4,5,6 (5.46)
X;=a; + p3cos 6; —qz sin 6;
Y; =b; + p3 sin 6; + q3 cos 6; i=17,8 (5.47)

Nine parameters, P, Q, p;, 43, P2, 4o, P3, d3, and R, are involved in
eight equations. Thus, the equations can be solved with one free choice of
parameter, and have infinite solutions. )

Any solution for the two phase adjustable moving pivot problem MP
123-456, which has been solved in chapter 3 is a solution for the problem
123-456-78.

Suppose eight prescribed positions and the center points for the two

phase problem MP 123456 are shown in Figure 5.5. A good center point S
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is picked on the curve, and the circle points C;, Cy, C3, Dy, D5, and D¢ are
found as shown.

The next goal is to find a circle point for positions 7 and 8, so that the
center point S and the crank length R remain the same as that for phases 1
and 2. That is, the circle points E; and Eg should lie on the circle passing
through circle points Cy, Cy, C3, Dy, D5, and Dg.

Invert center point S from position 8 into position 7 to get point Sg.
Plot a right bisector for line segment SSg; this bisector intersects the circle at
point E-, which is the circle point at position 7 of phase 3. Finally, Eg can be

found by geometric similarity.

5.7 Positions 123-456-67
This problem needs three positions in both phases 1 and 2, and two positions
in phase 3 with one position shared by phases 2 and 3. The following
equations should be satisfied:

(X;-P)2+(Y;-Q)2=R2 (5.48)
(Xg-P)2 + (Yy-Q)2 = R2 (5.49)
(X3-P)P+(Y3-Q)2=R? (5.50)
X4-P)2+ (Y, -Q)2=R2 (5.51)
(X5 -P2 + (Y5 - Q)2 =R? (5.52)
(Xg-P32+ (Yg- Q2 =R? (5.53)
X7-P)2 +(Y;-Q)2 =R2 (5.54)

Equation (2.2) for phase 1 takes the form of
X; = a; + pj cos 6; — qq sin 6;
Y;=b;+p;sin6;+qycos8; i=123 (5.55)
X; = a; + pp cos 6; — qg sin 6;
Y;=bj+pysin®;+qocos8; i=4,56 (5.56)
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X, = a; + p3 cos 6, — g3 sin 6;
Y;=b;+pgsin®;+qzcos®; i=6,7 (6.57)

Nine parameters, P, Q, p;, 41, P2, 92, P3, 43, and R, are involved in
eight equations. Thus, the equations can be solved with one free choice of
parameter, and have infinite solutions.

Any solution for the two phase adjustable moving pivot problem MP
123-456, which has been solved in chapter 3 is a solution for the problem MP
123-456-67. The solution steps are similar to that for the problem in the last
section.

Suppose eight prescribed positions and the center points for the two
phase problem MP 123456 are shown in Figure 5.6. A good center point S
is picked on the curve, and the circle points C;, Cy, C3, Dy, D5, and Dg are
found as shown.

The next goal is to find a circle point for positions 6 and 7, so that the
center point S and the crank length R remain the same as that for phases 1
and 2. That is, the circle points Eg and E should lie on the circle passing
through circle points C;, Cs, C3, Dy, D5, and Dg.

Invert center point S from position 7 into position 6 to get point S,.
Plot a right bisector for line segment SS,; this bisector intersects the circle at
point Eg, which is the circle point at position 6 of phase 3. Finally, E; can be

found by geometric similarity.

5.8 Positions 123-345-67
This problem needs three positions in both phases 1 and 2, and two positions
in phase 3 with one position shared by phases 1 and 2. The following

equations should be satisfied:
X;-P2+(Y,-Q)2=R2? (5.58)
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(X5 -P)2 + (Y, - Q)2 =R2 (5.59)
(X3-P)2+(Y5-Q)2=R? (5.60)
(X, -P2+(Y,-Q)2=R2 (5.61)
(X5 -PR + (Y5 -Q)2=R? (5.62)
(Xg - P32 + (Ys - Q)2 =R2 (5.63)
(X7 -P)2+ (Y;-Q)2=R? (5.64)

Equation (2.2) takes the form of
X; =a; + py cos 6; — q; sin 6;
Y; =b; + p; sin 6; + q; cos 6; i=1,2,3 (5.65)
X, = aj + pg cos 6; ~ q sin 6;
Y; = b; + pg sin 6; + g5 cos 6; i=3,4,5 (5.66)
X = a; + p3 cos 6; — q3 sin 6;
Y; =b; + pg sin 6; + g3 cos 6; i=6,7 (5.67)

Nine parameters, P, Q, p;, 43, P2, 42, P3, 43, and R, are involved in
eight equations. Thus, the equations can be solved with one free choice of
parameter, and have infinite solutions.

Any solution for the iwo phase adjustable moving pivot problem MP
123-345, which has been solved in chapter 3 is a solution for the problem MP
123-345-67. The solution steps are similar to that for the problem in the last
section.

Suppose seven prescribed positions and the center points for the two
phase problem MP 123-345 are shown in Figure 5.7. A good center point S
is picked on the curve, and the circle points C;, Cy, C3, D3, Dy, and Dy are
found as shown.

The next goal is to find a circle point for positions 6 and 7, so that the
center point S and the crank length R remain the same as that for phases 1
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and 2. That is, the circle points Eg and E; should lie on the circle passing
through circle points C,, C3, C3, D3, Dy, and D,

Invert center point S from position 7 into position 6 to get point S-.
Plot a right bisector for line segment SS;; this bisector intersects the circle at
point Eg, which is the circle point at position 6 of phase 3. Finally, E; can be

found by geometric similarity.

5.9 Positions 123-345-56
This problem needs three positions in both phases 1 and 2, and two positions
in phase 3 with one position shared by phases 1 and 2, and another position

shared by phases 2 and 3. The following equations should be satisfied:

X;-P)2+(Y;-Q)?2=R2 (5.68)
(X -P)2 + (Yq-Q)2 =R2 (5.69)
(X3-P)2 +(Y3-Q)2=R2 (5.70)
X4 -P)2+(Yy-Q)2=R2 (5.71)
(X5 - P)2 + (Y5-Q)2 =R2 (5.72)
Xg-P)2+(Yg-Q)2=R2 (5.73)

Equation (2.2) takes the form of
X;=a;+p; cos 6;,—q; sin 6;
Y; =b; + p; sin 6; + q1 cos 6; i=1,2,3 (5.74)
X; = a; + pg cos 8; — go sin 6;
Y; = b; + pg sin 6; + g5 cos 6; i=34,5 (5.75)
X, = a; + p3 cos 6; — q3 sin 6;
Y;=b;+p3sin®;+qzcos8; i=5,6 (5.76)
Nine parameters, P, Q, p;, q1, Ps, 42, P3, 93, and R, are involved in
eight equations. Thus, the equations can be solved with one free choice of

parameter, and have infinite solutions.
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Any solution for the two phase adjustable moving pivot problem MP
123-345, which has been solved in chapter 3 is a solution for the problem MP
123-345-56. The solution steps are similar to that for the problem in the last
section.

Suppose seven prescribed positions and the center points for the two
phase problem MP 123-345 are shown in Figure 5.8. A good center point S
is picked on the curve, and the circle points C,, Cy, C3, D3, Dy, and Dy are
found as shown.

The next goal is to find a circle point for positions 5 and 6, so that the
center point S and the crank length R remain the same as that for phases 1
and 2. That is, the circle points E5 and Eg should lie on the circle passing
through circle points Cq, Cg, C3, Dg, Dy, and Dy,

Invert center point S from position 6 into position 5 to get point Sg.
Plot a right bisector for line segment SSg; this bisector intersects the circle at
point E;, which is the circle point at position 5 of phase 3. Finally, Eg can be

found by geometric similarity.

5.10 Positions 123-456-789
This problem needs three positions in phase 1 as well as phase 2 and phase 3

with no shared position. The following equations should be satisfied:

(X;-P2 +(Y;-Q)2=R2 (5.77)
Xy -P)2 + (Y5~ Q)2 =R2 (5.78)
X3-PR+(Y3-Q)»2=R2 (5.79)
X4-PP+(Y,-Q2=R2 (5.80)
(X5 -PR2+ (Y5 - Q)2 =R2 (5.81)
(Xg - PR+ (Yg- Q)2 =R2 (5.82)

X7-P)2+(Y;-Q?2=R2 (5.83)
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(Xg-PP2+(Yg-Q)2=R? (5.84)
(X9 - P2 + (Yg - Q)2 = R? (5.85)
Equation (2.2) takes the form of
X; = a; + p; cos 6; — q; sin 6;
Y; =b; + p; sin 6; + q; cos 6; i=1,2,3 (5.86)
X, = a; + py cos 6; — qg sin 6;
Y,=b;+pysin6; +qycos8; i=4,5,6 (5.87)
X; = a; + p3 cos 0; — q3 sin 6,
Y; =b; + p3 sin 8; + q3 cos 6; i=1789 (5.88)

Nine parameters, P, Q, p;, q;, P2, 42, P3, 93, and R, are involved in nine
equations. Thus, the equations have no free choice of parameter.

Plot center point curves MP 123-456 and MP 123-789 as shown in
Figure 5.9 by means of the method developed in chapter 3. The solution, if it
exists, should be at the intersection point of the center point curves MP 123-
456 and MP 123-789. A good center point is found at the intersection point S
in Figure 5.9. Figure 5.10 is an enlarged view at the vicinity of the
intersection point S.

Invert center point S from positions 2 and 3 into position 1 to get circle
points C;, Cg, and C3. Similarly, locate circle points D4, D5, and Dg for phase
2, and circle points E4, Eg, and Eg for phase 3.

Notice that in the particular example shown in Figure 5.9, the crank
rotates counterclockwise for positions 1 through 7 and then clockwise for
positions 8 and 9.

As shown in the figure, all nine circle points lie precisely on the same
circle with a unique center point S and radius R. This indicates the validity

of both the method and the program.
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5.11 Positions 123-345-678
This problem needs three positions in phase 1, phase 2, and phase 3 with one
position shared by phases 1 and 2. The following equations should be

satisfied:
X;-P)2+(Y;-Q)2 =R2 (5.89)
Xy -P)2 + (Yy - Q)2 =R2 (5.90)
(X3 -P)2 + (Y3 - Q)2 =R2 (5.91)
Xs-P2+ (Y -Q2=R2 (5.92)
X5-P)2+(Ys-Q)?2=R2 (5.93)
(Xg-P)2+ (Y5-Q)2=R2 (5.94)
X7-P2+(Y;-Q)2=R2 (5.95)
(Xg - P2+ (Yg~Q)? =R2 (5.96)

Equation (2.2) takes the form of
X, = a; + py cos 6; — q; sin §;
Y; =b; + p; sin 6; + q cos 6, i=1,2,3 (5.97)
X = a; + pg cos 6; — qp sin 6;
Y; = b; + pg sin 6; + g cos 6; i=3,4,5 (5.98)
X, = a; + p3 cos 6; — q3 sin 6;
Y; =b; + p3 sin 6; + q3 cos 6, i=6,7,8 (5.99)

Nine parameters, P, Q, p3, 41, P2, 49, P3, 43, and R, are involved in nine
equations. Thus, the equations have no free choice of parameter.

Plot center point curves MP 321-345 and MP 321-678 as shown in
Figure 5.11 by means of the method developed in chapter 3. The solution, if
it exists, should be at the intersection point of the center point curves MP
321-345 and MP 321-678. A good center point is found at the intersection
point S in Figure 5.11. Figure 5.12 is an enlarged view at the vicinity of the

intersection point S.
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Notice that the two phase adjustable moving pivot problems MP 321-
345 and MP 123-345 represent the same problem, but MP 321-678 and MP
123-678 are different problems and will result in different center point
curves.

Invert center point S from positions 2 and 3 into position 1 to get circle
points C;, Cy, and C3. Similarly, locate circle points D3, D4, and D5 for phase
2, and circle points Eg, E, and Eg for phase 3. As shown in the figure, all
nine circle points lie precisely on the same circle with a unique center point S
and radius R. This indicates the validity of both the method and the

program.

5.12 Positions 1234-567-89
This problem needs four positions in phase 1, three positions in phase 2, and
two positions in phase 3 with no shared position. The following equations

should be satisfied:

X;-P2+(Y;-Q)?2=R2 (5.100)
Xy -P)2 + (Yy- Q)2 =R2 (5.101)
(X3-P)2 +(Y3-Q)2=R2 (5.102)
X4-P)2+(Y,-Q)2=R2 (5.103)
X5-P2 + (Y5-Q?2=R2? (5.104)
Xe-P2 + (Yg-Q)2=R2 (5.105)
(X7 -P2 +(Y;-Q)2 =R? (5.106)
(Xg-P)2 +(Yg-Q?2=R2? (5.107)
(Xg-P2 +(Yg9-Q)2=R2 (5.108)

Equation (2.2) takes the form of
X; = a; + pp cos 6; - q; sin 6;
Yi = bi + P1 sin ei + q; Cos ei i=1,2,3,4 (5.109)
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X, = a; + pg cos 6; — qg sin 6,
Y; = b; + py sin 6; + go cos 6; i=5,6,7 (56.110)
X, = a; + pg cos 6; — q3 sin 6;
Y;=b;+p3sin®;+qzcos8  i=8,9 (5.111)

Nine parameters, P, Q, pj, 41, P2, 92, P3, 93, and R, are involved in nine
equations. Thus, the number of free choice of parameter is zero.

An example problem is shown in Figure §.18. The prescribed positions
for phases 1 and 2 are the same as that in the example of section 3.8. A
solution center point for the two phase adjustable moving pivot problem MP
1234-567 is also a solution center point for the three phase problem MP
1234-567-89.

Thus, the first step is to solve phases 1 and 2 as it has been done in
section 3.8. The second step is to solve phase 3. Invert center point S from
position 9 into position 8 to get point Sg. Plot a right bisector for line
segment SSy; this bisector intersects the circle passing through circle points
Cy, Cg, C3, Cy, Ej5, Eg, and Eq at Gg, which is the circle point at position 8 of

phase 3. Gg can be found by geometric similarity.



Chapter 6

Three Phase Adjustable
Crank Length Problems

6.1 Introduction

This chapter deals with the problems of three phases with adjustable crank
length. Seven parameters need to be determined for this group of problems,
they are P, Q, p, q, Ry, Ry, and R3. Thus, the maximum prescribed positions
would be seven.

Three problems listed in Table 6.1 are going to be solved in this
chapter. The minimum number of prescribed positions included in one phase
is two, and the maximum number is three. The total number of positions for

all three phases are seven which is the maximum allowable number.

Table 6.1 Three phase adjustable crank length problems
positions shared unknowns free

ph.1 ph.2 ph.3 pos. choices

1,2 34 5,6 0 6 1

1,2,3 4,5 6,7 0 7 0

1,2 3,4,5 6,7 0 7 0

No shared positions need to be considered here, because the coupler
positions coincide with each other at the shared position , and the positions
of circle points at the shared position coincide with each other too. This will
cause the same crank length for two phases with a shared position, which

conflicts the original requirement. This is an adjustable crank length

99
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problem, different phases must have their own crank lengths, and neither

center point nor circle point need to be adjusted for different phases.

6.2 Positions 12-34-56
For the case of two positions in each of the three phases with no position

shared, the following equations should be satisfied:

(X;-P2+(Y;-Q)2=R,;2 (6.1)
Xy -P2 +(Yo-Q)2=R,;2 (6.2)
(X3 -P2 +(Y53-Q)2=Ry2 (6.3)
(X4 - P12+ (Y, - Q)2 =Ry2 (6.4)
(X5 - P)2 + (Y5 - Q)2 = Rg? (6.5)
(Xg - P)2 + (Yg - Q)2 = R3? (6.6)

Equation (2.2) takes the form of
X;=a;+pcos B —qsin6;
Y; =b; + psin 6; + q cos 6; i=12,..,6 (6.7)
Seven parameters, P, Q, p, 9, R;, Ry, and Rg, are involved in six
equations. Thus, the equations can be solved with one free choice of
parameter, and have infinite solutions,
Eliminate R, from equations (6.1) and (6.2), we get
Xy~-PP+(Yy-Q2=(X; -PP2+(Y;-Q)?2 (6.8)
Substitute equation (6.7) into equation (6.8) and collect terms in P and Q,
[-p cos 65 + q sin 6, — a5] P + [—q cos 85 — p sin 65 — by] Q +
+ p (ay cos Oy + by 5in 85) + q (by cos B, — ag sin 6) + (ag2 + by?) / 2
= [-pcosO; +qsin6; —a;] P+ [-qcos 6; —psin6; -b;1Q +
+ p (aj cos 8; + by 5in 07) + q (b cos 8; — a; sin 6;) + (a;2 + by2)/2
(6.9)
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that is,

LioP+M;2Q+Nj;3=0 (6.10)
Similarly, we have

L3y P+M34Q+Ngy=0 (6.11)

Lsg P+ M5 Q+ N5g =0 (6.12)
where

L;; = —a; + a; ~ p(cos 6; - cos 6;) + q(sin 6; ~ sin 6;)
M;; = -b; + b; — p(sin 6; - sin 8;) - q(cos 8; - cos 6;)
N;j; = p (a; cos 6; —a; cos 6; +b; sin 6; — b; sin 6))
—q (a; sin 6; —a; sin 6; -b; cos 6; + b; cos 6;)
+ (a;2- a2 + b2 ~b2)/ 2 (6.13)
where i=1, 3,5, and j =2, 4, 6 respectively.
For a nontrivial solution for P and Q in equations (6.10) through (6.12), the
following determinant must be equal to zero:
Liz Mjp Ny
Lgg Mgy Ny | =0 (6.14)
Lse Msg Nsg
Expand equation (6.14), after considerable derivation the following circle
point curve equation is obtained:

(Ap+Bq)(p2 +q2)+Cpq+Dp2+Eq2 + Fp+Gq+H =0 (6.15)
where A, B, C, D, E, E, F, G, and H are functions of a;, b;, and 6;. Points
which satisfy equation (6.15) should satisfy equations (6.1) through (6.7) for
the given synthesis problem.

The expressions for the coefficients A through H are similar to that in
Wilhelm's work [12]. The Turbo Pascal program CL_2_2_2.PAS is designed
for finding the circle points for the synthesis problem of this section.
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An example problem with six prescribed positions is shown in Figure
6.1. The circle point curve is plotted in the figure by running the program
CL_2_2_2.PAS along with AutoCAD on IBM PC. A good circle point C; is
chosen on the curve as shown in Figure 6.2. Find circle points Cy, C3, C4, Cs,
and Cg by geometric similarity. The center point S could be found by
intersecting right bisectors for line segments C,C, and C3C4. Draw two
circles with center S passing through C; and C3. The radii of the circles, R,
and R, are crank lengths for phases 1 and 2 respectively.

The crank length for phase 3 can be found by plotting the third circle
passing through circle point C5. As shown in the figure, the circle also
precisely passes through circle point Cg. This indicates the validity of both
the method and the program CL_2_2_ 2 PAS. The crank length R3 for phase
3 is the radius of the third circle.

6.3 Positions 123-45-67
This problem needs three positions in phase 1 and two positions in both

phases 2 and 3 with no shared position. The following equations should be

satisfied:
(X;-PR2+(Y; - Q2 =R,2 (6.16)
(X - P2 + (Y - Q)2 = R,2 (6.17)
(X3-P)2 +(Y3- Q)2 =R,2 (6.18)
(X4 -PR+ (Y4 - Q)2 =Ry? (6.19)
(X5-P»2 + (Y5 - Q)2 =R,2 (6.20)
(Xg - P2 + (Yg - Q)2 = R32 (6.21)
(X7 -P2 + (Y; - Q)2 = Ry2 (6.22)

Equation (2.2) takes the form of
X;=a; + p cos 6; — q sin 6,
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Y; =b; + p sin 6; + q cos 6; i=12,.,7 (6.23)

The total number of prescribed positions reaches the maximum value.
An example problem is shown in Figure 6.3. The solution circle point, if
exists should be at the intersection point of the circle point curves CL 12-45-
67 and CL 13-45-67. A good circle point C; is found as shown. The circle
points C, through C, are found by geometric similarity. The center point S
for all three phases is found by intersecting right bisectors for line segments
C,C5 and C,Cs.

Notice that for all seven prescribed positions of all three phases, the
center point S and the circle point C are the same. The crank lengths Ry, Ro,
and Rg are for phases 1, 2, and 3 respectively. This indicates the validity of
both the method and the program CL_2_2_2 PAS.

Also, no order defect occurs in Figure 6.3.

6.4 Positions 12-345-67
This problem needs three positions in phase 2 and two positions in both

phases 1 and 3 with no shared position. The following equations should be

satisfied:
X;-PP+(Y;-Q)2=R,2 (6.24)
Xy - P2 + (Y5 - Q)2 =R,2 (6.25)
(X3-PR +(Y3-Q)2=Ry? (6.26)
Xy -PR2 + (Yy- Q)2 =Ry2 (6.27)
(X5-P)»2 + (Y5 - Q)2 =Ry2 (6.28)
(X —PR + (Yg - Q)2 = R32 (6.29)
(Xq-P32 + (Y;- Q)2 =R32 (6.30)

Equation (2.2) takes the form of
X;=4a;+pcos 0 —qsin6;
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Y; =Db; + p sin 6; + q cos 6; 1=12,.,7 (6.31)
The total number of prescribed positions reaches the maximum value.
An example problem is shown in Figure 6.4. Similar to the problem in the
last section, the solution circle point, if exists should be at the intersection
point of the circle point curves CL 12-34-67 and CL 12-35-67. A good circle
point C; is found as shown. The circle points Cy through C; are found by
geometric similarity. The center point S for all three phases is found by
intersecting right bisectors for line segments C3C4 and C4Cs.
For all seven prescribed positions in all three phases, the center point
S and the circle point C are the same. The crank lengths R;, Ry, and Ry are
for phases 1, 2, and 3 respectively. This indicates the validity of both the
method and the program CL_2_2_2.PAS.

Also, no order defect occurs in Figure 6.4.



Chapter 7

Three Phase Adjustable
Fixed Pivot Problems

7.1 Introduction

This chapter deals with the problem of three phase adjustable fixed pivot.
Nine parameters which need to be determined for this group of problems are
P, Q1 Py, Qg, P3, Q3, P, q, and R. Thus, the maximum prescribed positions
would be nine.

Six problems listed in Table 7.1 are going to be solved in this chapter.
The minimum number of prescribed positions included in one phase is two,
and the maximum number is three. The maximum total number of positions
is nine, which is the maximum possible value. The maximum number of

shared positions is one.

Table 7.1 Three phase adjustable fixed pivot problems
positions shared unknowns free

ph.1 ph.2 ph.3 pos. choices
1,2,3 4,5 6,7 0 7 2

1,2,3 3,4 5,6 1 7 2

1,2,3 4,5,6 7,8 0 8 1

1,2,3 3,4,5 6,7 1 8 1

1,2,3 4,5,6 7,8,9 0 9 0

1,2,3 3,4,5 6,7,8 1 9 0

109



110

Figure 7.2 Adjustable fixed pivot 123-34-56
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In this chapter the method for solving three phase adjustable fixed

pivot problems will be developed.

7.2 Positions 123-45-67
In this case, three positions are needed for phase 1, two positions are
required for both phases 2 and 3 with no position shared. The following

equations should be satisfied:

X;-P12+(Y;-Q)2=R2? (7.1)
Xy - P12 + (Yy - Q)2 =R2 (7.2)
(X3-P1)2 +(Y3-Q;)2=R2 (7.3)
(X4 - P2)2 + (Y4 - Qy)2 =R2 (7.4)
(X5~ Pg)2 + (Y5 — Qg)2 = R2 (7.5)
(Xe - P3)2 + (Yg - Q3)2 = R2 (7.6)
(X7 -P3)2 +(Y; - Q3)2 = R2 (7.7)

Equation (2.2) takes the form of
X;=a;+ pcos 6; — qsin 6
Y; =b; + p sin 6; + q cos 6; i=12,..,7 (7.8)

Nine parameters, Py, Q;, Py, Qg, P3, Q3, P, q, and R, are involved in
seven equations. Thus, the equations can be solved with two free choices of
parameters, and have infinite solutions. Either an algebraic method or a
graphic method can solve this problem.

Suppose seven prescribed positions are shown in Figure 7.1, and the
relative coordinates of the circle point C; are chosen as two free choices.
Find Cgy through C,; by geometric similarity after locating C;. Draw right
bisectors for line segments C;C, and CoC3. Find the intersection point S of
the two right bisectors. Plot a circle passing through circle points C4, Cy and

C3 with center S. The radius of the circle is the crank length R. Draw a
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circle with center at C4 and radius R; this circle intersects the right bisector
for the line segment C,Cjs at point T, which is the center point for phase 2.
Similarly, find the center point U for phase 3.

7.3 Positions 123-34-56
In this case, three positions are needed for phase 1, two positions are
required for both phases 2 and 3 with one position shared by phases 1 and 2.
The following equations should be satisfied:

X;-P1)2+(Y;~-Q )2 =R2 (7.9)
Xy -P1)2+(Yy-Q;)2=R2 (7.10)
X3 -P1)2+(Y3-Q;)2=R2 (7.11)
(X3-Pg)2 + (Y3~ Qy)2 =R2 (7.12)
(X4 -Po)2 + (Y4 - Q)2 =R2 (7.13)
(X5 -P3)2 + (Y5 - Q3)2=R2 (7.14)
(Xg —P3)2 + (Y5 - Q3)2 =R2 (7.15)

Equation (2.2) takes the form of
X, =a;+ pcos 6; - qsin 6
Y; =b; + psin 6; + q cos 6; i=12,..,6 (7.16)

Nine parameters, P;, Q1, Ps, Qg, P3, Q3, P, q, and R, are involved in
seven equations. Thus, the equations can be solved with two free choices of
parameters, and have infinite solutions. Either an algebraic method or a
graphic method can solve this problem.

The solution steps are almost the same as that in the last section. Six
prescribed positions are shown in Figure 7.2. As in the last section, p and q
are chosen as the two free choices of parameters. The work for phase 1 is the
same as that in the last section. For phase 2, plot a right bisector for line

segment CgC4. Draw a circle with radius R and center Cj; this circle
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intersects the bisector at T, which is the center point for phase 2. For phase
3, plot a bisector for line segment C5Cq. Draw a circle with radius R and
center Cjg; this circle intersects the bisector at U, which is the center point

for phase 3.

7.4 Positions 123-456-78
This problem needs three positions in phases 1 and 2, two positions in phase

3 with no position shared. The following equations should be satisfied:

(X;-P)2+(Y;-Q)%2=R2 (7.17)
(Xg-P1)2 + (Yo -Qp)2=R2 (7.18)
(X3 - Py)2 + (Y3 - Q)2 =R2 (7.19)
(X4 -Po)2 + (Y4 —-Qp)2 =R2 (7.20)
(X5 - Py)2 + (Y5 - Q)2 = R2 (7.21)
(Xg = Py)2 + (Y5~ Qg)2 = R2 (7.22)
(X7 - P3)2 + (Y7 - Qg)2 = R2 (7.23)
(Xg - P3)2 + (Yg—Q3)2 = R2 (7.24)

Equation (2.2) takes the form of
X;=a;+pcos O - qsin 6,
Y; =b; + psin 6; + q cos 6; i=12,..,8 (7.25)
Nine parameters, Py, Q;, P, Qg, P3, Q3, P, q, and R, are involved in
eight equations. Thus, the equations can be solved with one free choice of
parameter, and have infinite solutions.
Any solution for the two phase adjustable fixed pivot 'problem FP 123-
456 is a solution for the three phase problem FP 123-456-78.
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Figure 7.3 Adjustable fixed pivot 123-456-78
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Suppose eight prescribed positions are shown in Figure 7.3, and the
circle points for phases 1 and 2 are plotted by means of the program
FP_3_3.PAS[12]. A good circle point C, for position 1 is picked on the curve.
Find Cy through Cg for positions 2 through 8 by geometric similarity. The
center point S for phase 1 should be located at the center of the circle passing
through circle points C;, Cy, and C3. The radius of the circle is the unique
crank length R.

Similarly, the center point T for phase 2 can be found at the center of
the circle passing through the circle points Cy4, Cs, and Cg. The radius of the
circle is also equal to the crank length R.

The center point U for phase 3 can be found by intersecting the right
bisector for line segment C;Cg and the circle with center C; and radius R.

7.5 Positions 123-345-67
This problem needs three positions in phases 1 and 2, and two positions in
phase 3 with one position shared by phases 1 and 2. The following equations

should be satisfied:

(X;-Pp2+(Y;-Qp2=R2 (7.26)
(Xg-P)2 + (Y, -Q)2 =R2 (7.27)
(X3-P;)2 + (Y3-Q,)% =R2 (7.28)
(X3 - P3)2 + (Y3 - Qp)2 = R2 (7.29)
(X4 -Py)2 + (Y4 - Qp)2 =R2 (7.30)
(X5 - P3)2 + (Y5 - Qo)2 = R?2 (7.31)
(Xg - P3)2 + (Yg — Q3)2 = R2 (7.32)
(X7 -P3)2 + (Y7 - Q)2 = R2 (7.33)

Equation (2.2) takes the form of
X;=a; + pcos 6; —q sin 6;
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Y; =b; + psin 6; + q cos 6, i=12,..,7 (7.34)

Nine parameters, Py, Q;, Py, Qo, P3, Q3, p, 9, and R, are involved in
eight equations. Thus, the equations can be solved with one free choice of
parameter, and have infinite solutions.

Any solution for the two phase adjustable fixed pivot problem FP 123-
345 is a solution for the three phase problem FP 123-345-67.

Suppose seven prescribed positions are shown in Figure 7.4, and the
circle points for phases 1 and 2 are plotted by means of the program
FP_3_3_1.PAS. A circle point C3 for position 3 is picked on the curve. Find
Cy, Gy, Cy4, Cs, Cg, and C,; by geometric similarity. The center point S for
phase 1 should be located at the center of the circle passing through circle
points C;, Coy, and Cg. The radius of the circle is the unique crank length R.

Similarly, the center point T for phase 2 can be found at the center of
the circle passing through the circle points C3, C4, and Cs. The radius of the
circle is also equal to the crank length R.

The center point U for phase 3 can be found by intersecting the right

bisector for line segment C¢C, and the circle with center Cg and radius R.

7.6 Positions 123-456-789
This problem needs three positions in phases 1, 2, and 3 with no position

shared. The following equations should be satisfied:

X;-Py)2+(Y;-Q)2=R2? (7.35)
Xy - P12+ (Yo - Q)2 = R2 (7.36)
(X3-P;)2+(Y3-Q,)2=R2 (7.37)
(X4 -Pg)2 + (Y4—Qp)2 =R2 (7.38)
(X5 -Pg)2 + (Y5 - Qp)2 = R2 (7.39)

(X -P2)2 + (Yg - Qg)2 = R2 (7.40)
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(X7 - P32 + (Y7 - Q3)2 =R2 (7.41)
(Xg - P3)2 + (Yg ~ Q3)2 = R2 (7.42)
(X9 - P3)2 + (Yg - Q3)2 = R? (7.43)

Equation (2.2) takes the form of
X;=a;+pcos0;-qsin6;
Y; =b; + psin 6; + q cos 6; i=12,..,9 (7.44)

Nine parameters, P;, Q;, P, Qq, P3, Q3, P, q, and R, are involved in
nine equations. Thus, the equations have no free choice of parameter.

Suppose nine prescribed positions are shown in Figure 7.5. The
solution, if exists, should be at the intersection point of the circle point curves
FP 123-456 and FP 123-789.

Plot circle points for FP 123-456 and FP 123-789 in Figure 7.5. A
good circle point is found at the intersection point C;. Locate Cy, Cg, ..., Cg
by geometric similarity.

The center S of the circle passing through circle points C;, Cg, and C3
is the center point for phase 1. The radius of the circle is the crank length R.
Similarly, the center T of the circle passing through circle points C4, Cs, and
Cg is the center point for phase 2. Finally, the center U of the circle passing
through circle points Cq, Cg, and Cg is the center point for phase 3. The radii
of three circles equal to the unique crank length R.

It can be seen in the figure that the unique circle point is C for all 9
positions, and the unique crank length is R for all three phases. The center
point is moved form S to T, and then to U.

Figure 7.6 is an enlarged view at the intersection point C;. In order to

get a more precise solution, more points are plotted in the figure.
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7.7 Positions 123-345-678
This problem needs three positions in phases 1, 2, and 3 with one position

shared by phases 1 and 2. The following equations should be satisfied:

(X; - P12 +(Y; -Q)2=R2 (7.45)
(Xo-P1)? +(Yy,-Q;)2=R2 (7.46)
(X3 - P2 +(Y3-Q;)2=R2 (7.47)
(X3 —P3)2 + (Y3 - Qp)2 = R2 (7.48)
(X4 - P32 + (Y4 - Qp)2 =R2 (7.49)
(X5 - P5)2 + (Y5 - Qp)2 = R2 (7.50)
(Xg - P3)? + (Y - Q3)2 = R? (7.51)
(X7 - P3)2 + (Y7 - Q3)2 = R? - - (1.52)
(Xg - P3)2 + (Yg - Q3)2 = R2 (7.53)

Equation (2.2) takes the form of
X, =a; + pcos §; - q sin 6,
Y;=b;+psin6; + qcos 6; i=12,..,8 (7.54)

Nine parameters, Py, Q;, Py, Qq, P3, Q3, p, g, and R, are involved in
nine equations. Thus, the equations have no free choice of parameter.

Suppose nine prescribed positions are shown in Figure 7.7. The
solution, if exists, should be at the intersection point of the circle point curves
FP 321-345 and FP 321-678.

Plot circle points for FP 321-345 and FP 321-678 in Figure 7.7. A
good circle point is found at the intersection point C3. Locate Cy, Cy, Cy, Cs,
Cg, Cq, and Cg by geometric similarity.

The center S of the circle passing through circle points C;, Cp, and Cg
is the center point for phase 1. The radius of the circle is the crank length R.
Similarly, the center T of the circle passing through circle points C3, Cy4, and
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Cj; is the center point for phase 2. Finally, the center U of the circle passing
through circle points Cg, C;, and Cg is the center point for phase 3.
Figure 7.8 is an enlarged view at the intersection point C3. In order to

get a more precise solution, more points are plotted in the figure.



Chapter 8

Example Problems

8.1 Introduction
In the previous chapters, only one side of the adjustable linkage is discussed.
In order to design a complete four-bar linkage, one more crank should be
added.
Good points and solutions in the previous chapters are just solutions
which satisfy the basic equations for a particular problem. A good solution

for an adjustable linkage must also be free of order and branch defects.

Table 8.1 Example problems

oh1 posiﬁggs oh.3 driven Side driving side
1,2 3,4 Adj. MP Adj. MP

1,2 3,4 Adj. MP Not Ad;.

1,2,3 4,5 Adj. MP Adj. MP

1,2,3 4,5,6 Adj. MP Adj. MP

1,2 34 5,6 Adj. CL Adj. CL
1,2,3,4 5,6,7 Adj. MP & CL Adj. MP & CL

AutoCAD along with AutoLISP allows the user to define their own
functions and commands to meet their particular needs. Many user-defined
AutoLISP functions and AutoCAD commands are developed to make the
adjustable linkage design process automatic but on a flexible trial-and-error

basis.

125
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Six example problems listed in Table 8.1 are presented in this chapter.

8.2 Examplel
Four given positions are shown in Figure 8.1. This is the case of two
positions in each of the two phases with no shared position. Let us try
adjustable moving pivot on both driving and driven side.

As mentioned in section 3.4, there are three free choices of parameters
for this problem. After choosing moving pivot C,, call user-defined AutoLISP
function TRIANG to plot a similar triangle to find C,. Call user-defined
AutoLISP function BISECT to plot a bisector for line segment C{Cy. Draw a
circle with center C; and the chosen crank length R as the radius; this circle
intersects the bisector at S, which is the center point. Invert point S from
position 4 into position 3 to get point S; by using the user-defined AutoLISP
function INVERT. Draw a circle passing through C; and C, with center
point S. Draw another bisector for line segment SSy; this bisector intersects
the circle at Eg, which is the circle point at position 3 of phase 2. Locate E,4
by plotting similar triangles. No order defect has been found by inspection.

Suppose that we have worked on the driven side. The circle points for
the driving side should be chosen properly so that no branch defect will occur,
since the branch defect may occur even for two positions. A Turbo Pascal
program and an user-defined AutoLISP command FILEMON has been
developed for plotting the Filemon Construction Lines. Two groups of
Filemon Lines starting at two distinct driven side moving pivots are required.
The resulting Filemon Lines are shown in Figure 8.2. The driving side circle
point D; at position 1 should not be chosen in the hatched area passing
through C,. After choosing circle point D, choose a crank length R, for the

driving side, and repeat all the steps as have done for the driven side until
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F3, the circle point at position 3 is found (Figure 8.3). It can be seen from

Figure 8.2 that F3 is outside the shaded area passing through point E3, which

is necessary to avoid a branch defect for phase 2.

The resulting linkage is shown in four consecutive Figures 8.4 through

8.7. Neither a branch defect nor an order problem occurs although the first

phase is a double- rocker. The data for this example problem are listed in

Tables 8.2 and 8.3.

Table 8.2 The given data for example 1

Position X Y 0
1 3.7000 4.0500 100.00
2 3.9200 6.1000 78.000
3 4.9300 8.0000 10.000
4 7.0469 8.2124 10.000

Table 8.3 The resulting data for example 1

Point X Y
C, 2.5576 4.3097
D, 2.2555 5.0548
Ej 4.9733 8.5731
F; 6.3332 10.2901
S 6.4064 4.9450
7.9507 4.8247
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Figure 8.2 The Filemon Construction Lines for example 1
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Figure 8.4 The resulting linkage at position 1
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Figure 8.6 The resulting linkage at position 3
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Figure 8.7 The resulting linkage at position 4

8.3 Example 2
This example needs two positions in each of the two phases. Four given
positions are the same as that for example 1. The work on the driven side is
the same as that we have done for example 1. The driving side of the four-
bar linkage could be made not adjustable.

As shown in Figure 8.8, the circle points C;, E3, and the Filemon
Construction Lines passing through them are the same as that for example 1.
Plot the circle point curve by means of CIRC_PT.PAS [9]. The points in the
shaded area shown in Figure 8.8 can not be used for the circle points because
of the branch problem. Try point D, as the circle point for the driving side.
Locate the corresponding points Dy, D3, and Dy by calling user—defined
AutoLISP function TRIANG. The center point T for the driving side is at the
center of the circle passing through points D;, Do, D3, and D4 (Figure 8.9).
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The resulting adjustable four-bar linkage is shown in four consecutive
Figures 8.10 through 8.13. Neither an order problem nor a branch defect
occurs in this linkage. The resulting data are listed in Table 8.4.

Table 8.4 The resulting data for example 2

point X Y
C,q 2.5576 4.3097
D, 3.0521 4.6673
Eq 49733 8.5731
S 6.4064 4.9450
6.9850 4.9744
3 43
Ez Eq
R; e b=}
Az "33 Ag Bs
c, B
By A2
S
Dy
21 4
—

Figure 8.8 The Filemon Construction Lines and the circle point curve for
example 2



Figure 8.10 The resulting linkage at position 1
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Figure 8.12 The resulting linkage at position 3
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Figure 8.183 The resulting linkage at position 4

8.4 Example 3

Five given positions are shown in Figure 8.15. The problem requires 3
positions in phase 1, and 2 positions in phase 2 with no position shared.
Suppose adjustable moving pivot on both driven and driving side is desired.

Plot Waldron Image Pole Circles for the first phase as shown in the
figure. The circle point C; is chosen outside the shaded area, and the circle
points Cg and Cg are drawn by using the user-defined AutoLISP function
TRIANG. The center S of the circle passing through C;, Cy, and Cj, is the
center point. Invert S from position 5 into position 4 to get point Sg by calling
the user-defined AutoLISP function INVERT. The circle point at position 4,
E4 can be found by intersecting the bisector for the line segment SS5 and the
circle passing through C4, Cy, and C3. Thus, the work on the driven side is

done.



136

In order to avoid a branch defect, two groups of Filemon Construction
Lines are drawn in Figure 7.14 by using the user-defined AutoLISP command
FILEMON for phases 1 and 2 respectively. The circle point D; at position 1
should be chosen outside the shaded area, the border lines of which pass
through C;. Similarly, the circle point F at position 4 can not be chosen
inside the hatched region, the border lines of which originate at point E.

Choose D; and do everything as that for the driven side to find F,.
The location of point Fj is checked to be outside the shaded area.

The resulting adjustable four-bar linkage is shown is 5 consecutive
Figures 8.16 through 8.20. Neither a branch defect nor an order problem
occurs in the resulting linkage although phase 2 is a double-rocker. The
given data and the resulting data are listed in Tables 8.5 and 8.6

respectively.

Figure 8.14 The Filemon Construction Lines and the moving pivots on the
driving side for example 3
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Figure 8.15 The moving pivots for the driven side and the Waldron Image
Pole Circles for example 3
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Figure 8.16 The resulting linkage at position 1

Figure 8.17 The resulting linkage at position 2
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Figure 8.18 The resulting linkage at position 3

Figure 8.19 The resulting linkage at position 4
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Figure 8.20 The resulting linkage at position 5

Table 8.5 The given data for example 3

Position X Y 6
1 2.3800 7.8500 15.000
2 4.7100 8.5300 0.0000
3 6.9500 8.0000 345.00
4 8.7200 6.1200 285.00
5 9.1200 3.8700 280.00
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Table 8.6 The resulting data for example 3

Point X Y

C,; 2.3543 6.8908

D, 4.2867 6.7408

E, 8.2521 5.3084

| 8.8139 5.0674

S 4.6430 3.6390
5.6573 3.4881

8.5 Example 4
This problem needs 3 positions on each of the two phases with no position
shared as shown in Figure 8.21. An adjustable four-bar linkage is considered
because the total number of unique positions is greater than 5.

Let us try adjustable moving pivot for both driving and driven side.
Six given positions are drawn in Figure 8.22 by calling an user-defined
AutoLISP function PLOT_POS. The center points satisfying equations (3.33)
through (3.50) are plotted in the figure by using the Turbo Pascal program
MP_3_3.PAS and an user-defined AutoLISP command PLOT_PTS.

Both Waldron Image Pole Circles and Filemon Construction Lines are
for choosing circle points to avoid a branch problem. But the points in Figure
8.21 are center points on which none of the two methods apply. However, the
program MP_3_3.PAS writes to output files not only the coordinates of center
points but also that of their corresponding circle points.

Each center point for the MP_3_3 problem has two relating circle

points, one for position 1 of phase 1, and the other for position 4 of phase 2.
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The circle points for phase 1 are shown in both Figures 8.22 and 8.23, while
that for phase 2 are plotted in both Figures 8.24 and 8.25 by mean of the
user-defined AutoLISP function PLOT_PTS.

Two groups of Waldron Image Pole Circles are shown in Figures 8.22
and 8.24 for two different phases by means of the user-defined AutoCAD
command IPOL_CIRC. Two groups of Waldron Circles are needed because
the moving pivot varies in two phases.

For the same reason, two different sets of Filemon Construction Lines
are plotted in Figures 8.23 and 8.25 by using another user—defined AutoCAD
command FILEMON. Both IPOL_CIRC and FILEMON are implemented in
AutoLISP and Turbo Pascal.

Two points, S and T, are chosen as the center points for the driving
and the driven side respectively. Circle points C; and E4 are relating to
center point S, while circle points D, and F4 are corresponding to center point
T. The circle point for the driven side, D; is chosen outside the shaded area
of the Image Pole Circles shown in Figure 8.22, while the circle point for the
driving side, C; is chosen outside the shaded area of the Filemon
Construction Lines in Figure 8.23. Similarly, the driven side circle point F,
for the second phase is chosen outside the hatched region of the Image Pole
Circles shown in Figure 8.24, and the driving side circle point E, for the
second phase is chosen outside the hatched area of the Filemon Construction
Lines shown in Figure 8.25.

The resulting four-bar linkage is shown in six consecutive Figures 8.26
through 8.31. Neither a branch defect nor an order problem occurs in this
drag-link. In fact, either side could be the driving side for this particular
four-bar linkage.

The data for this example are listed in Tables 8.7 and 8.8.
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Figure 8.22 The Image Pole Circles for phase 1
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Figure 8.26 The resulting linkage at position 1
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Figure 8.27 The resulting linkage at position 2
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Figure 8.28 The resulting linkage at position 3
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Figure 8.29 The resulting linkage at position 4



152

Figure 8.30 The resulting linkage at position 5
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Figure 8.31 The resulting linkage at position 6



Table 8.7 The given data for example 4

Position X Y 0
1 6.1500 2.0000 155.00
2 4.6500 2.3000 138.00
3 3.4500 3.6500 110.00
4 1.7000 4.5000 105.00
5 1.9000 6.3000 90.000
6 2.7000 7.4000 70.000

Table 8.8 The resulting data for example 4

Point X Y

S 5.6536 4.4931
C, 5.6496 1.1671
Ey4 2.4739 3.6175
T 5.1460 4.7435
D4 4.7079 2.2194
Fy 2.6840 4.0350

8.6 Example 5
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This problem needs two positions in each of the three phases with no position

shared. The given data for this three phase example problem are listed in

Table 8.9. Let us try adjustable crank length for both driving and driven side.
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Draw six given positions in Figure 8.32 by calling the user-defined
AutoLISP function PLOT_POS. Create an input data file CL_2_2_2 DAT and
run the Turbo Pascal program CL_2_2_2.PAS. Plot circle point curve 12-34-
56, and pick a circle point C; on the curve. Locate Cg, Cg, Cy4, Cg, and C¢ by
calling an user-defined AutoLISP function TRIANG. The bisectors for line
segments C;Cy and C5Cg intersect at point T, which is one of the center
point.

R;, the radius of the circle passing through circle points C; and C,
with center T is the crank length of phase 1. Similarly, R, the radius of the
circle passing through circle points C; and Cg with center T is the crank
length of phase 3. Draw a circle passing through circle point Cy with center
T. As shown in the figure, this circle passes precisely through the circle point
C3. We have an unique circle point C, an unique center point T, and three
distinct crank lengths R;, Ry, and R3, which satisfies the requirement of the
problem. This indicates the validity of both the method and the program
CL_2_2_2.PAS.

Another circle point D, is then picked on the curve for the other side of
the four-bar linkage. Similarly, find circle points Dy through Dg, the crank
lengths Ry, R5, and Rg, and locate the corresponding center point S.

The resulting four-bar linkage is shown in six consecutive Figures
(8.33 through 8.38). It can be seen by inspection that neither a branch defect
nor an order problem occurs in the resulting drag-link, which means it is a
good solution. In fact, either S or T side of the linkage can be used as the

driving side.
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Table 8.9 The given data for example 5

Position X Y )
1 10.100 1.5454 222.25
2 8.2634 0.9779 205.73
3 6.8040 1.9346 170.00
4 5.4400 2.5000 153.00
5 4.6000 3.9000 132.00
6 4.0000 5.1500 105.00

Table 8.10 The resulting data for example 5

Point X Y
c, 8.3847 3.1376
Cs 7.0080 4.2598
Cs 6.1989 5.6008
D, 11.9606 -0.7320
Dg 6.1424 -0.9308
Dy 2.3145 2.0494
S 7.7734 6.1903
7.4283 5.7727

8.7 Example 6
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This is the case of four positions in one phase and three in the other phase

with no position shared. Since the total number of position is seven, an
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adjustable linkage is considered. Let us try adjustable moving pivot and
crank length on both driving and driven side.

Plot seven positions in Figure 8.39 by means of the user-defined
AutoLISP function PLOT_POS. Plot the center point curve for positions 1, 2,
3, and 4 and pick a center point S on it. Invert center point S for positions 2
through 4 into position 1 to get circle points C; through C4 by using the
user-defined AutoLISP function INVERT. Circle points C;, Cy, C3, C4, and a
circle passing through them are plotted automatically.

Since no order defect has been found for circle points C; through C,,
the center point S is inverted again from positions 6 and 7 into position 5,
which is the first position of phase 2. The circle points E5, E¢, and E; and a
circle passing through them are plotted automatically on the screen and
again no order defect has been found in phase 2.

Similarly, choose another center point T on the center point curve for
the other side of the linkage (Figure 8.40). Do the same for center point T as
that for center point S. The circle points Dy, Dy, D3, Dy, F5, Fg, and Fy are
shown in the figures.

Two groups of Filemon Construction Lines are plotted in Figure 8.43
by calling AutoLISP command FILEMON. In order to aveid a branch
problem, circle point D; should be chosen outside the shaded area of the
Filemon Construction Lines passing through point C;. Similarly, circle point
Fy is outside of the shaded area of the Filemon Construction Lines passing
through point E;.

The resulting linkage is shown in seven consecutive Figures 8.42
through 8.48. By inspection, neither an order problem nor a branch defect
occurs in this four-bar linkage. Both the moving pivots and the crank lengths

are adjusted in both of the two phases.
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In fact, either side of this particular linkage could be used as the

driving side. The cranks rotate clockwise for positions 1 through 4 of phase

1, then counterclockwise for positions 5 through 7 of phase 2.

The given and resulting data are listed in Tables 8.11 and 8.12

respectively.

Table 8.11 The given data for example 6

position X Y 6
1 3.3800 2.4800 120.00
2 2.6800 4.0900 100.00
3 2.7400 5.6000 83.000
4 3.3074 6.8723 65.790
5 1.6500 5.3600 79.000
6 1.6300 3.2000 90.000
7 2.5000 1.5300 102.00

Table 8.12 The resulting data for example 6

point X Y

c, 6.3292 3.5641

D, 5.7931 4.3650

Ej 4.6022 5.4528

Fg 4.2438 6.1891

S 6.8071 4.5241
6.7038 5.0031
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Chapter 9

Conclusions

The objective of this study was to solve the kinematic synthesis problems of
multi-phase adjustable four-bar linkages for motion generation. The results
of this research have demonstrated that this study has successfully developed
techniques to solve adjustable moving pivot problems, adjustable moving
pivot and crank length problems, and various three phase problems.

Equations are developed for the cases of adjustable moving pivot with
three positions in each of the two phases. A numerical method with the
solutions at the rotation poles as the initial solutions has been successfully
developed to find more solutions for the problems. Center points and their
corresponding circle points which satisfy the equations are obtained by the
programs MP_3_3 PAS and MP_3_3_1PAS. The adjustable moving pivot
problem of seven given positions can be solved by intersecting two such
center point curves.

The method for solving two phase adjustable moving pivot problems
can be extended for three phase problems of the same kind. For example,
any solution for the two phase problem MP 123-456 is a solution of three
phase problem MP 123-456-78, and so do the other combinations of the
number of the positions with the total of eight positions. Three phase
adjustable moving pivot problems with the total of nine.positions can be
solved by intersecting center point curves. More points are needed in order to
get a much precise solution.

A circle point curve equation is also developed for the case of

adjustable crank length problem with two positions in each of the three
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phases. Circle points satisfying the equations of the problem are obtained by
plotting a circle point curve. The adjustable crank length problems of seven
given positions are solved by intersecting two circle point curves.

Many two phase adjustable moving pivot and crank length problems
are solved by plotting center point curves or intersecting two of such curves.

The three phase adjustable fixed pivot problems are solved by plotting
circle point curves, or intersecting two of such curves.

It is well known that the maximum permissible number of prescribed
positions for motion generation for a four-bar linkage is five. It has been
shown in this study that the maximum number of prescribed positions for an
adjustable four-bar linkage varies from seven to nine for the problems
involved. Many examples with high number of positions have found a good
solution in this study. However, to have one or two free choices of
parameters for an adjustable four-bar linkage usually gets better results
than solutions without any free choice of parameters. This is because the
design of a linkage has to satisfy not only the basic equations but also some
other conditions, such as branch problem, order problem, the transmission

angle and efficiency, etc.



Appendices

A. AutoLISP Programs

; Plot given positions to ACAD screen, good to any number of
positions.
(defun plot_pos (n)
(setg fl(open "input.dat® "r")
d(getdist "\nEnter a length:*)
)

(repeat n
(setg x(atof (read-line fl1))
y(atof (read-line f1))
thld(atof (read-line f1))
thl(/ (* thld pi) 180.0)
al(list x y)
bl (polar al thl 4)
)
(command "pline" al bl "")
)
(close £f1)
(princ)
)

; This lisp function has been used by mp_3_3 and mp_3_3_1 to
plot points.
(defun C:plot_pts(/ £ t)
(setq f(open ‘"bus.dat" "r"))
(setvar “pdmode"* 0)
(while (/= t "nil")
(setg t(read-line f£f))
(command "point" t)
)
(close f)

)

(defun pts_+(s / £ t pl p2 p3 pd x1 x2 vl y2 x vy)
(setg f(open '"bus.dat" "r"))
(while (/= t "nil")

(setq t(read-line f)
x(atof t)
y{atof (read-line £))
x2(+ xX s)
x1l(- x s)
v2(+ y s)
yl(- y s)
pl(list x1 y)
p2(list x2 y)
p3{list x y2)
pd(list x vyl)
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)
(command "pline"
(command "pline"

)
(close f)

)

{defun pts_diam(s / £ t pl
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L} N)
(] Il)

pl p2
p3 p4

P2 p3 pd x1 x2 vl v2 x vy)

(setqgq f(open '"bus.dat" "r"))
(while (/= t "nil")
(setg t(read-line f£f)
x{atof t)
y{atof (read-1ine f))
x2(+ x s)
x1(- x s)
y2(+ y s)
vi(- vy s)
pl(list x1 vy)
p2(list x2 vy)
p3({list x vy2)
pd4(list x y1)
)
(command "point" (list x vy))
(command "pline" pl p3 p2 p4 "c")
)
{(close f)

)

(defun pts_x(s / £ t pl p2
(setg f(open "bus.dat"
{while (/= t "nil®*)

(setg t(read-line

x(atof

v (atof (read-1line
s)
s)
s)
s)

(
X
X

x2 (+
x1 (-
y2(+ ¥y
yl(- vy
pl(list
p2(list
p3(list
pd (list

x2
x1
x1
x2
)
(command “pline"
(command 'pline"
)
(close £)

)

p3 pd x1 x2 vl y2 x vy)
Ilrll ) )

£)
t)
£))

y2)
yv1l)
y2)
v1)

" u)
[l u)

pl p2
p3 p4

(defun pts_sqg(s /7 £ t pl p2 p3 pd x1 X2 y1 y2 X V)

(setg f(open "bus.dat"

Ilrll ) )
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(while (/= t "nil")
(setg t(read-line f)
x(atof t)
y(atof (read-line f))
x2(+ x s)
x1l(- x s)
v2(+ y s)
vi(- y s)
pl(list x2 y2)
p2(list x1 y1)
p3(list x1 y2)
pd(list x2 y1l)
)
(command "point" (list x vy))
(command "pline" pl p3 p2 pd "c")
)
(close £)

)

(defun pts_circ(r / £ t ¢ x v)
(setqg f(open ‘"bus.dat" "xr"))
(while (/= t "nil")
(setq t(read-line f£)
x(atof t)
y{atof (read-line f))
ci{list x vy)
)
(command "circle' ¢ r)
(command "donut" 0.0 0.005 ¢ *"")
)
(close f)

(defun C:pick_pt(/ f k)

(setqgq f(open ‘"pick_pt.out" "w")
k{getpoint "\nPick a point by mouse: "))
(write-line "The point you just picked is:" f)

(write-line (rtos (car k) 2 4) f)

(write-line (rtos (cadr k) 2 4) £)
(write-line (rtos (car k) 2 4) )
(write-line (rtos (cadr k) 2 4) )
{close £)

(princ)

(defun pick_pt(n / £ k)
(setq f(open ‘"pick_pt.out" "w"))
{ repeat n
(setqg k(getpoint “\nPick a point by mouse: "))
(write-line (rtos (car k) 2 4) f£f)
(write-line (rtos (cadr k) 2 4) f£f)
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(write-line (rtos (car k) 2 4) )

(write-line (rtos (cadr k) 2 4) )
)

(close f£)

(princ)

(defun C:pick_ang()
(setg f(open ‘'"pick_ang.out" "w")
th(getangle "\nPick 2 points to show the
angle: ")

)

(write-line (rtos thd 2 4) f£f)
(write-line (rtos thd 2 4) )
(close f£)

(princ)

thd(/ (* th 180.0) pi )

(defun pick_ang(n / f th thd)

(setg fl(open ‘'pick_ang.out" ‘'w"))
(repeat n
(setg th(getangle "\nPick 2 points to show the
angle: ")

thd(/ (* th 180.0) pi )
)
(write-line (rtos thd 2 4) f)
(write-line (rtos thd 2 4) )
)
(close f£)
(princ)

; Bisector version 1 -- the interactive wversion, A command.
; Global: k1l k2 ptl pt2
(defun bisect (/ k3 k4 k5 k6 k7 ptlx ptly pt2x ptly)
(setqg k1l (getpoint "\nEnter first point (key in or by

mouse): ")

k2 (getpoint "\nEnter second point (key in or by
mouse) : ")

k3 (/ {(+ (car k1) (car k2)) 2)

k4 (/ (- {(cadr k2) (cadr k1)) (distance k1l k2))

k5 (/ (+ (cadr k2) {(cadr k1)) 2)

k6 {(/ (- (car k2) {(car k1)) (distance k1 k2))

k7 (getdist (list k3 k5) "\nEnter length: ")

ptlx (- k3 (* k4 k7))

ptly (+ k5 (* k6 k7))

pt2x (+ k3 (* k4 k7))

pt2y (- k5 (* k6 k7))

ptl (list ptlx ptly)



pt2 (list pt2x pt2y)

)

(setqg fl(open '"bisect.out" "w"))

(write-line "The lst point entered for function BISECT
is:* f1)

(write-line (rtos (car k1) 2 4) f£f1)

(write-line (rtos (cadr k1) 2 4) f£f1)

(write-line “"The 2nd point entered for function BISECT
is:" f1)

(write-line (rtos (car k2) 2 4) f£f1)

(write-line (rtos (cadr k2) 2 4) f£f1)

(close f1)

(command "pline" ptl pt2 "")

(princ)
)
; Bisector version 2 -- to be called by the function
invert (),

; and other routines. kl, k2, ptl, and pt2 are global
variables.
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; Values should be assigned to k1l & k2 prior to calling this

function.
; This version is from Wilhelm[12]

(defun bisector (/ k3 k4 k5 k6 k7 ptlx ptly pt2x pt2y)
(setg k3 (/ (+ (car k1) (car k2)) 2)

k4 (/ (- (cadr k2) (cadr k1)) (distance k1l k2))
k5 (/ (+ {cadr k2) (cadr kl)) 2)

k6 (/ (- (car k2) {(car kl)) (distance k1 k2))
k7 2 ; assign arbitrary length

;remove the following line when not display the
bisectors
;and put the line above into the program
: k7 (getdist {(list k3 k5) "\nEnter length: ")
ptlx (- k3 (* k4 k7))
ptly (+ k5 (* k6 k7))
pt2x (+ k3 (* k4 k7))
pt2y (- k5 (* k6 k7))
ptl (list ptlx ptly)
pt2 (list pt2x ptly)
)

; (command “pline" ptl pt2 ") ;delete this line, while
not to display bisectors
(princ)

)

;Intersection point of 2 bisectors
;kl: global var of function BISECT

(defun C:biinters (/ pt3 pt4)
(bisect)



(setqg f(open "biinters.out" "w"))

(write-line "The 1lst point entered for function
BISECT is:" £)

(write-line (rtos {(car k1) 2 4) £)

(write-line (rtos (cadr k1) 2 4) f£f)

(write-line "The 2nd point entered for function
BISECT is:" £)

(write-line (rtos (car k2) 2 4) f£)

(write-line (rtos (cadr k2) 2 4) f)

(setqg pt3 ptl)

(setqg pt4 pt2)

{setqg k k1)

(bisect)

(write-line "The 3rd point entered for function
BISECT is:" £)

(write-line (rtos (car k1) 2 4) f)

(write-line (rtos (cadr kl) 2 4) f)

(write-line "The 4th point entered for function
BISECT is:" f)

(write-line (rtos (car k2) 2 4) f)

(write-line (rtos (cadr k2) 2 4) f)

(setqg pt(inters ptl pt2 pt3 ptd nil))

(command "point" pt)

(setq Rl(distance pt k))

(setq R2(distance pt k1))

(write-line "Intersection point of 2 bisectors:" f)
(write-line (rtos (car pt) 2 4y f)

(write-line (rtos (cadr pt) 2 4) f£f)

(write-line "The distance (R1): " f)

(write-line (rtos R1 2 4) )

(write-line {(rtos Rl 2 4) f)

(write-line "The distance (R2): " f)

(write-line (rtos R2 2 4) )
(write-line (rtos R2 2 4) f£)

{close f£)
(princ)
)
; Triangle version 1 -- interactive version

; Max number of positions: no limit.

(defun triang (n / ptl pt2 pt3 x y th thd d1 d2 phi phid
psi)
(setq fl(open "input.dat" "r")

f2 (open "circ.dat" ‘'w")

pt3 (getpoint "\nEnter a point for plotting
triangles(key in or by mouse)")

x(atof (read-line f1))

y(atof (read-line fl))

thd(atof (read-line f£f1))

th(/ (* thd pi) 180.0)

ptl(list x y)
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dl (getdist "\nEnter a length for side 1 of the
triangles:")
pt2 (polar ptl th dl)
phi (angle ptl pt3)
phid(/ (* phi 180.0) pi )
psi(- th phi)
d2 (distance ptl pt3)
)
(write-line(rtos (car pt3) 2 6) f2)
(write-line(rtos (cadr pt3) 2 6) £2)
(command "pline" ptl pt2 "")
(command "pline" pt2 pt3 ptl "")
(setqg n(1l- n))
(repeat n
(setg x(atof (read-line f£f1))
y(atof (read-line f£f1))
thd(atof (read-line £f1))
th(/ (* thd pi) 180.0)
ptl{list x y)
pt2 (polar ptl th dl)
pt3(polar ptl (- th psi) d2)
)
(write-line(rtos (car pt3) 2 6) f2)
(write-line(rtos (cadr pt3) 2 6) f2)
(command "pline" ptl pt2 "")
(command "pline" pt2 pt3 ptl "")
) ; end of repeat
close (f1l)
close (f2)
{(princ)

; Triangle version 2 -- to be called by invert() and other
routines.

{(defun triangle ()
(command "pline® al bl ""
"pline" bl ¢l al =
)
(setqg phil (angle al c1)
psi(- thl phil)
dist (distance al cl)
c2(polar a2 (- th2 psi) dist)
c3(polar a3 (- th3 psi) dist)
)
(command "pline" a2 b2 **
"pline" b2 c2 a2 "
||plinen a3 b3 wuwn
"pline" b3 ¢3 a3 "*

(princ)



(defun invert (n)
(setqg fl(open "input.dat"

Ilrll)

f2 (open "output.dat" "w")

: f3 (open "test.dat"

Ilwll )
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f (getpoint "\nEnter a center point for inversion (key

in or by mouse)")

x{atof (read-line f1))
v(atof (read-line f1))
thld(atof (read-line f1))
thl(/ (* thld pi) 180.0)

al(list x y)

d(getdist “"\nEnter a length for the 1st side of

triangles:")
bl (polar al thl d)
phil (angle al f)
phild(/ (* phil 180

(setqg x{atof (read-line
v (atof (read-line

.0) pi

£1))
£1))

th2d(atof (read-line £f1))

th2(/ (* th2d pi) 1
a2(list x y)

b2 (polar a2 th2 d)
dist2(distance a2 £
phi2(angle a2 £f)
phi2d(/ (* phi2 180

)

80.0)

)

.0) pi)
th2}))

beta2 (+ phi2 (- thl
f2p(polar al beta2 dist2)
(1f (= n 2)
(progn

(command "pline" al bl °
(command “"pline" bl f al
(command "pline" al bl "
(

(] )
(1] )
(1] )

command "pline" bl f2p al "")

)

(progn

(setq x(atof (read-line
y(atof (read-line

£1))

£1))

th3d(atof (read-line f1l))
th3(/ (* th3d pi) 180.0)

a3 (list x y)

b3 (polar a3 th3 d)
dist3 (distance a3 f
phi3(angle a3 f)
phi3d(/ (* phi3 180
beta3 (+ phi3 (- thl

)

.0) pi)
th3))

f3p(polar al beta3 dist3)

i (command "pline® al bl

(1] II)

(command "pline" bl £ al "")



186

; (command "pline" bl f2p al "")
: (command "pline" bl £f3p al "")

{(setqg tl(car f)
t2(cadr f£)
t3(car £f£2p)
t4 (cadr £f2p)
t5(car £3p)
t6 (cadr £f3p)
t7(abs (- tl t3))
t8(abs (- t2 t4))
t9(abs (- tl1l t5))
tl10(abs (- t2 t6))
tll(abs (- t3 t5))
tl2(abs (- t4 t6))
)
(if (and (<= t7 0.0001) (<= t8 0.0001)) ;for P12
(write-line "You have entered a pole, a bad point to
invert.") ;exit
(progn
(1f (and (<= t9 0.0001) (<= t10 0.0001))
;for P13
(write-line "You have entered a pole, a bad point
to invert.") ;exit
(progn
(if (and (<= t11 0.0001) (<= t12 0.0001))

;for P23
(write-line "You have entered a pole, a bad
point to invert.") ;exit
{(progn
(setqg k1 £
k2 f2p
)
(bisector)
(setqg pt3 ptl
ptd pt2
k1l £3p
) ; keep k2=f2p
(bisector)

(setg cl(inters ptl pt2 pt3 pt4d nil)) ; cl--moving pivot
if £ is a cent pt

: triangles 1, 2 and 3
(command "pline® al bl "*)
(command "pline® bl cl "")
(command °"pline" ¢l al "%)

(setqg phil(angle al cl)

psi(- thl phil)

dist (distance al cl)

c2(polar a2 (- th2 psi) dist)
)
(command “pline* a2 b2 *“)
(command "pline" b2 c2 "")
(command "pline" c2 a2 "")
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(setg c3(polar a3 (- th3 psi) dist))
(command "pline" a3 b3 "")
(command "pline" b3 c3 "")
(command "pline" ¢3 a3 "")

; (write-line "stop 1" £3)

; (write-line(rtos n) £3)

; for position 4,5,6..

(setg n(- n 3))
; (write-line "stop 2" f£3)
; (write-line(rtos n) £3)
(while {> n 0)
(progn

; (write-line "stop 3" £3)

; (write-line(rtos n) f3)

(setqg x(atof (read-line f£f1))
yv{atof (read-line f1))
thdd(atof (read-line f1))
thd (/ (* th4d pi) 180.0)
a4 (list x y)
b4 (polar a4 th4 d)
dist4 (distance a4 f)
phid (angle a4 f)
phid4d(/ (* phi4 180.0) pi)
betad (+ phi4 (- thl th4))
f4p (polar al betad distd)

)

(write-line "stecp 4" £3)
(write-line (rtos n) £3)

e we wme wo

(command "pline" a4 b4 f a4 "") ;to be deleted
triangle 4,5,6....
(setq c4(polar a4 (- thd psi) dist))

(write-line (rtos (car a4)) £2)
(write-line (rtos (cadr a4)) £2)
(write-line (rtos (car b4)) £2)
(write-line (rtos (cadr b4)) £2)
(write-line (rtos (car c4)) £2)
(write-line (rtos (cadr c4)) f2)
(command "pline" a4 b4 "")
(command “pline" b4 c4 ")
(command "pline" c4 a4 "")
(setqg n(l- n))
) ; end progn
) ; end if or while
; circle
(command "circle" f (distance f cl))
)))))))) ;end of 4 ifs
{close f1)
(close £2)
; (close £3)

(princ)

)



(defun C:filemon (/ ph pos k1l k2 s d gd gr grl tl t2)
(command)
(command "shell")
(command "filemon")
(setq f(open "bus.dat" "r")
ph(atoi(read-line f)) ;num of phases
)
(repeat ph
(setq pos(atoi(read-line £)))
(setqg kl(atof(read-line £f))
k2 (atof (read-1line £f))
s (list k1 k2) ;source point
d(atof (read-line £)) ;half length

;num of pos

)
(repeat pos
(setqg gd(atof (read-line f))
gr(/ (* gd pi) 180.0)
grl(+ gr pi)
tl(polar s gr 4)
t2(polar s grl d)
)
(command “"pline" s t1 “")
(command "pline" s t2 "")
)
)
(close f)
(princ)
)

(defun C:ipol_circ(/ tl1 t2 t3 k1l k2 k3 k4 k5 k6 cl c2 c3 dil

dz2 d3 dl1 422 433 £ n)
; {setvar "pdmode' 64)
(setq f(open "input.dat" "r")
n(getint"\nHow many phases to plot the Ipole
Circles?")
)
(repeat n
(setq kl(atof(read-line
k2 (atof (read-line
k3 (atof (read-line
k4 (atof (read-1line
k5 {atof (read-1line
k6 (atof (read-1line
tl(list k1l k2)
t2(list k3 k4)
t3(list k5 k6)
cl(polar tl1 (angle tl1 t2) (/ (distance tl t2)

Fh Hh b Hh Hh b

— e e Yt S
— e et N S

2))
c2 (polar tl1 (angle tl t3) (/ (distance tl t3)
2))
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)

c3(polar t2 (angle t2 t3)

)
(command *point® tl )
{command *"point® t2 )}
{command *point® t3 )
{setqg dl(distance tl t2)
d2 (distance tl t3)
d3{distance t2 t3)
dll(+ d1 0.01)
d22(+ d2 0.01)
d33(+ d3 0.01)
)
{command "donut" 41 41l c1 "")
(command "donut® d2 d22 c2 *")
(command "donut" d3 d33 ¢c3 "")
; end repeat

{close f£)

{(princ)

)

{/ {distance t2 t3)

189
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B. Program Filemon

{This program plots Filemon lines for up to 12 lines in 5
groups.}

Program Filemon;

Const

in_fil = ‘'input.dat’';

out_fil = 'bus.dat'; {trans data to alisp command
"filemon" to plot}
Var

inf, out ttext;

total_gro, total_pos,i,j,n,len rinteger;

x, vy, thr, thd tarray[1..12] of
real;

pos_num tarray([1..3,1..5]
of integer;

XS,yYs,XC,ycC carray[l..5] of
real;

x1l,yl,thdl,thrl,x2,y2,thd2,thr2 :real;

gaml, gamdl,alphal,beta,alpha2,d, c2x,c2y,gam2,del2,del2d, s, t
:real;

Function atan (u,v :real):real; {u-Numerator, v-
Denominator}
begin
if (({u>=0) and (v<0)}) or ((u<0) and (v<0))) then
atan := arctan(u/v) + pi
else if ((u>0)and (v=0)) then atan := pi/2.
else if ((u<0)and(v=0)) then atan:= pi*3./2.
else if ((u=0)and({v=0)) then writeln('Bad
argument: 0/0 ')
else atan := arctan{u/v) ;
end;
BEGIN

assign (inf,in_f£fil);
reset (inf);

assign (out,out_£il);
rewrite(out) ;

write('Total number of positions: ');
readln{total_pos) ;

write('How many groups of lines? ');
readln{total_gro);

writeln(out, total_gro);

for 1 := 1 to total_pos do begin
readln{inf,x[1]);
readin(inf,y[1]);
readln(inf, thd([i]);
thr[i] := thd(i] * pi/1l80;



end;
close(inf);

for i := 1 to total_gro do

a group

*pi/180.

*pi/180.

write('How many positions
readln(n);
writeln(out,n);

write('X coord. of center
readln (xc[i});

write('Y coord. of center
readln(yc{i});

write('X coord. of circle
readln(xs[i]);
writeln(out,xs{i]:10:4);
write('Y coord. of circle
readln(ys(i]);
writeln(out,ys[i]:10:4});

begin
in line group

pt.: ')
pt.: ');

(line source)

(line source)

for j :=1 ton do begin
writeln('Enter position numbers in line group

in order');

|'i'n? 1);

pt.:

pt.:

')

")

writeln (' (enter reference position first):');

readln (pos_num(i,j]);
end;

write('The half length of lines to plot:

readln(len) ;
writeln(out, len) ;

x1l := x[pos_num{i,1l]]; {for reference position of

of lines}

yl := ylpos_num{i,1]];
thdl := thd[pos_num[i,1l]];
0;

Y)Y

thrl := thdl

{calc at reference pos.}

d =

S = ys[i]-ycl[i];

t = xs[i]-xc[i];
gaml = atan(s,t);

S = ys[i]-yl;

t = xs[i]-x1;

alphal := atan(s,t);

beta = alphal - thr([i];
gamdl = gaml * 180.0/pi;

writeln (out,gamdl:10:4);

for j := 2 ton do begin

x[pos_num[i,j]];
Y2 := y([pos_num{i,j]];
thd2 := thd[pos_num[i,

X
N
o

0;
alpha2 := thr2 + beta;

31l thr2

sgrt (sqr(ys[i]-yl)+sqgr(xs([i]-x1));

:= thd2
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C2x x2 + d*cos(alpha2);
C2y y2 + d*sin(alphal);
s C2y-ycli]);
t C2x-xcli];

del?2 gam2 + (thrl-thr2);
del2d := del2 * 180./pi;
writeln(out,del2d:10:4);
end;
end;
close(out);
END.

gam2 := atan(s,t);
o
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C. Program MP_3_3.PAS

Program mp_3_3;

{This program calculates a center point curve for 123-
456, )

{by choosing solutions at pole as initial solutions}

Const

In_fil_name = 'MP_3_3.DAT';

Layer_name = 'centpt':;

Out_fil_name = ‘'centpt.dxf’;

Out_£fil_1 = 'MP_3_3.01'; {center pts for plotting in
ACAD}

Out_fil_2 = 'MP_3_3.02'; {complete Info, detail at every
pt}

Out_fil_3 = 'MP_3_3.03'; {center pts, L<=Maxlen, detail
info at every pt}

Out_fil_4 = 'MP_3_3.04'; {center pts, L<=Maxlen, but
coord. of pts only}

Out_f£fil_5 = 'MP_3_3.05'; {data for plotting ipole-
circles}

Out_fil_6 = 'MP_3_3.06"'; {all circle pts at pos 1, for
Filemon plotting}

Out_£fil 7 = 'MP_3_3.07'; {all circle pts at pos 4, for
Filemon plotting}

Out_fil_8 = 'MP_3_3.08'; {centpts, circpts at posl,
circpts at pos2}

Out_fil_9 = 'MP_3_3.09'; {plot curves with diff. appear.

of points }
positions = 6;
EPS = 0.0001;
maxcount = 100;
maxpoints = 200;

Var
In_fil, ol, o2, 03, o4, o5, o6, 07, o8, 09, out_fil
ctext;

X, v, XX, ¥y, th rarray{l..6] of real;

thr, Bx, By, c, s carray([l..6] of real;

Px, Py, Ix, Iy tarray([l..6,1..6] of real;

ii, 3jj, kk, 11, mm, nn, oo:integer;

i, 3. jl, j2, k, phase :integer;

P, 0, p0, g0, R, RO :real;

drR, drO, pl, ql, p2, q2 :real;

dl,d4,maxlen :real;

cc,dd, ee, £ :real;

pPp, Qg rarray([1..2,1..2] of real;

x1l,v1l,x2,y2 carray[l..6] of real;
{abs. coord. for mp

obtained}

R_check rarray[l..6] of real;
{crank lengths for checking}

done, large, abort, tired :boolean;

pole_OK :boolean;



194

G, D rarray(l..6] of real;

\Y crarray [1..6,1..6] of real;
{$I POLE.PAS) {{12]}
{$I C_MP_R.PAS}

Procedure Get_data;
{gets position information}
{and calculates position cosines and sines}
Var
i : integer;
Begin
Assign (in_f£fil,in_fil_name);
Reset (in_f£fil);
for i := 1 to 6 do
begin
Readln (in_fil, x[i]);
Readln (in_fil, vyI[i]);
Readln (in_fil, th[i]l);

thri{i])] := th[i] * pi/180;
c[i] := cos(thr[i]); s[i] := sin(thr{il]);
end;
close (in_fil);

End;

Procedure Load_array;
{loads the partial derivative array and the function}
{array for 123-456 problem}
Var
T1, T2 :real;
i :integer;

begin
for i := 1 to 3 do {load partial array}
begin
Tl := x[1i] + pl*c[i] - qgl*s[i] - P;
T2 := yl[i] + pl*s[i] + ql*c[i] - Q:
vii,1l] := -2 * T1;
vI[i,2] := =2 * T2;
V[i,3] = 2 * c[di] * T1 + 2 * g[i] * T2;
V[i,4) = -2 * s[i] * T1 + 2 * c[i] * T2;
v([ii,5] := 0;
vii,6] := 0;
G[1i] := R*R - T1*T1 - T2*T2;
end;
for i := 4 to 6 do {load partial array}
begin
Tl := x[1i] + p2*c[i] - g2*s[i] - P;
T2 := y[1] + p2*s{i] + g2*c[i] - Q;
vii,1] := -2 * 71;
vi[i,2] := -2 * T2;
v([i, 3] := 0;
V[i,4] = 0,'
VI[i,5] := 2 * ¢c[i] * T1 + 2 * s[i] * T2;

vii, 6} -2 * s[i] * T1 + 2 * cl[i] * T2;
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G[i) := R*R - T1*T1 - T2*7T2;
end;
end;

{$I CALC.PAS}

Procedure Open_f£fil;

Begin
assign(ol,Out_f£fil_1);
rewrite(ol);
assign(o2,0ut_£fil_2);
rewrite(o2);
assign(o3,0ut_f£fil_3);
rewrite(o3);
assign{o4,0ut_fil_4);
rewrite(od);
assign(o5,0ut_f£fil_5);
rewrite{o5);
assign(o6,0ut_fil_6);
rewrite(o6) ;
assign(o7,0ut_f£fil_7);
rewrite(o7);
assign{(o8,0ut_fil_8);
rewrite(o8);
assign(o9,0ut_£il_9);
rewrite(o9) ;

End;

Procedure Close_£fil;

Begin
close(ol);
close(02);
close(03);
close(o04);
close(05);
close(06) ;
close(07);
close(08);
close(09);

End;

Procedure Output;

{test number, pole number at which calculation is
carrying on,}

{input data (given data), poles & Ipoles, output
good points }

{are included in this file.}
var

i: integer;

Begin
writeln(o2, '———-=——=- - e
————————— ‘)i
writzén(o?,'Output file #2 (MP_3_3.02) for adj. moving pivot
123-456."');
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writeln(o2, '——=-=-—-- - e -
--------- ')
writeln(o2, ' [Input data:]');
for i := 1 to 6 do
begin
write(o2,x[i1]:10:4);
write(o2,y[i]1:10:4);
writeln(o2,th{i}:10:4);
end;
writeln(o3, '—==—=-—m e -
__________________ l);
writeln(o3, 'The following selected center points satisfies
the length');
writeln(o3,"' requirement: length <=',maxlen:8:2);
writeln(o3, '———-— - -

writeln(o4, 'The circle points of the following selected

center points ');
writeln(o4, 'satisfies the length requirement: length

<=',maxlen:8:2);
writeln(od, '——==-=- e

__________________ l)l.

writeln (o8, The center points The circle points The
circle points ');
writeln (o8, (ABS)at position 1

(ARS)at position 4');
writeln (o8, '—==--= -

BEGIN

Get_data;

Open_data;

Beg_poly;

Open_f£fil;

Pole(6);

Print_pol;

Ipole(6);

Print_ipol;

writeln('Enter a length (The maximum desired distance
between a circle'); .

write(' point and the given points (x[1]1,y[1]), and
(x[4),y[4]1)):");

readln (maxlen) ;

write('Processing...... Please Wait');
Output;
for phase := 0 to 1 do begin

11 := 5-3*phase;

mm := 6-3*phase;

4-3*phase;
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00 := l+3*phase;
for i := 1 to 2 do begin
ii := i+3*phase;
Jjl := 1ii + 1; j2 := 3 + 3*phase;
for 33 := j1 to j2 do begin
kk := 5 + 6*phase -jj;
{ writeln(o2,"' ii 33 kk 11 mm
nn o0');}
{ writeln(o2,1ii:7, jj:7, kk:7, 11:7, mm:7, nn:7,
00:7);}
Calc_at_pole;
if pole_OK then begin write(' ->'); Cpoints;
end;
end; {33}
end; {i}
end; {phase}

writeln(ol, 'nil');

writeln{o6, 'nil"');

writeln(o7, 'nil');

End_poly;

Close_data;

close_fil;
END.
{This program is created by modifying program FP_3_3.PAS[12]
on the basis of equations developed in chapter 3}
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D. Program C_MP_R.PAS

Procedure Trans_to_abs;
{transforms pl,ql,p2,q92 calculated by numerical method to }
{its abs. coord. for checking and plotting}
var
i: 1integer;

Begin
for i := 1 to 3 do begin
x1[i] := x[i] + pl*cl[i] - qgl*sii];
y1l[i] := y[i] + pl*s[i] + ql*c[i];
end; {end for}
for i := 4 to 6 do begin
x2{1i] := x[1i] + p2*c[i] - g2*s[i];:
y2[il := y[i] + p2*s[i] + q@2*c[i];
end; {end for}
End;
Procedure Distance;
Begin
dl := sqgrt{sqr(x[1}-x1[1])+sqriv[1]-yv1(1}]));
dd4 := sqgrt(sqr(x[4]-x2[4]))+sqr(yv[4]-v2[4]));
End;

Procedure Calc_r;
{calculates crank lengths for each moving pivot generated}
{by numerical method for positions 1,2,3 & 4,5,6)
{for checking }

Var
i: integer;
Begin
for i := 1 to 3 do
R_check[i] := sqgrt(sqr(x1[i]-P)+sqr(yl[i]-Q));
for i := 4 to 6 do
R_check[i] := sqgrt(sgr(x2[i]-P)+sqgr(y2{i]-Q));
End;
Procedure Mp_out (points: integer);
Var
i: 1integer;
Begin

Data_out (P, Q) ;
writeln(ol,P:10:4,"',"',0:10:4);
writeln(o9,P:10:4);
writeln(o9,0:10:4);
write(o8,P:10:4,"',',0:10:4);
writeln{o2,'"');

erteln(oz, IRAS AR EEEEEREEEES SRR EEE R ERE R R SR RS EREEEEREEEEEEESE N )

’

writeln(o2, ' [Good point ', points+l,']"');
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write(o2, P 0 pl
ql p2');
writeln(o2, "' q2 R');

writeln(o2,P:10:4,0:10:4,p1:10:4,91:10:4,p2:10:4,g2:10:4,R:1
0:4);

Trans_to_abs;

Calc_r;
writeln(o2, '-----=---m -

—memt)

writeln(o2, 'positiont# X1 or x2 vyl or y2 R');
writeln(o2, '=-==--=----mmomm e

——-= 1)

for i :=1 to 3 do

begin
writeln{o2," L1,
',x1[11:10:4,v1(11:10:4,R_check(11:10:4)};
end;
for i := 4 to 6 do
begin
writeln(o2, v,
', x%x2[1):10:4,y2[1]:10:4,R_check[i]:10:4);
end;

writeln(o6,x1(1]:10:4,"',"',y1[1]:10:4);
writeln(o7,x2[4):10:4,',',y2[4]:10:4);

writeln(o8,x1[(1]:10:4,"',"',y1[1]:10:4,x2[4]):10:4,"',"',y2[4]:10
4 ;

Distance;

if (dl <= maxlen)and(d4 <= maxlen) then

begin

writeln(o3,'');

wrlteln(03, IR A S A S SR EE LR ERS S ERREERLEREELEREREEELERSEEEEESESEEE; l)

r

writeln(o3, ' [Good point ', points+l,']"');
write(o3, ' P 0 pl

ql p2');
writeln(o3, a2 R');

writeln(o3,P:10:4,Q:10:4,p1:10:4,91:10:4,p2:10:4,g2:10:4,R:1
0:4);
writeln(o3, '———--=m - e

---=');

writeln (o3, 'position# x1l or x2 vyl or y2 R');
writeln (o3, '=----—--- s e

-—-=');
writeln(o4,P:10:4,"',"',0:10:4);
for i :=1 to 3 do
begin
writeln(o3, ' .
', x1[1):10:4,y1(1):10:4,R_check[i]:10:4);
end;



for i := 4 to 6 do

begin
writeln(o3, " L1,
', x2[1):10:4,v2([1]1:10:4,R_check(1]:10:4);
end;
end;
End;
Procedure Mp_out_pole(i3:integer) ;
var
i: integer;
Begin

{the initial solution point--the pole }
Data_out (P, Q) ;
writeln(o9,P:10:4);
writeln(o9,0:10:4);
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writeln(ol,P:10:4,"',"',0:10:4);
write(o8,P:10:4,"',',0:10:4);
writeln(o2, '—~=--c- - -

write(o2,'[At P',ii,33,': Branch #',1i3, "',

drR=',dR:6:2,"', ');

writeln(o2, 'Starting a branch of solutions:]');
writeln(o2, '—————-=--om o

write({o2, P Q

writeln{o2, ! a2 R');

writeln(o2,P:10:4,0:10:4,p1:10:4,91:10:4,p2:10:4,g2:10:4,R:1

0:4);

writeln(o2, '———==~ == s e

writeln (o2, ' [Good center points:]‘');

Trans_to_abs;
Calc_r;

—===');
writeln{o2, 'position x1(pl)(x2(p2)
R_check');

writeln(o2, '—===-=- e e

v1l(gl)ly2(qg2)

writeln(o2, === —= -

—e== 1)

for i := 1 to 3 do
begin
write(o2,"' p',ii,jj, ',x1[i]:10:4,"
writeln(o2,y1[i]1:10:4," ',R_check[i]:10:4);
end;
for i := 4 to 6 do
begin
write(o2, ' P',ii,33," ', x2[1]:10:4,"
writeln(o2,y2[1]:10:4," ', R_check[i]:10:4);

end;

')

Y)Y
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writeln(o2, '=-c-mememm
___')’.
writeln(o6,x1(1]:10:4,',"',y1(1]1:10:4);
writeln(o7,x2[4]:10:4,"',"',y2[4):10:4);
writeln(o8,x1[1]:10:4,"',"',y1{1):10:4,%x2[4]):10:4,"',"',y2[4]):10
:4);
Distance;
if (dl <= maxlen)and(d4 <= maxlen) then
begin
{the initial solution point--the pole }
writeln(o3, '=—--cmmmmm e
------- Y);
write(o3, 'At P',ii,jj,': Branch #',1i3,"',
dR=',dR:6:2p.' ');
writeln(o3, 'Starting a branch of solutions:');
writeln(o3, '-—-~---=---- e e
------- ')
write(o3, P Q pl gl
p2');
writeln(o3, "' g2 R");

writeln(o3,P:10:4,0Q:10:4,p1:10:4,g1:10:4,p2:10:4,92:10:4,R:1
0:4);

writeln{o3, '—=—-—==c-—cm e e -
__.‘.");
writeln(o3, 'position x1(pl) Ix2(p2) vi(gl)ly2(g2)
R_check');
writeln(o3, '~-=----==------- oo
—===');
writeln(o4,P:10:4,"',"',Q:10:4);
for i := 1 to 3 do
begin
write{o3," P',1i,33," ', x1[1):10:4," Y
writeln(o3,y1([i]:10:4," ', R_check[i]:10:4);
end;
for i := 4 to 6 do
begin
write{o3," pP',ii,j3," ', x2[1]1:10:4," ") ;
writeln(o3,y2([i]:10:4," ' R_check[i]:10:4);
end;
writeln(o3, '——~=-—--m e
--_')l
end;
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E. Program CALC.PAS

Procedure Calc_at_pole;
{finds solution set to the adjustable moving pivot

problem, }

var
K1, K2, K3, arg :real;
L, M, N rarray [1..6,1..6] of real;
i, j, Jl, posl :integer;
Begin
{calculate at a pole which is chosen as a center
point}
{P,Q--abs. coord. of the center points}
P := Px[ii,jj)l; Q := Pylii,j3j):

{calculates L,M,Ns for indexes {1,2], [1,31],
(4,51, [4,6]}

i := 1;
for j := 2 to 3 do
begin
L{i,3] := P*(-c[il+c[d])+Q*(-s[i]l+s[J])
+x[1)*c[i]-x[j)1*clJl+ylil*s[i]-y[3)1*s(3];
M[i,3J] := P*(s[i]-s[]])+Q*(-c[i]+c[3])
-x[i1*s[i]+x[jl*s[J]l+y[i]l*c[i]-y[3]*cl]];
N[i,3] := P*(-x[1]+x[3])+Q* (-y[i]l+y[]])

+(x[1]*x[1)+y [1)*y (i) -x[J]1*x[]]~-

yI[3l*y[31)/2;
end; {for 3}

i = 4;
for j := 5 to 6 do
begin
L[i,J] := P*(~-c[il+c[j])+Q*(-s[i]l+s[]])
+x[1]*cli]-x[jl*c[jl+yl[il*s[i]l-y[J]*s[3];
M[i,3] := P*(s[i]l-s[j])+Q*(-cli]+c[]])
-x[11*s[il+x[jl1*s[J1+y[i)l*cli]-y[3]1*c(]];
N[i,3] := P*(-x[i]+x[3])+Q*(-y[il+y[]])

+ (X1 *x(11+y i1 *y (1] -x[j)*x[]]-
y(iil*y([J1)/2;
end; {for j}

{ solve for p2, g2 ( ppl[2, 1, qql2, ] )when pl2, pl3,
p23 is picked }

{ solve for pl, gl ( ppi2, ], gal2, ] )when p45, p46,
p56 is picked }

{ p2,q92--the relative coord. of the moving pivot for
ph 2.}

{ pl,gql--the relative coord. of the moving pivot for
ph 1.}

ppl(2,1] := (M[nn,ll}*N[nn,mm] - M[nn,mm]*N[nn,11])
/ (Lnn,ll]*M[nn,mm] - L[nn,mm]*M[nn,11]);
qqgl2,1) := (L[nn,mm]*N[nn,11] - L[nn,11]*N[(nn,mm])
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/ (Linn,11)*M[nn,mm] - Linn,mm]*M[nn,117])
ppl(2,1];
qal2,1];

ppl2,2]
aql2,2]

{crank length}

xx[nn] := x[nn]+pp(2,1]*c[nn]-qq(2,1]*s[nn];
yy[nn] := y[nn]l+pp(2,1]1*s[nn]+qq[2,1]*c[nn];
R := Sgrt (sqgr(xx[nn]-P) + sqgr(yy[nn]-Q));

{ solve for pl,ql}

cc := cloo]+L[oo,kk]*s[oo]l/M[oo,kk];
dd := X[ool+N[oo,kk]*s[oo] /M[oo,kk];
ee := s[oo]l-L[oo,kk]*c[oo}/M[oo,kk];
ff := Y({ool-N{oo,kk]*c[oo] /M[oo, kk];

Kl := sqgr(cc)+sqr(ee);

K2 := 2*cc*(dd-P)+2*ee* (f£-Q);

K3 := sqr(dd-P)+sqgr(ff-Q)-sqr(R);

arg := K2*K2 - 4*K1*K3;
if arg >= 0 then

begin
pole_OK := true;
ppl(l,1] :=( -K2 + sqrt(arg)) / (2*Kl);
ppll,2] :=( -K2 - sqgrt(arg)) / (2*Kl);
qqll,1] := - (L[oo,kk]*pp(l,1] + N[oo,kk])/M[oo,kk];
gqgll,2] := - (L[oo,kk]*pp[l,2] + N[oo,kk])/M{co,kk};

writeln(o2, '~---------~--—-~-———-—— - ")
writeln(o2,'[2 sets of pl, gl, p2, g2 at Pole
P',ii, 33, ':1");
writeln (o2, ppll,1] 'L,'ggll, 1) Yy'ppl2, 1]
'qq[zrl]' )l'
writeln (o2,
pp{l,11:10:4,q9q(1,1]:10:4,pp(2,1]:10:4,q9g(2,1]1:10:4 );
writeln{o2,"' ppll,2] ‘L 'agll, 2] Yy'ppl2, 2]
al2,2]1"' );
writeln (o2,
ppll,2]:10: 4 gqll,21:10:4,ppl[2,21:10:4,9g[2,2]:10:4 ),
writeln{o2, '-—————— - ')
end
else begin
writeln(o2,'arg < 0, pole_OK := false, at Pole:
P.Iiiljj);
pole_OK := false;
end;
End;

Procedure Cpoints;
{calculates center points for the adjustable moving pivot
problem.}

var



z, h, i, 3, k, i1, 12, 3j2,13,33, count, times, points
:integer;
XP, YP, PL, QL, plL, qglL, p2L, g2L, RR :real;
begin
RR := R; {original value of R saved here.}
for i3 := 1 to 2 do begin {2 branches of
solutions)
for j3 := 1 to 2 do begin { R inc. or dec. }
P := Px[ii,jjl; Q := Py[ii,j3j}; R := RR; {back
to starting values}
if phase = 0 then begin
pl = pp[11i3]; ql = QQ[lri3];
p2 := ppl2,i3]; q2 := qql2,13];
end
else begin
p2 := ppll,i3]; Q2 := qq[l,i3];
pl := ppl2,i3]; ql := qql2,1i3];
end; { if phase} { end of backing to

starting value. }

writeln (o2, '##4H4H44HHHHHHHFHEHHREHEE ) ;
writeln (o2, ' [Numerical method applied to the following set

of data:]"');

writeln (o2, pl gl p2 q2 P
Q')
writeln(o2,pl:10:4,91:10:4,p2:10:4,g2:10:4,P:10:4,0:10:4 );
dR := 0.1;
if §j3 = 2 then dR -0.1;
PL := P; plL := pl; p2L := p2;
QL := Q; qll := ql; a2L := qg2;
Mp_out_pole(i3);
times := 0; points := 0; tired := false;
Repeat {until tired)
R := R + dR;
count := 0;
Repeat {until done or large}
large := false;
Load_Array;
done := true;
for i := 1 to 6 do
if (abs(G[i]) >eps) then done := false;
if not done then
begin
Sim_Eqg;
P =P + D[1]; Q =0Q + D[2];
pl := pl + D[3]; gl := gl + D[4];
p2 := p2 + D[5]; g2 := g2 + D{6];
end
else begin
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done := true;

Mp_out (points) ;

PL := P; plL := pl; p2L := p2;
QL := Q; qgllL := gl; q2L := g2;
points := points + 1;
end;
if abort then count := maxcount;
if count >= maxcount then large := true;
count := count +1;
Until done or large;
if (not done) and large then
begin
times := times + 1;
if times = 3 then
tired := true
else
begin
points := 0; {use maxpoints at each dR}
R := R - dR; {back to last good point}

dR := dR / 10; {try again with smaller dR}
writeln(o2,'"');

writeln(o2, 'dR=dR/10= ',dR:8:4,' starting
at here:');
P := PL; pl := plL; p2 := p2L;
Q := QL; ql := qlL; g2 := q2L;
end; {if times)
end; {if large}
if points >= maxpoints then tired := true;
Until tired;
end; {for 33}
end; {for i3}
End;

{ This program is created by modifying FP_PROCS.PAS[12] on
the basis of the equations developed for the synthesis
problem MP_3_3}
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F. Program MP_3_3_1.PAS

Program mp_3_3_1;

{This program calculates a center points for 123-145}

Const
In_fil name = 'mp_3_3_1.DAT';
Out_fil 1 = 'mp_3_3_1.01"';
Out_fil_ 2 = 'mp_3_3_1.02"';
out_f£fil_9 = 'mp_3_3_1.09°';
positions = 6;

EPS = 0.0001;
maxcount = 200;
nmaxpoints = 150;

Var

Out_f£fil, In_£fil, ol, o2, o9 text;

X, Y, XX, Yy. th carray[l..6] of real;

thr, Bx, By, c, s rarray[l..6] of real;

Px, Py, 1Ix, Iy ;array[1..6,1..6] of real;

ii, 3j3j, kk, 11, mm, nn, oo:integer;

i, 3. 31, 32, k, phase :integer;

P, Q, p0, g0, R, RO :real;

drR, dRO, pl, gl, p2, g2 :real;

cc,dd,ee, f£ :real;

P, 9g rarray(l..2,1..2] of real;

x1,yl,x2,y2 :arrayfl..6] of real;

{abs. coord. for mp

obtained}

R_check rarray[l..6] of real;

{crank lengths for checking}

done, large, abort, tired :boolean;

pole_OK :boolean;

G, D carray[l..6] of real;

\Y carray [1..6,1..6] of real;
{$I POLES5.PAS}
{$I C_MP_R_1.PAS}

Procedure Get_data;

{gets position information}
{and calculates position cosines and sines}
Var

i : integer;
Begin

Assign (In_fil,In_£fil_name) ;

Reset (In_£fil);

for i := 1 to 5 do

begin
Readln (In_f£fil, x([i]

)
Readln (In_£fil, yI[i]);
Readln (In_fil, th[i]l);
thr[i] := th[i] * pi/180;
cl[i] := cos(thrl[i]l); s([i] := sin(thr{il);



end;

Close (In_fil);

End;

procedure Load_Array;
{loads the partial derivative array and the function}
{array for 123-456 problem}

var

Tl, T2 :real;

i :integer;
begin

for i := 1 to 3 do

begin
Tl
T2
v[i,1]
vii, 2]
VI[i, 3]
vii, 4]
VI[i,5]
vii, 6]
G[1i] :=

end;

[Ny —

x[1
[

Honowonon HIIH -

{load partial array}

+ pl*cl[i] - gl*s([i] - P;
+ pl*s{i) + gl*c[i] - Q;
-2 * T1;
-2 * T2;
2 * c[i] * TL + 2 * s[1] * T2;
-2 * gfi] * T1 + 2 * ¢c[i] * T2;

0;
0;

for i := 4 to 5 do

begin
T1
T2
v(ii,
V[1
vii
V[i
vii
VI[i,
G[i] :=
end;

]

x[1
[]

-~ o~

0\U15¥>~UJ[\H—‘II ]

]
)
]
]
)
]

hawnonon HIIH -

phase}
Tl := X
T2 :=y
vi6,1]
Vi{6,2]
V[6,3]
V(i6,4]
V[6,5]
Vi6,6]
G[6] :=
end;

0e
| SO

b B | N TN { O T T [ SO =

{$I CALC331.PAS}

+ p2*C
+ p2*s

(1
[i

-2 * T1;
-2 * T2;

0;
0;

*R - T1*T1 - T2*T2;

{load partial array}

] - a2*s[i] - P;
] + g2*cli] - Q;

2 * c[i] * T1 + 2 * s[i] * T2;
-2 * g[i] * T1 + 2 * c[i] * T2;

*R - T1*T1 - T2*T2;

{ for position 1 of the 2nd

+ p2*c[l] - g2*s[l] - P;
+ p2*s[1l] + qg2*c[l] - Q;
-2 * T1;
-2 * T2:

0;
0;

2 * c[l] *T1 + 2 * s[1)] * T2;
-2 * g[1] * T1 + 2 * c[1] * T2;

Procedure output;

{test
carrying on,}

number,

*R - T1*T1 - T2*T2;

pole number at which calculation

is
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{input data (given data), poles & Ipoles, output
good points }

{are included in this file.)}
Var

i: 1integer;

Begin
writeln(o2, '==—==---—- - ") ;
writeln(o2, 'mp_3_3_1 for adj. moving pivot problem 123-
145."');
writeln(o2, '=-==---cee e e ")
writeln{o2, 'Input data:');
for i := 1 to 6 do

begin
write(o2,x[3]:10:4);
write(o2,y[i]1:10:4);
writeln(o2,th(i]1:10:4);
end;
writeln(o2, '---—--cmemmm e - ")
End;
BEGIN
Get_data;

Assign(ol,Out_£fil_1);
rewrite(ol) ;
Assign(o9,0ut_fil_9);
rewrite (o9);
Assign(o2,0ut_£fil_2);
rewrite(o2);

output;
Poles5(5);
oo :=1; nn := 1;

for phase := 0 to 1 do begin
11l := 4-2*phase;

mm := 5-2*phase;
for i := 1 to 2 do begin
ii := 3;
if phase 1 then ii := i * 1i;

n+1n

j1 := dii 1; j2 := 3;
if phase 1 then begin 3jl := 3+1i; j2 := 5;
end;
for jj := jl to j2 do begin
kk := 5 + 4*phase -jj;
writeln{o2,"’ ii j3 kk 11 mm
nn 00');
writeln(o2,ii:7, jj:7, kk:7, 11:7, mm:7, nn:7,
00:7);

Calc_at_pole;
if pole_OK then Cpoints;
end; {33}
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end; {i}
end; {phase)
writeln(ol, 'nil');
writeln{o9, 'nil"');
close(ol);
close(02);
close(09);

END.
{This program is created by modifying program
FP_3_3_1.PAS[12] on the basis of the equations developed for

the synthesis problem MP_3_3_1}
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G. Program C_MP R _1.PAS

Procedure Trans_to_abs_1;
{transforms pl,ql,p2,qg2 calculated by numerical method
to 1}
{its abs. coord. for checking and plotting}
{for 123-145 , 1 shared at 1 or 3}
Var
i: integer;

Begin
{for pos. 1,2,3 of phase 1}
for 1 := 1 to 3 do begin
X1[i] := x[i] + pl*c[i] - ql*s[i];
y1[i] := y[i] + pl*s[i] + qgl*cli];
end; {end for}
{for pos. 1 of phase 2}
x2[{4] := x[1] + p2*c[l] - a2*s[l];
y2[4] := y[1] + p2*s[l] + q2*c[l];
{for pos. 4 ane 5 of phase
2}
{note that index of x2[5], y2I[5], x2[6],
v2[6] are 5 & 6}
for i := 5 to 6 do begin
x2[1] := x[i-1] + p2*cli-1] - qg2*s[i-17;
v2[{i] := y([i-1]) + p2*s[i-1] + qQ@2*c[i-1];
end; {end for}
End;

Procedure Calc_r_1;
{calculates crank lengths for each moving pivot generated}
{by numerical method for positions 1,2,3 & 4,5,6}
{for checking }

Var
i: integer;
Begin
for 1 := 1 to 3 do {for pos.1l,2 3 of ph. 1}
R_checkfi] := sqgrt(sqr(x1l[i]-P)+sqr(y1[i]-Q));
{for pos. 1 of ph. 2}
R_check([4] := sqgrt(sqr(x2[4]-P)+sgri(y2[4]-Q));
{for pos. 4,5 of ph. 2}
{note that 1 = 5, 6 }
for i := 5 to 6 do
R_check[i] := sqgrt(sqr(x2{i]-P)+sqri{y2[1i]1-Q));
End;
Procedure Mp_out;
Var
i: integer;
Begin

writeln(o2, '====---- e

—-e- )

writeln (o2, 'position# x1l or x2 vl or y2 R');



WELteln (02, '~—-- - e e

—emm )

for 1 := 1 to 3 do
begin
writeln(o2," r,1i,!
',x1[1]):10:4,v1([1]:10:4,R_check[1]:10:4);
end;

for i := 4 to 6 do {for pos. 1, 4, 5 of ph. 2,
note: i=4,5,6}

begin
writeln(o2, ' v,i, !
', x2[11:10:4,y2[1):10:4,R_check[i]:10:4);
end;
End;
Procedure Mp_out_pole;
Var
i: integer;
Begin

--==1');
writeln (o2, 'position x1(pl)ix2(p2) vi1(gl)iy2(g2)
R_check'});

writeln(o2, '-—-—-—=- - s e

—emm )

for i := 1 to 3 do
begin
write(o2, 'P',ii,33," ',x1[1]):10:4," )
writeln{o2,y1[i]:10:4," ', R_check[i]:10:4);
end;
for 1 := 4 to 6 do
begin
write(o2, 'P',ii, 33, ', %x2[1]:10:4," )
writeln(o2,y2[i]:10:4," ',R_check[1}:10:4);
end;

End;

writeln (o2, '====--=—-—mm e
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H. Program CALC331.PAS

procedure Calc_at_pole;
{finds solution set to the adjustable moving pivot

problem}

var
K1, K2, K3, arg :real;
L, M\ N rarray [1..6,1..6] of real;
i, 3, jl, posl :integer;
Begin
{calculate at a pole which is chosen as a center
point}

{P,Q--abs. coord. of the center points}
P := Px[ii,jjl: Q := Pyl[ii,jjl;

{calculates L,M,Ns for indexes [1,2], [1,3],.
[1,4],.[1,5]}

i :=1;
for j := 2 to 5 do
begin
L[i,j] := P*(-c[il+c[j])+Q*(-s[il+s([3])
+x[i]*cli]-x[j1*c(jl+y[i]l*s[i]-y[j)*s[]];
M[i,3] := P*(s[il-s[]j])+Q*(-c[i]l+c[]]) .
-x[i)*s[i]+x[jl*s[3)+y[i)*c[i]-y[J)=*cl]];
N[i,3] := P*(-x[i]+x[j])+Q* (-y[i]l+y[3])

+(x (i1 *x (1) +y (i *y (1] -x[31*=x[]]-
y[l3l*yl[3l)/2;
end; {for 3}

{ solve for p2, g2 (represented by ppl2, ], ggl2, ]
ywhen pl2, pl3, p23 is picked }

{ solve for pl, gl (also represented by ppl2, ], qql2,
] Jwhen pld, pl5, p45 is picked }

{ p2,92--the relative coord. of the moving pivot for

ph 2.}
{ pl,gl--the relative coord. of the moving pivot for
ph 1.}
ppl2,1] := (M{nn,11)*N[nn,mm] - M[nn,mm]*N[nn,11])
/ (L[nn,11]1*M[nn,mm} - L{nn,mm]*M[nn,11]1);
ggl{2,1] := (L{nn,mm]*N(nn,11] - L{nn,1l1]*N[nn,mm]})
/ (L[nn,11]*M[nn,mm] - L[nn,mm]*M[nn,11l]);
ppl2,2] := ppl2,1];
qql2,2] := qql2,1}];
{crank length}
{nn always = 1 in this 123-145 problem}
{nn = 4(phase 0), l(phase 1) in 123-456 problem}
xx[nn] := x[nn]+pp(2,1]*c[nn]-qgqql[2,1]*s[nn];
yyinn] := y(nnl+ppl[2,1]*s([nn]+qgqg(2,1]*c[nn];
R := Sgrt (sqgr(xx[nn]-P) + sgr(yy[nn]-Q));

{ solve for pl,ql when pl2,pl3,p23 is
picked}



{ solve for p2,qg2 when pld4,pl5,pdS is

picked}

cc := c[ool]+L[oo,kk]l*s[oco]/M[oo,kk];
dd := x[oo]+N[oo,kk]*s[oo] /M[oo,kk];
ee := s[oo]-L[oo,kk]*c[oo]/M[oco,kk];
ff := y[oo]-N[oo,kk]*c[oo]/M{o0,kk];

Kl := sgr(cc)+sqgr(ee);

K2 := 2*cc*(dd-P)+2*ee* (££-0Q);

K3 := sqgr(dd-P)+sqr(ff-Q)-sar(R);

arg := K2*K2 - 4*K1*K3;
if arg >= 0 then begin

pole_OK := true;
ppll,1]) :=( -K2 + sqgrt(arg)) / (2*K1l);
ppll,2] :=( -K2 - sqgrt(arg)) / (2*Kl);
aq(l,1] := - (L[oo,kk]*pp[l,1] + N[oo,kk])/M[oo,kk];
qqgll,2]) := - (L[oo,kk]*pp[l1l,2] + N[oo,kk])/M[oco, kk];
end
else pole_OK := false;
writeln(oZ,'stopl: ppll,1] 'L, 'agll, 1] ','ppl2,1]
‘qql2,1]" ):

wrlteln(oz '

ppll,1]:10: 4 qq[l 1]1:10:4, pp[2 1] 10:4, qq[2 11:10:4 );

wrlteln(oz 'stop2 ppll, 2] 'qgil, 2] ‘ppl2,2]
'‘qql2,2]" );

wrlteln(oz '

ppll,21:10: 4 qq[l 21:10:4,pp(2,2]:10:4,qqg(2,2):10:4 };
End;

procedure Cpoints;
{calculates center points for the adjustable moving}
{pivot problem 123-145}
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var
z, h, i, j, k, 11, i2, §2,1i3,33, count, times, points
:integer;
XP, YP, PL, QL, plL, glL, p2L, g2L, RR :real;
begin
RR := R; {original value of R saved here.}
for i3 := 1 to 2 do begin {2 branches of
solutions}
for 3j3 := 1 to 2 do begin { R inc. or dec.
{P,Q and R back to starting
values}
P := Px[ii,jj); Q := Pyl[ii,jjl; R := RR;
if phase = 0 then begin
pl := ppll,13]); ql := qqll,i3];
p2 := ppl2,i3]); g2 := qql2,i3]);
end

else begin _
D2 ppll,13]; Q2
pl ppl2,1i3]; gl

qq(l,13];
qql2,i3});

I u
[t
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end; { 1f phase} { end of backing to
starting value. }
writeln(o2, 'stop3: pl gl p2 g2
P Q');

writeln(o2,
',p1:10:4,91:10:4,p2:10:4,g2:10:4,P:10:4,0:10:4 ) ;

Trans_to_abs_1; { for pole point }
Calc_r_1;
drR := 0.2;
if j3 = 2 then drR := -0.2;
PL := P; plL := pl; p2L := p2;
QL := Q; qllL := ql; Q2L := qg2;
{the initial solution point--the pole
}
writeln(ol,P:8:4,"',"',0:8:4);
writeln(o9,P:8:4);
writeln{o%,0Q:8:4);
writeln (o2, '——==--m oo e
——————— ")
writeln(o2, 'At P',1ii,3jj,': Branch ',i3,"',

drR="',dR:10:4);
writeln(o2, '-=-==----------mmm e

writeln (o2, 'Starting a branch of solution:');
writeln(o2, '——--=-- s

write (o2, P Q pl gl
writeln(o2, a2 R');

writeln(o2,P:10:4,Q0:10:4,p1:10:4,91:10:4,p2:10:4,g2:10:4,R:1
0:4);

Mp_out_pole;
writeln(o2, '——=-—-~--c e

writeln (o2, 'Good center points:');
times := 0; points := 0; tired := false;

Repeat {until tired}
R := R + dR;
count := 0;

Repeat {until done or large}
large := false;
Load_Array;
done := true;
for i := 1 to 6 do
if (abs(G[i]) >eps) then done := false;



if not done then begin
Sim_Eq;
P := P + D[1]; Q
pl := pl + D[3]; ql
p2 := p2 + DI[5]; g2
end
else begin
done := true;
writeln(ol,P:8:4,"',"',Q:8:4);

writeln(o9,P:8:4);
writeln(o9,0:8:4);
writeln(o2,'');

Q + D[2]:
gl +~ D[4];
g2 + D[6];
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wrlteln(ozl R A E AR AR SRR R SRR R AR S AR R R R R R AR R R EEEREEREEESES EE RN )

al p2');

writeln(o2,P:10:
0:4);

writeln(o2, 'Good point ',points+1l);
write (o2, P 0 pl
writeln{o2, Q2 R ;

4,0:10:4,p1:10:4,91:10:4,p2:10:4,9g2:10:4,R:1

Trans_to_abs_1;
Calc_xr_1;
Mp_out;

PL

QL
points

P;
Q;

plL pl;
qlL al;
points + 1;

p2L
g2L

I
Inu

end;

if abort
if count
count
Until done
if

then count

count +1;
or large;

{not done) and large then

begin

dR}

times + 1;
3 then
true

times
if times
tired
else begin
points := 0;
R R - dRr;
dr dr / 10;

writeln(o2,'"');

starting at here:');

end;

maxcount ;
>= maxcount then large

p2;
q2;

true;

{use maxpoints at each dR}
{back to last good point}
{try again with smaller

writeln(o2, ‘dR=dR/10= *',dR:8:4,"

P := PL; pl := plL; p2 := p2L;

Q := QL; ql := qlL; g2 := qQ2L;
end; {if times}

{if large}
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if points >= maxpoints then tired := true;
Until tired;
end; {for 33}
end; {for 13}

End;
{ This program is created by modifying FP_PROCS.PAS [12] on
the basis of the equations developed for the synthesis
problem MP_3_3_1}



I. Program CL_2 2 2.PAS

Program cl_2_2_2;
{program calculates a circle point curve for}
{an adjustable crank length for a 4-bar linkage}

{The 1lst phase:
{The 2nd phase:
{The 3rd phase:

Const
In_fil_ name
Layer_name

positions 1, 2}

positions 3,
positions 5,

'CL_2_2_2.DAT';

'‘CL_2_2_2"';

4}
6}

1 n

Out_fil_name 'CL,_2_2_2.DXF';
out2_name = 'circpt.dat'

Type
vector3
vectord
vector5
vector6

array(1l..3] of real;
array([l..4] of real;
array[l..5] of real;

array[1l..6] of real;

vVar
Out_fil,
X, ¥, th
bp, cp,
alpha,
i, 3,
vl, wvu

In_fil, out?2 text;
vectoré6;

dp, ep, fp, gp, hp

beta, asymp real;

k, nroots integer;

vector3;

real;

{$I POLYLINE.PAS}
{$I CPOINTS.PAS}
{$I LIMITS.PAS}
Procedure Get_data;
{get data for 6 positions 1,2,3,4,5,and 6}

Var
i : integer;

Begin
Assign (In_£fil,In_£fil_name) ;
Reset (In_fil);
for 1 := 1 to 6 do
begin
Readln (In_fil, x[i]);
Readln {(In_£fil, yI[i]):
Readln (In_fil, th[i]}};
end;
Close (In_f£fil);
End;

Procedure Calc_con;
{calculate constants for a circle point curve equation}
{for 6 positions with 2 on each phase}
var
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:integer;
a, b real;
theta, costh,
aa, bb, cc,

i, Jj

sinth
dd, ee,

real;

ff, gg, bpl real;

aaz2,
al,
bl,
cl,

bb2

az2,
b2,
c2,

a3
b3

real;

: vector3;
: vector3;
: vector3;
: vector5;
: vectorb;
: vectorb;

to 5 do {for positions 2-6}
1;
(th[j] - th([1]) * pi /180.;
cos (theta) ;
sin(theta) ;

- x[1});
yIi3il - yI[1];

:= l-costh; qg2(i]:
sinth; r2[i]:= l-costh;
-a; s2{1}:= -b;
a*costh + b*sinth;
b*costh - a*sinth;

(a*a + b*b) / 2.;

-sinth;

Wit ou

PR
~— ey —
BN
e
[ R
[ B -

1
1
1

oo
n s8.Q
nonou

Qoo

for i 2 to 3 do
begin

k := 2*(i-1);

alli] ql[k]-ql[k+1];
bl[i] rl(k]-rlik+1];
cl[i] s1[k]l-s1[k+1};
a3 [1i] a3 [k]-a3 [k+1];
b3 [i] r3[kl-r3[k+1}1;

a2 [k]-qg2[k+1];
r2lk]-r2[k+1];
s2[k]-s2([k+1];

oo s ee
I u

c3[1i]

end;
aa :
bb
cc
cc
dd

ee

ff

g9

+|l+|l+ll+llll.|;.l;ll

det
det
det
det
det
det
det
det
det
det
det
det

(al,
(b1,
(al,
(c1,
(al,
(cl,
(b1,
(cl,
(al,
(c1,
(b1,
(cl,

a2,
b2,
c2,
az,
a2,
az2,
b2,
b2,
c2,
c2,
c2,
c2,

s3[k]-s3[k+1];

al3);
b3);
b3) +
b3) +
c3) +
a3);
c3)
b3);
c3)
ald);
c3)
b3);

+

+

+

det
det
det
det
det

det

(bl,
(c1,
(al,
(bl,
{cl,

(cl,

c2,
b2,
c2,
c2,
az2,

b2,

ald);
a3)
a3)
b3)
c3)

c3)

+ CC;
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hp det (cl, c2, c3);
bpl := aa*aa + bb*bb;

bp := sqgrt (bpl);
cp := cc * (bb*¥b - aa*aa) + 2 * aa * bb * d4dd;
cp := (cp - 2 * aa * bb * ee) / bpl;
dp := (ee * aa*aa + dd * bb*bb - aa * bb * cc) / bpl;
ep := (dd * aa*aa + ee * bb*bb + aa * bb * cc) / bpl:;
fp := (bb * £ff - aa * gg) / bp;
gp := (aa * £f + bb * gg) / bp;
alpha := bb / bp;
beta = aa / bp;
asymp := - dp / bp;
End;
BEGIN
Get_data;
Calc_con;
Limits;
Open_data;
Cpoints;
Close_data;
END.

{This program is created by modifying program CL_3_2.PAS[12]
on the basis of the equations developed for the synthesis
problem CL_2_2_2.}
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