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ABSTRACT

Kinetic Study of Decomposition of Azo Dyes 
and Phenol in Advanced Oxidation Processes:

Reaction Mechanisms, Pathways and Intermediates

by
Hung-Yee Shu

Advanced Oxidation Processes (AOP) are an emerging technology for treatment of 

various hazardous organics in wastewater and groundwater. However, the kinetics and 

mechanisms for AOP have not been well understood. A mechanism including light 

intensity was studied for the decomposition of azo dyes and phenol in an AOP reactor 

with a 5,000 watt low pressure mercury lamp. UV light absorption is an important 

parameter. The effect of pH, hydrogen peroxide dosage, and dye concentration on the 

decomposition o f azo dyes in an H20 2/UV reactor were also studied. Reaction pathways 

and intermediates of phenol oxidation by different processes were obtained using 

GC/MS analysis. Phenol oxidation by OH. produced some high molecular weight 

compounds (i.e. 2-phenoxy-phenol, l,l'-biphenyl-2,2'-diol etc.) as well as organic 

acids. This phenomena has not been reported previously in other AOP studies. The 

results o f computer modeling gave excellent agreement with experimental data for 

different initial conditions, and rate constants obtained from optimization method 

showed reasonable agreement with literature data of this type.

In this study, light intensity in the reactor and absorbance o f solution were 

considered to improve the accuracy of modeling. To use literature data for the 

fundamental reactions in stead of floating fitting make the modeling results more 

consistent with literature. The modeling results of the proposed mechanism can fit 

various initial conditions to prove its effectiveness.
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CHAPTER 1 

INTRODUCTION

Industrial wastewater contaminated by organic compounds is a major concern. The Best 

Available Technologies (BATs) for treatment o f organic pollutants are packed-tower 

aeration and granular activated carbon filtration (40 CFR). However, these processes 

transfer the contaminant from water media to the air or the carbon media, respectively. 

Other treatment processes that should degrade organic contaminants are biological and 

chemical oxidation. Furthermore, Advanced Oxidation Processes (AOPs) are being 

developed as additional BATs. For years, conventional chemical oxidation has been used 

in the treatment o f organic contaminated water. Oxidants such as potassium 

permanganate, chlorine, chlorine dioxide, ozone, and hydrogen peroxide have been used 

for various purposes. However, the disadvantages o f producing carcinogenic byproducts 

and difficulty in degrading refractory organics make conventional chemical oxidation less 

competitive to advanced oxidation processes for destroying toxic and hazardous organic 

compounds in water.

UV light intensity in the reactor plays an important roll for the destruction of 

organics in AOPs system. The transmittance is reduced by color, turbidity, and organic 

and inorganic compounds present in the wastewater. The light intensity in the local region 

decreases exponentially as the wastewater's transmittance decreases. Therefore, extremely 

low transmittance can make photooxidation processes very expensive or impractical. 

Thus, absorbance o f UV light at 254 nm by wastewater is a very important parameter for 

the study o f AOP reactors, and it is necessary to pretreat the turbidity and color prior to 

using UV/H20 2 system for treating dark turbid wastewater.

1
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1.1 Target Compounds

Azo dyes are of concern because some azo dyes, dye precursors, and their degradation 

products such as aromatic amines have been shown, or are suspected to be carcinogenic. 

The industrial manufacturing and processing of azo dyes would generate a wastewater 

contaminated with azo dyes which were typically treated in a conventional wastewater 

treatment system. A study by EPA's Water Engineering Research Laboratory, found that 

11 of the 18 dyes studied pass through the Activated Sludge Process substantially 

untreated, 4 were significantly adsorbed onto the Waste Activated Sludge, and 3 were 

apparently biodegraded (Shaul 1988). Consequently, alternative technologies which can 

decompose the nonbiodegradable azo dyes have to be uncovered. Approaches that 

combines UV radiation and hydrogen peroxide, or UV radiation and ozone may provide 

solutions to this problem.

From an investigation of industrial wastes, phenol was found in wastewater from 

various industries, for instances, dye manufacturing plant, epoxy resins plant, additives 

and aromatic chemical plant, solvents plant, and aromatic chemical and pharmaceutical 

plant, etc. (Stryker et al. 1985). These plants generated phenol from 2,200 lb/yr to 

589,230 lb/yr. Besides, its high toxicity and its presence in wastes from variety of 

industries, phenol is a suitable substance that serves as a model for studies about the 

degradation of related compounds, such as chlorophenols, chlorinated pesticides, 

phenoxy herbicides, etc. Thus, phenol became a very interesting substance for 

decomposition research.
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1.2 Processes

Information has been developed on the impact o f carcinogens in drinking water, 

groundwater and surface water. This has led to a better understanding of the influences of 

chemicals which contaminate water and cause harmful effects to the environment and to 

human health. The conventional wastewater treatment processes were found not to 

decompose certain chemicals in industrial wastewater. These chemicals are invariably 

toxic substances or carcinogens. In order to decompose these chemicals to acceptable 

concentration levels, alternative technologies have been proposed, such as biological and 

chemical oxidation, packed-tower aeration, and granular activated carbon filtration. These 

technologies are often used to treat toxic organics in wastewater and drinking water.

It has been reported in previous studies that the combination o f ultraviolet 

radiation and ozonation increases the rate of ozone induced organic oxidation in aqueous 

solution. Simultaneously, the experiments demonstrated that the 0 3/UV combination 

oxidized organics more rapidly than ozone alone. That is because the UV induced 

decomposition o f ozone which produced powerful oxidants such as hydroxyl radical (OH 

.) and hydroperoxide radical (H 02*). The combination of hydrogen peroxide and UV 

radiation also induced a high decomposition rate o f organics in aqueous system. For some 

organic decompositions, the H20 2/UV system was more effective than in the 0 3/UV 

system.

1.3 Objective

The objective o f this study is to determine the feasibility and the mechanism of using 0 3 , 

0 3/UV and H20 2/UV for the decompositions o f eight specific azo dyes, acid orange 10, 

acid red 1 and acid yellow 23, etc. as listed in Table 2.2 and to model the reactor system.
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Furthermore, the light intensity model for an AOPs reactor is introduced for a better 

understanding of reaction mechanism. Phenol was chosen as a model compound to test 

the reaction mechanism and decomposition pathways. The intermediates were also 

studied by GC/MS analysis. Using a pilot size reactor, scaling up parameters such as rate 

constants, dosage effect and pH effect could be obtained. The determination o f rate 

constants and mass transfer coefficients requires conducting a series of experiments of 

varying complexity. A reaction kinetic model which describes the contemplated 

experiments was developed and exercised using the Rosenbrock Hillclimb Optimization 

Algorithm with the LSODE ODE solver. Furthermore, the effects between different 

hydrogen peroxide dosages, initial concentration of azo dye and pH levels were also 

analyzed.

To modify the reaction model using various set of experimental results was very 

important for this study. A reaction mechanism of hydrogen peroxide decomposition 

induced by UV radiation was proposed to obtain the rate constants from which the rate 

constants of azo dye reacted with OH* and H 02* could be obtained with the known rate 

constants from literature. This modified mechanism could be used to solve for U V /03 

reaction rate constants. Therefore, the reaction mechanism for series o f photochemical 

reactions was expected to be able to check the models of H20 2/UV and 0 3/UV systems.

In order to demonstrate the treatment feasibility o f the 0 3/UV and H20 2/UV 

processes in wastewater, CSTR (Constant flow Stirred Tank Reactor) experiments were 

also conducted. By using the reaction rate constants and the mass transfer coefficients 

which were obtained from the batch reactor experiments, the effluent concentration for 

CSTR could be predicted. Comparing with the predicted and experimental data in this 

CSTR process, the applicability of this kinetic model and rate constants in wastewater 

treatment process can be confirmed.
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CHAPTER 2 

REVIEW OF PREVIOUS STUDIES

The literature o f previous studies were divided into several sections for systematical 

presentations. The sections are Advanced Oxidation Processes; Photolytic Hydrogen 

Peroxide Oxidation; Photolytic Ozonation; Ozone combined with hydrogen peroxide 

oxidation; Fenton's Reagent and Hydrogen Peroxide Photooxidation; Conventional 

Ozonation (mechanisms); Azo Dyes in Wastewater (characteristics and problems); and 

Oxidation o f phenol by Alternative Processes.

2.1 Advanced Oxidation Processes

EPA (Environmental Protection Agency) amended pretreatment regulations which 

restricted the POTWs (Publicly Owned Treatment Works) to implement testing, reporting 

and enforcement programs for their significant industrial dischargers in July, 1990. 

Effluents from receiving dischargers should be necessarily inspected by POTWs for 

regulated toxics (Kobylinski et al. 1992). All the significant industrial users of POTWs 

regulated legally binding permits governing pretreatment and discharges, similar to the 

NPDES (National Pollutant Discharge Elimination Standards) permits for direct 

discharges. The amended regulation compelled POTWs to exert tighter control upon 

industrial waste generators. The control appeared in the form o f local ordinances which 

requested industries to institute their own pretreatment programs.

Industrial process plants generated a wide variety o f water pollutants which can 

not be treated simply but expensively. For example, industries such as pharmaceuticals, 

organic chemicals, petroleum refining, pulp and paper, plastic and resins, produced

5
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wastewater containing organic pollutants which were forced to perform pretreatment 

before discharging into POTWs. Goronszy et al. (1992) introduced that the most simple 

and effective pretreatment method for organics was chemical oxidation which use 

oxidants such as chlorine, ozone, hydrogen peroxide, potassium permanganate and 

chlorine dioxide to destroy the odor causing sulfur compounds, control bacterial growth, 

and reduce COD (Chemical Oxygen Demand). The most thorough destruction o f organic 

contaminants was achieved while combining the chemical oxidizing agent with a source 

o f ultraviolet radiation to generate a hydroxyl radical (OH«). The process was called 

Advanced Oxidation Processes (AOPs) which generally apply ultraviolet (UV) radiation 

with ozone (0 3) or hydrogen peroxide (H20 2).

0 3 and H20 2 were utilized as oxidants in many water and wastewater treatment 

applications. Theoretically, 0 5 and H20 2 should be able to oxidize inorganics to their 

highest stable oxidation states, to oxidize organic compounds into C 0 2 and H20 . Since 

the limited selectivity and lower reaction rate of 0 3 and H20 2, the Advanced Oxidation 

Processes were developed to degrade the refractory organics in water. Consequently, 0 3 

and H20 2 were generally employed with UV radiation in AOPs to dynamically destroy 

the refractory organics.
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2.2 Photolytic Hydrogen Peroxide Oxidation 

(Hydrogen Peroxide with UV Radiation)

The photolytic hydrogen peroxide oxidation has proved to be effective for the treatment 

of refractory compounds such as nitrosamines in groundwater and industrial wastewater. 

Total Organic Carbon in distilled water and tap water; various halogenated aliphatics; 

aromatic organics (benzene, toluene, chlorobenzene, phenol, chlorophenols, dimethyl 

phthalate and diethyl phthalate, etc.); 2,4-Dinitrotoluene (explosive from military 

munition facilities); groundwater contaminated with TCE (Trichloroethylene), 1,1-DCA 

(1,1-Dichloroethane), and 1,1,1-TCA (1,1,1-Trichloroethane); bleaching water in paper 

industry.

Advanced Oxidation Processes (AOP) or Enhanced Oxidation Processes has 

gained acceptance as a capable method to destroy toxic and hazardous organic 

compounds in water. Smith (1992) reported that the AOPs were successful for treating 

the nitrosamines in groundwater and industrial wastewater. Although wastewater showed 

the low absorbance of UV light, the AOPs system could even provide apparently 

attributable treatment.

It is important to measure the UV transmittance of the effluent at the predominant 

wavelength o f 253.7 nm emitted by UV lamp. Transmittance was reduced by turbidity, 

colored organic and inorganic compounds presented in the wastewater. Therefore , 

transmittance was generally improved by increasing degree o f pretreatment. The light 

intensity of lamp in the local region decreased exponentially as the wastewater's 

transmittance decreased. But, the extremely low transmittance could make photooxidation 

process very expensive or impractical (Mann et al. 1992). Usinowicz et al. (1993) 

concluded that for treating the dark turbid groundwater, it was required to pretreat the
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turbidity and color by using UV/H20 2 system. They also concluded the capital cost o f 

UV/H20 2 system which included color and turbidity removal pretreatment was similar to 

Bioultrafilter's. However, its operation and maintenance costs were 4 times o f 

bioultafiltration's.

Light intensity which affected the decomposition rate o f pollutants in an AOP 

reactor was an important parameter in reactor modeling. However, few studies were 

focused on the light intensity in an AOP reactor. Suidan et al. (1986) employed annular 

UV disinfection reactors to compare two different light intensity in his models, infinite 

line source model and finite line source model. According to no significant differences 

between two models, the results suggested no reasons to use the more complex finite line 

source model in stead of infinite line source model. Radial approximation of the infinite 

line source model can be described as follows :

The light intensity, /, at any point p in the reactor was related to the surface flux, 

I0, by a one-dimension form of Lambert's law o f absorption

1 S S . . B
r dr

where E  is the monochromatic absorbance of water using logarithms to the base e. 

Integration o f the above equation using boundary condition o f I  = 70 when r = r0 gives

I  = I„ r- ^ e E(,-r̂
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Therefore, the ratio o f the average point intensity to the surface flux at the quartz 

tube in the reactor was defined as the intensity factor, m.

m = —  = -----^ - r - [ l  -  e-E(R-'^]
I0 E(R - r 0 )

Here, R denotes radius of reactor, r0 is radius o f lamp with quartz shell.

Although the 0 3/UV treatment was undoubtedly effective on a wide range of 

refractory organic compounds, it still has some disadvantages. Firstly, ozone is an 

unstable gas which must be generated and used on-site immediately. Secondly, must 

provide an ozone contacting device which can achieve adequate 0 3 mass transfer into the 

liquid phase. An oxidant which may oxidize as effectively as ozone but easier for storage 

and transportation while using in AOPs system, is hydrogen peroxide. H20 2 which was 

weak acidic, colorless and rather stable was completely miscible in water. Furthermore, it 

is more economical since the price has actually decreased 20% over past years (Shearman 

1992). Besides, H20 2 was generally regarded to have one o f the most favorable 

performance profiles because it yielded only water and oxygen while decomposing but 

producing no toxic byproducts. For the photosensitive characteristics o f hydrogen 

peroxide, it has often been used to induce oxidation of compounds which were not 

attacked by hydrogen peroxide without UV radiation. Moreover, the other superiority of 

H20 2/UV process which formed no residual sludge or vapor emission could save another 

waste-disposal problems.

0 3/UV radiation process showed that the intermediate, hydrogen peroxide, played 

an distinguished action in the reaction mechanism (Peyton et al. 1987 and 1988).
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Therefore, studying the photolytic oxidation o f hydrogen peroxide could lead to a better 

understanding for the mechanism of 0 3/UV photolytic oxidation.

The H20 2/UV reaction generated hydroxyl radicals and other reactive species by 

photochemical reaction of UV light on hydrogen peroxide. Ogata et al. (1981) studied the 

H20 2 with the UV which induced the photooxidation of formic, acetic, and propionic 

acids, and proposed the following mechanism. Hochanadel (1962) has also proposed a 

similar mechanism:

H20 2—^ 2 0 H .

H20 2 + OH. -> H 02 . +H20

h 2o 2 + h o 2.->  o h .+ h 2o + o 2

2 H 02 • —̂ H20 2 + 0 2

Malaiyandi et al. (1980) presented that hydrogen peroxide photolysis could reduce 

the TOC (Total Organic Carbon) content from distilled water about 88 % and tap water 

about 98 %. Under suitable operating conditions, H20 2/UV can provide a useful source of 

hydroxyl ions which promoted the chain reactions. H20 2 decomposed could be shown at 

higher pH values and base catalyzed.

Sundstorm et al. (1986) compared the reaction rates for various halogenated 

aliphatics with UV alone, H20 2 alone and H20 2/UV by different hydrogen peroxide 

dosage and different temperatures. They found the following results :

1. Compared with the other methods, H20 2/UV reached the highest efficiency for 

decomposing halogenated aliphatics.
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2. The decomposition rates o f halogenated aliphatics increased with increasing

hydrogen peroxide concentrations and temperatures. Besides, they were 

degraded with highly structure dependent.

3. Unsaturated halogenated compounds were generally decomposed more rapidly.

Weir et al. (1987) studied the destruction o f benzene by H20 2/UV process. They 

pointed out th a t:

1. Reaction rate increased with hydrogen peroxide concentration or UV light

intensity.

2. At high pH level, benzene decomposed more slowly. It was probable for

hydrogen peroxide decomposing itself to oxygen and water at base catalyzed 

condition that could not provide free radicals to oxidize the benzene.

3. Temperature effect was not significant.

4. The intermediates strongly absorbed UV light at 254 nm.

Destruction of aromatic pollutants such as benzene, toluene, chlorobenzene, 

phenol, chlorophenols, dimethyl phthalate, and diethyl phthalate by H20 2AJV process 

were investigated by Sundstrom et al. (1989). They found that the higher H20 2 to 

pollutant ratios, the higher decomposition rates could be happened. The intermediates 

formed while the aromatic pollutants degraded and caused the solution brown color 

which increased the absorbance at 254 nm comprehensively. The reaction rates were 

obtained by the order o f 2,4,6-trichlorophenol > toluene > benzene > phenol > 2,4- 

dichlorophenol > chlorobenzene > 2-chlorophenol > diethyl phthalate > dimethyl 

phthalate. It apparently showed that most aromatic pollutants studied in this paper 

received high degradation rates for UV radiation alone. However, there were three 

compounds : phenol, dimethyl phthalate, and diethyl phthalate could be hardly
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decomposed by UV radiation alone. Nevertheless, they could be significantly improved 

by H20 2/UV process.

The application o f H20 2/UV was also studied by Ho (1986), he reported on the 

decomposition of 2,4-dinitrotoluene in aqueous solution by the process. It's a treated 

method for explosive nitro-compounds from military munition facilities. The most 

effective H20 2/DNT ratio was approached as 26 to 52. He investigated both the reaction 

pathways and intermediates that the color changed form yellow to deep orange, to brown 

then changed into colorless finally while the pH from 6.8 to 2.8 during DNT 

decomposition.

H20 2/UV process could also be used to treat TCE (trichloroethylene), 1,1-DCA 

(1,1-dichloroethane), and 1,1,1-TCA (1,1,1-trichloroethane) contaminated groundwater 

(Lewis et al. 1990). The removal efficiencies obtained for TCE and total VOCs (Volatile 

Organic Compounds) as high as 99% and 90%, respectively; for 1,1-DCA, and 1,1,1- 

TCA about 65% and 85%, respectively. Thus could provide H20 2/UV process a good 

future in groundwater remediation.

Prat et al. (1988) investigated on bleaching water treatment in the paper industry 

by H20 2AJV process. They also reported that reaction rates decreased as pH increased.

Recently, a new technique of spin trapping with EPR (Electron Paramagnetic 

Resonance spectroscopy) detection o f spin adducts has been applied to study the 

photodegradations o f organic pollutants by H20 2 photolysis in aqueous solution. Kochany 

et al. (1992) obtained rate constants from the reactions of OH. radicals with benzene and 

its halo derivatives by EPR. However, they found that the rate constants did not make 

differences among the halobenzene derivatives. Usually, an average rate constant about
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5.0x109M '1S'1 could be used for any of these compounds. Moreover, there's a very similar 

method, flash photolysis/HPLC, to study the photodegradations of phenol, and p- 

benzoquinone (Lipczynska-Kochany et al. 1992 a). The reaction intermediates were 

identified as p-benzoquinone, hydroquinone, and 2-hydroxyl-p-benzoquinone. Lipcznska- 

Kochany et al. (1992 b) also studied the flash photolysis/HPLC for 4-chlorophenol by 

direct photolysis or photolysis with hydrogen peroxide. They concluded that the major 

product for direct photolysis was p-benzoquinone and were 4-chlorocatechol, 1,2,4- 

trihydroxbenzene, and hydroquinone for photolysis with hydrogen peroxide.

In order to estimate the decomposition rates o f specific chemicals which reacted 

with OH* and H 02*, several reaction rate constants need to be known. The rate constants 

were obtained from references (Bielski, et al. 1985, Buxton, et al. 1988, Neta, etal. 1988) 

for the following reactions. With the rate constants in Table 2.2, a model o f hydrogen 

peroxide reactions induced with UV radiation could be solved numerically.

Table 2.1 Rate Constants of Some Important Reactions (1/mole-sec)

Reactions Rate Constants Researchers

H 20 2 + O H — -> H 0 2 . +H20 k 10f = 2.7 x 107 Christense (1982)

h 2o2 + h o 2 — ^ > o h .+ h 2o + o2 II Koppenol (1978)

2 O H — ^ H20 2 k 14 =4.0  x 109 Thomas (1965)

2 H 0 2— & -» H20 2 + 0 2 k15 = 8.3 x 1 0 5 Beilski (1978)

O H . +H02 — H20  + 0 2 k 15 = 3.7 x 1010 Burrows (1981)

OH.+O , —V ->  0 2 + H 0 2. k8f = 1.1x10* Sehested (1982)
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2.3 Photolytic Ozonation (Ozone with UV Radiation)

In the early 1970's, the ozonation process combined UV radiation (0 3/UV) has developed 

for the oxidation of refractory and toxic inorganic or organic compounds. In recent years, 

this combination of ozonation and UV radiation has been improved to increase ozone 

oxidation rates in aqueous solution, especially for those chemicals not reacting directly 

with ozone.

Prengle (1983) testified that UV radiation o f 180 - 400 nm could provide 72 - 155 

kcal/mol to decay ozone and produce oxidizing free radicals, such as OH. and H 0 2«.

Although UV radiation with ozonation process has been known over 20 years as a 

powerful water treatment process for degrading some organics, its reaction mechanism 

could not be understood very well. Peyton et al. (1982), Glaze et al. (1982) and Prengle 

(1983) showed that the photolysis of dissolved ozone could produce hydroxyl radicals. 

Moreover, a series o f investigations by Peyton and Glaze (1987 and 1988) have been 

contained two pathways : One initiated the photolytic reaction o f dissolved ozone to yield 

hydrogen peroxide. H20 2 then produced hydroxyl radicals which reacted with ozone to 

produce hydroperoxide radicals. The other one initiated the photolysis of dissolved ozone 

to form the hydroxyl radicals immediately. They assumed the following initiation steps :

0 3 + h 2o - ^ >  0 2+H20 2 (1)

0 3 + H20 — 0 2 + 2 O H . (2)

An estimate o f the steady state concentrations o f OH. and H 02« in solution was 

obtained from hydroxyl radicals as the following mechanism:
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o3 + h 2o —^ o2 + h 2o 2

H20 2 - ^ - > 2 OH.

H2 0 2 <=> H 0 2'+ H +

Oj + H 0 2 —> Oj + H 0 2 •

/ / 0 2. o  o 2 + /T

Oj + 0 2 —̂ O. + 0 2

o ;  + h + < $h o 3 

h o 3 ^> o h .+ o2 

o h .+ h 2o 2 -> h 2o + h o 2 .

0 H .+ 0 3 -»  0 2 + h o 2 .

2 0 H . -> H20 2

2 H 0 2 • —> H2 0 2 + C?2

H2 0  + H 0 2 . + 0 2 —y H 2 0 2 + 0 2 + OH

The study postulated that the initial step of photolytic ozonation was production 

o f hydrogen peroxide. Later, H20 2 was degraded to strong oxidants like OH. and H 0 2«.

In the earlier study, Prengle (1983) proposed an overall 0 3/UV photo- oxidation 

mechanism of M species such as sulfur, phosphorus and halogen in an aqueous solution. 

The postulated oxidants were 0 2*, OH. and H 0 2*.

0 3— ^ 0 2 + 0 .

0 .+ H 20 - > 2 0 H .

0 3 + OH. -»  H 02 . + 02

M — M*

M —^ R . + 0 2

M  + ( h v ,0 . ,0 H .,H 0 2.) -» Decomposition products
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The overall reaction was given as :

M ,M * ,R .,I  + ( h » ,0 . ,0 H . ,0 ‘ , H 02.) -> C 02, H20 , S 0 2' , P 0 2~, CV

Here 0 2* was activated oxygen molecule and M was a certain pollutant. Prengle 

took trihalomethane as M above. From the use o f UV radiation, the overall oxidation rate 

was enhanced. Consequently, one can conclude from above studies as follows :

•  UV radiation initiated a chain reaction. First o f all, ozone was decomposed to an 

electronically excited oxygen molecule and an oxygen atom. The activated oxygen 

molecules reacted with water to form two hydroxyl radicals.

• Hydroxyl radicals were continually consumed in a complex free radical reaction 

which produced hydrogen peroxide and hydroperoxide radicals.

•  The O3/UV treatment might be related to the formation of vibrationally excited 

organic species which subsequently reacted with hydroxyl radicals.

A model can be developed by the following reactions for the 0 3/UV 

photooxidation of pollutant M :

0 2— h± -> 0 2

0 3 + H 20 - ^ - > 0 2 + 2 0 H .

OH  • + 0 2 —> 0 2 + H 0 2 •

2OH. -»  H20 2 

2 H 0 2 • —y H2 0 2 + 0 2 

H2 0 2 + OH. —> HO2 + H2 O

h 2o 2 + h o 2.^> o h .+ h o 2 + o 2 

o h .+ h o 2.->  h 2o + o 2

M  + (h v ,0 2 ,0 H .,H 0 2. ,0 2) —» Decomposition products
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Gurol et al. (1986) conducted photolytic ozonation o f phenolic compounds to 

decide the effects o f UV intensity and pH. Benoit-Guyod et al. (1986) obtained similar 

results about the effects o f pH and UV light intensity while studying on the degradation 

o f MCPA (4-Chloro-2-methylphenoxyacetic acid) induced by UV ozonation. The results 

can be summarized as follows :

1. Ozone was the predominant oxidant in an acidic solution.

2. Despite the absence or presence of UV radiation in neutral or basic

solutions, a free radical reaction was the major oxidation pathway of 

phenolic compounds.

3. With or without UV radiation, the total phenol removal and total organic

carbon (TOC) increased by increasing pH during ozonation. Oppositely, 

the removal o f MCPA decreased by increasing pH.

4. For treating organic compounds, the highest removal rates for phenol, TOC,

and MCPA could be reached while the 0 3/UV process was employed 

with optimum pHs. The removal rates decreased while using the ozone

only process. The UV light only approached the lowest removed rates

among 0 3/UV, ozone and UV light processes.

For the applications of photolytic ozonation, Glaze et al. (1984 and 1988) reported 

that U V /03 process reached very powerful effects on decomposition of THM (Tri-

Halogen Methane), TCE (Tri-Chloro Ethane) and PCE (Tetra-Chloro Ethane) in

groundwater. Besides, Akhlaq et al. (1990) proposed the treatment o f polysaccharide 

alginic acid, Me Shea et al. (1987) reported the degradation o f pentachlorophenol in 

groundwater. Kusakabe et al. (1991, 1990) studied the destruction o f 1,1,1- 

trichloroethane, trichloroethylene, tetrachloroethylene, and humic acids by UV/03 

processes. They concluded that photooxidation rates were dependent on the UV intensity
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and ozone concentration in aqueous phase. Furthermore, by combining ozone 

pretreatment and photocatalytic oxidation, Tanaka et al. (1992) proposed more effective 

decomposition o f dimethyl 2,2,2-trichloro-l-hydroxyethyl phosphonate and asulam.

2.4 Ozone Combined with Hydrogen Peroxide Oxidation

Pallard et al. (1988) showed that the decomposition of organic compounds such as 

trichloroethane and oxalic acid in an ozone-hydrogen peroxide system approached a 

higher reaction rate than ozone alone, or hydrogen peroxide alone. They proposed a 

mechanism that ozone combined with hydrogen peroxide could produce free radicals 

such as hydroxyl radical and hydroperoxide radical to improve the reaction rate. The 

suggested initiation step was:

+ HO2 —► O2 * ^ 2  OH  •

The other steps were similar to the 0 3/UV system. This process improved some 

organic compound oxidation efficiencies of ozonation. For oxalic acid, it could be 

obtained by experiments or oxalic acid the optimal pH value at 7.5 and H20 2/0 3 ratio at 

0.5. Furthermore, Glaze and Kang (1988) and Duguet et al. (1985) showed that producing 

hydroxyl radicals enhanced degradation. In this process, the ratio of ozone to hydrogen 

peroxide was a very important parameter o f reaction rate. Glaze et al. concluded the best 

H20 2/0 3 ratio as 0.5 to 0.7 for treatment o f TCE and PCE in groundwater. Then, a 

kinetic model for ozone and hydrogen peroxide in semibatch reactor were proposed by 

Glaze et al. (1989 a, b) for treating PCE in groundwater. The effects of OH« scavengers 

such as bicarbonate and carbonate were also discussed. Wolfe et al. (1989) reported the 

H20 2/0 3 ratio effect on the disinfection o f microorganisms in surface water and less than
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0.3 was suggested. However, this method drawback in the limited solubility o f ozone, 

difficult to maintain the narrow pH range, and twice amount of oxidant demand to 

generate the same amount o f OH. than UV enhanced processes. As a result, this process 

should be used only while the contaminants existed in relatively low concentrations 

(Goronszy et al. 1992).

The effective and economic evaluation o f advanced oxidation processes was also 

investigated by some researchers. Garland (1989) evaluated advanced oxidation including 

0 3/UV, H20 2/UV and 0 3/H20 2 while treating chlorinated hydrocarbons in groundwater 

with the other processes. The result showed that the advanced oxidation processes were 

competitive with other processes such as activated carbon adsorption, stripping, etc.

2.5 Fenton's Reagent and Hydrogen Peroxide Photooxidation

The mechanism of this process is very similar to AOP reactions. Zepp et al. (1992) 

reported the degradation o f anisole and nitrobenzene by H20 2 and Fe2+. oxalate, citrate, 

and phosphate complexes. Recently, a study of degradation of 2,4-D (2,4- 

Dichlorophenol) using Fe3+/H20 2/UV reaction were investigated by Sun et al. (1993). 

Besides, by using aqueous Ti02 suspension as a catalyst in H20 2/UV system, Ku et al. 

(1992) studied the treatment of 2,4-D. Glaze et al. (1993) identified the chlorinated 

byproducts for photodegradations o f TCE (Trichloroethane) and PCE (Pentachloroethane) 

in water. Moreover, Augugliaro et al. (1991) found photon can be absorbed by Ti02 

suspension in a stirred photoreactor. There was the other catalyst for phenol 

decomposition pathways, alumine supported iron in H20 2/UV system, which was 

investigated by Al-Hayek et al. (1990). Meanwhile, catechol hydroquinone, and p- 

benzoquinone were identified as intermediates.
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2.6 Conventional Ozonation

Conventional ozonation has been applied to disinfect, decolorize, deodorize in drinking 

water for a long time. Ozonation o f organics could promote significantly the overall 

photolytic ozonation rate. For this reason, the mechanism of ozone decomposition in 

aqueous solution should be studied. The reaction mechanisms and kinetics o f ozone 

decomposition in water was still uncertain although a lot of researchers studied Ozonation 

o f various organic pollutants in aqueous solution (Gurol 1985; Sehested et al. 1973; 

Glaze et al. 1990; Legube et al. 1987; Gilbert et al. 1992; Galvosa et al. 1991 and Yao et 

al. 1991). The key point to be considered was whether ozone reacted directly with 

dissolved substances or it was decomposed to form secondary oxidants such as OH* and 

H02* which then reacted rapidly with the dissolved substances. Therefore, the 

uncertainties of different reaction pathways resulted in a more complex mechanism study.

2.6.1 Proposed Mechanism

Nadezhdin (1988) suggested a reaction mechanism that ozone decomposed in water at a 

given pH and was catalyzed by the hydroxyl ion (OH’) in the initial reaction. The overall 

reaction mechanism which he suggested as :

0 2 + OH  —> 0 2 • + HOj •

0 2 + H 20 - > 2 H 0 2 .

h o 2.< * h ++o 2.~

02 • +  02 —^ 02 +  02 •

0 3 ." - > 0 . -  + H*

0H.<=>0.~ +H*

0 2 + OH . —̂ 0 2 + H 02 •
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2 H 0 2. —» 0 3 + H 20

h o 2 •+ 0 2 • —> H 0 2 + 0 2

0 3 + 02 — i— >2 0 1 + 2 0 H -

From above, Nadezhadin calculated ozone decomposition kinetics which were 1 

to 3/2 order with respect to the O3 concentration, and from 0.5 to 1 order with respect to 

O H' concentration.

Sotelo et al. (1987) studied on ozone decomposition at pH 2.5 to 9.0 and 

temperature from 10°C to 40°C. They suggested the following first order reaction 

mechanism:

0 i + H 20 - > 2 0 H .+ 0 2 

0 2 + OH  —► 0 2 • + H 02 •

0 2 + OH  • —> 0 2 + H 0 2 •

0 3 + H 0 2 • —} HO • +2 0 2 

2 H 0 2 • —> H2 Oj + 0 2

The higher pH, the important the peroxyl radical became. Besides, the rate of the 

hydroxide ion in initiation step could increase.

Peleg (1976), Staehelin and Hoigne (1985), Tomiyasu et al. (1985) have proposed 

more complex reaction mechanisms for the ozone decomposition in pure water and in the 

presence o f organic solutes.
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2.6.2 Simplified Mechanism

Based on the mechanisms above, all investigators generally agreed that the ozone 

decomposition in an aqueous solution could produce hydroxyl radicals and hydroperoxide 

radicals. Thus, an overall ozone decomposition mechanism in an aqueous solution can be 

built up as follows :

0 3 + H 20 - > 2 0 H .+ 0 2 

Oj + OH• —> 0 2 + H 0 2 •

0 3 + H 0 2 • —̂ HO  • +2 0 2

Comparing the ozone decomposed on to hydroxyl radical without UV radiation 

with photolytic ozonation, it was significantly slower and the reaction rate constant very 

small. Consequently, the Ozonation o f organics could be simplified as proportional to 

ozone concentration and ozone mass transfer in the present studies. The mechanism 

turned out as the following type :

o H - J ^ U o v

0 3 + M — > Decomposition products

2.7 A zo Dyes In  W astew ater

Azo dyes were broadly used in the textile industry, and also widely used to color 

solvents, inks, paints, varnishes, paper, plastic, rubber, foods, drugs, and cosmetics. Up to 

now, more than two thousand azo dyes are known. Besides, over half o f the commercial
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dyestuffs are azo dyes (Rounds 1963). The manufacturing of azo dyes and dye house 

work produced wastewater contaminated with azo dyes (Stryker 1985) which 

substantially passed through a conventional wastewater treatment plant. Unfortunately, 

the activated sludge process could not decompose most azo dyes which caused a 

potentially serious disposal problem.

Generally, azo dyes contained one to three azo linkages ( -N =N -) which linked 

phenyl and napthyl radicals. The radicals were usually substituted by some combinations 

o f functional groups like amino ( -NH2- ), chloro ( -C l- ), hydroxyl ( -O H -), methyl (- 

CH3- ), nitro ( -N 02- ) and sulfonic acid, sodium salt (-S03N a -).

Some azo dyes and their dye precursors have been shown or were suspected to be 

human carcinogens (Bethesda 1985). Therefore, studying the fate o f azo dyes in the 

wastewater treatment processes is o f utmost concern. The effectiveness o f wastewater 

treatment o f azo dyes must be known in order to estimate its safe release from specific 

sources.

After a series of studies, Shaul and his coworker in EPA Water Engineering 

Research Laboratory gave a result that 11 of the 18 azo dyes were found to pass through 

the activated sludge process substantially untreated. Table 2.2 shows a list o f azo dyes 

which were studied by Shaul et al. (1988).

The results proved that a substantial amount o f azo dyes were not biodegraded in 

conventional wastewater treatment processes. However, some alternative treatment 

methods must be found. Hafez et al. (1989) studied ozonation o f m-toluidine (azo dye) 

and reported that ozonation decomposed some azo dyes. Meanwhile, the advanced
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oxidation processes such as U V /03 and UV/H20 2 could reach effectively for degrading 

azo dyes. Figure 2.1 shows the chemical structures of these two azo dyes.

Table 2.2 Azo Dyes studied by EPA Water Research Lab

Azo dyes Effect of ASP*

C.I. Acid Black 1 untreated
C.I. Acid Orange 10 untreated
C.I. Acid Red 1 untreated
C.I. Acid Red 14 untreated
C.I. Acid Red 18 untreated
C.I. Acid Red 337 untreated
C.I. Acid Yellow 17 untreated
C.I. Acid Yellow 23 untreated
C.I. Acid Yellow 49 untreated

C.I. Acid Yellow 151 untreated
C.I. Direct Yellow 4 untreated

C.I. Acid Blue 113 adsorbed on sludge

C.I. Acid Red 151 adsorbed on sludge
C.I. Direct Violet 9 adsorbed on sludge
C.I. Direct Yellow 28 adsorbed on sludge

C.I. Acid Orange 7 biodegraded
C.I. Acid Orange 8 biodegraded
C.I. Acid Red 88 biodegraded

ASP* = Activated Sludge Process
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Figure 2.1 Chemical Structures o f  Azo Dyes
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2.8 Oxidation of Phenol by Alternative Processes

From investigating industrial wastes, phenol was found in the wastewater o f various 

industries, for instance, dye manufacturing plant, epoxy resins plant, additives and 

aromatic chemical plant, solvents plant, and aromatic chemical and pharmaceutical plant. 

(Stryker et al. 1985). These plants generated phenol from 2,200 lb/yr to 589,230 lb/yr. 

Besides, phenol was a suitable substance which could be served as a model for its high 

toxicity and presence in wastes from variety o f industries. Especially, it could improve 

the understanding o f the degradation of derivative compounds, such as chlorophenols, 

chlorinated pesticides, phenoxy herbicides, etc. Thus, phenol became a very interested 

substance for decomposition research by any treatment method.

The heterogeneous photocatalytic oxidation o f phenol in aqueous by UV induced 

oxidation on T i02 particles was reported by Trillas et al. (1992) and Wei et al. (1991). 

The intermediates were detected to be hydroquinone, paraquinone, and 1,2,4- 

benzenetriol. They suggested the lower phenol initial concentrations, the higher 

degradation rates could be approached. Moreover, the maximum rate was obtained at the 

most optimal pH at 8. Similarly, Al-Hayek et al. (1990) treated phenol in water by 

hydrogen peroxide on alumine supported iron. They proposed pyrocatechol, 

hydroquinone, and p-benzoquinone as intermediates. Another process which was so- 

called, "supercritical fluid oxidation", was also applied to oxidize phenol in water by 

Thornton et al. (1991, 1992 a, b). They studied the pathways and reaction kinetics o f 

phenol oxidation in supercritical water. Simultaneously, they identified some multiring 

compounds such as 2-and 4-phenoxyphenol, 2,2'-biphenol, and dibenzofuran as 

byproducts. They suggested rate equation as following :

Rate = k [phenol]10[O2]°-5[H2O]0-7
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The reaction rates of phenol with hydroxyl radical were reported by Field et al. 

(1982) as 4 .5xl09 for addition reactions and 2.1xl09 for abtract reactions.

2.8.1 By-products of Photolytic Oxidation

It was very important for the identification o f by-products which were found in the 

effluents. The importance was to reach the byproducts which were produced from 

photolytic ozonation or photolytic hydrogen peroxide oxidation. If  the by-products were 

toxic or harmful for humans or the environment, they might cause new problems. 

Fortunately, some recent studies appeared that the by-products from photolytic oxidation 

processes looked not to be toxic. Peyton et al. (1989) investigated by-products from 

photolytic ozonation o f organic pollutants. They suggested a mechanism that pollutants 

HRH (R was organic functional group) could be decomposed by hydroxyl radical as 

follows :

HRH  + OH. -> H R . +H20  

H R . + 02 -> H R 02 .

2 H R 0 2 • -»  H R 04RH

The tetroxide can decompose to R, HRO, 0 2, H20 2, etc.

HROaRH -+ 2 R 0  + H 20 2 

H R 0 aR H ^ 2 H R 0  + 0 2

Two types of mechanisms showed that the decomposition o f tetroxide formed 

peroxyacetate and the decomposition of peroxyacetate tetroxide formed oxygen. Figure

2.2 and Figure 2.3 were the expressions of this two mechanisms.
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Figure 2.3 Mechanism of Peroxyacetate Tetroxide Decomposition
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CHAPTER 3

REACTION MECHANISM AND KINETIC MODELS

3.1 Outline

The processes that combine hydrogen peroxide or ozone with ultraviolet radiation are 

widely used for treating some water contaminants. Although the processes perform with 

high efficiency in degrading water contaminants, the mechanisms are not well 

understood. In this study, a series o f experiments were used to determine the rate 

constants for a group o f reactions, then with computer simulation a kinetic model o f this 

kind o f reaction can be studied.

The reaction kinetic models for the present experiments were initially developed 

by Dr. C. R. Huang in 1983 and revised in 1984, 1988 and 1990. Recent modifications 

focused on the contribution o f hydrogen peroxide, hydroxyl radical and hydroperoxide 

radical and light intensity model. The termination reactions o f hydroxyl radical and 

hydroperoxide radical are very important in establishing the rate laws. Because o f the 

high reactivity of those free radicals and oxidants, their concentration can not be easily 

determined by chemical analysis. The rate constants obtained from some physical 

chemistry studies become very important in checking the mathematical model. In order to 

distinguish the effects o f the different processes and solve for the reaction rate constants, 

at least 9 experiments were run for each azo dye ; i.e. (1) bubbling with nitrogen; (2) UV 

radiation only; (3) nitrogen bubbling with UV radiation; (4) ozone bubbling only; (5) 

ozone bubbling with UV radiation; (6) hydrogen peroxide only; (7) hydrogen peroxide 

with UV radiation; (8) CSTR for ozone/UV reaction, and CSTR for hydrogen 

peroxide/UV reaction. The reaction kinetic models set up for each experiments are based 

upon the following three assumption :

29

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



30

1. The reactions in each mechanism are considered to be first order respect to

both reactants.

2. The reactants and intermediates which absorb UV photons will take into

account by a light intensity model by measuring absorbance at 254 nm.

3. Assume complete mixing by both bubbling and pumping circulation.

The detailed models are described in following section. Symbols and the 

relationship of rate constants and experiments are shown in Table 3.1 ,3 .2 .

Table 3.1 Rate Constants Obtained from Each Experiment

Experiments Rate constants solved

From literature ksf. kiof, ^iif’ k-i4> k I5, k 16
0 3 mass transfer, decomposition by UV ^L03^’
H20 2 mass transfer, decomposition by UV klH’02l
Ozonation only ki
h 2o 2/u v k4, k5

0 3/UV k4, k5, k, reconfirm

CSTR experiment reconfirm rate constants
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Table 3.2 Definition o f Symbols in Kinetic Model

Symbols Units Definitions
K-loA> K loA> K-laA 1/sec Area combined mass transfer 

coefficient
A cm2 Total surface area o f gas bubbles 

in mass transfer term
M dimentionless Henry's law constants
®2l> 0 3t Oxygen, ozone in liquid phase
° 2 r > ° 3 g Oxygen, ozone in gas phase
C(): ’ C 03 > C a mole/1 Concentration of oxygen, ozone, 

or azo dye A
C 020 - C O }0, C a0 mole/1 Initial concentration o f oxygen, 

ozone or azo dye A
C 02S ' C o s , mole/1 Satuated concentration of 

oxygen, ozone
> k lH so J  ’ k ,o J  ’ k jo J 1/sec Intensity combined photo­

decomposition constant
k,0:b 1/sec Backward rate constant for 

oxygen photo-decomposition
A * ,  0 2 * Excited state o f azo dye A and 

oxygen
r a mole/l-sec Decomposition rate o f azo dye A
V 1 Volume o f reactor
Q 1/sec Flow rate o f  influent in CSTR 

experiment

Q g cm3/sec Flow rate o f gas into reactor in 
azo dye A mass transfer from 
liquid phase to gas phase

c  c^  ag > as mole/1 Azo dye A concentration in gas 
phase and liquid film at gas- 
liquid interphase

k , , k 4 , k 5 , k 6 1/mole-sec Rate constants of azo dye 
decomposition by oxidants

k 2 , k 3 1/sec Rate constants of excited state 
azo dye decaying

k8f ’ k ,o f ’ k , i f ,  k I2j ,  k I4 , k l 5 , k I6 1/mole-sec Rate constants of oxidants react 
to each other
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3.2 Mass Transfer O f Ozone/Ozone Decomposition under UV Radiation

These experiments are used to determine the mass transfer coefficient o f ozone from gas 

phase to liquid phase by bubbling ozone into the uncontaminated water. Since the 

concentration o f ozone in liquid phase can be measured at different time period, the mass 

transfer coefficients can be found in these experiments.

O  *L°>i  > nU3g * 31

The material balance for oxygen and ozone can be expressed as follows :

dC0
- j ±  =  K L 0 A ( C 0 ]S - C 0})

Initial conditions : t = 0 , C03 = C03o

By applying UV radiation o f 0 3 saturated solution, 0 3 decomposed by UV light to a 

steady state concentration then K103I could be obtained by following equation :

K w , A  (C 0iS — C Qi ) =  K I0} IC Q}

3.3 Light Intensity Model

Light intensity which affected the decomposition rate of pollutants in an AOP reactor was 

a moderately important parameter. Radial approximation of the infinite line source model 

can be described as follows:
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The light intensity, 7, at any point p in the reactor was related to the surface flux, 

70, by a one-dimension form of Lambert's law of absorption

r dr

where E  is the monochromatic absorbance o f water using logarithms to the base e. 

Integration o f the above equation using boundary condition o f /  = 70 when r = r0 gives

Therefore, the ratio of the average point intensity to the surface flux at the quartz 

tube in the reactor was defined as the intensity factor, m.

« = - = —
I„ E (R  - r 0 )

Here, R denotes radius of reactor, r0 is radius of lamp with quartz shell.

3.4 Hydrogen Peroxide Decomposition Under UV Radiation

These experiments are the fundamental study of AOPs (Advanced Oxidation Processes) 

reactor. Hydrogen peroxide in different initial concentrations are decomposed by UV 

light. The reactions involved are as follows :

H20 2 + hv 2 O H .
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H20 2 + OH — H 0 Z .+ H 20  

H20 2 + H 02 — H O . +H20  + 0 2 

2 0 H . ^ - ^ H 20 2 

2 H 02 — k- ^ H 20 2+ 0 2 

OH .+ H 02 — H20 + 0 2

The reaction rate for each species are as following :

dCHO
-  jr j r  - k  C C - k  C C^  ~ IH2O2 H2O2 n’10f'̂ H,O2y-'OHm

dCpH* _ 2 / c r f  - 2 k  C 2 - k  C C— Z.^IĤo21'~Hl02 \4 0H* 16 //Oj*

+ k Uj  CH}0i CHOi —k IOj  CHp 3 COH, 

a ^H02̂ _ _ 2 il £  2 _ ,  c  r  + k  C C
<4/M 5 n-n/'^H102̂ H02» ^dt

Initial condition : t=0, C0H. = CH0. = 0, CH202 = CH2O20

The rate constant kIH202I can be obtained by fitting experiment data
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3.5 Mass Transfer of Phenol and Studied Azo Dyes

The purpose o f this experiment is to estimate the evaporation effect o f the azo dyes and 

phenol due to nitrogen bubbling. Two film theory is used to carry out the material 

balances in the different phases.

No mass transfer between liquid phase and gas phase was found for eight azo dyes 

and phenol. The effect of stripping can be neglected.

3.6 Reaction With UV Light

The purpose o f this set o f experiments is to determine the effect o f UV radiation on the 

azo dyes and phenol. There are two types of experiments, one with nitrogen and the other 

without nitrogen. If  the pollutant easily evaporates by bubbling, nitrogen is introduced 

into the reactor under UV radiation; otherwise, the experiment is run without using 

nitrogen.

Azo dyes and phenol were found not decomposed by UV radiation. From 

experiment data, there were no significant degradation under UV radiation for 60 

minutes.

3.7 Reaction With Hydrogen Peroxide Only

In this experiment, the azo dyes and phenol can not react with hydrogen peroxide without 

UV radiation.
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3.8 Reaction With Ozone Alone

Ozone has the oxidation power to decompose pollutants in water. From this experiment, 

the effect o f ozone on decomposition o f the pollutants can be determined . The ozone is 

generated from pure oxygen by use o f an ozonator and the concentration is at least 2% by 

weight.

From a review of the literature, ozone is found to decompose to hydroxyl radical 

as a initiation step. Hydroxyl radicals oxidize the pollutants in water and produces 

hydroperoxide radicals which also oxidize pollutants in water. The reaction rate o f ozone 

decomposing in water and the rate o f production of hydroxyl radical is too slow with 

respected to ozone mass transfer and ozonation of pollutants. So these steps are neglected. 

The mechanism o f ozonation o f azo dyes can be simplified to :

A + Oj — Decomposition products

Ozone mass transfer:

o 3g_ j ^ o 3l

The reaction rates for each species are as follows:

dC0,

dt

— = - k xCaCQ̂ + kL0̂ A (Cos — C0j)
dt

Initial conditions : t=0, Ca = Cag, C03 = 0

Rate constant k, is determined using the same optimization method.
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3.9 Reaction with Hydrogen Peroxide And UV Light

Hydrogen peroxide can serve as a source o f hydroxyl radical in aqueous solution under 

UV radiation. This experiment is a fundamental to quantitatively understanding the 

UV/ozone process. Hydrogen peroxide also plays an important role in the UV/ozone 

process. The proposed reaction models are :

H 20 2 + hv k«w ’ >2O H .

H20 2 + O H — H 0 2 * +H20  

H20 2 + H 02 — k-^->  HO .+ H 20  + 0 2 

2 O H — ^ —>H20 2 

2 H 02— ^ -> H 20 2+ 0 2

o h .+ h o 2 — k ->  h 2o + o2

A + O H . — — > Decomposition products 

A + H 02 • — Decomposition products

The reaction rates for each species are as following :

dCHn — b JC _ i -  c  C  — k C  c
j  -  1H202 H202 10 / H20 2 OH* K II/'~ 'H 202'~'H02*

JrkNC0H, +  kISCH02, 

dC0H. jf-i _ u  r  r  - 7 k  C 2 - k  C C
— ^ ^ ] H 20 1I '-H 20! 4 a OH* 14 OH* n’16y-'0H*y-H 0 1*

+knjC Hi<0CHOi —kt0jC HjOCOH%

J /O
H01 ' - ]r c  C - 7 k  C 2- k  r  C + k  c  c

J  -  5 a  H 02* 15 H 02* 11 J  H:0 2 H 0 2* ^  n- 1 0 f ' ~ H f i ^ O H *

~kir,COH.CHo2.
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Initial condition : t=0, C0H. = CH0. = 0, CH202 = C ^ q

The rate constants k4, and k5 are optimized to give the best fit to the experimental 

results from this process.

3.10 Reaction With Ozone And UV Light

In this experiment, the combined effect of all the radicals created by the ozone under UV 

radiation is determined. This reaction rate is faster and dye decomposition more effective 

than found in previous experiments. The mechanism is described as follows:

0 , +  H20  +  h v  W  > 0 2+ 2 0 H .

0 2 + 0 H — k-^-> H 02.+ 0 2

0 3 + H 02 — *-&-+ O H . +2 0 2 

H 20 2 + h v — > 2 O H .

H 20 2 + O H . -  H 0 2 .+ H 20

H 20 2 + H 0 2 — h o .+ h 2o  + o 2 

2 O H — ^ —>H20 2

2 H 02— k-*-+H20 2 + 0 2 

O H . +H02 — H20  + 0 2 

A + Oj — » Decomposition products 

A + OH. — — > Decomposition products 

A + H 0 2. — » Decomposition products

Ozone mass transfer:
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O s ' - Z ^ O , ,

The reaction rates for each species are as follows :

Jy'-'l
. _  a. — _ / f  n  r  — k C C  — k C C“  a5 y-'aK-'H02»

dC
^  =  - k , C aC 0j - k I 0 l C Oj — k 8j C 0 C m ,  — k l2j C 0 C H 0 i.  

+^iOj ̂  (Qj3s — Qj3) 

d C p H.  _  0 .  ^  n  C  - 7 k  C  2 - k  C  C
—  * K j H 20 ! - l ' - H 20 1 -4 a  OH» Z  ^ 1 4  0H *  n'1 6 y- 'O H ° y-'H O : *dt

+kii/C H;0:CHO; kiofCH20COH,

dC
~  = k^ Ca Cho2 • ~ 2ki5CHo2* ~ ̂ Uf^'H202̂ 'H02* + ^lO} '̂H1of-‘OH*

dt

dCH,o,

-k C C

dt — ^ IH,03 IClh0: ^■lOf̂ 'Hftf-'OH* knjCH2o C HQ2.

+kjjC0H. + kisCHo,.

Initial condition : t—0, C0H. — CH02. ~ 0? CH,0, -  CH202o

The computed output concentration is compared to the experimental data to 

evaluated the proposed reaction kinetic models and the reaction rate constants.
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CHAPTER 4 

EQUIPMENT AND EXPERIMENTS

4.1 Materials and Chemicals

Hydrogen peroxide was obtained from Fluka Chemie AG, in 35% content. Ozone was 

generated from Welbach T-816 ozone generator in 5% (w/w). Phenol was from Sigma 

Chemical Co., with 0.15% H3P 0 2 as inhibitor. Azo dyes were from Aldrich Chemical 

Co., Inc., and no further purification before using in experiments. Table 4.1 shows the 

formula and physical properties o f azo dyes.

Table 4.1 The Characteristics of Azo Dyes

Azo dyes Formula Vnax MW Dye contents

Acid Black 1 C22Hi4N6Na20 9S2 618 nm 616.50 85%

Acid Orange 10 Ci6HioN2Na20 7S2 452 nm 452.38 95%

Acid Red 1 C lgHi3N3Na20gS2 532 nm 509.43 60%

Acid Red 14 C2()H12N2Na20 7S2 515 nm 502.44 50%

Acid Red 18 C20H i iN2Na30! 0S3 506 nm 604.48 75%

Acid Yellow 17 C20H , 0Cl2N4Na2O7S2 400 nm 551.30 60%

Acid Yellow 23 C 16H9N4Na30 9S2 425 nm 534.37 60%

Direct Yellow 4 C26H 18N4Na20 8S2 497 nm 624.56 70%

Supelclean LC-18 SPE tubes (6 ml, lg) were used for extracting and 

concentrating sample solutions for GC/MS (Gas Chromatography with Mass 

Spectroscopy Detector) analysis.

4 0
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4.2 Analytical Methods

4.2.1 Hydrogen Peroxide Concentration Analysis

The hydrogen peroxide concentration determination methods have been proposed by 

different investigators (Bader et al. 1988; Kieber et al. 1986; Miller et al. 1988; 

Matsubara et al. 1985 and Masschelein et al. 1977). For examples, Bader et al. proposed a 

photometric method by using N, N, diethyl -p-phenylenediamine and measuring the 

absorbance at 551 nm; Matsubara, et al. suggested to use Titanium-4-(2'-pyridylazo) 

resorcinol and to measure absorbance at 508 nm; Miller et al. proposed a fluorometric 

method; Kieber et al. compared iodometric and fluorometric method; and Masschelein et 

al. proposed using Cobalt-bicarbonate and measuring absorbance at 260 nm. Reviewed 

and chose one of the method which was the most suitable for azo dyes and phenol 

samples. Since all azo dyes could appear very strong absorption between 300 nm to 600 

nm, the methods proposed by Bader et al. and Matsubara et al., may lead some serious 

interferences. The fluorometric methods were limited by the equipment. Therefore, the 

method o f Masschelein et al. was used to determine hydrogen peroxide concentrations in 

dye samples and phenol samples.

The spectrophotometric method proposed by Masschelein et al. described as 

follow s:

1. Placed 80 ml sample solution in an 100 ml volumetric flask, added 1 ml of the

Co++ reagent (19 g CoS04*7H20  in 1 liter distilled water) and 1 ml o f the 

sodium hexametaphosphate solution (10 g/1), then made up to 100 ml with 

saturated bicarbonate solution.

2. The absorbance was measured at 260 nm by comparing with a blank-reagent

solution.
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3. Calibration curve was made by standard hydrogen peroxide solution in different 

concentrations.

4.2.2 Ozone Concentration Analysis

Similarly, Ozone concentrations also can be determined by photometric methods using 

indigo (Bader et al. 1981 and Takeuchi et al., 1989) and measuring absorbance at 600 nm. 

These methods cause large interference to the absorbance for azo dyes. The iodometric 

methods were studied by Shechter (1972) and Gordon et al. (1989) for determining ozone 

concentrations in water.

The procedure for measuring ozone concentration was based on the method which 

Shechter proposed.

1. Add 5 ml of sample solution in a sample vial containing 5 ml o f 2% neutral

potassium solution. After 30 minutes, measured the intensity of absorbance at 

352 nm by spectrophotometer.

2. 2% neutral potassium solution was prepared by dissolving 13.61 g potassium

dihydrogen-phosphate, 14.2 g anhydrous disodium hydrogen phosphate and 

20.0 g potassium iodide in 1000 ml distilled water.

3. Calibration curve was prepared by measuring absorbance of fresh iodine

standard solutions at 352 nm.

4.2.3 Azo Dyes Concentration Analysis

According to the reports from Bruins et al. (1987) and Voyksner (1985). Azo dye 

concentrations were measured by HPLC (High Performance Liquid Chromatograph) and 

photospectrometer. The detailed descriptions o f equipment and operation conditions
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would be in section 4.3.7 and 4.3.8. Phenol concentrations were determined by HPLC. Its 

operating conditions are described in 4.3.7.

4.2.4 Intermediates Identification

Intermediates were collected from each oxidation processes. Extracting and concentrating 

by using SPE (Solid Phase Extraction) tubes, then injected into GC/MS for identification. 

GC/MS is described in 4.3.9.. SPE tubes were preconditioned by 2 ml methanol and 2 ml 

water. A 400 ml o f water sample was passed through SPE tube by applying vacuum, then 

by using 2 ml water to wash SPE tube. Finally, use 2 ml methanol to elute the organics, 

collect the methanol solution and analyze the extract using GC/MS.

4.3 Experimental Equipment

4.3.1 Laboratory Size Photochemical Reactor

Screening and parametric studies are generally conducted in laboratory sized reactors, 

because data can be generated rapidly and the cost o f feed materials is minimal when 

compared with pilot studies. The laboratory size reactor was used in this study in order to 

determine reasonable decomposition rate of azo dyes. A New England Photochemical Co. 

Model RPR-100 photochemical reactor was used in the experiments. There are 16 high 

pressure mercury arc UV lamps (wavelength 253.7 nm, 35 watts/lamp) arranged on the 

inner wall o f reactor. Therefore, a total energy o f 560 watts can be used in a 500 ml 

quartz stirred vessel.

4.3.2 Pilot Plant Reactor

A schematic diagram of the apparatus used in the scale-up experiments is shown in 

Figure 4.1 The descriptions are as follows:
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The vertical cylindrical type reactor is made of stainless steel type 304. The 

outside diameter is 13 inches and the length is 55 inches that it is approximate 100 liters 

of hold-up volume. There are nine vertical sample ports evenly spaced in three rows. All 

the tubes connected to the reactor are made of stainless steel type 304. The reactor with 

annular space about 3.5 inches between the reactor and the lamp wall which provided the 

ultraviolet light source.

A submerged pH electrode in the reactor was connected to a pH 

monitor/controller which controlled pH by pumping acid or basic solution into the reactor 

by a pH controlling pump.

There were two pumps for this reactor : One pump with 1/2 horse power was used 

to recycle the solution and to achieve maximum mixing. Another pump was used for 

feeding the solution containing the pollutants to the reactor from a reservoir tank during 

CSTR (Constant Stirred Tank Reactor) operation. The flow rate into the reactor was 

measured by a flowmeter.

Nitrogen, oxygen or ozone were introduced into the bottom of the reactor through 

a four-head sparger o f medium porosity. The exhaust gas was vented from the top o f the 

reactor passing through a pair of absorption bottles then vented into a laboratory hood. 

Complete mixing o f the solution was achieved by recycling the solution and bubbling 

nitrogen gas into the reactor.
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Figure 4.1 The Schematic Diagram of Experimental Equipment 
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4.3.3 Ozone Generator

Ozone was produced by a Welsbach T-816 ozone generator, which was manufactured by 

the Welsbach Ozone System Corporation, Philadelphia, PA. This generator can produce 

at least 16 grams o f pure, dry ozone per hour. It was a corona discharge type ozone 

generator and was cooled by water. Ozone output flow rate was adjustable by a ball valve 

from 4.5 to 9.0 l-/min. 99.6 % pure dry oxygen set at 110 Watts, and 105 Volts, was used 

for ozone generation in this experiment.

4.3.4 Ultraviolet Light Source

The ultraviolet light source was made by the Canard-Hanovia Inc., Newark, NJ. It was a 

low pressure mercury vapor lamp with a 25-inch arc length of and 5,000-watt power. The 

lamp filled with precise amount o f mercury and argon, an inert gas, was a clear fused 

quartz tube with tungsten electrodes at both ends. It is encased in two concentric wells 

made of quartz glass. The inner well which houses the mercury lamp, was connected to a 

nitrogen gas feed line. The line acted as a blanket to avoid an explosive hazard. Nitrogen 

was fed with a flow rate o f under 100 cm3/min. The outer well was used to circulate 

cooling water. Cooling water flow rate was kept about 4-8 gallons/min. The supplied 

power of the lamp can be set at 300, 200 or 125 watts/inch levels. Experiments were 

conducted for the UV lamp at 200 watts/inch power level and 254 nm wavelength.

4.3.5 Absorption Bottle and Adsorption Bottle

A pair o f absorption and adsorption bottles were used for off gas treatment. The first 

absorption bottle filled with 10 % KI (Potassium Indoine) solution was used to absorb the 

residual ozone in the off gas. The second bottle filled with activated carbon was used to 

collect organics evaporating out o f the reactor. With these two bottles, the experimental 

set up was considered safe. No harmful gas escaped from the reactor.
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4.3.6 pH Control System

A Cole Parmer Co. pH controller (pH 5654-12), pH electrode and basic pump were used 

in the experiment to indicate and control pH in the reactor.

4.3.7 High Performance Liquid Chromatograph

A Waters 600E system controller with Waters 715 Ultra Wisp Sample Processor and 

Waters 994 programmable photodiode array detector coupled with Chromatography 

server data acquiring system was used to determine phenol concentrations and its 

decomposition intermediates. The stationary phase was Nova-Pak 3.9 m m xl50 mm, C18 

column and the mobil phase was 70% of 1% acetic acid in water and 30% o f 1% acetic 

acid in acetonitrile

A LDC/Milton Roy Co. made HPLC which includes Spectro Monitor I I I , Constra 

Metric III & I and Gradient Master, was used to determine the calibration curves and 

calculate the concentrations for three azo dyes, Acid Orange 10 (AO 10), Acid Red 14 

(ARM), and Acid Yellow 17 (AY17). Results of HPLC and UWVIS Spectrophotometer 

were compared to confirm that the concentration readings from spectrophotometer were 

in a reasonable error range (less than 3%).

Analysis the concentrations of AO 10, ARM, and AY 17 were conducted using a 

Supelcosil LC-18, 7.5 cm x 4.6 mm, 3p.m particle size column with mobile phase gradient 

from 50% methanol in water to 90% methanol in water at 1.0 ml/min. The absorption 

wavelength o f the UV detector was set at 475 nm for AO 10, 515 nm for ARM, and 400 

nm for AY 17. This method was slightly modified from the method proposed by Voyksner 

(1985).
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4.3.8 Spectrophotometer

A Varian DMS 200 UV-Vis spectrophotometer was used to scan dye samples from 200 

nm to 600 nm. Besides, it may aid the determination o f azo dye concentration in the 

solution. Hydrogen peroxide and ozone concentrations in water samples were also 

determined by iodometric method which measured absorbance by using 

spectrophotometer at 260 nm and 352 nm, respectively.

4.3.9 Gas Chromatograph with Mass Spectrometry Detector (GC/MS)

A HP 5890 series II gas chromatograph with HP 5988A mass spectrometry detector and 

Pascal Chem Station data system was used to identify the reaction intermediates from 

oxidation.

The column used in these experiments was a 25mx0.25 mm ID, methyl silicon 

cross link capillary column, Temperature was programmed from 60°C for 1 min to 

200°C for 5 minutes with increasing rate of 8°C/min.

4.3.10 Sample Collection

One sampling port located in the reactor center was used for sample collecting. In order 

to eliminate the dead volume collection from the sample port, each sample jar was rinsed 

twice by the effluent solution from the reactor before sample collecting. A 20 ml sample 

was collected and analyzed several times to improve the precision.
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4.4 Experiments

4.4.1 Standard Calibration Curve

The azo dyes were prepared in 1.0 to 20.0 ppm to develop calibration curves for the 

HPLC and Spectrophotometer. By plotting the absorption intensity or HPLC peak area 

versus dye concentration, two straight line calibration curves were obtained for each azo 

dye.

4.4.2 Laboratory Size Reactor Experiment

Before the pilot plan reactor experiments, a laboratory size reactor was used to determine 

the decomposition of azo dyes.

4.4.3 Kinetic Model Study of Hydrogen Peroxide Decomposition under UV 

Radiation

From literature review, fundamental reaction rate constants were obtained. A series of 

hydrogen peroxide decomposition reaction by UV light were done for different initial 

hydrogen peroxide concentrations. Photochemical reaction models were run for 

determining one o f the best results which could be consistent with the experimental data.

4.4.4 Batch Experiments

The first step towards the batch experiment comprised of pumping the uniform pollutant 

solution into the reactor. Then recycling was followed with introducing nitrogen 10 1/min 

into the reactor. The UV light source, if  necessary, was activated. Before switching the 

UV light power on, started the cooling water and nitrogen flow for the UV lamp at a safe 

level. Setting the power rate at 125 watts/inch first, after 30 seconds later, turn the power 

rate to 200 watts/inch. About 20 second later, began the experiment. The N2 alone and the

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



50

N2/UV processes were above mode batch experiments. The other batch mode experiments 

were the H20 2 and the H20 2/N2/UV processes.

Sample solutions were prepared as the batch experiments. However, before 

turning the UV light power on, known amount o f H20 2 was added to the reactor and 1 

minute for complete mixing. The rest of the procedure was implemented for N2, or for

n 2/u v .

4.4.5 Semi Batch Experiments

Two experiments which were 0 3 alone and 0 3/UV were conducted in the semi batch 

mode. In the semi batch reaction, one reactant (azo dye) was initially added batchwise. 

The experiment was then conducted with a constant flow o f the second reactant.

For experiments involving ozone bubbling, cooling water and oxygen flow to the 

ozone generator were started before the power was turned on. Oxygen flow rate was 

regulated at 8 psig for a flowrate o f about 6 1/min.

4.4.6 CSTR Experiments

The 0 3/UV and H20 2/UV experiments were introduced in the CSTR experiments. The 

sample solution was dissolved in a reservoir tank before feeding to the reactor. In the 

0 3/UV experiment, the feed, UV light and 0 3 flow were turned on simultaneously. In the 

H20 2/UV process, hydrogen peroxide was dissolved in the reservoir tank. When the 

reaction started, the feed and UV light was turned on at the same time. The experiment 

was terminated when the feed solution was exhausted.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



51

4.4.7 Effect of Hydrogen Peroxide Dosage

In order to find the relationship between the decomposition rate and hydrogen peroxide 

dosage, a series of experiments with different hydrogen peroxide dosage were set up. The 

dosage o f H20 2 was 20 ml, 40 ml, 60 ml, 80 ml ( the mole - fraction o f H20 2 per azo dye 

are 240, 480, 720, 960) in H20 2/UV reaction experiments at pH 6.8 and 25°C. In this 

series o f experiments, an optimum hydrogen peroxide dosage could be found.

4.4.8 Effect of pH

A series o f experiments with different pH value in H20 2/UV reaction experiments were 

conducted to find the relationship between the decomposition rate and pH. In this series 

of experiments, an optimum pH value could be found.

4.4.9 Effect of Transmittance of Water

A series o f experiments with different initial dye concentrations in H20 2/UV reaction 

experiments were conducted to find the relationship between the decomposition rate and 

light transmittance. In this series of experiments, effect o f light absorbed by azo dye 

could be found.
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CHAPTER 5 

RESULTS AND DISCUSSIONS

5.1 Decomposition of Hydrogen Peroxide under UV Radiation

Hydrogen peroxide decomposition under UV radiation was the fundamental experiment 

to comprehend the AOPs reaction mechanisms. By adding 60, 40 and 20 ml o f 35% 

hydrogen peroxide solution into 100 liter deionized water in AOPs reactor, the 

concentrations o f hydrogen peroxide were prepared as 7.08.1,4.736, and 2.572 mg-mole/1. 

Then, get sampling at different time interval while UV light was turned on. The model 

which was approached by experiments was modified twice. The rate constants from 

literature have been discussed in Chapter 2. Except hydrogen peroxide reacted with 

hydroxyl radical and hydroperoxyl radical, the inter-reactions of free radicals were 

studied for model mechanism. The photodecomposition rate constants o f hydrogen 

peroxide were approached by fitting the experimental data into model which was 

modified several times. The model conditions were as follows :

1. Assuming no absorption o f UV light by hydrogen peroxide solution, and 
neglecting volume of gas bubbles : Three different photodecomposition rate 
constants were obtained from three different initial concentrations o f H20 2 as 
above mentioned. It could be concluded the model was not satisfied for 
experiment data.

2. Considering UV light absorption by hydrogen peroxide solution but 
neglecting volume of gas bubbles : Still got three different decomposition 
rate constants as first conclusion.

3. Considering both UV light absorption by hydrogen peroxide solution and 

volume o f gas bubbles. : it could be allowed to fit one decomposition rate for 

three tests. Besides, the consistent agreement between experimental data and 

model predictions could be observed. Therefore, it was denoted that the model

52
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better expresses the mechanism o f hydrogen peroxide photooxidation. Figure

5.1 shows the experimental data and model fitting o f hydrogen peroxide 

phtodecompostion at three different initial concentrations. Figure 5.2 gives the 

concentrations of H20 2, H 02», OH. under the UV radiation.

Table 5.1 shows photodecomposition rate constants (kIH202I) o f hydrogen 

peroxide in three steps o f modifications.

A sensitivity analysis was introduced for this experiment. The results showed that 

changing kIH202I and absorbance of H20 2 solution could affect the hydrogen peroxide 

decomposition more sensitively. For the rest of rate constants (kI0f, k llf, k14, k 15 and k,6) , 

even adjusting the upper or lower by one order did not make significant differences for 

the ultimate concentration of hydrogen peroxide. The sensitivity analysis of this 

experiment are given in Table 5.2 and Figure 5.3.

Table 5.1 Photodecomposition Rate Constants (kIH202I) of Hydrogen Peroxide
in Three Steps of Modification

H20 2 concentration 7.081 mg-mole/1 4.736 mg-mole/1 2.572 mg-mole/1

Original model 0.521xl0'3 0.669x10-3 0.778x10-3

1st modification 0.943xl0-3 0.864x10-3 0.780x10-3

2nd modification 1.091x10-3 1.080x10-3 1.080x10-3
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■ ex. Co=7.081 mM o ex. Co=4.736 mM □ ex. Co=2.572 mM 
—model(7.081mM) — model(4.736mM) —model(2.S72mM)

8

6

4

2

0
0 10 20 30 40 50 60

Time (min)
Figure 5.1 Photodecomposition o f Hydrogen Peroxide

0.8
□ ex.Co=7.081 mM -  OH. H02. —H202 model

H 2 0 2
H02. 0.6 1

OH.

0.2

604020
Time (min)

Figure 5.2 Concentrations of H20 2, H 02, OH in the Reaction of Photodecomposition of
H20 2 by UV Radiation
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Table 5.2 Sensitivity Analysis of Rate Constants in Photodecomposition
of Hydrogen Peroxide

Ratio K1H2O2I Abs. l̂Of
(xlO-4)

^1 if 
(x 1 O'2)

k 14

(xlO'7)
^15

(xl(H)
^16
(x 1 O'4)

0.2 0.481 0.209 0.738 0.043 7.887 6.347 0.133
0.4 0.262 0.081 0.161 0.024 0.094 1.456 0.065
0.6 0.112 0.019 0.017 0.009 7.810 0.424 0.021
0.8 0.270 0.009 0.010 0.002 0.076 0.101 0.024
1.0 0.0 0.0 0.0 0.0 0.075 0.0 0.0
2.0 0.507 0.164 0.073 0.072 0.692 0.373 0.130
4.0 2.463 0.393 0.187 0.582 0.091 1.256 0.502
6.0 3.835 0.504 0.189 1.495 0.080 1.760 0.966
8.0 4.661 0.565 0.265 2.840 7.347 2.163 1.216

10.0 5.196 0.604 0.290 4.508 0.077 3.004 1.750

(Based on Hydrogen Peroxide Initial Concentration 7.081 mg-mole/1)

0.7
-*-abs -*-ki -&-abs_y2 ki_y2

0.6

0.5

0.4

0.3

0.2

0
4

Ratio of parameters

Figure 5.3 Sensitivity Analysis of Hydrogen Peroxide Photodecomposition
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From Pervious study o f Li (1992), the reaction could be modeled by optimization 

of rate constants, and the results gave a good fitting of experimental data. But the rate 

constants from free fitting are three order o f magnitude difference from the literature data. 

Table 5.3 shows the differences between previous work by optimizing fitting and rate 

constants which were used for this study from literature. Although, Li's model could fit 

experimental data very well, the rate constants for fundamental reactions were doubted by 

other investigators. In this study the reaction rate constants for known reactions were 

picked from literature as mentioned in Chapter 2 to avoid rate constants running too far 

from the reference data.

Table 5.3 Rate Constants Used in this Model Compared to Previous Study

Reactions Rate Constants Previous work

H 20 2 + O H . Kw> > HO, • +H20 k 10f =2.7 x 107 0.522x105

h 2o 2 + h o 2 . Kuf >o h .+ h 2o + 0 2 knf - 3.7 0.846x104

2 0 H - —- |4 ■ > H20 2 k 14 = 4.0 x 109 0.580x105

2 H 0 2 — & -> H 20 2 + 0 2 k15 = 8.3 x 10 5 not considered

O H . +HO , ---- H20  + 0 2 k 16 = 3.7 x 1010 0.468x104

5.2 Mass T ransfer and Photodecomposition of Ozone in Aqueous Phase

Ozone generator was tested by different flow rates o f oxygen and air to produce different 

concentrations in gas phase. The saturation curves o f ozone are given in Figure 5.4. The 

curves are for ozone dissolved into water by different conditions (flow rate o f 0 2 and air)
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and ozone decomposed by UV radiation. Table 5.4 shows the mass transfer coefficient 

and saturated concentration o f ozone in each experiment.

Table 5.4 Mass Transfer Coefficient, Saturated Concentration and 
Photodecomposition Rate Constant for Ozone

KL03A (1/sec) Cs (mg-mole/1) K103I (1/sec)
Oxygen 9.0 1/min 5.080xl0-3 0.0508 0.1449

Oxygen 7.5 1/min 3.702x10-3 0.0628 0.1449

Oxygen 6 .0 1/min 3.387x10-3 0.0720 0.1449

Air 6 .0 1/min 2.775x10-3 0.0279 0.1449

0.08
at 48 min, U V  light is turn on

e  0.07

i  0.06
M
£  0.05
co
'I 0.04

|  0.03
o
g 0.02
o
N

o  0.01 ■  0 2  91/min 0 0 2  7.5 1/min A 0 2  6 1/min O a ir6 l/m in  
— model (9 ) — model (7 .5) — model (6 ) — model (6a)

5 10 15 20 25 30 35 40 45 50 55 600
Time (min)

Figure 5.4 The Saturation Curves o f Ozone Dissolved into Water 
and Decomposition by UV Radiation
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5.3 Azo Dye Decomposition by Different Processes

Six sets of experiments were run. The initial conditions of these experiments are 

summarized in Table 5.5. The results of the experiments will be discussed in the 

following sections.

Table 5.5 The Initial Conditions of Experiments

Experiments Oxidants Initial conc. pH
N2 bubbling none 20 ppm 5.5
n 2/u v none 20 ppm 5.5

0 3 alone 0 3 20 ppm 5.5

0 3/UV o 3 o h .,h o 2. 20 ppm 5.5
h 2o 2/u v o h .,h o 2. 20 ppm 2.4, 5.3, 7.9, 9.7

CSTRs 0H .,H 02.,(0 3v 20 ppm 5.5

5.3.1 N2  Bubbling

It could be observed that the mass transfer coefficients of eight azo dyes and phenol from 

liquid phase to gas phase were determined in this experiment. The results showed that 

nearly significant concentration changes between the initial and after 60-minute bubbling. 

Consequently, the mass transfer coefficients (Kla A and M) of azo dyes and phenol could 

be neglected as zero.

5.3.2 N2  Bubbling with UV Radiation

In this experiment, the effect of UV radiation could be determined. Azo dyes were 

undergone least decomposition under UV radiation. The effect was observed less than 1% 

disappearance after 60 minutes. In N2/UV system, no oxidants existed in aqueous solution 

and the decomposition o f azo dyes were caused by UV radiation only. Moreover, the
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decomposition rates were proportional to the UV light intensity. For azo dyes and phenol, 

the photodecomposition was neglected.

5.3.3 Ozonation of Azo Dyes

In this experiment, ozone was introduced to the reactor by bubbling. The ozonation 

reaction rate constants of azo dyes could be obtained from this experiment. The mass 

transfer was important for the reaction because that ozone reacted with each azo dyes 

very rapidly. Therefore, it was necessary for running a ozone mass transfer experiment to 

determine the ozone mass transfer coefficient (KL03A). Figure 5.4 shows the different 

ozone concentrations during ozone bubbling into pure water at different oxygen and air 

flow rates. For solving the rate constant kj o f ozonation, plugged in KL03A by computer 

simulation. Figure 5.5 shows the decomposition curves o f acid orange 10 by reacting with 

ozone in aqueous solution for a initial dye concentration of 20 ppm, and oxygen flow rate 

of 6 1/min. Figure 5.6 shows the modeling of acid orange 10 decomposition by ozonation 

in different initial dye concentration. The ozonation of the other 7 azo dyes are given in 

appendix, Figure A.l to Figure A.7. In the modeling work of this set of experiments, a 

intermediate B, was introduced into computer model as follows :

A + 0 3—

Bx + 0 3 — > Final Products

Since ozonation o f Acid Orange 10 can produce more than one intermediate, the value of 

k2 deviated from 0.1800xl03 to 0.295xl03 as dye concentration changes from 10 ppm to 

80 ppm, but k, fits good for a value of 0.1481xl03.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



C
/C

o

60

pH -e-C/Co

0.8

0.6

0.4

0.2

1
0 1 2 3 4 5 6 7 8

•e
S

OG 20 ppm, 03 /02  6 I/ml T 'me (mm)

Figure 5.5 Acid Orange 10 Decomposition Curve by Reacting with Ozone

cS
D

15 20
Time (min)

C/Co (10.4ppm) 
C/Co (21.2 ppm) 
C/Co (42.3ppm) 
C/Co (82.0ppm) 
model(10.4ppm) 
model(80.0ppm) 
model(42.3ppm) 
model(21.2ppm)

30 35

Figure 5.6 Acid Orange 10 Decomposition by Ozonation for 
Different Initial Dye Concentration

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



61

5.3.4 Photolytic Hydrogen Peroxide Oxidation

From literature review, it could be ascertained that hydrogen peroxide played a very 

important role in photolytic ozonations. In photolytic hydrogen peroxide oxidation 

system, hydrogen peroxide was decomposed by UV light to form OH* and H 0 2* radicals. 

Hereby, the azo dyes were oxidized by OH* and H 02*. Figure 5.7 shows the photolytic 

hydrogen peroxide oxidation o f acid orange 10 at initial dye concentration o f 20 ppm, 

hydrogen peroxide concentration of 7.081 m-mole/1. For the decomposition o f the other 7 

azo dyes by photolytic hydrogen peroxide oxidation, the results are given in Figure A.l to 

Figure A.7 in Appendix A.

1

0.8

0.6
cS 
D

0.4

0.2 

0
0 10 20 30 40

OG21.5 ppm. 60 mi H202 Time (min)

Figure 5.7 The Photolytic Hydrogen Peroxide Oxidation for Acid Orange 10

The photolytic hydrogen peroxide oxidation experiments were tested to adjust the 

pH values and initial concentrations of hydrogen peroxide. At different pH, the results are 

shown as Figure 5.8 for Acid Orange 10. Comparing azo dye decomposition at different 

pH in photolytic hydrogen peroxide oxidation, it seems that the reaction rates decreased

“ S o u  □ □----- E-------------&------------------------ ------------------ .□ [.
d i \  \

-

\ .
---- *-------------- 11

-*-pH
oC/Co
□ H202 C/Co
—model(dye)
— model(H202)

-------1---------1---------1---------1-------1.. -1. - - 1.1 1. 1  1 . 1 . 1. 1  1 1 1
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by increasing pH values. It appeared that the hydrogen peroxide could be decomposed at 

higher pH value before the reaction started (UV light started).

pH 2.4 »  pH 5.3 -a-pH 7.9 *  pH 9.7

0.8

0.6
a

0.4

0.2

0 10 20 30 40 50 60 70
Time (min)

Figure 5.8 The Effect of pH on Acid Orange 10 Decomposition by 
Photolytic Hydrogen Peroxide Oxidation.

Figure 5.9 gives the effect of different hydrogen peroxide initial concentrations on the 

Acid Orange 10. It could be observed that the higher initial H20 2 concentrations, the 

higher decomposition rates could be approached. However, the decomposition rates 

maintained similar maximum values despite of the H20 2 concentration over 9xlO'3M. 

This meant that higher initial concentration of hydrogen peroxide could improve the 

decomposition rate of azo dyes, yet there was a optimum initial concentration for 

approaching the maximum reaction rates. The effect of initial dye concentration is also 

very important for this reaction. The different initial dye concentration can change the 

absorbance o f UV light and also consume different amount o f oxidants. Figure 5.10 gives
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the effect o f initial dye concentration on photolytic hydrogen peroxide oxidation o f acid 

orange 10.

■  H 2 0 2 2 0 ml O H 2 0 2 4 0 m l A H 2 O 2 6 0 m l M H 2 O 2 8 0 m l 
— model(20m l) — m odel(40m l) — model(60ml) — model(80)

0.8

0.6
o
U
U

0.4

0.2

0 10 20 30 40
Time (min)

Figure 5.9 The Effect of Different Hydrogen Peroxide Initial Concentrations 
on Acid Orange 10 Decomposition

A OG 20 ppm O O G lO p p m  □ OG 5 ppm 

— model(5ppm) — model(lOppm) — model(20ppm)

0.8

0.6
(3
D

0.4

0.2

30 40
H 2 0  2 60 ml Time (min)

Figure 5.10 The Effect of Different Initial Dye Concentrations on 
Acid Orange 10 Decomposition
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From the literature data o f free radical reactions presented in Table 2.2, the 

reaction rate constants (k4 and ks) and hydrogen peroxide photodecomposition constant 

(kiH202 )̂ could be solved. The constants then were modified by fitting experimental data 

from hydrogen peroxide decomposition under UV radiation. Also a sensitivity analysis 

for photolytic hydrogen peroxide oxidation was studied. Figure A.8 gives the sensitivity 

o f each rate constant for this experiment.

5.3.5 Photolytic Ozonation

It was easier for solving the rate constants in photolytic ozonation after getting the 

reaction kinetic model of photolytic hydrogen peroxide oxidation. In this experiment, the 

azo dyes were decomposed by ozone combined with UV radiation. The reaction rate was 

faster than H20 2/UV system and ozonation alone. Reaction rates between photolytic 

ozonation and ozonation alone were observed little differences.

Figure 5.11 shows the difference between photolytic ozonation and ozonation o f 

Acid Orange 10. The photolytic ozonation of the other 7 azo dyes could be checked in 

appendix. The rate constants (k4 and k5) could be reconfirmed here again and the ozone 

photodecomposition rate constant (kI03I) was solved here by computer simulation.
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-S-03/UV -b-03 alone

0.8

0.6
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D

0.4
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OG 21.1 ppm

4 Time (min) 60 2 8 10
Figure 5.11 The Photolytic Ozonation o f Acid Orange 10

5.3.6 Reaction Rate Constants Solved by Com puter

Table 5.6 gives the reaction rate constants of Acid Orange 10 in each reaction which 

established the kinetic model. The reaction rate constants of the other 7 azo dyes could be 

checked in appendix.

Table 5.6 The Reaction Rate Constants of Acid Orange 10

Reaction Rate Constant

A + 0 3 — ^->5, 0.1481 ±0 .0020x 103

5, + 0 3 — » Product 0.2088 ± 0.0862 x 103

A + O H — k-*->B2 0 .1036± 0 .0063x l0 i°

B2 + O H . —— > Product 0.278510.0351 x 10 '1

A + H 02 . — » Product 0.5467 10.0240 x 104

From a series of various and complex experiments, the rate constants and mass 

transfer coefficients could be obtained by simulating the experimental results. A kinetic
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model which described the contemplated experiments was developed and excersized by 

using the Rosenbrock Hillclimb Optimization Algorithm with the LSODE ODE Solver 

method. All the rate constants solved by computer could be applied to a commercial 

wastewater treatment plant by scaling up the CSTR results.

5.4 Phenol Decomposition by Different Oxidation Processes

5.4.1 Ozonation of Phenol

Phenolic compounds included phenol were characterized by presence o f the OH donor 

group on the aromatic nucleus. These compounds reacted strongly with ozone. The 

mechanism at neutral or acidic pH was proved as an electrophilic attack o f the oxidant on 

reactive carbons (ortho or para positions). First level intermediates of oxidation showed 

much more toxic than phenol itself. Furthermore, a sufficiently long retention time was 

allowed to degrade these intermediates. The reaction pathway described in Figure B.10 in 

Appendix.

From GC/MS analysis, it was found the major intermediate as hydroquinone 

showed in Figure B.l to Figure B.3 in Appendix B. Figure 5.12 shows experimental and 

modeling data for ozonation o f phenol.
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Figure 5.12 Phenol Decomposition by Ozonation 

5.4.2 Photolytic Hydrogen Peroxide Oxidation

From GC/MS analysis, different oxidation products could be observed for photolytic 

hydrogen peroxide oxidation. Catechol and hydroquinone were the major intermediates. 

Meanwhile, catechol could reach higher concentration than hydroquinone. Except the 

catechol and hydroquinone, there were other more high molecular weight compounds in 

MS spectrum. They were 2,3-dihydro-l,4-benzodioxin-2-methanol, 2-phenoxy-phenol,

1,1 '-biphenyl-2,2'-diol 2,6-bis( 1,1 -dimethylethyl)-naphthalene, (1,1 -dimethylethyl)-2- 

methoxy phenol and 1,4-benzenedicarboxylic acid, as Figure B.7 ~ B.9., the reaction 

pathways are described in Figure B.l 1.

Figure 5.13 shows the experimental data and model fitting o f the photolytic 

hydrogen peroxide o f phenol.
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Figure 5.13 Phenol Decomposition by H20 2/UV System
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—model(phenol)
—model(hydroquinone)

5.4.3 Photolytic Ozonation of Phenol

From GC/MS analysis (Figure B.4 ~ B.6), the reaction pathway o f photolytic ozonations 

was very similar to ozonation o f phenol. However, some high molecular weight 

compounds but very low concentrations were found as intermediates. These compounds 

were 2-phenoxy-phenol, l,l'-biphenyl-2,2'-diol, disooctyl ester 1,2-benzenedicarboxylic 

acid, and dicyclohexyl ester 1,2-benenedicarboxylic acid. The reason why high molecular 

weight compounds formed was hydroxyl free radical abstract o f phenol to phenolic 

radical, then phenolic radical reacted with phenol to produce those compounds. Figure 

5.14 shows the decomposition o f phenol by photolytic ozonation.
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Figure 5.14 Phenol Decomposition by 0 3/UV System

5.4.4 pH  Effect on Phenol Decomposition by H 20 2/UV System 

The Effect o f pH on H202/UV system can be shown in Figure 5.15 Two sets of 

experiments were run under pH 5.45 and pH 11.15. It can be observed that hydrogen 

peroxide decomposed very fast under pH 11.15 than pH 5.45. This effect causes lower 

free radical concentration and lower phenol decomposition rate.

B 20Q.Q.
0.8

0.6

a-Phenol(pH 1l.l5) 
«-H 202C/Co(pH 11.15) 

-»-Phenol(pH5.45) 
O H 2 0 2  C/Co (pH5.45)

0.2

20 30
Time (min)

40 50 60

Figure 5.15 pH Effect on Phenol Decomposition by H20 2/UV System
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5.4.5 The R ate Constants Obtained from  Com puter

Modeling are listed in Table 5.7. By checking with published references, all the values 

are consistent with the literature.

Table 5.7 Rate Constants Obtained from Computer Modeling

Reaction Rate Constants

Phenol + 03 -*  Hydroquinone, Catechol 1.3 x 103

Hydroquinone, Catechol + 0 3 —> Bl 4.038 x 103

i?3 + 6>3 -> Product 1.252 x 103

Phenol + OH. —» Hydroquinone + Catechol 4.5 x lO?

Phenol + OH. —> ph» (phenolic radical) 2.1 x 109

p h .+ Phenol —» High molecular weight compounds 1.748 x 104

Hydroquinone, Catechol + OH. -> Organic acid 7.0 x 109

Phenol + H 02. -> Products 8.551 x 104

5.5 D iscussion

5.5.1 Com parison of Different Experiments

It was generally expected on the oxidation strengths of the reactants for gaining the 

different reaction rates in the experiments. By comparing the decomposition rates, 

ozonation and photolytic ozonation were the most effective reactions in degrading the azo 

dyes. The effects could be observed by the orders o f photolytic hydrogen peroxide 

oxidation, then UV/N2 and N2 bubbling which did not decompose or strip out any o f the 

azo dyes or phenol. Figure 5.16 shows the comparison of Acid Orange 10 decomposition 

in each type o f experiment. The comparison of the other 7 azo dyes could be checked in 

appendix A.
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1
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Figure 5.16 The Comparison o f Acid Orange 10 Decomposition 
in Each Type of Experiment

A. Ozonation and Photolytic Ozonation

Comparison o f ozonation only and photolytic ozonation showed that there was little 

enhancement for the combination o f UV light into ozonation. The major conclusions for 

the decomposition of the azo dyes by ozonation or photolytic ozonation could be acquired 

as follow s:

• Azo dyes could be effectively degraded by ozonation.

• UV light was absorbed by azo dyes in water. UV could attach 0 3 to produce 

free radicals (OH» and H 02») weakly. The dominant reaction was ozonation in 

photolytic ozonation for azo dyes.

-©•03 alone
* UV/03
♦  UV/H202
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B. Photolytic Hydrogen Peroxide Oxidation

Azo dyes could be decomposed very slightly by H20 2 only. However, when hydrogen 

peroxide was irradiated with UV light, then the decomposition rates increased 

substantially. Although the reaction rates of photolytic hydrogen peroxide oxidation were 

slower than photolytic ozonation azo dyes. Yet, it was still a powerful method for 

degrading azo dyes.

As described in Chapter 2, hydrogen peroxide had a number o f advantages which 

coincided with limitations for using ozone as a oxidant. From the kinetic model, it could 

be seen that photolytic hydrogen peroxide oxidation was the basis o f photolytic ozonation 

and the differences between these two methods were the distributions of OH. and H 0 2. 

free radicals. Based on the computer simulation, it could be concluded th a t:

• The rates o f photolytic ozonation which could be faster or slower than 

photolytic hydrogen peroxide oxidation depending on the target chemicals.
• Hydrogen peroxide was produced and consumed in the photolytic ozonation 

reaction.
• In photolytic hydrogen peroxide oxidation reactions, hydrogen peroxide was 

decomposed very slowly. In photolytic ozonation, however, ozone was 
continuously bubbled into the liquid phase and decomposed by UV light to 
produce free radicals, so the concentrations o f ozone, hydrogen peroxide, OH. 
and H 0 2> in liquid phase reached steady state values.

C. Effects of Stripping, and UV radiation

From the N 2  bubbling and UV/N2  systems (see 5.4.1 and 5.4.2), they were nearly 

significant concentration changes or less than 1% disappearance after 60-minute 

observation. For azo dyes, it was observed no significant rate effects by comparing N2
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bubbling and UV/N2 systems with 0 3, OH. and H 02. reactions. From the experimental 

results, the conclusions were as follows :

• Stripping by bubbling nitrogen had no effect on azo dyes.

• UV radiation can hardly photodecompose azo dyes.

5.5.2 The Effect of pH  in H20 2/UV reaction

The decomposition o f azo dyes with photolytic hydrogen peroxide oxidation showed in 

Figure 5.8 at the different pH. The reaction rates o f  photolytic hydrogen peroxide 

oxidation increased with decreasing pH. The effects o f pH on the reaction rates may 

follow the mechanism of basic catalyzed decomposition o f  hydrogen peroxide during the 

mixing procedure and photolytic reaction.

The photolytic hydrogen peroxide oxidation was worked as soon as UV light was 

turned on effectually and powerfully. At basic condition, hydrogen peroxide was 

decomposed to water by basic catalyzed decomposition before the UV light was turned 

on. Meanwhile, no free radical was produced in this period. For this reason, under UV 

irradiation, the initial concentration of hydrogen peroxide was lower than under acidic 

condition.

During the photolytic hydrogen peroxide oxidation, hydrogen peroxide was 

decomposed by UV radiation to produce OH. and H 02* free radicals. At the same time, 

hydrogen peroxide was also decomposed by basic catalyzed decomposition to produce 

unreactive H20  and 0 2. Consequently, lower pH value can prevent hydrogen peroxide 

decomposition to stable compounds and therefor reaches a higher reaction rate. The pH 

effect in photolytic hydrogen peroxide oxidation is summarized as follows
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• A higher reaction rate in photolytic hydrogen peroxide oxidation is achieved 

at lower pH, because hydrogen peroxide decomposes in basic solution.

• Hydrogen peroxide decomposes to free radicals only under the UV radiation.

• In basic solution, hydrogen peroxide decomposes to unreactive H20  and 0 2 

during both o f the mixing procedure and photolytic reaction period.

• In the treatment o f wastewater treatment, the wastewater effluent can be 

pretreated to acidic condition before flowing into photolytic hydrogen 

peroxide oxidation process.

5.5.3o The Effect of Hydrogen Peroxide Dosage

Hydrogen peroxide dosage (molar fraction of hydrogen peroxide per azo dyes) can have a 

pronounced effect on different reaction rates. Higher hydrogen peroxide initial 

concentration causes higher reaction rate. The results in Figure 5.9 shows this effect. But 

when the initial concentration of hydrogen peroxide is increased to a limit (between 60 ml 

to 80ml/1001), the change of reaction rate becomes not significant. By a series of 

experiments, an optimum initial concentration o f hydrogen peroxide can be determined.

Hydrogen peroxide dosage can also be expressed as molar fraction o f hydrogen 

peroxide to azo dyes. From the relation of molar fraction and azo dye decomposition rate, 

a economic hydrogen peroxide dosage may be obtained for different initial concentration 

of azo dye. That approach is more useful for wastewater treatment applications.

In this group o f experiments, the reaction rate increases as hydrogen peroxide 

dosage increases, until a optimum dosage is reached where the reaction rate changes very 

slowly. That is when hydrogen peroxide initial concentration increases, the production of 

hydroxyl radical also increasing at the same time. At high H20 2 concentration, free 

radicals tend to react with each other rather than diffuse away to react with the azo dyes.
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These free radical termination produces H20  and 0 2 which have essentially no effect on 

increasing reaction rate.

From the kinetic model study, the following conclusions are enumerated :

•  Decomposition rate of azo dyes increases with increasing hydrogen peroxide

concentration. This is a consequence of the increasing in concentration o f free 

radicals such as OH. and H 02. with dosage o f hydrogen peroxide in H20 2/UV 

reaction.

•  Hydrogen peroxide dosage reaches an upper limit when the reaction rate

increases not significantly. This rate saturation seems to be caused by free 

radical termination reactions.

• When hydrogen peroxide dosage increases to the optimum upper limit, the

termination of free radicals becomes more and more important and eliminates 

the advantage of increasing hydrogen peroxide dosage.

• The reaction rate constants for free radical termination reactions are very large,

so the concentration o f free radicals tends to approach a steady state.

5.5.4 The Role of Mass Transfer in Ozonation

In this study, it has been shown that the mass transfer o f ozone from gas phase to liquid 

phase performs a very important role in ozonation, when the reaction rate o f ozone and 

azo dye is very fast. Because the mass transfer of ozone becomes the rate determination 

step, that means whenever the ozone comes into liquid phase it reacts with azo dye 

immediately.

Although ozone in liquid phase may produce free radicals, the concentration of 

free radicals is very small (less than 10"15 M ) as compared to ozone concentration in the
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liquid phase ( about x lO 2 M), therefor the effect o f free radicals in the reaction is 

neglected.

The following conclusions are reached based on these results :

•  The decomposition rate increases with increasing ozone mass transfer rate from

the gas phase to the liquid phase.

• Because the ozone mass transfer is very important in this reaction, for the first

one minute, ozone gas feed is supplied only part o f the capacity and then 

increased proportional to bubbling time. After one minute, the mass transfer of 

ozone is considered as supplied to full capacity.

• The saturation concentration o f ozone decreases with increasing temperature. So

temperature is a very important parameter in this experiment.

5.5.5 Oxidants in UV Induced System

In photolytic ozonation, ozone concentration in liquid phase is very small, because of 

ozone decomposition by UV radiation. Most of ozone is decomposed into free radicals 

such as OH. and H 0 2- and produces hydrogen peroxide. Then hydrogen peroxide is also 

decomposed by UV radiation or reacted with hydroxyl radicals to form hydroperoxide 

radical. All these oxidants have powerful ability to decompose azo dyes.

Azo dyes in photolytic oxidation system are decomposed by those oxidants. For 

different reaction rate constants with oxidants, the decomposition curve of different azo 

dyes are quite different. Because the concentration of those oxidants are hard to determine 

by analysis, the reference data from literature is used in computer simulation to solve for 

rate constants and oxidants' concentrations.
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

From the experimental results and kinetic modeling, the following conclusions are 

obtained.

1. Advance oxidation processes such as photolytic ozonation and photolytic 

hydrogen peroxide oxidation are powerful methods for the decomposition of 

azo dyes.

2. Stripping and UV radiation alone cannot effectively decompose azo dyes.

3. The azo dyes studied in this project have similar decomposition properties.

4. Hydrogen peroxide decomposition by UV radiation to produce hydroxyl 

radicals and hydroperoxide radicals is the basic mechanism o f advanced 

oxidation processes.

5. The kinetic model proposed in this study shows excellent agreement with 

experimental results, and the rate constants obtained from computer 

simulation may prove very useful for scale-up to a commercial wastewater 

treatment process.

6. UV radiation intensity, pH effect, hydrogen peroxide dosage effect can 

enhance the decomposition rate.

7. The mechanism of these AOPs is very complex. Some of reactions which 

achieve a very small effect on decomposition of azo dyes are neglected (i.e. 

stripping, UV radiation only) in this kinetic study. The light intensity model 

is introduced into the overall model to improve the accuracy of the 

prediction.

77
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8. Phenol performs as a model compound to test the reaction mechanism 

model. The results show excellent agreement with experimental data, 

reaction pathways, and intermediates were also identified by GC/MS 

analysis.

6.2 Recommendation

In order to understand the mechanism well, some investigation should be considered in 

future studies :

1. High pH will cause hydrogen peroxide decomposition and decrease the 

decomposition rate of pollutants in photolytic hydrogen peroxide oxidation. 

The decomposition o f hydrogen peroxide at different pH should be studied 

to determine the H+ contribution to the reaction kinetics.

2. Measuring the concentration of intermediate products may improve the 

kinetic model. By using GC/MS, the concentration and identity of 

intermediates can be obtained.

3. The effect of UV light in photolytic ozonation and photolytic hydrogen 

peroxide has to be studied for different light source and different reactor size 

to estimate the best geometry for a reactor.
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APPENDIX A 

DECOMPOSITION OF EIGHT AZO DYES

In this appendix, the curves for the decomposition of eight studied azo dyes are given 
Figure A.l to Figure A. 7, pH effect and sensitivity analysis are also included in 
Figure A.8 to Figure A. 10
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APPENDIX B

OXIDATION OF PHENOL AND ITS REACTION PATHWAYS

In this appendix, the Total Ion Chromatograph for phenol decomposition in three 
different processes are given in Figure B .l to Figure B.9, reaction pathways and mass 
spectrum of intermediates are also included in Figure B. 10 to Figure B. 17
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Figure B.12 Mass Spectrum of a-methoxy-a-methyl Benzeneethanol (Marked 1)
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Figure B.13 Mass Spectrum of 1,1'-Biphenyl-2,2'-diol (Marked 2)
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Figure B.14 Mass Spectrum of 2-Phenoxy-phenol (Marked 3)
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