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ABSTRACT

Investigation of Reactor Design Parameters Towards 
Optimizing Biodegradation of Chlorophenois 

by Phanerochaete chrysosporium

by
Nirupam Pal

The biodegradation of 2,4,6-trichlorophenol (246-TCP) and 2,4,5- 

trichlorophenol (245-TCP) by Phanerochaete chrysosporium was studied in 

batch and in continuous systems. Contrary to most of the previous reports from 

the literature, this study shows that degradation of both TCPs can occur in the 

absence of any measurable ligninase activity. The microorganism did not 

retain its degradative ability for more than about two weeks.

In order to better understand the degradation process, the individual 

contributions of both the biomass and the extracellular proteins were studied 

separately. The results show that neither the biomass nor the extracellular 

proteins alone can completely degrade 246-TCP, but both are required for 

complete degradation to occur. In addition, it was found that the rate of 

degradation is directly proportional to the concentration of the total extracellular 

protein produced by the fungus. The extracellular enzyme system (other than 

ligninase) responsible for degradation has a life time of 32 to 45 hours 

(depending upon the pH of the system). On the basis of these observations, a 

reaction scheme for the degradation process is proposed in which 246-TCP is 

first attacked by an extracellular protein (enzyme) secreted by the fungus, 

described by a Michaelis-Menten kinetic expression, and then finally degraded



by the cell bound protein (enzyme). The kinetic parameters were determined in 

continuous reactor experiments and successfully tested for other 

configurations.

Optimal operating parameters were determined for a packed-bed 

continuous reactor. Degradation of phenol and pentachlorophenol were also 

studied for comparative purposes.



BIOGRAPHICAL SKETCH 

Author: Nirupam Pal 

Degree: Doctor of Philosophy 

Date: January, 1993 

Undergraduate and Graduate Education: 

• Doctor of Philosophy in Chemical Engineering, New Jersey Institute of 
Technology, Newark, NJ, 1993 

• Master of Science in Chemical Engineering, University College of Science 
and Technology, Calcutta University, India, 1986 

• Bachelor of Science in Chemical Engineering, University College of 
Science and Technology, Calcutta University, Calcutta, India. 1985 

• Bachelor of Science with honors in chemistry, Krishnagar Government 
College, Calcutta University, Krishnagar, Nadia, India, 1981 

Presentation and Publications: 

• Biodegradation of Trichlorophenols by Phanerochaete chrysosporium-
Minitech Competition, April 1992, Newark, NJ, jointly organized by 
American Institute of Chemical Engineers (AICHE),Society of Plastics 
Engineers (SPE) and Society for Advancement of Materials and Process 
Engineering (SAMPE). 

• Reactor Modeling for Biodegradation of Hazardous Wastes Utilizing a 
White Rot Fungus - October 1992, North-Eastern State Conference of 
Waste Water Treatment, Atlantic City 

• Poisoning of Hollow Catalyst Pellets by Parallel Poison Forming 
Reactions-Indian Institute of Chemical Engineers, Annual Conference, 
1986. 

Major: Chemical Engineering 

iv 



This thesis is dedicated to my beloved sister 
the late Chanda Pal

v



ACKNOWLEDGMENT

The author wishes to express his sincere gratitude to his advisors, 

Professor Gordon A. Lewandowski and Professor Piero A. Armenante, for their 

guidance, friendship, and moral support throughout this research.

Special thanks to Professors Dimitri Petrides, David Kafkewitz and Basil

C. Baltzis for serving as members of the committee.

The author appreciates the timely help and suggestions from fellow 

graduate students S. Dikshitulu, Z. Shareefdeen, K.Wang, S. loannidis A. Garni, 

T. Poncet, J.Wang; members of Hazardous Substance Management Research 

Center (HSMRC), C. Brockway and G. San Augustin; and Y. Gandhi of the 

chemistry stock room.

And finally, the author would like to acknowledge the immense moral 

support and help from his wife Susmita and parents throughout this research 

without which it would never been possible to continue his studies.



T a b l e  o f  C o n t e n t s

Page

1 INTRODUCTION............................................................................................... 1

2 LITERATURE REVIEW....................................................................................  4

2.1 Studies of Different Strains of Phanerochaete chrysosporium............... 6

2.2 Parameters Affecting Degradation..........................................................  8

2.2.1 Effect of Nitrogen...........................................................................  8

2.2.2 Effect of Carbohydrates.................................................................11

2.2.3 Effect of Oxygen..............................................................................12

2.2.4 Effect of Trace Nutrients................................................................13

2.2.5 Effect of pH  13

2.2.6 Effect of Agitation ........................................................................ 14

2.2.7 Effect of Additives ....................................................................... 16

2.2.8 Effect of Veratryl Alcohol................................................................. 16

2.2.9 Effect of Surfactants....................................................................... 17

2.3 Time Decay of Fungal Activity.................................................................. 18

2.4 Enzymology and Enzymatic Mechanism..................................................19

2.5 Stereospecificity of Degradation...............................................................25

2.6 Reactor Design and Modeling..................................................................25

3 OBJECTIVE....................................................................................................... 27

4 ANALYTICAL METHODS................................................................................. 28

4.1 Nitrogen Assay ........................................................................................28

4.1.1 Determination of Nitrogen Concentration as Nitrate.....................28

4.1.2 Determination of Nitrogen Concentration as Ammonium............... 30

vii



4.2 Chloride Ion Assay................................................................................... 31

4.3 Determination of Dissolved Oxygen Concentration.................................32

4.4 pH Measurement...................................................................................... 33

4.5 Glucose Assay ........................................................................................34

4.6 Assay for 246-TCP, 245-TCP, Phenol, And PCP....................................35

4.7 Lignolytic Enzyme Assay.......................................................................... 36

4.7.1 Preparation of Veratryl Alcohol Solution........................................37

4.7.2Preparation of Tartarate Buffer.........................................................38

4.7.3 Preparation of Hydrogen Peroxide Solution.................................. 38

4.8 Protein Assay ........................................................................................38

4.9 Determination of Biomass Concentration................................................ 33

5 MATERIALS AND METHODS..........................................................................40

5.1 Organism and Innoculum.........................................................................40

5.2 Culture Medium........................................................................................ 40

5.2.1 Growth Medium .......................................................................41

5.2.2 Induction Medium .......................................................................41

5.2.3 Wash Solution .......................................................................42

5.2.4 Mineral Salt Solution (MSS)........................................................... 43

5.3 Preparation of Different Chemical Solutions...........................................43

5.3.1 246-TCP and 245-TCP Solution.................................................... 44

5.3.2 Phenol and Pentachlorophenol (PCP) Solutions.......................... 44

5.4 Selection of Temperature for the Study................................................... 44

5.5 Apparatus ....................................................................................... 45

5.5.1 Batch Reactor for Growing the Fungus..........................................45



5.5.2 Batch Reactor for Studying the Effect of Substrate
Concentrations on Growth.......................................................... 46

5.5.3 Shaker Flasks .......................................................................46

5.5.4 Packed-Bed Reactor (for Supernatant Production)....................... 47

5.5.5 Packed-Bed Reactors (for Continuous Experiments)....................48

5.5.6 Enzyme Reactor .......................................................................49

5.6 To Find a Stable Nitrogen Source to be Used in This Study..................49

5.7 Experimental Procedure for Studies in Batch System............................ 49

5.7.1 Effects of Growth Parameters........................................................ 50

5.7.1.1 The Optimal Ratio of Glucose to Nitrogen in
Growth Medium...............................................................50

5.7.1.2 The Effect of Glucose and Nitrogen Concentrations
on the Change of pH ........................................................ 50

5.7.1.3 The Effect of Biomass Concentration on Change of
pH  51

5.7.2 Determination of the Degradation Scheme....................................52

5.7.2.1 Experiments with Whole Fungal Slurry............................. 52

5.7.2.2 Experiments with Separated Supernatant......................... 53

5.7.2.3 Experiments with Separated Biomass............................... 53

5.7.2.4 Experiments with Additional Biomass.................................54

5.7.2.5 Experiments with Additional Supernatant.......................... 54

5.8 Experimental Procedures For Packed-Bed Continuous Reactor
Studies ....................................................................................... 55

5.8.1 Determination of the Residence Time............................................55

5.8.2 Determination of Void Volume in Packed-bed.............................. 56

5.8.3 Measurement of Flow Rate of Induction Medium.......................... 56

ix



5.8.4 Growth And Immobilization of the Fungus in the Packed-bed
Reactors  57

5.8.5 Degradation of 246-TCP and 245-TCP.......................................... 57

5.8.6 Determination of the Effects of Operating Parameters on
Degradation .......................................................................58

5.8.7 Determination of the Model Constants for 246-and 245-TCP.......59

5.9 Degradation of Phenol..............................................................................60

5.10 Degradation of Pentachlorophenol ...................................................... 60

6 RESULTS FROM BATCH STUDIES............................................................... 61

6.1 Ammonium and Nitrate as Suitable Nitrogen Sources........................... 61

6.2 Growth parameters................................................................................... 62

6.2.1 Optimization of Glucose and Nitrogen...........................................62

6.2.2 Effect of High Toxic Concentration................................................63

6.2.3 Changes in Nitrogen Concentration...............................................63

6.2.4 Changes in pH .......................................................................65

6.2.5 Changes in Biomass and Extracellular Protein
Concentrations .......................................................................66

6.3 Degradation of 246 and 245-Trichlorophenols in Shaker Flasks..........67

6.3.1 Degradation of 246-TCP in Shaker Flasks....................................67

6.3.2 Degradation of 246-TCP in a Ligninase-Depleted System...........68

6.3.3 Time Decay of Fungal Activity....................................................... 69

6.3.4 Addition of Substrate to a Substrate-Depleted System.................70

6.3.5 Degradation of 245-TCP in Shaker Flasks....................................71

6.4 Determination of Reaction Scheme......................................................... 71

6.4.1 Separated Supernatant..................................................................71

6.4.2 Separated Biomass ......................................................................72

x



6.4.3 Additional Biomass .......................................................................74

6.4.4 Additional Supernatant.....................................................................75

6.5 Oxygen Requirement................................................................................ 75

7 REACTION SCHEME AND DEGRADATION MODELING............................... 77

8 RESULTS FOR PACKED-BED CONTINUOUS REACTOR STUDIES............82

8.1 Degradation of 246-TCP...........................................................................82

8.2 Effect of Glucose Concentration on 246-TCP Degradation................. 83

8.3 Effect of Nitrogen Concentration on 246-TCP Degradation................ 83

8.4 Effect of Nitrogen Concentration at Constant pH .................................84

8.5 Effect of Shear on 245-TCP Degradation.............................................85

8.6 Determination of Model Parameters ....................................................... 86

8.6.1 Effect of pH on Vmax ...............................................................  87

8.6.2 Effect of pH on Km ........................................................................87

8.7 Verification of Model Parameters at Other pH Values ........................... 88

8.8 Degradation of Phenol.............................................................................. 88

8.9 Degradation of Pentachlorophenol ..........................................................89

9 VALIDATION OF THE MODEL IN BATCH SYSTEM AND
OPTIMIZATION OF PH ........................................................................... 90

9.1 Comparison of the Model with Batch Experimental Data ...................... 90

9.2 Optimization of pH ................................................................................... 91

10 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK .......93

10.1 Conclusions ........................................................................................ 93

10.2 Recommendations for Future Work ...................................................... 94

APPENDIX I TABLES ......................................................................................... 95

APPENDIX II FIGURES ..................................................................................... 130

xi



APPENDIX III CALIBRATION CURVES ............................................................185

REFERENCES ..................................................................................................... 193

xii



L is t  o f  T a b le s

Table Page

6.1 Effect of Air stripping on Nitrogen Source in Shaker flask ......................... 95

6.2 Parameter Changes During Growth of Phanerochaete chrysosporium
.....................................................................................................................96

6.2.4 Relationship Between pH and Biomass Concentration ........................... 97

6.3.1 Degradation of 246-TCP by Whole Slurry in Shaker Flask ..................... 98

6.3.1 b Degradation of 246-TCP by Whole Slurry with Adjusted pH ..................99

6.3.4 Degradation of 246-TCP by Whole Slurry in Substrate-Depleted
Medium ................................................................................................... 100

6.3.5 Degradation of 245-TCP by Whole Slurry in Shaker flask ..................... 101

6.4.1 Degradation of 246-TCP by Supernatant at pH 5.6 ................................102

6.4.1 b Degradation of 246-TCP by Supernatant at pH 4.6 ...............................103

6.4.2 Degradation of 246-TCP by Separated Biomass at pH 5.6 .................... 104

6.4.2b Degradation of 246-TCP by Separated Biomass at pH 4.6 ................... 105

6.4.3 Degradation of 246-TCP with Additional Biomass at pH 5.6 .................. 106

6.4.3b Degradation of 246-TCP with Additional Biomass at pH 4 .6 .................. 107

6.4.4 Degradation of 246-TCP with Additional Supernatant at pH 5.6 ............108

6.4.4b Degradation of 246-TCP with Additional Supernatant at pH 4 .6 ............109

6.5 Oxygen Requirement During Degradation of 246-TCP by Whole
Slurry ........................................................................................................ 110

8.1 Degradation of 246-TCP in Packed-bed Continuous Reactor .................. 111

8.2 Effect of Glucose Concentration on Degradation of 246-TCP in
Continuous Reactor ................................................................................112

8.3.1 Effect of Nitrogen Concentration on Degradation of 246-TCP
(SET # 1) ................................................................................................. 113



8.3.2 Effect of Nitrogen Concentration on Degradation of 246-TCP
(SET #2) .................................................................................................114

8.3.3 Effect of Nitrogen Concentration on Degradation of 246-TCP
(SET #3 ) ..................................................................................................115

8.4 Effect of Nitrogen Concentration on Degradation of 246-TCP at
Constant pH .............................................................................................116

8.5. Effect of Shear on Degradation of 245-TCP in Continuous Reactor ............117

8.6.1 Steady-State Experimental Results for Degradation of 246-TCP
at PH 3.6 .................................................................................................118

8.6.2 Steady-State Experimental Results for Degradation of 246-TCP
at pH 4.6 .................................................................................................119

8.6.3 Steady-State Experimental Results for Degradation of 246-TCP
at pH 5.6 ..................................................................................................120

8.6.4 Steady-State Experimental Results for Degradation for 245-TCP
at pH 3.6 ..................................................................................................121

8.6.5 Steady-State Experimental Results for Degradation of 245-TCP
at pH 4.6 ..................................................................................................122

8.6.6 Steady-State Experimental Results for Degradation of 245-TCP
at pH 5.6 ..................................................................................................123

8.6.7 Model Parameters For 246-Trichlorophenol at Different pH ...................124

8.6.8 Model Parameters For 245-Trichlorophenol at Different pH ...................125

8.7.1 Predicted Vs Experimental Results for 246-TCP at Various pH ............126

8.7.2 Predicted Vs Experimental Results for 245-TCP at Various pH ............127

8.8 Degradation of Phenol in Packed-Bed Reactor ...........................................128

8.8. Degradation of Pentachlorophenol in Packed-Bed Reactor ......................... 129

xiv



L ist of F igures

Figure PAGE

5.5.5 Dimensions For Reactor #1 .................................................................130

5.5.6 Schematic of Combined Packed-Bed / Enzyme Reactor System .......... 131

5.8.1 A Typical Residence Time Distribution Curve for Packed-bed 
Reactor ..............................................................................................132

6.1 Effect of Air Stripping on Nitrogen Source .............................................. 133

6.2.1 Glucose and Nitrogen Depletion During Growth ..................................134

6.2.3 Change in Biomass and Nitrogen Concentration During Growth .......... 135

6.2.4a Change in Biomass Concentration and pH During Growth .................136

6.2.4b The Inverse Relationship Between pH and Biomass Concentration
.............................................................................................................137

6.2.5 Change of Biomass and Protein Concentration During Growth ........... 138

6.3.1 Degradation of 246-TCP by Whole Slurry in Shaker Flask Without
pH Adjustment ....................................................................................139

6.3.1b Degradation of 246-TCP by Whole Slurry in Shaker Flask With pH
Adjustment ......................................................................................... 140

6.3.2 Degradation of 246-TCP in Ligninase-Depleted System ......................141

6.3.4 Restart of Degradation of 246-TCP After Addition of Substrates in a 
Depleted System ................................................................................ 142

6.3.5 Degradation of 245-TCP by Whole Slurry in Shaker Flask ...................143

6.4.1 Degradation of 246-TCP by Separated Supernatant ...........................144

6.4.2 Degradation of 246-TCP by Separated Biomass .................................145

6.4.2b Chromatogram Showing Formation of Stable Intermediates for an
Inactive Enzyme System ...................................................................146

6.4.3 Degradation of 246-TCP by Additional Biomass ................................. 147

6.4.4 Degradation of 246-TCP by Additional Supernatant ........................... 148

xv



6.5 Oxygen Requirement During Degradation of 246-TCP ............................. 149

7.1 Chromatograms from the Whole Slurry Experiments Showing the
Formation and Decay of Unstable Intermediates at 15 minutes
and 2.0 hours .......................................................................................150

7.2 Chromatograms from the Whole Slurry Experiments Showing the
Formation and Decay of Unstable Intermediates at 7.0 hours and 
10.0 hours ................................................................................................151

7.3 Chromatograms from the Experiments with Separated Supernatant
Showing the Formation and Decay of Unstable Intermediates at 15 
minutes and 2.0 hours ............................................................................. 152

7.4 Chromatograms from the Experiments with Separated Supernatant
Showing the Formation and Decay of Unstable Intermediates at 7.0 
and 10.0 hours .........................................................................................153

7.5 Proposed Reaction Scheme for 246-TCP Degradation ............................154

8.1 Degradation of 246-TCP in Packed-bed Continuous Reactor ................. 155

8.2 Effect of Glucose concentration on 246-TCP Degradation in Packed-
bed Continuous Reactor ......................................................................... 156

8.3.1 Effect of Nitrogen Concentration on Degradation of 246-TCP in 
Packed-bed Continuous Reactor System (SET #1) ..............................157

8.3.2 Effect of Nitrogen Concentration on Degradation of 246-TCP in 
Packed-bed Continuous Reactor System (SET # 2 ) ...........................158

8.3.3 Effect of Nitrogen Concentration on Degradation of 246-TCP in 
Packed-bed Continuous Reactor System (SET #3) .............................159

8.4 Effect of Nitrogen Concentration on 246-TCP Degradation at
Constant pH of 5.6 ..................................................................................160

8.5 Effect of Shear on 246-TCP Degradation in Continuous Reactor ............161

8.6.1 Determination of Model Parameters for 246-TCP at pH 3.6 ....................162

8.6.2 Determination of Model Parameters for 246-TCP at pH 4.6 ................... 163

8.6.3 Determination of Model Parameters for 246-TCP at pH 5.6 ................... 164

8.6.4 Determination of Model Parameters for 245-TCP at pH 3.6 ................... 165

xvi



8.6.5 Determination of Model Parameters for 245-TCP at pH 4.6 ................... 166

8.6.6 Determination of Model Parameters for 245-TCP at pH 5.6 ................... 167

8.6.7 Variation of Vmax with pH for 246-TCP and 245-TCP .......................... 168

8.6.8 Variation of Km with pH for 246-TCP and 245-TCP .............................. 169

8.7.1 Prediction of Experimental Results for 246-TCP at Various pH
Values by Interpolation of Kinetic Data ................................................. 170

8.7.2 Prediction of Experimental Results for 245-TCP at Various pH
Values by Interpolation of Kinetic Data ................................................. 171

8.8 Degradation of Phenol in Packed-bed Continuous Reactor at
Different pH ..............................................................................................172

8.9 Degradation of Pentachlorophenol in Packed-bed Continuous
Reactor at Different pH ........................................................................... 173

9.1.1 Comparison of Predicted vs. Experimental Results for Batch Reactor
at pH 5.6 ..................................................................................................174

9.1.2 Comparison of Predicted vs. Experimental Results for Batch
Reactor at pH 4.6 ....................................................................................175

9.1.1 Comparison of Predicted vs. Experimental Results for Batch
Reactor at pH 3.6 ....................................................................................176

9.2.1 Optimization of pH for Degradation of 246-TCP at an Initial 
Concentration of 2.0 ppm ....................................................................... 177

9.2.2 Optimization of pH for Degradation of 246-TCP at an Initial 
Concentration of 10.0 ppm ......................................................................178

9.2.3 Optimization of pH for Degradation of 246-TCP at an Initial 
Concentration of 25.0 ppm ..................................................................... 179

9.2.4 Optimization of pH for Degradation of 246-TCP at an Initial 
Concentration of 50.0 ppm ..................................................................... 180

9.2.5 Optimization of pH for Degradation of 245-TCP at an Initial 
Concentration of 2.0 ppm ........................................................................ 181

9.2.6 Optimization of pH for Degradation of 245-TCP at an Initial 
Concentration of 10.0 ppm ......................................................................182

xvii



9.2.7 Optimization of pH for Degradation of 245-TCP at an Initial 
Concentration of 25.0 ppm ...................................................................183

9.2.8 Optimization of pH for Degradation of 245-TCP at an Initial 
Concentration of 50.0 ppm ..................................................................... 184

xviii



Lis t  of  C a lib r a tio n  C urves

1 Calibration Curve for Nitrogen as Nitrate ..................................................... 185

2 Calibration Curve for Nitrogen as Ammonia ................................................. 186

3 Calibration Curve for Chloride Ion .................................................................187

4 Calibration Curve for Protein .........................................................................188

5 Calibration Curve for 246-TCP ......................................................................189

6 Calibration Curve for 245-TCP ......................................................................190

7 Calibration Curve for Phenol .........................................................................191

8 Calibration Curve for Pentachlorophenol ..................................................... 192

xix



XX



N o m e n c l a t u r e

C =toxic compound 

E= enzyme

EB =cell bound enzyme 

P=products of degradation

D=intermediates produced by breaking the enzyme-substrate complex 

Cjn = concentration of toxic compound at the reactor inlet or the initial 

concentration for a batch reactor (ppm)

C0ut = concentration of toxic compound at the reactor outlet (ppm).

E-|= concentration of the particular enzyme responsible for the degradation 

(ppm)

E-jC = concentration of the enzyme substrate complex (ppm)

E-|* = total concentration of the enzyme responsible for the degradation. 

E j=  total measured protein concentration (ppm)

F'max = kinetic constant based on the particular enzyme responsible for 

degradation

Fmax = kinetic constant based on total enzyme concentration (1/h)

Km = kinetic constant ( ppm)

x = residence time in a CSTR (h)

t= any instant of time starting from initial time 0 (h)
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N o m e n c l a t u r e  Us e d  in  T a b l e s

Glu= glucose concentration (ppm)

Prot= protein concentration (ppm)

Cl = chloride Ion concentration (ppm)

Lig= ligninase activity measured by increase in absorbence in 5 minutes (AU) 

Cont = concentration of the toxics in control experiment(ppm)

N = NaN03  measured as nitrogen (ppm)

R.T.= retention time in packed-bed reactor (h)

R.R. -  recirculation rate in packed-bed reactor (ml/min)

BM = biomass Concentration (ppm)

D.O. = dissolved oxygen concentration (ppm)

246 = 2,4,6-trichlorophenol (ppm)

245 = 2,4,5- trichlorophenol (ppm)

PCP = pentachlorophenol concentration (ppm)

Prod = model predicted data 

Exp = experimental data



CHAPTER 1

INTRODUCTION

Bioremediation is the use of organisms to improve environmental quality by 

taking advantage of their ability to treat toxic, hazardous or merely offensive 

compounds at contaminated sites or at the source of the contamination. This 

natural process has been used for decades to treat wastes such as municipal 

sewage and effluents from industrial processes such as oil refining and chemical 

manufacture. It is emerging as an extremely attractive alternate technology for 

the economical treatment of a wide range of environmental contaminants. 

Biodegradation can decompose waste products and hazardous chemicals into 

water, carbon dioxide, biomass or other innocuous products, rather than simply 

moving the contaminants from one site or medium to another.

Among xenobiotic compounds, chlorophenols and their derivatives are 

extensively used as insecticides, fungicides and herbicides for industrial and 

agricultural purposes throughout the world. All these chlorinated aromatics are 

listed hazards according to the Environmental Protection Agency (EPA), and 

many of them are proven or suspected carcinogens (62). The toxicity of these 

chemicals increases with increase in degree of chlorination. Because of its 

potent nature, study of chlorophenols is given immense importance. 

Furthermore, many chloroaromatics are biodegraded via a chlorophenol route 

(62). So, by studying the biodegradation of chlorophenols, a number of 

chloroaromatics can also be considered indirectly for biodegradation. In this 

study, 2,4,6-trichlorophenol (246-TCP) and 2,4,5-trichlorophenol (245-TCP) are 

the selected model compounds.
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Due to the presence of a stable benzene nucleus, the chlorinated phenols 

have proven to be environmentally persistent. Numerous bioremediation 

strategies have been developed which use both aerobic and anaerobic 

microorganisms to treat this group of chloroaromatics. Activated sludge 

processes, anaerobic digestion, aerated lagoons, trickling filters, rotary 

biological contactors, land farming and aerobic composts are examples of such 

systems (25,49). However, only partial success has been achieved. In many 

cases only a few of the isomers of a particular compound have been degraded. 

Furthermore, with increasing degree of chlorination biodegradation becomes 

more and more difficult.

Phanerochaete chrysosporium, can degrade halogenated compounds in a 

somewhat non specific manner. P. chrysosporium is a distant relative of edible 

mushrooms. But unlike mushrooms, this type of basidiomycete can be seen by 

the naked eye only when cultured in huge numbers and coalesced into white, 

paper-like mats. As a result, the organism, a voracious devourer of dead wood, 

is known as a white rot fungus.

P. chrysosporium was isolated in the sixties by a group of mycologists in 

the former Soviet Union. To access the cellulose in dead wood, this fungus 

secretes a system of enzymes to disintegrate the lignin. In the last decade, 

studies showed that the fungus is capable of mineralizing different aliphatic and 

aromatic compounds and could be of immense use for biodegradation purposes 

of different xenobiotic compounds.

There are some definite advantages of using this fungus over other 

microorganisms. The fungus can work over a wide range of temperature and 

pH, compared to other studied bacterial processes where the microorganisms 

are very much pH and temperature dependent (14). The fungus is not very 

compound specific and could be used for a wide variety of pure and mixed
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substrates. Since the degradation process is an enzymatic process, a very low 

concentration of compound can be treated. However there are some particular 

drawbacks in the use of P. chrysosporium. The specific growth rate of this 

fungus is slower than many bacterial species (49). The pollutants can not be 

used as the primary carbon source for this fungus. Another carbon source must 

be used. Moreover, this fungus is sensitive to shear stress and can not be used 

in a conventional CSTR type reactor. However, all the above problems can be 

overcome by proper selection of reactor configuration and operating parameters, 

as shown in this study.

The purpose of this research was to explore and optimize the reactor 

configuration and design which is best suited for biodegradation of two 

recalcitrant model compounds (2,4,6-trichlorophenol and 2,4,5-trichlorophenol) 

using P. chrysosporium. This study also aimed at revealing the degradation 

scheme, followed by kinetic modeling. Degradation of phenol and 

pentachlorophenol were also studied for comparative purposes considering an 

industrial effluent that may contain a mixture of many chlorophenols and phenol.



CHAPTER 2

LITERATURE REVIEW

The white rot fungus Phanerochaete chrysosporium, a wood decaying 

basidiomycete, is a voracious devourer of dead wood. The hyphe of this White 

Rot Fungus are able to penetrate wood by virtue of their ability to degrade 

lignocellulosic material. The resulting decay causes the wood to become a light 

colored spongy mass containing white pockets or streaks (white rot) separated 

by thin areas of firm wood.

The fungus was originally noted for its lignin degrading ability. Lignin is a 

complex, three dimensional structure consisting of methoxylated and non- 

methoxylated aromatic rings joined by carbon-carbon and carbon-oxygen bonds, 

having a molecular weight ranging from 600 to 1000 kilo daltons. The lignin 

structure can also contain chlorinated molecules, excreted by the plant body and 

accumulated in plant bark (18). Although the subject of intense research for 

many years, details of the mechanism of lignin biodegradation have only 

recently been established. It was found that the fungus was able to release a 

system of extracellular enzymes that are effective lignin degraders. By the late 

60’s and 70's work in a number of laboratories had shown that lignin degradation 

is a non specific, extracellular, oxidative process initiated by nutrient nitrogen, 

carbohydrate or sulfur starvation (39). Studies utilizing the fungus to degrade 

aromatic compounds were initiated because of their similarity to lignin (18). In 

1980, Crawford (12), published an extensive survey of compounds related to 

lignin.

In 1983, Leatham and co-workers (41) showed that this fungus was able to 

degrade phenolic compounds in a non-specific manner. They reported that a

4



5

mutant strain of Phanerochaete chrysosporium (POL 88) could degrade a variety 

of phenolic compounds. Out of 36 chemicals tested, 16 were degraded 50% and 

the other 28 compounds were degraded about 20% in less than three days. 

They reported that all these phenolic compounds were degraded via a muconic 

acid route.

Phanerochaete chrysosporium was used by Huynh et al (31) to degrade 

chlorinated organics in a wastewater treatment system. Although the 

concentration they treated was lower than 10 mg/l, most of the chlorinated 

phenols and low molecular weight components were removed. They also 

noticed that veratryl alcohol was the major end product, and concluded that the 

mechanism involved methylation, oxidation, and reduction in successive stages.

Bumpus et al. (7,8,10) reported the ability of Phanerochaete chrysosporium 

to mineralize recalcitrant organo halides, namely lindane 

(hexachlorocyclohexane), polychlorinated dibenzo(p)dioxins, DDT (1,1-bis 4- 

chlorophenyl) 2,2,2-trichloroethane and polychlorinated biphenyls. They 

observed that degradation persisted for more than 50 days, while its rate 

decreased in exponential fashion with time. They found that degradation is most 

favorable in nitrogen-limited conditions.

Bumpus et al. (9) showed that Phanerochaete chrysosporium was able to 

mineralize pentachlorophenol (PCP). This fungus was able to degrade 12 ppm 

of PCP to below detectable limit within 35 hours. Moreover, they found that the 

fungus was able to survive at 500 ppm of PCP. However, it must be mentioned 

here that the solubility of PCP in neutral water is around 30 ppm, and no mention 

was made how a 500 ppm solution was made. No control experiments were 

cited in this study.

A number of studies were conducted to determine the particular enzyme 

primarily responsible for these degradation processes. The studies concluded
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that lignin peroxidase (or ligninase) was the key enzyme, and that degradation 

occurs via a free radical mechanism (1 - 4, 8,15 to 17, 19,20,22 - 

25,30,34,36,39,41,44 - 55,58 - 60).

In 1985, Sanglad and his co-workers (63) reported rapid degradation of

benzo(a)pyrene to carbon dioxide by the fungus. They attributed this

degradation to ligninase only, although they used whole cells in t.heir

experiments. However, they also reported that this type of degradation occurred

in the absence of ligninase with a lag phase of about 10 to 12 hours. Thus they

themselves contradicted their opinion on the validity of ligninase in these

degradation processes. They observed three intermediates, and concluded that 
a Ca-Cp cleavage occurred.

2.1 Studies of Different Strains of Phanerochaete chrysosporium

In the early 80's the enzymatic activity of the fungus attracted many workers to 

find the best suitable strain for biodegradation purposes, by separating from the 

wild type as well as by genetic mutation. By this time it was strongly believed 

that ligninase or lignin peroxidase was the sole responsible enzyme for 

degradation of both lignin as well as the toxic compounds. In 1986, Kirk and 

Tien (38) did a comparative study on three wild types, namely ME-446, K-3 and 

BKM-F-1767. Three cellulose negative mutants were derived from K-3 (called 

3113, 13132-176, 85118-22), and an other mutant was derived from BKM-F- 

1767 (namely SC-26). They showed that SC-26 has the ability to produce the 

maximum amount of ligninase. They also found that all three cellulose negative 

strains also degraded lignin to C02 when no ligninase activity was detected. 

They suggested that either ligninase activity was not obligatory for lignin 

degradation or ligninase concentration is so low that it could not be detected. 

This was the first time that the effectiveness of ligninase was questioned,
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however reports continued to be published proclaiming that ligninase is the 

solely responsible enzyme.

In 1990, Munheim et al.(53) studied another species of white rot fungus 

Bjerkandera adusta along with Phanerochaete chrysosporium. They detected 

aryl alcohol oxidase from both species which can oxidize veratryl alcohol to 

veratryl aldehyde, and they found that the optimum pH is around 5.7. They 

showed that aryl oxidase can not work in the absence of oxygen, while ligninase 

can.

Although the effectiveness of ligninase in the degradation purpose was 

highly questionable, investigators continued to mutate the fungus to overproduce 

the lignolytic enzymes. Orth et al. (54) in 1991 reported that a mutant of 

Phanerochaete chrysosporium (PSBL-1) can produce 4 to 10 times more 

lignolytic enzymes than the wild type. However, enhancement in enzyme 

production was never tested for any degradation purpose and the effectiveness 

of such mutants was never tested.

Ulmer et al.(68) found the lignin degradation rate by 14C labeled lignin for 

the case of Pleurotus ostreatus and Pycnoporus cinnabains 115 are the same 

and quite comparable to that of Phanerochaete chrysosporium, although further 

studies with these species were not reported.

In 1988, Burgos et al. (6) studied another strain of soft rot fungus named 

Lecythophora hoffmannii for degradation of nine phenolic compounds and found 

that this fungus can degrade low molecular weight aromatic compounds via the 

protocathechuic acid route at a rate compared to that of Phanerochaete 

chrysosporium. Moreover initial studies showed that the aromatic compounds 

are metabolized by the fungus via the (3-ketoadipate pathway. An advantage of 

this fungus is that the activity is not affected by concentration of nitrogen source 

(unlike Phanerochaete chrysosporium).
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2.2 Parameters Affecting Degradation

For Phanerochaete chrysosporium the media requirement for growth is different 

from that of the degradation phase. Although questions were raised regarding 

the singular importance of ligninase in the degradation process, most studies 

sought to maximize ligninase production by affecting the concentration of the 

primary carbon source (generally glucose), nitrogen, oxygen, trace nutrients and 

surfactants. The effect of shear-stress was also investigated.

2.2.1 Effect of Nitrogen

The concentration of nitrogen was found to be the most important parameter for 

lignolytic activity. Kirk and his co-workers (39) studied the effect of various 

parameters during lignin degradation in batch culture. They observed that the 

source of nitrogen had little effect on lignin degradation. The fungus could 

utilize ammonium salts, nitrates or amino acids as the nitrogen source. 

However, the concentration of nitrogen is very important. At higher nitrogen 

concentrations, the degradation rate decreased. At 24 mM nitrogen 

concentration, the degradation rate was 30% of that observed at 2.4 mM. They 

also observed that to degrade each 5 mg of lignin, 100 mg of glucose was 

metabolized. This observation also indicates that lignin degradation is an 

energy consuming process.

Reid (58,59) extensively studied the effect of nitrogen on degradation of 

Aspen wood lignin. He found that simple nitrogen sources like NH4CI, urea and 

aspergine inhibited lignin degradation, while low concentrations of NH4N03 

increased lignin degradation (although according to Kirk (39) the source of 

nitrogen is immaterial). This is another contradiction between the different 

reports. Reid also observed that secretion of secondary metabolites, like
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veratryl alcohol, occurred at higher rates when the nitrogen concentration was 

low.

Buswell et al. (11) obtained very high levels of lignin-degrading enzymes 

from the mutant Phanerochaete chrysosporium INA-12, under non-limiting 

conditions of nitrogen, (although nitrogen limitation was prerequisite for the 

onset, of significant lignin degradation). This again contradicts the reports by 

both Kirk (37,39) and Reid (58,59), as they support that production of ligninase 

requires nitrogen limited condition. Buswell et al. (11) concluded that 

degradation was inhibited by high concentrations of nitrogen, but the production 

of secondary metabolites were not affected. They reported that use of glycerol 

instead of glucose induced this secondary metabolism as the glycerol 

metabolization rate was very low. Other secondary metabolites were also 

produced by this mutant fungus. However, how this affected the degradation 

rate of lignin or any other compound was not reported.

From the observations and conclusions of Kirk (39), Reid (58,59) and 

Buswell (11) it looks like as though the effectiveness of ligninase has not been 

throughly studied. If the above observations are correct, the other explanation of 

this inhibitory effect may be that the nitrogen source works as an competitive 

inhibitor for the enzyme and binding could be irreversible. Thus the 

concentration of nitrogen or most likely the type of nitrogenous compound is 

related to the mechanism of enzymatic degradation.

Faison and his co-workers (21) reported higher degradation rates with both 

nitrogen and carbohydrate limited sources. They observed maximum ligninase 

activity 24 to 36 hours after the depletion of nitrogen source. Moreover they also 

observed that the concentration of lignocellulosic material induced the 

production of ligninase, suggesting that lignin degradation is inducible by 

lignocellulosic material. They also reported that mycelium growth ceases 36 to
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48 hours after inoculation, and after an additional 36 hours, the ligninase activity 

and lignin degradation begin. Addition of glutamate or NH4CI strongly 

suppressed the ligninase system as well as lignin degradation. This contradicts 

the previous reports (39,58,59,11) and may be an indication that the nitrogen 

source may actually bind with the enzymes and inhibit enzymatic reactions.

Jager et al.(32) studied the effect of nitrogen concentration in agitated 

cultures during lignin degradation. They observed that higher nitrogen 

concentration delayed or completely suppressed the ligninase activity. They 

concluded that degradation of lignin and appearance of ligninase activity were 

both associated with growth limitation. Depletion of nutrient nitrogen triggered 

the onset of iodophase, when secondary metabolism starts. This contradicts the 

findings by Buswell et al. (11), who reported that the nitrogen source did not 

suppress lignolytic activity.

As described above, many workers focused on ligninase activity as the 

key factor in degradation of lignin and other toxic compounds. As a result they 

also focused on the importance of low nitrogen concentration to increase 

ligninase activity. However, recently the effect of nitrogen on degradation has 

become a debatable issue. In 1988, Mileski (51) and his co-workers found that 

considerable degradation of pentachlorophenol (PCP) occurs in a nitrogen rich 

cultures. Moreover the degradation due to excretion of ligninase was not 

enough to explain the phenomena. They concluded that the presence of a 

mechanism other than ligninase may exist.

More recently (1991), Orth et al.(54) found high production of ligninase 

from a mutant of Phanerochaete chrysosporium -PSBL-1 in nitrogen rich 

medium. According to this study, the fungus secretes a family of enzymes while 

in the log phase of growth. The activity of the enzymes were 4 to 10 fold higher 

than that of the wild type Phanerochaete chrysosporium. However, the
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degradation rate with the mutant fungus was not reported. This report 

contradicts the conclusion by Buswell et al.(11).

Janshekar et al.(33) studied bioalteration of Kraft lignin, and used 

chemostats for the purpose of their study. They concluded that lignolytic activity 

can not be attributed to nitrogen limitation, as considerable degradation was 

observed in the presence of nitrogen. According to Fenn et al. (22), ligninase 

suppression occurs above 0.7 mM of nitrogen, which again contradicts many 

previous reports about the effectiveness of ligninase and its relation to nitrogen 

concentration.

Yang et al.(71) showed that ammonium nitrate plus aspergine at low 

concentrations stimulated lignin degradation by P. chrysosporium in red alder 

thermochemical pulp, but high doses inhibited lignin degradation. However, 

there are no quantitative estimations of the nitrogen concentration at which 

inhibition occurred.

2.2.2 Effect of Carbohydrates

Kirk et al.(37,38,39) demonstrated that carbohydrates are necessary growth 

substrates for decomposition of lignin by white rot fungus. Carbohydrates such 

as glucose, cellulose, cellobiolose and zylos can serve as primary carbon 

sources. Kirk reported (39) that low glucose concentration enhances ligninase 

activity. However, a glucose concentration below 0.1% suppressed the 

ligninase activity. Reid et al.(59) showed that the culture stopped mineralizing 

when the carbon/energy source was depleted. A similar observation was made 

by Leisola and his coworkers (44) who reported that enzyme production ceases 

in a carbohydrate depleted environment. Janshekar et al. (33) reported that 

limitation of carbohydrate and sulfur triggered ligninase activity by the fungus.
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Faison et al.(21) observed a strange phenomenon during degradation of 

lignin by Phanerochaete chrysosporium. They observed that the lignin 

degrading system was induced by lignocellulosic material although the lignolytic 

system was considered non-inducible by lignin. However, they observed a 

marked increase of ligninase activity and H2O2 production when pre-incubated 

with birch lignin. Nevertheless, they concluded that it is unlikely that lignin could 

act as an inducer; its size and insolubility precludes its crossing the cytoplasmic 

membrane to interact with DNA. Thus, if true induction is involved, the actual 

effect would most plausibly be production of a soluble, low-molecular weight 

compound derived from or related to lignin. This observation indicates lignin as 

a possible secondary carbon source for the fungus.

Miranda and his co-workers (50) made a similar observation to Faison et al 

(21). They used 14C labeled lignin to study the mycelium binding and 

depolymerization. They observed higher degradation rates to a concentration of 

1 mg of lignin/ mg of protein. They concluded from their result that lignin was 

not bound, depolymerized or oxidized to CO2. They also concluded that the 

entire lignolytic system is a secondary metabolite.

2.2.3 Effect of Oxygen

Kirk et al.(39) showed that the rate of degradation of lignin was enhanced by two 

to three fold when pure oxygen (100%) was used insted of air (21% oxygen). 

The degradation rate became practically zero when 5% oxygen was used.

Dorosetz et al.(17) studied the effect of oxygenation conditions on 

submerged cultures for degradation of lignin by Phanerochaete chrysosporium. 

They used periodic flushing, continuous flushing, and continuous bubbling with 

both oxygen and air; and measured glucose metabolization rate as the indicator 

for the oxygen utilization rate. They concluded that continuous flushing and
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bubbling with pure oxygen resulted in the maximum glucose consumption rate in 

the iodophase. However, no significant effect was observed during the growth 

phase for the first two days. Moreover, in all cases use of 100% oxygen gave 

higher metabolization rate compared to that with air. They also concluded that 

the oxygenation condition has a direct regulatory effect on the production and 

decay of lignolytic enzymes. Although an increase in oxygen tension increased 

the level and rate of formation of ligninase and Mn-peroxidase, it also enhanced 

their decay, associated with faster substrate depletion and temporal increase of 

iodophasic protease activity. They also observed that submerged cultures with 

continuous flushing with air resulted in a completely ligninase negative system, 

but considerable degradation of lignin was observed.

Explicit studies of mass transfer limitation during high fungal biomass 

concentration could not be found in the literature. However, Ulmer et al.(68) 

proposed that oxygen transport may be affected in a concentrated slurry. In line 

with these observations, Leisola et al. (43) observed the degradation rate in 

slightly agitated cultures to be twice as effective as in non-agitated cultures.

2.2.4 Effect of Trace Nutrients

Kirk et al. (38,39) suggested that enzyme production could be increased by 

addition of excess trace metals such as manganese, iron and zinc to nitrogen 

starved cultures. The reason for enhancement may be attributed to the 

mechanism of this degradation process, where a single electron mechanism (via 

a reduced oxygen species) has been proposed via Hs02, and cytochrome plays 

a part in that mechanism. They also proposed that copper may increase the 

enzyme activity without any supporting evidence.

2.2.5 Effect Of pH
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The pH of the system was found to be an important factor for optimizing both 

growth and degradation rate. As found by Kirk et al.(37), the optimal pH for 

lignin degradation was approximately 4.5, with substantial suppression of 

decomposition below 3.5 and above 5.5. However, the optimal pH for growth is 

somewhat higher than for lignin degradation. Aitken et al.(1) studied the 

degradation of 2-chlorophenol, o-cresol, 2-nitrophenol and pentachlorophenol at 

different pH. Qualitatively they observed a dramatic difference in removal rates 

at pH values 3.0 and 4.75. Higher initial rates of transformation were observed 

at pH 3.0 for the case of o-cresol. Initial rates of oxidation of veratryl alcohol 

were reported to increase as the pH decreases. For the case of ligninase, they 

reported a pK of 3.1. Thus, they concluded that ligninase is more stable at 

higher pH. While the initial transformation rate of toxics may be higher at pH

3.0, the overall removal rate would depend upon the life time of the ligninase.

Almost all of the degradation studies used a buffer solution, so very limited 

information regarding the effect of pH is available (2,6,37,38,39)

2.2.6 Effect of Agitation

The inhibition of microbial activity in high turbulence is a common phenomenon. 

Recently Toma et al. (67) presented an excellent study on inhibition of microbial 

growth and metabolism by excess turbulence. They termed this phenomenon 

turbohypobiosis. They studied four different bacteria and found a pronounced 

decrease in growth and biosynthesis at higher rpm for all species. However, the 

cutoff rpm varies from species to species. The main reason for this inhibition 

was shear effects causing decreased adenosine triphosphate (ATP) generation, 

lower 0 2 uptake, and lower specific growth rate of bacteria.

As Phanerochaete chrysosporium is a filamentous microorganism the effect 

of turbohypobiosis is very pronounced for the fungus (30,55). The effect of
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agitation on ligninase activity was also studied (30,35,39,44,55). Most of the 

studies were carried out in suspended cultures and showed that moderate to 

high agitation suppressed the ligninase activity (39) but a very gentle agitation 

enhanced the ligninase activity. Reid et al. (58,59) showed that cultures 

agitated on a gyratory shaker degraded lignin to carbon dioxide as effectively as 

static cultures. Similar results were obtained by Pak (55), who was able to 

obtain a substantial amount of degradation of 2-chlorophenol in cultures which 

were agitated on gyratory shaker. However, he was unable to obtain any 

significant degradation activity in stirred tank reactors.

Leisola et al. (43) reported that the extracellular H2C>2-dependent ligninase 

activity of Phanerochaete chrysosporium was observed in agitated culture 

conditions when veratryl alcohol or veratryl aldehyde was added to the culture. 

However, no explanation was given by those investigators. Moreover veratryl 

alcohol itself is a secondary metabolite of this fungus. Thus induction by the 

alcohol did not seem to be a plausible explanation of their findings. Leisola and 

his co-workers (43) also reported that ligninase activity was completely 

suppressed at a high agitation speed.

In 1985 Faison and Kirk (21) studied the effect of different operating 

parameters on ligninase production. They found that ligninase activity was 

completely eliminated by agitating the growing cultures, which resulted in 

formation of mycelial pellets. Activity was also absent when a mat was allowed 

to grow before agitation.

In order to overcome the sensitivity of the ligninase production to agitation 

and shear stress, utilization of immobilized Phanerochaete chrysosporium 

spores both in agrarose and agar gel beads was studied by Linko et al.(47). 

They observed a 30% increase in ligninase activity in the beads. This 

contradicts the findings by Ulmer (68) who observed no ligninase production in a
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culture continuously bubbled with air (whereas Linko and his co-workers 

observed increased ligninase production in continuously bubbled cultures).

Haq (30) found that Phanerochaete chrysosporium was not active when 

grown in suspension in a well agitated reactor. Although the fungus grows well, 

it exhibited no degradation activity. Although both Haq and Pak (30,55) claimed 

an increase in ligninase activity by immobilization, the enzyme activity 

measurement technique was incorrect and can not be used for any conclusive 

evidence. Moreover their results for the packed-bed reactor could not be 

duplicated with the same experimental techniques. The total mass balance and 

reactor characteristics used by Haq (30) were also incorrect.

2.2.7 Effect of Additives

Research to maximize degradation by addition of additives started in the late 

80's. Different additives were used, namely veratryl alcohol, Tween 80, and 

other surfactants. However, the irony is that all the efforts were diverted to 

increase the ligninase production, which was believed to be the solely 

responsible enzyme, but these developments with additive additions were never 

tested for any real degradation activity.

2.2.8 Effect of Veratryl Alcohol

Harvey et al. (27) reported that the role of veratryl alcohol in lignin degradation 

was as an enzyme mediator. Veratryl alcohol was oxidized to a radical cation 

which was not rapidly degraded. Therefore it could act as a single electron 

oxidant. Faison et al.(21) extensively studied the role of veratryl alcohol on 

ligninase activity in Phanerochaete chrysosporium. They showed that out of six 

ligninase proteins from a strain of BKMF 1767, ligninase H2 had a several fold 

higher activity than ligninase H8, and the increase in ligninase activity by 

addition of veratryl alcohol was due to an increase in ligninase H2 production.



17

They observed a two-fold increase in ligninase activity by addition of 0.4 mM 

veratryl alcohol. Based on protein assay, they concluded that veratryl alcohol 

increases the ligninase activity by increasing the production of certain ligninase 

enzymes. As addition of both birch lignin and veratryl alcohol increased the 

ligninase activity, they suggested that lignin is converted to low molecular weight 

compounds, perhaps in part to veratryl alcohol itself, which stimulate enzyme 

secretion. However, according to Kirk et al.(37,38,39) the recognized 

relationship between veratryl alcohol biosynthesis and lignin degradation does 

not encompass the entire lignolytic system. Moreover, Liwicki et al. (48) have 

demonstrated that there is no relationship between the secondary metabolite 

produced and lignin degradation for a mutant strain of Phanerochaete 

chrysosporium.

Leisola et al. (43,44) isolated two oxidation products of veratryl alcohol 

from lignolytic cultures of Phanerochaete chrysosporium. IR and H-NMR spectra 

of the purified compounds showed the absence of benzene rings. However, it 

was not clear whether this ring cleavage was carried out by ligninase protein or 

some other unidentified protein. Thus if veratryl alcohol itself was degraded, 

how it helps in the over-production of ligninase was not explained.

2.2.9 Effect of Surfactants

So far all efforts have been directed either to increase the ligninase production 

or to increase the activity of ligninase, since almost all workers concluded that 

ligninase is the solely responsible enzyme. In recent years, efforts have been 

made to increase ligninase production by the addition of additives such as oils 

and surfactants. In 1990, Lestan and co-workers (42) studied the effect of 

additives on ligninase production. They observed that an emulsion of oleic acid 

enhanced ligninase production by Phanerochaete chrysosporium, while addition
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of linseed oil and rape seed oil decreased the specific activity by a factor of 2.9 

to 6.6. They concluded that peroxidases are located mainly inside the fungal 

biomass and must pass through the plasma membrane to be extracellularly 

active. A changed environment, such as the impact of oleic acid on the plasma 

membrane lipids, can influence and presumably promote peroxidase transport. 

However, they did not study the degradation of any compound or the effect on 

degradation by the enhanced activity.

Jager et al.(32) found that Tween 80 (Polyoxyethylene-sorbitan dilaureate) 

enhanced the ligninase activity. Tween 80 at a concentration of 0.2% gave 

maximum activity on the sixth day. They also found that both Tween 20 and 

CHAPS (3-dimethyl 1-propane sulphonate) gave comparable results, and the 

maximum activity was found on the fifth and sixth day, one day before Tween 80. 

They concluded that Tween 80 and Tween 20 supply fatty acids to the culture. 

However they did not come up with any plausible explanation for this effect, and 

moreover, no study was made as to how this enhancement effected the 

degradation rates.

2.3 Time Decay of Fungal Activity

Ulmer et al (68). studied the degradation of lignin by Phanerochaete 

chrysosporium in batch culture. They observed during the first 2 to 3 days that

1.0 gm/l of lignin was 90 to 100% degraded. However, with time, the degradation 

rate went down. After 7 days, the degradation rate was only 65% of its original 

rate, and the glucose or extracellular energy source was completely depleted 

during the next 7 days. After that degradation ceased completely. Reid (58,59) 

also had similar findings during lignin degradation.
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Ander et al. (2) concluded that the enzyme production of lignolytic enzymes 

depends on the availability of both carbohydrates and nitrogen source, and 

stops as they get exhausted.

A very nice paper was presented by Asada and Miybe (4). They found 

from a basic study that without supply of continual energy, the fungus would not 

produce lignolytic enzymes. Peroxidase produces hydrogen peroxide by 

oxidizing NADH, and thus is an energy requiring process. Thus as soon as the 

supply of the energy yielding molecule ceases, degradation also stops. This 

also indicates that no energy is derived from lignin degradation.

According to Merril and Cowling (49), wood rotting fungi can recycle 

nitrogen. When glucose is present, lysis of the biomass occurs until the carbon 

source is consumed. In the absence of nitrogen, but presence of glucose, some 

activity of the fungus would be possible (although not for an extended period).

It was found that the fungus can retain its degradative ability for a definite 

time in a substrate exhausted condition, and ligninase has a definite time of 

activity (11,19,21,34,39). The activity period is maximum around 10 days, 

considering two burst phases as suggested by Dutta et al(16). In spite of the 

limited lifetime of this enzyme, Bumpus (8-10) during the study of a few toxins 

observed a continued degradation for least 25 days. Janshekar et al. (33) found 

lignin degradation for around 40 days. Similarly degradation of PCP was 

observed by Lin et al (45-46) for more than 20 days and by Lamar et al (40) till 

50 days in soil. The prolonged degradation cannot be explained by ligninase 

activity alone.

2.4 Enzymology and Enzymatic Mechanism 

In the last decade, except for a few reports (5,17,68) all workers reported that 

degradation by the fungus Phanerochaete chrysosporium is a completely
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enzymatic process, and ligninase or lignin peroxidase is the only enzyme 

responsible for this enzymatic degradation.

In 1971, Dagley (15) proposed that degradation of low molecular weight 

aromatics follows a mechanism similar to that of lignin, and he envisioned a 

scheme as follows: lactonization, delactonization, isomerization, hydrolysis, 

dehydrogenation and decarboxylation, with each reaction requiring a separate 

enzyme. He also found that monooxygenase, dioxygenase and phenol 

oxygenase are the lignin and lignin-related degrading enzymes.

However in 1975, Chang and his co-workers (13) found no evidence of 

such type of mechanism for lignin degradation. They concluded that in the 

catabolism of aromatic compounds, the preparation of ring cleavage may be the 

rate limiting step. Wood et al.(70) showed that the enzymes responsible for the 

ring cleavage by hydroxylation and/or demethylation are monooxygenases. The 

monooxygenases require a reducing coenzyme such as NADH or NADPH for 

their activity. Thus, this is an energy requiring process. Wood also showed that 

aerobic cleavage of aromatic rings by microorganisms is catalyzed by 

deoxygenate type enzymes. These enzymes are non-heme iron containing 

proteins, and require no co-enzyme for their activity. Both atoms of molecular 

oxygen are incorporated into the aromatic ring to yield an aliphatic acid. A 

similar observation was also made by Kirk et al.(39) during degradation of lignin.

In the same year (1975), Ander et al (2) detected phenol peroxidase in 

lignin degrading broth. The enzymes lactase oxidoreductase, tyrosine 

oxidoreductase, and peroxidase are all copper containing proteins having the 

property of catalyzing the direct oxidation of their respective substrates by 

atmospheric oxygen.

The importance of hydrogen peroxide in lignin degradation has become 

increasingly apparent. Kersten and Kirk (36) reported that under lignolytic
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conditions, P.chrysosporium produces extracellular hydrogen peroxide. A 

number of potential substrate such as simple aldehyde, hydroxyl carbonyl and 

dicarbonyl compounds were tested for degradation. The highest activity was 

suggested at pH 6.0 with methylglyoxal and glyoxal as the secondary product. 

No H2O2 producing oxidase activity was observed in carbohydrate depleted 

conditions.

To explain the importance of hydrogen peroxide, Asada et al. (4) 

suggested that one of the possible physiological roles of NADH peroxidases was 

to supply H20 2 to lignin peroxidase by oxidizing NADH. Manganese stimulated 

the reaction by 3 to 4 fold. Green and Gold (23) suggested that intracellular fatty 

acyl-coenzyme-A oxidase, may be an important source of extracellular H20 2 

They observed an increase in H20 2 production in the presence of steryl 

coenzyme-A with mycelia premobilized with Triton X-100 as the detergent. The 

possible involvement of intracellular enzymes in H20 2 production was studied by 

Kelly and Reddy (34,35). They reported the isolation of intracellular glucose 1- 

oxidase, and suggested that this enzyme was the primary source of peroxidase 

enzyme in the lignolytic cultures. They also suggested that intracellular glucose 

oxidase produces the extracellular H20 2 . Leisola et al. (43) showed that in the 

liquid culture of Phanerochaete chrysosporium, 21 hemoproteins were found, all 

of which had peroxidative activity. Fifteen of these enzymes oxidized veratryl 

alcohol in the presence of H20 2. Six enzymes were Mn-dependent peroxidases, 

which reached their activity earlier than lignin peroxidase in the culture. They 

suggested that the many extracellular enzymes of Phanerochaete chrysosporium 

can be divided into two basic groups: Mn-dependent peroxidases and lignin 

peroxidases. However it was not clear why the fungus produced two types of 

extracellular peroxidases. They appear and reach their maximal activity at
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different times and have different function in lignin or other toxic compound 

degradation.

Glenn et al. (24) reported that the hydrogen peroxide requiring enzymes 

are responsible for the degradation of a lignin model compound (2-keto-4- 

thiomethyl butyric acid) and formation of an intermediate ethylene. However, the 

explanations were more intuitive than experimental.

Hyunth et al. (31) observed the fungus to produce an extracellular aromatic 

methyl ester and identified an aromatic methoxyl-demethylase. They concluded 

that both esterase and demethylase were components of the lignolytic enzyme 

complex.

Aitken et al. (1) studied the degradation of 2-chlorophenol, O-cresol, 2- 

nitrophenol and pentachlorophenol utilizing the fungus. They observed an 

increased degradation rate in the presence of Mn and concluded that Mn(ll) 

could serve as an electron donor to phenoxy radicals generated enzymatically, 

thereby reducing the radicals back to the parent phenol. Addition of both Mn(ll) 

and veratryl alcohol increased the degradation rate. They attributed the total 

removal to ligninase only.

In 1991, Datta et al. (16) identified and separated six different kinds of 

enzymes from this wood rotting fungus Phanerochaete chrysosporium. They 

detected manganese peroxidase (MnP), lignin-peroxidase (LiP) and glyoxal 

oxidase (GLOX). Interestingly the major peroxidase protein was MnP. A partial 

amino acid sequence provided evidence that it differs from the dominant MnP 

found in optimized liquid cultures. The second most dominant enzyme was 

GLOX, and in the solid wood culture GLOX was the most abundant enzyme. 

During the study of the time course of the peroxidase activity, they observed two 

bursts phases The first burst phase on the third day and the other one on the 

7th day, with the activity dying out after ten days. Moreover, they detected
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protease which inhibit the peroxidases and GLOX. While a typical protease 

inhibitor like phenylmethyl sulphonyl fluoride was not able to inhibit the protease 

activity, macroglobulin is effective for protease inhibition.

Kelly and Reddy (35) reported that glucose oxidase is an important source 

of hydrogen peroxide in lignin degrading cultures of Phanerochaete 

chrysosporium They purified the protein and found that the apparent native 

molecular weight is 180,000, whereas that of the denatured protein is only

80,000. The optimum pH for the enzyme is between 4 to 5.0. It was inhibited by 

Ag++, but not by Cu++ or NaF. They found the Michaelis-Menten constants for 

glucose D and found the enzyme to be very specific. However, this enzyme can 

disintegrate xylose, so they suspected that this enzyme may utilize other 

lignocellulosic materials for metabolization. In another study, Kersten and Kirk 

reported (36) that the activity of glucose oxidase is very much dependent on 

both glucose and nitrogen concentration in the medium. They also concluded 

that glucose oxidase plays an important role in H20 2 production. However, they 

didn't show any specific examples as to how this is related to the lignolytic 

system.

Paszczynski et al.(56) studied the enzymatic activities of an extracellular 

manganese dependent peroxidase from Phanerochaete chrysosporium They 

reported that the enzyme oxidizes various phenols and amines in the presence 

of Mn++ . This enzyme never requires H20 2. Moreover, hydrogen peroxide is a 

product of the reaction between the enzyme and reduced glutathione or NADPH. 

They concluded that Mn-dependent peroxidase plays a central role in lignin 

degradation. Thus, the simultaneous role of both LiP and MnP was considered 

in this study. This was the first time that simultaneous action of multiple 

enzymes was studied.
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Sanglad and his co-workers (63) studied the role of extracellular ligninase 

in biodegradation of benzo(a) pyrene by P. chrysosporium. They concluded that 

ligninase is the only responsible enzyme for degradation of aromatic 

compounds, and this is fairly non-specific and non-stereo selective. 

However.since they did not study any stereo isomers or homologues, it is not 

clear how they reached this conclusion.

Schoemaker et al. (64) studied the enzymatic lignin breakdown mechanism 

in great detail. They proposed that lignin degradation occurs via Ca- 

Cp cleavage They proposed a single electron transfer model. This mechanism 

is a single electron transfer from the methoxylated aromatic ring to a high redox 

potential center yielding a radical cation in the substrate. The aromatic radical 

cations may also act as electron transfer agents. They proposed that lignin 

degradation products in the form of radical cations, produced either 

enzymatically or by direct interaction with hydroxyl radical, may act as electron 

transfer agents to induce the formation of free radicals in the remote lignin 

structure, thus causing degradation in polymers not accessible to the large 

enzymes located in the hyphal surface.

Tien and Kirk (65,66) also supported the same view of Schoemaker (64) 

and proposed that the enzyme catalyzes non-stereospecifically the alkyl side 

chain for the lignin. Moreover they found that the ligninase contained iron but 

not Cu, Zn, Mn and Mo or Co. They found the optimal pH for veratryl oxidation 

is around 3.0.

Umezawa and Higuchi (69) also studied the degradation of lignin model 

dimers and found that the model compounds are degraded by lignin peroxidase 

and H20 2, and the intermediates are carbonate, oxalate, formate, etc.
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Although a good number of studies were conducted on the reaction 

scheme of lignin degradation, no reaction mechanism or scheme was proposed 

for degradation of pollutants,

2.5 Stereospecificity of Degradation

It was reported by all workers that degradation by Phanerochaete chrysosporium 

is non-specific in nature. Because of unavailability of any comparative scale, it 

was not possible to quantify the stereospecificity. Only Zitelsberger et al. (72) 

studied the stereospecificity of veratrylglycerol P-2,4-dichlorophenyl ether. They 

reported that for three stereoisomers, no stereo-specificity could be detected, 

and concluded that the degradation process in not stereospecific in nature. 

However, it must be noted that this is a qualitative conclusion. Leatham et 

al.(41), when studying different positional isomers, obtained different 

degradation rates.

2.6 Reactor Design and Modeling

Very little information is available regarding reactor design and modeling. In 

1989, D.Pak (55) used packed bed and fluidized bed reactors for degradation of 

2-chlorophenol. Pak found that Phanerochaete chrysosporium can effectively 

degrade 2-chlorophenol. In his experiments with shaker flasks, he was able to 

degrade 20 ppm of 2-chlorophenol in 4 hours. He was able to show fungal 

degradation in packed bed as well as in fluidized bed reactor experiments. 

However, he reported that the degradation rate became insignificant when a 

stirred tank batch reactor was used. He analyzed various types of reactor 

configurations and came to the conclusion that a packed-bed with porous silica 

beads as inert support was the optimal reactor configuration. He showed that 

the fungus can mineralize 500 ppm of chlorophenol in 20 hours in a packed bed.
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He also showed that the fungus can survive at 2-chlorophenol concentrations 

as high as 1400 ppm. Later Haq (30) also supported similar findings.

In 1990, Lin and his co-workers (45) studied degradation of PCP. 

According to their scheme, both biomass and extracellular protein individualy 

can degrade PCP. They found that some intermidiates were produced, then the 

rate of decay of these intermediates were the rate limiting steps. Thus they 

studied extensively different biomass and protein concentrations and came up 

with a second order model that added two effects: one involving biomass 

coupled with extracellular protein concentration, and another involving biomass 

coupled with pollutant concentration. They showed good agreement with 

predicted and experimental data. However, the maximum concentration they 

studied was only 12 pM. Such a low concentration may only show an artifact of 

the true enzyme kinetics. Moreover, as the intermediates vary from experiment 

to experiment for the same compound (40,45,) a model based on intermediates 

becomes useless when the feed contains a mixture of compounds and it become 

very difficult to find the rate limiting compound in the presence of so many 

others. In 1991, Lin et al. also described a coimmobilized system that can 

enhance the degradation rate by this fungus (46). However, they did not 

quantify the improvement, and moreover, the system concentration was so low 

that it is very difficult to perceive the increase.



CHAPTER 3

OBJECTIVE

The objectives of the present work were to test the biodegradabiiity of 2,4,6- 

trichlorophenol and 2,4,5-trichlorophenol by Phanerochaete chrysosporium, to 

maximize the degradation rate by optimizing the operating parameters and 

reactor configuration. To elucidate the degradation reaction scheme, individual 

effects of biomass and extracellular protein concentrations on degradation of 

2,4,6-trichlorophenol were studied, and a kinetic model of the process was 

developed. To better understand the packed-bed behavior, the growth 

parameters were studied in detail and correlated with the packed-bed 

characteristics. Finally to further test the fungal activity, degradation of phenol 

and pentachlorophenol were also studied.
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CHAPTER 4

ANALYTICAL METHODS

In this chapter different analytical techniques used for measurement of various 

parameters are described in detail.

4.1 Nitrogen Assay

NaN03was used as the nitrogen source for fungal growth in this study. Hence, 

nitrate concentration was measured. However, during the study of growth 

parameters in long standing cultures, NH4+ ion (the possible product of lysed 

biomass) was also measured in order to have an indication of lysis of fungal 

biomass. Both nitrate and ammonium were measured in a similar fashion by 

using ion sensitive electrodes. An Orion nitrate electrode from Orion Research 

Inc. Boston, MA (Model 93-07) was used to measure nitrogen as nitrate. 

Similarly, an Orion electrode (Model 95-12) was used to measure ammonium 

as nitrogen. Before measuring the concentration of either nitrate or ammonium 

ion, calibration curves were prepared as described in the next two sections.

4.1.1 Determination of Nitrogen Concentration as Nitrate

The procedure from the instruction manual for this electrode was followed. A 

double junction reference electrode (Orion Model No. 90-02-00) was also used. 

The outer chamber of the reference electrode was filled with 2% ionic adjuster 

solution (ISA). The ISA solution was prepared by dissolving 25.60 g of 

(NH4)2S04 in 100 ml of deionized water. A nitrogen standard was prepared by 

adding 0.3035 g of sodium nitrate in 1 liter of deionized water, which resulted in 

a nitrogen concentration of 50 ppm of nitrogen as atomic nitrogen (N). Since the
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concentration of nitrogen in the cultures never went above 30 ppm, the upper 

limit of 30 ppm was enough for all measurements. From the 50 ppm solution, 

standards of 40, 30, 20,15, 10, 5, 2.5 and 1.25 ppm were made by dilution. To 

determine the nitrate concentration 0.05 ml of ISA were added to 5 ml of 

standard in a small 10 ml beaker, and mixed by swirling the solution. The 

electrodes were placed in the solution. Then the electrode voltage in millivolts 

corresponding to each concentration was measured using an Orion pH/ISE 

meter (Model No: 720). A calibration curve was prepared by plotting the 

nitrogen concentration vs. to the millivolts readings. Contrary to the suggested 

method in the electrode manual of plotting In (mV) vs. ppm, this calibration curve 

was prepared by plotting mV on the X axis and ppm of nitrogen concentration on 

the Y axis, to have better clarity and accuracy in reading the calibration curves. 

A typical calibration curve is shown in Figure 1 in Appendix III. However, the 

calibration curve changed from time to time because of the loss of sensitivity of 

the membrane. Moreover, different electrodes for same solution also show 

slightly different electrode characteristics. During the measurement of nitrate 

concentration in samples the identical method used with the standards was 

followed. 5 ml of sample were collected from either the continuous reactors or 

the batch reactor or shaker flasks, and 0.05 ml of Ionic Strength Adjuster (ISA) 

were added. The millivolts corresponding to the sample concentration were 

recorded and then converted to ppm nitrogen using the calibration curve. A 

linear regression over a portion of the calibration curve was also used for an 

accurate measurement of nitrogen concentration, since the total calibration 

curve could not be approximated as a straight line. The nitrate concentration 

was always reported as elemental nitrogen (N).

It must be noted that magnetic stirrers should not be used during these 

measurements, since the nitrate sensitive membrane at the bottom of the
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electrode is very sensitive to any mechanical abrasion. Any slight mechanical 

friction with solid surfaces damages the membrane, and would give erratic 

readings. For instance, use of polishing papers (Orion Inc.), normally used to 

clean the electrode surface, also alters the electrode characteristics. However, 

mixing by magnetic stirrers was accomplished before dipping the electrodes in 

the samples or standard. To maintain a longer life of the membrane, the 

electrode was always stored in 100 ppm nitrogen solution. Electrode slope and 

calibration were checked twice a week. The calibration check was done by 

measuring the voltage of a standard solution. To check the electrode slope, the 

voltage corresponding to 1 ppm and 10 ppm of nitrogen (N) was measured. The 

difference in these two readings is known as the slope for the electrode. This 

value is to be set on the meter dial labeled slope. If at any time this slope is 

beyond a range of 52 mV to 58 mV, the membrane is no-more usable. Normally, 

the membrane was normally replaced after every 12 to 14 weeks, depending 

upon wear and tear. Before every measurement, the inner and outer liquid level 

in the reference electrode was checked, as level changes affect the 

measurements.

4.1.2 Determination of Nitrogen Concentration as Ammonium

In a similar way, ammonium concentration was measured using a Orion ion 

selective electrode (Model No: 95-12). Here analytical grade ammonium 

chloride was used as the standard. To prepare the standard, 0.38215 g of 

NH4CI were dissolved in 1000 ml of water to give a standard concentration of 

100 ppm of nitrogen as N. Then standards of 50, 40, 30, 25, 20, 25, 10, 5, 2.5 

and 1.25 ppm were prepared by dilution of the 100 ppm solution. A calibration 

curve was drawn with mV vs. ppm in a similar way to that of nitrate as shown in 

Figure 2 in Appendix. The samples were tested in a similar fashion and the
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concentration of nitrogen was found by using the calibration curve. The 

ammonium ion concentration was always reported as elemental nitrogen (N). 

The ammonium ion sensitive electrode took 2 to 3 minutes time to reach a 

steady reading, compared to 1 minute in case of nitrate sensitive electrode. This 

is due to nature of the specific ion electrodes. Here a magnetic stirrer was used 

for both standards and samples, since the membrane component allows their 

use, as recommended by the manufacturer.

4.2 Chloride Ion Assay 

Measurement of chloride ion was used as an indicator for dechlorination of 

chlorophenols. An ion sensitive combination chloride electrode from Orion 

Research Inc., Boston, MA, (Model No: 96-17B) was used. To make standards, 

0.1648 g of analytical grade NaCI were dissolved in 1000 ml of deionized water 

resulting in a 100 ppm standard chloride solution (as Cl'). Then standards of 25, 

20,15,10, 5 2,1 and 0.1 ppm were prepared by dilution of the 100 ppm chloride 

solution. According to the electrode instruction manual, the use of any magnetic 

stirrer was not recommended with combination chloride electrodes. However, 

mixing by a glass rod or by swirling was conducted prior to placing the electrode 

in the sample or standard solution. An Orion pH/ISE meter (Model No. 720) was 

used. A calibration curve was prepared as described for nitrate ion. A typical 

calibration curve is presented in Figure 3, in Appendix. The samples from the 

reactors or the shaker flasks were measured in an identical fashion as the 

standards and converted to ppm chloride by using the calibration curve. The 

voltage reading is inversely proportional to the concentration. Thus, at higher 

Cl~ ion concentrations the millivolts readings are low. If the reading for a 

particular sample was lower than 100 mV, then the samples were diluted with 

deionized water to have a higher millivolts reading (typically greater than 150
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mV), since at higher concentrations of chloride, the change in millivolts due a 

slight change in chloride concentration could not be detected by the electrode. 

However, by dilution, the difference could be magnified and the concentration 

could be measured with greater accuracy. Complete mineralization of 1 ppm of 

246-TCP or 245-TCP would liberate 0.5392 ppm of chloride. Thus measuring 

the chloride concentration at the inlet and the outlet of the reactor (or at initial 

time and at some other time in the shaker) would give the corresponding amount 

of TCP mineralized.

4.3 Determination of Dissolved Oxygen Concentration

To monitor the dissolved oxygen (DO), an Ingold oxygen measurement system 

(Ingold Electrode Inc.; Wilmington, MA) was used in conjunction with a dissolved 

oxygen meter (New Brunswick Scientific, NJ; Model No. DO-50 ). To calibrate 

the DO meter, the probe was immersed in deionized water contained in a 14 liter 

Microferm fermenter (working volume 10 liters). Air was bubbled for 4 hours 

through the water at a rate of 3 liters/min, with continuous stirring at 200 rpm. 

The temperature was maintained at 32.2° C. The DO meter was then set at 

100%. The probe could not be used for continuous monitoring, since biomass 

grew on the DO membrane if the probe was left in the reactor for long periods of 

time. Therefore, to measure DO in a continuous reactor, the probe was 

periodically inserted in the uppermost liquid part of the reactor and DO was 

recorded. Caution was taken to avoid contact of the membrane with the packing 

material as this could damage the membrane. According to the DO instruction 

manual, at 32.2° C, 100% saturation corresponds to 7 ppm of dissolved oxygen. 

Other measurements were made by considering a linear relationship over the 

DO meter dial gage as specified by the manufacturer (New Brunswick Scientific,
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NJ; Model No: DO-50). The DO electrode was always stored in 1% KCI solution 

as recommended by the manufacturer.

4.4 pH Measurement

The pH was measured directly using an Orion pH electrode (Model NO: 95-56) 

connected to an Orion Expanded ion-Analyzer meter (Model No: EA 920). 

Standard buffers of 4.0 and 7.0 from Orion research were used for calibration. 

The pH was measured in samples collected from shaker flasks or from the 

reactors. The measurements were done by dipping the tip of the electrode in the 

sample liquid, and noting the reading when the meter gave a constant value and 

the ’ready' signal appeared on the display.

During experiments to study the effect of nitrogen concentration at constant 

pH (section 8.4), the pH was continuously monitored in the packed-bed reactor. 

For this purpose a long-stern pH probe (Ingold, MA) connected to a pH meter 

(New Brunswick Scientific, Model # pH 450) ) was used. This pH probe was 

calibrated at room temperature (22° C) but used at the reactor operating 

temperature (32° C) by inserting it through the PET bed. Since the pH is a 

strong function of temperature, a difference in reading was observed for a same 

liquid at 22° C and at 32.2° C. However, the electrode is accurate enough for 

continuous monitoring of the reactor pH. Since for all the experiments the pH 

was measured at 22° C, to maintain uniformity, a small portion of liquid was 

drawn out of the reactor, allowed to cool down to room temperature and the pH 

was measured with another probe. However, the pH shown at 32.2° C, by the 

inserted pH meter was used as the guide line to trace the change in pH during 

the experiment.
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4.5 Glucose Assay

Glucose was assayed using the ortho-toluidine method (73). At high temperature 

(around 100° C), o-toludine reacts with glucose in the presence of an acid to 

form a blue-green colored complex. The intensity of the color is proportional to 

the glucose concentration. To eliminate interference from other compounds, 

0.05 ml of 1.0 mM EDTA (sodium salt) solution were mixed with 2 ml of sample. 

The liquid was centrifuged at 13,000 rpm for 10 minutes in an ultracentrifuge 

(IEC Ultracentrifuge, Model No: Centra-M). Then, 0.1 ml sample, 0.1 ml of 

standard glucose, and 0.2 ml of distilled water were placed in three different test 

tubes (10 ml, 10 ml and 20 ml sizes respectively) and labeled respectively as 

sample, standard and reference. Then 5 ml of o-toludine mixed with 3% 

trichloroacetic acid (w/v) were added to each sample and standard, and 10 ml to 

the reference test tube. (Since a dual beam spectrophotometer was used for all 

the spectroscopic measurements, twice as much volume of reference fluid were 

required to that of sample volume to fill two cuvets for blanking purposes). The 

three test tubes were placed in a boiling water bath and allowed to boil for ten 

minutes. The test tubes were placed in another beaker containing tap water at 

room temperature and allowed to cool for 3 minutes. Then absorbence of both 

the standard and sample were measured at 635 nm wavelength using a Varian 

(DMS-200) spectrophotometer. The test tube containing distilled water was 

used as a blank. The concentration of glucose in the standard was 1 g/l. Since 

the absorbence is directly proportional to the concentration, a direct 

measurement of the sample was done knowing the absorbence for the standard. 

If the glucose concentration was greater than 2.5 g/l, it was diluted with 

deionized water, since above that concentration (2.5 g/l) the method is not very 

accurate. In addition, the accuracy of the method is about ± 5 mg/l. However,
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in the present study, it was not necessary to accurately determine the glucose 

concentration below that lower range.

4.6 Assay for 246-TCP, 245-TCP, Phenol, And PCP

An HPLC (Waters, Inc., Model 600E) provided with a tunable detector (Waters 

Inc., Model 484) and auto-sampler (715 Ultra-WISP) was used in conjunction 

with a C18 bonded phase column (Alltech Associates Inc.) to measure the 

concentration of chlorophenols or phenol. A mixture of methanol with 1% acetic 

acid, and deionized water with 1% acetic acid, were used as the mobile phases 

in a 60:40 (v/v) ratio. Absorbence was detected at 280 nm wavelength. 

Calibration curves were prepared for the trichlorophenols, phenol and 

pentachlorophenol by using standards. To prepare standards for 246-TCP, 

0.108 g of 246-TCP were added to 1 liter of a 0.1 (N) KOH solution and mixed 

thoroughly for two hours using a magnetic stirrer. This resulted an 246-TCP 

concentration of 108 ppm. Then, dilutions of 54, 39, 27, 19.50, 13.50, 6.75, 

3.38,1.69 ppm were made by successive dilution with deionized water. It should 

be noted here that due to convenience of manipulation for dilution, fractional 

concentrations of standards were prepared. This reduced instrumental and 

manual error, as measurements of fractional volume are not very accurate. 

Similarly, standards for phenol, 245-TCP and pentachlorophenol (PCP) were 

prepared. Since the sample pH was always in the acidic range, the pH of the 

standards was adjusted between 4.0 and 5.0. The calibration curves for 246- 

TCP, 245-TCP, phenol and PCP are presented in Figures 4 to Figure 7, in 

Appendix. During analysis of any sample aqueous samples from the reactors 

were spun for 10 minutes at 13,000 rpm in an ultracentrifuge (IEC Centra-M, 

International Equipment Co.) to separate the biomass. Then, 25 pi of each 

sample were injected for analysis via auto-sampler. Nelson software was used
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for data acquisition through an on-line computer. The standard deviation of the 

measurements were within ± 0.29 ppm.

4.7 Lignolytic Enzyme Assay

A lignolytic enzyme assay was conducted on the supernatant of centrifuged 

samples by measuring the rate of oxidation of veratryl alcohol to veratryl 

aldehyde, as described by Tien et al.(65). A 2 ml sample was collected from 

shaker flasks or from the continuous reactor and the biomass was separated by 

centrifuging at 13,000 rpm for 15 minutes. Each sample (1.375 ml of 

supernatant) was mixed with 2 cc of a 5 mM veratryl alcohol solution and 0.625 

ml of the 0.8 mM sodium tartarate buffer. A blank was prepared by adding 4 ml 

of veratryl alcohol, 1.25 ml of sodium tartarate buffer and deionized water to 

produce a final volume of 9 ml. The absorbence of the sample was measured at 

308 nm using a Varian DMS 200 spectrophotometer. Initially the 

spectrophotometer was zeroed by using the blank. Then 1.0 ml of H2Oz solution 

was added to the sample to make a final volume equal to 5.0 ml and the 

absorbence was immediately measured. Then the reaction mixture was 

incubated at 32.2° C. Since the lab spectrophotometer was not equipped with 

temperature controller, incubation was conducted outside the spectrophotometer 

chamber at 32.2° C. This water was always available from the water bath used 

to maintain the continuous packed-bed reactor temperature. After five minutes 

of incubation, the absorbence was again measured. The total increase in 

absorbence in five minutes was measured in Absorbence Units (AU) and 

recorded. After it was confirmed that ligninase was not primarily responsible for 

the degradation, this test was no longer conducted.

The veratryl alcohol, tartarate buffer, and hydrogen peroxide solutions were 

prepared as described in next three sections.
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4.7.1 Preparation of Veratryl Alcohol Solution

The veratryl alcohol solution preparation was the most important step in the 

measurement of ligninase activity. Veratyl alcohol (3,4-Dimethoxybenzyl 

alcohol) 96% purity was purchased from Aldrich Chemical Company Inc. The 

commercial veratryl alcohol contained some ketones since veratyl alcohol is 

readily converted to ketones in the presence of air. These ketones are preferred 

by ligninase over veratryl alcohol and are converted to organic acids. Since the 

assay method is based on formation of veratyl aldehyde from veratyl alcohol the 

presence of ketones makes the assay unsuccessful and create interference. 

Thus the veratryl alcohol required to be purified by distillation. Approximately 10 

g of veratryl alcohol were transferred to a 25 ml distillation flask, then vacuum 

distilled under 700-720 mm of Hg at a temperature of 76-80° C. When the 

veratryl alcohol in the distillation flask started turning yellowish brown, the 

distillation was stopped. The distillate was then transferred to a rubber-capped, 

air-tight, dark glass vial, to prevent photo oxidation. The vial was previously 

purged with nitrogen to displace any air. Approximately 4 to 5 g of purified 

veratryl alcohol could be obtained in this process from 10 g of raw material. The 

purified product was stored at 4° C in the freezer. The alcohol so prepared 

would maintain its purity for approximately 3-4 weeks. It was periodically 

checked by spectrophotometer and discarded when other peaks appeared. The 

purified veratryl alcohol was used to prepare a stock solution by transferring 

0.841 g to 200 ml of distilled, deionized water to make a 5.0 mM veratryl alcohol 

solution. This was also stored in a dark volumetric glass flask at 4°C, since the 

alcohol is known to be light sensitive. The shelf life could be enhanced by 

storing the materials at -20° C.
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4.7.2 Preparation of Tartarate Buffer

Sodium tartarate from Fisher Scientific, NJ was used for the preparation of the 

tartarate buffer. Then 0.18407 g of sodium tartarate were dissolved in 1.0 liter of 

water to give a buffer solution 0.8 mM tartarate concentration having a pH of 3.7. 

A portion (0.625 ml) of this solution was used for preparation of 5.0 ml of final 

reaction mixture, where the tartarate concentration was 0.1 mM.

4.7.3 Preparation of Hydrogen Peroxide Solution

Hydrogen peroxide (30% by volume H20 2) solution was purchased from Sigma 

Chemical Company and stored in the freezer. To prepare a 4.0 mM H20 2 

solution, 0.408 ml of the 30% solution was transferred to a 1 liter of deionized 

water. Then 1.0 ml oh this solution was subsequently used for ligninase assay. 

To maintain good activity of hydrogen peroxide, fresh solutions were prepared 

every day before the measurement of ligninase activity.

4.8 Protein Assay

The protein content of the liquid part of the samples was determined via biuret 

reaction using a BCA (Bicichoninic Acid) Protein Assay reagent (Pierce 

Chemicals Co; Rockford; Illinois). The purple reaction product formed by 

interaction of two molecules of BCA with one Cu+ ion, is water soluble and 

exhibits a strong absorbence at 562 nm. This allows spectrophotometric 

quantification of protein in aqueous solutions.

The protein measuring reagent was prepared by mixing 50 ml of reagent-A 

with 1.0 ml of reagent-B. After centrifuging the sample at 13,000 rpm for 15 

minutes 0.2 ml of the supernatant were mixed with 4 ml of reagent and incubated 

for 30 minutes at 37° C. When the protein concentration was lower than 20 

mg/l, the samples were incubated at 60° C for 30 minutes. In presence of 

protein, the initially colorless solution turned pink after incubation. Absorbance
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was measured at 562 nm. Bovine albumen (Pierce Chemicals Co.) was used for 

calibration purposes. The concentration of protein in the standard vials were 2.0 

g of protein/ml, which was subsequently diluted to concentration of 0.1, 0.2, 0.4, 

0.6, 0.8 and 1.0 g of protein/l by mixing with deionized water. Absorbence for 

each sample was measured and recorded. Then a calibration curve of protein 

concentration (y axis) vs. absorbence as AU (X axis) was generated. A typical 

calibration curve is shown in Figure 8 , Appendix 1. The calibration curve was 

checked for each new bottle of reagent. The protein concentration of each 

sample was directly read from the graph by measuring the absorbence. The 

accuracy of the method was within 2% of the measured values when measured 

within 10 minutes.

4.9 Determination of Biomass Concentration

In order to minimize the experimental error, the biomass concentration was 

determined using a significant amount of slurry (100 ml) taken from either the 

batch fermenter, the shaker flasks, or the continuous reactors. In the case of the 

shaker flasks, this volume was collected from all the flasks used in a given 

experiment (conducted in quadruplicate or sometimes in duplicate).

Each 100-ml sample was centrifuged at 6,000 rpm for 20 minutes. Then, 

about 80 ml of the supernatant was pipetted out and replaced with deionized 

water. The biomass was resuspended, and the sample was centrifuged again. 

This washing procedure was repeated three times. The biomass suspension 

was transferred to a pre-weighed aluminum foil dish, dried at 90 °C for 24 hours, 

cooled to room temperature in a desiccator, and weighed. One aluminum foil 

dish was always used as the control. A slight difference in tare weight was 

observed before and after heating. This was most likely due to absorbed 

surface moisture.



CHAPTER 5

MATERIALS AND METHODS

5.1 Organism and Innoculum

Phanerochaete chrysosporium BKM-1767 (ATCC 24725) was obtained from the 

American Type Culture Collection (ATCC). The fungus was maintained on yeast 

malt agar media. The yeast malt agar was prepared by dissolving 0.3 g of yeast 

extract, 0.3 g of malt extract, 0.5 g of peptone, 2.0 g of agar and 1.0 g of glucose 

in 100 ml of deionized water. The medium was autoclaved for 20 minutes at 

121° C and then cooled to 38-40° C. The medium was then poured into 6 to 8 

petri dishes and allowed to cool to room temperature. The plates were ready for 

streaking with the fungus. The fungus was inoculated under sterile conditions 

and the plates were incubated at 37° C for three days. At the end of the 

incubation period, a thin white layer of fungus appeared on the agar plates. The 

plates were sealed with parafilm and stored at 4° C in refrigerator. New plates 

were made every four to six weeks. The fungus from these plates was used as 

inoculum in all experiments

5.2 Culture Medium

Media and solutions were prepared with deionized water. Different media were 

used for growth phase (Growth Medium) and during degradation (Induction 

Medium). Another solution named 'wash solution' was used to study the 

degradation by separated biomass. The basic compositions of both growth and 

induction media were taken from the thesis of Haq (30) and Pak (55). However, 

the compositions of both media were changed after performing some

40
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experiments, as mentioned in subsequent section 6 .2 .1. The composition of 

each medium is described below.

5.2.1 Growth Medium

The growth medium used to grow Phanerochaete chrysosporium in all types of 

experiments had the following composition

Compound Amount

Glucose 6.0 g

KH,PO^ 2.0 g

NaNO, 0.2 g

Mg SO,, 0.5 g

CaSO„ 0.1 g

Mineral Salt Solution 5 ml

Thiamin hydrochloride 5 mg

Deionized Water 1.0 liter

The final pH of the solution was between 4.4 to 4.45.

5.2.2 Induction Medium

The induction medium is a substrate deficient medium, used to induce secretion 

of lignolytic enzymes. The composition is as follows
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Compound Amount

Glucose 0.5 -0.9* g

KH9PO, 2.0 g

NaNO, 0.02-0.04* g.

MgSO, 0.5 g

Mineral Salt Solution 5 ml

Thiamin hydrochloride 5 mg

Deionized Water 1.0 liter

*The concentration was varied as mentioned specifically in the description of 

each experiment.

The final pH of the solution was adjusted between 3.4 to 5.8 by adding 0.1 (N) 

KOH or 0.1 (N) tartaric acid as required by the experiment. The range of pH 

varied since experiments were conducted at pH of 3.6, 4.6 and 5.6.

5.2.3 Wash Solution

In the experiments with separated biomass, wash solution was used to prevent 

any fungal growth and any abrupt change in pH. The wash solution had the 

following composition:

Compound Amount

KHoPO, 2.0 g

MgSO. 0.5 g

Mineral Salt Solution 5 ml

Deionized Water 1.0 liter
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The final pH of this solution was 4.4 - 4.5. The pH was then changed by adding 

0.1 (N) KOH or 0.1 (N) tartaric acid as required during experiments. The final 

pH was adjusted to 3.6, 4.6 or 5.6, depending on the experiment.

5.2.4 Mineral Salt Solution (MSS)

A mineral salt solution was used to provide the fungus with trace elements. The 

composition of the mineral salt solution is given in the table below.

Compound Amount

MgSO, .7H,0 3g

MnSO, H,0 0.5 g

NaCI 1 g

FeSO, ,7H,0 100mg

CoSO^ 100 mg

CaCI9 2 mg

ZnSCX, 100 mg

CuSCX, ,5HoO 10 mg

H,BO, 10 mg

NaMO, 10 mg

AIKfSOJ 10 mg

Deionized water 1 liter.

5.3 Preparation of Different Chemical Solutions

The procedure for preparation of different reagents and solutions are described 

below.
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5.3.1 246-TCP and 245-TCP Solution

A stock solution of 200 ± 10 mg/l for both 246-TCP and 245-TCP (98% purity, 

Sigma Chemical Co.) was prepared in a 0.1 N KOH solution. Since the solubility 

of both TCP in water is high, no special technique is required for preparation of 

TCP solution.

5.3.2 Phenol and Pentachlorophenol (PCP) Solutions

A 1000 ppm solution of phenol (Sigma Chemical Co) was prepared in distilled 

water. An aliquot was added to the induction medium as required. Like the 

TCPs, the solubility of phenol in water is very high so preparation of aqueous 

solution was pretty straight forward.

The preparation of pentachlorophenol (Aldrich Chemical Company) 

solution was very difficult. The reported solubility of PCP is around 14 ppm at 

neutral pH and room temperature (25). Due to extremely low solubility, a stock 

solution could not be made as in the case of the TCPs and phenol. In the case 

of PCP, the whole induction medium was used to dissolve the PCP. Twenty 

liters of induction medium were prepared and then 500 mg of PCP were added 

to the liquid. This solution was stirred for 24 hours with a magnetic stirrer and 

filtered through a glass fiber filter paper. This resulted in a PCP concentration of 

23.4 ppm at pH of 8.5, and at room temperature. This solution was directly used 

as the induction medium.

5.4 Selection of Temperature for the Study

In this study the temperature was selected on the basis of literature reports and 

no experiments were performed to determine the optimal temperature. As 

reported by previous workers (35,36,67,72), the optimum temperature for growth 

is between 39° C to 40° C. However, Glasier (23) reported that the growth rate 

stabilizes above 30° C and then starts falling often above 40° C. Since the
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present study was not concerned with growth of the fungus, the lower optimum 

(30° C) could have been selected. A lower operating temperature would 

minimize enzyme deactivation and is more energy efficient. To further simulate 

an industrial sludge tank condition, initially room temperature was used in this 

study. However, room temperature fluctuates over a range of 13° C to 26° C 

from day to day and over different seasons. Thus, it was not possible to use 

room temperature for the experiments. This necessitated the use of a water bath 

to maintain a constant temperature. The lab hot water bath setting required a 

minimum set temperature 6° C above room temperature for good control, i.e. at 

32° C. Since the lab thermometers are graduated in 0 F, 90° F was the actual 

temperature in all experiments.

5.5 Apparatus

Different types of reactors were used in this study for different types of 

experiments as described below.

5.5.1 Batch Reactor for Growing the Fungus

A Microferm 14-liter batch fermenter (New Brunswick Scientific Co., NJ) with 

built-in aeration, heating, and stirring systems was used for the sole purpose of 

growing the fungus. The fermenter was charged with 10 liters of growth medium 

and inoculated with the fungus from an agar plate culture. The aeration rate was 

set at 50 ml/ (min. x liter of slurry), the temperature was maintained at 32.2 °C, 

and the agitation speed was 80 rpm. Glucose, nitrogen, and pH were monitored 

twice a day. On the fifth day the glucose and nitrogen concentrations were 

about 60 mg/l and 1 mg/l, respectively, and a thick biomass slurry was observed. 

At this time, a fraction of this fungal slurry (typically about 1 liter out of the 10 

liters of slurry in the fermenter) was removed from the fermenter to conduct the
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shaker flask experiments or for further processing, as described below in greater 

detail.

5.5.2 Batch Reactor for Studying the Effect of Substrate Concentrations on 
Growth

To study different parameters during the growth of Phanerochaete 

chrysosporium a 3.0 liter batch reactor (Bioflow II, New Brunswick Scientific Co., 

NJ) with a 2.5 liter working volume was used. The reactor was equipped with 

built-in pH, dissolved oxygen and temperature monitoring and control systems. 

Two and one half liters of growth medium were prepared, sterilized and placed in 

the reactor. The temperature was allowed to reach 32.2° C using the hot water 

heating system. Then the content was aerated for 4 hours to allow it to saturate 

with C02.and eliminate any pH effects due to dissolution of atmospheric C02 

Since the reactor is constantly aerated, initial saturation with COs ensured that 

any further pH effects would be due to fungal activity only. Then inoculum from 

the plate culture was added, and the concentrations of glucose, nitrogen as 

nitrate, nitrogen as ammonium, protein, pH, and biomass were monitored and 

recorded for about three weeks.

5.5.3 Shaker Flasks

All shaker flask experiments were conducted in 250 ml Erlenmeyer flasks with a 

liquid content of 100 ml. The mouths of the flasks were plugged with cotton and 

no additional aeration was used. A water bath gyratory shaker (New Brunswick 

Scientific Co.; NJ. Model No. G-76 was) used for shaking the flasks at 45 rpm. 

The temperature of the water in the shaker was maintained at 32.2° C.
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5.5.4 Packed-Bed Reactor (for Supernatant Production)

A continuous packed-bed reactor was used to produce fresh fungal extracellular 

protein after the fungus had been immobilized in it. This protein (in the form of 

separated supernetant) was used in some of the batch experiments in shaker 

flasks, as described below.

The reactor consisted of a jacketed vessel (length 72.5; I.D: 5.0 cm) made 

of acrylic polymer. Clear polyethylene terephthalate (PET) flakes, irregular in 

shape and size (cross-sectional area = 2-15 mm2; thickness = 0.5 mm) were 

obtained from the Polymer Recycling Plant, Rutgers University, New Brunswick, 

NJ; and used as the random packing material. The polyethylene terephthalate 

(PET) flakes were first washed with a 0.1 (N) H2S04 solution and then several 

times with distilled water. During washing, dusts or finer flakes settled at the 

bottom and they were discarded. The PET flakes were autoclaved for 1 hour at 

100° C. The void volume in this particular experiment was 63%, measured as 

described in the previous chapter.

After growing the fungus in the fermenter, about 1 liter of fungal slurry was 

transferred to the reactor with the simultaneous addition of the PET flakes. The 

fungus was allowed to attach itself to the packing for 12 hours. Aeration was 

maintained at 50 ml of air/(liter of slurry x min.) throughout the entire procedure. 

The reactor temperature was maintained at 32 °C by circulating hot water 

through the jacket. After this waiting period growth medium was continuously 

fed to the bottom of the reactor and removed from the top at a flow rate of 1.5 

ml/min. The retention time was 9.97 hours. In order to establish good internal 

mixing the reactor was also provided with an external top-to-bottom recirculation 

loop (flow rate = 15 ml/min). The fungus was allowed to grow for five more days 

in the reactor, and then the feed was switched from growth medium to induction 

medium. The induction medium is a substrate-deficient medium used here to
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induce the fungal production of the extracellular enzymes responsible for the 

degradation process. After four days of induction medium regime some 50 ml of 

fungal supernatant were removed from the reactor and used for separate batch 

experiments in shaker flasks.

5.5.5 Packed-Bed Reactors (for Continuous Experiments)

During the study of continuous systems, jacketed vessels (used as packed bed 

reactors) made of glass or acrylic polymer were used. The reactors are identical 

to those described in the previous section for the production of fresh supernant. 

The same PET flakes were used as packing. However the void volume varied 

from experiment to experiment. The void volume of each individual experiment 

is reported in individual results section. Five different reactors were used. The 

height of the jacketed vessels varied from 56 to 72.5 cm, and diameter from 4.0 

to 5.0 cm. Each of the reactor was equipped with five sampling ports. A 

schematic of reactor #1 (R1 in the table below) is shown in Figure 5.5.6 with all 

its dimensions.

The dimensions of each reactor are given in the table below

Reactor Height (cm) Diameter (cm)

R1 72.5 5.0

R2 60 5.0

R3 60 5.0

R4 60 5.0

R5 56 4.0
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5.5.6 Enzyme Reactor

During the experiments with the packed-bed continuous reactor, a Continuous 

Stirred Tank Reactor (CSTR), named enzyme reactor was often placed at the 

outlet of the packed-bed continuous reactor. The enzyme reactor was an acrylic 

cylindrical vessel, with a working volume varied from 2.0 to 4.0 liters. The 

reactor was not jacketed and was left open to the air. There was no device to 

aerate or agitate the liquid in the enzyme reactor. The reactor was maintained 

at room temperature. A schematic of the combined packed-bed and enzyme 

reactor is shown in Figure 5.5.6.

5.6 To Find a Stable Nitrogen Source to be Used in this Study 

NH4CI has commonly been used as the nitrogen source in many published 

studies (2,6,33,47,53). Pak and Haq (55,30) in this group (worked in this lab on 

white rot fungus) also used ammonium chloride as the nitrogen source. 

However, to check for the stability of the NH4CI a blank study was done. NH4CI 

and NaN03 were separately dissolved in 100 ml of deionized water in 250 ml 

Erlenmeyer flasks. The air purging rate was maintained at 50 ml/min x liter. The 

nitrogen concentration (as N) was approximately 30 ppm in each of the flasks. 

The flasks were kept at room temperature in the hood. The nitrogen 

concentration was measured periodically in both flasks.

5.7 Experimental Procedure For Studies in Batch System

In the following subsections, the change of different parameters during the 

growth and subsequent phases, namely iodo phase has been monitored to gain 

a insight in fungal growth cycle. Later it can be used to explain different 

observations in packed-bed reactor studies.
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5.7.1 The Effects of Growth Parameters During Growth and Subsequent 
Phases

In these experiments the growth parameters were monitored in the absence of 

TCP or any other toxic compounds.

5.7.1.1 To Determine the Optimal Ratio of Glucose to Nitrogen in Growth 
Medium

It was necessary to optimize the concentration of glucose to nitrogen to grow the 

fungus. Previously Pak (55) and Haq (30) in this group and others (4,13, 36, 

37,39) used 10.0 grams of glucose and 0.12 grams NH4CI for preparation of the 

growth medium. This gives a carbon to nitrogen ratio of 127.3 by weight. 

However, the average chemical formula for dry biomass of microbes is

c 86H160°45N7p0.3K0.25M90.17Fe0.008s 0.003 as 9iven Tamaya (61), 

where the ratio of carbon to nitrogen is 10.53 by weight. Although this may not 

be a true expression for the composition of Phanerochaete chiysosporium and it 

may be taken as a starting point. To check the validity of the proportion and to 

minimize unnecessary use of substrates, experiments were done to find the 

actual usage of glucose and nitrogen by the fungus during growth. This was 

conducted by starting with an initial glucose concentration of 7.0 grams with the 

concentrations of all other components equal to those used by previous workers. 

Then the progressive decrease of both glucose and nitrogen, along with the 

increase in biomass concentration were monitored from the time of inoculation.

5.7.1.2. To Determine the Effect of Glucose and Nitrogen Concentrations 
on the Change of pH

Nearly all experiments reported in the literature (with the exception of those

conducted by our group) were performed in buffer solution to maintain constant

pH. However, the pH is one of the most important factors concerning enzymatic

reactions. Since this whole work was performed without buffering the systems, it
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was essential to monitor the pH changes during growth and degradation phases. 

To study how the pH changes, to find the pattern of pH change, experiments 

were conducted. Attention was also given to find the effects of glucose, nitrogen 

on the phenomenon of pH change. The parameters were monitored for 20 days.

5.7.1.3 To Determine the Effect of Biomass Concentration on Change of pH

Initial experiments showed that pH changes over a wide range during growth 

and in the subsequent phases. During the packed-bed experiments, it was 

observed that if the growth medium or induction medium fed to the reactor was 

suddenly stopped, the pH of the system would increase abruptly. Since the 

concentration of biomass in the packed-bed was much higher than in a four or 

five days old batch cultures in microferm, it was suspected that the biomass 

concentration could be a major factor the change in pH for a substrate depleted 

medium. To verify this hypothesis, the fungus was grown in the batch fermenter 

as described above. On the fourth day, the glucose and nitrogen were mostly 

depleted. Then another 15 grams of additional glucose, 0.5 g of NaN0 3 , 1.5 g 

MgS0 4 , 7^20. 5 grams of KH2PO4 , 20 mg of thiamine and 12.5 ml of mineral 

salt solution were added and the fungus was allowed to grow for two days. At 

the end of this period the carbon and nitrogen sources were completely depleted 

and the pH had gone down from 4.4 to 2.58. Stirring was stopped and the 

biomass was allowed to settle for 4 hours. About 2 liters of supernatant were 

decanted and replaced with 2 liters of fresh growth medium containing 2.5 liters 

equivalent of all substrates (e.g. 15 grams of glucose, 0.5 g NaN0 3  etc.) and 

allowed to grow again. All the parameters were routinely monitored throughout 

the process.
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5.7.2 Determination of the Degradation Scheme

The experiments were conducted in shaker flasks. In all cases the shaker flasks 

were incubated at 32 °C on a gyratory shaker gyrating at 45 rpm.

A stock solution of 200±10 mg/l 246-TCP (98% purity, Sigma Chemical 

Co.) was prepared in a 0.1 N KOH solution as specified above. Aliquots of the 

stock solution were added to the shaker flasks, as required. The pH in all 

shaker flasks was then adjusted to the desired value of 3.6 or 4.6 or 5.6 by 

adding 0.1 N KOH or 0.1 N tartaric acid.

Samples of different volumes (2 or 5 ml) were taken from the shaker flasks 

to measure the lignolytic enzyme activity and the concentrations of protein, 

chloride ion, 246-TCP and glucose. Flasks containing only deionized water, 

246-TCP and acid/base as pH adjusters were used as controls in all 

experiments.

Five different sets of experiments were conducted. The first three (with 

whole fungal slurry, with separated supernatant, and with separated biomass) 

were carried out in parallel using the same source of fungal slurry. The other 

two (with additional biomass, and additional supernatant) were conducted 

separately.

5.7.2.1 Experiments with Whole Fungal Slurry

These experiments were performed to establish the overall degradation ability of 

the fungus. About 500 ml of fungal slurry from the batch fermenter were 

transferred to a 1 -liter beaker and spiked with 246-TCP from the stock solution 

to make the final concentration equal to about 45 mg/l. After pH adjustment the 

content of the beaker was transferred to four 250-ml Erlenmeyer flasks (100 

ml/flask) in order to perform the same experiment in quadruplicate. The 

degradation process was followed by monitoring the concentration of 246-TCP
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as a function of time. The concentration of total protein, chloride ion, nitrogen, 

and glucose, as well as the ligninase activity were also periodically measured.

Experiments in which fungal slurry was placed under nitrogen blanket were 

also conducted. The objective was to test for the presence of ligninase since 

previous studies had indicated that lignin peroxidase is effective under oxygen- 

negative conditions.

5.7.2.2 Experiments with Separated Supernatant

This set of experiments was conducted to determine the individual degradation 

capability of the extracellular fungal protein alone. Some 500 ml of the fungal 

slurry from the fermenter were transferred to screw-cap centrifuge bottles 

(approximately 50 ml/bottle). After centrifugation at 6,000 rpm for 20 minutes 

some 90% of the clear supernatant from all bottles was transferred to a single 

container, spiked with 246-TCP, and pH adjusted. The liquid was finally 

transferred to four 250-ml Erlenmeyer flasks (100 ml/flask). The degradation 

rate and other parameters were monitored as before.

5.7.2.3 Experiments with Separated Biomass

The biomass left in the bottles after separating the supernatant (as described in 

the previous section) was washed, resuspended, and centrifuged three times 

with a wash solution having a composition similar to that of the growth medium, 

but containing no carbon and nitrogen sources to prevent any further fungal 

growth. The biomass in the bottles was resuspended, and transferred to a 

single container to which an aliquot of the 246-TCP stock solution was added. 

After pH adjustment, the suspension was brought up to 1000 ml of final volume 

by adding the wash solution, and transferred to four 250-ml Erlenmeyer flasks
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(100 ml/flask). These experiments were performed to determine the role of 

biomass alone in the overall degradation process.

5.7.2.4 Experiments with Additional Biomass

An initial biomass separation procedure was conducted as described in the 

previous section. As a result, four 250-ml shaker flasks, each containing 100 ml 

of biomass suspension, were prepared and incubated at 32 °C.

From preliminary experiments, it had been observed that after the washing 

procedure associated with the biomass separation the concentration of the 

extracellular proteins in the wash solution fell below the detectable limit. 

However, after about five to six hours of incubation, the separated biomass 

started to release extracellular proteins.

After 8 hours of incubation, when the majority of the extracellular protein 

had been liberated by the biomass in the flasks, a new biomass separation was 

conducted on fresh fungal slurry from the batch fermenter. Then, approximately 

2 grams each of the newly separated, wet biomass were added to two of the four 

shaker flasks containing the initially separated biomass suspension. This 

approach was followed in order to establish whether the biomass concentration 

was the limiting factor in the degradation process.

5.7.2.5 Experiments with Additional Supernatant

In this set of experiments the effect of the extracellular protein concentration on 

the degradation rate was studied. Initially, biomass separation was conducted 

on the slurry from the fermenter, as described before, and four 250-ml flasks 

containing suspended biomass were incubated. No protein was detected in the 

associated liquid during the first five hours. Then, proteins began to be 

released. After three additional hours, during which time the majority of the
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proteins had already been released, 10 ml of the supernatant from the 

continuous packed-bed reactor were added to each of two of the four flasks. 

This produced a significant increase (nearly double) in the protein concentration 

since the protein content of the added supernatant (25 mg/l) was much higher 

than that originally in the flasks (1.9 mg/l). The biomass concentration in the 

supernatant from the reactor was only 12.0 mg/l. Therefore, no separation was 

performed since the total amount of biomass added to the flasks in this way was 

negligible.

5.8 Experimental Procedures For Packed-Bed Continuous Reactor Studies

A major part of the experimental studies were conducted in packed-bed 

continuous reactor system. Before conducting any experiment, the reactor 

characteristics were studied in detail. These procedure is described below in 

the following subsections.

5.8.1 Determination of the Residence Time

Before beginning any experiments with the fungus, the residence time 

distribution (RTD) of the packed-bed reactor was determined.

A typical RTD experiment for the reactor (R1) is described below. The 

reactor was filled with the PET packing and water. Copper Sulfate (CUSO4 ) 

solution was used as the tracer and a positive step input was chosen to conduct 

the RTD study. The absorbence of the inlet solution was 0.97 AU. The RTD 

was obtained from a reactor with a void volume of 760 ml, inlet flow rate of 1.65 

ml/min with a internal recirculation rate of 8 ml/min and air flow rate of 40 ml/min. 

The residence time was 7.7 hours. Samples were taken from three different 

ports of the reactor and the absorbence was checked at 278 nM wavelength by 

using a Varian DMS-200 spectrophotometer. The resulted Residence Time
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Distribution curve (RTD) is shown in Figure 5.8.1. Below a recirculation rate of

6.0 ml/min, the reactor showed a RTD in between a CSTR and plug flow reactor.

The minimum recirculation rates to give a CSTR characteristics for R2, R3 

and R4 was , 5.0 ml/min. For the smaller reactor (R5), a recirculation rate of 4.0 

ml/min was enough to force the reactor to behave as a CSTR.

5.8.2 Determination of Void Volume in Packed-bed

The void volume changed from time to time when packing was changed and 

varied from 60 to 68%. To determine the void volume without aeration, a dry 

column was packed with PET flakes up the mark (a little below the outlet nozzle) 

and then a measured volume of liquid was slowly poured in the reactor till it 

reached the level of the outlet nozzle. This gave an approximate volume of 

liquid in the reactor, and enabled the air flow to be set at 50 ml/min/lit of liquid 

volume.

In order to determine the void volume with aeration, the water was drained 

out and the packing removed. The reactor was thoroughly cleaned and dried. 

Then dried PET flakes were filled the same previous level. The air flow rate was 

fixed at the rate of 50 ml/min/lit as previously determined. While the air was 

passing through the column, water was slowly poured till it reached the level of 

the outlet nozzle. The amount of liquid required this time to fill the reactor 

equaled the void volume under aerated condition.

5.8.3 Measurement of Flow Rate of Induction Medium

The flow rate of the induction medium was measured by collecting the outlet flow 

over 36 hours to minimize error normally encountered when the flow rate is 

measured over short period of time.
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5.8.4 Growth And Immobilization of the Fungus in the Packed-bed 
Reactors

Four days old slurry from the Microferm fermenter was poured in to the reactor 

along with simultaneous addition of PET flakes. Simultaneous addition of PET 

and fungal slurry gives a uniform distribution of fungal biomass over the flakes 

and later a uniform fungal mat was observed over the flakes. The fungus was 

allowed to settle for 12 hours, or normally overnight. The liquid became clear 

as the filamentous fungus adhered on the flake surfaces. Then introduction of 

growth medium was started from the bottom of the reactor and taken out from the 

top. This was continued for 2 to 10 days, the time depended on how thick 

biofilm we wanted to grow.

5.8.5 Degradation of 246-TCP and 245-TCP

All five reactors (R 1 to R 5) described earlier were used in these experiments. 

The different reactor parameters used in each experiment are reported in result 

section. After growing the fungus in the packed bed as described in the 

previous section, the growth medium was replaced by induction medium mixed 

with 246-TCP solution, and was introduced in the bottom of the packed reactor 

to induce the release of the lignolytic enzyme system. Samples from different 

sampling ports up the length of the reactor were analyzed for pH, nitrogen, 

glucose, chloride, 246-TCP, total protein concentration and ligninase assay. 

After 7 to 8 times the residence time, the system reached a steady state. Since 

the recirculation rate (4 to 20 ml per minute) is much larger than the feed rate 

(0.5 to 3.0 ml/min) the packed bed reactor always behaved as a well mixed 

reactor and could be modeled as a CSTR. The CSTR behavior was confirmed 

by analyzing the samples from different ports of the reactor which gave the same 

value of a particular parameter irrespective of the port. The experiment was 

continued for about three weeks. The total feed was prepared at one time to
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have constant properties and concentration of the substrates. Here it is to be 

noted that the feed in the inlet reactor vessel gets contaminated (observed by 

fungal growth in the container itself) when kept for more than three days. Thus 

the feed solution was sub-divided in six 1 gallon bottles, kept air tight, and 

autoclaved every alternate day. The inlet tank should be cleaned daily with hot 

water, at which time the inlet feed bottle was changed. Then approximately one 

and half days feed was transferred from the stored 1 gallon bottle to inlet tank.

5.8.6 Determination of the Effects of Operating Parameters on Degradation 

Different experiments were conducted with continuous reactors to determine the 

effect of operating parameters on degradation of chlorophenols.

The objective of this set of experiment was to study the effect of glucose 

concentration on the degradation rate of 246-TCP. Five experiments in this set 

were conducted using the reactor (R 3) with a void volume of 700 ml and a flow 

rate of 1.689 ml/min. Approximately identical inlet 246-TCP concentration was 

maintained in all these experiments. Since the unsteady state results had no 

significance, hence, initial readings were not recorded. Readings were recorded 

after the third day, when steady state had reached, and the recording of results 

continued for two more days to confirm that the system reached steady state.

To study the effect of nitrogen concentration on degradation rate, similar 

experiments as in the case of glucose, were tried by varying the outlet nitrogen 

concentration. In one set of experiments, an pH controller was also used to 

control the pH. A tartaric acid solution (0.1 N) was used to lower the pH of the 

system when required. In these three experiments in this set, reactor R2 was 

used.

The literature review revels that the fungus is very sensitive to the shear 

stress (section 2.2.6). Thus, it was very necessary to see the effect of shear
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stress on the degradation rate and to determine the critical mass flux at which 

the fungus becomes ineffective. To study this phenomena, the fungus was 

grown in the immobilized packed-bed reactor. The reactor void volume was 760 

ml (R 1). The total reactor volume was 1430 ml. Then 245 TCP mixed with 

induction medium was started from the bottom in the usual fashion. The inlet 

flow rate was kept constant at 1.5 ml/min. The system was allowed to reach a 

steady state then all the parameters were recorded. Then the internal 

recirculation rate was changed, keeping all other parameters constant. The 

system was again allowed to reach steady state. These operations were 

repeated four times and four different steady state results were obtained for four 

different recirculation rates. The feed rate and inlet feed concentration for the 

substrates, the target compound 246-TCP were kept constant within 

experimental range.

5.8.7 Determination of the Model Constants for 246-and 245-TCP

These experiments were a major part of the experimental work. The fungus was 

grown as described earlier. Then an induction medium mixed with either 246- 

TCP or 245-TCP solution was introduced to the packed bed reactor. System 

parameters were monitored until steady state was reached. After the system 

reached steady state, samples from different ports up the length of the reactor 

were analyzed for pH, nitrogen, glucose, chloride, 246-TCP or 245-TCP and 

total protein concentrations. The CSTR behavior was always checked by 

collecting samples from three ports of the reactor. The data were recorded once 

a day, and the system was allowed to run at least 2 more days after reaching 

steady. This was done to confirm that it had lined out. Here the most difficult 

part of the experiment was to control the outlet pH of the reactor. This depends 

completely on the experience of running the system. The following four factors
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dictate the outlet pH: (a) biomass concentration in the reactor, (b) inlet glucose 

concentration (c) inlet nitrogen concentration (d) the residence time in the 

reactor. It is worth mentioning here that concentration of pollutant had no effect 

on the pH. The mathematics behind the determination of model parameters will 

be discussed in Chapter 7. This study was conducted at three different pH 

values (3.6, 4.6 and 5.6) for both 246-TCP and 245-TCP. For each compound 

at a particular pH a minimum of 6 experiments were conducted. On average 

each experiment took about 6 to 9 days. The main problem encountered in 

these experiments was line clogging by growth of fungus in flow tubing. In that 

case the experiment was stopped, the whole system was dismantled, autoclaved 

and reinstalled.

5.9 Degradation of Phenol

Degradation of phenol by Phanerochaete chrysosporium is not reported in the 

literature. However most chlorophenol containing streams would contain phenol. 

This experiment was conducted in the same manner as done for TCP's, with the 

only difference that phenol was mixed with induction medium in place of TCP.

5.10 Degradation of Pentachlorophenol

For comparative purposes the degradation of pentachlorophenol (PCP) was 

studied in the continuous reactor system. Again, these experiments were 

conducted in the same manner as with TCP where PCP was the target 

compound.



CHAPTER 6

RESULTS FROM BATCH STUDIES

The main emphasis of this thesis work is to optimize reactor configuration for 

degradation of chlorophenols, to model the system, and to determine the 

optimized operating conditions for maximizing the degradation rate of 

chlorophenols. However, before presenting results for the continuous reactor 

system, some parameters and operating conditions were extensively studied in 

batch reactors for better understanding of the continuous systems. At the same 

time the fungal behavior during different phases of growth and degradation (iodo 

phase) were also studied. To find the reaction scheme for the degradation 

process, the individual effects of the separated biomass and the separated 

supernatant on the degradation of 246-TCP were studied separately. The 

results of these batch experiments are discussed in this chapter.

6.1 Ammonium and Nitrate as the Suitable Nitrogen Source

In many studies as reported in the literature (2,3,7,21,33,55) NH4CI was used as 

the sole nitrogen source. However, due to the dissociative nature of this 

chemical, the stability of the ammonium chloride (NH4CI) in the growth medium 

was determined. The results of this experiment are tabulated in Table 6.1 and 

shown in Figure 6.1. The loss of ammonium chloride from the medium was 

substantial. During 24 hour period at pH a 5.0, approximately 50% of the 

ammonium chloride was lost to air and profuse loss continued in a decreasing 

fashion. The loss of nitrogen is due to the fact that in an aqueous NH4CI 

solution, a part of the NH4+ ion is converted to aq(NH3), and is removed from the 

solution continuously by air stripping, resulting in a loss of NH4CI with time.

61
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Since.the pKa of NH4CI is 9.3 at 25° C, it could be presumed that at lower pH 

there should be minimal loss of ammonia. However, according to the electrode 

manual from Orion Research Inc, at a pH of just above 7, 50% of the ammonium 

is lost in 6 hours from 100 ml beaker under stirred condition. This information 

supports our observations that even at a pH below it's pKa there could be 

significant loss of ammonium. Thus, use of NH4CI as the nitrogen source for 

fungal growth would result in a reduced availability of nitrogen to the fungus. 

This may result in a nitrogen limited condition in the early growth phase and may 

inhibit fungal growth.

As seen from the Figure 6.1, the loss of NaN03 is negligible as expected. 

Moreover, the microorganism grew well with NaN03 Hence NH4CI was 

replaced with NaN03 in the present study as the nitrogen source for the fungus.

6.2 Growth parameters

The effect of nutrient concentrations like glucose to nitrogen ratio, concentration 

of nitrogen and its relation to biomass growth, the relation between pH to 

biomass concentration were extensively studied. This was necessary to 

understand the operational behavior of the packed-bed reactor. The results of 

one such experiment are presented in Table 6.2. The results of this experiment 

are discussed in the following subsections.

6.2.1 Optimization of Glucose and Nitrogen

In almost all of the previous work (2,33,55), researchers used 10 grams of 

glucose and 0.12 grams of NH4CI per liter of growth medium. This proportion of 

glucose to nitrogen ratio is exceedingly high compared with the C:N (Carbon : 

Nitrigen) ratio in dry biomass of known microorganisms (61). Thus, experiments 

were carried out to find the optimum nitrogen to glucose ratio in the growth
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medium. According to results in Figure 6.2.1 and Table 6.2, it is seen that for 

every 30 ppm nitrogen utilized, approximately 5 grams/l of glucose was 

consumed by the fungus out of the 7.0 grams/l initially charged. This glucose 

and nitrogen consumption occurred in 3 to 4 days. Approximately 2 grams of 

glucose were left unutilized for more than 24 hours, as observed from the figure. 

After this period it appeared that biomass lysis took place and the excess 

glucose was consumed. Similar results were observed in other experiments. 

From these results it was concluded that for every 0.12 grams/l of NH4CI (= 31 

ppm nitrogen = 0.2 grams/l of NaN03), 5.0 grams of glucose would be required. 

The ratio of carbon to nitrogen in this case is N : C=1:66. Although, this ratio is 

much higher than normally observed in bacterial species (61), this study shows 

that out of 10 grams/l of glucose previously used by other workers 

(23,5,33,55,57,48), only 50% is consumed for every 30 ppm of nitrogen. To 

maintain a little higher carbon source than required, 6.0 grams/l of glucose were 

used for each 30 ppm of nitrogen for the growth medium in all experiments in the 

present study.

6.2.2 Effect of High Toxic Concentration

It is worth mentioning here that the presence of toxic compounds at considerably 

high concentrations did not effect the growth characteristics to any extent. A 

1000 ppm of phenol or 70 ppm of 246-TCP or 66 ppm of 245-TCP in separate 

experiments were found to have no influence on growth. These concentrations 

did not inhibited the growth and usual growth behavior was observed.

6.2.3 Changes in Nitrogen Concentration

Nitrogen concentration is of vital importance for the lignolytic activity as well as 

for growth. Thus it is very important to know the fate of nitrogen during the
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growth phase of Phanerochaete chrysosporium. The change in nitrogen 

concentration with time is shown in Table 6.2. Initially the nitrogen consumption 

rate was much higher than that observed in later stages. However, the biomass 

growth rate was not proportional to that of nitrogen consumption during this 

growth period, as shown in Figure 6.2.3. The initial high nitrogen consumption 

rate could be attributed to catabolic metabolism with synthesis of different amino 

acids, without any appreciable increase in biomass. After this period, the 

logarithmic growth phase started. It is important to note that after the initial two 

days of growth (50 hours from inoculation) a very small amount of nitrogen was 

utilized compared to the initial stages. The nitrogen concentration at this stage 

is comparable to the concentration of nitrogen in the induction medium. This 

indicates that the fungus may grow to a certain extent with a small nitrogen 

supply. In the later stages, when the nitrogen concentration was below the 

detectable limit, lysis of biomass was also observed. Cell lysis was indicated by 

an increase in protein concentration, decrease in pH, and increase in ammonium 

concentration after 228 hours. Although no information or explanation is 

available in the literature, this phenomenon could be due to recycling of stored 

nitrogen in the biomass. It is interesting to notice that although a significant 

decrease in biomass concentration was observed, a simultaneous decrease in 

carbohydrate concentration (glucose) was also detected (Table 6.2). According 

to Merril and Cowling (49) this type of fungus can recycle nitrogen. Another 

possible explanation could be that the fungus stores some nitrogen in some form 

in the initial stages when nitrogen is abundant, and releases the nitrogen 

contained in protein/enzymes in later stages of the iodophase. The release of 

enzymes (amino acids) in a nitrogen depleted condition supports this 

explanation.
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6.2.4 Changes in pH

The pH is a very important parameter in enzyme kinetics. Due to the enzymatic 

nature of this degradation process, it is important to know how the pH of the 

system changes with time. This information is not available in the literature. 

Most of the previous studies were performed in constant pH buffered medium. In 

the present study, pH was carefully monitored during fungal growth as shown in 

Tables 6.2. and 6.2.4. Figures 6.2.4.a & b show how the pH changes with time 

during growth and iodo phases. One can observe that initially (up to 100 hours) 

the pH of the solution dropped very fast. Then the rate of decrease in pH 

slowed down. After 252 hours, when the carbon source was completely 

exhausted, the pH remained steady for around 24 hours. Then the pH of the 

system increased and reached a steady state. The increase in pH during a 

substrate limited condition was also observed for mixed bacterial culture by 

another investigator (14).

To determine the effect of biomass concentration on the change in pH, 

another set of experiment was performed. The result of this experiment is 

presented in Table 6.2.4. It was observed that the rate of increase in pH and the 

total increase in pH are dependent on the biomass concentration present in the 

system. The biomass concentration in the previous experiment (Table 6.2) was 

300 ppm and the pH increased from 2.85 to 3.11 in 48 hours. However when the 

biomass concentration was 5300 ppm (Table 6.2.4), the pH increased from 2.6 

to 6.5 in 24 hours (Figure 6.2.4b). The pH never increased beyond 6.7 whatever 

might be the biomass concentration.

No specific explanation for this pH change was found in the literature. 

However, this could be explained as follows. Initially the fungus needed a 

suitable environment to metabolize the glucose, for which an acidic environment 

was required (7,21). It may also be possible that some of the products initially
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excreted are acidic by nature and lowered the pH. Contrary to the initial phase, 

the pH of the system increased in the iodophase. Possibly the increase in pH is 

due to some basic excretory product from the fungal biomass for unknown 

reasons. It has also been observed that the pH always reached a maximum of 

around 6.7 irrespective of biomass concentration. This constant value (pH 6.7) 

indicates that the pH of the secreted protein could be around 6.7. The increase 

in pH was observed for all cases in substrate depleted conditions. However, 

streaking agar plates with a 7 weeks old culture under a substrate depleted 

condition, resulted in good growth, indicating the viability of the fungus after a 

long starvation period.

The above observations led us to conclude that the pH of a medium 

increases only in a substrate depleted condition and decreases in a growing 

phase. The rate of increase in pH depends on the amount of biomass present in 

the system.

6.2.5 Changes in Biomass and Extracellular Protein Concentrations

The biomass and protein concentrations changed significantly during the growth 

and subsequent phases as shown in Table 6.2 and Figure 6.2.5. In this figure 

we observed a direct relationship between biomass concentration and the 

extracellular protein concentrations. From the figure it could be noticed that a 

decrease in both biomass concentration and extracellular protein concentration 

started at the same time under the substrate limited conditions. No explanation 

is available for this behavior.
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6.3 Degradation of 246 and 245-Trichlorophenols in shaker flasks

The biodegradative ability of Phanerochaete chrysosporium for 246-TCP and

245-TCP were tested in shaker flasks. The following subsections describe the 

results of those experiments.

6.3.1 Degradation of 246-TCP in Shaker Flasks

The degradation of 246-TCP was tested in shaker flasks. The average of the 

duplicate results is tabulated in Table 6.3.1 and Figure 6.3.1. Figure 6.3.1 

shows that the concentration of 246-TCP decreased with time and continued to 

do so for about 160 hours. Then the degradation rate slowed down and reached 

zero for all practical purposes. Table 6.3.1 and the Figure 6.3.1 are showing an 

increase in the concentration of chloride ion liberated by mineralization of TCP. 

One can also observe that in 240 hours the 246-TCP concentration decreased 

from 22.40 to 15.98 ppm. By chemical stoichiometry, each ppm of TCP on 

mineralization would liberate 0.532 ppm of chloride ion. Thus, the decrease of

246-TCP from 22.40 to 15.98 should release 3.4 ppm of chloride ion. The actual 

increase in chloride concentration was 3.2 ppm, which is 91% of the theoretical 

amount. This result is quite satisfactory considering the use of specific ion 

electrodes for the measurement of chloride ion concentration. However, it is 

important to note that the rate of degradation is extremely low, i.e. 0.02675 

ppm/hr. In another set of experiment, (Table 6.3.1b) the concentration of 246- 

TCP came down to 38.6 ppm from an initial 44.9 ppm in 256 hours. This 

corresponds to a degradation rate of 0.024687 ppm/day. Although the rates 

were about the same, the biomass concentration in the later case was 

maintained at 270 ppm, which is nearly twice that of the first case (147 ppm). 

However the pH in the latter case was 5.6, and 3.7 in the former case.
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Nevertheless, it would appear that the concentration of biomass per se may not 

be a rate determining factor in the degradation of 246-TCP.

6.3.2 Degradation of 246-TCP in a Ligninase-Depleted System

One of the most important observation from these experiments (Table 6.3.1 and 

6.3.1b) was that trichlorophenol degradation occurred in a ligninase depleted 

system. Figure 6.3.2, shows the ligninase concentration in terms of AU vs 

degradation of 246-TCP. In Figure 6.3.2, ligninase was detected only for the 

first 31 hours, after which the ligninase concentration dropped below detectable 

limits. However, the degradation of TCP continued uninterruptedly for at least 

160 hours. This process was accompanied by stoichiometric chloride recovery 

indicating mineralization. These results clearly indicate that ligninase is not 

responsible for the degradation of 2,4,6-TCP. Lamar et al. (35) in 1991 were not 

able to explain the degradation of PCP by ligninase alone, and indicated that 

some other system might be responsible for the degradation process. In the 

present work degradation of 245-TCP and PCP were also observed in ligninase 

depleted systems (Table 6.3.5 and Table 8.9). These observations indicate that 

ligninase plays no role in the degradation of chlorophenols. For the case of 

pentachlorophenol degradation, Mileski et al. (51) suggested that another 

enzyme system (other than ligninase) is likely to cause degradation. 

Furthermore, in conjunction with the observations made by Boominathan (5) and 

Dosoretz (17) for the case of lignin, the effectiveness of ligninase for 

degradation of other compounds is highly questionable and may not be of any 

significance to the degradation of toxic organics. This observation could be a 

turning point in the research of biodegradation utilizing Phanerochaete 

chrysosporium, since to date many of the workers believe that ligninase is the 

responsible enzyme for this type of degradation.
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We strongly believe that ligninase is just a secondary metabolite of the 

fungus Phanerochaete chrysosporium having nothing to do with the degradation 

of the chlorophenols or other hazardous organic compounds.

6.3.3 Time Decay of Fungal Activity

It is essential to know how long the fungus can retain its degradative ability in a 

substrate depleted condition. From Table 6.3.1 and Figures 6.3.1, 6.3.2, 6.3.4, 

and 6.3.5, it is observed that the degradation rate of 246-TCP reached zero for 

all practical purpose after about 150 hours (approximately one week). Similar 

observations were made by Ulmer et al. (67) for the case of lignin degradation. 

These researchers reported that after 6 to 8 days from inoculation degradation 

decreased to 35% of the initial rate, and in the following 7 days, the degradation 

ceased completely under substrate depleted conditions. According to these 

workers, the degradation ability of the fungus decreases with time under 

substrate limited condition and is completely lost after 14 days from the day of 

inoculation. According to our experiment, the degradation of 246-TCP stopped 

after 13 to 14 days, same as reported by Ulmer and his co-workers. It is 

possible to explain this above observation from the energy consumption point of 

view. According to Asada et al. (4) lignin degradation is an energy consuming 

process via NADH oxidation by hydrogen peroxide. When all the carbon and 

nitrogen sources are consumed, the fungus stops degrading. Ander et al. (2) 

also postulated that lignolytic enzyme production depends on the availability of 

carbohydrate and nitrogen sources. According to Merril and Cowling (49), in the 

absence of nitrogen but presence of carbohydrates, some fungal activity is 

possible. However, the activity does not continue for a long time. The 

prolonged degradative ability of this microorganism as observed by Bumpus et al 

(7) for 30 days and by others (36,40,41) is not well understood at this point.
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6.3.4 Addition of Substrate to a Substrate-Depleted System

In the previous section we have seen that the fungus cannot retain its 

degradative ability for a long time after the substrates are exhausted. An 

experiment was conducted to determine the effect of substrate addition in a 

substrate depleted medium. In Table 6.3.4 and Figure 6.3.4 it can be seen that 

after 190 hours, the degradation practically stopped, and the 246-TCP 

concentration remained constant up to 240 hours. On the 242nd hour, both the 

glucose and nitrogen (NaN03) were added. As seen from the Table 6.3.4 and 

Figure 6.3.4, within a very short time after addition of substrate, degradation 

started again. However, the rate of degradation in this period was much less 

than that observed initially. Previously, the degradation continued for more than 

180 hours, however after addition of glucose and nitrogen, the degradation 

continued for only about 100 hours, and then stopped. This phenomenon 

cannot be adequately explained at the moment. According to Kelly et al. (35), 

in-situ production of H20 2 and protease may inhibit the rest of the enzyme 

system. According to Dorosetz et al (17), protease is one of the enzymes 

produced by this fungus, which can cleave other enzymes and accumulate in the 

batch system. Moreover, if the life time of the inhibitors is more than that of the 

active enzymes then the inhibitors would buildup and deactivate the enzymes in 

the later stages of the reaction. This could be a possible explanation for the 

reduced degradation rate observed after the addition of substrates. The fungus 

cannot maintain the degradative activity for a long time in a substrate depleted 

condition. To maintain the prolonged enzyme activity, a continuous supply of 

nutrients is necessary.
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6.3.5 Degradation of 245-TCP in Shaker Flasks

Degradation experiments were also conducted with 245-TCP in shaker flask. 

The results are shown in Table 6.3.5 and Figure 6.3.5. Similar results were 

obtained for 245-TCP as for 246-TCP. Degradation of 245-TCP was observed 

up to about 150 hours, as in the case of 246-TCP. There is no fundamental 

difference in the degradation process of 246-TCP and 245-TCP.

6.4 Determination of Reaction Scheme

It is clear from the results reported above that the fungus has the ability to 

degrade both 246-TCP and 245-TCP. However, no specific degradation scheme 

can be obtained from these batch experiments. Therefore new experiments 

were performed to determine the degradation scheme utilized by the fungus for 

the degradation of 246-TCP.

6.4.1 Separated Supernatant (Extracellular Protein)

Figure 6.4.1 shows the results for these experiments (run in quadruplicate and 

having an average standard deviation of 0.24 mg/l). Here the separated 

supernatant (containing 210 mg/l of extracellular fungal protein) was only able to 

produce a slight decrease in 246-TCP concentration. These results are directly 

comparable to those obtained with whole fungal slurry, since they were all 

conducted in parallel using the same source of slurry. However, the rate of 246- 

TCP disappearance was much lower in the experiments with separated 

supernatant than in those with whole slurry in spite of the fact that the initial 

protein concentration (including ligninase concentration) was nearly identical in 

both systems. No chloride was recovered in the supernatant experiments.

However, a new peak was detected having a higher retention time in the 

HPLC than that of 246-TCP. This suggests that 246-TCP was not completely 

degraded by the extracellular enzyme system produced by the fungus, but
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formed some intermediate(s) which are quite stable in the absence of biomass. 

The results for a similar experiment are shown in Table 6.4.1b.

6.4.2 Separated Biomass

In these experiments (also run in parallel with the previous set) the degradation 

capability of the biomass alone was tested. Figure 6.4.2 shows the results of a 

typical experiment run in quadruplicate (standard deviation: 0.27 mg/l). During 

the first four hours no significant change in 246-TCP concentration was 

observed, and the concentration of protein in the medium surrounding the 

biomass remained at undetectable levels. However, during the fifth hour the 

biomass began releasing significant amounts of protein and continued to do so 

at an average rate of 0.55 mg/l hr up to the eighth hour, thus bringing the protein 

concentration to 2.2 mg/l. After the eighth hour the rate of protein release 

decreased to about 0.01 mg/l hr. This resulted in only a slight increase in the 

protein concentration over the next 62 hours, during which the protein 

concentration went from 2.2 to 2.8 mg/l.

A number of similarly repeated experiments exhibited the same 

phenomenon of protein appearance after the biomass had been washed, 

separated, and resuspended. Therefore,.this rapid release of extracellular 

protein appears to be an intrinsic characteristic of the biomass removed from its 

supernatant.

During the period in which the rapid protein release occurred a marked 

decrease in the concentration of 246-TCP was also detected. The rate of 246- 

TCP disappearance during this phase was 0.79 mg/(l x hr). This rate is 

comparable to that observed during the initial stage of the degradation process 

in the presence of whole slurry. No ligninase was detected throughout the
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experiment, thus confirming that ligninase does not contribute to 246-TCP 

degradation, as noticed before in the experiments with whole slurry.

The decrease in 246-TCP concentration following the phase of rapid 

protein release was also accompanied by chloride ion production (Tables 6.4.2 

& 6.4.2b). However, the percentage of chloride recovery was only a fraction 

(typically between 32 and 79%) of the stoichiometric amount recoverable from 

the complete mineralization of 246-TCP. In addition, the chromatograms 

obtained at different times (Figure 6.4.2b) during the experiment indicated that 

an unidentified intermediate having a retention time higher than that of 246-TCP 

was being produced but not completely degraded.

Figure 6.4.2 shows that after 40 hours from the beginning or the 

experiment no further degradation occurred, which implies that the extracellular 

protein has a finite lifetime. By contrast, 246-TCP degradation continued for 

about 150 hours in the whole slurry experiments.

The results obtained in this set of experiments show that biomass alone 

cannot degrade 246-TCP unless extracellular fungal protein is present. 

However, the results obtained with separated supernatant indicate that the 

extracellular fungal protein alone is also unable to produce significant and 

complete degradation. Therefore, it appears that both biomass and extracellular 

fungal protein are necessary for 246-TCP degradation to occur.

In another set of experiments, 0.25 ml of a 0.18 M trichloroacetic acid solution 

were added 8 hours after the beginning of the experiment (i.e., after the bulk of 

the protein release had occurred) in order to denature the newly released 

protein. Following this addition, the pH was immediately adjusted to the original 

value. In these experiments practically no degradation of 246-TCP was 

observed during the next 60 hours. However, streaking agar plates with a loop 

immersed in this suspension produced fungal growth, thus confirming the
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viability of the microorganism at the end of the experiment. These results 

support the idea that the presence of extracellular protein is essential to carry 

out the degradation process.

6.4.3 Additional Biomass

The initial procedure for this experimental set was identical to that with 

separated biomass discussed in the previous section. Of the four identical 

flasks used here (each containing 44 mg/l of biomass), two were incubated and 

left untouched while a new biomass addition was made to the other two on the 

eighth hour from the beginning of the experiment (i.e., after the first major protein 

release had occurred), thus bringing their biomass concentration to 60 mg/l. 

The results are shown in tables 6.4.3 and 6.4.3b and in Figure 6.4.3, in which 

each point represents the average of an experiment run in duplicate.

During the first 14 hours, both systems produced nearly identical results in 

terms of 246-TCP degradation. During this period the extracellular protein-time 

profiles for both systems were also very similar, including the rapid protein 

release some five hours from the start. However, beginning at time t = 14 hours, 

the system containing the additional biomass showed a second marked 

decrease in 246-TCP concentration. At the same time, a new rapid release of 

additional extracellular fungal protein occurred. This release occurred 6 hours 

after the new biomass addition was made. The lag time between such biomass 

addition and the following protein release was nearly the same as the lag time 

between the beginning of the experiment and the first protein release.This 

experiment not only confirms the previous conclusion that the extracellular 

protein and the biomass are both required for 246-TCP degradation but also 

shows that the extracellular fungal protein released by the biomass is the limiting 

factor in the degradation process.
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6.4.4 Additional Supernatant

These experiments were similar to those discussed in the previous section with 

the major difference that 8 hours after the beginning of the experiments 

additional supernatant from the continuous reactor (instead of additional 

biomass) was added to two of the four flasks. The results are reported in Figure

6.4.4. Even accounting for the effect of dilution, this figure shows that the rate of 

246-TCP degradation was significantly higher when additional supernatant was 

present at constant biomass concentration. This confirms the conclusion 

reached in the previous section that the extracellular fungal protein 

concentration is the limiting factor in 246-TCP degradation.

Figure 6.4.4 also shows that 246-TCP degradation ceased almost entirely 

40 hours after the extracellular protein was released. These results are similar 

to those reported previously in Figure 6.4.2, indicating once again that the 

enzyme system contained in the extracellular protein has a finite lifetime.

The results for another experiment is also produced here in Table 6.4.4b 

for further confirmation of the results obtained in the previous experiments.

6.5 Oxygen Requirement

Experiments were conducted to find out whether oxygen is required in the 

degradation of 246-TCP. The results are shown in Table 6.5 and Figure 6.5. It 

is clearly seen that without the presence of oxygen no degradation of 246-TCP 

takes place. So presence of oxygen along with biomass and extracellular 

protein is necessary for complete degradation of 246-TCP.

This short experiment was very important to verify the absence of ligninase 

in the degradation process and was a confirmative test to our findings that the 

observed degradation was not due to ligninase. In 1990, Munhein and his co

workers (53) showed that ligninase can express its activity in an anaerobic
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condition. However, this experimental result shows that no degradation 

occurred in the absence of air, which confirms beyond doubt at this point that 

ligninase was not present in the system, otherwise it could have degraded 246- 

TCP in the absence of oxygen.



CHAPTER 7

REACTION SCHEME AND DEGRADATION 
MODELING

The degradation of toxic compounds by Phanerochaete chrysosporium is an 

enzymatic process where the biomass or the cell-bound enzymes play an 

important role in breaking down the intermediates. The structural features and 

large size of molecules such as lignin (mw 600-1000 kilo-daltons) suggest an 

extracellular enzymatic reaction as the first step. Particularly in experiments with 

separated supernatant or separated biomass, unidentified intermediates are 

observed in chromatograms of the batch liquor.

Four typical chromatograms for 246-TCP are presented in Figure 7.1 to

7.4. These reveal three small peaks at 4.48, 5.07 and 5.37 minutes after 

injection (the 246-TCP peak occur at 3.28 minutes after injection). Similarly in 

Figure 7.3 and 7.4 we detected the same compounds as indicated by identical 

retention time in the chromatogram.

The reaction scheme proposed in Figure 7.5, TCP binds with the 

extracellular enzyme (s) (E-,) to form an enzyme-substrate complex (E1C), which 

is then transformed to an intermediate D, releasing the enzyme (s) En. Although 

more than one intermediate was detected in the chromatograms, for simplicity 

we assume in the reaction scheme that only one intermediate is formed. In the 

next step, D reacts with the cell bound enzyme EB producing the final products P.

Ej +C  <=> EjC 

E,C k> >E ,+ D

(7.1)

(7.2)
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D + Eb *> E bD (7.3)

EbD<=>Eb + P (7.4)

Where C is TCP, E-, is the extracellular enzyme, E ^ ,  the enzyme- 

substrate complex, D the break down intermediate of the enzyme-substrate 

complex, Eb is the cell bound enzyme, EBD is the second enzyme-substrate 

complex formed between the intermediate (D) and cell bound enzyme (EB), and 

P is the final products.

As a further assumption, the enzyme activity of E  ̂was assumed to follow a 

step function. That is, full activity for the first 32 hours to 45 hours (depending 

on pH) followed by no activity (see also Section 6.4.2 and 9.1).

During the experiments with separated extracellular protein containing 

supernatant, we observed stable unidentified intermediates as seen in Figures

7.3 and 7.4. A close look at these two chromatograms indicates that the area of 

the peak corresponding to the retention time 5.4 progressively increases. On 

the other hand although the same peaks were detected with whole slurry 

experiments, they are further transformed as indicated from the area of the 

peaks at 5.4 minutes as shown in Figure 7.1 and 7.2. Chang et al. (13), also 

concluded that the step leading to ring cleavage is the rate limiting step. 

Therefore we assumed that reaction 7.2 is the rate-limiting step.

From reaction 7.1,

Ki = / - 7 ^ T  (7.5)[£ J C ]

Total concentration of enzymes (Ep  is given by that bound plus free enzymes: 

[E1*]=[E,)+[E,C] (7.6)

or [E ,M E /] - [E,C] (7.7)
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Substituting in (7.5) we obtain,

r  _ _ [ £ £ ] _ _  ,7 8 >
‘ Cjc]

or,[£,c]=£ iM ^ I (7.9)
1 1 J l-hATjC]

Now from reaction step (7.2), we can write the rate of reaction

= *f2[E,C] (7.10)

Substituting [EC] from (7.9) in (7.10) we obtain,

if,y2[c][E,']
i + e ,[c]

(7.11)

o r _ r = ^ M  ( 7 1 2 )

We now assume that at any instant, [E /js lE J since [E1C ]«  [E,*]

Therefore, by dropping the parenthesis as the symbol for concentration one 

obtains

_  y^CE,
Kn + C v '

Where C = K 2 and Km=1 /K, (7-14)

Since it is not possible to measure the particular enzyme involved in the 

degradation, the total protein concentration which can be measured easily was 

taken to be proportional to E^.

E1=K* ET, (7.15)
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where K is the proportionality constant and ET is the total enzyme 

concentration.

The proportionality constant now can be absorbed in V * ,^ , Then,

V = K* V*v max ■' v max

where V * ^  is the actual model parameter for the particular extracellular 

enzyme (EJ responsible for the rate limiting step (reaction 7.2).

The reaction rate then becomes 

v  CE
- ^ - C k T <7-16>m

A mass balance for 246-TCP over a CSTR at steady state with a residence time 

x results:

Cjn " Couj - TgT =0 (7.17)

in which the rate of disappearance is given by a equation (7.16)

V C ,.. _ max out t= t-r * ov
s “ 7 T T c  r  (718)m out

The resulting mass balance equation for a continuous flow reactor operating at 

steady state can be rearranged as

— ElE—  = — hn— + _ L _  (7.19)
C  — C  V  C  V'“ in '-ou t v max'-out 'max

The kinetic parameters ( V ^  and Km) can be obtained from these 

expressions by linear regression of the bench scale data. Equation (7.19) can 

be used to find the parameters Km and by plotting 1/C^, versus the group 

Ett

C - Cv "m  '- 'o u t

Then by linear regression the inverse of the intercept would give .and !<„, 

can be obtained from the slope of the straight line.
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Similarly, the comparable equation for a batch reactor is:

C.
K J n b ^ -M C . -C  > V  ETt (7.20)m 'C in our max T vout

Once the parameters Km and Vmax are obtained, they can be used to predict 

the performance of other reactors.



CHAPTER 8

RESULTS FOR PACKED-BED CONTINUOUS 
REACTOR STUDIES

From the results of the batch experiments, a reaction scheme and kinetic model 

were formulated, as cited in Chapter 7. However, the model constants were 

found using a continuous packed-bed reactor, as described in this section.

8.1 Degradation of 246-TCP

After proving the degradative ability of the fungus against both 246-TCP and

245-TCPs, experiments were conducted in the packed-bed continuous reactor. 

The results of one typical run of such experiment are shown in Table 8.1 and 

Figure 8.1. This particular experiment was performed using reactor R1 and 

continued for 21 days. The retention time for this particular run was 19.6 hours. 

Steady state was reached after about 150 hours. It had been found that the time 

required to reach the steady state of the system is 7 - 9 times the residence time 

(R.T.) of the reactor. Initially, the biomass loss from the bed was slightly higher 

and slowly attained a steady state. The reason for this increased biomass loss 

was not understood. From Figure 8.1, one can observe that at steady state the

246-TCP concentration decreases from an inlet concentration of 46.5 ppm to 

1.66 ppm at the outlet. This mineralization process was associated with chloride 

release. The chloride ion concentration increased from 6 ppm at the inlet to 28 

ppm at the outlet. Thus 97% of stoichiometric amount of chloride is liberated in 

the process.

In general, the continuous packed-bed reactor can perform more effectively than 

a batch reactor since :
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•  Any inhibitor in the reactor can not buildup in a continuous system.

e The enzymes in the reactor remain active since the residence time in the 
reactor is less than the life time of enzymes which is around 30 to 45 hours, 
as seen in previous results in chapter 6.

8.2 Effect of Glucose Concentration on 246-TCP degradation

It was necessary to know the effect of glucose and nitrogen concentrations on 

the degradation of 246-TCP, and on the behavior of the packed-bed reactor. 

The steady state results for six run are given in Table 8.2 and Figure 8.2. Figure

8.2 shows a plot of the outlet glucose concentration vs. the outlet 246-TCP 

concentration. In these experiments the inlet 246-TCP concentration was 

maintained constant for all practical purposes. The figure shows for a glucose 

concentration within a range of 4 to 50 ppm, the degradation of 246-TCP 

remained constant. However, as the outlet glucose concentration reached 

concentrations above 60 ppm, the degradation rate of 246-TCP sharply 

decreased. No clear reason is known for this phenomenon. However, it is 

known that degradation of lignin requires starvation of nitrogen, carbohydrates 

and sulfur (39). It is most likely that above a certain range of glucose 

concentration, the metabolic characteristics of the microorganism change and 

this may change the type of enzyme liberated by the fungus.

Some other experiment (Table 8.3.1) indicated that a glucose 

concentration at the outlet as a low as 0.05 ppm is enough to maintain continued 

activity and viability of the microorganisms. The effect of glucose at higher 

concentration of glucose (above 109 ppm) was not studied.

Another very important feature of these experiments is the decrease in pH 

with increase in outlet glucose concentration, which is most likely associated 

with a change in metabolism. The same observation was made during the batch
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culture, when the pH of the system dropped along with the consumption of 

glucose.

8.3 Effect of Nitrogen Concentration on 246-TCP Degradation

Experiments were also performed in which the nitrogen concentration was varied 

keeping all other parameters unchanged. Three sets of data are given in Table

8.3.1 to 8.3.3, and Figures 8.3.1 to 8.3.3. From Table 8.3.1 (Set 1) and Figure 

8.3.1, one can observe that at an outlet concentration of 1.0 ppm of nitrogen, the 

system reached a steady state within 120 hours and degradation occurs as 

expected.

However in another experiment, in which the outlet concentration of 

nitrogen was maintained at 5 ppm (Set 2 , Table 8.3.2), the system never 

reached steady state as seen in the Figure 8.3.2. In this Figure we see the pH 

slowly increased, with a loss of biomass from the reactor. In this case (set 2) the 

outlet biomass concentration was abnormally high in the range of 130 to 180 

mg/l compared to 10.0 to 15 mg/l in normal conditions (Set 1). The process was 

monitored for 9 days, and did not attain steady state within this period. We 

visually observed a slow decay in biomass layer from the packed bed, and the 

white biofilm turned faint brownish color.

In this experiment (Set 3, Table 8.3.3), a much higher initial nitrogen 

concentration was used. Within 96 hours, complete washout of the system was 

observed and the pH reached 6.48. The outlet biomass concentration was as 

high as 486 mg/l, compared to 10 to 20 mg/l in normal operation.

8.4 Effect of Nitrogen Concentration at Constant pH

From the results of Section 8.3, we observed that at some high nitrogen 

concentration the packed-bed reactor did not attain steady state. We also
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observed that during the transient phase, the biomass was depleted from the 

packed-bed with simultaneous increase in pH. It is important to know whether 

the biomass loss is due to increase in pH, to the high nitrogen concentration, or 

both. To answer this question, a single experiment was conducted at a 

controlled pH and the same inlet concentration as set #3. The results of this run 

are given in Table 8.4 and Figure 8.4. When the pH in the reactor was 

maintained at 5.6, the rate of biomass loss from the bed was smaller in 

comparison to the previous experiment (Table 8.3.3), and it took longer for 

complete washout; however washout still occurred.

Since It was not possible to achieve steady state at outlet nitrogen 

concentrations above 1 ppm, comparative data could not be obtained for the 

effect of nitrogen concentration on the degradation rate of 246-TCP.

8.5 Effect of Shear on 245-TCP Degradation

During the literature review (Chapter 2) it was mentioned that the fungus is very 

sensitive to shear. This is very important for operation of an industrial 

continuous reactor, and must be considered for bio-reactor design purposes. 

This experiment was conducted to find a critical volumetric flux (an indirect 

measurement of shear) beyond which shear has an impact on fungal growth and 

245-TCP degradation. The results of this experiment are given in Table 8.5. 

Figure 8.5 is a plot of outlet 245-TCP concentration versus the volumetric flux. 

Below a volumetric flux of 1.2 ml/cm2/min, the outlet concentration didn't change. 

However, at a volumetric flux of 1.9 ml/cm2/min, the degradation was reduced 

drastically, and stopped completely at a volumetric flow rate of 2.8 ml/cm2/min. 

In addition to reduced degradation, the glucose concentration at the reactor 

outlet also increased with increasing shear. This observation is in line with that 

observed by Toma et al. (67). These workers defined the shear-related reduced
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metabolic activity as turhohypoblosis. At high shear, a reduced DNA 

production was observed for various bacterial culture (67), and they concluded 

that above a certain shear, the catabolic and anabolic activity of most 

microorganism decreases. It was not possible to study the shear effect below a 

volumetric flux of 0 .8 , since below a recirculation rate of 6.0 ml/min, the reactor 

characteristics change and shift towards plug flow.

Thus it is concluded that for best degradation activity in packed-bed, a 

volumetric flux of close to 1.0 ml/min/cm2 should be used. This critical volumetric 

flux (ml/min/cm2) is an important criterion for designing a packed-bed 

immobilized type reactor.

8.6 Determination of Model Parameters

The packed-bed CSTR was used to determine the kinetic parameters and 

Km According to batch studies, the enzymes are active for a period of 30 hours 

at pH 5.6 and 45 hours at of pH 4.6. Therefore to prevent enzyme deactivation, 

the residence time in the reactor was always maintained below 30 hours. The 

pH was varied and the kinetic parameters were found at different pH values. 

The method of finding the kinetic parameters was described in Chapter 7.

Experiments were conducted for both 246-TCP and 245-TCP at pH 3.6, 4.6 

and 5.6. The results of the steady state experiments are tabulated in Table 8.6.1 

through 8.6 .6 . The linearly regressed lines for each compound at three different 

pH values are shown in Figure 8.6.1 to Figure 8.6 .6. For the case of 246-TCP at 

pH 5.6, 12 experimental runs were performed. Since each run takes almost a 

week, for other pH values, a fewer number (5 to 7) of experiments were 

conducted. The correlation coefficients varied from 0.977 in Figure 8.6.4, to 

0.997 in Figure 8.6.3.
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The and values at different pH are shown in Table 8.6.7 and 8.6.8 

for 246-TCP and 245-TCP respectively. The V ,,̂  and the Km values are strongly 

dependent on pH.

8.6.1 Effect of pH on V max

The variation of for both 245-TCP and 246-TCP is shown in Tables 8.6.7 

and 8.6 .8 , and in Figure 8.6.7. For both 246-TCP and 245-TCP, shows a

similar trend. As the pH increases also increases. However, at all pH 

values, Vmax for 246-TCP is much higher than that of 245-TCP, and they differ 

by approximately one order of magnitude. As shown in Chapter 7, is the

rate constant for the rate limiting step, when the enzyme-substrate complex 

breaks down into its products according to reaction 7.2. According to the results 

obtained here, the rate constant for the rate determining step increases with 

increasing pH. These results imply that at higher pH the enzyme activity 

increases. This does not necessarily mean that the degradation rate would be 

higher at higher pH, since the overall rate of degradation depends on both 

and Km The Km also changes with pH as described in the next section.

8.6.2 Effect of pH on Km

The Km changed over the pH range 3.6 to 5.6. According to equation 7.5 and 

7.14,

K
m " [E,][C]

If the complex has more than one oxidation state, (which is often the 

case), it will be a function of pH. This occurs via a zwiterion ion effect. 

Moreover, this type of phenomenon is commonly found for many enzymatic 

reactions (61).
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The K,,, values for both the TCP's are shown in Tables 8.6.7 and 8 .6.8 , and in 

Figure 8 .6 .8 . Contrary to the trend of variation of with pH, Km varied with pH 

in a non-linear fashion. Furthermore, the pattern of changes in with pH were 

different for 246-TCP and 245-TCP. For the case of 246-TCP, decreased 

from 27.13 ppm to 16.74 ppm as the pH increased from 3.6 to 4.6. However for 

245-TCP, the corresponding Km value increased sharply from 2.20 ppm to 28.23 

ppm as pH increased from 3.6 to 4.6. The Km for 246-TCP increased from 16.74 

ppm to 34.82 ppm as the pH increased from 4.6 to 5.6 whereas for of 245-TCP it 

decreases from 28.23 ppm to 9.63 ppm.

Km is the inverse of the equilibrium constant for reaction 7.1. Thus, a low 

Km, denoting a high equilibrium value for reaction 7.1, is desirable.

8.7 Verification of Model Parameters at Other pH Values

The model constants (V,^ and K J were determined at three discrete pH values 

of 3.6, 4.6 and 5.6. At other pH values, Vmax and Km were determined by 

interpolation of the curves in Figures 8.6.7 and 8.6 .8. Outlet reactor 

concentrations were then calculated and compared to experimental data. 

Results are given in Tables 8.7.1 and 8.7.2. The predictions matched 

reasonably well with the experimental values, with an average error of about 

10%. Thus, the model can be used to predict the degradation of both model 

compounds within a range of pH from 3.6 to 5.6.

8.8 Degradation of Phenol

In this experiment, the degradative ability of the fungus against phenol was 

tested. Experiments were conducted at four pH values. The results are shown 

in Table 8.8 and Figure 8.8. Practically no degradation of phenol took place in 

any of the experiments. Degradation of phenol is also not reported in the
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literature, in spite of the fact that lignin has a phenolic structure. One possible 

explanation is offered as follows:

According to Shoemaker et al. (64) the degradation process proceeds via a 

reduced oxygen species. Phenol is more electropositive compared to 

trichlorophenols, thus it may be possible that the electron transfer does not take 

place from the enzyme to the phenol. If this is true, then we should see higher 

degradation rates for more highly chlorinated phenols. So the next experiment 

was conducted to test the degradation of pentachlorophenol.

8.9 Degradation of Pentachlorophenol

The results of the pentachlorophenol degradation experiment is shown in Table 

8.9. and Figure 8.9. Within 8.6 hours, the PCP concentration decreased from

23.4 ppm to 1.66 ppm. Compared to the results of Lin et al.(45), the rate of 

degradation obtained in the present study is more than 300 times greater. It is 

worth mentioning here that ligninase was not detected throughout this 

experiment.



CHAPTER 9

VALIDATION OF THE MODEL IN BATCH SYSTEM 
AND OPTIMIZATION OF PH

In this chapter, the model was used to predict the rate of degradation of 246- 

TCP in batch systems. These values were compared with the experimental 

data. In addition, a sensitivity analysis was performed to optimize the operating 

pH.

9.1 Comparison of the model with Batch experimental data

As described in the previous chapters, the kinetic parameters were found from 

continuous reactor experiments. However, to check the validity of the model, it 

was tested against batch experimental results. To have a batch system with 

fresh enzymes, these experiments were performed by separated biomass as 

described in Chapter 5. The results for these experiments with 246-TCP are 

shown in Figures 9.1.1 to 9.1.3. The predicted concentrations of 246-TCP were 

calculated using equation 7.20 as shown in the same Figures.

In Figure 9.1.1 (pH 5.6), we observe that the predicted result agrees with 

the experimental data for about 30 hours. A similar observation was also made 

with separated biomass experiments. As a possible explanation we suggest that 

the enzyme gets deactivated after a certain period. The time for which the 

enzymes remain active (life time of enzymes) depends on the pH of the system. 

The approximate life time for these enzymes are 32 hours at pH 5.6, and 45 

hours at a pH 3.6 and 4.6. Considering the error involved in the measurements 

of TCP concentration and protein concentration, the experimental results were in 

good argument with the predicted results. These results not only validate the
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model, but also prove that the enzyme has an definite life time, and the rate of 

deactivation depends on the pH of system.

9.2 Optimization of pH

Many contradictory reports have been published regarding the optimum pH for 

degradation by Phanerochaete chrysosporium. The range of pH varied from 3.0 

to 6.0. For example, according to Kersten and Kirk (36), the optimum pH for this 

degradation process is around 6.0. On the contrary, Aitken and his co-workers 

reported the optimum pH to be around 3.0 for o-cresol. Harvey et al. (27), 

reported the optimum pH to be around 4.6. Here we suggest that most likely all 

of them are right, and the optimum pH depends on the compound and its 

concentration.

According to the proposed model, the rate of degradation depends on 

Vmax and Km. The kinetic constants Vmax and Km are functions of pH, and 

the life time of the enzymes also depends on pH. To optimize pH for any 

particular degradation process, results can be obtained by simulation, using the 

previously obtained kinetic parameters. In these simulations, a constant 

concentration of protein of 10 ppm was used in all cases. The time for which the 

enzyme remains active is 32 hours for pH 5.6, and 45 hours for pH 3.6 and 4.6. 

The initial concentrations of either 246-TCP and 245-TCP were 2.0, 10.0, 25.0 

and 50.0 ppm. Three different pH values (3.6, 4.6 and 5.6) were studied. The 

results are shown in Figure 9.2.1 to 9.2.8.

In Figure 9.2.1, for the case of 246-TCP (having a initial concentration of 

2.0 ppm) we observe, that for both pH 4.6 and 5.6, the degradation rate is 

practically same and for pH 3.6 the degradation is lower. Thus, a suitable pH 

would be either 4.6 or 5.6. So one can choose between either pH 4.6 or pH 5.6 

for the degradation of 246-TCP with an initial concentration of 2.0 ppm.
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However, as has been shown previously, the enzyme can retain its effectivness 

for about 45 hours at a pH of 4.6 compared to only 32 hours at pH 5.6. 

Therefore, pH 4.6 would be the right choice in this case.

In the case of 245-TCP in Figure 9.2.2 for the same initial concentration, 

the choice is between pH 3.6 or 5.6. Due to longer activity of the enzyme at pH 

3.6, this would be a better choice. So the suitability of pH varies from case to 

case, depending upon the initial concentration of the toxic compound.

However, in case of both 246-TCP and 245-TCP, as the initial concentration 

goes up, higher pH ( 5.6) becomes the obvious choice as seen in Figures 9.2.3 

to 9.2.8.



CHAPTER 10

CONCLUSIONS AND RECOMMENDATIONS FOR 
FUTURE WORK

10.1 Conclusions

o It was experimentally verified that Phanerochaete chrysosporium 

can degrade both 246-trichlorophenol and 245-trichlorophenol, and 

pentachlorophenol, but not phenol.

o Degradation of tri-chlorophenols and pentachlorophenol can occur 

in a ligninase-depleted system.

o The fungus can not retain its degradative ability for more than 5-7 

days under nutrient-depleted conditions. As the nutrients are 

depleted, the pH of the system rapidly increases.

o The optimum ratio of sodium nitrate to glucose in both growth 

medium and induction medium is about 1:170 by weight.

o For maximum degradation, the optimum concentration of glucose 

should be below 50 ppm, that of nitrogen should be below 1.0 ppm 

and the volumetric flux below 1.0 ml/cm2/min.

o Neither biomass nor the extracellular enzyme alone can degrade 

246-TCP or 245-TCP. Both biomass and extracellular enzyme are 

necessary to mineralize these compounds.
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o  The concentration of the extracellular enzyme secreted by the 

biomass is rate limiting in this process.

o An enzymatic model has been developed, and the model 

parameters determined from continuous reactor experiments.

o The model parameters developed in the continuous reactor were 

able to predict the batch performance fairly well.

o A packed-bed on which the fungus was immobilized can be 

operated continually for 8 to 10 months.

o The values of the model parameters Vmax and Km strongly depends 

on pH. The optimum pH depends on the concentration of the 

compound to be treated.

10.2 Recommendations for Future Work

o This study indicates that higher nitrogen concentration has a 

deleterious effect on both the microorganism and degradation 

the rate. However, the use of slow releasing nitrogenous material 

may be helpful in eliminating the problem.

o Studies must be done on fundamental understanding of enzyme 

deactivation.

o Studies should be performed with mixed substrates, 

o Pilot plant studies, using industrial effluents, should be conducted
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Table 6.1

Effect of Air Stripping on Nitrogen Source in Shaker Flask

pH = 5.0

Time
(Mrs)

NH4CI
(ppm)

NaN03
(ppm)

0 31 34.6
1 30 34.6
2 28.7 34.6
3 27 34.6
4 26.1 34.5
15 24 34.3
25 18 34.2
43 12 34.2
79 7 34.1
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Table 6.2
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Parameter Changes During Growth of Phanerochaete chrvsosoorium

Time

(hrs)

pH N as 

NaN03  

(ppm)

N as 

NH4CI 

(ppm)

Glu

(ppm)

Prat.

(ppm)

BM

(ppm)

0 4.55 29.0 0.4 6916 1.0 0
1.5 4.54 25 0.8 6889 0

5.25 4.51 16.0 1.0 33 10
25.0 3.39 4.5 2.0 5575 300 17
49.0 3.30 1.3 1.2 5100 758 30
75.0 3.20 0.7 1.0 947
80.0 3.12 0.3 1.3 4416 823.3 190
104.0 2.94 0.2 1.4 3369 870
128.0 2.91 0 0.9 2834 1106 310
152.0 2.88 0 1.3 2090 1292
178.0 2.85 0 2.1 2000 1341 330
204.0 2.82 0 0.2 1990 -

228.0 2.81 0 1.0 1307 2011 300
252.0 2.80 0 1.4 492 2083
276.0 2.79 0 2.0 316 2024 280
300 2.81 0 3.7 0 -

324.0 2.82 0 9.0 0 1911 260
328.0 2.83 0 11.0 0 _

376.0 2.86 0 9.2 0 1851
424.0 3.11 0 6.2 0 1830 239
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Table 6.2.4

Relationship Between pH and Biomass Concentration

Time
(hrs)

PH N
(ppm)

Glu
(ppm)

Prot.
(ppm)

BM
(ppm)

0 4.42 31 5990 470 3000
2.0 4.2 9 5950 700
5.0 3.7 3 4740 1000 3050
10.0 3.2 1 4000 3670
24.0 2.9 0.8 1300 4200 4800
30.0 2.7 0.4 400 4700
36.0 2.63 0 0 - 5300
40 2.82 0 0 -

42 3.4 0 0 4610 -

53.0 5.8 0 0 5130
72.0 6.4 0 0 -

75.0 6.5 0 0 3850
80.0 6.58 0 0 4990
96.0 6.62 0 0
108.0 6.66 0 0
132.0 6.68 0 0 3650 4740



Table 6.3.1

Degradation of 246-TCP by Whole Slurry in Shaker Flask

Time
(Hrs)

246-
(ppm)

Prot
(ppm)

pH Glu
(ppm)

N
(ppm)

B.M
(ppm)

Cl
(ppm)

ug
(AU)

Cont
(ppm)_

0 22.40 326 3.73 37 1.5 147 17 0 26.43
12 22.07 327 3.70 26 1.2 17.1 0
24 21.15 329 3.63 17 0.2 149 17.3 0
36 20.88 330 3.61 7 0 17.6 0
48 20.08 334 3.61 0 0 149 17.8 0
72 19.54 341 3.60 0 0 18.6 0
96 18.74 349 3.60 0 0 18.9 0 26.33
120 17.97 359 3.61 0 0 - 0
143 17.13 367 3.62 0 0 138 19.3 0
168 16.84 379 3.64 0 0 19.8 0
192 16.53 386 3.67 0 0 20.1 0
216 16.11 404 3.71 0 0 - 0 25.81
240 15.98 390 3.76 0 0 133 20.2 0
265 15.79 392 3.82 0 0 20.2 0
288 15.59 394 3.88 0 0 20.3 0 25.70
311 15.44 387 3.94 0 0 120 20.4 0
336 15.38 380 4.10 0 0 20.4 0
384 15.40 360 4.11 0 0 119 20.45 0 25.44
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Table 6.3.1b

Degradation of 246-TCP bv Whole Slurry with Adjusted pH

pH adjusted to 5.6 by KOH solution,
Initial Biomass Concentration=270 ppm

Time
(hrs)

2,4,6
(ppm)

Protein
(ppm)

pH Glu
(ppm)

N
(ppm)

Lig
(AU/5
min)

Cl
(mg/l)

Cl Rec
(%)

0 44.89 217 5.6 60 1 0.011 8 -

6 44.16 219 5.56 26 0.4 0.009 N.R. N.R.

10 43.86 223 5.54 11 0.2 0.007 8.3 54.02

22 43.06 229 5.52 6 0.1 0.002 8.8 81.08

31 42.26 231 5.47 3 0 0 9.2 84.62

48 41.72 247 5.39 1 0 0 9.6 93.61

72 41.07 261 5.28 0 0 0 9.8 87.39

96 40.83 287 5.27 0 0 0 9.9 86.79

108 40.43 298 5.36 0 0 0 10 83.17

133 40 304 5.47 0 0 0 10.5 94.82

157 39.7 289 5.49 0 0 0 10.7 96.48

205 39.2 267 5.5 0 0 0 10.9 94.52

220 38.97 258 5.5 0 0 0 11 93.98

256 38.57 250 5.53 0 0 0 11.2 93.90



Table 6.3.4

Degradation of 246-TCP by a Whole Slurry In a Substrate-Depleted Medium

Initial Biomass Concent rati on=2.42 gm/l Final Biomass Concentration 2.04 gm/l

Time
(Hrs)

246
(ppm)

Prot
(ppm)

PH Glu.
(ppm)

N
(ppm)..

Cl
(ppm)

Lig.
(AU)

BM
(ppm)

Cont.
(ppm)

0 49.6 2473 4.31 0 0 51.0 0.009 2420 51.4
24 47.8 2474 4.09 0 0 52.0 0.009 . 51.4
36 45.71 2489 4.56 0 0 53.0 0.008 •

72 43.42 2546 4.98 0 0 0.003 2400
96 41.16 2600 5.6 0 0 54.0 0 51.1
108 40.0 2689 5.69 0 0 0
120 39.21 2711 5.70 0 0 55.7 0 -

144 38.60 2800 5.72 0 0 56.4 0 - 50.66
168 37.08 3158 5.72 0 0 57.0 0 •

192 36.84 3087 5.75 0 0 57.2 0 - 50.08
216 36.60 3000 5.80 0 0 57.2 0 -

240 36.48 2922 5.82 0 0 57.3 0 2040 49.88
242 36.49 2940 5.80 4000 8 57.3 0 «. _

250 35.84 3000 5.41 3830 2 _ 0 2134 _

266 35.00 3300 4.62 2160 1 58.6 0 - -

290 34.49 3500 4.30 700 0.3 • 0 2300 49.72
310 34.00 3797 4.20 0 0 59.1 0 2200 .

316 33.78 3544 5.74 0 0 59.1 0 - _

340 33.60 3382 6.30 0 0 59.2 0 2100 49.37
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Table 6.3.5

Degradation of 245-TCP bv Whole Slurry in Shaker Flask

pH adjusted to 5.6 by 0.1 N KOH solution

Time
(Hrs)

246
(ppm)

Prot
(ppm)

pH Glu.
(ppm)

N
(ppm)

Cl
(ppm)

Lig.
(AU)

BM
(ppm)

Cont.
(ppm)

0 33.5 200.1 5.60 92 1.8 0.4 0.009 240 35.0
6 33.16 201 5.57 74 1.3 0.4 0.009 -

10 32.00 203 5.56 33 0.3 0.7. 0.008 -

22 31.51 209 5.54 11 0.1 1.2 0.003 -

31 31.13 211 5.49 4 0 1.3 0 -

48 30.72 217 5.43 0 0 1.9 0 267- 35.0
72 28.59 228 5.2 0 0 2.2 0 -

96 27.17 240 5.18 0 0 2.9 0 -

108 26.88 238 5.24 0 0 3.0 0 232
132 26.50 229 5.43 0 0 0 -

156 26.00 223 5.54 0 0 3.3 0 -

180 25.89 210 5.60 0 0 3.4 0 - 34.89
248 25.75 205 5.62 0 0 3.4 0 -

256 25.68 205 5.64 0 0 - 0
280 25.49 189 5.68 0 0 3.5 225 34.60
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Table 6.4.1

Degradation of 246-TCP by Supernatant at pH 5.6

Time
(Hrs)

246
(ppm)

Prot
(ppm)

Cl
(ppm)

pH Cont
(ppm)

0 45.06 210 5 5.6 44.85

2 44.86 5.6

5 44.65 210 5.0

6 44.51

8 44.33 211 5.6

16 43.29 209 5.0 44.7

24 44.77 5.6

32 44.0 212 5.0

40 43.67 5.6

52 43.39 211 5.05 43.98

70 43.28 208 5.1 5.64 43.60
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Table 6.4.1b

Degradation of 246-TCP bv Supernatant at pH 4.6

Time

(Hrs)

246

(ppm)

Prot

(ppm)

Cl

(ppm)

pH Control.

(ppm)

0 32.33 177 5.6 4.6 34.54

1 32.50

2 32.32

3 32.35 176

4 32.32 4.6

6 32.27 177 5.6

8 32.36

10 32.22 5.6 4.60 34.58

11 32.18

22 31.68 178 34.40

26 31.40

36 31.1

48 30.94 175 5.7 4.60 34.28

53 30.78

61 30.58

70 30.55 177

80 30.59 176 5.73 4.60 34.03
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Table 6.4.2

Degradation of 246-TCP by Separated Biomass at pH 5.6

Biomass Concentration=44 ppm

Time
(hrs)

246-TCP
(ppm)

Protein
(ppm)

PH Cl
(ppm)

Cum. Cl 
Recovery

0 45.13 0 5.6 4 0

1 45 0 5.6 4 0

2 44.89 0 5.6 4 0

3 44.93 0 5.6 4 0

4 44.97 0 5.6 4 0

5 44.88 0.7 5.6 4 0

6 44.73 1.9 5.6 4 0

8 44.78 2.2 5.6 4.15 79.48

9 44.03 2.2 5.6 4.25 42.15

10 43.99 2.27 5.6 4.3 48.81

12 43.1 2.33 5.61 4.35 31.98

14 42.8 N.R. 5.61 N.R. N.R.

16 42 2.4 5.61 5.17 69.33

18 41.39 N.R. 5.62 N.R. N.R.

27 40.71 2.48 5.62 5.6 67.13

32 40 2.52 5.62 5.75 63.27

36 39.88 2.58 5.63 5.95 68.89

40 39.54 2.63 5.63 6.1 69.67

54 39.4 2.78 5.64 6.1 67.97

70 39.42 2.8 5.65 6.2 71.46
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Table 6.4.2b

Degradation of 246-TCP by Separated Biomass at pH 4.6

Biomass Concentration=69.0 ppm

Time

(Hrs)

246-TCP

(ppm)

Protein

(ppm)

Cl

(ppm)

PH 246-TCP

Control.

(ppm)

0 31.63 0 1.0 4.6 34.54

1 31.60 0 1.0 4.6

2 31.62 0 1.0

3 31.31 0 1.0

4 31.62 0.19 1.0 4.6

6 31.57 3.7 1.0

8 31.56 4.96 1.1

10 31.22 5.0 1.3 4.6 34.58

11 31.0 5.07

22 30.0 5.11 2.6 4.62 34.40

26 29.0 5.18

36 28.0 5.18 2.6 4.62

48 26.41 5.13 34.28

53 26.18 5.29 3.8 4.63

61 26.03 5.40

70 25.89 5.37

80 25.92 5.63 4.0 4.63 34.03

Table 6.4.3
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Table 6.4.3

Degradation of 246-TCP with Additional Biomass at pH 5.6

Wi h Addition Without Addition

Time

(Hrs)

246

_(PPm)

Prot

(ppm)

BM Cl

(ppm)

246

(ppm)

Prot

(ppm)

BM Cl

(ppm)

Cont.

(ppm)

0 54.6 0 24 0 54.63 0 24 0 53.1

2 54.7 0 24 0 54.6 0 24

3 54.68 0 24 0 54.7 0 24 0 53.3

4 54.70 0 24 54.6 0 24

5 54.72 0 24 m 54.6 0 24 0

6 54.30 0.3 24 54.36 0.3 24 53.1

8 54.1 1.7 60 0.2 54.07 1.75 24 0.2

10 53.51 1.9 60 53.36 2.0 24

12 53.21 2.0 0.6 53.14 2.0 24 0.4

14 52.74 2.0 60 52.83 2.0 52.90

16 52.45 3.7 1.1 52.68 2.0

18 52.30 4.1 60 52.58 2.1 24

32 48.1 4.2 51.86 2.11 1.0

48 45.0 4.4 60 5.8 51.74 2.2 24 1.1 52.80
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Table 6.4.3b

Degradation of 246-TCP with Additional Biomass at pH 4.6

Wi th Addition Without Addition

Time

(Hrs)

246

(ppm)

Prot

(ppm)

BM

(ppm)

Cl

(ppm)

246

(ppm)

Prot

(ppm)

BM

(ppm)

Cl

(ppm)

Cont

(ppm)

0 21.9 0 89 0 21.9 0 89 0 21.9

1 22.0 0 0 0 0

2 21.87 0 0 21.9 0 0

3 21.9 0 0 0 0

4 22.07 0.5 0 21.0 0.9 0

6 22.0 0 22.0 4.5 0

8 21.7 8.6 154 0 21.80 9.1 _ 0 21.9

10 21.4 9.2 0.2 21.50 9.20 0.2

12 20.8 9.4 0.5 21.0 9.17 0.4

14 20.4 13.1 0.4 20.81 9.40 0.4

16 19.2 17.0 0.7 20.30 9.20 0.7

18 18.4 18.7 2.0 19.52 9.30 0.9

20 17.7 19.0 154 2.4 19.5 9.60 89 1.2 21.8
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Table 6.4.4

Degradation of 246-TCP with Additional Supernatant at pH 5.6

Initial Biomass Concentrations 22 mg/l 
 10 ml Supernatant Added_____

Time With Additionai Without Add ition

(Hrs) 246

(ppm)

Prot.

(ppm)

Cl

(ppm)

pH 246

(ppm)

Prot

(PPm)

Ci

(ppm)

pH 246

(ppm)
0 49.6 0 0 5.6 49.64 0 0 5.6 44.85
1 49.6 0 0 49.58 0 0 5.6
2 49.6 0 0 5.6 49.67 0 0 -

3 49.7 0 0 49.63 0 0 -

4 49.67 0 0 5.6 49.67 0 0 -

5 49.62 0.1 0 49.62 0 0 - 44.91
6 49.60 0.9 0 5.6 49.60 0.9 0 5.6
7 49.52 1.17 0.1 5.60 49.60 1.9 0.2 5.6
8 44.20 3.32 0.2 5.56 49.30 2.10 0.4 -

9 43.49 3.40 0.3 5.56 48.90 2.12 0.7 -

10 42.97 3.38 0.4 5.56 48.54 2.13 1.0 5.6 44.71
12 41.58 3.35 0.71 5.56 47.8 2.14 1.2 5.6 44.82
14 40.32 3.33 1.37 5.56 47.10 2.14 1.5 5.6
16 39.08 - 2.0 5.56 46.10 2.14 1.9 -

18 38.54 3.29 2.37 5.57 45.30 2.16 3.4 - 44.83
20 37.41 3.31 2.60 5.57 42.00 2.18 3.5 5.60
30 35.16 3.37 3.0 5.57 41.3 2.18 3.6. -

32 34.62 3.36 4.0 5.57 40.40 2.18 - 5.60
34 32.87 5.0 5.57 39.90 2.18 5.0 5.60 44.70
36 32.22 5.1 5.57 38.7 2.19 5.0
40 31.85 3.39 5.50 - 36.90 2.20 5.1 5.61
54 30.9 3.39 5.80 5.57 36.73 2.20 -

56 30.5 3.41 5.90 - 36.40 2.22 5.1 5.61
60 29.63 3.43 - 5.58 36.20 2.22 - - 44.47
68 29.11 3.47 6.0 36.00 2.22 5.2 5.62
70 28.89 3.41 6.1 5.58 36.00 2.24
72 28.80 3.44 6.3 35.89 2.27 5.3 5.62
80 28.88 3.60 6.3 5.60 35.83 44.52
108 28.63 3.89 6.4 5.62 35.73 2.30 5.4 5.63
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Table 6.4.4b

Degradation of 246-TCP by Additional Supernatant at pH 4.6

Biomass Concentration=89 mg/l 
5 ml of supernatant added

With Additional 

Supernatant

Without Additional 

Supernatant

Cont.

246

(PPm)

Prot

(ppm)

a

(ppm)

pH 246

(ppm)

Prot

(ppm)

a

(ppm)

pH 246

(ppm)

0 22.0 0 0 4.6 21.9 0 0 4.6 21.9

1 0 0 m 0 0

2 22.0 0 0 21.9 0 0

3 0 0 4.6 0 0

4 21.9 0.5 0 21.0 0.9 0

6 21.94 5.0- 0 22.0 4.5 0

8 21.75 17.4 0 4.6 21.80 9.1 0 21.9

10 21.21 17.6 0.1 21.50 9.20 0.2 4.6

12 20.50 17.7 4.6 21.0 9.17 0.4

14 19.72 17.8 1.4 20.81 9.40 0.4

16 19.0 17.8 4.6 20.30 9.20 0.7 4.6

18 18.0 18.0 2.1 19.52 9.30 0.9

20 17.5 18.1 2.4 4.6 19.5 9.60 1.2 4.6 21.8
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Table 6.5

Oxygen Requirement During Degradation of 246-TCP bv Whole Slurry

Biomass concentration^ 37 mg/l; pH adjusted to 5.6

In Presence of Air in Shaker Flask In absence of Air in air tight bottle

Time

(Hrs)

246

(ppm)

Prot

(ppm)

DO

(ppm)

a

(ppm)

246

(ppm)

Prot

(ppm)

DO

(ppm)

a

(ppm)

Cent

(ppm)

0 29.6 185 7.0 2.0 30.7 186 0 2.0 30.3

2 29.6 187 6.7 2.0 30.4 186 m 2.0 30.3

6 29.41 190 6.5 2.0 m

17 28.61 190 6.5 2.4 30.30 187 2.0

20 28.2 190 6.4 2.5

36 27.4 198 6.4 3.1

48 26.7 211 6.4 3.2 30.3 185 m 2.0 30.22

54 26.11 221 6.4 m

60 25.40 227 6.4 4.0 30.28 183 30.34

70 24.0 230 6.3 30.32 189 m

81 23.73 235 6.4 4.3 m

96 23.00 239 6.4 4.4 30.3 188 m

108 22.30 229 6.4 4.5

140 22.51 226 6.4 4.6 30.25 185 _ 2.0 30.30
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Table 8.1

Degradation of 246-TCP in Packed-bed Continuous Reactor

Measured concentrations at the outlet of the packed bed reactor during a 

particular run in which the residence time was 19.6 hours, at a flow rate of 1 

ml/min,inlet 2,4,6-TCP concentration was 46.5 mg/l, Chloride concentration 6 

ppm at a steady state outlet pH of 5.6 *

Time

(hrs)

246

(ppm)

Glu

(ppm)

N

(ppm)

Lig Prot

(ppm)

BM

(ppm)

Cl

(ppm)

D.O

(ppm)

0 0 170 4 N.D 56 6 6 6.7

96 1.2 14 1 Det 144 11 14 6.6

146 1.5 13 0.7 N.D 174 16 26 6.7

192 1.6 11 0.6 Det 180 13 28 6.4

242 1.5 10 0.6 N.D 181 13 27 6.5

290 1.55 10 0.7 DET 179 12 28 6.4

338 1.50 11 0.7 N.D 183 12 28 6.6

390 1.46 10 0.7 Det 179 13 28 6.6
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Table 8.2

Effect of Glucose Concentration on Degradation of 246-TCP

in Continuous Reactor

Void volume 700 ml; Flow rate=1.698 ml/min; 

Retention time=6.87 hours: Recirc.rate = 7.0 ml/min 

All steady state values at the outlet

Inlet Outlet

Glu. N. Cl pH 246 Glu. N. Cl pH 246 Prot.

460 3 1.0 3.97 38.9 4 0. 14.4 4.67 6.33 89

400 3 1.2 4.57 41.0 17 0.1 15.8 4.62 7.11 98

500 3 1.2 4.60 40.7 50 0.1 16.3 4.38 7.0 101

600 3 1.2 4.58 39.4 45 0.03 17.5 3.84 6.93 93

1000 3 1.3 4.62 42.0 70 0 16.8 2.86 9.0 120

1500 3 1.3 4.60 40.6 109 0.0 12.8 2.73 14.6 135
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Table 8.3.1

Effect of Nitrogen Concentration on Degradation of 246-TCP

SET#1

Retention Time =16.08 hours; Inlet Flow rate=0.7719 ml/min. 
Internal recirculation rate=7.0 ml/min;

Inlet Gcose=800 ppm, N=5 ppm, 246=10.6 ppm ; Cl=1.0 ppm; pH=4.10;

Time

(Hrs)

Glu

(ppm)

N

(ppm)

Cl

(ppm)

Prot

(ppm)

246

(ppm)

PH BM

(ppm)

0 180 1.0 3.0 28 0 4.2 31

24 54 1.1 2.0 39 0 4.4 38

48 11 1.3 2.8 63 0.5 4.59 69

72 0.10 1.8 3.0 76 1.4 4.63 37

96 0.12 1.6 4.3 80 1.7 4.61 21

120 0.09 1.7 4.9 86 2.0 4.62 16

144 0.05 1.7 5.3 83 2.2 4.62 16

168 0.14 1.7 5.3 85 2.0 4.63 11

190 0.11 1.68 5.4 83 1.8 4.62 12
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Table 8.3.2

Effect of Nitrogen Concentration on Degradation of 246-TCP

SET # 2

Inlet Glucose concentration = 800 ppm; Nitrogen=10 ppm; pH=4.10; 
Chloride=1.0 ppm; 246-TCP=11.4 ppm, Retention Time=16.08 hours.

Time

(Hrs)

Glu

(ppm)

N

(ppm)

Cl

(ppm)

Prot

(ppm)

246

(ppm)

pH BM

(ppm)

0 70 0.2 3.0 97 0 4.4 17

24 7.0 0.7 3.1 126 0 4.5 98

48 0 2.0 3.5 80 0.4 4.5 54

96 0 2.4 3.6 56.43 2.8 4.6 101

120 0 7 4.0 48.0 2.4 4.8 130

144 0 2.6 3.5 85 2.9 5.0 129

168 0 3.0 3.0 43 2.5 5.0 177

196 0 7 2.8 56 2.2 5.2 144

220 0 11 3.0 35 2.7 5.3 119
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Table 8.3.3

Effect of Nitrogen Concentration on Degradation of 246-TCP

S.ETJL3.
Inlet Glu=800 ppm; Nitrogen=30 ppm; chloride=1.0 ppm; pH 4.7 ; 246-TCP=10.5

ppm;
Retention time= 16.08 hours

Time

(Hrs)

Glu

(ppm)

N

(ppm)

Cl

(ppm)

Prot

(ppm)

246

(ppm)

PH BM

(ppm)

0 67 1.0 3.1 78 0 4.4 12

24 8.0 2.9 2.1 198 2.4 4.9 40

48 0.01 21 1.6 220 3.6 5.3 120

72 0.0 23 1.8 251 3.8 5.7 320

96 0.0 20 2.0 270 3.0 6.48 486



Table 8.4

Effect of Nitrogen Concentration on Degradation of 246-TCP at Constant pH

Time

(Hrs)

246

(ppm)

BM

(ppm)

N

(ppm)

PH

0 0 17 0.0 5.5

24 0.7 67 1.4 5.61

48 2.0 53 3.0 5.62

72 3.7 178 18 5.58

96 5.0 260 23.7 5.60

120 7.0 300 27.0 5.63

150 7.4 239 26.1 5.59
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Table 8.5

Effect of Shear an Degradation of 245-TCP In Continuous Reactor

All steady state values at different recirculation rate 

Void volume=770 ml; I.D=4.9 cm; Total Reactor volume=1430 ml. 

Length of reactor= 76.2 c.m. Retention time= 6.337 hours

Inlet Outlet

pH 245

(ppm)

N

(ppm)

Glu

(ppm)

RR pH

(ppm)

245

(ppm)

N

(ppm)

Glu.

(ppm)

4.16 10.6 4 600 7 4.6 1.7 0.2 20

4.16. 10.6 4 600 10 4.61 1.6 0.1 17

4.15 10.0 4 600 19 4.37 5.7 2.0 239

4.15 10.0 4 600 30 4.23 10.0 3.7 569
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Table 8.6.7

Model Parameters For 246-Trichlorophenol at Different pH

PH Vma¥ (1/hr) Km (PPm)

3.6 0.1223 27.13

4.6 0.1408 16.74

5.6 0.286 34.82
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Table 8.6.8

Model Parameters For 245-Trichlorophenol at Different pH

PH Vmay (1/hr) Km (PPm)

3.6 0.0189 2.20

4.6 0.0516 28.23

5.6 0.08176 9.65
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Table 8.7.1

Predicted Vs Experimental Results of 246-TCP at Different pH

pH 246 at 

inlet 

(ppm)

246 at 

outlet 

(ppm)

Prot

(ppm)

R.T

(hrs)

Vmax

(1/hr)

Km

(ppm)

Pred.

246

outlet

(ppm)

A

(Pred-

Exp)

(ppm)

3.80 23.5 3.0 142.08 12.337 0.12 25.4 2.7 +0.3

4.0 27.50 3.2 143.0 9.97 0.125 23.0 3.6 -0.4

4.2 27.20 2.8 146.0 9.97 0.13 21.0 3.1 +0.3

5.4 35.0 13.0 38.0 10.0 0.24 27.5 10.25 2.75
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Table 8.7.2

Predicted Vs Experimental Results of 245-TCP at Different pH

pH 245 at 

inlet 

(ppm)

245 at 

outlet 

(ppm)

Prot

(ppm)

R.T

(hrs)

Vmax

(1/hr)

Km

(ppm)

Pred.

245

outlet

(ppm)

A

(Pred-

Exp)

(ppm)

3.7 44.78 12.75 184.0 10.0 0.023 5.0 12.9 +0.15

3.8 29.22 15.0 137.7 7.927 0.025 7.0 13.2 +1.8

4.2 26.7 9.0 150.0 9.97 0.038 18.0 9.0 0

5.4 54.0 8.88 166.0 10.0 0.075 15.8 8.90 +0.02
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Table 8.8

Degradation of Phenol In PacKed-Bed Reactor

In et Outlet

pH Phe

(ppm)

Glu

(ppm)

N

(ppm)

RT

(hrs)

pH Phe.

(ppm)

Glu

(ppm)

N

(ppm)

Prot

(ppm)

3.0 86.0 600 4 6.4 4.7 85.8 0 0.2 78

4.1 86.0 600 4 10.34 5.58 86.2 0 0 120

5.0 25.0 800 4.0 16.00 6.0 24.97 0 0 167

4.5 25.0 800 4.0 3.37 4.6 23.7 39 0.16 42
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Table 8.9

Degradation of Pentachlorophenol in Packed-Bed Reactor

Initial PCP conc.=23.4 ppm, Glucose=800 ppm, Nitrogen= 4.2 ppm,

Chloride=1.0 ppm, pH=4.9 

Void Volume=718 ml, Flow Rate= 1.139 mi/min. Recirculation

Rate=7.5 ml/min.

Time

(hrs)

PCP

(mg/l)

Glu

(mg/l)

Nitrogen.

(mg/l)

Lig

(AU)

Prot

(mg/l)

Cl

(mg/l)

BM

(mg/l)

0 0 170 4 N.D 56 1.8 6

24 0.2 14 1 ND 90 2.7

48 1.0 13 0.7 N.D 134 4.9 16

72 1.6 11 0.6 ND 144 11.7

96 1.4 10 0.6 N.D 142 14.04 13

120 1.55 10 0.7 ND 143 14.6

144 1.70 9 0.4 N.D 146.2 14.5

168 1.63 8 0.3 ND 142.7 14.6

197 1.60 11 0.2 N.D 143.0 14.3 13

220 1.458 12 0.2 ND 143.5 14.6 12
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Figure 5.8.1 A typical Residence Time Distribution (RTD) curve 
for a packed-bed reactor.
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Figure 6.1 Effect of air stripping on nitrogen source (shaker flask 
experiment at pH 5.0)
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Figure 6.2.1 Glucose and nitrogen depletion during growth
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Figure 6.2.3 Change in biomass and nitrogen concentration 
during growth
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Figure 6.2.4a Change in biomass concentration and pH during 
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Figure 6.3.1 Degradation of 246-TCP by whole slurry in shaker 
flask experiments without pH adjustment
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Figure 6.3.1b Degradation of 246-TCP by whole slurry in shaker 
flask experiments with pH adjustment
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Figure 6.4.2 Degradation of 246-TCP by separated biomass
shaker flask at pH 5.6
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Chromatograms of Separated Supernatant
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2,4,6-TCP + Extracellular Enzyme < |̂ v.
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Figure 7.5 Proposed Reaction Scheme for 246-TCP Degradation
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Figure 8.1 Degradation of 246-TCP in packed-bed continuous
reactor with a retention time of 19.6 hours
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Figure 8.2 Effect of glucose concentration on degradation of 246-
TCP in packed-bed continuous reactor system
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Figure 8.3.1 Effect of nitrogen concentration on degradation of
246-TCP in packed-bed continuous reactor system (SET # 1)
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Figure 8.3.2 Effect of nitrogen concentration on degradation of
246-TCP in packed-bed continuous reactor system (SET # 2)
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Figure 8.3.3 Effect of nitrogen concentration on degradation of 
246-TCP in packed-bed continuous reactor system (SET # 3)
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TCP in packed-bed continuous reactor system at constant pH of
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Figure 8.5 Effect of shear on degradation of 246-TCP in packed-
bed continuous reactor



162

E*T/(Cln-Cout)60

60

Slope-221.708

lntercept-8.172
Correlation-0.992

40

20

0.50.3 0.40.1 0.20
1/Cout

Figure 8.6.1 Determination of model parameters for 246-TCP at
pH 3.6
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Figure 8.6.2 Determination of model parameters for 246-TCP at
pH 4.6
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Figure 8.6.4 Determination of model parameters for 245-TCP at
pH 3.6
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Figure 8.6.5 Determination of model parameters for 245-TCP at
pH 4.6
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Figure 8.6.7 Variation of Vmax with pH for 246-TCP and 245-TCP
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Figure 8.6.8 Variation of Km with pH for 246-TCP and 245-TCP



170

□  In le t

□  E x p e r im e n ta l  O u t le t

□  P r e d ic te d  O u t le t

C o n e , o f  2 4 6 -T C P  

(p p m )

Figure 8.7.1 Prediction of experimental results for 246-TCP at 
various pH values by interpolation of kinetic data
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Figure 8.7.2 Prediction of experimental results for 245-TCP at 
various pH values by interpolation of kinetic data
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Figure 8.8 Degradation of phenol in packed-bed continuous
reactor at different pH values
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Figure 8.9 Degradation of pentachlorophenol (PCP) in packed- 
bed continuous reactor
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Figure 9.1.1 Comparison of predicted vs. experimental results in
batch reactor with separated biomass at pH 5.6
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Figure 9.1.2 Comparison of predicted vs. experimental results in
batch reactor with separated biomass at pH 4.6
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Figure 9.1.3 Comparison of predicted vs. experimental results in
batch reactor with separated biomass at pH 3.6
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Figure 9.2.1 Optimization of pH for degradation of 246-TCP at an 
initial concentration of 2.0 ppm

The discontinuity in the curve is due to the assumption that the 
enzyme activity is a step function. According to this assumption 
enzyme(s) remains fully active for 32 hours at pH 5.6 and 45 hours 
at pH 3.6 and 4.6; and then looses its activity instantaneously
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Figure 9.2.2 Optimization of pH for degradation of 246-TCP at an 
initial concentration of 10.0 ppm
The discontinuity in the curve is due to the assumption that the 
enzyme activity is a step function. According to this assumption, 
enzyme(s) remains fully active for 32 hours at pH 5.6 and 45 hours 
at pH 3.6 and 4.6; and then looses its activity instantaneously.
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Figure 9.2.3 Optimization of pH for degradation of 246-TCP at an 
initial concentration of 25.0 ppm
The discontinuity in the curve is due to the assumption that the 
enzyme activity is a step function. According to this assumption, 
enzyme(s) remains fully active for 32 hours at pH 5.6 and 45 hours ; 
at pH 3.6 and 4.6; and then looses its activity instantaneously. 1
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Figure 9.2.4 Optimization of pH for degradation of 246-TCP at an 
initial concentration of 50.0 ppm
The discontinuity in the curve is due to the assumption that the 
enzyme activity is a step function. According to this assumption 
enzyme(s) remains fully active for 32 hours at pH 5.6 and 45 hours 
at pH 3.6 and 4.6; and then looses its activity instantaneously.
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Figure 9.2.5 Optimization of pH for degradation of 245-TCP at an 
initial concentration of 2.0 ppm
The discontinuity in the curve is due to the assumption that the 
enzyme activity is a step function. According to this assumption, 
enzyme(s) remains fully active for 32 hours at pH 5.6 and 45 hours 
at pH 3.6 and 4.6; and then looses its activity instantaneously.
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Figure 9.2.6 Optimization of pH for degradation of 245-TCP at an 
initial concentration of 10.0 ppm
The discontinuity in the curve is due to the assumption that the 
enzyme activity is a step function. According to this assumption, 
enzyme(s) remains fully active for 32 hours at pH 5.6 and 45 hours 
at pH 3.6 and 4.6; and then looses its activity instantaneously.
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Figure 9.2.7 Optimization of pH for degradation of 245-TCP at an 
initial concentration of 25.0 ppm
The discontinuity in the curve is due to the assumption that the 
enzyme activity is a step function. According to this assumption, 
enzyme(s) remains fully active for 32 hours at pH 5.6 and 45 hours 
at pH 3.6 and 4.6; and then looses its activity instantaneously.
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Figure 9.2.8 Optimization of pH for degradation of 245-TCP at an 
initial concentration of 50.0 ppm
The discontinuity in the curve is due to the assumption that the 
enzyme activity is a step function. According to this assumption, 
enzyme(s) remains fully active for 32 hours at pH 5.6 and 45 hours 
at pH 3.6 and 4.6; and then looses its activity instantaneously.
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