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ABSTRACT

Engineering Design of an 
Anaerobic-Aerobic System to Treat Chlorophenols

by

Chih-Ju Jou

The present work was aimed at determining the effect of the main 

operating parameters on the performance of an anaerobic-aerobic reactor 

system to degrade toxic chlorinated compounds. In previous work conducted in 

the Biological Treatment Lab at NJIT it was shown that this system is capable of 

achieving the complete degradation of chlorophenols. In that system, reductive 

dehalogenation took place in the first anaerobic reactor, which was followed by a 

second aerobic reactor in which the degradation products of the first reactor 

were mineralized. In the present work the role of a number of parameters that 

can have a significant impact on the performance of the anaerobic reactor, 

namely, pH, temperature, concentration of pollutants, and residence time were 

examined.

The medium pH appears to have a very significant impact on the ability of 

the anaerobic organisms to dechlorinate. Experiments were conducted using a 

novel, chloride-free, completely defined medium in which the buffering agent 

was one of several non-fermentable buffering agents (MOPS, TRICINE, BICINE, 

CHES). The results indicate that the dechlorination process occurs only if the 

pH is within the range 8.0-8.8. In addition, stoichiometric amounts of chloride 

ion were produced during the process. The dechlorination process was also 

studied at different temperatures. It was found that the data could be interpreted 

assuming an Arrhenius kind of dependence for the degradation reactions on 

temperature.



The overall dechlorination reaction was mathematically modeled 

assuming that the degradation process is constituted of a series of single 

dechlorination steps. Rate constants for each step were obtained in 

independent experiments. The resulting model was then used to predict the rate 

of degradation in both batch and continuous reactors. The prediction of the 

model matched closely the experimental results obtained in such systems, thus 

confirming the validity of the kinetic mechanisms postulated in the development 

of the model.
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Chapter 1 
INTRODUCTION

Chlorophenols constitute an important class of compounds widely used in many 

industrial applications and commonly found in the effluents of many industrial 

plants such as paper mills, as well as in the soil of many industrial facilities. 

Chlorinated phenols have been used as antiseptics since the late eighteenth 

century, and some of them, such as 2,4,6,-trichlorophenol (2,4,6-TCP), and 

pentachlorophenol (PCP), are used as fungicides and preservatives. Most 

chlorophenols are produced directly by industry. However, they can also be 

formed during the breakdown of chlorobenzenes and the chlorination of water 

containing phenols. The presence of these compounds in water is often 

detected as a result of their medicinal odor.

Because of their toxicity and recalcitrance to traditional aerobic 

biodegradation, chlorophenols have been the focus of a number of recent 

studies and investigations targeted at determining their degradability under 

anaerobic conditions (Fathepure and Vogel, 1991; Kiyohara et al., 1992; Mohn 

and Kennedy, 1992; Nicholson et al., 1992; Battersby and Wilson, 1989; 

DeWeerd and Suflita, 1990; Holliger, et al., 1992; Mohn and Kennedy, 1992a; 

Mohn and Tiedje, 1990; Boyd et al., 1983; Boyd and Sheldon, 1984; Dietrich and 

Winter, 1990; Haggblom, and Young. 1990; Mohn and Tiedje, 1992).

One apparent limitation of anaerobic dehalogenation is that its 

effectiveness decreases in inverse proportion to the number of halogen atoms 

present in the molecule. That is, monochlorophenols are more difficult to 

dehalogenate than penta-, tetra-, or tri-chlorophenols (Hendriksen et al., 1992; 

Mohn and Kennedy, 1992a; Mohn and Kennedy, 1992b; Madsen and Licht, 

1992; Woods etal., 1989; Kohring etal., 1989; Shang and Wiegel, 1990).

1
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3

However, monochlorophenols can be successfully and rapidly degraded 

under aerobic conditions (Chaudhry and Chapalamadagu, 1991; Knackmuss, 

1982). This has suggested the approach of the present work based on the 

development of a combined anaerobic-aerobic continuous process (Figure1-1) 

to produce the complete degradation of 2,4,6-TCP (Armenante, et al., 1992; 

Kafkewitz et al., 1992). In previous studies conducted in the Biological 

Treatment Lab at NJIT, it was shown that the 2,4,6-TCP contained in an 

aqueous stream could be sequentially and stoichiometrically converted to 2,4- 

dichlorophenol (2,4-DCP) and then to 4-chlorophenol (4-CP), by anaerobic 

dehalogenation. The 4-CP so generated could then be mineralized aerobically.

Armenante et al. (1992) have shown that anaerobic dechlorination can be 

significantly affected by a number of operating parameters. In that work, the 

feed to the anaerobic reactor was the clear, sterile supernatant from a liquor 

obtained from a local treatment facility, synthetically contaminated with 2,4,6- 

TCP. Although that work showed that the process is viable when real waste 

effluents are used, it did not define the essential medium requirements for 

anaerobic dehalogenation to occur. A review of the literature showed that, until 

recently (1991), undefined media have been used in most reports of anaerobic 

dehalogenation (Mohn and Kennedy, 1992a; Madsen and Aamand, 1992).

The work of Armenante et al. (1992) also indicated the sensitivity of the 

anaerobic-aerobic process to pH change. In particular, it was observed that the 

pH optima for the anaerobic and aerobic steps were different. The anaerobic 

dehalogenation reaction was accompanied by a sharp, and apparently 

necessary, rise in pH from 7.5 to 8.7. Any attempt to lower the pH to values at or 

below 6.8 using phosphate buffer additions (50 mM) severely inhibited 

dehalogenation. Higher phosphate concentrations completely inhibited 

dehalogenation. Whether the effect was due to pH effects or phosphate-induced
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inhibition was not established. Conversely, it was found that aerobic 

degradation of the 4-CP produced in the anaerobic step took place only if 

sufficient phosphate buffer was continuously added to the aerobic reactor to 

reduce and maintain the pH below 8.0. Hence, phosphate buffer addition had 

opposite effects on the anaerobic and aerobic populations.



Chapter 2 

OBJECTIVES OF THIS WORK

The goal of this work was to answer some of the most important questions raised

in Chapter 1. Therefore, the specific objectives of this work were to:

• develop a specific chloride-free defined medium for the anaerobic 

degradation of 2,4,6-TCP, chosen here as the model halogenated target 

compound. This step was required to close the mass balance during the 

anaerobic dehalogenation process since the amount of chloride ions 

released in the process could be detected;

• improve the overall degradation rate of 2,4,6-TCP by selecting the most 

effective microbial consortia to carry out the anaerobic dehalogenation 

and aerobic mineralization steps;

• optimize the operating conditions for each step of the process with 

specific attention paid to the effects of pH on both the anaerobic and 

aerobic processes and the effect of temperature on anaerobic 

dehalogenation;

• study different reactor configurations for the anaerobic dechlorination and 

aerobic mineralization steps;

« derive and test a mathematical model for each step in the process and

explore its implications for scale-up of the combined process.

5



Chapter 3 

LITERATURE REVIEW

3.1 Use of Defined Media in 
Previous Anaerobic Dehalogenation Studies

Dehalogenation using anaerobic bacteria has been reported in a number of

publications. Although defined media have been used to conduct anaerobic

fermentations (Long-de Vallere et al., 1989), most of the available references

show that dehalogenation was observed in undefined media (for example, Tiedje

et al., 1987, Edwards et al., 1990). A number of investigators have studied

anaerobic dehalogenation in media that were completely defined except for the

use of yeast extract (Taylor et al., 1979; DeWeerd et al. 1990 and 1991; Dolfing,

1990; Kamal and Wyndham, 1990; Dolfing and Tiedje, 1986). Very few papers

reported dehalogenation in defined media until very recently (Holliger et al.,

1992; Kennedy and Berg, 1982; Mandsen and Aamand, 1992; Mandsen and

Licht, 1992).

Holliger et al. (1992) reported the successful anaerobic dechlorination of 

hexachlorobenzene (HCB), pentachlorobenzene (QCB), all three isomers of 

tetrachlorobenzene (TeCB), 1,2,3-trichlorobenzene (1,2,3-TCB), and 1,2,4-TCB 

in defined media. Mandsen and Aamand (1992) described the anaerobic 

transformation of TCPs (2,4,6-TCP, 2,3,5-TCP and 2,4,5-TCP) in a stable 

enrichment culture in a defined medium. Kennedy and Berg (1982) reported the 

anaerobic digestion of piggery waste using a stationary fixed film reactor fed with 

defined medium. Mandsen and Licht (1992) reported the isolation of an 

obligatory anaerobic bacterium that transforms several chlorophenols (CPs) in a 

defined medium.

6
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3.2 Evidence of Anaerobic Dehalogenation

Horowitz et al. (1983) performed a series of experiments with halobenzoate 

compounds to demonstrate that dehalogenation reactions are brought about by 

anaerobes and not by abiotic photochemical reactions. They showed that 

reactions occur in the dark and under anaerobic conditions with live bacteria 

present. Sterilized sludge samples did not carry out any reaction even in the 

presence of titanium citrate, a strong reductant. Furthermore, disruption of the 

normal incubation temperature (>39°C) inhibited the dehalogenation reactions in 

fresh water sediments. When halogenated aromatic compounds were added to 

unadpated sediments, lag periods with a low background of methanogenesis 

were followed by a phase of rapid degradation. Such observation indicated a 

specific biological adaptation, as seen with the acclimation of sediments by prior 

exposure to the halogenated aromatic compounds.

In general, the mineralization of halogenated aromatic compounds follows 

their complete dehalogenation. Therefore, it is important to understand the 

factors that influence the microbial attack of the halogenated compounds. There 

are similarities and differences between the aerobic and the anaerobic 

dehalogenation of aromatic compounds. For example, in both aerobic and 

anaerobic dehalogenation, the mefa-substituted aromatic compounds tend to be 

most recalcitrant (Bollag et al., 1974). On the other hand, the positive 

correlation observed in aerobic systems between the persistence of the 

compounds against dehalogenation and the number of halogens (DiGeronimo et 

al., 1979; Okey and Borgan, 1965) is not apparent for anaerobic metabolism 

(Suflita et al., 1982).

Many studies have confirmed these two general observations. For 

example, the Cl substituents ortho to the phenolic group, according to Mikesell 

and Boyd (1986), are removed more rapidly than Cl in the meta and para
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positions. Their data show that it was more difficult to dehalogenate the lower 

chlorinated phenols, namely tetrachlorophenols (TeCPs) and trichlorophenols 

(TCPs), than pentachlorophenol (PCP). Dietrich and Winter's mixed cultures 

(1990) were able to dehalogenate 2-bromophenol, 2-chlorophenol (2-CP) and 

completely dechlorinate 2,6-dichlorophenol (2,6-DCP), whereas with 2,4-DCP, 

only the ortho substituents could be eliminated.

Hakulinen et al. (1985) examined the anaerobic degradation of 8 

polychlorinated phenols (2,3-, 2,4-, 2,5-, 3,4-, 3,5-DCPs, 2,4,6- and 3,4,5-TCPs, 

2,3,4,5-TeCP, and PCP). Their results ranged from no reaction of 3,4-DCP to 

90-99% elimination of ortho chlorines from the TCPs and TeCPs.

The rate for each dehalogenation step differs among the halogens. 

Several studies (Sufiita et al., 1982; Mikesell and Boyd, 1986; Boyd and Shelton, 

1984; Boyd et al., 1983) showed that iodo- and bromo- substituents are 

degraded after a shorter lag time than their chloro- and fluoro- counterparts, 

which suggests that the iodo- and bromo- species are more readily 

dehalogenated.

Both the number and position of the halogen atoms play similar roles in 

the anaerobic degradation of polychlorinated biphenyls (PCBs) as in phenols. 

For example, the more highly substituted PCB metabolizes easier than the 

mono- and dichlorinated biphenyls (Larsson and Lemkemeier, 1989).
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3.3 Anaerobic Techniques

There are several variations of Hungate's technique for cultivating anaerobic 

microorganisms (Bryant, 1972; Holdeman and Moore, 1972; Hungate, 1969; 

Macy et al., 1972). Serum bottles closed with a butyl rubber stopper and a 

crimped metal seal (Miller and Wolin, 1974) are used for cultivation. The media 

are prepared under sterile conditions, usually with an appropriate reducing 

agent. The media are typically purged with N2 gas and added to the serum 

bottles. All inoculations are usually carried out with hypodermic syringes and 

needles.

3.4 Classification of Anaerobic Microorganisms

Anaerobic microorganisms may conveniently be divided into three general 

categories based on the organisms' trophic requirements (Barnes and 

Fitzgerald, 1987). The first comprise hydrolytic bacteria, commonly known as 

acidogens, because they initially ferment their substrate into short-chain organic 

acids and other small molecules. The second group, the heteroacetogens, 

produce acetic acid and hydrogen, and the third is that of the methanogens, 

which produce methane. The methanogens can be further divided into acetic 

acid users (acetotrophs) and hydrogen utilizers (lithotrophs). Furthermore, feed 

stocks containing sulfate sulfur and nitrate may lead to two additional groups of 

bacteria, the sulfate-reducers and the denitrifiers.

A number of anaerobic dehalogenations are methonogenic. The broad 

nutritional requirements for growth of methanogens (Schonheit and Thauer, 

1979), namely carbon, nitrogen , phosphorus, sulfur, calcium, magnesium, 

potassium, sodium, trace organic nutrients (such as amino acids and vitamins), 

and trace metals (such as iron, zinc manganese, cobalt, molybdenum and
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nickel), have made methanogens an extremely fastidious group in the symbiosis 

of anaerobic digestion.

The majority of mesophilic methanogens do not grow at pH values below 

5.5, because high acidity favors proton reduction of hydrogen rather than 

hydrogen reduction to methane, and therefore inhibits methane production. 

Empirical data have further shown that the upper pH limit for methanogenic 

activity to occur is 9.

3.5 Advantages of Anaerobic Degradation

Anaerobic processes offer several advantages over aerobic processes (Forday 

and Greenfield, 1983; Anderson et al., 1984, Long-de Vallere et al., 1989):

a. Anaerobic systems generate less sludge than aerobic systems. 

Aerobic processes typically yield about 0.5 to 1.5 kg of biomass (sludge) solids 

for each kg of biological oxygen demand (BOD) removed; while anaerobic 

processes yield about 0.1 to 0.2 kg per kg of BOD removed.

b. The aeration energy required by aerobic processes exceeds the 

mixing energy required for anaerobic processes, thus making anaerobic 

processes more energy efficient.

c. Methane, an anaerobic product, can be utilized as a source of fuel.

d. Anaerobic systems are better suited to dehalogenate aromatic 

compounds for the following reasons:

1. The decrease in the electron density of the aromatic nucleus 

enhances anaerobic enzymatic attack by a reductive (nucleophilic) mechanism 

(Klinman, 1972);

2. Halogenated aromatic compounds tend to polymerize when 

oxidized by aerobic bacteria. The polymers are rather resistant to further
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bacteria attack (Knackmuss, 1982). Anaerobic processes, on the other hand, 

prevent oxidation and polymerization, hence enhance degradation.

In addition, anaerobic microorganisms are capable of being dormant for a 

long period (2-3 months), and then being fully operational within 2-3 days 

(Armenante et al., 1992 and Kafkewitz et al., 1992).

Several socio-economical factors have lead to more support for anaerobic 

treatment, namely: the need to reduce energy costs of treatment, particularly 

when biologically treating high strength waste waters (since no aeration is 

required), the more stringent requirements to pretreat industrial waste waters 

prior to sewer discharge, and the unsuitability of alternative treatment methods 

for some types of waste waters.

3.6 Determination of the Products of Anaerobic Biodegradation

Anaerobic transformation sometimes produces intermediates and end-products 

that are more hazardous than the parent compounds (Edwards et al., 1990). An 

example is vinyl chloride produced from the dehalogenation of chloroform. 

Therefore, it is crucial to monitor the degradation products. Several techniques 

have been in use to monitor the formation of hazardous intermediates during the 

degradation process. For example, the concentration of the transformed 

compounds in the effluent can be directly determined by GC or HPLC. The 

chloride ion formation can be determined by using the chloride-ion electrode 

(Radehaus and Schmidt, 1992). The degradation products can be determined 

by GC-MS, if complete mineralization has not occurred. Measurements of gas 

production are also an indirect method to assess the degree of degradation via 

mass conversion of organic carbon to carbon dioxide and methane (Long-de 

Vallere et al., 1989; Shelton and Tiedje, 1984a). For example, Hakulinen and
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Salkinija-Salonen (1982) measured the amount of 14CC>2 to ascertain the 

complete mineralization of 14C PCP.

3.7 Isolation of Dehalogenating Pure Cultures

Several groups have isolated pure bacterial cultures capable of metabolizing 

PCP under aerobic conditions. Among them are several strains of Coryneform 

(Chu and Kirsch, 1972), Flavobacterium (Saber and Crawford, 1985), and 

Pseudomonas (Wantanabe, 1973). However, no single anaerobic bacterium 

with the ability to degrade PCP has been isolated or identified (Mikesell and 

Boyd, 1986). Very recently, Madsen and Licht (1992) has isolated an obligatory 

anaerobic bacterium capable of degrading some of chlorobenzenes.

The difficulty in isolating a pure culture is attributed to the complexity of 

the microbial attack process against the toxic compounds. A single anaerobic 

microorganism is rarely able to mineralize a complex organic molecule. Rather, 

a succession of specialized organisms modifies the molecule in turn, each 

deriving a small amount of carbon and/or energy from the reaction (Hamilton, 

1979; Lovely and Klug, 1982; Sleat and Robinson, 1984).

There have been many attempts to isolate single anaerobic cultures. For 

example, Dietrich and Winter's (1990) effort to isolate an anaerobic 2-CP 

dechlorinating organism failed. Instead a mixed culture was identified with three 

morphologically distinctive microorganisms. When Hakulinen et al. (1985) 

mixed the isolated cultures of Pseudomonas aeruginosa and Klebsiella oxytoca, 

the mixture was able to utilize 2,4,6-TCP as a sole carbon and energy source 

under anaerobic conditions. However, individually, none of the isolates were 

able to degrade 2,4,6-TCP under anaerobic conditions. Shelton and Tiedje's 

three pure cultures (1984b), which perform different reaction steps in the
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mineralization pathway of 3-chlorobenzoate, grow on 3-chlorobenzoate only 

upon mixing.

These studies suggest that anaerobic mixed microbial cultures provide 

the best hope for efficient and robust treatment.

3.8 Enrichment Sources

The first and sometimes the most time consuming step in developing a microbial 

degradation system is the search of the appropriate enrichment for selected 

microorganisms. It is important therefore to initiate sampling from the relevant 

sources in order to achieve maximum efficiency. The major sources, according 

to Berry's review (1987), include: soil, marine mud, sewage, subsurface, sludge, 

marine or lake sediments.

Soil and water samples chronically polluted with the compounds of 

interest are a major source of inocula to isolate organisms capable of attacking 

those compounds (Muller and Lingens, 1986). Organisms that are capable of 

either aerobic or anaerobic dechlorination are found in sewer systems. The 

extent of dechlorination also varies in each case study. For example, some 

PCBs (Tiedje et al., 1987), and hexachlorobenzes (Fathepure et al., 1988) are 

dechlorinated by river sediments and sewage sludge, respectively. The 

complete conversion of halobenzoic acids and halophenolic compounds to 

methane by lake sediment and sewage sludge microorganisms has been 

observed (Sahm et al., 1986). Bacterial strains from sediments of the PCB- 

contaminated New York Hudson river are able to degrade the majority of the 

congeners included in a commercial polychlorinated biphenyl oil (Bedard et al., 

1986).

Chlorinated phenols and guaiacols are able to be degraded by mixed 

bacterial cultures obtained from areas polluted by bleach plant effluents
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containing these compounds. Complimentarity seems also to be a characteristic 

of these microorganisms, as mixed bacterial cultures originating from soil 

contaminated by tetrachlorinated phenols also degraded PCP (Valo et al., 1985).

Horowitz et al. (1983) found that before the anaerobic degradation of 

halobenzoate occurred, the lag time in an unacclimated sediment ranged from 

0.4 to 40 weeks. They concluded that the lag period varies according to the type 

and position of the aryl halide. The substrate concentration also has an effect 

on the length of the lag period for 4-amino-3,5-dichlorobenzoate. In a 

subsequent study, Edwards et al. (1990) observed that a long lag period is 

often associated with the onset of anaerobic transformation, which is likely due 

to the presence of microorganisms in low numbers in aquifer solids and ground 

water. Confirming Horowitz's result of 1983, the concentration of the toxic 

compounds also affect the lag period. Furthermore, anaerobically digested 

municipal sewage sludge which has been acclimated to CP degradation for more 

than 2 years has been demonstrated to degrade PCP (Mikesell and Boyd, 1986).
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3.9 Cometabolism

The transformation of a non-growth substrate in the obligate presence of a 

growth substrate or another transformable compound is known as cometabolism. 

This phenomenon is important in both the aerobic and anaerobic biodegradation 

of pesticides.

In many instances it appears that several distinct organisms are 

responsible for substrate degradation, each performing specific modifications on 

the substrate. In such instances, no single culture is able to use the substrates 

as sole carbon and energy source; therefore, it is necessary to add an 

alternative carbon source to support growth.

In aerobic systems, the transformation of trichloroethylene (TCE) is a 

cometabolic process (Edwards et al., 1990). TCE is not utilized by the bacteria, 

but only fortuitously transformed via methane monooxygenase reaction.

When Golovleva and Skryabin (1981) utilized a Pseudomonas to degrade 

DDT, the DDT did not serve as a source of carbon and/or energy. Hence 

alternative sources of carbon and energy, namely lactic acid and nitrate, were 

added to the medium.

In Slonim's work (1985) to degrade 4,6-dinitro-o-cresol (DNOC) in a 

continuous system, the performance of the anaerobic system was highly 

dependent on the influent concentration of the co-substrate sucrose. An influent 

stream having a sucrose-to-DNOC concentration ratio of 2:1 or higher resulted 

in a 95-100% removal (or conversion) of DNOC under anaerobic conditions. 

However, when the influent sucrose-to-DNOC ratio was less than 2:1, the 

anaerobic microorganisms failed to cometabolize DNOC.
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3.10 Dehalogenation Pathways

Recently, several CPs have been shown to be anaerobically biodegradable. 

Nevertheless, neither the biochemical pathways nor the organism(s) responsible 

for degradation have been unequivocally identified (Hakulinen et al., 1985). The 

proposed degradation pathways under strict anaerobic conditions involve 

reductive dehalogenation (Suflita et al., 1982), and the addition of a hydroxyl 

group to the aromatic ring (Taylor et al., 1970). Suflita et al. (1982) 

demonstrated that the primary degradative event in the dehalogenation of 

benzoate was the deletion of the aryl halide with retention of the aromatic ring. 

Dehalogenation required strict anaerobic conditions and depended on the 

halogen and its position. The evidence suggested that the reductive nature of 

aromatic dehalogenation could be of some significance in the removal of 

chlorinated xenobiotics from the environment.

Aerobic metabolism of aromatic compounds, on the other hand, is 

characterized by:

a) occasional non enzymatic loss during NIH shifts (Guroff et al., 1967);

b) removal of the halogen from the alkyl moiety after cleavage of the ring 

(Goldman et al., 1967; Hovath and Alexander, 1970; Spokes and Walker, 1974; 

Hartmann et al., 1979; Reineke and Knackmuss, 1980); and

c) direct substitution of the halogen by a hydroxyl group (Johnson et al., 

1972; Klages and Ligens, 1979. In the aerobic degradation of PCP, evidence 

(Suzuki, 1977; Rott et al., 1979) shows that the process proceeds by substitution 

of a chlorine substituent by a hydroxyl group, although the mechanism remains 

unclear.

The anaerobic and aerobic degradation of PCP by heterogeneous 

microbial cultures have been reported in many studies. Murthy et al. (1979) 

found that CO2 formation was severely reduced under anaerobic conditions,
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with 2,3,4,5-TeCP, 2,3,5,6-TeCP, 2,3,6-TCP, and pentachloroanisole as 

degradation products. Ide et al. (1983) and Boyd et al. (1983) identified 2,3,4,6- 

TeCP, 2,4,5-TCP, 3,4- and 3,5-DCP, and 3-CP as PCP degradation products. 

These results firmly indicated that sequential reductive dechlorination could be 

performed by microorganisms degrading PCP under anaerobic conditions.

3.11 Evidence of Aerobic Microorganisms in Anaerobic Systems

There are microorganisms, such as Pseudomonas aeruginosa, that exist in 

anaerobic reactors and are classified as aerobes (Hakulinen et al., 1985). Other 

investigators (McCarthy et al., 1962; Toerien et al., 1967; Taylor et al., 1970; 

Ferry and Wolfe, 1976) have also isolated similar species under anaerobic 

conditions. Taylor, as well as Ferry and Wolfe have isolated such aerobes from 

anaerobic cultures fed on aromatic compounds.

When Hakulinen's mixed cultures were tested with 2,4,6-TCP under 

anaerobic conditions, none of the isolates were able to degrade 2,4,6-TCP nor 

use it as a source of carbon or energy in pure culture. It seems that the 

presence of Klebsiella oxytoca enables the Pseudomonas strain to survive under 

anaerobic condition, and the two organisms develop a symbiotic relationship 

whose goal is to obtain a source of carbon.
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3.12 Types of Immobilized Packed-Bed Bioreactors

An immobilized packed-bed bioreactor consists of a biofilm which grows on the 

solid supporting media. The purpose of the supporting media is to retain the 

biomass and protect the microorganisms against concentrated toxic compounds 

or washouts. Although there are restrictions (Mosey, 1977) on this type of 

reactor, researchers (Anderson et al., 1984), attracted by the numerous 

advantages of anaerobic systems, have used anaerobic packed-bed reactors to 

treat industrial waste waters.

(a). Upflow Pack- Bed Reactor

This reactor generally creates a plug flow pattern. However, the rising 

bubbles caused by gas production tend to stir up the flow pattern. The reactor is 

generally operated without recycle, but periodic backwashing may be required to 

remove accumulated solids (Barnes and Fitzgerald, 1987).

Krumme and Boyd (1988) used the upflow configuration with efficiencies greater 

than 90% to degrade a mixture of three CPs (2-CP, 3-CP and 4-CP) and 3,4,5- 

TCP. However, there was little biodegradation of either 2,4,6-TCP or PCP at the 

same operating conditions. The substrate loading rate was 20 ppm per day, at a 

hydraulic retention time of 2 to 4 days.

(b). Downflow Packed-Bed Reactor

The problem of clogging, as seen in upflow filters, may be overcome by 

using solid support materials of high void volume and irrigating the waste water 

over the media. These reactors can be operated with the liquid partially or 

completely filling the reactor. Previous studies suggest that biogas production 

plays a significant role in reactor mixing by increasing the axial dispersion 

(Kennedy and Berg, 1982; and Berg, 1984). However, recent data indicate that 

the major contribution to reactor mixing, instead of biogas production, comes 

from recycling (Long-de Vallere et al., 1989).
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3.13 Anaerobic-Aerobic Biological Treatment Process

A promising alternative to wastewater treatment is the integrated anaerobic- 

aerobic system. One of the advantages of the anaerobic-aerobic integrated 

system is that it can treat compounds which are recalcitrant to conventional 

aerobic treatment, by aerobically treating the metabolic products of the first 

anaerobic process (Hakulinen and Salkinija-Salonen, 1982; Su, 1990; and 

Armenante et al., 1992). Hakulinen and Salkinoja-Salonen (1981) demonstrated 

that an anaerobic-aerobic fluidized bed process is able to reduce the 

concentration of organics and chlorinated phenolics in a pulp mill bleaching 

effluent. It was observed that the CPs are degraded in the first anaerobic stage, 

followed by toxicity and BOD removal in the aerobic filter. Ying et al. (1990), 

also developed a two-stage anaerobic-aerobic biological activated carbon (BAC) 

process for treating high concentration wastewaters from phenolic resin 

manufacturing. During the first anaerobic stage of decontamination; more than 

90% of chemical oxygen demand (COD, from 30,000 mg/l), and more than 99% 

of the major constituents - phenol (12,000 mg/l), formaldehyde (3,000 mg/l) and 

methanol (2,500 mg/l) were removed. The second aerobic stage removed 

virtually all the remaining phenol and more than 90% of the residual COD 

(organic acids resulted from anaerobic degradation). Su (1990) also used an 

anaerobic-aerobic continuous stirred tank reactor (CSTR) for treating waste 

water containing high concentrations of nitrite and nitro-aromatic compounds 

resistant to aerobic degradation. The nitrite and nitro-aromatic compounds are 

successfully biotransformed to nitrogen and amino derivatives, respectively, in 

an anaerobic reactor. The amino derivatives were then degraded in the aerobic 

reactor. Armenante et al. (1992) also showed that an anaerobic-aerobic 

continuous process which included an anaerobic immobilized packed-bed
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reactor and an aerobic cell-suspended reactor was able to mineralize 25 ppm of 

2,4,6-TCP in about 4 days.

Another advantage of the anaerobic-aerobic integrated system is that it 

can degrade volatile compounds that are susceptible of being stripped by 

aeration (Dienemann et al., 1990). Aerobic treatment alone may be 

unacceptable because volatilization of priority pollutants would pose a significant 

secondary air pollution threat. Dienemann, therefore, used serial anaerobic- 

aerobic packed-bed bioreactors to degrade organic contaminants in leachate 

from a high priority superfund site in the US. The reactor was configured to 

biodegrade the majority of the volatile species anaerobically, minimizing 

subsequent volatilization losses in the aerobic column. Slonim et al. (1985) 

used an anaerobic recycle fluidized bed reactor as a pretreatment stage for 

DNOC treatment, followed by an activated sludge reactor as the aerobic stage to 

mineralize the compound.



Chapter 4 

CHEMICALS, MATERIALS, EQUIPMENT AND METHODS

4.1 Experimental Chemicals, Materials and Equipment

4.1.1 Experimental Chemicals

The chemicals used in the experimental part of this work are listed in Table 4-1.

Table 4-1 Chemical compounds used for experiments
Chemical
Species

Supplier Cat. Number Note

2,4,6-TCP Sigma T 1266
2,4-DCP Sigma D 6023

4-CP Sigma C 4914
MOPS Sigma M 9027

TRICINE Sigma T 0377
BICINE Sigma B 3876
CHES Sigma C 2885

Potassium
Phosphate Fisher 914778
Potassium
Phosphate
Monobasic

Fisher 922644

Ammonium
Sulfate Fisher 914822

Magnesium
Sulfate Fisher 912214A
Ferrous
Sulfate Fisher 792266
Sodium

Bicarbonate Baker 31047
Sodium
Acetate Baker 38412
Sodium
Formate MC/B

SX570
CB723

Resazurin Kodak P2106
Nitrogen

Gas
Liquid

Carbonic 7727-37-9
Zero Grade 

Gas
Sodium

Hydroxide Aldrich 36717-6

21
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4.1.2 Experimental Materials and Equipment

Table 4-2 provides a list of the materials used in this work.

Table 4-2 Materials used for experiments

Equipment Supplier Cat. Number Note

Serum
Bottles

Fisher 06-406K Size: 
125 ml

Aluminum
Seal

Stoppers
Bellco 2048-11800

Aluminum
Seals

Bellco 2048-11020 Diameter: 
20 mm

Seal
Crimper

Bellco 2048-10020

Silicone
Rubber
Tubing

Manosil P8497-42 i.d.: 3/16" 
o.d.: 1/16"

Silicone
Beads

Manville R-635 Immobilization
Support

Peristaltic
Pump

Microperpex
LKB

2132
Anaerobic-

Aerobic
System

Pump
Driver

Cole Parmer 7543-12
Anaerobic

Recirculation
System
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4.2 Experimental Equipment and Methods

4.2.1 Anaerobic and Aerobic Reactor Systems

4.2.1.1 Anaerobic Reactor Systems

4.2.1.1.1 Batch Culture Systems

Batch studies (Figure 4-1) were initial carried out in serum bottles to study the 

dehalogenation of 2,4,6-TCP. This work was performed in 125 ml serum bottles 

which were used as batch reactors, after being sealed with butyl rubber stoppers 

and aluminum crimp seals. Sampling was carried out by removing 3 ml through 

a syringe inserted through the butyl rubber stopper.

4.2.1.1.2 Immobilized Batch Reactor

The immobilized batch reactor (Figure 4-2) was a lucite cylinder, 5" in diameter 

and 18" in height, filled with R-635 silica beads (Manville Celite catalyst carrier) 

as a microbial support. The top and the bottom of the reactor were sealed with 

lucite plates using a silicon rubber sealant. The top side had a hole in the 

center, provided with a butyl rubber stopper. There were 4 sampling ports, 4" 

apart along the side of the reactor. The highest one was 4" below the top, and 

the lowest one was 2" above the bottom. The substrate was added from the top 

of the reactor. With a void fraction of 0.4 (Pak, 1988), the true operating volume 

was 2,000 ml (2.0 liters). To release the gases produced by the anaerobic 

microorganisms, an opening was made in the top of the reactor. Tubing was 

connected to this opening, with the other end immersed in water in order to 

provide a seal.
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4.2.1.1.3 Immobilized Recirculating Batch Reactor

The immobilized recirculating batch reactor (Figure 4-3) was operated by 

continuously recirculating the liquid content of the reactor using a Cole-Parmer 

pump. The pump drew liquid from the lowest sampling port of the reactor and 

transferred it to the top of the reactor, thus ensuring good internal mixing of the 

reactor liquid content. The recirculation rate was 25 ml/min.

4.2.1.1.4 Immobilized Recirculating Continuous Reactor

This immobilized recirculating continuous reactor (Figure 4-4) was similar to the 

immobilized recirculating batch reactor with the addition of a two-channel LKB 

peristaltic feed pump to continuously add and remove material. The flow 

direction of the continuous system was downward. The I/O ports were located at 

the center of the top cover of the reactor and 2" apart from the bottom. Samples 

could be taken from the three higher sampling ports, but typically they were 

taken from the output port (the bottom I/O port). The immobilization beads 

completely filled the reactor to within approximate 2.2" of the top. The input port 

(the top I/O port) of the reactor has a glass tube passing through the butyl rubber 

stopper. At the output port, there was a rubber tube, and a T-connector, one leg 

of which was the recirculating line while the other went either to a sample 

collector or the aerobic reactor. Throughout the process, the input and output 

flow rates were controlled by a two-channel LKB peristaltic pump so that they 

were equal.
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4.2.1.2 Aerobic Reactor Systems

4.2.1.2.1 Batch Culture Systems

200 ml shake flasks covered with loose plastic caps so as to allow oxygen from 

the environment to enter were used as batch reactors (Figure 4-5). The flasks 

were placed in a New Brunswick Controlled Environment Incubator Shake at 30 

°C in the dark. The flasks were buffered with about 250 mM of MOPS to 

maintain the pH in the range 7.0 to 7.5.

4.2.1.2.2 Suspended Cell Continuous Reactor

The suspended cell continuous reactor (Figure 4-6) was a glass cylinder, 2" in 

diameter and 15" in height. There was no packing, and the aerobic 

microorganisms were suspended by bubbling air at an aeration rate of 50 

ml/min. The operating volume of this aerobic reactor was about 770 ml. Both 

ends of the reactor were sealed with rubber stoppers. There were two inlets and 

one outlet for this aerobic reactor. One inlet was used to feed the substrate and 

was located in the middle of the reactor, while the other was used for aeration 

purposes and was located near the bottom of the reactor. The only outlet for 

collecting samples was located at the top of the reactor. The flow direction of 

the system was upward. The inlet used for substrate feed was provided with a 

T-connector connected to two sources: the effluent from the anaerobic reactor, 

and a 2.5 M MOPS buffer solution. The flow rate of these two inlet sources were 

in a ratio of 10:1, so that the final concentration of the biological buffer in the 

aerobic reactor was about 250 mM. The MOPS solutions was also delivered by 

a LKB peristaltic pump.
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4.2.1.3 Anaerobic-Aerobic Continuous Reactor System

This anaerobic-aerobic continuous reactor system (Figure 4-7) was a 

combination of the anaerobic immobilized recirculating continuous reactor and 

the aerobic suspended cell continuous reactor described in the previous 

sections, in which the stream leaving the anaerobic reactor constituted the feed 

for aerobic reactor.

4.2.2 Preparation of Defined Media and Inoculum

4.2.2.1 Preparation of Defined Media

The composition of the defined media used for the dehalogenation of 2,4,6-TCP 

are shown in the Table 6-1. The stock solution of 2,4,6-TCP was 2,500 ppm in

0.1 NaOH. A 0.1 % stock solution of resazurin was also prepared in de ionized 

water.

The desired amount of 2,4,6-TCP and 0.0001% resazurin were added to 

the defined medium, and then boiled for 15 minutes to pre-reduce the medium. 

The medium was then placed in a ice batch while being purged with N2 gas until 

cooled down to room temperature (measured with a mercury thermometer). It 

was found that there was no 2,4,6-TCP loss during the boiling and cooling 

processes. The boiled defined medium was transferred to 125 ml serum bottles 

or 2,000 ml flasks continuously flushed with N2 gas. The serum bottles were 

sealed with butyl rubber stoppers and aluminum crimps, then autoclaved for 20 

minutes at 121 °C and 15 psig. After autoclaving, the medium still has a pink 

color indicating the presence of oxygen. Therefore, the anaerobic defined 

medium was purged again with N2 gas by repeated injection of fresh nitrogen 

gas and removal of the gas above the liquid in the bottle. The same procedures
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were applied for the preparation in flasks except for a butyl rubber stopper that 

was used to seal the flask without using the aluminum crimp.

4.2.2.2 Inoculum

The first anaerobic enrichment culture for dehalogenation of 2,4,6-TCP in 

defined media was obtained from Kung's reactor series number R3 (Kung, 1991; 

and Armenante et al. 1992) in the Biodegradation Laboratory of New Jersey 

Institute of Technology. Originally the culture came from the anaerobic sludge 

obtained from the Joint-Meeting Treatment Plant in Elizabeth, New Jersey.

Two series of subcultures were estabilished by inoculation from Kung's 

bioreactor. One series was maintained in Medium A (as described below) by 

weekly or semiweekly sequential transfer. Second series of subcultures was 

similarly maintained in Medium B. 100 ml of a Medium B subculture was used 

as inoculum for all the reactor experiments in which sterile Medium B (1,900 ml) 

was used.

As reported in a previous study (Armenante et al., 1992), facultative 

organisms were also present in the anaerobic culture in the reactor where 

degradation was observed. Therefore, the same enrichment culture that had 

been used to obtain the anaerobic inoculum was also used to isolate the aerobic 

enrichment culture.

4.2.3 Experimental Procedures

4.2.3.1 Experimental Procedures for the Anaerobic Systems

The acclimatization procedure consisted of transferring 4 ml of the original 

dehalogenating culture from Kung's reactor R3 (containing undefined medium) 

to two serum bottles containing a semi-defined medium (50% defined Medium A
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plus 50% undefined medium) to which 2,4,6-TCP and resazurin had been 

added. The final concentrations of 2,4,6-TCP and resazurin in the bottles were 

100 pM and 0.0001%, respectively. The pH was 8.2. The bottles were 

incubated in the dark at 30 °C. Samples were taken by inserting a syringe 

needle through the butyl rubber stopper. Successive additions of 2,4,6-TCP 

were made by syringe injection through the rubber stopper. This experimental 

procedure was repeated with increasing percentages of defined medium (in 10% 

increments) up to 100% of defined medium. In all the experiments carried out in 

serum bottles, the inoculum were taken from the previous bottle.

A similar procedure was used in the experiments in serum bottles in which 

Medium B was used.

In the experiments designed to determine the effect of pH on 

dehalogenation the serum bottles contained defined Medium B plus one of the 

biological buffers shown in Table 6-2 (i.e., MOPS, TRICINE, BICINE, CHES). 

Defined Medium B plus the biological buffer, BICINE, were used in all the 

experiments designed to determine the effect of temperature and end-product 

concentration (4-CP) on the dehalogenation kinetics of 2,4,6-TCP.

For the anaerobic packed-bed reactor, 100 ml of anaerobic culture form 

serum bottles were transferred into the 2,000 ml liquid volume reactor containing 

1,900 ml defined Medium B (to which 2,4,6-TCP and resazurin had been added) 

with BICINE, since the pH resulting from the use of this buffer was found to be 

the most appropriate for anaerobic dehalogenation to occur. The pH was 8.2. 

The reactor was incubated in the dark at 30 °C.
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4.2.3.2 Experimental Procedures for the Aerobic Systems

In the Fembach flask experiments 100 ml aliquots of the liquid content of the 

anaerobic recirculating immobilized batch reactor were transferred to duplicate 

flasks. This liquid contained only the 4-CP produced during the anaerobic 

dehalogenation process. Before transferring the liquid was analyzed so as to 

insure that no residual 2,4,6-TCP and 2,4-DCP remained.

The aerobic batch experiments were performed in either the flasks or the 

suspended cell reactor. A pink color was seen in the flasks, since resazurin had 

reacted with oxygen. Oxygen was supplied to the flasks by using loose culture 

plastic caps. Except for the pH study of aerobic mineralization in shake flasks, 

all the aerobic experiments were performed at 30 °C, pH 7.0 -  7.5, and in the 

dark. In the experiments designed to determine the pH effect the shake flasks 

contained defined Medium B plus one of the biological buffers shown in Table 6- 

2 (i.e., MOPS, BICINE, CHES).

A procedure similar to that described for the shake flask experiments was 

used for the experiment in the aerobic batch suspended cell reactor. In this 

case, however, 770 ml of liquid were transferred to the aerobic reactor and 70 ml 

of a 2.5 mM MOPS buffer solution were added.

The same reactor was also used in the continuous experiments. This 

reactor was continuously fed with the effluent from the anaerobic recirculating 

batch reactor and with a 2.5 mM MOPS solution. The flow rate of the stream 

from the anaerobic reactorwas in the range 0-190 ml/hr. The flow rate of the 

MOPS solution was 1/10 of the stream from the anaerobic reactor.

In the anaerobic-aerobic experiments the same aerobic reactor was 

continuously fed from the anaerobic recirculating continuous reactor.

In the batch and continuous suspended cell reactor experiments, oxygen 

was supplied by sparging air at 50 ml/min from the bottom of the reactor. The
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rate of 4-CP stripping from the reactor was determined by taking samples during 

experiments run under the same conditions but without bacteria. The rate of 4- 

CP removal via stripping was not significant, as reported in greater detail in the 

Results and Discussion chapter.
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4.3 Analytical Chemicals, Materials and Equipment

4.3.1 Analytical Chemicals

Table 4-3 lists the chemicals used during the analytical part of this work.

Table 4-3 Chemical compounds used for analysis

Chemical
Species

Supplier Cat. Number Note

2,6-DCP Aldrich D7020-1
2-CP Aldrich 18577-9
3-CP Aldrich C6280-8
Ionic

Strength
Reagent

Orion 94-00-11
required for 

[CI-] 
measurement

1 0 %
KNOs Orion 90-00-17

Sodium
Carbonate Fisher 766181

Sodium
Potassium

Tartrate
Fisher 770949

Cupric
Sulfate Fisher 850092

Clocalteu's 
Folin Phenol 

Reagent
Sigma 101H5027

Methanol Fisher A452-2
HPLC
Grade

Acetic Acid, 
Glacial Baker 9515-03

HPLC
Grade

Mini-q
Water

American 
B. & J. AP557

HPLC
Grade

Hydrochloric
Acid RICCA S284 6.00 N
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4.3.2 Analytical Materials

The analytical materials are given in Table 4-4.

Table 4-4 Materials used for analytical methods

Materials Supplier Cat. Number Note

Filter
Paper

Gelman
Science

66608
for

HPLC solvents 
47mm*0.45iim

Filter
Paper

Millipore GVHP 013 00
for

HPLC samples 
13mm*0.20jj.m

Plastic 
Filter Holders

Gelman
Science

4317
for

HPLC samples 
13 mm

Sample
Vials

Alltech 72710
for Waters 715 
auto-sampler 

size: 4 ml
Sterile

Centrifuge
Tubes

Fisher 05-539-2 size: 15 ml

Borosilicate
Culture
Tubes

Fisher 14-962-1 OF
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4.3.3 Equipment

Table 4-5 gives the analytical equipment used in this work.

Table 4-5 Equipment used for analytical work

Manufacturer Model Number Purpose Note

Waters 715 
Ultra Wisp

auto-sampling
process

For
HPLC

Waters 600E system controller
For

HPLC

Waters
484 Tunable 
Absorbance 

Detector
UV detection

For
HPLC

Alltech
Econosphere

C8 5U HPLC column, along 
with Refillable Guard 

Column

For
HPLC

PE
Nelson

2600
data acquisition 

unit 
(interface box)

For
HPLC

PE
Nelson

Version
5.10

chromatography
software

For
HPLC

Gilford Stasar
III

spectrophotometer
Folin

Protein
Assay

Orion SA720 pH / ISE 
meter

Orion 96-17B chloride
electrode

For
Chloride
Measur'nt

Orion 91-56 pH
electrode

For
pH

Measur'nt
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4.4 Analytical Methods

4.4.1 Determination of Chlorophenols (CPs) via HPLC

The samples taken from the serum bottles or reactors were stored at -15 °C. 

After thawing, all samples were centrifuged at 4500 rpm and 17 °C for 15 

minutes. 2.0 ml of the supernatant of the centrifuged sample were acidified with

6.0 N HCI, aspirated into a syringe, and filtered through a filter holder containing 

the filter paper for High Performance Liquid Chromatography (HPLC) samples. 

The filtered sample was transferred to a standard auto-sampling vial, which was 

then placed in a Waters 715 Ultra Wisp sample processor. 25 jil (0.025 ml) of 

the sample were injected into an HPLC Waters system, consisting of a Waters 

600E system controller and a Waters 484 Tunable Absorbance Detector.

An Alltech Econosphere C8 5U 4.6 mm (inner diameter) 150-mm length 

column was used. An Alltech Direct Connect Refillable Guard Column filled with 

Guard Column refills Pell for C8 was also used to protect the column. Mobil 

Phase A (1% acetic acid in methanol) and Mobil Phase B (1% acetic acid in 

Milli-q water), 60:40, was run isocratically at a flow rate equal to 1.0 ml/min. UV 

detection was set at 280 nm, 0.5 AUFS. The data were processed by the PE 

Nelson chromatography software, Ver. 5.10, interfaced with 760 Series Model 

2600 data acquisition unit.

Calibration curves for the compounds of interest, i.e., 2-CP, 3-CP, 4-CP,

2,4-DCP, 2,6-DCP and 2,4,6-TCP, were obtained with standards of known 

concentration. The biodegradation products of 2,4,6-TCP were first identified by 

comparison with concentrations and HPLC retention times of known standards. 

The results were further confirmed by comparing the UV spectra of the 

dechlorination products with those of the standards.
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4.4.2 Determination of Chloride Ion via Chloride Electrode

After thawing and centrifuging the sample, its chloride ion concentration [Cl-] 

was determined with an Orion Model SA 720 pH/ISE meter and an Orion Model 

96-17B chloride electrode at room temperature. Before the measurement, one 

drop of ionic strength reagent was added per 3 ml of sample volume, and the 

electrode was filled with a 10% KNO3 solution. A calibration curve was obtained 

using chlorine solutions of known concentrations of the sample (between 3 ppm 

and 200 ppm). The chloride concentration of the sample was obtained by 

comparison with the standards. If necessary, the samples were diluted to obtain 

a millivolt response within the range of the instrument.

4.4.3 Determination of Biomass Concentration via Folin Protein Assay

The determination of biomass concentration was based on the Folin Protein 

Assay for bacterial suspension (which can be related to the dry-weight 

measurement in [mg/100 ml]). 1.0 ml of the sample was transferred to a plastic 

centrifugation tube and centrifuged at 3,500 rpm for 30 minutes at 4 °C. Then 

the supernatant of the sample was discarded. 1.0 ml of distilled water and 2.0 

ml of 1.0 N NaOH were added to cell tubes, which were boiled at 90 °C for 10 

minutes in a water bath. After cooling, Regent C (which was made from Reagent 

A and B described below) was added to the sample, and the sample was 

allowed to rest at room temperature for 10 minutes, 0.5 ml of Reagent D, and 1.0 

N of Folin, were added to the sample, and the sample was allowed to rest for 30 

minutes

An absorbance measurement was obtained from a Gilford Model Stasar 

III spectrophotometer, at 500 nm, and at room temperature. The absorbance 

was converted to dry-weight of biomass in [mg/100ml] using the calibration curve 

shown in Figure 4-8.
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The compositions of Reagent A, B, C and D are as follows:

REAGENT A — 20 g of Na2C03 in one liter of distilled water 

REAGENT B — 0.5 g of CUSO4 I 5H2O in 100 ml of 1% (wt/vol.) aqueous 

solution of "Sodium Potassium Tartrate."

REAGENT C — mixture of 50 ml of reagent A and 1 ml of reagent B.

(Used for only one day)

REAGENT D — 1.0 N of Folin

4.4.4. Determination of pH via pH Electrode

The combination of an Orion Model SA 720 pH/ISE meter, a pH electrode 

(Orion Model 91-56), and a BNC connector were used to determine pH. The pH 

of each sample was measured by immersing the pH electrode into the liquid 

solution at room temperature.



Chapter 5

MATHEMATICAL MODELING OF THE 
ANAEROBIC AND AEROBIC PROCESSES

5.1 Mathematical Modeling of the Anaerobic Batch Process for
2,4,6-TCP Dehalogenation

The dehalogenation curves for a typical batch anaerobic experiment in serum

bottles are shown in Figure 5-1. As reported in previous work by Armenante et

al. (1992 and 1993), this figure shows that after an initial lag time 2,4,6-TCP was

degraded to 2,4-DCP which was in turn degraded to 4-CP, anaerobically,

according to the following reaction:

2,4,6-TCP > 2,4-DCP---------> 4-CP

The following assumptions were made during the development of the

model:

1. The concentration of the substrate (2,4,6-TCP) was in the range of 40~150 

|iM. A non-inhibitory (Michaelis-Menten) model is assumed to be valid in this 

concentration range.

2. The reactor is well-mixed.

3. The biomass concentration is constant in any given system.

Then, the results for the experiments in the batch systems (serum bottles, 

anaerobic batch packed-bed reactors) can be analyzed using the following 

unsteady state mole balance equations

45
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cI C t c p  Ka-rcp • C t c p

dt Kbtcp +  C t c p

d C o c p  KaTCP • C t c p  K S d c p  • C d c p

(5.1)

dt K b TC P  + C t c p  K b o c p  +  C d c p

dCcp Kaocp • C dc p

d t  K b o c p  +  C dc p

(5.2)

(5.3)

where

Cjcp = Concentration of 2,4,6-TCP (pM)

CDcp = Concentration of 2,4-DCP (pM)

CCp: = Concentration of 4-CP (pM) 

t = Time (hr)

KaTCP, Kaocp = Apparent Michaelis-Menten proportionality constants for

2.4.6-TCP and 2,4-DCP dehalogenation (pM/hr)

KbTCp, KbDCP = Michaelis-Menten half-saturation constants for

2.4.6-TCP and 2,4-DCP dehalogenation (pM)

5.2 Mathematical Modeling of the Immobilized Recirculating Continuous 
Anaerobic Reactors for 2,4,6-TCP and 2,4-DCP Dehalogenation

The equations for the continuous system were derived under the same

assumptions made in the derivation of the model for the anaerobic batch

process, and assuming that the reactor is well mixed because of the presence of

the recirculation flow.

For the anaerobic continuous packed-bed recirculating reactor the

corresponding mole balance equations are
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Q C tCPih — Q C tCP = (—fTCPj ' V 

Q C ocpm  — Q C dcp = f -rc > c p ) • V 

Q C cpm  -  Q C c p  = (-rep) • V 

where

K b t c p  • C t c p
rtcp = -------------- ——

K bTC P  +  C t c p

K a T C P  • C t c p  K aD C P • C d c p
Tdcp =  — -----------—-------------------------------------

K d t c p  +  C t c p  K b o c p  +  C dc p

K aD C P  • C d c p
rcp =  — -------- —-----

K d d c p  +  C d c p

where

Cjcpin = lnPut concentration of 2,4,6-TCP (nM) 

Cocpin = ,nPut concentration of 2,4-DCP (|j.M) 

CcPin = n̂Put concentration of 4-CP (n.M)

C j c p  = Output concentration of 2,4,6-TCP (pM) 

C D c p  = Output concentration of 2,4-DCP (pM) 

Cqp = Output concentration of 4-CP (pM)

Q  = Volumetric flow rate (ml/hr)

V = Anaerobic reactor operating volume (ml)

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)
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5.3 Mathematical Modeling of the Anaerobic Batch Process for
2,4-DCP Dehalogenation

In those experiments in which 2,4-DCP was the sole halogenated compound to

be degraded the reaction mechanism was assumed to be

2,4-DCP-------- > 4-CP

Similar assumptions to those made for the previous models were made,

i. e.,:

1. The concentration of the substrate (2,4-DCP) was in the range of 40~80 pM.

A non-inhibitory (Michaelis-Menten) model was assumed to be valid in this 

concentration range.

2. The reactor is well-mixed.

3. The biomass concentration is constant in any given system.

The resulting kinetic expression is

dCc>cp K a D C P -C d c p  /c . . = ------------------  (5.10)
d t  KbDCP +  C d c p

d C c p  KaDCP • C d c p  / c = ----------------  (o.o)
d t  K b o c p  +  C dc p
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5.4 Mathematical Modeling of the Aerobic Batch and Continuous 
Processes for 4-CP Mineralization

Equations similar to those given for the anaerobic systems can also be written 

for the aerobic processes provided that a similar set of assumptions as that 

made for anaerobic systems holds true. In the aerobic case the biomass was 

assumed to be constant since experiments (whose results are given in the next 

chapter) indicated that this was indeed the case. The basic aerobic 

mineralization reaction takes the form

Then, the results for the experiments in the aerobic batch system (shake 

flasks) can be analyzed using the following unsteady state mole balance 

equation

4-CP > Mineralization Products

dCcp _  _  Kacp • C c p  

dt Kbcp +  C c p
(5.11)

and those for continuous reactor using the equations

QC' cpm -  QC' c p  = ('r' Cp )  • V' (5.12)

Kacp-C'cp 

Kbcp +  C'cp
(5.13)

where

C’cpin = Input concentration of 4-CP (pM) 

C'cp = Output concentration of 4-CP (pM)
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V  = Aerobic reactor operating volume (ml)

KaCP = Apparent Michaelis-Menten proportionality constant for 

4-CP mineralization (pM/T.r)

KbCP = Michaelis-Menten half-saturation constant for 4-CP 

mineralization (pM)

and where the prime size indicated that the 4-CP mineralization process is 

occurring in the aerobic system.

5.5 Mathematical Modeling of the Anaerobic-Aerobic 
Batch and Continuous Processes

Since the aerobic process did not result in any attack on the 2,4,6-TCP and 2,4-

DCP molecules, the concentrations of these two species at the end of

anaerobic-aerobic process were identical to those found at the end of the

anaerobic process. Hence, the concentrations of 2,4,6-TCP and 2,4-DCP at the

end of the combined continuous process were predicted using Equation 5.4 and

5.5.

The final 4-CP concentration at the end of the anaerobic-aerobic process 

was predicted using Equation 5.12 (for aerobic process) in which the 

concentration C'cp (indicating the 4-CP concentration in the inlet to aerobic 

reactor) was replaced with the term Ccp in Equation 5.6 (indicating the 

concentration in the outlet of the anaerobic reactor). The final equation for C'cp 

is therefore:

C ' c p  =  C c p  (-Tc p  — r 'c p —
Q Q

(5.14)
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5.6 Modeling of the Temperature Effect 
on the Anaerobic Dehalogenation of 2,4,6-TCP

In order to estimate the temperature effect on the anaerobic dehalogenation

process (the most critical in the anaerobic-aerobic process), the results of the

experiments conducted at different temperature were interpreted using the

following equations (Topiwala and Sinclair, 1971):

KaTcp =  K ao T C P exp (-— J-Ka'o icpexpC-^^) (5.15)
RT RT

KaDcp =  KaoocP exp(-— ) -  Ka' odcp  e x p ( - ^ ^ )  (5.16)
RT RT

In the temperature range 1 9 - 3 0  °C, it was assumed that the second

terms of the right-hand-side of Equations 5.15 and 5.16 are negligible.

Therefore, the above equations become:

Kaicp = KaoTc pexp(— (5.17)

and

KaDcp = KaoDcpexpf-- ^ - )  (5-18)
RT

The use of these equations implies that the temperature is assumed to 

have a significant effect on KaTCP and KaDCP but only a negligible effect on KbTCP 

KbDCP. However, this approach was chosen since only a limited number of 

experimental points in which the temperature was changed was available. On 

the other hand, this approach can indicate whether the orders of magnitude for 

the regressed values for ETCP and EDCP are correct or not.



Chapter 6 
RESULTS AND DISCUSSION

6.1 Anaerobic Process

6.1.1 Anaerobic Dehalogenation During the Experiments Focused on the 
Development of Defined Media

Figure 6-1 shows the results for the experiments conducted in the presence of

Medium A (Table 6-1), after the acclimation to the synthetic medium was

successfully completed. 2,4,6-TCP was completely and stoichiometrically

converted to 2,4-DCP and eventually 4-CP within 4 days, following a 4-day

incubation period. The lag phase disappeared when the system was additionally

spiked with 2,4,6-TCP. The initial concentration of 4-CP was different from zero

because the inoculum from the previous bottle contained 4-CP as a residual

product of the reductive dechlorination of 2,4,6-TCP. When pure Medium A was

used, the pH was measured only at the end of the dechlorination process and

was found to be around 8.1. Similar dechlorination patterns were obtained also

when semi-synthetic media were used. However, in this case the final pH was

typically higher (about 9.1), and a decrease in the dehalogenation activity was

observed. Although further dechlorination activity was not studied once all the

more highly chlorinated chlorophenols were converted to 4-CP the results of this

work preliminary suggests that anaerobic dehalogenation did not proceed

appreciably after the highly chlorinated chlorophenols were converted to

monochlorophenols. This observation is in line with the results of previous

studies (Armenante et al., 1992; Kafkewitz et at., 1992; Madsen and Licht, 1992;

Mohn and Kennedy, 1992b).
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Table 6-1 Compositions of the defined media used in this work

Medium A Medium B

Chemical
Species

Concentration
(g/liter)

Chemical
Species

Concentration
(g/liter)

kh2po4 0.45 kh 2po4 0.45

K2HPO4 0.45 k2hpo4 0.225

MgS04*7H20 0.18 MgS04 -7H20 0.09

CaCI2 -2H20 0.012 FeS04 -7H20 0.002

NH4CI 1.0 (NH4 )2S04 0.20

Resazurin 0.001 Resazurin 0.001

— — NaHC03 2.5

Sodium Formate 2.0 Sodium Formate 2.0

Sodium Acetate 2.5 Sodium Acetate 2.5

Succinic Acid 2.0 Non- 
Fermentable 

Buffering Agent

See Table 2
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Figure 6-2 and Figure 6-3 show the typical pattern of dechlorination in the 

experiments conducted in the presence of Medium B (Table 6-1), after the 

acclimation to the synthetic medium was successfully completed. Figure 6-2 and 

Figure 6-3 show that dechlorination began after a 3-day incubation period, and 

resulted in the complete disappearance of 2,4,6-TCP within the following 3 days. 

The experiment of Figure 6-2 was performed in a serum bottle, and that of 

Figure 6-3 in an immobilized recirculating batch reactor. In both cases the pH 

was buffered at 8.2 using BICINE as the buffering agent (Table 6-2). These 

results also confirm that anaerobic dehalogenation ceased when 2,4,6-TCP was 

converted to 4-CP within a period of 10 days.

6.1.2 Effect of pH on the Anaerobic Dehalogenation of 2,4,6-TCP

The effect of pH on dehalogenation is shown in Figure 6-4. In these 

experiments Medium B and the buffering agents (Table 6-2) were used. It is 

clear from this figure that dehalogenation is sensitive to pH and that this effect is 

independent of the presence of phosphate. In addition, this figure indicates that 

the pH range in which the dehalogenation process is able to be carried out is 

between 8.0 and 8.8. These results are in line with the preliminary conclusions 

drawn from the earlier work (Armenante et al., 1992; Kafkewitz et al., 1992). All 

these findings show that an operating range for dehalogenation exists, the 

definition of which can be of significant importance during the operation of any 

process based on this degradation approach.

The dehalogenation in the pH range given above (buffered by BICINE) 

was explored in greater detail in an additional experiment the results of which 

are given in Figures 6-5, 6-6, and 6-7, and in Table 6-3. A lag phase can still be 

observed in Figure 6-5 although only 2 days long, as opposed to 4 days as in 

Figure 6-1. If the lag phase was discounted the entire dehalogenation process
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Table 6-2 Non-fermentable buffering agents used in this work

Buffering
Agent

pKa pH

Range

Concentration 
in Medium B 

(milll}

Initial pH of 
Medium B

MOPS 7.2 6.5 ~ 7.9 45 7.4

TRICINE 8.1 7.4 ~ 8.8 20 8.6

BICINE 8.3 7.6 ~ 9.0 30 8.1

CHES 9.3 8.6 ~ 10.0 30 9.5
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Table 6-3 Concentration, of 2,4,6-TCP, 2,4-DCP and 4-CP, and chloride ion
during the dechlorination of 2,4,6-TCP in a serum bottle using Medium B,

inculding biomass dry-weight

Time
(hr)

pH
2,4,6-
TCP<m

Expt

2,4-
DCPw)
Expt.

4-CP

Expt

total
CPstm)

CPs
%

Reco

Cl"
<pM)
Expt.

Cl"
diff.

Expt *|
t|

0 8.2 90 0 45 135 100 72 0 7.5
24 8.2 89 0 45 134 99 72 0 7.8
48 8.2 87 3 44 134 99 75 3 9.0
50 8.2 80 6 45 131 97 74 2 9.3
53 8.2 75 8 46 129 96 88 16 9.2
55 8.2 70 17 45 132 98 90 18 /
58 8.2 58 27 47 132 98 110 38 12.0

61 8.2 49 33 54 136 101 115 43 13.0
66 8.2 32 36 60 128 95 139 67 14.5
69 8.2 28 40 66 134 99 137 65 14.0
72 8.2 21 44 71 136 101 166 94 15.7
79 8.2 16 41 80 137 101 166 94 18.0
85 8.2 9 36 89 134 99 189 117 18.3
93 8.2 5 29 101 135 100 217 145 19.5
96 8.2 2 22 125 149 110 230 158 22.0

100 8.2 0 17 130 147 109 240 168 23.0
104 8.2 0 10 131 141 104 239 167 22.5
110 8.2 0 2 133 135 100 258 186 24.0
116 8.2 0 0 145 145 107 271 199 24.0
120 8.2 0 0 140 140 104 266 194 26.0

* A 125 ml serum bottle was used. 
The temperature was 30 °C
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took place in less than 3 days, as opposed to 7. This faster process could be 

caused by a better acclimation of the organisms to the medium or by a larger 

amount of biomass initially present in the inoculum. In any case one can see 

that the conversion of 2,4,6-TCP to 2,4-DCP and 4-CP is stoichiometric. 

Quantitative recovery during anaerobic dehalogenation has also been recently 

reported by other investigators (Nicholson et al., 1992).

Since Medium B was designed to contain no chloride it was possible to 

confirm the stoichiometry of dehalogenation by measuring the change in chloride 

concentration and hence the amount of chloride produced. The initial 

concentration of chloride was not zero because the inoculum contained some 

residual chloride as one of the dechlorination products from the previous 

experiment. Table 6-3 reports the experimentally determined chloride 

concentration as well as the difference between the concentration of chloride ion 

at a generic time and that at time t = 0, shown in the table. This concentration 

difference is directly proportional to the amount of chloride ion produced during 

the dechlorination process. From Figure 6-6 one can see that this concentration 

matched very closely the concentration of chloride ion that one would predict 

from the concentrations of 2,4,6-TCP, 2,4-DCP and 4-CP in Figure 6-5 assuming 

stoichiometric dechlorination (solid coarse line).

Figure 6-7 shows that the biomass concentration (expressed as weight of 

dry biomass, in mg, per 100 ml of medium) increased significantly during the 

process. This figure also gives the ratio of chloride concentration to biomass 

concentration. Following the initial lag phase, the chloride concentration 

increased during the exponential growth phase between t = 50 hr and t = 70 hr. 

The ratio then stabilized after 70 hours, indicating that the rate of dechlorination 

per unit biomass was approximately constant. This, in turn, indicated that the
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dechlorinating organism(s) are either making up the entire population or 

constitute a stable fraction of it.

Microscopic observation of the cultures indicated the presence of at least 

three organisms: a large vibrio, a smaller vibrio, and an occasional long 

filamentous cell. Methane determination showed only traces of methane in the 

head space of serum bottles and reactors. From the available data it is not clear 

whether the dehalogenation was performed by a single organism or by the 

interactions of several organisms.

The dehalogenating cultures are relatively resistant to oxidative stress. 

Cultures exposed to enough oxygen to convert the resazurin to its pink oxidized 

form were not killed and did not lose their dehalogenating activity even when the 

serum bottle was exposed to oxygen (the medium remained pink) for as long as 

48 hours. When the cultures were provided with substrates, they were capable 

of reducing the media sufficiently to make the serum bottle with resazurin 

colorless.

The aerobic mineralization ability against 4-CP reported in earlier studies 

by Armenante et al. (1992) and Kafkewitz et al. (1992) was lost after the cultures 

were transferred to Defined Media A or B.

As described above, the effective pH range for anaerobic dehalogenation 

of 2,4,6-TCP was 8.0 ~ 8.8. When the culture pH was 9.0 to 9.5, 

dehalogenation did not occur; however, the culture was not killed and the 

anaerobic dehalogenating activity resumed when the culture was buffered to pH 

8.2 after as much as seven days at high pH. Similar behavior was observed for 

the lower pH range (from 6.8 to 7.8): the cultures were also able to degrade

2,4,6-TCP when the medium was buffered at pH = 8.2 after as much as seven 

days at low pH. The typical lag time for dehalogenation to occur after the 

medium was properly buffered was 2 days.
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6.1.3 Results for the 2,4,6-TCP Dehalogenation Experiments and Their
Interpretation Using the Proposed Model

The data taken from Table 6-3 were analyzed using Equations 5.1, 5.2, and 5.3. 

The results are shown in Figure 6-8. KajQp and K b jcp  were obtained by a 

linear regression of the integral of Equation 5.1. KapcP and KbpcP were 

obtained by integrating Equations 5.2 and 5.3 using a fourth-order Runge-Kutta 

routine, and incrementally changing the values (in units of 0.05 pM/hr for 

Kaocp. and 0 01 pM for Kbpcp) until the sum of the absolute error of the 

concentration was minimized. The difference between 0.05 and 0.01 increments 

was negligible in terms of absolute error. The values for the Michaelis-Menten 

constants, KajQp, KbjQp, KapQp, and Kbppp, are 3.2 pM/hr, 6.6 pM, 1.6 |x 

M/hr, and 1.9 pM, respectively. In Figure 6-8 the curves obtained with this 

method are compared with the experimental results (also given in Table 6-3).

Figure 6-9 shows a similar plot for another serum bottle containing a 

different amount of inoculum. The experimental data are taken from Table 6-4. 

The curves shown in this figure were obtained by keeping unchanged the values 

of KbjQp and KbpcP obtained previously, since those constants are not, in 

principle, a function of biomass (However, it should be pointed out that actual 

values of the Kb's obtained from the regression of the data could be slightly 

affected by the curve fitting process in which no biomass term is present). 

KaTCP and Kapcp were varied until the sum of the absolute error was 

minimized. The result was 2.4 pM/hr and 1.2 pM/hr, respectively. Those values 

are comparable to those found in Figure 6-8. A sensitivity analysis showed no 

significant difference (less than 7%) in the sum of the absolute error due to the 

differences in KajQp and KapcP (Table 6-5).
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Table 6-4 Concentrations of 2,4,6-TCP 2,4-DCP, and 4-CP for anaerobic
dehalogenation in a serum bottle

Time
(hours)

2,4,6-TCP
(pM)
Expt.

Output

2,4-DCP
i m
Expt.

Output

4-CP
i m )
Expt.

Output

Sum 
of CPs

i m
Expt.

CP
%

Reco.

0 73 0 30 103 100

24 73 0 31 104 101

55 71 4 30 105 102

79 32 19 52 101 98

100 10 20 72 102 99

125 0 7 92 99 96

144 0 2 99 101 98

* A 125 ml serum bottle was used. 
The temperature was 30 °C



71

Table 6-5 (a), (b) and (c) Lists of kinetic constants for anaerobic 
dehalogenation of 2,4,6-TCP and 2,4-DCP with the methods of 

fitted curves, partially fitted curves, or predicted curves

Figure 6-5 (a)

Anaerobic Dehalogenation of 2,4,6-TCP (Data from Table 6-4)

Kinetic K1a K1b K2a K2b Figure

Constants OiM/hr) (HM) OrM/hr) OiM) #

Fitted 

Curves Method

1.9 7.1 1.3 4.1 /

Partially Fitted 

Curves Method

2.4 6.6 1.2 1.9 Figure

6-9

Figure 6-5 (b)

Anaerobic Dehalogenation of 2,4,6-TCP (Data from Table 6-6)

Kinetic K1a K1b K2a K2b Figure

Constants OiM/hr) (|iM) OiM/hr) OxM) #

Fitted 

Curves Method

2.1 6.2 1.3 2.8 /

Predicted 

Curves Method

2.4 6.6 1.2 1.9 Figure

6-10

Figure 6-5 (c)

Anaerobic Dehalogenation of 2,4-DCP (Data from Table 6-8)

Kinetic K2a K2b Figure

Constants OiM/hr) dim #

Fitted 0.95 2.1 Figure

Curves Method 6-13

Partially fitted 1.0 1.9 Figure

Curves Method 6-12
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It is significant to notice that the ratios of the corresponding Ka values

found from the regressions of the data shown in Figures 6-8 and 6-9 are all

constant, i. e.:

KajCP (Figure 6-8) 3.2 KajCP (Figure 6-8) 1.6

Kaycp (Figure 6-9) 2.4 K a jcp  (Figure 6-9) 1.2

This indicates that the biomass effect is indeed incorporated in the apparent 

Michaelis-Menten parameter Ka.

The values for the anaerobic dehalogenating Michaelis-Menten

constants, KajQp, K b j C P .  K a p c P .  a n d  K b p c p .  obtained the batch

experiments of Figure 6-9 were then used to predict the behavior of the 

immobilized recirculating batch reactor. These values of K a jcP  and KapcP 

were somewhat better predictors than those of Figure 6-8, which was an earlier 

experiment. Table 6-6 gives the experimental data, and Figure 6-10 shows a 

comparison between the predicted curves (containing no fitted parameters), and 

the experimental data. The goodness of the agreement implies that the biomass 

concentration in the reactor was very similar to that in the serum bottle.

Finally, Figure 6-11 shows a comparison between the results of the 

prediction obtained using Equations 4, 5, and 6, and the experimental results 

from Table 6-7, for the anaerobic dehalogenation of 2,4,6-TCP in the 

immobilized recirculating continuous reactor. In this figure the operating 

parameter is the flow rate. The rate of anaerobic dehalogenation can be 

controlled via residence time (which is inversely proportional to the flow rate), 

and the results are shown in Figure 6-11 and Table 6-7. As the residence time 

decreased in the reactor, an increase in 2,4,6-TCP concentration was observed. 

As less 2,4,6-TCP is degraded, less 4-CP is formed. The fit between prediction
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Table 6-6 Concentrations of 2,4,6-TCP, 2,4-DCP, and 4-CP during the 
dehalogenation of 2,4,6-TCP in an anaerobic immobilized recirculating

continuous reactor

Time
{hours)

2,4,6-
TCP
U*M)
Expt.

2,4-DCP
i m
Expt.

4-CP
(JIM)
Expt

sum 
of CPs 

(M-M) 
Expt.

CP
%

Reco.

biomass 
(mg / 

100rol) 
Expt

0 73 0 30 103 100 30

24 74 0 29 103 100 33

54 73 2 29 102 99 32

78 30 21 50 101 98 33.5

102 6 23 76 105 102 35

126 0 6 95 104 101 35

150 0 3 99 102 99 33

* Anaerobic reactor volume: 5,300 (ml) & actual liquid volume: 2,000 (ml), 
pH: 8.1, and temperature at 30 °C
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Table 6-7 Concentrations of 2,4,6-TCP, 2,4-DCP, and 4-CP during the 
dehalogenation of 2,4,6-TCP using an anaerobic immobilized recirculating 

continuous reactor, at an intake concentration of 2,4,6-TCP = 129 )iM

| Row 
Rate 

{ml/hr)

2,4,6-TCP
i m
Expt.

Output

2,4-DCP
i m
Expt.

Output

4-CP
i m
Expt.

Output

sum 
of CPs

i m )

CP
%

Reco.

0 0 0 129 129 100

15 1 1 115 117 91

30 2 5 127 134 104

45 6 11 122 139 108

80 25 11 78 114 89

99 29 10 77 116 91

150 28 10 81 119 92

190 37 6 78 121 94

* Anaerobic reactor volume: 5,300 (ml) 
Actual liquid volume: 2,000 (ml) 
at 30 °C  and pH: 8.1
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and experimental results in Figure 6-11 is quite good. This indicates that the 

kinetic constants obtained from the serum bottle batch experiments are reliable 

indicators of the true kinetics of the system.

6.1.4 Results for the 2,4-DCP Dehalogenation Experiments and Their
Interpretation Using the Proposed Model

In order to further test the anaerobic dehalogenation model for 2,4,6-TCP 

proposed above, additional serum bottle experiments were performed in which 

the same mixed culture was used to degrade 2,4-DCP alone. The experimental 

data are given in Table 6-8, and the modeling results are shown in Figures 6-12 

and 6-13. Figure 6-12 was obtained using a value for Kbpcp equal to 1.9 pM, 

(which was found previously for the anaerobic dehalogenation of 2,4,6-TCP), 

and by varying KaQQp until achieving a minimum in the sum of the absolute 

error. Figure 6-13 was obtained by fitting Equation 10 to the data and 

determining the best-fit values of KapQp and KbpcP- From Figure 6-12 KaocP 

was found to be 1.0 pM/hr, and from Figure 6-13 KapcP ar>d KbpcP were found 

to be 0.95 pM/hr and 2.1 pM, respectively. For both cases these kinetic 

constants are very close to the batch results found previously for 2,4,6-TCP 

(Kapcp = 1 -2 pM/hr and KbpQp = 1.9 pM).

Figure 6-14 shows a similar experiment with another serum bottle 

containing a different amount of inoculum. The experimental data were taken 

from Table 6-9. The curves shown in this figure were obtained by maintaining 

the value (1.9 pM) of KbpcP obtained previously (since it is not a function of 

biomass). KapcP was then varied until achieving the best fit, which was found 

to be 1.4 pM/hr. This value for KapcP is a9ain similar to the value of 1.2 pM/hr 

obtained from Figure 6-8.
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Table 6-8 Concentrations of 2,4-DCP and 4-CP during the anaerobic 
dehalogenation of 2,4-DCP in a shaker flask

I Time 
(hours)

PH
2,4-DCP

OiM)
Expt.

4-CP
(pM)

_ E*Pt-

sum 
of CPs 

<pM)

CP
%

Reco,

0 8.1 53 12 65 100

24 / 55 11 66 102

48 / 55 11 66 102

72 / 54 10 64 98

75 / 52 16 68 105

82 / 48 22 70 108

96 / 34 26 60 92

102 / 24 37 61 94

120 / 11 53 64 98

123 / 8 55 63 97

125 / 6 60 66 102

144 8.2 2 64 66 102

168 8.2 1 62 63 97

* A 125 ml serum bottle was used.
The temperature was 30 °C
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Table 6-9 Concentrations of 2,4-DCP and 4-CP during the anaerobic
dehalogenation of 2,4-DCP over a period of 10 days

Time
(days)

2,4,6-TCP
( m

2,4-DCP
I W )

4-CP
( W )

sum 
of CPs 

( W )

CP
%

Reco.

0 0 78 7 85 100

1 0 77 8 85 100

2 0 77 8 85 100

3 0 75 9 84 99

4 0 73 12 85 100

5 0 38 44 82 96

6 0 5 77 82 96

7 0 1 80 81 95

8 0 0 76 76 89

9 0 0 79 79 93

10 0 0 78 78 92

* A 125 ml serum bottle was used.
The temperature was 30 °C
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6.1.5 The Effect of 2,4,6-TCP and 4-CP Concentration on 2,4,6-TCP 
Anaerobic Dehalogenation

This experiment was designed to determine if dehalogenation would also take

place at high concentrations of 2,4,6-TCP. When the concentration of 2,4,6-

TCP was between 40 and 150 pM, no inhibition or toxicity effects were

observed. However the reaction was totally inhibited when the concentration of

2,4,6-TCP was 908 pM (Figure 6-15). Increasing the concentration of 4-CP to

923 pM also led to inhibition (Figure 6-16).

6.1.6 The Effect of Temperature on 2,4,6-TCP Anaerobic Dehalogenation

The dehalogenation of 2,4,6-TCP was performed in anaerobic serum bottles at 

19 °C, 25 °C and 30 °C. At 19 °C (Figure 6-17a and Table 6-10), the 

degradation did not begin until approximately 70 hours into the experiment. 

Slow degradation of 2,4,6-TCP was observed. The experiment at 25 °C (Figure 

6-17b and Table 6-11) further confirmed the first observation. However, when 

the temperature was raised to 30 °C the rate of dehalogenation increased as 

observed in Figure 6-17c and Table 6-12.

In all three experiments, there was the initial lag time before the 

degradation began. The lag time observed in each case decreased as the 

temperature was raised.

Table 6-10, 6-11, and 6-12 show the experimental data for anaerobic 

dehalogenation as a function of temperature over a range of 19 - 30 °C. These 

data are interpreted assuming an Arrhenius type equation for both KajQp and 

Kapcp. > e-. using Equations 5.14 and 5.15 given in the previous chapter. It 

was assumed that KbjCP anc* KbpcP are not functions of temperature. KajQp 

and KapcP were obtained through regression of the experimental data. 

Figures 6-18, 6-19, and 6-20 show the resulting values of KajQp and KapcP at
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Table 6-10 The effect of temperature on anaerobic dehalogenation of 2,4,6-
TCP in a serum bottle at T = 19 °C

Time
(hours)

2,4,6-TCP
( m
Expt.

Output

2,4-DCP
«
Expt.

Output

4-CP

Expt.
Output

sum 
Of CPs 

(pM) 
Expt.

CP
%

Reco.

0 67 0 129 196 100

24 66 0 129 195 99

48 69 0 130 199 102

72 66 0 129 195 99

74 64 2 129 194 99

78 59 4 133 196 100

96 43 16 142 201 103

100 35 18 141 194 99

120 18 26 150 194 99

125 14 24 160 198 101

144 4 24 171 199 102

* A 125 ml serum bottle was used. 
The temperature was 19 °C
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Table 6-11 The effect of temperature on anaerobic dehalogenation of 2,4,6-
TCP in a serum bottle at T = 25 °C

Time
(hours)

2,4,6-TCP
( m
Expt.

Output

2,4-DCP
i m
Expt.

Output

4-CP
i m
Expt.

Output

sum 
of CPs

i m
Expt.

CP
%

Reco.

0 68 0 124 192 100

24 68 0 125 193 101

25 66 3 125 194 101

30 55 7 130 192 100

48 26 22 145 193 101

52 19 25 150 194 101

72 3 26 166 195 102

76 2 23 170 195 102

96 1 6 192 199 104

* A 125 ml serum bottle was used.
The temperature was 25 °C
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Table 6-12 The effect of temperature on anaerobic dehalogenation of 2,4,6-
TCP in a serum bottle at T = 30 °C

Time
(hours)

2,4,6-TCP
M
Expt

Output

2,4-DCP
i m
Expt.

Output

4-CP
(pM)
Expt

Output

sum 
of CPs

i m
Expt.

CP
%

Reco.

0 73 0 30 103 100

25 73 0 31 104 101

56 72 4 31 105 102

78 32 19 52 101 98

100 9 21 72 102 99

125 0 7 94 101 98

144 0 0 101 101 98

* A 125 ml serum bottle was used.
The temperature was 30 °C
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19, 25, and 30 °C, respectively. KajQp and KapcP were found to be equal to

1.1 and 1.1 pM/hr at 19 °C, 2.0 and 1.0 pM/hr at 25 °C, and 2.4 and 1.2 pM/hr 

at 30 °C. These results indicate that the temperature has a significant effect on 

the anaerobic dehalogenation kinetic constants, K a jcp  and KapcP-

Figure 6-21 and Table 6-13 presents the resulting value of Ej c p  which is 

equal to 13,000 cal/mole, and Figure 6-22 and Table 6-14 reports the resulting 

value of Eqqp which is equal to 14,700 cal/mole. Metcalf and Eddy (1972) 

reported that the activation energy, Ea, for biological waste water treatment 

processes is generally within the range 2,000 to 20,000 cal/mole, which is in 

agreement with the values obtained in this work.

6.1.7 Experiments to Determine the Anaerobic Dehalogenation of
PCP, 2,4-DCP, and 4-CP

Figure 6-23 and Table 6-15 shows that no PCP was anaerobically degraded for 

the first 10 days after inoculation. Furthermore, Figure 6-24 and Table 6-16 

shows that no 4-CP was anaerobically degraded for the first 10 days after 

inoculation.

We concluded that 4-CP and PCP are not dechlorinated, or only very 

slowly dechlorinated, in the anaerobic process. In further investigation, 4-CP 

was found to be totally mineralized after 3 months. However, PCP was not 

significantly biodegraded even after 3 months.

Although no anaerobic dehalogenation of PCP or 4-CP occurred over a 

period of 10 days, when 68 pM of 2,4,6-TCP were added to both cultures, it was 

found that 2,4,6-TCP was dechlorinated to 4-CP in 3 days. This shows that the 

cultures did not lose their dehalogenating activity against 2,4,6-TCP, but that 

they were inactive against PCP and 4-CP.
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Table 6-13 Effect of temperature on KajQp during the anaerobic
dehalogenation of 2,4,6-TCP

T (°C) T{°K) 1/T (OK) KaTCP
( v M l h r )

In (KaTCP )

30 303 0.033 2.4 0.8755

25 298 0.03356 2.0 0.6931

19 292 0.00342 1.1 0.0935
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Table 6-14 Effect of temperature on Kaocp during the anaerobic 
dehalogenation of 2,4,6-TCP

T (°C) T(°K ) 1/T (°K) KapcP
{p,M/hr)

In (Kapcp)

30 303 0.033 1.2 0.1823

25 298 0.03356 1.0 0.0935

19 292 0.00342 0.5 - 0.6931
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Table 6-15 Concentrations of PCP and 4-CP during the anaerobic 
dehalogenation of PCP over a period of 10 days

Time
(days)

PCP
(ilM)

4-CP
i m

sum 
of CPs 

(liM)

CP 
% 

Re co.

0 40 10 50 100

1 38 11 48 96

2 40 11 51 102

3 39 9 48 96

4 41 10 51 102

5 37 12 49 98

6 39 9 48 96

7 42 10 52 104

8 41 12 53 106

9 40 11 51 102

10 41 10 51 102

* A 125 ml serum bottle was used.
The temperature was 30 °C
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Table 6-16 Concentration of 4-CP during the anaerobic dehalogenation of
4-CP over a period of 10 days

Time
(days)

4-CP
fcM)

sum 
of CPs

CP
%

Reco.

0 95 95 100

1 94 94 99

2 93 93 98

3 95 95 100

4 91 91 96

5 92 92 97

6 90 90 95

7 92 92 97

8 91 91 96

9 89 89 94

10 92 92
97 I

* A 125 ml serum bottle was used.
The temperature was 30 °C
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6.2 Aerobic Process

6.2.1 Results of the Mineralization of 4-CP under Aerobic Conditions 
and Their Interpretation Using the Proposed Model

The results of the experiments in which the pH in the aerobic culture was

changed showed that no mineralization of 4-CP occurred when the pH was

maintained at 6.5, 7.8 or 9.5. However, mineralization took place when the

medium was buffered at 7.2. Figure 6-25 shows the results of these

experiments. Because of the small pH fluctuation observed in the experiments it

can be concluded that the pH range in which aerobic mineralization occurred is

7.0 -7.5.

Similarly to what observed in the anaerobic system, aerobic 

mineralization of 4-CP occurred upon the establishment of the approximate pH 

even if the cultures had been previously exposed to different pH's at which no 

mineralization occurred. More specifically, cultures exposed to pH's equal to 

6.5, 7.8 or 9.5 (at which no degradation was observed for as long as seven 

days) started mineralizing 4-CP when the pH was brought to 7.2. No lag time 

was observed once the pH was changed to the new value.

When the pH value was adjusted in the range 7.0 - 7.5, the degradation 

of 4-CP in the aerobic batch system was readily obtained, as shown in Figure 6- 

26 and Table 6-17. The sharp decrease in 4-CP concentration during the first 8 

hours, from 66 pM to near complete mineralization, proves the effectiveness of 

the aerobic system in degrading mono-halo aromatic. A control experiment 

(Figure 6-27) showed no decrease in 4-CP concentration in an aerated reactor 

containing only sterile medium.
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Table 6-17 Concentration of 4-CP during the aerobic mineralization of 4-CP in 
a shaker flask using Medium B with buffer MOPS

Time
(hours)

pH
4-CP
(UM)

sum 
o f CPs

<H»0
Cl

m m

Cl“
tiiffer.
(ixM)

Biomass 
(mg 1 

100ml)

0 7.1 61 61 740 0 190

1 7.1 57 57 / / 190

2 7.1 48 48 / / 140

3 7.1 39 39 / / 190

4 7.1 31 31 770 30 170

6 7.2 8 8 780 40 170

8 7.2 1 1 790 50 150

24 7.2 0 0 810 70 190

* System:
A 150 ml flask was placed in the New Brunswick Controlled Environment 
Incubator Shaker
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The experimental 4-CP mineralization data were used to obtain KaQp and 

KbQp via linear regression of the integral of Equation 5.11. KaCp and KbCp 

were found to be 8.5 pM/hr and 3.3 pM, respectively, as shown in Figure 6-26.

Figure 6-28 shows the results for the aerobic suspended cell batch 

reactor. The data in this figure are from Table 6-18, and were fitted using the 

value of KbQp (= 3.3 pM) from the shaker flask experiment (i.e., Figure 6-27). 

KaQp was found to be 10 pM/hr, which is close to the value of Ka (= 8.5 pM/hr) 

obtained from Figure 6-26.

The Michaelis-Menten constants for the mineralization of 4-CP (obtained 

from the suspended cell batch reactor) were applied to predict the behavior of 

the suspended cell continuous reactor as a function of flow rate over the range 0 

-190  ml/hr. The experimental data are taken from Table 6-18. Figure 6-29 

shows the comparison between the model prediction and the experimental 

results. The agreement is very good.

Again, as expected, as the residence time decreased, less 4-CP was 

biodegraded (as shown in Figure 6-29 and Table 6-19).

6.2.2 Aerobic Degradation of 3-CP

The effectiveness of aerobic degradation was diminished upon replacement of 4- 

CP with 3-CP (Figure 6-30 and Table 6-20). The mefa-chlorophenol (3-CP) 

produced a 3-hour lag phase, and took 9 hours to degrade, vs. no lag phase and 

8 hours for complete degradation with 4-CP. Since the biomass used in the 3- 

CP and 4-CP experiments was approximately the same, we concluded that the 

structure of the molecule must be an important contributor to the rate of halo- 

degradation. This could the result of evolution as the microorganisms were 

tailored by nature to be more suitable to attack 4-CP rather than its isomeric
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Table 6-18 Concentration of 4-CP during the mineralization of 4-CP in an 
aerobic suspended cell batch reactor

Time
(hours)

PH
4-CP
<PM)
Expt

sum 
of CPs 

(PM)

Biomass
(mgftOOm!)

Expt

0 7.1 170 170 160

1 / 164 164 155

2 / 148 148 145

3 / 140 140 /

4 / 131 131 170

5 / 120 120 /

6 / 108 108 175

12 / 59 59 180

13 / 45 45 165

14 / 33 33 175

24 / 2 2 145

30 7.3 0 0 185

* Reactor:
Reactor volume: 770 ml
Air flow rate of reactor: 50 (ml/min)
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Table 6-19 Concentration of 4-CP during the mineralization of 4-CP using an 
aerobic suspended cell continuous reactor, at an intake concentration of

4-CP = 66 pM

Flow
Rate

(mi/hr)
PH

4-CP
m )
Expt.

Output

Sum 
of CPs

< m )
Expt

0 7.2 0 0

20 7.3 1 1

30 7.5 2 2

50 7.4 4 4

150 7.2 24 24

190 / 38 38

* Aerobic reactor:
Reactor volume: 770 ml 

The feed to the reactor was the outlet from the anaerobic reactor. This stream contained 
66 jiM of 4-CP and no 2,4,6-TCP or 2,4-DCP.
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Table 6-20 Concentration of 3-CP during the aerobic mineralization of 3-CP in
a shaker flask

Time
(Days)

3-CP
<m)

sum 
of CPs

t m

CP
%

0 70 70 100

1 72 72 103

2 71 71 101

3 70 70 100

4 58 58 83

5 37 37 53

6 12 12 17

7 5 5 7

8 1 1 1

9 0 0 0

10 0 0 0

* A flask of a volume 250 ml was used as the system.
The temperature was 30 °C
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form, 3-CP. Figure 6-31 is a control experiment for abiotic losses of 3-CP. No 

measurable loss was observed.

6.3 Anaerobic-Aerobic Process

Figure 6-32 shows the experimental concentrations of 2,4,6-TCP, 2,4-DCP, and 

4-CP at the exit of the sequential continuous anaerobic-aerobic process. The 

curves in this figure represent the theoretically predicted values that can be 

obtained integrating Equations 5.4, 5.5, and 5.14 using the values for KajQp, 

Kbycp. KaDCP> and K^DCP that were obtained from batch experiments.

As the residence time decreased, less 2,4,6-TCP was dehalogenated in 

the anaerobic step, leading to a lower 4-CP concentration in the stream entering 

the aerobic reactor. A lower residence time (high flow rate) also implied that the 

aerobic microorganisms had less time to mineralize 4-CP, thus leading to a 

higher 4-CP concentration in the outlet stream, as shown in Figure 6-32.

The equations used to predict anaerobic dehalogenation and aerobic 

mineralization were used to predict the behavior of the entire system as a 

function of flow rate. Figure 6-32 and Table 6-21 presents a comparison of the 

experimental data and the model predictions. The results show a reasonable 

agreement between the experimental data and the model predictions. This 

agreement is even more significant if one considers that the predicted values 

result from a mathematical model with parameters which are derived from batch 

studies in which the biomass was suspended and not attached to a solid support 

(as in the continuous reactor system). This provides the engineer with some 

confidence in scaling up the anaerobic-aerobic system for treatment of 

halogenated aromatic compounds.

During the operation of the continuous process enough time was allowed 

for the system to reach steady state each time the flow rate was changed.
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Table 6-21 Comparison between the predicted curves and the experimental 
data for the anaerobic-aerobic continuous reactor system. Inlet concentration of

2,4,6-TCP = 66 pM

Flow
Rate

(ml/hr)

2,4,6- 
TCP (|lM) 
S.S.Pred. 

Output

2,4,6- 
TCP ( p M )  

Expt. 
Output

2,4-DCP
<pM)

S.S.Pred.
Output

2,4-DCP
<i*M)
Expt.

Output

4-CP
i m

S.S.Pred.
Output

4-CP
i m
Expt

Output

0 0 0 IllBllli 0 0 0

20 2 2 2 1 lllllllli 1

30 4 3 IIIBIIIllllIII 3 2 2

50 9 5 iiiiiiliiiii 13 iiiiiiiii 4

150 39 28 * 10 — 9

190 44 37 6 Illllilli 10

* Reactor volume:
Anaerobic reactor: 2,000 (ml) (actual liqu id  volume)
Aerobic reactor 770 (ml)
A ir flow  rate o f aerobic reactor: 50 (ml/min)

* K inetic constants:
Anaerobic stage: K1a=2.4 (pM/hr), K2a=6.6 (pM); K1b=1.2(pM/hr), K2b=1.9 (pM) 
Aerobic stage: K1= 10.0 (pM/hr), K2=3.3 (pM)

(The kinetic constants were imported from  the anaerobic and aerobic batch systems.)
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However, samples were taken even before the steady state had been achieved 

just to follow the transient process. Table 6-22 shows the concentration at the 

outlet of the reactor for different times after the flow rate was changed. In some 

cases one can clearly see that since the steady state had not yet been reached 

the 2,4,6-TCP concentration in the outlet was lower than that later observed 

when the steady state had been achieved. In order to further check that the 

steady state had indeed been achieved the experimental values of the outlet 

concentration were compared with the values that were theoretically expected 

using a steady state mass balance for 2,4,6-TCP in which the previously 

determined kinetic degradation constants had been substituted (Equation 5.4). 

Table 6-22 also shows a partial comparison with these predictions. The 

predictions are similar to the values obtained experimentally.
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Table 6-22 Effect of run time of anaerobic continuous process with a constant 
intake concentration (68 pM) of 2,4,6-TCP, and with varied volume flow rate and 

initial concentration of 2,4,6-TCP.(Equation 5.4)

(Q) Volume 
Flow  Rate 

(m l/hr)

(t) Run 
Time 

(hours)

[TCP!
O utput
Expfa l

<PM)

TC P ]
Output
Theore.

(pM)

nrcpj
SvS,

Theore.
(pM)

ITCPJin 
In itia l Cone, 

(pM)

30 75 2 4.15 4.16 0

45 72 6 7.9 7.9 2

50 28 15 12.4 9.46 28

80 24 9 18.8 20.6 12

80 42 25 19.9 20.6 10

99 24 18 24.6 27.0 15

99 40 29 26.9 27.0 25

150 22 28 38.3 38.7 37

190 14 37 42.4 44.0 38
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Chapter 7 

CONCLUSIONS

The conclusions that may be drawn from this study are:

• The halogenated aromatic compound 2,4,6-TCP can be 

successfully and completely mineralized by using a two-stage 

anaerobic-aerobic process utilizing defined media.

• The pH required in each of the two steps in the process is 

Anaerobic stage: 8.0 ~ 8.8

Aerobic stage: 7.0 ~ 7.5.

• The degradation mechanism for both anaerobic and aerobic 

follows the scheme:

2,4,6-TCP  > 2,4-DCP  > 4-CP

4_ C P  > mineralization

• Stoichiometric amounts of chlorine can be recovered at the end of 

the two-stage process.

• The anaerobic microorganisms can be successfully immobilized on

a solid porous support where they retain their dehalogenation 

ability.

• 2,4-DCP alone can also be degraded anaerobically. In 

addition, 3-CP can be degraded aerobically. No anaerobic 

degradation of PCP could be obtained.

• The operation of the combined reactors can be at a first 

approximation predicted using a mathematical model based on 

Michaelis-Menten kinetics.

55
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