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ABSTRACT

Pyrolysis and Oxidation of Chloromethanes 
Experiment and Modeling

by
Wenpin Ho

An experimental study on pyrolysis and oxidation o f CH2 CI2  and CH3 CI in 

oxygen/hydrogen or oxygen/methane mixtures and argon bath gas was carried out at 1 

atmosphere pressure in tubular flow reactors. Degradation o f CH2 CI2 , or CH3 CI, along 

with the formation and destruction o f intermediate and final products was analyzed 

systematically over 873 to 1273°K, with average residence times o f 0.2 to 2.0 seconds.

Thermochemical parameters: enthalpy, entropy, and heat capacities for many 

chloro-oxy-carbon products and intermediates are calculated using the techniques of 

group additivity and the THERM computer code. Kinetic analysis on the reactions o f 

hydroxy radical with vinyl chloride are performed using thermochemical analysis and a 

statistical chemical activation formalism based on the Quantum Kassel Theory for the 

addition reactions. The two abstraction paths have been also analyzed by using Evans- 

Polanyi relation for activation energy and Transition State Theory for pre-exponentials. 

Good agreement with the experimental data in the literature was obtained.

A nonlinear group additivity formalism to estimate the normal boiling points has 

been developed because boiling points are important to calculate critical properties 

needed for flame modeling. The model is straightforward and applies to compounds 

with a wide range o f molecular weight, varied functional groups, and complex 

structures. We further utilize the proposed model for normal boiling points and adapt 

Joback's method into Benson type groups to calculate critical properties (Tc, Pc, Vc). 

Transport coefficients such as Lennard Jones Parameters (collision diameter and well 

depth), polarizability, and rotational relaxation collision numbers can also be estimated.



The same group information (input data) needed for thermo properties estimation is then 

used to estimate transport properties required in flame modeling.

A detailed kinetic reaction mechanism based upon fundamental thermochemical 

and kinetic principles, Transition State Theory and evaluated literature rate constant 

data is developed. The mechanism is used to model results obtained from our 

experiments, in addition to results from other studies, on the thermal reactions of 

CH2 CI2  and/or CH3 CI. Comparison o f  the model to experimental data o f  other 

researchers for a wide range o f conditions (tubular flow reactor, flat flame, perfect 

stirred reactor) showed good agreement in most cases.

Sensitivity analysis determined important reactions in the mechanism to several 

"target" products including reactions effective in inhibiting CO conversion to CO2 . The 

results indicate that the reaction OH + HC1 —> H2 O + Cl is a major cause o f  OH loss. 

This decrease in OH effectively stops CO burnout. In addition, the reaction H + HC1 —> 

H2  + Cl is also important when H2  concentrations are very low. Sensitivity analysis 

also indicates that the reaction OH + OH <—> H2 O + O, which usually forms H2 O 

during hydrocarbon incineration, reacts in the reverse direction when HC1 is present at 

concentrations comparable to CO, due to the large extent o f OH depletion. The addition 

o f  moderate levels o f high temperature steam are predicted to help CO conversion by 

shifting the above equilibria to more OH.

Knowledge and application o f the reaction mechanisms to emulation of 

incineration operation allows calculation o f modifications to incinerator design and/or 

feed to minimize pollutant formation. We predict that adding high temperature steam to 

the incinerators will improve Cl conversion to HC1 by shifting the equilibrium o f the 

OH + OH = H2 O + O reaction to the left. The viability o f  computer modeling is 

illustrated as a diagnostic for understanding and for improvement or optimization in 

combustion processes with assumed ideal mixing.
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CHAPTER 1

INTRODUCTION

Chlorinated Hydrocarbons (CHC) have been used on a large scale by industry either as 

raw materials for production or as solvents; with both cases often leading to the 

production o f large amounts o f chlorinated organic wastes. Since the Toxic Substance 

Control Act (TSCA) was enacted in 1976, the disposal o f  chlorocarbons as industrial 

wastes has became more and more difficult and costly. One popular disposal method that 

has been used is landfill, but this method is not a permanent solution because o f potential 

contamination o f ground waters by leakage from the toxic waste site. In the USA where 

many storage sites that were deemed to be safe by waste producers now require 

remedistion at great cost, with the originators o f the wastes having to pick up the bill. 

Newer processes including biological degradation, incineration and fixation in cement 

kilns are gaining market acceptance 1 , because they destroy the toxic species, even though 

they are expensive.

Incineration seems to be a more effective way o f handling the disposal o f many 

wastes, such as combustible solids, semi-solids, sludge and concentrated liquid wastes. It 

reduces, if  not eliminates, potential environmental risks and converts wastes into 

recoverable energy. When one compares incineration with other disposal options, 

advantages often become evident, especially as more wastes become regulated and added 

prohibitions and increasingly burdensome costs are placed on land disposal.

Although the incineration of hazardous wastes presents a viable and effective 

disposal methodology, the use o f this technology has been severely hindered by 

environmental concerns regarding the effluents from such systems. Two important issues 

are the capability o f  incinerators to effect the high level o f destruction that is desired and 

the possibility that other hazardous chemicals may be formed and thus impact the 

environment.

1



2

Hazardous waste incineration involving chlorine compounds deserves attention 

because the behavior o f chlorine is unique among the halogenated compounds. Organic 

chlorine compounds serve as a source o f chlorine atoms, which readily abstract H atoms 

from other organic hydrocarbons accelerating hydrocarbon production and soot 

formation. HC1 is a desirable product because it removes the Cl and can be easily 

neutralized, but it can also inhibit combustion through reactions like OH + HC1 —> H2 O 

+ Cl, which depletes OH needed for CO burnout.

The incineration o f chlorocarbons is generally performed in an oxygen rich 

environment that contains excess O2  and N 2 , in addition to the carbon and chlorine from 

the halocarbon, with relatively small amounts o f available hydrogen from the limiting 

fuel operation^. One desired and thermodynamically favorable product from a 

chlorocarbon conversion process is HC1, providing there exists sufficient H2  to achieve 

stoichiometric formation. The O-H bond in water is, however, stronger than the H-Cl 

bond and oxygen rich conditions favor H2 O and therefore limit hydrogen availability for 

HC1. Oxygen and Cl are, therefore, both competing for the available fuel hydrogen and 

this is one reason that chlorocarbons serve as flame inhibitors. The C-Cl bond is the next 

strongest compared with other possible chlorinated products such as Cl-Cl, N-Cl, or O-Cl 

bonds. Consequently, C-Cl may persist in a oxygen rich or hydrogen limited 

atmosphere^. This is one reason why emission of toxic chlorine-containing organic 

products persists through an oxygen-rich incineration, as carbon species are one o f the 

more stable sinks for the chlorine. One possible method to obtain quantitative formation 

o f HC1, as one o f the desired and thermodynamically favorable products, from 

chlorocarbons, might be a straightforward thermal conversion o f  these compounds under 

a more reductive atmosphere o f hydrogen. Here the carbon would be converted to a 

hydrocarbon such as ethane or ethylene.

The presence o f chlorocarbons has long been known to slow or inhibit the 

oxidation rate o f hydrocarbons through studies o f flame velocity, temperature, and flame
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stability. Westbrook^ has modeled the inhibition o f hydrocarbon oxidation in laminar 

flames by halogenated compounds. He suggested that the halogenated species serve to 

catalyze the recombination o f H atoms into relatively nonreactive H2  molecules, reducing 

the available radical pool, specifically H atoms, and thereby lowering the overall rate o f 

chain branching. Senkan et. al.-M have developed mechanisms for CH3 CI, C2 H3 CI, and 

HCl-doped CO oxidation flame systems. These later studies reached similar conclusions, 

suggesting that the reaction o f H + HC1 ~> H2  + Cl is responsible for the inhibition o f 

CO conversion to CO2  in the oxidations.

Alternately, Benson and Weissman^ and Senkan et. al.3 have reported that use o f 

CH3 CI in CH4  or in CH4  plus 2-3% O2  respectively accelerated CH4  conversion to 

higher hydrocarbons. They concluded that this might lead to effective methods for 

converting CH4  to useful higher molecular weight hydrocarbons without either soot or 

excessive oxidation occurring^.

Both acceleration and inhibition effects are apparent in hydrocarbon reaction 

systems with a chlorinated hydrocarbon present. Therefore, there is a significant need to 

develop quantitative insights into the mechanism of chlorocarbon pyrolysis and oxidation 

in order to better understand and ultimately to optimize these reaction processes, for use 

in conversion o f chlorocarbons by incineration, or for use in CH4  upgrading or other 

industrial processes.

In this study, a global rate constant and a detailed kinetic mechanism for the high 

temperature pyrolysis in H2  and o f combustion o f dichloromethane (CH2 CI2 ) and methyl 

chloride (CH3 CI) under fuel rich conditions are presented. I develop and use detailed 

chemical kinetic mechanisms for the high temperature combustion o f chlorocarbons. The 

mechanisms are developed from fundamental thermochemical principles and used to 

model results obtained from our tubular flow experimental results. I also compare 

calculations using our model with data o f other researchers, providing a wide range of 

experimental conditions to validate our mechanism. The data presented will be for 1 atm
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reaction systems, but approximately 1/3 o f the reactions in the mechanism are analyzed 

by using Quantum Kassel method of D e a n ^  so the mechanism can be easily modified 

for use in other pressure regimes and still incorporate fall-off and pressure dependence.

Reactions o f dichloromethane (DCM, CH2 CI2 ) with hydrogen but, without the 

presence o f oxygen, have been studied throughly and systematically in these laboratories 

at NJIT.

Tsao^ studied the thermal decomposition o f DCM with hydrogen over the 

temperature range o f 973 - 1173K, in a 1 atm total pressure tubular flow apparatus. 

Activation energies o f the global bulk and wall reactions on hydrogen reaction with DCM 

were 50.0 Kcal/mol, 57.8 Kcal/mole, with Arrhenius A factors of 2.84E+10 and 

2.65E+10 sec .'l respectively reported. The major products o f reaction o f DCM in the 

temperature range 973 to 1073 K were methane and methyl chloride. The minor 

products were ethylene, acetylene and HC1. Trace amounts o f ethane, chloroethylene, 1,2- 

-dichloroethylene, trichloroethylene, benzene were also observed. No chlorocarbons 

were found over 1223K and one second residence time where the only products were 

methane, hydrogen

chloride, acetylene, ethane and benzene.

Huang^ studied the kinetics o f the reaction o f atomic hydrogen with DCM in a 

flow system at a pressure o f 2.1 to 2.7 mm Hg and room temperature. The major 

products observed were hydrogen chloride and methane. The extent o f conversion o f 

DCM increases first to a maximum and then decreases with increasing concentration of 

DCM. Through the modeling o f the reaction scheme and comparision with experimental 

data, the rate constant o f the initial steps were determined as follows :

H + CH2 CI2  — >H CI + CH2C1 ( k j )

H + CH2 CI2  —-> H 2 + CHC!2 (k2)

where

k] = 3.63 E+9 cm^/mole/sec , 298 K
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k2  = 2.08E+7 cm^/mole/sec , 298 K

W o n  10 investigated the decomposition o f dichloromethane/1,1,1— trichloroethane 

mixtures in a hydrogen bath gas. These experiments were carried out at one atmosphere 

total pressure in a tubular flow reactor. In his study, he demonstrated that selective 

formation o f HC1 can result from thermal reaction o f chlorocarbon mixture and showed 

that synergistic effects o f  1 ,1 ,1—trichloroethane decomposition accelerate the rate of 

DCM decomposition. There is significant interaction o f  the decay products from 1,1,1— 

trichloromethane with the parent dichloromethane.

Earlier kinetic studies on methyl chloride pyrolysis were reported in 1959 by 

Shilov and Sabirova* K Measurements were made at initial CH3 CI pressures o f 10.1-34.3 

torr, temperatures o f 1062K-1147K, and at contact times o f 0.4- 5.0 seconds. They found 

HC1, CH4 , and C2 H2  in the ratios o f 3:1:0.6. These yields were reported to be consistent 

with the following proposed mechanism:

CH3 CI = CH3  + Cl 

CH3  + CH3 CI = CH4  + CH2 C1 

Cl + CH3 CI = CH2 C1 + HC1 

2CH2CI = CH2 CICH2 CI 

CH2 C1CH2 C1= C2 H3 CI + HC1 

C2 H 3 C1 = C2 H2  + HC1

They also reported that the measured apparent first-order rate constants increased with 

increasing pressure.

Slater's theory was used by H olbrook^ to calculate the rate constant for the 

decomposition o f CH3 CI in the fall-off region. The value obtained was 5-6 orders of 

magnitude lower than the reported experimental values above. Frost and L auren t^  

obtained a better fit to this value using RRKM theory, where rotations were considered 

inactive, and activation energy was taken from the experimental data. With harmonic 

energy levels the calculated rate constant was 32 times smaller than experimental value,
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and with a correction for an-harmonicity the calculated rate constant was only 2 0  times 

smaller. These modeling calculation may have indicated that the rate constants was not 

correctly fit experimental data.

In 1980, Kondo, Saito, M urakam i^ pyrolyzed CH3 CI in a shock tube at 

temperatures between 1680K and 2430K, at total pressures o f 1-5 atm, using reactant 

mixtures o f  0.2%-0.5% methyl chloride in argon. CH3  concentrations were measured via 

the CH3  absorption band at 216 nm. From the initial rate o f  CH3  formation the 

elementary rate constant for breaking the C-Cl bond was obtained. The reaction was in 

the fall-off region even at the highest pressures. For these high temperature shock tube 

data, the mechanism was considered to include the following likely reactions:

CH3 CI + M = CH3  + Cl + M (1)

CH3 CI+ Cl = CH2 C1 + HC1 (2)

CH3 CI + CH3  = CH2 C1 + CH4  (3)

CH3 CI + CH2 C1 = CH3  + CH2 CI2  (4)

C2 H6  + M = 2CH3  + M (5)

Cl2  + M = 2C1 + M (6 )

2CH2 C1 = C2 H4C12  (7)

C2H4C12 = C2 H3 C1 + HC1 (8 )

G 2H3 CI + M = C2 H2  + HC1 + M (9)

CH2 C1 + CH3  = C2 H 5 C1 (10)

C2 H5 C1 = C2 H4  + HC1(11)

C2 H4  + M = C2 H2  + H2  + M (12)

Computer simulation o f the CH3  profiles without reaction (4), and with ky and k jo  equal 

to k f  fitted the experimental data at high temperatures exactly and were higher by a factor 

o f  2 at low temperatures. Low- and high-pressure rate constants (ko [Ar] and k°o) were 

obtained from the experimental data by applying a refined RRKM theory which involved 

a weak collision effect: logko/[Ar] = 12.56- 59/0 L/mole/sec log koo = 13.86-91.0/0 sec-1.
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The low-pressure rate constant is in agreement with the value derived by H olbrook^ 

from the data reported in reference 1 1 .

Data on the pyrolysis o f  CH3 CI at a high degree o f conversion were reported by 

LeMoanlS. The reaction was run at 993K for 30 hours in a batch reactor yielded 

conversions larger than 95%. The gas phase contained HC1, CH4 , and small quantities o f 

H2, benzene, and toluene. Low transient concentrations o f CH2 CI2 , C2 Hg, and C2 H5 CI 

were detected at the beginning o f the pyrolysis. In the liquid phase, benzene (72%), 

toluene (11%), xylene (1%), and monochlorobenzene (12%) were identified. There were 

two distinct solid phases: carbon in the reactor and naphthalene and soot at the exit from 

the reactor. The reaction mechanism, despite the large number o f  products identified, was 

considered to be schematically simple. It was proposed that, initially, CH3 CI would 

decompose into HC1 and ICH2 , which would dimerize into C2 H4  or decompose into CH 

+ H or C + H2 . The combination o f two CH radicals would form acetylene. Acetylene 

would combine, then cyclize to form benzene, from which the identified higher molecular 

weight compounds would be formed. The hydrogenation o f CH2  radicals would lead to 

methane. As we shall see later, this mechanism is not plausible.

CH3 CI decomposition was also studied by Weissman and Benson^ using a flow 

system to generate product distributions at temperatures o f 1260 and 1310K and over the 

pressure range o f 180 - 370 torr. They measured CH4 , C2 H2 , C2 H4 , and HC1 as the 

major products with lower quantities o f aromatic hydrocarbons and soot using Gas 

Chromatography and Mass Spectrometry techniques.

In 1988, Senkan et al.16 constructed a CH3 CI combustion mechanism by 

combining a mechanism describing CH4  combustion together with a sub-mechanism 

describing the chlorine inhibition o f CO oxidation. This mechanism was used to 

calculate the stable species concentration profiles in atmospheric pressure sooting (fuel 

rich) CH3 Cl/CH4 /0 2 /Ar premixed flat flames. Their studies concluded that CH3 CI 

promotes not only the decay o f CH4  to CO2  and H2 O but also soot formation by
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simultaneously increasing the rates o f C2 H3  and C2 H2  formation. However a number o f 

their rate constants were from estimation techniques and their mechanism extended only 

up to C2 *species. The C j reaction mechanism involving unimolecular decomposition, 

abstraction, and oxidation is reasonably well understood in describing CH4  combustion 

at present. The C2  chemistry, however, is in need of improvement, specifically the 

reactions o f  chlorinated C2  radicals. Thermal decomposition, oxidation by O and O2 , 

recombination and addition o f CH3  and C2  radicals are five competitive reactions. These 

are all important because Cl abstracts H rapidly (high Arrhenius A factor and low energy 

o f  activation), which produces the active hydrocarbons and a H radical pool early in the 

reaction. These hydrocarbon radicals combine to form more C2  radicals due to the 

presence o f  Cl atoms. The C2  chemistry is therefore more important here even though the 

species at molecular weights above 2 carbons account for under 15% o f the carbon in the 

CH3 CI/CH4 /O2  system.

Miller et a l J ?  studied the high temperature product distributions from reaction of 

CH4  and CH3 CI under pyrolysis, preignition oxidation and flame conditions. For 

pyrolysis and preignition studies, 3% fuel/zero O2  or stoichiometric 0 2 / 1 0 % N2 /Ar were 

heated behind reflected shocks to temperatures between 1200 - 2600K at a density o f  2.5 

± 0.25 x 10"5 mole/cm^. Flame studies were conducted at atmospheric pressure for 

CH4 /air and CH3 Cl/CH4 /air mixtures with equivalence ratios o f  1.15 and 1.35 

respectively. They reported that CH3 CI is more easily decomposed than CH4  in either 

pyrolysis or preignition oxidation. In the flame environment, the CH4  and CH3 CI 

disappear at approximately the same rate. They also reported that the presence o f chlorine 

decreases the measured ethane concentration and promotes the formation o f acetylene 

which may explain the propensity for soot formation from chlorinated hydrocarbons.

Roesler et al.^® studied moist CO oxidation chemistry inhibited by HC1 

experimentally and numerically with dilute mixtures o f CO (-1% ), H2 O (-0.5% ), O2  and 

HC1 reacting in N2  at a temperature near 1000K. The effect o f increasing the Cl/H ratio
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was investigated by increasing HC1 concentrations from 0 to 200 ppm while the effect of 

excess O2  was studied by varying the fuel oxidizer equivalence ratio from 1.0 to 0.33. 

The results showed that small quantities o f HC1 inhibit CO oxidation and that increasing 

O2  concentrations to stoichiometric mixtures further decreases the oxidation rate, a 

counter intuitive result. They used sensitivity and reaction flux analysis to determine the 

rate-controlling inhibition steps/pathways created by HC1. They found the principal chain 

terminating step at 1000K to be the reaction Cl + HO2  —> HC1 + O2 .

Experimental and numerical studies o f the thermal destruction o f CH3 CI in the 

post-flame zone of a turbulent combustor under fuel lean conditions (equivalence ratio

0.3 - 0.6) were conducted by Koshland et a l . ^  Their results showed that there is an 

optimal concentration level (ca. 100 ppm) where CH3 CI is most effectively destroyed in 

the post-flame region, with higher or lower levels more difficult to destroy. They 

proposed that the injection o f fuels into the post-flame region (under fuel lean conditions) 

can increase the destruction efficiency or reduce the peak temperature needed for 

adequate destruction o f CH3 CI and its by-products by increasing the radical 

concentrations and the rate o f subsequent destruction reactions.

A recent study on the pyrolysis and oxidation o f CH3 CI was also conducted by 

Huang and Pfefferle^O using a tubular flow reactor at 863.4 torr and a temperature range 

from 1100 to 1350K. They modified two models published by Senkan and by Miller 

primarily increasing the rate for the initial CH3 CI pyrolysis and by adding two routes for 

reaction o f oxygen with CH2 CI to formaldehyde and chloroformaldehyde. They 

concluded that the CH3 CI decomposition was faster than previously reported.

Although some investigations o f the reaction o f  H2 /O2  with chloromethanes have 

been implemented, detailed kinetic models o f these reactions are necessary to explain the 

experimentally observed behavior. It is hoped that, taken together, these steps will 

adequately describe the experimental observations.



CHAPTER 2 

EXPERIMENTAL METHOD

2.1 Experimental Apparatus

A diagram o f the experimental apparatus is shown in Figure 2.1. The high temperature 

tubular flow reactors, operated isothermally and at atmospheric pressure in this study. 

The tubular flow reactor was made o f quartz and maintained at a constant temperature by 

a three-zone oven, with each zone controlled separately.

Argon, carrier gas, was passed through one set o f series saturation bubblers in 

parallel to pick up the Dichloromethane which was kept at 0°C using an ice bath. A 

second line o f  argon (after the bubblers) was brought in as make-up to meet the exact 

ratio o f  flow needed. Oxygen and hydrogen were then brought into the flow stream as 

required. Before entering the reactor, the mixtures were preheated to limit cooling at the 

reactor entrance and help ease the reactor heating requirement. Each quartz reactor tube 

was housed within a three—zone Lindberg electric tube furnace.

The reactor effluent was monitored by an on-line Gas Chromatograph (GC) 

equipped with a Flame Ionization Detector (FID) and either a Thermal Conductivity 

Detector (TCD) or a methanation catalyst converter (for CO and CO2 ) & FID. The lines 

between the reactor exit and the GC were heated to 80°C to limit condensation. When the 

reactor inlet switch valves were properly selected, the vapor mixture would be 

transferred directly from the bubbler to the GC sampling inlet via a reactor by-pass line. 

This was necessary to determine the GC peak area which corresponded to the initial input 

concentration (and ratio) o f  the mixtures. The reactor effluent gas passed through a 

heated 85°C transfer line to the GC gas sample valve and exhaust.

In this experiment, three different diameter reactors were studied. They were 4.0, 

10.5, and 16 mm ID and allowed us to vary reactor surface to volume (S/V) ratio. Use of 

these S/V ratios allowed us to decouple apparent wall and bulk phase decomposition rates

10



11

using a plug flow assumption and pseudo first order reaction system. The pseudo first 

order reaction was first validated for each reactor via straight line graphs on a In C/Co 

versus time plot where C is concentration o f parent chlorocarbon.

Outlet gases from the reactor were passed to the GC through Pyrex tubing, packed 

with glass wool to trap carbon particles and prevent contamination o f the GC sampling 

valve. The bulk o f the effluent was passed through a sodium bicarbonate (NaHC0 3 ) flask 

for neutralization before release to the atmosphere via a fume hood.

2.2 T em perature Control and M easurem ent

This study was carried out with nearly isothermal reaction conditions (± 5°C) at the 

desired temperature using a three zone furnace. Each zone was equipped with 

independent solid state temperature controllers (Omega Engineering, Inc.). These 

controllers operated a solenoid for switching of a controlled voltage (time proportional 

switching) to the respective heater.

The circuitry for the temperature controller operated solenoids and Variac control 

o f  the switched voltage (via relays) was designed at NJIT. It is described here for 

completeness.

1. Both the relays and Omega temperature controllers were operated via 110 volt AC; i.e.

the coil in the relays was run at 110 VAC.

2. The voltage applied to the relay contacts; i.e. voltage that is applied to the heater coils,

was controlled with a Variac o f  proper current rating.

3. The resistance heater voltage was typically 50% o f the rated capacity o f the heater and

thus insured long life o f  the heater elements.

4. A schematic o f  voltage and thermocouple inputs to temperature controller is shown in

Fig 2.2.
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The actual temperature profile o f the tubular reactor was obtained using a K type 

thermocouple which could be moved coaxially within reactor from one end to the other. 

The temperature measurement was performed with a steady flow rate o f  argon gas 

through the reactor to emulate actual reaction conditions. Temperature profiles obtained 

as shown in Figure 2.3 were isothermal to within ± 5°C for 41.9 cm o f reactor length.

2.3 Quantitative Analysis of Reaction Products

A Perkin Elmer 900 gas chromatograph with FID/TCD or FID/catalyst converter FID 

was used on-line to quantitatively determine the concentration o f the reaction products. 

The lines between the reactor exit and the GC were heated to 85°C to limit condensation. 

The GC column for the FID is a 1.5 m long by 1/8" O.D. stainless steel tube packed with 

1 % Alltech AT-1000 on Graphpac GB and the column for the TCD is a 1.8 m long by 

1/8" O.D. stainless steel tube packed with GCA-013 SPHEROCARB 100/120 mesh.

The GC inlet sampling used a ten port sample valve (Valeo Instrument Co.) with 

two 1.0 ml volume loops maintained at 175°C and 1 atm pressure (allowed dual sample 

injections onto each GC column). When the sample valve was in the load position, 

Helium, carrier gas, passed directly to GC column and reactor effluent gas filled these 

two sample loops. Turning the valve to the inject position, Helium would go into the 

sample loops and then flush the sample into the two different columns and detectors.

Integration o f the peaks on each chromatogram was performed with a  dual 

channel Spectraphysics 4270 integrator using an attenuation o f 1 and chart speed o f 0.25 

cm/min. Representative chromatograms are shown in Figure 2.4, 2.5 and Table 2.1 with 

retention times and peak identification.
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Table 2.1 Average Retention Time of Products
Compounds Average Retention Time (min.)
CH4 1.55
c 2 h 2 1.95
C2 H4 2 .2 0

CH3 CI 3.65
c 3 h 6  + c 3 h 8 5.45
C2 H 3 C1 6.40
c h 2 c i2 8.80
C4 H 1 0 10.40
c h 2 c c i 2 11.15
CHC1CHC1 12.45
CHCI3 15.10
CHCICCI2 16.70
CH2 CICHCI2 17.60
H2 0.9 (TCD)
0 2 1.9 (TCD)
CO 3.1 (TCD)
c h 4 6.3 (TCD)
co2 9.8 (TCD)

Calibration o f the flame ionization detector to obtain appropriate molar response 

factors was done by injecting a known quantity o f  the relevant compound such as CH4 , 

C2 H6 , CH2 CI2 , C2 H3 CI etc., into the injection port then measuring the corresponding 

response area. The relative response factor has been determined for compounds shown in 

Table 2.2. The response factors for Cj compounds are all similar which is consistent with 

the converter that FID's are carbon counters and that we had sufficient H2  flow to convert 

the Cl's to HC1 as well as hydrogen to H2 O, and the response factor o f  C2  compounds are 

nearly twice the response o f C j compounds. These results agree with the general 

principle o f  flame ionisation detector which is well known as a carbon counter^!. Thus, 

the effect o f  chlorine on the relative response factor can be neglected for this flame 

ionization detector and the relative response factors can be considered to correspond the 

number o f carbon in the molecule. Based on the experimentally verified relative response
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factors, the specific component peak area from each set o f samples was converted to the 

equivalent number o f  moles o f each compound.

A series o f  eight residence times at each reaction temperature were run for a given 

inlet concentration set by systematic variation in the total flow rate, while maintaining a 

constant reactant ratio. Every third run was repeated to ensure reproducibility o f results.

Table 2.2 Relative Response Factor in FID and TCD
Compounds Relative Response Factor (RRF)
Methane CH4 1.07
Acethylene C2 H2 1.60
Ethylene C2 H4 2 .0 0

Ethane C2 H6 1.96
Propene C3 H 6 3.47
Propane C3 Hg 3.42
Dichloromethane CH2 CI2 1 .0 0

Butane C4 H 1 0 4.31
1,1 Dichloroethylene CH2 CCI2 2 .1 0

1,1,1 Trichloroethane CH3 CCI3 1.85
Chloroform CHCI3 0.98
Tetrachloromethane CCI4 1.18
1 ,1 ,2  Trichloroethane CH2 CICHCI2 2 .1 0

Hydrogen H2 0.02 (TCD)
Oxygen O2 1.71 (TCD)
Carbon monoxide CO 2.25 (TCD)
Carbon dioxide CO2 1.82 (TCD)

2.4 Hydrochloric Acid Analysis

Quantitative analysis o f HC1 product was performed for reactions in each reactor and 

residence time. The samples for HC1 analysis were collected independently from the GC 

sampling as illustrated as Figure 4.1. In this analysis, the effluent was bubbled through a 

two stage bubbler before being exhausted to the fume hood. Each stage contained 20 ml 

o f 0.01 M NaOH and two drops o f phenolphthalein indicator. The gas passed through
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these two stage bubblers until the first stage solution reached its end point. The time 

required for this to occur was recorded. At this point, the bubbling was stopped and the 

two solutions were combined. The effluent HC1 concentration was calculated based upon 

titration o f the combined solution with standardized 0.01 M HC1 to the phenolphthalein 

end point. Several titrations were performed using buffered solution (pH 4.7) to discern if  

CO2  was affecting the quantitative measurement o f HC1. No significant effect was 

observed due to the relatively low levels o f CO2 .

2.5 Qualitative Identification of Reaction Products

Positive identifications of all reactor effluent species were made by GC/Mass 

Spectrometry applied to batch samples drawn from the reactor exit into previously 

evacuated 25 ml stainless steel or Pyrex glass sample cylinders. A Finnigan 4000 series 

GC/MS, with a 50mx0.22mm I.D. methyl silicone stationary phase column was used. Gas 

samples were inlet by cryofocussing (at 78 K) on a 12 cm length o f the capillary column.



CHAPTER3

ESTIMATION OF THERMOCHEMICAL DATA

Thermochemical data are required to determine the energy balance in chemical reactions 

and in determining the Gibbs free energy o f a reaction as a function o f temperature. It 

also provides a convenient way to determine reverse reaction rate constants from the 

calculated equilibrium constant o f the reaction and the known forward rate. In this study, 

a detailed elementary reaction mechanism has been developed based upon literature data, 

general trends, fundamental thermodynamic principles and Transition-State-Theory22. 

An accurate thermodynamic database for all radical and molecular species in the 

mechanism is extremely important. In addition, the thermochemical parameters including 

enthalpy o f formation, entropy and heat capacities for many chloro-oxy-carbon products 

and intermediates have not been previously measured or calculated and they are required 

for input to detailed modeling codes.

The thermochemical database including enthalpy o f formation (Hf), entropy (Sf), 

and heat capacities (Cp) is based upon our evaluation o f the best currently available 

thermochemical data. Appendix A shows a summary o f the species involved and 

thermochemical quantities employed. When experimental thermochemical data were not 

available, the values were estimated using the techniques o f  group additivity and the 

T H E R M 2 3 , 2 4  computer code.

The use o f group additivity methods and THERM is described in detail in 

references 2 3 , 2 4 ,  and THERM user manual. Thermodynamic data can often be calculated 

easier and faster using THERM than if one searched through the literature.

When required properties for various Benson type g r o u p s 2 2  were not available, 

estimates were made based on reasonable modifications o f the properties o f  groups from 

similar compounds or from properties o f  a series o f species with the concerned chemical 

functional group. Items considered were structure, number o f chlorines, effect o f Cl atom

16
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on intramolecular bond strength and Cl - Cl repulsion. After estimating the data, the 

estimated data were compared to recently published experimental data where available. If  

the experimental measured data were not available, the estimated data were judged 

reasonable if  similar results were obtained by two different estimation methods such as 

shown in the following example.

Two different methods are used and their results compared to estimate the Hf^98 

for CH2 CIOH. Group additivity was then used to back calculate the C/C1/H2/0 group. 

Method 1. CH2 C10H - - >  CH2 C1 + OH 

AHrxn = -Hf(CH2 C10H) + Hf(CH2 Cl) + Hf(OH) = BE

= -Hf(CH2 C10H) + 29.1 + 9.45 = -Hf(CH2 C10H) + 38.6 

Hf298 o f 29.1 Kcal/mole for CH2 C1, 9.45 Kcal/mole for OH. The existence o f Cl affects 

a Resonant Stabilization Energy (RSE) as illustrated below:

BE o f CH3  - H and BE o f CH2 C1 - H, that is, 105.1 - 100.8 = 4.3 Kcal/mole 

CH4  ~ >  CH3  + H AHrxn =105.1 Kcal/mole (BE o f CH3  - H)

CH3 CI ~ >  CH2 C1 + H AHrxn = 100.8 Kcal/mole. (BE o f CH2 C1 - H)

The RSE due to Cl is 105.1 - 100.8 = 4.3 Kcal/mole. Hence BE o f CH2 C1 - OH is 

92.7 - 4.3 = 88.4 Kcal/mole, where 92.7 is the CH3  - OH bond.

Therefore

Hf(CH2 C10H) = 38.6 -88.4 = -49.8 Kcal/mole

Method 2. CH2 C10H —> CH2OH + Cl

AHrxn = -Hf(CH2 C10H) + Hf(CH2 OH) + Hf(Cl) = BE

= -Hf(CH2 C10H) - 2.16 + 28.9 = -Hf(CH2 C10H) + 26.74 

Start with the bond energy o f CH3  - Cl, which is 83.61 Kcal/mole. Here the presence of 

OH effects a Resonant Stabilization Energy (RSE) as shown:

BE o f CH3  - H and BE o f CH2OH - H, that is, 105.1 - 98 = 7.1 Kcal/mole for the RSE 

due ti OH.
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CH4  —> CH3  + H AHrxn = 105.1 Kcal/mole

CH3 OH ~ >  CH2OH + H AHrxn = 98 Kcal/mole

Hence 83.61 - 7.1 = 76.51 Kcal/mole is the BE for CH2 C1 - OH. Therefore

Hf(CH2 C10H) = 26.74 - 76.51 = -49.77 Kcal/mole

The enthalpy o f formation for CH2 C10H is -49.8 Kcal/mole. We can now use this Hf298 

for calculation o f the C/C1/H2/0 group

Species H f
C/C1/H2/0 ?
O/C/H -37.9
CH2 C10H -49.8

C/C1/H2/0 = -49.8 - (-37.9) = -11.9

We can further calculate corresponding groups using the same estimation method. The 

calculated results are listed in Table 3.1

Table 3.1 New groups for C/CI/H/O
Groups H f
C/C1/H2/0 -11.9
C/C/Cl/H/O -14.6
C/C12/H/0 -15.1
C/C/C12/0 -18.37

The above groups were input into the THERM computer code to calculate H f for 

CH2 C100H  and CHCl2 OOH, Results were compared with the estimation method results. 

As shown in Table 3.2, the estimation results are in good agreement with the THERM^O 

group additivity.

Estimations o f entropy and heat capacity are made based on reasonable 

modifications o f the values o f similar groups. In this example, the contribution o f S of 

(C/C/Cl/H/O) can be estimated from the S of (C/C2/C1/H) because the carbon atom is 

similar to oxygen atom in mass. This assumption must be varified and compensate the
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difference between C and O. We can look at the difference between S(C/C2/H2) group 

versus S(C/C/H2/0) group and S(C/C/H3) group versus S(C/H3/0) group.

Table 3.2 Validation of estimation method
Reaction BE H f THERM
CH2 CIOOH —> C.H2OOH + Cl 72.51 -32.59 -32.7
CH2 CIOOH —> CH2 CI. + OOH 64.90 -32.30
CH2 C100H —> CH2 CIO. + OH 104.0 -32.68
CHCI2 OOH —> C.HCIOOH + Cl 69.70 -36.30 -35.90
CHCl2OOH ™> CHCI2  + OOH 62.90 -35.90
CHCI2 OOH —> CHC12 0 . + OH 44.28 -35.88

From THERM group database,

S(C/C2/H2) - S(C/C/H2/0) = 9.42 - 9.8 = -0.38

S(C/C/H3) - S(C/H3/0) = 30.41 -30.41 = 0.0

Set the adjustment in S^98 ^  _q,38 for substitution o f O for C. Then:

S (C/C2/C1/H) - S (C/C/Cl/H/O) = S (C/C2/H2) - S (C/C/H2/0) = -0.38

S (C/C/Cl/H/O) = S (C/C2/C1/H) + 0.38 = 17.6 + 0.38 = 17.98

Based upon the above calculation, we can further estimate S(C/Cl/H2/0) group.

S (C/C2/C1/H) - S (C/C/C1/H2) = S (C/C/Cl/H/O) - S (C/C1/H2/0)

S (C/C1/H2/0) = S (C/C/Cl/H/O) - S (C/C2/C1/H) + S (C/C/C1/H2)

= 0.38 + 37.8 = 38.18

The estimation technique for heat capacity is similar to the above calculations for S. The 

final calculation results are listed in Table 3.3.

Table 3.3 New groups for S^98 ant|  Cp
Groups CP300 CP400 CP500 CP600 CP800 CpiOOO
C/C1/H2/0 38.18 8.39 10.60 12.35 13.48 15.35 16.69
C/C/Cl/H/O 17.98 8.49 9.80 9.95 11.28 13.94 14.59
C/C12/H/0 44.08 11.59 13.90 15.45 16.58 17.94 18.69
C/C/C12/0 22.78 11.69 14.78 16.00 16.56 17.00 17.01



CHAPTER 4

ESTIMATION OF KINETIC PARAMETERS

4.1 Background

Benson postulated that in a dilute gas there are only two type o f  elementary kinetic 

processes. The first is unimolecular process wherein an energetically activated chemical 

species reacts, when it is isolated from other gas phase species by internal rearrangement 

o f atoms, breaking a bond, or molecular elimination. The second process is bimolecular 

and requires the collision o f two chemical species to form a collision complex. The 

resulting collision complex is an energized adduct which follows a subsequent 

unimolecular chemical process.

There are extensive rate constant data for hydrocarbon (HC) oxidation processes 

and methods have been developed for making estimations. Allara and Shaw^5 carried out 

a systematic kinetic study on the thermal degradation o f n-alkane molecules. 

Unfortunately, most o f those measurements are at low temperature; therefore, the results 

must be extrapolated and a certain degree of error is introduced here.

Baulch et al.26 have published an extensive review o f the kinetic data for the 

reaction o f inorganic chlorinated species with themselves and with other atoms and 

diatoms likely to be found in a combustion system. There exists a considerable base o f 

older data on the reactions o f chlorine with organic systems due to the industrial 

importance o f the chlorination o f hydrocarbons.

Atkinson et al.27 update and extend the previous critical evaluations o f  the 

kinetics and photochemistry o f air pollutant chemical reactions on a routine basis. The 

NIST Chemical Kinetics D atabase^ provides a tool for rapidly examining the literature 

for the chemical kinetics community. The program will find data on a particular reaction, 

all o f the reactions o f a species, or subsets o f all o f the reactions.

20
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4.2 U nim olecular Dissociation

4.2.1 Simple fission

Based on Transition-State-Theory (TST), the rate constant for simple fission can be 

expressed in thermodynamic terms, since it is more useful to work with the rate constant 

in this form than with partition functions. Consider the unimolecular reaction 

CH2 Cl2  <-> CH2 Cl2 # —> CH2 C1 + Cl

The first order rate constant for decomposition o f CH2 C12  is given by 

k = (kBT/h)Keq#

where Keq# is the equilibrium constant for formation o f the [CH2 CI2]# complex.

(# denotes a Transition-State-Theory complex)

If the equilibrium constant is expressed in terms o f the molar Gibbs free energy using the 

van't H off relation AG# = -RT In Kgq# 

the rate constant can be written as 

k = (kBT/h)exp(-AG#/RT)

where kB, h, R  are the Boltzman, Planck's and gas constant respectively.

AG# may be expressed in terms o f enthalpy (AH) and entropy (AS) changes by

AG# = AH# - TAS#

In thermodynamic language 

k = (kBT/h)exp(AS#/R)exp(-AH#/RT)

This equation is similar to the Arrhenius equation 

k = Aexp(-Ea/RT)

and the thermodynamic parameters can be related to the Arrhenius parameters. We can 

use thermodynamics and equilibrium theory to estimate the Arrhenius activation energy 

in terms o f the thermodynamic properties o f the transition state: 

d ( ln k ) /d T  = Ea/RT2

From k = (kBT/h)Kgq# and differentiating with respect to T gives 

d(lnk)/dT = 1/T + d(lnKeq#)/dT
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Since Kgq^ is a equilibrium constant, its variation with temperature is given by the 

Gibbs-Helmholtz equation 

d(lnKeq#)/dT = AE/RT2

Comparing with Arrhenius activation energy, we can obtain 

Ea = RT + AE

Since H = E + PV, for a constant-pressure process and there is no change in the number

o f molecules in going from the reactants to the transition state (AV is zero); therefore, in

this case

Ea =AH# + RT

Insertion o f this equation into

k = (kBT/h)exp(AS#/R)exp(-AH#/RT)

leads to

k = (ekgT/h)exp(AS#/R)exp(-Ea/RT)

Hence

A = (ekBT/h)exp(AS#/R)

where T is the temperature at which the experiments have been carried out.

Usually, AS^ is unknown, therefore A factors are estimated from literature values 

or by using generic reaction series. In this case, a comparison o f the reaction to a similar 

reaction system, where the rate parameters are known is made. As listed in Table 4.1, 4.2, 

and 4.3, the generic reaction series shows a consistent trend based on heat o f reaction. We 

can also estimate AS^ from statistical mechanics and an assume Transition-State structure 

geometry. In pratice we do not use the Transition-State thermodynamic Ea^ or but 

often use conventional thermodynamic properties which are known.
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Table 4.1 C-H Rupture in Hydrocarbon Molecules
Reactions log A Ea AH
CH4  —> CH3  + H 15.4 105.0 104.8
c 2 h 6  - > c 2 h 5 + h 15.3 100.7 100.7
C3 H8 ~ >  C3 H7  + H 15.4 100.7 100.7
C4 H1 0  ---> C4 H9  + H 15.4 100.7 100.7

(Ref: Dean, A.M., J. Phys. Chem., 89,4600,1985)

Simple unimolecular (elimination) rate constants are determined by two methods 

similar to beta scission reactions. The unimolecular Quantum Kassel formalism was used. 

Here, the reverse reaction (combination) parameters for the high pressure case are 

determined. Then the corresponding high pressure unimolecular beta scission rate 

constants using microscopic reversibility <MR> are calculated.

AG = - RT In Keq = AH - TAS for the reaction 

AH/RT - AS/R = (Ef - Er)/RT - ln(Af / Ar) 

where f  and r denote forward and reverse reaction.

Transforming the above equation to a standard state expressed in concentration units: 

(AHC + AnRT)/RT - (ASC + AnRln(R'T))/R = (Ef - E^/RT - ln(Af / Ar) 

where An is the mole change in the reaction.

(Ef - Er) = AHC

ln(Af / Ar) = ASC/R + An ln(eR'T)

The high pressure unimolecular elimination parameters are then input to the 

Quantum Kassel formalism to calculate the apparent rate constants at the appropriate 

pressure. The second method is simple use o f  the reverse rate constants from the 

Quantum Kassel combination reaction calculations.
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Table 4.2 C-C Rupture in Hydrocarbon Molecules
Reactions log A Ea AH
c 2 h 6  ~ >  CH3  + c h 3 16.9 89.4 89.8
c 3 h 8  - > c 2 h 5  + c h 3 16.9 84.4 85.5
C4 H 1 0  —> C 3 H7  + CH3 17.0 84.7 85.9
C4 H 1 0  —> C 2 H 5  + C2 H5 16.9 80.2 81.9
C=CC —> C=C. + c h 3 16.9 99.5 100.3

(Ref: Dean, A.M., J. Phys. Chem., 89,4600, 1985)

Table 4.3 C-H Rupture in Hydrocarbon Radicals
Reactions log A Ea AH
C2 H5  —> C=C + H 13.2 40.9 38.7
ccc. —> cc=c + H 1 2 .8 38.5 36.0
cccc. —>ccc=c + H 12.7 38.3 36.1
c=cc. -->cc=c=c + H 13.1 61.3 58.9
cc.c —> cc=c + H 1 2 .8 39.6 38.8
ccc.c —>ccc=c + H 12.7 39.6 39.1
ccc.c —>cc=cc + H 1 2 .2 39.6 36.4

(Ref: Dean, A.M., J. Phys. Chem., 89,4600,1985)

4.2.2 Complex fission (molecular elimination)

The second kind o f unimolecular reaction is the formation o f a cyclic transition state and 

the elimination o f a molecule. For example, we may consider the elimination o f HC1 from 

chlorinated hydrocarbons (CHCs); for example,

H Cl H Cl
I I  I I

H-C - C-H ** H-C - C-H o  C2 H3 CI + HC1
I I  : :

Cl H C l .. H

These seem to involve four atoms in a ring transition state and are refered to as four- 

center reaction. Cases are also found o f three-center reactions:

H\ /H H\ /H
C <-> C ** :CH2  +HC1 

H7 v Cl H ' »'C1
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B e n s o n 2 2  declared that the overall rate constants for these kinds o f reactions are 

dependent on the relative rate o f ring closure and biradical fission and are not completely 

understood. We may estimate Arrhenius A factor from Transition-State-Theory 22(ysT)

A = (ekgT/h)exp(AS^/R)*g

where g is degeneracy; for example, CH2 CICH2 CI —> C2 H3 CI + HC1

each o f 2 Cl's can react with 2 H's, so g = 2 *2 -  4. AS^ is about -4.3 cal/mole/K for loss

each rotor (C-C bond).

Activation energy Ea can be estimated as 

Ea = AH + Energy Barrier

B o z z e l l i 2 9  proposed that the energy barrier is about 35 -4 5  Kcal/mole. Zabel^O indicated 

that for

C2 H3 CI ~ > C2 H2  + HC1

The energy barrier is 45 Kcal/mole. Here, we break two single bonds add to double bond 

to form a triple bond, with no rotor loss because o f the double bond.

In this study, we calculated a barrier for CH3 CI three-center reaction to 1 :CH2  + 

HC1 o f 3.75 Kcal/mole. The Ea is from analysis o f reaction o f 1 :CH2  which is widely 

shown to insert into hydrocarbons with an Ea o f 0.0 and on insertion o f 1 :CCl2  into HC1, 

which we have experimentally measured to be 15 Kcal/mole. One possible reason for this 

apparent activation energy is that the electrons from the Cl atom may reduce the ability o f 

the un-occopied orbital on the singlet methylene to combine with bonding electrons in the 

molecule.

An E v a n s - P o l a n y i 2 2  relationship between Ea and AH for HC1 elimination reaction 

can be made. A plot o f Ea versus AH for HC1 elimination reaction is shown in Fig. 4.1. A 

best fit relationship o f Ea = 1/2 (AH + 100) is obtained for the AH = 0 - 100 Kcal/mole 

range.
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4.2.3 Beta Scission Reactions

These reactions utilize the Quantum Kassel formalism and are treated in one o f  two ways. 

In the first method, a Quantum Kassel formalism is used. The reverse reaction (addition) 

parameters for the high pressure case are determined. The corresponding high pressure 

unimolecular beta scission rate constants using microscopic reversibility <MR> are then 

calculated. The high pressure unimolecular elimination parameters are then input to the 

Quantum Kassel formalism to determine the high pressure limit and to calculate the 

apparent rate constants at the appropriate pressure. The second method is simple use o f 

the reverse rate constants from the QRRK calculations.

4.3 Bimolecular reactions

4.3.1 Abstraction reaction

There are two types o f abstraction reactions: first is atom + stable molecule

A + RH —> AH + R.

second is radical + stable molecule

R. + R'H -»>  RH + R\

Abstraction reaction rate constants are not pressure dependent and therefore do 

not incorporate any Quantum Kassel Analysis. The rate constants are taken from 

evaluated lite ra tu re^ ,31 wherever possible. When estimation is required for an 

abstraction rate constant, a generic reaction is used as a model and adjusted for steric 

effects as best we can. An example of the generic type o f Arrhenius A factor analysis is 

Cl atom abstracting an H from 1,1, dichloroethylene, where experiments can not 

determine whether the measured values are for the abstraction or the addition reaction. 

Use the abstraction by Cl o f  H from 1,1,1 Trichlorethane where both the mass and the 

reaction degeneracy are similar. The Ea is calculated separately.

Typical A factors range for abstraction reactions range from 1.0E11 to 1.0E14. 

B o z z e I l i 2 9  summarized A factors for different atoms and radicals as lised in Table 4.4.
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Table 4.4 Kinetic Parameters for Varies Types of Reactions
Type o f Reaction A Ea
simple fission 1.0E15 - 5.0E17 A H -R T
disproportionation 3.0E11 -2.0E12 0 .0

beta scission 3.0E12 - 3.0E13 AH + 2 - 6
intermolecular
rearrangement

1.0E13- 1.0E14 AH + RS + Eabs

abstraction for H atom
H + RH 1.0E14 literature
OH + RH 3.0E13 or
O + RH 3.0E13 Evans-Polanyi
Cl + RH 1.0E13
CH3 + RH 1.0E12
C2H5 + RH 1.0E11
addition to olefin
H 1.0E13 2 .0

CH3 2 .0 E 11 7.5
C2H5 5.0E10 7.5
recombination 1.0E12 - 1.0E14 0 .0

Evans-Polanyi analysis is used on the reaction in the exothermic direction to 

estimate the energy of activation for the rate constant. An Evans-Polanyi plot, Ea versus 

AH o f reaction, is shown in figure 4.2 for Cl atom abstraction reactions o f H atoms from 

chlorinated hydrocarbons. One may easily see from the shallow slope that there is only a 

very small Ea for these reactions and it does not change much for changes in AH o f the 

reaction. Clearly, the abstraction reaction in an endo-thermic reaction must incorporate 

the del H o f the reaction or it, the reaction rate constant, will violate thermodynamics and 

unfortunately there are a number o f examples o f rate constants in the literature where the 

estimated Ea is less than the endothermicity.

B o z z e l l i 2 9  summarized a general rule for the activation energy for H atom 

abstraction by organic radicals and/or H atom from organic molecules. In exothermic 

reactions, Bozzelli proposed that Ea can be approximated as 

E a=  1 2 .5 ± 1  - OJSAHrxn (Kcal/mole)
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with the stipulation that Ea can not be less than zero.

Bozzelli further predicts that Cl atom abstractions procede with low Ea's for 

exothermic reactions (1.5 Kcal/mole or lower) and Ea «  A H ,^  for endothermic reactions. 

For organic radicals abstracting F or Br atoms, Benson^2 estimates Ea's are 16 and 6  

Kcal/mole respectively. Evans-Polanyi plot is a set o f  a plot o f Ea versus AH from similar 

reactions. After completing the plot, the best slope is determined and put into form of 

general equation for determination o f Ea knowing only AH. Figs 4.2-4.5 show some 

Evans-Polanyi plots developed in this study. A good relationship between Ea and AH is 

obtained and serves as useful tool to estimate kinetic parameters o f abstraction reaction 

when literature values are not available.

4.3.2 Addition Reactions

Addition reactions are treated with the Quantum Kassel formalism described above. The 

reactions involve addition of an atom or radical to an unsaturated species and typically 

form an energized adduct with ca 20 to 50 Kcal/mole o f energy above the ground state. 

This is sometimes sufficient to allow the adduct to react with other reaction products 

(lower energy) before stabilization occurs. An example would be H atom addition to 

vinyl chloride, an olefin, forming one o f two chloro-ethyl radicals with ca 40 Kcal/mole 

energy above the ground state. In the case o f H atom addition to the carbon containing the 

Cl atom, the chloro-ethyl adduct formed C.H2CH2C1 could rapidly eliminate (beta 

scission) to form the lower energy products Cl atom plus ethylene. An example o f the 

Quantum Kassel analysis for this reaction is fully described in Bozzelli and Barat^^.

It is important to note that reactions to other channels as well as isomerization, in 

addition to stabilization and reverse reaction are included in this calculation.
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4.3.3 Combination and Insertion Reactions

These reactions involve the combination o f two radical species, or an atom and a radical. 

The energy of the adduct formed before stabilization is equal to the bond energy o f the 

new bond(s) formed and typically on the order o f 80 to 120 Kcal/mole. This is usually 

sufficient for an adduct, with this initial energy above it's ground state energy, to react to 

lower energy products before stabilization occurs. The high pressure limit rate constant 

for combination is obtained from the literature or estimated from known generic 

combinations. The Quantum Kassel chemical activation form alism ^? is then used to 

determine the high pressure limit and to calculate the apparent rate constants at the 

appropriate pressure to all the recognized available channels.

Again, reaction to other channels as well as isomerization, in addition to 

stabilization and reverse reaction are included in this calculation. This is an important 

aspect o f reaction analysis for both these combination as well as insertion and addition 

reactions that other modelers do not incorporate.

This leads to a more correct treatment o f fall-off and pressure dependence for 

these non-elementary reaction systems. Rate constants for the model are obtained which 

incorporate these pressure effects and dependency therefore make the model more 

fundamentally correct.



CHAPTER5

REACTION OF OH RADICAL WITH C2H3C1 
REACTION PATHWAY ANALYSIS

5.1 Background

The gas phase reactions o f OH radical are important in combustion and incineration o f 

chlorinated hydrocarbons (CHCs) as well as atmospheric chemistry. In combustion 

environments, OH is often the active radical present in the highest concentrations, where 

it serves to initiate breakdown o f hydrocarbons (HCs). It is also very important in CO 

burnout producing CO2 , plus energy, and H atoms. Here if temperature is high, the H 

atoms may react with O2  in the critically important chain branching step H + O2  —> OH 

+ O. In atmospheric chemistry, OH is probably the most important active species. It 

abstracts hydrogen atom from saturated hydrocarbons forming HC radicals, which then 

react with O2  and NO, sequentially forming intermediates that contribute to photo 

chemical smog. OH radical also adds to unsaturated hydrocarbons and oxy hydrocarbons 

forming radicals which then further react with O2  and NO. Previous studies on OH 

radical reactions with unsaturated hydrocarbons such as vinyl chloride as well as this 

analysis show that the addition reaction is predominate at low temperature, while abstrac

tion o f  H atom becomes important at high temperatures.

H ow ard^  has determined the rate constant for reaction o f OH with vinyl 

chloride and other halogenated ethylenes at 296 K at low pressure, 0.7 - 7.0 torr, using a 

discharge flow reactor with Laser Magnetic Resonance (LMR) detection o f OH. The 

rate constant for reaction with vinyl chloride was observed to be pressure dependent (in 

the fall-off regime), increasing from ca. 1.2E12 cm^ m ole 'l s"l at 0.7 torr to ca. 

3.01E12 cm3 mole-1 S-1 at 7 ,0  torr, where it still was not at the high pressure limit.

30
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Perry et al.34 measured absolute rate constants for reactions o f  OH radical with 

vinyl chloride, vinyl fluoride, and vinyl bromide by using a flash photolysis-resonance 

fluorescence technique between 299 - 426 K at a total pressure o f 50 torr (C2 H3 CI and 

C2 H3 Br) or 100 torr (C2 H3 F). They combined their kinetic data on these halogenated 

ethylenes with the room temperature high pressure rate constant for the reaction o f OH 

with ethylene to obtain the following relative OH radical rate constants: C2 H3 F, 0.71; 

C2 H3 CI, 0.84; C2 H3 Br, 0.87; C2 H4 , 1.00. The above rate constants appear to show a 

trend with electronegativity o f the halogen substituent - the more electronegative the 

substituent, the lower the rate constant.

Recently Liu et al.35 studied the gas phase reaction o f OH radical with vinyl 

chloride at atmosphere pressure (760 torr argon) over the temperature range 313 - 1173 

K by pulse radiolysis. The temperature dependence of the rate constants showed 

behavior similar to that o f ethylene in that the predominant reaction changed from an 

addition reaction below 588 K to hydrogen atom abstraction reaction above 723 K. They 

also observed a negative temperature dependence and proposed the Arrhenius expression 

rate constant (high pressure limit) for the addition reaction as: 1.29E12 exp(700/RT) 

cm ^m ole'ls- !. The nonlinear form Arrhenius rate constant for the H atom abstraction 

reaction was 8.43E6*T^ exp(-2400/RT) or in linear Arrhenius form 1.79E13 exp (- 

4020/RT) cm^ mole‘ 1 s‘ l.

The low temperature (addition) reactions are, however, complex and non 

elementary. An adduct is being formed, which can undergo stabilization via collisions, or 

before stabilization it may undergo unimolecular reaction to products, or reverse reaction 

- dissociation back to reactants. OH Addition to this unsaturated chloro-olefin can, in 

addition, occur at the two different carbon atoms. The addition Arrhenius A factors or 

activation energies may also change with either the increasing size or electronegativity o f 

the halogen atoms. The total addition rate constants for OH radical with C2 H3 CI and 1,2 

dichloro ethylenes are, in an added complexity, shown to decrease with increasing
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tem perature^.

There are two distinct carbon atom sites where addition o f OH may occur and two 

different types o f H atoms where abstraction can occur. It would be helpful in both 

combustion and atmospheric chemical analysis and kinetic modeling, to know the rate 

constants and specific reaction pathways for reaction o f OH in each o f the above four 

cases. In this work, the addition and abstraction reactions to the two carbon atom sites in 

vinyl chloride. The addition reactions are analyzed by multi-frequency Quantum Kassel 

(QK) analysis, with the QK results compared to predictions from RRKM analysis for the 

specific case o f unimolecular dissociation of the CH2 OHC.HCI adduct. The abstraction 

reactions are analyzed using the Transition-State-Theory (TST) o f Benson22. Rate 

constants for the two different abstraction paths and for addition reactions to specific 

products versus pressure are given. Thermodynamic parameters o f  the intermediate 

radicals and products are also listed.

5.2 Q uantum  Kassel Calculations for Addition Reaction

Energized Complex/QK Theory as described by Dean^*? and Bozzelli et al.36 was used 

to model OH radical addition reactions to C2 H3 CI. Further details on specifics o f  the 

chemical activation calculation are presented in reference 36. Pre-exponential A factors 

and activation energies (Ea) for the bimolecular addition reaction at the high pressure 

limit are obtained from evaluation o f  experimental data in the literature, combined with 

thermochemical analysis. Isomerization reactions are analyzed via Transition-State- 

Theory (TST) and the thermochemical kinetic methods o f  B e n s o n 2 2 .

A and Ea for the dissociation reactions come from analysis o f  thermodynamic 

heats o f formation and entropies for the species involved and by analogy to similar 

(generic) reactions. Specific kinetic parameters for dissociation to reactants and 

products are obtained from application o f  microscopic reversibility, where the reverse- 

addition or combination reaction rate constant is obtained from experimental data in the
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literature.

5.3 Therm odynam ic P roperties

The thermodynamic properties including enthalpy o f formation, entropy, and heat 

capacities were obtained from the literature when available. Thermodynamic properties 

for many chloro-oxy-carbon species have not, however, been previously measured or 

calculated. These have been calculated here using the techniques o f group additivity^ and 

the "THERM" computer c o d e 2 3 , 2 4  Bond dissociation energies (BE) from the 

literature^? and bond dissociation (BD) groups developed by Lay et.al.38 to calculated 

the respective radicals are included. These thermodynamic properties involved in the OH 

radical with vinyl chloride reaction system are listed in Table 5.1.

The potential energy diagram and input parameters for the chemical activation 

calculations, both a - and 13 - addition (to the CD/C1/H and CD/H2 carbons respectively), 

are shown in Fig.5.1, 5.2 and Table 5.2, 5.3. respectively. The parameters in Table 5.2,

5.3 are referenced to the ground (stabilized) state o f the complex because this is the 

formalism used in QK Theory.

Table 5.1 Therm odynam ic Property  Data
Species H f S Cp300 400 500 600 800 1 0 0 0

OH 9.49 43.88 7.16 7.08 7.05 7.05 7.15 7.33
C2H3C1 5.0 63.10 12.78 15.58 17.88 19.77 22.56 24.44
C H 20 -26.40 52.26 8.45 9.46 10.49 11.49 13.34 14.86
CH2C1 29.10 59.60 9.22 10.18 11.14 12.13 14.10 15.83
CHCIO -39.30 61.80 1 1 .1 2 12.46 13.55 14.42 15.70 16.58
CH20HC.HC1 -14.60 78.32 18.15 2 1 .2 2 23.74 25.86 29.23 31.71
CH20.CH2C1 -7.74 73.60 16.19 19.89 23.00 25.58 29.54 32.34
CHC10HC.H2 -9.63 77.81 18.20 20.95 22.55 25.21 29.97 32.17
CHC10.CH3 -6 .2 1 73.53 17.14 20.14 21.97 24.91 30.24 32.90
CH2CHOH -29.51 64.71 13.60 25.89 18.14 20.23 23.74 26.33
CH3CHO -39.18 63.13 13.22 15.71 18.22 20.47 24.22 26.97
. represents radical site
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5.4 Addition Reactions

5.4.1 a  - Addition

The rate constant (high pressure limit) for addition at the a -  site k l (k definded in Table 

5.2), is assigned as follows: A j is 0.5 that for 1,2 dichloroethylene + OH because the 

probability o f  OH addition to the CD/C1/H carbon is half o f what that o f  1,2 

dichloroethylene. E j = -0.14 assigned same as 1,2 dichloroethylene + OH. The reverse 

reaction k .j can be calculated from thermodynamics and microscopic reversibility:

AG = - RT In Kgq = AH - TAS for the reaction 

AH/RT - AS/R = (Ef - Ej.)/RT - ln(Af / Ar) 

where f  and r denote forward and reverse reaction.

Transforms above equation to standard states expressed in concentration units.

(AHC + AnRT)/RT - (ASC + AnRln(R'T))/R = (Ef - E^/RT - ln(Af / Ar) 

where An is the mole change in the reaction.

(Ef - E r) = AHc

ln(Af / Ar) = ASC/R + An ln(eR'T)

where E, A, R', T are the activation energy, Arrhenius pre-exponential factor, gas 

constant (82.06 cm^atm/mole/K) and mean temperature respectively.

The isomerization reaction k3  (see Table 5.2) is obtained from unimolecular TST. 

Including the loss o f two rotors, AS can be estimated as -8.5. Then 

A3  = (ekBT/h) exp(AS/R) = 6.06E+11 at T = 298K

where kB, h, R are the Boltzman, Planck's and gas constant respectively; e = 2.718. 

Activation energy of this isomerization E3 can be calculated from:

E3  = ring strain + Eabs + A H ^n = 39.42 Kcal/mole

where the ring strain for four member ring is 26 Kcal/mole, abstraction energy o f H atom 

by a primary carbon, Eabs, is 10 Kcal/mole, and AH^m of isomerization is 3.42 

Kcal/mole.

Dissociations to products k2 , k4 , k5  (see Table 5.2) are obtained from application
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o f thermodynamics and microscopic reversibility to the reverse addition reactions. The 

rate constants, both forward and reverse used the references to the combination rates are 

listed in Table 5.2. The high pressure limit input parameters o f a -  addition reaction for 

the chemical activation calculation are listed in Table 5.2.

The a -  addition reaction forms the CHC10HC.H2# energized adduct. Further 

unimolecular reaction (isomerization) o f this adduct is endothermic and relative small 

fractions o f the adduct will isomerize and further react at higher temperature due to the 

tight transition state. The obvious presence o f the low energy channel for the a -  addition 

adduct is Cl atom elimination.

OH + C2H3C1 ™> [CHC10HC.H2]# —> Cl + CH2CHOH

This makes vinyl alcohol as the dominate product for all conditions (temperature and 

pressure) o f this adduct formation path.

Table 5.2. In p u t param eters for the QK Calculation C2H3C1 + O H  a -  addition

Reaction A Eaa

k 1 C2H3C1 + OH —> CHC10HCH2. 6.05E+11 -0.14
k-1 CHCIOHCH2. —> C2H3C1 + OH 2.16E+13 23.96
k2 CHCIOHCH2. — > Cl + CH2CHOH 2.15E+13 9.52
k3 CHCIOHCH2. ~ >  CHC10.CH3 6.06E+11 39.42
K-3 CHC10.CH3 —> CHC10HCH2. 5.52E+12 36.00
K4 CHC10.CH3 — >CH C10 + CH3 2.74E+14 10.02
K5 CHC10.CH3 — > C i + CH3CHO 4.25E+14 1.06
aunits are cm3 mole sec and Kcal/mole <v> = 1086.89 cm 'l (from CPFIT7)

k l A] factor taken as 0.5 that for CHC1CHC1 + OH (A= 1.21E+12, Ea=-0.14)
(ref. Abbatt et.al., J.Phys.Chem. 95,2382,1991) 

k -1  thermodynamics and microscopic reversibility <mr> 
k2 A2  from A_2  = 8.0E+12, E_2 =0.5 from Cl +  C2H4 ( Kerr,J.A. and Moss, 1981) 
k3 A3  = (ekT/h)exp(S/R) x degeneracy (S=-8.5)

E3  = ring strain + Eabs + H= 26 + 10 + 3.42 = 39.42 
k-3 thermodynamics and microscopic reversibility <mr>
k4 A4  from A . 4  = 3.16E+11, E . 4  = 8.0 from 0.5 for CH3 + C2H4 (Kerr and Moss, 1981) 
k5 A5  from A . 5  = 1.78E+13, E5  = 1.06 (Kerr and Moss, 1981)

<v> = 1136.93 cm- ' (from C P F IT ^); Lennard-Jones parameters: o  =  4.55 A, e/k = 576.7 K



36

5.4.2 p- addition

The rate constant for addition at the P- site, k’j (see Table 5.3), is assigned as 0.4 (0.5x 

0.78 = 0.38 «  0.4) that for ethylene + OH where the probability o f OH adding to CD/H2 

carbon is half that o f C2 H4  and 0.78 accounts for reduced volume frac tion^ . The reverse 

reaction k '.j is calculated from thermodynamics and the microscopic reversibility method 

described previously.

The unimolecular isomerization reaction k '2  (see Table 5.3) is analyzed by TST 

where AS = -8.5 (includes loss o f two rotors) and E2  = ring strain + Eabs + A H ^  = 26 + 

10 + 6.9 = 42.9 Kcal/mole. Dissociation reaction k '3  to products (CH2 O + CH2 CI) is 

obtained from the reverse combination and microscopic reversibility. The high pressure 

limit input parameters and literature references are listed in Table 5.3.

The B- addition reaction forms the CH2 OHCHCI# energized adduct. Further 

unimolecular reaction (isomerization) o f this adduct is, however, endothermic when 

ring strain + Ea of H abstraction + A H ^  are considered. A relatively small fraction of 

the adduct will isomerize and further react at higher temperatures due to high barrier 

energies (above the enthalpy change) and the tight transition state. The adduct is, 

therefore, either stabilized or it dissociates back to the initial reactants (C2 H3 CI + OH), 

as this is the lowest energy dissociation channel.

Geometric mean frequencies were obtained from heat capacity e s t i m a t e s ^ ,  and 

Lennard-Jones parameters were obtained from tabulations^ and a calculation method 

based on molar volumes and compressibility^!.
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Table 5.3 Input parameters for the QK Calculation CZH3CI + OH 0 - addition

Reaction A Eaa

kl C2H3C1 + OH —> CH20HCHCI. 2.17E+12 -0.14
k-1 CH20HCHC1. — > C2H3C1 + OH 6.03E+13 28.96
k2 CH20HCHC1. — > CH20.CH2CI 6.06E+11 42.9
K-2 CH20.CH2C1 —> CH20HCHC1 7.17E+12 36.0
K3 CH20.CH2C1-->  CH20 + CH2C1 1.18E+14 17.1
aunits are cm2 mole sec and Kcal/mole

kl Aj factor taken as 0.4 that for C2H4 + OH(A=5.42E+12), (Tsang,W, and Hampson,R.F., 
J.Phys.Chem.Ref.Data, 15,1087,1986). Ea same as CHClCHCi + OH. 
k-1  thermodynamics and microscopic reversibility <mr> 
k2 A2  = (ekT/h)exp(S/R) x degeneracy (S=-8.5),

E2  = ring strain + Eabs + H= 26 + 10 + 6.9 = 42.9 
k-2  thermodynamics and microscopic reversibility <mr>
k3 A3 from A.3  = 1.6E+11, E.3  = 8.0 from C2H5 + C2H4 (Kerr,J.A. and Moss 1981)

<v> = 1136.93 cm' 1 (from CPFIT24)
Lennard-Jones parameters: o = 4.55 A, e/k = 576.7 K

5.5 Transition-State-Theory Calculations for Abstraction Reaction

The calculation o f pre-exponential A factors for the bimolecular abstraction reactions 

using Transition-State-Theory (TST) is described in detail by Cohen and coworkers.42_4^ 

They developed a procedure for obtaining activation entropies without the need for a 

fully characterized potential energy surface. The fundamental equation o f TST is44: 

k(T) = k  (RT/Nah) * [Q(AB#)/Q(A)Q(B) ] exp(-E/RT)

where k  is the transmission coefficient, R, Na, and h are the ideal gas, Avogadro's, and 

Planck's constant respectively. Q's are the partition functions for the activated complex 

AB# and reagents A and B. This equation can be expressed in practical thermochemical 

units as:

k(T) = 1.3E+13*t 2 exp(AS#/R) exp(-E/RT)*g 

where k in cc/mol/sec unit and g is degeneracy.
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Transition-State-Theory, as described by Cohen et al.^4, will allow calculation 

only o f  the entropy o f activation not the activation energy. A widely used method for 

predicting activation energy is offered by Evans and P o lany i^ ;

E = aAH + b

where E is the experimental activation energy, AH is the enthalpy change o f reaction, and 

a and b are constants. The enthalpy change o f  reaction is assumed to be proportional to 

the bond dissociation energy (BE, in Kcal/mole) for a homologous series o f species :

E/R = a' BE + b'

where E/R = -d(lnk) / d(l/T) at 300K.

A modified Evans-Polanyi plot o f  OH abstraction o f H atom from chlorinated 

hydrocarbons (CHCs) is illustrated in Fig. 5.3. The experimental E/R values are obtained 

from data in reference 44 and BEs are from Lay et.al.38 The regression result shows that 

E /R =  149.3 (B E -89.1)

The bond dissociation energies evaluated for a -  and p- abstraction (from the CD/C1/H 

and CD/H2 carbons respectively) are 107 and 110 Kcal/mole (1.5 and 3.5 Kcal/mole 

resonance stablilization energy respectively); thus we calculate activation energies from 

the above correlation (Fig 5.3.) are 5.31 and 6.2 Kcal respectively.

The calculation for entropy o f activation, AS#, requires knowledge o f the 

activated complex (its bond lengths and angles, vibrational frequencies, internal rotor 

parameters, electronic degeneracy, and symmetry properties) along with similar 

parameters o f  the reactants (C2 H3 CI and OH).

Consider abstraction o f H by reaction o f OH with C2H3C1:

C2H3C1 + OH ~ >  (C2H2C1)...H...0H —> C2H2C1. + H 20 

AS# = S# - SC2H3C1 - SOH

where S# = entropy o f TST complex (# denote as TST complex).

Begin with C2H3C1 as a model compound and then make corrections to the various 

degrees o f freedom to obtain AS# as indicated below:
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s # Sc 2H3C1 ^^trans ^^vib ^^rot ASg "*" '*’

where the AS terms represent the corrections required in adjusting the properties 

(translation, vibration, rotation, internal rotation, electronic, optical isomer, symmetry) o f 

the model compound to those o f the activated complex.

Define C...H as a one electron-bond in the TST structure and assume that the 

C...H, H ...0  and O-H bond lengths and C...H...O and H...O-H bond angles are 1.7A, 

1.5A, 0.9A, 180°, and 105° respectively. From this data, we can calculate the product o f 

moments o f  inertia o f the complex I# 3  then 

ASrot = 0.5R In ( I#3 /I3)

= 0.5R In [(14.29x744.13x757.83)/(l5.15x133.64x148.79)] = 3.27 cal/mole/K 

AS^ans IS given by 1.5R In (M^/M) = 0.72 cal/mole/K where M is molecular weight o f 

species. The electronic degeneracy o f the activated complex is 2 so that 

ASe = R ln(2 ) = 1.38 cal/mole/K.

The external symmetry is assumed to be the same as the model compound, but one

optical isomer exists in the TST, so

ASn = R ln(n#/n) = R ln(2) = 1.38 cal/mole/K.

The calculation results are listed in Table 5.4.

The contribution o f the vibrational frequencies ASvib and internal rotations ASjr 

to entropies and heat capacities o f  the activated complex can be calculated by using the 

"RADICALC" computer code developed by Bozzelli and Ritter3 8 . The frequency 

changes are obtained from tables in Benson^^ and C o h en ^ . Corrections to the entropy 

due to changes in the barrier to rotation are interpolated from tables developed by Pitzer 

and coworkers46. Cohen and Benson^^ analyzed the reactions o f  OH with haloalkanes 

and proposed that the entropy o f free rotation about the C...H bond is 4.5 cal/mol/K and

H...O bond is 4.3 for halomethanes. They report values o f 4.7 and 4.6 cal/mol/K for C...H 

and H ...0  bonds respectively in haloethanes. The average value o f  halomethanes and 

haloethanes for the C...H bond is used:
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(ASc ...H = [4.5+4.7]/2 = 4.6) 

and the H ...0  bond 

(ASH...0  = [4.3+4.6J/2 = 4.45).

Unlike the haloethanes, there is no internal rotation about the C=C bond.

Hence

ASjr -  ASc .„H + ASh ...O = (4.5+4.7)/2 + (4.3+4.6)/2 = 9.05 cal/mol/K at 300K.

The entropy o f activation, AS#, is obtained from the sum o f the AS terms minus entropy 

of OH radical as shown in Table 5.3.

AS# = 2  AS - So h

Values o f AS for specific translation, vibration, rotation, internal rotation, electronic, and 

optical isomer are listed in Table 5.4. The activation energy and an entropy o f activation 

for both abstraction channels are: 

ka = 1.40E+07*T2exp(-5310/RT) 

kb = 2.54E+07*T2exp(-6200/RT) 

kb / ka = (Ab /  Aa) exp(Ea/RT - Eb/RT)

= 1.81 exp(-488/T)

where ka, kb are the rate constants for a -  and (3-abstraction channels respectively.

Table 5.4 Calculated Contribution to AS# for OH + C2H3C1 Abstraction Reaction
Types AStrans ASvib ASrot ASir ASg ASn 2  AS . AS#
CD/C1/H 0.72 0 .8 3.27 9.05 1.38 1.38 16.58 -27.3
CD/H2 0.72 0 .6 3.27 9.05 1.38 1.38 16.38 -27.5

A second method to estimate the Arrhenius A factors for specific H atom sites is 

to modify the observed experimental value for represents all H atoms into a sum where 

each term represents specific H atom sites. C o h e n 4 2  had indicated that a reasonable 

approximation for abstraction o f a specific H atom from a molecule is that: "The 

probability o f  OH colliding with H is proportional to a total cross section divided by
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number o f  available H atoms"

In this case, we are dealing with the cross section observed for vinyl chloride, so 

the pre-exponential A factors for a -  and p-abstraction are proportional to number o f  H 

atom.

Ap /  Aa  = 2

It is interesting to compare this rate constant ratio for relative number o f  H atom 

estimation with that o f the TST method. The ratio o f the pre-exponential A factors for a -  

and p-abstraction from this emperical counting method is only slightly higher than the 

TST method (2.0 versus 1.8).

5.6 Results and Discussion

Ho war d^ 3 has predicted that elimination o f Cl and formation o f vinyl alcohol dominates 

for the a -  addition. Perry et al.34 estimated that the rate constant o f this channel is about 

6.0E+11 cm ^m oH s’ l at room temperature which is about 15% of the total rate constant. 

The present calculation shows that the a -  addition to the CD/C1/H carbon appears to be a 

similar fraction o f that for P- addition to the CD/H2 carbon, 10 - 20%, in agreement with 

the estimation o f Perry et al.34 This P- channel behaves much differently than a -  

addition due to the lower energy (exothermic) reaction channel available to the a-adduct - 

unimolecular elimination o f Cl, forming vinyl alcohol + Cl. This product slate dominates 

for the a -  addition for all pressures with stabilization important at higher pressure (7600 

torr).

Fig. 5.4 presents a plot o f rate constants for the various channels o f  a-addition at 

760 torr. The apparent rate parameters to the specific product channels are listed in Table 

5.5. The vinyl alcohol + Cl channel dominates the reaction in the temperature range 300 - 

1200K. As temperature increases, other product channels (excluding stabilization) start to 

become more important; but are still 5 orders o f magnitude below the major product 

channel: vinyl alcohol + Cl. The stabilization rate constant is 1% of that for the vinyl
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alcohol + Cl channel at 300K and decreases with increasing temperature.

A plot o f rate constants for p-addition product channels is shown in Fig. 5.5. The 

stabilization channel dominate the reaction by more than 4 orders o f magnitude in the 

temperature range 300 - 1200K. The apparent rate parameters to the specific product 

channels are listed in Table 5.5.

Fig 5.6 shows the rate constants versus pressure at 300 K for all addition reaction 

channels. The p-addition channel dominates the reaction at high pressure and through the 

fall o ff regime as suggested by previous r e s e a r c h e r s ^ , 34,35 T h e  vinyi alcohol + Cl from 

a-addition becomes dominate when pressure is decreased below than 1 torr.

Table 5.5 Apparent Rate Constants for OH + C2H3CI at 760 torr
k = A*Tn*exp(-Ea/RT), units in cc mole-sec, Ea in Kcal/mole______
Reaction A n Ea remark
OH+C2H3C1 —>H20+CH2CC1 1.40E+07 2 .0 5.31 a-abstraction
OH+C2H3C1—>H20+CHC1CH. 2.54E+07 2 .0 6 .2 P-abstraction
OH+C2H3C1—>CHC10HCH2. 2.83E+18 -3.191 0.938 a-addition
OH+C2H3C1—>Cl+CH2CHOH 7.49E+11 -0.029 -0.108
OH+C2H3C1—>CHC10.CH3 2.51E-11 4.028 8.874
OH+C2H3CI—>CHC10+CH3 5.34E-19 7.901 6.441
OH+C2H3C1—>Cl+CH3CHO 1.94E-11 5.893 8.488
OH+C2H3C1—>CH20HCHC1. 1.33E+32 -6.638 5.718 P-addition
OH+C2H3C1—>CH20.CH2C1 9.45E+18 -3.828 15.804
OH+C2H3C1—>CH20+CH2C1 8.91E+10 -0.177 14.37

Fig. 5.7 illustrates a plot o f calculated and observed rate constant over the 

temperature range 300 - 1200 K at 760 torr. At low temperature, the 6 -addition channel 

dominates the reaction, as reported by Liu e t .a l .3 5  At high temperature, however, the 

reverse reaction - dissociation o f the adduct to vinyl chloride + OH (experimentally 

observed as reduced reaction rate) dominates over addition. A small, near constant (15%) 

fraction o f the reactions proceed via a-addition to products C2 H3 OH + Cl. The Quantum 

Kassel calculation does not include abstraction which is calculated separately by the TST
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method described previously. The apparent rate constants o f the two abstraction channels 

calculated by Transition-State-Theory are also shown in Fig. 5.7. One can see that total 

abstraction reaction (ka + kb) becomes important above 850 K, while Liu e t . a l . 3 5  report 

that it dominates above 723 K. The total rate constant - addition and abstraction - is 

slightly over predicted when compared to experimental data in the temperature range 600 

to 1000K at 760 torr. Here the absolute rate constant difference is within a factor o f 2 for 

the worst case (600 to 1000K), but it is still reasonable compared to the literature.

Fig. 5.8 shows a comparison o f the calculated results for important addition and 

abstraction channels with the experimental data o f  other researchers. At room 

temperature, the rate constants for the addition reaction channels only vary over a wide 

pressure range. H o w a r d ^  extrapolated his experimental data (0.7 to 7 torr) for the 

reaction o f OH radicals with C2 H3 CI using a curved Lindemann plot and estimated a 

value for k »  4.20E+12 cm3 mole"! S-1 jn the high pressure limit (ca. 100 torr) while 

Perry et.al. 19 proposed that their work at 50 torr were at the high pressure limit and 

estimated a value o f k « 3.97E+12 cm3 mole"! s"!. The current model is in good 

agreement with both research groups, as shown in Fig 5.8. but predicts the high pressure 

limit to be more near 760 torr with only 5% increase between 100 and 760 torr as 

illustrated in Fig. 5.8.

It is interesting to compare the QK c a lc u la t io n 6 > 7 > 3 6  to RRKM^? theory. The 

reverse reaction o f  P- addition (k '.j), a unimolecular dissociation, will be used for this 

comparison.

CH2 OHC.HCI —> C2 H3 CI + OH

because the p- addition channel dominates the reaction at low temperature. The Quantum 

Kassel calculation shows that this unimolecular dissociation (k '.j)  dominates over 

stablization at 1 atm and high temperature which is experimentally observed as reduced 

reaction rate. The input parameters for the RRKM calculation are listed in Table 5.6 

which is run with the UNIMOLE code o f Gilbert^?.
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Table 5.6 Input parameters for RRKM calculation
Reactant molecule Transition State

critical energy at 298K 28.9 (Kcal/mole)
external symmetry number 1 1

collision diameter (A) 4.55
well depth (K) 576.7
overall rotation (cm-1) 0.19 0.15
moments o f inertia (amu A^) 88.737 112.4
dimensions o f  adiabatic rotation 3 3
frequencies and degeneracies 3400, 3000(3),1300, 

700,1150(3), 400(2), 
1400(2),1050(3), 
1200,730

3400,3000(3), 1650, 
700, 1050(4),
420(2), 1400, 500, 
600,

Fig. 5.9 shows a plot o f rate constant versus 1/T at 760 torr for the two different 

calculations. The unimolecular dissociation rate constant increases with increasing 

temperature for 16 orders o f magnitude in the temperature range 300 to 1000K. One can 

see that calculation results from two techniques are in good agreement.

Fig. 5.10 illustrates a plot o f the two calculated rate constants versus pressure at 

300K and 1000K. At atmospheric condition (300K), the unimolecular reaction reaches its 

high pressure limit at 760 torr as predicted by QK and RRKM calculations. Both 

calculation techniques give the same high pressure limit rate constant, 1.90E-8 sec."* The 

difference o f only 2% is purly coincidental, as no changes were made in the vibration 

frequencies or moment o f  inertia from the intial calculation. The difference between two 

technique for low pressure limit rate constant is due to the complete omission o f  the Beta 

Collision (Be), the weak collision assumption in the RRKM calculation, while Be is fully 

included in the QK and is calculated via the method o f Troe^S. Here the low pressure 

values are offset in pressure by the Be factor between the two calculations, as they should 

be. The Be (at 1200K and 760 torr, Be = 0.13) was not used in the RRKM calculation but 

to compare the results in this manner. The offset in the two calculations resulting from Be 

will effectively increase the pressure in the QK result over the RRKM result by the Be
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factor at the low pressure limit. This offset will decrease as pressure is increased to a 

point at the high pressure limit where the offset will be zero. In combustion environment, 

both the QK and the RRKM calculations show that dissociation reaction is still in the fall- 

off regime.

5.7 Summary

The addition reactions o f vinyl chloride with hydroxy radical have been analyzed using 

thermochemical analysis and a statistical chemical activation formalism based on the 

Quantum Kassel Theory. Rate constant and reaction paths are predicted versus 

temperature and pressure and compared to experimental data where possible. Good 

agreement was obtained with the experimental data in the literature. The two abstraction 

paths have been analyzed by using an Evans-Polanyi relation for the activation energy o f 

abstraction and Transition-State-Theory. The calculations serve as useful estimates for 

rate constants and reaction paths in applications o f combustion and atmospheric modeling 

(pressure and temperature), where experimentally data are not available. Rate constants 

over a wide pressure and temperature range for OH addition and OH abstraction o f H 

atom from the two distinct sites on vinyl chloride molecule are evaluated and 

recommended. The important addition reaction and rate constants at 760 torr pressure are: 

OH + C2 H3 CI —> CH2 OHCHCl, k = 1.33E32*T-664eXp(.5718/RT) cm3/moie/sec 

OH + C2 H3 CI —> Cl + CH2 CHOH, k = 7.49E1 l*T-°°3exp(108/RT) cm^/mole/sec 

Abstraction reactions are not dependent on pressure. The recommended rate constants for 

each of the channels are:

OH + C2 H3 CI —> CH2 CCI + H2 O, k = 1.40E7*T2exp(-5310/RT) cm^/mole/sec 

OH + C2 H3 CI ~ >  CHC1CH + H2 0 , k = 2.54E7*T2exp(-6200/RT) cm^/mole/sec 

Extension o f these analysis technique should allow reasonable estimation o f the 

expected product distributions for a variety o f addition reactions o f hydroxy radicals to 

other halogenated ethylenes.



CHAPTER 6

THERMAL REACTIONS OF CH2C12 IN 0 2/H2 MIXTURES : 
IMPLICATIONS FOR CHLORINE INHIBITION OF CO CONVERSION TO C 02

6.1 Background

Reasonable methods for effective destruction of chlorinated hydrocarbons include: (a) 

conversion to HCI and C 0 2  by oxidation (e.g. incineration), and (b) conversion to HC1 

and hydrocarbons by pyrolysis in a hydrogen or methane rich atm osphere^. The 

presence o f these chlorocarbons has long been known to slow the oxidation rate o f 

hydrocarbons through studies o f  flame velocity, temperature, and flame stability. 

Westbrook^ has modeled the inhibition o f hydrocarbon oxidation in laminar flames by 

halogenated compounds. He suggested that the halogenated species serve to catalyze the 

recombination o f H atoms into relatively nonreactive H2  molecules, reducing the 

available radical pool, specifically H atoms, and thereby lowering the overall rate o f chain 

branching. Senkan et. a l.^4  have developed mechanisms for CH3 CI, C2 H3 C1, and HC1- 

doped CO oxidation flame systems. These later studies reached similar conclusions, 

suggesting that the reaction o f H + HCI --> H2  + Cl is responsible for the inhibition o f 

CO conversion to C 0 2  in the oxidations.

Alternately, Benson and Weissman^ and Senkan et. al.3 have reported that use o f 

CH3 CI in CH4  or in CH4  plus 2-3% 0 2  respectively accelerated CH4  conversion to 

higher hydrocarbons. They concluded that this might lead to effective methods for 

converting CH4  to useful higher molecular weight hydrocarbons without either soot or 

excessive oxidation occurring^. Both acceleration and inhibition effects are apparent in 

hydrocarbon reaction systems with a chlorinated hydrocarbon present. Therefore, there is 

a significant need to develop quantitative insights into the mechanism o f chlorocarbon

46
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pyrolysis and oxidation in order to better understand and ultimately to optimize these 

reaction processes, especially for the conversion o f chlorocarbons by incineration.

Tsao^ studied the thermal decomposition o f DCM with hydrogen over the 

temperature range of 973 - 1173K, in a 1 atm total pressure tubular flow apparatus. 

Activation energies o f the global bulk and wall reactions on hydrogen reaction with DCM 

were 50.0 Kcal/mol, 57.8 Kcal/mole, with Arrhenius A factors o f 2.84E+10 and 

2.65E+10 sec.'l respectively reported. The major products o f  reaction o f DCM in the 

temperature range 973 to 1073 K were methane and methyl chloride. The minor 

products were ethylene, acetylene and HCI. Trace amounts o f  ethane, chloroethylene, 1,2- 

-dichloroethylene, trichloroethylene, benzene were also observed. No chlorocarbons 

were found over 1223K and one second residence time where the only products were 

methane, hydrogen chloride, acetylene, ethane and benzene.

Huang^ studied the kinetics o f the reaction o f atomic hydrogen with DCM in a 

flow system at a pressure o f 2.1 to 2.7 mm Hg and room temperature. The major 

products observed were hydrogen chloride and methane. The extent o f conversion of 

DCM increases first to a maximum and then decreases with increasing concentration of 

DCM. Through the modeling o f the reaction scheme and comparision with experimental 

data, the rate constant o f the initial steps were determined as follows :

H + CH2Cl2 —->HC1 + CH2C1 ( k ^

H + CH2 CI2   > H2 + CHCI2  (k2)

where

k i = 3.63 E+9 cm^/mole/sec , 298 K 

k2  = 2.08E+7 cm^/mole/sec , 298 K

WonlO investigated the decomposition o f dichloromethane/1 ,1 ,1 —trichloroethane 

mixtures in a hydrogen bath gas. These experiments were carried out at one atmosphere 

total pressure in a tubular flow reactor. In his study, he demonstrated that selective 

formation o f HCI can result from thermal reaction of chlorocarbon mixture and showed
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that synergistic effects o f 1 ,1 ,1—trichloroethane decomposition accelerate the rate o f 

DCM decomposition. There is significant interaction o f the decay products from 1,1,1— 

trichloromethane with the parent dichloromethane.

In this chapter, an experimental study on CH2 CI2  reactions in H2 /O2  atmospheres 

and a detailed chemical kinetic mechanism developed from fundamental thermochemical 

principles are presented. The model is based on reactant and product profiles and shows 

good agreement with a wide range o f experimental data. Sensitivity analysis on the 

mechanism provides insights into the effects o f chlorocarbons in pyrolysis and oxidation 

environments. One such insight is that a major cause o f the chlorocarbon induced 

inhibition of CO conversion to CO2  is loss o f OH radical through the reaction:

OH + HCI —> H20  + Cl.

6.2 Experimental Result

The thermal decomposition o f CH2 CI2  in H2 /O2  mixtures in an Ar bath gas was studied 

at 1 atmosphere total pressure in tubular flow reactors o f different surface to volume 

(S/V) ratios. Data at different S/V ratios were used to decouple the apparent wall and bulk 

phase decomposition rates. The reaction systems were analyzed systematically over a 

temperature range from 883 to 1093°K, with average residence times ranging from 0.1 to

2.0 seconds. Three different size (0.4, 1.05, and 1.6 cm ID) flow reactors were used to 

study five different feeds, as listed in Table 6.1. Residence times and global kinetic 

parameters were determined using methods and analysis described by Chang and

Bozzelli^O.
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Table 6.1 Reactant Feed Ratios

Feed Mole Percent
’

Equiv. Cl/H
CH2Cl2 : H2 : 0 2 : Ar Ratio Ratio

1 . 1 1 1 9 7 1.5 0.5
2. 1 2 2 9 5 1.0 0.33
3. 1 3 1 9 5 2.5 0.25
4. 1 1 3 9 5 0.5 0.5
5. 1 1 98 0 0.015 0.5

Experimental results on the decomposition o f CH2 CI2  are shown in Fig 6.1 and 

6.2. The normalized concentration (C/C0) is presented as a function o f the average 

residence time for several temperatures and two widely varying initial reagent ratios in 

the 1.05 cm reactor; 02:H2:CH2Cl2:Ar = 1:1:1:97 and 98:1:1:0 respectively. It was 

found that complete decay (99%) of the CH2 CI2  at 1 second residence time occurs at 

1093°K for all the reactant ratio sets. The continuity in the measured species levels 

plotted for a single residence time versus temperature provides an indication o f the 

consistency in our experimental procedures. This is because our experiments were 

performed by varying flow times and feed conditions at a single oven temperature profile. 

The data at varied temperature, therefore, represents experiments performed over time 

periods o f months.

The major products for CH2 CI2  decomposition at our conditions as shown in Fig

6.3 are CH3 CI, CH4 , CO, CO2 , and HCI. The minor hydrocarbon products as shown in 

Fig 6.4, having concentrations below 5%, include C2 H4 , C2 H2 , 1,1 and 1,2 C2 H2 CI2 , 

C2 HCI3 , and C2 H3 CI. The sum of chlorocarbon products and CH2 CI2  reactant decreases 

with increasing temperature and residence time. The major products when CH2 CI2  

conversion is above 90% are HCI and nonchlorinated species: CH4 , C2 H2 , C2 H4 , CO, 

and CO2 . Mass balance determinations for carbon and chlorine were within ± 8 % and 

±7% respectively for all experiments.
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The importance o f  O2  in our system depends strongly on experimental conditions. 

As shown in Fig 6.5, oxygen has almost no effect on the decay of CH2 CI2  when 

conversion is below 50% (less than 1023°K, 1 sec. residence time) and/or the initial O2  

concentration is below about 5%. When conversion o f CH2 CI2  is close to 1, almost all 

carbon is present as CO and CO2 . The CO concentration, as shown in Fig 6 .6 , is much 

higher than CO2 . At higher O2  to H2  ratios, more CO is converted to C0 2 - At 

temperatures above 1033°K, O2  plays a more significant role in conversion. The higher 

the ratio o f O2  to H2 , the lower the temperature needed to observe the formation o f CO 

and CO2 .

An increase in the S/V ratio o f the reactor was observed to accelerate the CH2 CI2  

decomposition as shown in Fig 6.7. The relative magnitude o f this effect, however, was 

small. For a 60% increase in S/V between the 1.05 and 1.6  cm ID flow tubes, there was 

only a 5% difference in conversion rate, with no effect on the relative distribution of 

principal products observed. Hence, while a surface effect exists, its magnitude is small 

relative to bulk (homogeneous) reaction. The relative change in decomposition of 

CH2 CI2  (acceleration in this case) is much larger for the 0.4 cm ID reactor. Analysis of 

our results on the several hundred kinetic runs lead us to strongly recommend a minimum 

reactor ID o f 1.0 cm for data analysis on these chlorocarbon studies.

A first order plug flow model was utilized to analyze the overall (global) 

experimental data on CH2 CI2  loss. In addition, the homogeneous and wall rate constants 

were decoupled and separately evaluated. The Arrhenius rate expressions in Table 6.2 

were found to fit the overall homogeneous reaction systems studied. The average 

contribution from wall reaction was less than 6 % o f the homogeneous reaction.
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Table 6.2 Global Rate Constants (Kexp) for CH2 CI2 /O2 /H2  in Ar

Ar:0 2 :H2 :CH2 Cl2  KeXp

97 : 1 : 1 : 1 3.76 x 10*4  x exp(-69982/RT)
95 : 2 : 2 : 1 5.00 x 1 0 12 x exp(-60405/RT)
95 : 3 : 1 : 1 2.25 x 1015  x exp(-72645/RT)
95 :1  : 3 : 1 4.25 x 1013  x exp(-64969/RT)

Clearly, these global rate constants are valid only for the specific reactant 

conditions. A detailed elementary reaction mechanism which explains the data at all 

reactant ratios is therefore preferred.

We have, therefore, developed a detailed elementary reaction mechanism (Appendix B) to 

model the CH2 C12  pyrolysis/oxidation reaction systems. The principles o f 

thermochemical kinetics have been applied. The inclusion o f chlorine adds a fourth 

element to conventional hydrocarbon oxidation mechanisms and significantly increases 

overall complexity. In addition, the thermochemical parameters including enthalpy of 

formation, entropy, and heat capacities for many chloro-oxy-carbon products and 

intermediates have not been previously measured or calculated and they are required for 

input to detailed modeling codes. We have developed thermodynamics for a number o f 

these compounds using the techniques o f group additivity and the " T H E R M " 2 3  computer

The initiation steps o f this reaction system involve unimolecular decomposition o f 

CH2 C12  or bimolecular reaction o f H 2  or CH2 C12  with 0 2 . The possible unimolecular 

reactions include:

6.3 Kinetic Mechanism and Modeling

code.

CH2 C12  —> CHC1 + HCI 

CH2 C12  — > CH2 C1 + Cl

(6 .1)

(6.2)
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We base our estimate o f the A factor for reaction ( 6 . 1 )  on Transition State Theory 

(1000°K). The Ea is from analysis o f reactions of 1 ;CH2  which is widely shown to insert 

into hydrocarbons with an Ea o f 0.0 and on insertion of l;CCl2  into HCI, which we have 

experimentally measured^! to be 15  kcal/mole, using AHf^98 ( 1 ;CC12) o f  39 Kcal/mole 

as recommended by NIST. An extrapolation to the insertion o f 1 :CHC1 into HCI yields a 

value o f 7 .5  kcal/mole. This trend is in agreement with OH radical addition reactions to 

chloro-olefins, Abbatt and A nderson^. Similar results were also determined by Blake et. 

al.53 who show a 1 2  Kcal/mole Gibbs Free Energy barrier (suggested as mostly entropic 

in nature) for insertion o f l;CCl2  into ethylene. Setser^4 recommends an Ea of 8 

Kcal/mol for insertion o f 1 :CF2  into HCI. One possible reason for this apparent activation 

energy is that the electrons from the Cl atom(s) may reduce the ability o f the unoccupied 

orbital on the singlet methylene to combine with bonding electrons in the molecule 

undergoing insertion. In developing this mechanism, we have used the Hf298 0f  3 9 ,0  

Kcal/mol for * :CCl2  as recommended by Lias et a l . ^ 5 - 5 7  There are a number o f widely 

different values for this Hf^98 ranging up to 5 2  Kcal/mol in a very recent publication^. 

The Ea’s for rate constants involving 1 :CCl2  are based on the 39.0 Kcal/mol value; where 

the reverse reaction rate constants calculated in the C H EM K IN ^ code from 

thermodynamics and micro-reversibility have been considered in all cases. Use of 

different thermo parameters in this mechanism will dramatically alter the reverse rate 

constants specific to this species. Rates calculated using Quantum Rice- Ramsperger- 

Kassel (QRRK)6>7 analysis will be similiar if  the input parameters are correctly scaled to 

account for the different H f value. We are working on adjustments to the mechanism to 

account for this higher Hf298 for those researchers electing to use this value in their 

codes. We recommend the mechanism in this paper be used with thermo properties 

consistent with data in Appendix A and look forward to further studies clarifying the H f 

o f :CC12.



53

It is observed that step (6.2) dominates the dissociation by more than three orders 

o f  magnitude because o f its lower Ea and high A factor.

Reactions with O2  include :

CH2 Cl2  + 0 2  <—> H 0 2  + CHCI2  (6.3)

H + HO2  <—> H2  + O2  (6*4)

We note that the relative rates o f reaction o f CH2 CI2  and H2  with O2  are a strong 

function o f conversion. At close to initial conditions, these reactions contribute to 

initiation. At medium to high conversions, sensitivity analysis o f the mechanism indicates 

that these reactions proceed in reverse.

The CH2 CI radical formed in reaction (6.2) will abstract H atom from H2  and 

form CH3 CI:

CH2 C1 + H2  <—> CH3 CI + H (6.5)

H atom is produced from steps (6.5) and (6 .6 )

H + HCI < -->  Cl + H2  (6 .6 )

The CH2 CI radical also rapidly reacts with H atoms, which are present at 

significant concentrations in our system, forming a chemically activated adduct 

[CH3 C1]# :

CH2CI + H <—> [CH3 CI]# —> CH3  + Cl (LEEC) (6.7)

—> C H 3 C1 (stabilization) (6 .8 )

where LEEC represents a Low Energy Exit Channel for the CH3  + Cl products relative to 

the CH2 CI + H reactants. The fraction o f [CH3 CI]# which decomposes to reactants, lower 

energy products CH3  + Cl, or to stabilized CH3 CI is a function o f energy distribution in 

the initially formed [CH3 CI]# adduct (temperature), stabilizing collisions (pressure), as 

well as unimolecular and stabilization rate constants.

We treat these non-elementary reactions systems such as (6.7),(6 .8 ) with the 

bimolecular Quantum Rice-Ramsperger-Kassel (QRRK) theory^’? as modified by Ritter 

et. al.^O The energy level diagram and input parameters for the chemical activation
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calculations o f the reaction o f CH2 CI + H are shown in Fig 6 .8  and Appendix C. The 

QRRK analysis clearly indicates that at atmospheric pressure and the temperatures o f 

interest, stabilization represents only about 1% o f the reaction channel. Essentially all o f 

the reaction proceeds to the Low Energy Exit Channel for the energized complex 

dissociation.

Sensitivity analysis tells us that the significant route to CH3  radical in our reaction 

system is

CH3 CI + H <---> CH3  + HC1 (6.9)

The formation o f CH4  as one o f the major products results from reaction of CH3  with the 

H2  reagent.

H + CH4  <--- > CH3  + H2  (6.10)

Radicals such as CH3 , CH2 CI, and CHCI2  will combine to form energized

complexes. At our temperatures (ca. 1000°K), these adducts rapidly react to lower energy

products before stabilization. An example is the CH2 CI + CH2 CI system, whose energy 

level diagram and QRRK input parameters are shown in Fig 6.9 and listed Appendix III. 

CH2 C1 + CH2 C1 < -->  [CH2 C1CH2C1]# —> Cl + CH2 CICH2 . (6 .11)

- - >  HC1 + C2 H3 CI (6.12)

—> CH2 C1CH2 C1 (6.13)

The CH2 CICH2  radical rapidly decomposes by beta scission to Cl + C2 H4  because o f the 

weak C-Cl bond, relative to the stronger C-C bond formed. The dominant reaction path in 

combination reactions o f CH2 CI + CH2 CI is a function o f both pressure and temperature. 

At one atmosphere pressure and low temperature, formation o f the stable adduct (1,2 

dichloroethane) dominates - ca 70%. This channel decreases with increasing temperature 

where reverse reaction (dissociation o f the adduct to reactants - non reaction) is the other 

important channel here. At the temperatures o f  this study and 1 atm, reaction to Cl + 

ethyl radical and to HC1 + ethylene are more important, with the Cl + chloroethyl radical 

path slightly favored over HC1 elimination. Stabilization becomes less important as the
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pressure is decreased. The Cl elimination from the energized adduct can dominate 

because: i, sufficient energy is available to it and ii, this channel has the higher Arrhenius 

A factor. The primary unimolecular reaction for the stabilized 1,2 dichloroethane is HC1 

elimination, because it is the lower energy channel.

The methyl and chloro-methyl radical combination pathways are significantly 

more important in the formation o f C2  hydrocarbons (HC) and chloro-hydrocarbons 

(CHC) in reaction systems with Cl present, than in HC oxidations alone. This is a result 

o f atomic Cl being formed at early reaction times. The Cl reacts very rapidly with the 

reactant fuel molecules, which at early time are present at high levels. The important 

reaction paths at combustion temperature are abstraction o f  H by the Cl to form the 

corresponding HC radical and HC1. These abstraction reactions by Cl are fast, they have 

high Arrhenius A factors, usually greater than 1.0 E+13, with relatively low Ea's, 

typically just a few Kcal/mole, (if the reaction is endothermic the Ea is just a few 

kcal/mole over AHj^n).

The result is a rapid, nearly - catalytic production o f HC and C1C radicals early in 

the reaction, where there is recycle o f a significant fraction o f the HC1 to Cl. This 

represents an acceleration o f the fuel decay to the corresponding radicals. C j radical 

reactions with molecular oxygen are not as rapid as with C2  and larger radicals. 

Conversion o f the C j radicals into C2 's via combination is now very important. The 

oxidation and pyrolysis pathways o f C2  hydrocarbons are, therefore, also more important 

in this reaction system than in CH4  oxidation when no Cl or HC1 is present.

We note that our input parameters to the bimolecular QRRK***? calculation on 

these chemical activation reaction systems (listed in Appendix C) are significantly 

different from those of Senkan and Karra** 1 (over one order o f  magnitude in several 

cases). Our calculated results reflect these differences, which might result from use of 

different thermodynamic properties - enthalpies, entropies and heat capacities for the
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relevant species. A listing o f the thermodynamic properties o f  the stable chemical 

compounds and the radicals used in our mechanism is included in Appendix A.

Other important reactions involve the CH3 , CH2 CI, and CHCI2  radical reactions 

with O2 ; for example,

addition Cl shift beta scission

CH2 C1 + O2  <—>[CH2 C 100. f  <—>[C.H2 OOCl]# —> CH2 O+CIO (20)

A potential energy level diagram and input parameters for the QRRK calculations, 

including reference, for the above reaction system are illustrated in Fig 6.10 and 

Appendix C. The energized complex can be stabilized, decompose back to initial 

reactants, or be further isomerized by Cl shift to [C.H2 OOCI]#. This second complex 

immediately dissociates to lower energy products CH2 O and CIO. Bimolecular QRRK 

calculations show that only a small fraction o f the collisions o f CH2 CI radicals with O2  

form CH2 O and CIO. More than 95% of the energized complex formed decomposes back 

to initial reactants at temperatures o f 873°K and 1073°K.

The kinetic reaction mechanism used in this study (Appendix II) includes 281 

elementary reaction steps involving 61 stable compounds and free radical species. All 

addition and recombination reactions are analyzed by the C H EM A C T^O  computer code 

based on bimolecular QRRK theory^’?. All unimolecular reactions including beta 

scission, simple dissociation, isomerization, and elimination are treated with unimolecular 

QRRK analysis. Further details on specific procedures followed in our bimolecular 

QRRK analysis has been discussed in chapter 4,5 and in the tables o f  input parameters in 

Appendix C.

Experimental data are compared with model predictions in Figs 6.11 to 6.13 for 

reagent decomposition and product distribution between 973 and 1073°K. The calculated 

mole fractions for CH2 CI2  are in very good agreement with those determined 

experimentally. For CO and CO2 , model predictions are also in reasonable accord with 

the experimental data. The model predicts the mole fraction levels o f CH4  and CH3 CI
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versus time and temperature reasonably well, but it slightly over-predicts CH4  at higher 

temperature. The model predicts the low concentration (1-4%) chlorinated C2  products 

reasonably well. It is worthwhile to point out that the scale is amplified (x25), and is not a 

log scale as used in many model comparisons.

CH2 CI2  decay along with intermediate and final product formation at 1053°K is 

plotted versus reaction time in Fig 6.14 to 6.16 as opposed to temperature in the figures 

above. Again one can see that the agreement between the model and experiment is very 

good.

It is valuable to compare both our experimental data for CH2 CI2  reactions as well 

as our model calculations with the data o f other researchers. Fig 6.17 illustrates that our 

model predictions are in agreement with other experimental data on methylene chloride 

pyrolysis and oxidation (details in Table 6.3).

Table 6.3 Comparison with Other Researcher’s Experimental Conditions

Temp Range °K Reactant Conditions Ref

973 - 1223 2 0 % CH2 C12  in H2 8

748 - 1083 4% CH2 C12  + 4% 1 ,1,1  C2 H3 CI3  in H2 1 0

1023 - 1273 6.7% CH2 Cl2  in (CH4 /A r : 50/50) 62
1023 - 1273 1 .2 % CH2 Cl2  + 1.2% C2 HCI3

in (CH4 /A r : 50/50) 62

absolute pressure = 1 atm (all cases)

The small deviation shown in Fig 6.17 between our model and the data o f  Won^® 

at low temperatures is due to synergistic effects resulting from the decomposition o f the 

co-reagent 1,1,1 C2 H3 CI3  to Cl + l ,l-C 2 H 3 Cl2  radical. We note that less than 1% o f the 

decomposition o f the 1,1,1 C2 H3 CI3  parent follows this chain branching pathway. The 

major path is decomposition to HC1 + 1,1 C2 H2 CI2 . A separate m o d e l^  for 1,1,1
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C2 H3 CI3  verifies the importance o f this step and other important reactions o f 1 ,1,1 

trichloroethane which we not included in this study.

Table 6.4. Sensitivity analysis relative to C02 formation at I053°K
Residence Time (sec)

Reaction 0.5 1 .0 1.5 2 . 0

CH2C12=CH2C1+C1 1.12E00 1.23E00 1.67E00 2.64E-1
CH2C12+H=HC1+CH2C1 -1.77E-1 -3.08E-2 2.12E-1 1.78E-1
CH2C12+C1=HC1+CHC12 -2.02E-1 -1.84E-1 -1.88E-1 -4.26E-2
CH2C12+0H=CHC12+H20 -I.78E-1 -1.45E-1 -8.05E-2 -2.28E-2
CH2C1+CH2C1=C2H3C1+HC1 -1.39E-1 -1.66E-1 -2.96E-1 -5.54E-2
CH2C1+CHC12=CH2CC12+HC1 -1.49E-1 -1.85E-2 -2.07E-1 -5.06E-2
CHC12+CHC12=C2HC13+HC1 -1.25E-1 -1.44E-1 -1.29E-1 -3.38E-2
CH2C1+CHC12=CHC1CHC1+HC1 -5.54E-1 -6.77E-1 -9.06E-1 -1.98E-1
CH2C1+02=CH20+C10 1.35E00 1.55E00 2.06E00 4.36E-1
CH2C1+C10=CHC10+HC1 -1.61E-1 -1.97E-1 2 .2 1 E -1 -3.14E-2
H + 02= 0+ 0H 6.94E-1 9.38E-1 2.31E00 2.27E-1
H+H20=H2+0H -2.35E-1 -2.10E-1 -8.51E-2 -9.64E-2
OH+HCL=H20+CL -6.44E-2 -1.45E-1 -3.07E-1 -4.36E-1
H+HC1=H2+C1 1.19E-1 1.40E-1 1.73E-1 3.61E-2
HOCl=Cl+OH 1.42E-1 2.65E-1 4.52E-1 6.32E-1
C0+C10=C02+C1 1.50E-1 8.77E-2 2.04E-2 1.29E-2
C 0+0H =C 02+H 5.18E-1 5.58E-1 5.32E-1 3.43E-1
C 0+H 02=C02+Q H 3.05E-1 3.01E-1 2.78E-1 3.49E-1

The faster decay o f CH2 CI2  in the data o f Tsao^, Fig 6.17, results from higher 

CH2 CI2  concentrations leading to more chain branching and not from the H2  bath gas. 

The slower decay (higher temperature requirement) for CH2 CI2  in Clfy/Ar bath gas 

results from the slower reactions o f Cl with CH4  relative to H2  and slower reactions of 

CH3  relative to H atoms, where H2  was present. Methane is, in addition, an intermediate 

product in CH2 CI2 /H2  pyrolysis and large CH4  levels shift several o f the CH4  

production channels toward the reverse.
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The sensitivity computer code SENS64 was utilized to determine the relative 

importance o f the reactions in the mechanism to various products, and specifically to 

reactions effective in inhibiting CO conversion to CO2 . As shown in Table 6.4, the 

results indicate that the reaction OH + HC1 —> H2 O + Cl is a major OH sink, which 

depletes OH and effectively stops the CO conversion via CO + OH —> CO2  + H. The 

OH reaction with HC1 is faster than OH + CO2  and depletes the OH when chlorocarbons, 

which lead to HC1 levels comparable to those o f CO, are present. Reactions with HO2  

and CIO are now the primary mechanism for CO conversion to CO2  e.g. via 

CO + H 0 2  — > C 0 2  + OH.

Westbrook^ reports an important mechanism of chlorinated hydrocarbon 

inhibition as:

H + RC1 = HC1 + R 

R + C12 = RC1 + Cl 

H + HC1 = H2 + Cl 

Cl + Cl + M = C12 + M

with the net result o f these reactions being H + H = H2 . This "catalyzed" recombination 

o f H atom reportedly results in a reduction in chain branching reactions such as 

H + O2  = O + OH.

We have used the sensitivity code and our mechanism to evaluate the importance 

o f these abstraction reactions in our system and do not find high sensitivity. We have

evaluated the literature data to select the most accurate rate constants for H atom

abstraction o f Cl from RC1 and determined that these reactions have relatively high 

activation energies (Ea's). A best fit Evans-Polanyi relationship o f Ea = AH/4 + 12.58 is 

obtained for the H f ^  = -50 to -10 Kcal/mol range. For example:

H + CH3 CI — > HC1 + CH3  AH = -19.45 Ea = 7.62

H + CH2 C12  —> HC1 + CH2 C1 AH = -22.26 Ea = 7.27
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We find very little CI2  produced. Molecular chlorine has a relative weak bond, 

and its reactions with hydrocarbon radicals, H, OH, and O are all exothermic. The CI2  

reactions, while rapid, are not indicated to be significant by the sensitivity analysis for 

our conditions, and OH + HC1 is the most important inhibition reaction.

We have, in addition, used the sensitivity code with our mechanism to model 

more typical incineration conditions: CH4  (4%) with 0.4% CH2 CI2 , 16% O2  in Ar, 

1400°K. The results continue to show that the reaction o f OH + HC1 —> H2 O + Cl 

dominates the inhibition, with H + HCI —> H2  + Cl also active, but less important as an 

inhibition mechanism. The Cl atoms produced, however, react rapidly with any H2  or 

hydrocarbon present to produce HCI and a radical, thus continuing the chain. This accel

erates the reaction under fuel rich or low conversion conditions. Under CO burnout 

conditions, however, HCI depletes OH and the Cl produced then competes for hydrogen 

with oxygen and oxy species where the thermodynamics for H abstraction are favorable. 

Our conclusions on the importance o f OH + HCI to inhibition are in agreement with those 

o f  Barat et. al.48 in Well Stirred Reactor studies o f CH3 CI inhibition in ethylene/ 0 2  

flames. We also note that Roessler et. al.^9 report H + HCI = H2  + Cl as the most 

important, but OH + HCI as the next most important inhibition reaction for CO oxidation 

in H2 /O2  mixtures with HCI present.

The reaction o f Cl + HO2 , part o f which goes to HCI + O2  (termination), now 

becomes an important part o f the inhibition process. The lower degree o f CO burnout 

decreases the system temperature, resulting in higher concentrations o f  HO2 .

The model indicates another interesting component relating to the effects o f 

chlorocarbon inhibition. The addition o f limited quantities o f high temperature H2 O to 

the oxidation system, where Cl or oxygen atoms are present, shifts the reactions 

OH + HCI < -->  H20  + Cl 

OH + OH <—> H20  + O
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to the left. This increases the OH concentrations and improves CO conversion during the 

reaction o f chlorocarbons in CH4 /O2 /HCI atmospheres.

We also observe that chlorinated hydrocarbons initiate reactions in the fuel rich 

regions o f  chlorocarbon/hydrocarbon/ 0 2  mixtures faster than during the normal oxidation 

o f hydrocarbons*^. This results in pyrolysis or molecular weight growth reactions in the 

fuel rich zones and increased possibility of soot formation. The reason for the increased 

hydrocarbon reactions is again the presence o f chlorine. Carbon-chlorine bonds are 

known to be weaker than carbon-hydrogen, carbon-carbon, or carbon-oxygen bonds. 

Therefore, the C-Cl bond can break at lower temperatures, resulting in chain branching. 

The Cl atoms generated will rapidly abstract H atom from the hydrocarbons due to low 

activation energies and relatively high Arrhenius A factors, thus propagating the chain.

6.4 Summary

A detailed kinetic reaction mechanism based upon fundamental thermochemical and 

kinetic principles, Transition State Theory, and evaluated literature rate constant data was 

developed. The mechanism was used to model results obtained from our experiments, in 

addition to results from other studies, on the thermal reactions o f CH2 CI2 . Reactions 

which demonstrated high sensitivity to CO burnout (inhibition) were evaluated. Here 

results indicate that the reaction OH + HCI —> H2 O + Cl is a major cause o f  OH loss. 

This decrease in OH effectively stops CO burnout. The reaction H + HCI —> H2  + Cl is 

also important when H2  concentrations are low. The lower temperatures resulting from 

decreased CO conversion caused the Cl + HO2  reaction channel to HCI + O2 , 

termination, to become an important contributor to inhibition.

Sensitivity analysis indicates that the reaction OH + OH <—> H2 O + O, which 

usually forms H2 O during hydrocarbon incineration, reacts in the reverse direction when 

HCI is present at concentrations comparable to CO due to the large extent o f OH 

depletion. The addition o f moderate levels o f high temperature steam is predicted to help
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CO conversion by shifting the equilibrium to produce more OH for this and the OH + 

HCI <—> H2 O + Cl reaction.



CHAPTER 7

KINETIC STUDY ON PYROLYSIS AND OXIDATION OF CH3CI 
IN Ar/H2/02 MIXTURES

7.1 Background

In recent years incineration has become a preferred method of destruction applicable to 

combustible organic wastes, with particular reference to the important family o f 

hazardous wastes termed chlorinated hydrocarbons. The simplest subgroup within this 

family is the chlorinated methanes, which are widely used as industrial solvents. 

Reasonable methods for effective destruction o f chlorinated hydrocarbons include: (a) 

conversion to H2 O, HCI, and CO2  by oxidation (e.g. incineration), and (b) conversion to 

HCI and hydrocarbons by pyrolysis in a hydrogen or methane rich atmosphere^.

There are no other studies on reactions o f chloromethane in H2 /O2  atmospheres to 

our knowledge. There are a number o f studies on CH3 CI oxidation or p y ro ly s is^ ,20 in 

other atmospheres, including methane. These studies conclude that the CH3 CI tends to 

initiate methane degradation faster, when present, and that the facile production o f methyl 

radicals leads to relatively efficient formation o f C2  species, i.e. molecular weight 

growth.

Earlier kinetic studies on methyl chloride pyrolysis were reported in 1959 by 

Shilov and Sabirova^. Measurements were made at initial CH3 CI pressures o f  10.1-34.3 

torr, temperatures o f 1062K-1147K, and at contact times o f 0.4- 5.0 seconds; They found 

HCI, CH4 , and C2 H2  in the ratios o f 3:1:0.6. They also reported that the measured 

apparent first-order rate constants increased with increasing pressure. This data has been 

re-analyzed by H o l b r o o k ^  and Fost et a l .^  to test Slater and RRKM theories. The 

calculated rate constants were, however, 20 to 30 times smaller than those experimentally 

measured. Our present analysis indicates that the experiments incurred significant chain 

continuation reaction due to rapid atomic chlorine abstraction o f hydrogen from 

hydrocarbons.
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Data on the pyrolysis o f CH3 CI at a high degree o f conversion were reported by 

LeMoanlS. The reaction was run at 993K for 30 hours in a batch reactor yielded 

conversions larger than 95%. The gas phase contained HCI, CH4 , and small quantities o f 

H2, benzene, and toluene. Low transient concentrations o f CH2 CI2 , C2 Hg, and C2 H5 CI 

were detected at the beginning o f the pyrolysis. In the liquid phase, benzene (72%), 

toluene (11%), xylene (1%), and monochlorobenzene (12%) were identified. There were 

two distinct solid phases: carbon in the reactor and naphthalene and soot at the exit from 

the reactor. The reaction mechanism, despite the large number o f  products identified, was 

considered to be schematically simple. It was proposed that, initially, CH3 CI would 

decompose into HCI and *CH2 , which would dimerize into C2 H4  or decompose into CH 

+ H or C + H2 . The combination o f two CH radicals would form acetylene. Acetylene 

would combine, then cyclize to form benzene, from which the identified higher molecular 

weight compounds would be formed. The hydrogenation o f CH2  radicals would lead to 

methane. As we shall see later, this mechanism is not plausible.

CH3 CI decomposition was also studied by Weissman and Benson^ using a flow 

system to generate product distributions at temperatures o f 1260 and 1310K and over the 

pressure range 180 - 370 torr. They measured CH4 , C2 H2 , C2 H4 , and HCI as the major 

products with lower quantities o f aromatic hydrocarbons and soot using Gas 

Chromatography and Mass Spectrometry techniques.

Miller et a l.l?  and Senkan et al.16 have both examined flames from 

CH3 CI/CH4 /O2  mixtures. They presented kinetic modeling o f the combustion o f CH3 CI 

in flames and suggested that the presence o f chlorine decreases the concentration of 

ethane species and promotes soot formation by simultaneously increasing the rate o f 

formation o f C2 H 3  and C2 H2 , which enhances the rate o f nucleation and surface growth 

processes.

Roesler et al.18 studied moist CO oxidation chemistry inhibited by HCI 

experimentally and numerically with dilute mixtures o f CO (~1%), H2 O (-0.5%), O2  and
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10.5.2 Fuel Lean Equivalence ratio 0.8 at in the PSR.

The major PICS calculated in this system, before addition o f combustion modifiers, are 

CI2 , Cl atom, HOC1, and Phosgene, and these range in mole fraction from 1.0 x 10"4 to

1.0 x 10’ 14, Chloro-formaldehyde, trichloroethylene, and vinyl chloride concentrations 

are also calculated, but are at lower levels than the phosgene. Specifics are described 

below.

Figures 10.5 and 10.6 show the Cl atom mole fraction versus reaction time in the 

burnout and the low temperature cool-down regions respectively. Cl atom mole fraction 

at the PSR exit is at relatively high levels, probably super equilibrium. It decreases 

exponentially throughout the burnout and cool down zones.

The independent effects o f adding 1% steam, hydrogen peroxide and 

formaldehyde at the beginning o f the burnout zone are also illustrated in figure 10.5. 

Steam reduces the Cl mole fraction in the burnout region, i.e. it shifts the

Cl + H20  <--> HCI + OH 

equilibrium to the right, also increasing OH.

Formaldehyde addition at the 1% level increases Cl - creating a slightly higher 

temperature (initiates secondary combustion) and higher levels o f the radical pool. 

Adding smaller amounts o f  CH2 0 , (0.1 and 0.01 %) leaves the Cl level at that o f the non

additive case. Cl in the cool down region, figure 10.6, shows similar trends but less 

difference in the Cl levels, for all additives.

The inlet o f  additives modifies the fuel equivalence ratio, as they are an added 

mass flow; the addition reduces the initial mole fraction o f product species by 1 to 3 

percent. The addition o f  1 % formaldehyde for example increases the fuel equivalence 

ratio from 0.80 to 0.85.

Molecular chlorine levels in the cool down region are shown in Figure 10,7, 

where they are observed to increase from mole fraction o f near 0.05 to 7.0 (xE-05) in 0.2
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seconds for the non-additive case. Steam and H202 effect a reduction o f  ca 15 % and 

formaldehyde effects a reduction o f ca 30 % in the effluent C12 levels.

HCI mole fractions throughout the reactor are shown in figure 10.8. HCI levels 

increase rapidly upon exit from the PSR and remain nearly constant throughout the cool

down region. Note that the abscissa scale in figure 10.8 is highly amplified and the 

differences in HCI through the cool-down region are all less than 2 %. All additives at 

the 1 % level show ca 1 % decreases in the HCI level, but this is the effect o f  increasing 

the total mole fraction while keeping the HCI nearly constant. The effluent HCI levels 

effectively remain unchanged for the different additives, in this fuel lean efficient 

combustion system.

Phosgene levels from the PSR through the higher temperature PFR are shown to 

decrease in the burnout region from mole fraction 1.0E-10 to 1.0E-14, figure 10.9. They 

increase, however, in the cool down region to ca. 1.2E13 as shown in figure 10.10. One 

percent CH2 O added in the burnout region effects a more rapid decay o f phosgene in this 

zone, but results in a slightly higher steady state level. Injection o f H2 O vapor results in 

the lowest mole fraction phosgene in the burnout region, while hydrogen peroxide effects 

the lowest overall level at the exit o f the cool-down region.

10.5.3 Effects on CO/CO2  Ratio

The CO/CO2  ratio or level o f CO emission is often used in the combustion community 

for determination o f efficiency. We evaluate this ratio for both fuel rich and fuel lean 

conditions, and the conditions o f 1 % water vapor, hydrogen peroxide, formaldehyde and 

oxygen added to the burnout region.

10.5.4 CO / CO2  Fuel Rich Initial Conditions

Figures 10.11 and 10.12 correspond to the fuel rich system, which serves as a validation 

o f the modeling. Clearly this fuel rich system, phi = 1.5, is oxygen starved, and anything
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that serves to increase the oxidant will significantly benefit this inadequate combustion 

system. The CO/CO2  ratio is used as an indicator o f combustion efficiency for 1 0 ,0 0 0  

ppm, 1.2%, CH3 CI in the feed.

The Figures 10.11 and 10.12 show that addition o f oxygen - 1 %, has the most 

dramatic effect, while hydrogen peroxide has a significant benefit, in agreement with the 

data o f  Cooper. It does not, however, equal the improvement o f O2 , because one o f the 

two oxygen atoms in each H2 O2  is needed to form H2 O, the sink for H's from the 

peroxide. Steam has some benefit in CO/CO2  ratio, at the expense o f H2  formation, while 

formaldehyde further inhibits the combustion system. While these improvements with 

added O2  are expected, they are an important check on the model and suggest that the 

model is representative o f  the chemistry occurring. The quantitative predictions we are 

calculating might not be 1 0 0  % accurate, but the qualitative trends should exist, and a 

combustor operator could look for these trends in optimization.

10.5.5 CO / CO2  Ratio Fuel Lean Initial Conditions - Equivalence ratio 0.8

The effect o f steam addition, 0 to 0.4 mole fraction, on the CO / CO2  effluent ratio, at 

two initial CH3 CI to CH4  ratios, 1:4 and 1:10, is illustrated in figure 10.13. The initial 

CO and CO/CO2  ratio is observed to be higher in the CH3C1/CH4 ratio 1:4 than for ratio 

1:10.

1:4 = (CH3C1:CH4:02 = 1.61:6.44:19.12)

1:10 = (CH3C1:CH4:02 = 0.69:6.9:19.25)

A dramatic improvement - reduction in CO level and CO/CO2  ratio, occurs as 

steam is added initially for the above CH3 CI / CH4  ratios. CO mole fractions first 

decrease by more than one half, then rise as the mole fraction H2 O added increases above

0 .2 . CO/CO2  levels also decrease, then increase, but this ratio starts to increase faster 

than the CO.

The calculated effects from separate addition o f steam, H2 O2  and CH2 O, at the



118

1% level are illustrated in figures 10.14 and 10.15 for burnout and cool-down regions 

respectively. 1% formaldehyde increases the CO/CO2  ratio in the burnout and at the start 

o f  the cooldown zone; but the 1% formaldehyde and the non-additive case are identical at 

the effluent point. This CO increase is primarily due to changes in the fuel equivalence , 

ratio. 0 .0 1  % CH2 O added has no effect. H2 O and H2 O2  addition show a small benefit 

at this one percent level.

The fraction change, Xc reported as:

Xc = (Concentration - additive) / (Concentration - non additive) conditions 

for the PICs: phosgene, OH radical, H2 , CO, CI2  and Cl atom, is illustrated in figure 

10.16, for addition of: 1% steam, 1% H2 O2  and 0.01% CH2 O at the 320 K effluent point. 

A value o f 1 corresponds to no change.

10.5.6 Discussion

The temperature o f the additives injected is relatively "cold", 400 K, compared to the near 

2000 K temperature in the burnout zone. A decrease in temperature in the burnout region 

can result from injection o f large quantities o f additives and may reduce CO burnout. 

Super heated steam may be a better choice for an additive here.

Cl atoms add to CO in a stepwise process, in two steps, to form phosgene.

Cl + C O <~>  C1C.=0 

Cl + C1C.=0 <«> C12 C=0 

Two Cl atoms also combine to form chlorine gas.

Cl + Cl + M = Cl2  + M 

These appear to be the mechanism o f phosgene and CI2  formation in the relatively low Cl 

to H ratio and ideal, well mixed, fuel lean combustion studies reported in this paper. 

Here the POHC is effectively completely destroyed at the end o f the adiabatic burnout 

region, and the levels o f  chlorocarbon PIC's are not high enough to account for the 

phosgene formation.
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The phosgene formation mechanism may be very different in non well mixed 

systems, in systems where there is higher chlorine loadings, or where the POHC or 

Chlorinated PICs are present in significant concentrations. This is most likely the case, 

for example, in the studies on phosgene formation reported by the Koshland or Sawyer 

research groups at B erkeley^.

The fuel rich calculation results are an important check on the model and help 

support the model as representative o f the chemistry occurring. We indicate that the 

quantitative predictions might not be 1 0 0  % accurate, but that the qualitative trends 

should be present.

10.6 Conclusions

We have illustrated several examples o f the presently available analysis o f combustion 

systems using a detailed mechanism and the assumption o f complete mixing.

Under fuel rich conditions, addition of steam, hydrogen peroxide, and oxygen will 

improve CO/CO2  ratio. Oxygen is the most effective here. Additions o f formaldehyde or 

methane to the burnout region will produce more CO in a stepwise process which may 

increase CO/CO2  ratio.

Under fuel lean conditions, formation o f CO is low. Additions o f  steam and 

hydrogen peroxide to the burnout region slightly improve the CO/CO2  ratio. Addition of 

CH2 O under fuel lean conditions may decrease other PICs while slightly increaseing 

formation o f CO and COCI2 , unless an oxygen source is co-added. Formaldehyde 

addition at lower equivalence ratios should be more beneficial.

These results are specific to the conditions in this study and we note that that a 

fuel equivalence ration lower than 0 .8  was calculated to yield lower pollutant levels and 

more efficient combustion.
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SPECIES HF(298) S (298) CP300 CP500 CP800 CP1000 CP1500 CP2000 Ref

AR 0 .0 0 36.98 4.97 4.97 4.97 4.97 4.97 4.97 a
C(S) 0 .0 0 21.83 2.06 3.50 4.74 5.15 5.65 5.89 a
Cl 28.90 39.50 5.20 5.40 5.35 5.30 5.24 3.40 b
H2 0 .0 0 31.21 6.90 6.99 7.10 7.21 7.72 8.17 a
H 52.10 27.36 4.97 4.97 4.97 4.97 4.97 4.97 a
HCI -22.07 44.64 6.96 6.99 7.29 7.56 8 .1 0 8.40 c
C12 0 .0 0 53.30 8 .1 0 8.59 8.91 8.99 9.10 9.16 b
CH2 92.35 46.32 8.28 8.99 10.15 1 0 .8 8 1 2 .2 2 13.00 a
1CH2 101.44 44.15 8.28 8.99 10.15 1 0 .8 8 1 2 .2 2 13.00 a
CH3 35.12 46.38 9.26 10.81 12.90 14.09 16.26 17.56 a
CH4 -17.90 44.48 8.51 1 1 .1 0 15.00 17.20 20.61 22.61 a
C2H2 54.19 48.01 10.60 13.08 15.31 16.29 18.31 19.57 a
C2H3 70.40 56.20 10.89 13.87 17.16 18.73 21.34 23.20 e
C2H4 12.54 52.39 10.28 14.91 20.03 22.45 26.21 28.35 a
C2H5 28.36 57.90 12.26 17.13 22.85 25.74 30.54 33.31 e
C2H6 -20.24 54.85 12.58 18.68 25.80 29.33 34.91 38.37 a
CHC1 76.62 56.17 8.80 10.13 1 2 .1 1 13.22 14.78 14.96 f
CH2C1 29.10 59.60 9.32 11.14 14.10 15.83 18.31 18.93 h
CC12 51.10 49.00 11.09 12.52 13.61 14.09 15.41 15.84 f
CHC12 23.50 67.40 13.11 14.68 16.83 17.98 19.80 2 1 .2 0 h
CH3C1 -19.59 56.01 9.77 13.20 17.02 18.87 21.80 23.40 i
CH2C12 -22.80 64.59 12.26 15.88 19.36 20.81 22.90 24.00 c
CHC13 -24.20 70.66 15.77 19.31 21.96 22.82 24.21 24.60 c
C2HC1 52.10 58.10 13.17 15.18 16.88 17.55 18.80 19.55 j
C2H3C1 5.00 63.09 12.33 17.73 22.47 24.26 26.88 28.80 b
CH2CC12 0.62 69.25 15.81 20.56 24.68 26.19 28.21 29.60 j
CHC1CHC1 0.75 69.25 15.81 20.56 24.68 26.19 28.21 29.60 j
CHC1CH 61.83 64.46 11.39 16.35 21.23 23.38 26.87 28.80 j
CH2CC1 60.40 64.46 11.39 16.35 21.23 23.38 26.87 28.80 j
CC12CH 58.20 6 8 .8 8 17.52 22.16 25.74 26.90 28.60 29.85 j
C2HC13 -1.40 77.63 19.22 23.75 26.80 27.60 28.98 30.10 j
CH2C1CH2 21.18 68.50 14.01 20.09 25.88 28.98 33.44 34.21 j
CH3CHCI 17.68 67.31 14.10 19.79 25.42 27.99 32.50 34.70 h
CH3CC12 11.50 73.60 17.28 2 2 .8 6 28.09 30.18 33.09 35.01 j
CHC12CH2 16.04 74.30 17.35 22.95 28.03 30.29 33.07 34.55 j
CH2C1CHC1 11.49 75.80 16.81 22.56 27.67 29.75 33.21 34.50 j
CH2C1CC12 7.05 83.20 2 0 .2 1 25.68 30.14 31.77 34.50 36.10 j
C2H2C13 8.50 83.10 2 0 .2 1 25.68 30.14 31.77 34.50 36.10 j
C2H5C1 -26.83 66.03 15.06 21.67 28.43 31.47 36.27 39.17 j
CH3CHC12 -31.10 73.05 18.29 24.81 30.87 33.44 37.80 40.16 g
CH2C1CH2C1 -30.60 74.16 18.99 24.74 30.32 33.06 38.79 40.77 g
CH3CC13 -33.84 76.55 22.52 28.45 33.70 35.73 38.91 41.60 c
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C2H2C14 -37.20 86.01 25.23 31.32 36.05 37.59 39.82 41.10 g
C2HC14 5.80 87.90 23.50 28.76 32.52 33.68 35.70 36.30 j
CH2C1CHC12 -34.70 81.50 2 1 .0 1 27.67 33.26 35.36 38.91 41.10 c
0 59.55 38.47 5.23 5.08 5.01 5.01 4.98 4.98 a
0 2 0 .0 49.01 7.02 7.44 8.04 8.35 8.73 9.04 a
OH 9.49 43.88 7.16 7.05 7.15 7.33 7.87 8.27 a
H 20 -57.80 45.10 8 .0 2 8.41 9.24 9.85 11.23 1 2 .2 0 a
H 02 3.50 54.73 8.37 9.48 10.78 11.43 12.47 13.23 a
H 202 -32.53 55.66 10.42 12.35 14.30 15.21 16.85 17.88 a
CO -26.42 47.21 6.96 7.13 7.61 7.94 8.41 8.67 a
CHO 10.40 53.66 8.27 9.27 10.73 11.51 12.55 13.15 a
CIO 24.20 54.10 7.50 8 .2 1 8.69 8.81 9.00 9.10 b
C120 19.71 63.66 11.41 12.76 13.46 13.55 13.81 13.85 b
C102 25.00 61.50 9.99 11.72 12.97 13.32 13.80 13.86 b
CC10 -4.00 63.50 10.80 11.70 12.50 12.90 13.40 13.70 b
HOC1 -17.80 56.50 8.91 10.08 11.13 11.58 12.40 12.80 b
COC12 -52.60 67.80 13.81 16.26 17.97 18.45 19.21 19.50 b
CHC10 -39.30 61.80 1 1 .1 2 13.55 15.70 16.58 18.11 18.80 j
C 02 -94.05 51.07 8.90 10.65 12.30 12.97 13.93 14.45 a
CH 20 -26.00 52.26 8.45 10.49 13.34 14.86 16.95 18.14 a
CH 30 3.90 53.25 9.01 1 2 .2 2 16.28 18.38 21.56 23.13 a
CH20H -2.60 59.61 9.72 12.58 15.99 17.60 19.80 2 1 .0 0 a
CH2CO -11.74 57.79 12.98 16.92 20.31 21.61 23.80 25.55 a
CH30H -48.06 57.28 10.48 14.34 19.00 21.35 24.96 27.25 b
HCCO 41.36 60.62 11.82 14.63 17.13 18.09 19.38 b
CH2C10 2.16 63.27 1 1 .2 2 15.05 18.65 20.33 22.40 23.70 j
CH2C100 3.50 73.11 15.84 17.98 22.92 24.57 27.10 28.40 j
CH200C1 1 0 .0 0 78.60 17.50 2 2 .1 0 27.10 28.80 31.70 33.30 j

Unit: Hf, Kcal/mol; S and Cp, cal/(mol °K)

References for Thermodynamic Properties

a. JANAF Thermochemical Tables, 3rd Edition, NSRDS-NBS 37 (1986)

b. Benson, S.W., Thermochemical Kinetics, John Wiley and Son, 1976

c. Stull,D.R., Westrum,R.F., and Sinke,G.C., The Chemical Thermodynamics 
o f  Organic Compounds, Robert E. Kreger Publishing Co., 1987

d. Orlov,Y.D., Lebedev,Y.A., and Korsunskii, B.L., Russ. J. Chem., 1424,1985

e. Brouard, M., Lightfoot, P.D., and Pilling, M.J.; J. Phys. Chem., 90,445. 1986



f. Lias, S.G.; Bartmess, J.E.; Liebman, J.F.; Holmes, J.L.; Levin, R.D.; 
Mallard, G.W.; J. Phys. Chem. Ref. Data, 17, Suppl. 1,1988

g. Pedley, J.B.; Naylor, R.O.; Kirby, S.P.; Thermodynamic Data o f Organic 
Compounds, Chapman and Hall, New York, 1987

h. Tschuikow-Roux, E. and Chen, Y.; J. Am. Chem. Soc., 111, 1511 1989.

i. Rogers, A.S.; Selected Values for Thermodynamic Properties o f  Chemical 
Compounds, Thermodynamic Research Center, Texas A&M Univ. 1982

j. Estimated by Group Additivity and NJIT bond energy.



APPENDIX B

DETAILED MECHANISM FOR CH2 CI2  AND CH3 CI 
PYROLYSIS AND OXYDATION

k = AxTnxexp(-Ea/RT)

units for A: cm^/mole-sec and sec"*; Ea: Kcal/mole 

AHrxn taken as from stabilized adduct.

CH2S : singlet methylene, ICH2

DISSOC: apparent rate constant from DISSOC computer code
(QRRK unimolecular dissociation calculation, high pressure limit k listed above. 
DISSOC values used in kinetic code)

Q R R K : apparent rate constant from CHEMACT computer code 
high pressure limit k listed in Appendix C
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Reaction

CH2C12 = CHC1 + HCI

CH2C12 = CH2C1 + Cl

CH2C12 + H = CH2C1 + HCI 
CH2C12 + Cl = CHC12 + HCI 
CH2C12 + CH3 = CH4 + CHC12 
CH2C12 + CH3 = CH3C1 + CH2C1 
CH2C12 + 0 2  = CHC12 + H 02 
CH2C12 + H 02 = CHC12 + H 202 
CH2C12 + OH = CHC12 + H 20 
CH2C12 + O = CHC12 + OH 
CH3C1 = CH3 + Cl

CH3C1 = CH2S + HCI

CH3C1 + H = CH3 + HCI 
CH3C1 + Cl = CH2C1 + HCI 
CH3C1 + 0 2  = CH2C1 + H 02 
CH3C1 + O = CH2C1 + OH 
CH3C1 + OH = CH2C1 + H 20 
CH3C1 + CIO = CH2C1 + H0C1 
CH3C1 + H 02 = CH2C1 + H202 
CH3C1 + CH3 = CH4 + CH2C1 
CH2C1 + H2 = CH3CI + H 
CH2C1 + 0 2  = C H 20 + CIO 
CH2CI + 0 2  = CH2C100 
CH2C1 + O = CH2C10 
CH2C1 + O = C H 20 + Cl 
CH2C1 + OH = C H 20 + HCI 
CH2CI + OH = CH20H + Cl 
CH2C1 + H 02 = CH2C10 + OH 
CH2C1 + CIO = CHC10 + HCI 
CH2C1 +  CIO = CH2C10 + Cl 
CH2C1 + C H 20 = CH3C1 + CHO 
CH2C1 + CH2C1 = C2H4C12 
CH2C1 + CH2C1 = CH2C1CH2 + Cl 
CH2C1 + CH2C1 = C2H3CI + HCI 
CH2C1 + CHC12 = C2H3C13 
CH2C1 + CHC12 = CH2CC12 + HCI 
CH2C1 + CHC12 = CHC1CHC1 + HCI 
CH2C1 + CH3 = C2H5C1

A n Ea source

1.42E+14 0 .0 105. 1

1.82E+37 -7.43 85.7 DISSOC
1.02E+16 0 .0 75.8 2,3
1.60E+40 -7.84 83.6 DISSOC
7.00E+13 0 .0 7.1 4
2.79E+13 0 .0 2.94 4
6.76E+10 0 .0 7.2 4
1.40E+11 0 .0 4.9 4
1.35E+13 0 .0 51.8 2 0

6.67E+12 0 .0 18.27 21

2.83E+12 0 .0 2.09 19
6.00E+12 0 .0 5.76 40
1.28E+15 0 .0 83.0 15,30
1.31E+37 -6.92 90.65 DISSOC

1.10E+28 -5.15 109.67 DISSOC
6.64E+13 0 .0 7.62 4
3.16E+13 0 .0 3.3 4
2.02E+13 0 .0 54.2 2 2

1.70E+13 0 .0 7.3 4
2.45E+12 0 .0 2.7 4
3.03E+11 0 .0 10.7 38,19
l.OOE+13 0 .0 2 1 .6 6 45
3.30E+11 0 .0 9.4 4
3.90E+12 0 .0 14.06 4,6
1.91E+14 -1.27 3.81 QRRK
2.73E+33 -7.5 4.44 QRRK
1.29E+15 -1.98 1.1 QRRK
5.59E+13 -0.13 0.71 QRRK
1.24E+22 -2.72 3.86 QRRK
2.00E+12 0.29 3.27 QRRK
l.OOE+13 0 .0 0 .0 25,12
4.13E+19 -2 .2 2 2.36 QRRK
4.15E+12 0.07 1 1 .1 QRRK
3.56E+11 0 .0 6 .2 24,4
7.84E+45 -1 0 .2 1 13.15 QRRK
9.34E+29 -4.94 14.07 QRRK
3.75E+35 -6.73 13.16 QRRK
6.41E+33 -10.22 12.91 QRRK
3.75E+36 -7.22 13.62 QRRK
1.22E+37 -7.20 13.64 QRRK
3.27E+40 -8.49 10.59 QRRK
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Reaction A n Ea source

CH2C1 + CH3 = C2H4 + HCI 
CH2C1 + CH3 = C2H5 + Cl 
CH2C1 + H = CH3C1 
CH2C1 + H = CH3 + Cl 
CH2C1 + H = CH2S + HCI 
CHC12 + CH3 = CH3CHC12 
CHC12 + CH3 = C2H3C1 + HCI 
CHC12 + CH3 = CH3CHC1 + Cl 
CHC12 + CHC12 = C2H2C14 
CHC12 + CHC12 = C2H2C13 + Cl 
CHC12 + CHC12 = C2HC13 + HCI 
CHC12 + H = CH2C12 
CHC12 + H = CH2C1 + Cl 
CHC12 + H2 = CH2C12 + H 
CC13 + CH3 = C2H3C13 
CC13 + CH3 = CH2CC12 + HCI 
CC13 + CH3 = CH3CC12 +  Cl 
CC13 + CH2C1 = C2H2C14 
CC13 + CH2C1 C2HC13 + HCI 
CC13 + CH2C1 = C2H2C13 + Cl 
CC13 + H2 = CHC13 + H 
CC13 + CH4 = CHC13 + CH3 
CHC1 + CHC1 = CHC1CHC1 
CHC1 + 0 2  = CHC10 + O 
CHC1 + O = CHC10 
CHC1 + 0 2  = CO + H0C1 
C2H3C1 + H = CH2C1CH2 
C2H3C1 + H = C2H4 + Cl 
C2H3C1 + H = C2H3 + HCI 
C2HC13 + H = CH2C1CC12 
C2HC13 + H = C2H2C13 
C2HC13 + H = CH2CC12 + Cl 
C2HC13 + H = CHC1CHC1 + Cl 
CH2CC12 + H = C2H3C1+ Cl 
CHC1CHC1 + H = C2H3C1 + Cl 
CHC1CHC1 = C2HC1 + HCI 
CH2CC12 = C2HC1 +  HCI 
C2HC13 = C2C12 + HCI 
C2HC1 + H = HCI + C2H 
C2HC1 + H = C2H2 + Cl 
C2H4C12 = C2H3C1 + HCI

3.50E+29 -4.49 9.18 QRRK
9.27E+19 -2.07 10.13 QRRK
3.04E+25 -4.47 3.49 QRRK
5.12E+14 -0 .2 2 0.31 QRRK
9.48E+04 1.91 2 .6 QRRK
2.28E+41 -8 .6 8 11.62 QRRK
1.35E+30 -4.96 11.55 QRRK
2.74E+25 -3.45 12.81 QRRK
9.08E+45 -10.56 13.17 QRRK
1.36E+30 -5.23 14.18 QRRK
6.72E+35 -7.11 13.21 QRRK
4.81E+26 -4.82 3.81 QRRK
1.25E+14 -0.03 0.57 QRRK
4.30E+12 0 .0 15.3 4,5
9.54E+46 - 1 0 .6 6 11.74 QRRK
1.62E+30 -5.33 8.64 QRRK
3.98E+22 -2.63 7.09 QRRK
4.01E+45 • O LS

I 10.67 QRRK
4.74E+30 -5.08 8.81 QRRK
5.90E+23 -2.84 8.96 QRRK
5.01E+12 0 .0 14.3 49
5.00E+12 0 .0 14.9 49
4.00E+12 0 .0 0 .0 50
1.50E+13 0 .0 2 .8 6 50
l.OOE+13 0 .0 0 .0 50
1.20E+11 0 .0 0 .0 50
5.01 E+23 -4.21 8.47 QRRK
1.55E+13 -0 .0 2 5.84 QRRK
1.20E+12 0 .0 15.0 36
1.51 E+23 -4.18 7.52 QRRK
2.87E+22 -4.09 10.89 QRRK
1.45E+13 -0 .0 1 5.83 QRRK
7.37E+12 -0 .0 1 9.22 QRRK
7.21E+12 0 .0 7.51 QRRK
3.44E+13 0.03 5.89, QRRK
7.26E+13 0 .0 69.09 50
1.45E+14 0 .0 69.22 50
7.26E+13 0 .0 74.44 50
l.OOE+13 0 .0 17.03 50
2.00E+13 0 .0 2 .1 50
3.98E+13 0 .0 58.0 30
6.76E+19 -1.93 58.71 DISSOC
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Reaction A n Ea source

CH3CHC12 = C2H3C1 + HCI

CH3CHC12 = CH3CHC1 + Cl

C2H3C13 = CHC1CHC1 + HCI 
C2H3C13 = CH2CC12 + HCI 
C2H2C14 = C2HC13 + HCI 
C2H5C1 -  C2H4 + HCI 
C2H5C1 = C2H5 + Cl 
C2H5C1 + Cl = HCI + CH3CHC1 
C2H5C1 + Cl = HCI + CH2C1CH2 
C2H5C1 + H = HCI + C2H5 
C2H3C1 = C2H2 + HCI

C2H3C1 = C2H3 + Cl

C2H6 = C2H5 + H

C2H6 -  CH3 + CH3

C2H6 + H = C2H5 + H2 
C2H6 + Cl = C2H5 + HCI 
C2H6 i O  = C2H5 + OH 
C2H6 + OH = C2H5 + H 20 
C2H5 = C2H4 + H

C2H5 + H = CH3 + CH3 
C2H5 + O « C H 20 + CH3 
C2H5 + 0 2  = C2H4 + H 02 
C2H5 + H 02 = C2H4 + H 202 
C2H4 + 0 2  = C2H3 + H 02 
C2H4 + CH3 = C2H3 + CH4 
C2H4 + OH = C2H3 + H 20 
C2H4 + H = C2H3 + H2 
C2H4 + Cl = C2H3 + HCI 
C2H4 = C2H2 + H2

C2H4 = C2H3 + H

C2H3 + H = C2H2 + H2 
C2H3 = C2H2 + H

2.80E+13 0 .0 57.65 30
2.94E+21 -2.37 59.46 DISSOC
6.65E+15 0 .0 80.7 3,23
3.17E+42 -8 .1 0 92.67 DISSOC
1.39E+20 -2.03 60.45 DISSOC
3.13E+19 -2 .0 2 60.33 DISSOC
8.62E+21 -2.57 51.87 DISSOC
7.81E+19 -2 .0 60.66 DISSOC
2.35E+43 -8.5 96.98 DISSOC
3.55E+13 0 .0 15.0 4
1.12E+13 0 .0 15.0 4
I.OOE+14 0 .0 7.9 4
3.16E13 0 .0 45.27 30
1.62E+28 -4.29 75.78 DISSOC
3.98E+15 0 .0 87.0 26
1.71E+38 -7.13 96.37 DISSOC
1.30E+16 0 .0 100.7 7
6.22E+47 -9.76 111.25 DISSOC
8.00E+16 0 .0 90.4 7
5.34E+54 - 1 1 .1 2 1 1 2 .2 1 DISSOC
6.61E+13 0 .0 3.6 4
4.37E+13 0 .0 0 .1 19
2.51E+13 0 .0 6.4 4
8.85E+09 1.04 1.81 36
5.01E+13 0 .0 40.9 7
1.83E+39 -7.75 52.82 DISSOC
1.35E+22 -2.17 7.0 QRRK
l.OOE+13 0 .0 0 .0 18
2.00E+12 0 .0 4.99 11

3.01E+11 0 .0 0 .0 36
4.22E+13 0 .0 57.62 36
4.20E+11 0 .0 11.11 11

1.58E+04 2.75 4.173 36
6.92E+14 0 .0 14.5 8

2.39E+13 0 .0 2 .6 30
2.95E+17 0 .0 79.28 11

8.52E+43 -8.32 121.24 DISSOC
2.00E+16 0 .0 1 1 0 .0 7
8.53E+30 -5.87 118.24 DISSOC
9.26E+13 0 .0 0 .0 36
3.16E+12 0 .0 38.3 7
6.24E+29 -5.29 46.5 DISSOC
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Reaction A n Ea source

C2H3 + 0 2  = C2H2 + H 02 
C2H3 + 0 2  = CHO + CH 20 
C2H2 + H2 = C2H3 + H 
C2H2 + H 02  = CH 2C0 + OH 
C2H2 + Cl =  C2H + HC1 
C2H2 + 0 2  = C2H + H 02 
C2H2 + O = CH2 + CO 
C2H2 + O = HCCO + H 
C2H2 + OH = CH2C0+H 
C2H2 + OH = C2H + H 20 
C2H2 + H = C2H + H2 
C2H + 0 2  = CO + CH2 
C2H + H2 = C2H2 + H 
C2H + CH4 = C2H2 + CH3 
C2H + OH = CH2 + CO 
C2H + OH = C2H2 + O 
HCCO + H = CH2S + CO 
C H 2C0 + O = CH2 + C 02 
C H 2C0 + M = CH2 + CO + M 
C H 2C0 + H = HCCO + H2 
C H 2C0 + O = HCCO + OH 
C H 2C0 + OH = HCCO + H 20 
CH2CO + OH = CHO + CH 20 
C H 2C0 + H = CH3 + CO 
CH4 = CH3 + H

CH4 + H = CH3 + H2 
CH4 + Cl = CH3 + HC1 
CH4 + 0 2  = CH3 + H 02 
CH4 + O = CH3 + OH 
CH4 + OH = CH3 + H 20 
CH4 + H 02 = CH3 + H 202 
CH4 + CIO = CH3 + H0C1 
CH3 + 0 2  = C H 20 + OH 
CH3 + 0 2  = C H 30 + O 
CH3 + O = C H 20 + H 
CH3 + OH = C H 30 + H 
CH3 + H 02  = C H 30 + OH 
CH3 + CIO = C H 20 + HC1 
CH3 + CIO = C H 30 + Cl 
C H 30 + M = C H 20 + H + M 
C H 30 + 0 2  = C H 20 + H 02

1.21E+11 0 .0 0 .0 36
3.97E+12 0 .0 -0.25 47
2.41E+12 0 .0 65.0 36
6.03E+09 0 .0 7.95 36
1.58E+14 0 .0 16.9 30
1.21E+11 0 .0 0 .0 36
4.10E+08 1.5 1.69 11

1.02E+07 2 .0 1.9 13
3.20E+11 0 .0 0 .2 13
1.45E+04 2 .6 8 12.04 36
6.00E+13 0 .0 23.66 11

2.41E+12 0 .0 0 .0 36
1.15E+13 0 .0 2 .8 8 36
1.81E+12 0 .0 0.5 36
1.81E+13 0 .0 0 .0 36
1.81E+13 0 .0 0 .0 36
3.00E+13 0 .0 0 .0 11

1.74E+12 0 .0 1.35 13
3.00E+15 0 .0 75.98 13
5.00E+13 0 .0 8 .0 13
1.00E+13 0 .0 8 .0 13
7.50E+12 0 .0 2 .0 13
l.OOE+13 0 .0 0 .0 11

7.00E+12 0 .0 3.01 11

1.00E+16 0 .0 105.0 7
1.03E+33 -5.58 1 1 1 .8 DISSOC
1.55E+14 0 .0 1 1 .0 4
3.09E+13 0 .0 3.6 46
4.04E+13 0 .0 56.91 36
1.02E+09 1.5 8 .6 36
1.93E+05 2.4 2 .1 1 36
2.00E+13 0 .0 18.0 9
6.03E+11 0 .0 15.0 37,19
4.35E+13 -0.45 17.26 QRRK
2.86E+15 -0.315 30.86 QRRK
7.00E+13 0 .0 0 .0 1 0 ,1 1

3.87E+12 -0.19 13.74 8

2.00E+13 0 .0 0 .0 12,36
3.47E+18 -1.80 2.07 QRRK
3.33E+11 0.46 0.03 QRRK
1.00E+14 0 .0 25.1 36
6.62E+10 0 .0 2 .6 36
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Reaction A n Ea source

C H 30 + CO = C 02 + CH3 
C H 30 + H 02  = C H 20 + H202 
CH 30 + CH3 = CH4 + CH 20 
CH 30 + O = OH + C H 20 
CH 30 + OH = H 20 + CH 20 
C H 30 + H = H2 + C H 20 
C H 30 + Cl = HC1 + C H 20 
CH 30 + CIO = C H 20 + HOC1 
C H 20 + CIO = CHO + HOC1 
C H 20 + CH3 = CH4 + CHO 
C H 20 + H = CHO + H2 
C H 20 + O = CHO + OH 
C H 20 + OH = CHO + H 20 
C H 20 + H 02  = CHO+ H 202 
C H 20 + Cl = CHO + HC1 
C H 20 + 0 2  = CHO + H 02 
C H 20 + M = CHO + H + M 
CH20H + M = C H 20 + H + M 
CH20H + OH = H 20 + CH 20 
C H 20H  + CH3 = CH4 + CH 20 
CH20H + O = OH + C H 20 
CH20H + H 02  = H202 + CH20 
CH20H + Cl = HC1 + CH20 
CH20H + H = H2 + CH 20 
CH20H + 0 2  = H 02 + CH 20 
CHO + M = H + CO + M 
CHO + H = CO + H2 
CHO + 0 2  = CO + H 02 
CHO + O = CO + OH 
CHO + 0  = H + C 02 
CHO + OH = CO + H 20 
CH2 + 0 2  = C H 20 + O 
CH2 + CH4 = CH3 + CH3 
CH2 + CH3CI = CH3 + CH2C1 
CH2 + H2 = CH3 + H 
CH2 + H 20  = CH3 + OH 
CH2S + M = CH2 + M 
CH2S + 0 2  = CO + H 20 
CH2S + CH4 = C2H5 + H 
CH2S + CH4 = CH3 + CH3 
CH2S + CH4 = C2H6 
CH2S + CH3C1 = C2H5C1

1.57E+13 0 .0 1 1 .8 36
3.01E+11 0 .0 0 .0 36
2.41E+13 0 .0 0 .0 36
6.03E+12 0 .0 0 .0 36
1.81E+13 0 .0 0 .0 36
1.99E+13 0 .0 0 .0 36
4.00E+14 0 .0 0 .0 36
2.41E+13 0 .0 0 .0 31,36
5.50E+03 2.81 5.86 32,36
l.OOE+11 0 .0 6.09 11

2.50E+13 0 .0 3.99 1 0 ,1 1

3.50E+I3 0 .0 3.51 1 0 ,1 1

3.00E+13 0 .0 1.19 1 0

1.00E+12 0 .0 8 .0 9,16
5.00E+13 0 .0 0.5 19
2.05E+13 0 .0 38.95 36
5.00E+16 0 .0 76.2 11

1.00E+14 0 .0 25.1 13
2.41E+13 0 .0 0 .0 13
2.41E+12 0 .0 0 .0 13
4.22E+13 0 .0 0 .0 13
1.21E+13 0 .0 0 .0 13
4.00E+14 0 .0 0 .0 36
6.03E+12 0 .0 0 .0 13
5.00E+10 0 .0 0 .0 13
2.50E+14 0 .0 16.79 11

2.00E+14 0 .0 0 .0 1 0 ,1 1

5.12E+13 0 .0 1.69 36
3.01E+13 0 .0 0 .0 36
3.01 E+l 3 0 .0 0 .0 36
3.01E+13 0 .0 0 .0 36
1.00E+14 0 .0 3.7 8

1.81E+05 0 .0 0 .0 36
9.10E+04 0 .0 0 .0 51
3.01E+09 0 .0 0 .0 36
9.64E+07 0 .0 0 .0 36
l.OOE+13 0 .0 0 .0 13
2.41E+11 0 .0 0 .0 13
9.43E+12 -0.13 6.62 QRRK
3.45E+22 -2.48 7.46 QRRK
5.78E+46 -10.31 12.83 QRRK
7.85E+31 -6.15 5.83 QRRK
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Reaction A n Ea source

CH2S + CH3C1 = C2H4 + HC1 
CH2S + CH3C1 = C2H5 + Cl 
CH2S + H2 = CH4 
CH2S + H2 = CH3 + H 
CO + OH = C 02 + H 
CO + H 02 = C 02 + OH 
CO + 0 2  = C 02 + O 
CO + CIO = Cl + C 02 
CO + 0  + M = C 02  + M 
H + 0 2  = O + OH 
H + 0 2  + M = H 02 + M 
O + H2 = H + OH 
O + H 20  = OH + OH 
H + H 20  = H2 + OH 
H + OH + M = H 20 + M 
0 2  + M = 0  + 0  + M 
H + O + M = OH + M 
H 02 + M = H + 0 2  + M 
H + H 02 = OH + OH 
H + H 02 = H2 + 0 2  
O + H 02 = OH + 0 2  
OH + H 02 = H 20 + 0 2  
O + HC1 = OH + Cl 
OH + HC1 = Cl + H 20 
H + H + M = H2 + M 
Cl + Cl + M = C12 + M 
H + Cl + M = HC1 + M 
H + HC1 = Cl + H2 
H + C12 = HC1 + Cl 
Cl + H 02 = HC1 + 0 2  
Cl + H 02 = CIO + OH 
Cl + H 202 = HC1 + H 02 
H 202 + M = OH + OH + M 
H 202 + OH = H 02 + H 20 
H 202 + O = H 02 + OH 
H 202 + H = H 02 + H2 
H 202 + H = H 20  + OH 
H 202 + 0 2  = H 02 + H 02 
CH2C10 = C H 20 + Cl

CH2C10 = CHC10 + H

1.60E+18 -1.47 2.71 QRRK
3.09E+07 1.7 0.52 QRRK
3.82E+25 -4.47 3.77 QRRK
1.27E+14 -0.08 0.13 QRRK
4.40E+06 1.5 -0.741 13
5.80E+13 0 .0 22.934 36
2.50E+12 0 .0 47.8 13
6.03E+11 0 .0 17.4 19
6.17E+14 0 .0 3.0 36
1.69E+17 -0.9 17.39 36
7.00E+17 -0 .8 0 .0 11

1.08E+04 2 .8 5.92 36
1.50E+10 1.14 17.24 1 0

4.60E+08 1 .6 18.56 1 0

2.22E+22 -2 .0 0 .0 36
1.20E+14 0 .0 107.55 13
4.71E+18 - 1 .0 0 .0 36
1.21E+19 -1.18 48.61 36
1.69E+14 0 .0 0.87 36
6.62E+13 0 .0 2.13 36
2.00E+13 0 .0 0 .0 1 0 ,1 1

2.00E+13 0 .0 0 .0 1 0

5.24E+12 0 .0 6.4 4
2.45E+12 0 .0 1 .1 4
6.40E+17 - 1 .0 0 .0 4
2.34E+14 0 .0 - 1 .8 4
1.00E+17 0 .0 0 .0 17
2.30E+13 0 .0 3.5 4
8.51E+13 0 .0 1 .0 4
1.08E+13 0 .0 -0.338 19
2.47E+13 0 .0 0.89 19
6.62E+12 0 .0 1.95 19
1.29E+33 -4.86 53.25 36
1.75E+12 0 .0 0.32 36
9.63E+06 2 .0 3.97 36
4.82E+13 0 .0 7.95 36
2.41E+13 0 .0 3.97 36
5.42E+13 0 .0 39.74 36
4.73E+12 0 .0 7.6 7,27
4.53E+31 -6.41 22.56 DISSOC
3.27E+13 0 .0 14.3 7,28
1.83E+27 -5.13 21.17 DISSOC
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Reaction A n Ea source

CHCIO = CHO + Cl

CHCIO = CO + HC1 
CHCIO + H = CHO + HC1 
CHCIO + H = C H 20 + Cl 
CHCIO + OH = CCIO + H 20 
CHCIO + O = CCIO + OH 
CHCIO + Cl = CCIO + HC1 
CHCIO + 0 2  = CCIO + H 02 
CHCIO + CIO = CCIO + H0C1 
CHCIO + CH3 = CCIO + CH4 
CHCIO + CH3 = CH3C1 + CHO 
H2 + CIO = H + H0C1 
O + C12 = Cl + CIO 
H + C12 = HC1 + Cl 
H0C1 + OH = CIO + H 20 
H0C1 + H = HC1 + OH 
H0C1 + Cl = C12 + OH 
H0C1 + Cl = HC1 + CIO 
H0C1 + O = OH + CIO 
H0C1 = Cl + OH

H0C1 = H + CIO

CCIO = CO + Cl 
CCIO + OH = CO + H0C1 
CCIO + 0 2  = C 02 + CIO 
CCIO + Cl = CO + C12 
C0C12 + M = CCIO + Cl + M 
C0C12 + OH = CCIO + H0C1 
C0C12 + O = CCIO + CIO 
COC12 + H = CCIO + HC1 
C0C12 + Cl = CCIO + C12 
C0C12 + CH3 = CCIO + CH3C1

1.99E+15 0 .0 77.6 7,29
8.86E+29 -5.15 92.92 DISSOC
1.10E+30 -5.19 92.96 DISSOC
8.33E+13 0 .0 7.4 19
6.99E+14 -0.58 6.36 QRRK
7.50E+12 0 .0 1 .2 33,11
8.80E+12 0 .0 3.5 34,11
2.40E+13 0 .0 0.5 35,19
4.50E+12 0 .0 41.8 49
1.10E+13 0 .0 0.5 49
2.50E+13 0 .0 6 .0 49
1.50E+13 0 .0 8 .8 49
6.03E+11 0 .0 14.1 39,19
2.51E+12 0 .0 2.72 48
8.59E+13 0 .0 1.17 48
1.81E+12 0 .0 0.99 19
9.55E+13 0 .0 7.62 4,44
1.81E+12 0 .0 0.26 19
7.28E+12 0 .0 0 .1 4,41
6.03E+12 0 .0 4.37 19
2.85E+15 0 .0 54.2 42
1.76E+20 -3.01 56.72 DISSOC
1.76E+14 0 .0 92.2 43
8.12E+14 -2.09 93.69 DISSOC
1.30E+14 0 .0 8 .0 49
3.30E+12 0 .0 0 .0 49
l.OOE+13 0 .0 0 .0 49
4.00E+14 0 .0 0 .8 49
1.20E+16 0 .0 75.5 49
l.OOE+13 0 .0 23.3 49
2.00E+13 0 .0 17.0 49
5.00E+13 0 .0 6.3 49
3.20E+14 0 .0 23.5 49
1.90E+13 0 .0 12.9 49
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Sources of Rate Constants

1. A = 1 0 *3 .5 5 x Ea = + 7.5; (detail see text)

2. A factor based on thermodynamics and microreversibility.
A .] taken as that for C2 H 5  + CH3  (A = 2.0 x 10*3
Ea = BE - RT. (this case Bond Energy is 77.8 Kcal)

3. Allara, D.L. and Shaw, R.J., J. Phys. Chem. Ref. Data, 9, 523,1980.

4. Kerr, J.A. and Moss, S.J., Handbook of Bimolecular and Thermo lecular Gas Reaction},
Vol. I & II, CRC Press Inc., 1981.

5. A factor taken as average that for CH2 CI + H2  and CCI3  + H2  ;
Ea from Evans—Polanyi plot.

6 . A factor taken as 2 that for CH3  + H2  (A = 1.6 x 10*2);
Ea from Evans—Polanyi plot.

7. Dean, A.M., J. Phys. Chem., 89,4600 1985.

8 . Olson,D.B. and Gardiner,W.C. Jr., Combus. Flame, 32, 151,1978

9. Cathonnet, M., Gaillard, F., Boettener, J.C., Cambray, P., Karmed, D., and
Bellet, J.C., Twentieth Symposium (International) on Combustion,
The Combustion Institute, pp 819—829, 1984.

10. Wamatz, J., Bockhom, H., Moser, A., and Wenz, H.W., Nineteenth Symposium
(International) on Combustion, The Combustion Institute, pp 167—179,1982.

11. Wamatz, J.; Combustion Chemistry ( W.C. Gardiner, Jr.,Ed.) Springer—Verlag, NY,
1984.

12. Hennessy, R.J., Robison, C., Smith, D.B., Twenty—first Symposium
(International) on Combustion}/The Combustion Institute, pp. 761-772,1986.

13. Miller, J.A., Mitchell, R.E., Smooke, M.D., and Kee, R.J., Nineteenth Symposium
(International) on Combustion), The Combustion Institute, pp. 127-141,1982.

14. Westbrook, C.K., and Dryer, F.A., Prog. Energy Combust. Sci., 10, 1 1984.

15. A factor taken as 1 0 *5 .4  (Benson 1984)
Ea = AHjxn - RT

16. Levy, J.M., Taylor, B.R., Longwell, J.P., and Sarofim, A.F., Nineteenth Symposium
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(International) on Combustion, The Combustion Institute, pp. 167—179,1982.

17. Ritter, E., Bozzelli, J.W., and Dean, A.M.'s paper accepted in J. Phys. Chem. 1988.
Note -- This reference incorrectly lists Kerr and Moss as source o f this rate 
constant. The rate constant was determined by evaluation o f  literature data and 
kinetics studies in these laboratories.

18. Cohen, N., Int. J. o f  Chem. Kinetics, Vol 18, 59-82, (1986).

19. Demore, W.B., Molina, M.J., Waston, R.T., Golden, D.M., Hampson, R.F., Kurylo,
M.J., Howard, C.J., AR Ravishankara, and Sander, S.P., Chemical Kinetic and 
Photochemical Data for use in Stratospheric Modeling, Evaluation No. 8 , JPL 
Publication 87-41,1987

20. A factor taken as 1 /3 that for CH4  + C>2 ; Ea = AHjxn.

21. A factor taken as 1/3 that for CH4  + HO2 ; Ea = + 8 .

22. A factor taken as 3/4 that for CH4  + C>2 ; Ea = A H ^

23. A factor based on thermodynamics and microreversibility.
A.\ taken as that for CH3  + C3 H7  (A = 2.0 x 10*3), EA = A H ^n

24. A factor taken as 2 that for CH3  + C H ?0 
Ea = 6.2

25. A factor taken as 1/2 that for CH3 + HO2

26. Manion, J.A. and Louw, R., Reel. Trav. Chim. Pays-Bas 105,442- 448,1986.

27. A factor based on thermodynamics and microreversibility.
A„i taken as that for CH3  + C2 H4  (log A = 11.5), EA = A H j^  + 6

28. A factor based on thermodynamics and microreversibility.
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A_j taken as that for CH3  + C2 H3  (A = 1.84 x 10*3), EA = A H j^
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40. Herron, J.T., J. Phys. Chem. Ref. Data 1988,17,967.

41. A factor taken as 1/6 that for C2H6 + Cl; Ea = 0.1
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43. A factor based on thermodynamics and microreversibility.
A_i taken as that for H + C2 H5

Ea = AHjxn - RT

44. A factortaken as that for CH3 CI + H; Ea = 7.62

45. A factor taken as 1/2 that for CH4  + HO2 ; Ea = A H ^  + 8 .
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47. Slagle, I.R., Park, J.Y., Heaven, M.C., and Gutman, D.; J. Am. Chem. Soc., 106,
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48. Baulch, D.L., Duxbury, J., Grant, S.J., Montague, D.C.; J. Phys. Chem. Ref. Data, 10,
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49. Won., YangSoo, PhD Thesis, NJ1T, 1991

50. Wu, Y.P., PhD Thesis, NJIT, 1992

51. A factor taken as 1/2 that for CH4  + CH2



APPENDIX C

CHEMACT INPUT DATA

units for A : cm^/mol-sec and se<H; E a : Kcal/mole 

AHfxn taken as from stabilized adduct.

Activated complex Lennard-Jones parameters are estimated using critical property data 
tabulated in Reid, Prausnitz and Poling (The Properties and Gases and Liquids, 4th Ed.)

geometric mean frequencies are estimated using CPFIT computer code 
(Ritter, E.R., J. Chem. Inf. Comput. Sci. 31,400-408,1991) and/or from "Table o f 
Molecular Vibration Frequencies Consolidated Vol.I, Natl. Stand. Ref. Data Ser."; 
Shimanouchi, T., (U.S. Natl. Bur. Stand.) 1972, NSRDS-NBS 39.
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Table C.l. CH2 CI + H QRRK calculation input parameters

CH2 C1 + H <— > [CH3 C1]# — > Products
Reaction A Ea

kl CH2C1 + H —> CH3C1 1.0E+14 0 .0

k -1 CH3C1 —> CH2C1 + H 8.9E+15 1 0 0 .8

k2 CH3C1 —> *CH2 +  HC1 3.6E+13 101.7
k3 CH3C1 —> CH3 + Cl 1.2E+15 81.6
k l A i factor taken as that for I-C3 H7  + H,

(Allara,D.L. and Shaw, R.J., J. Phys. Chem. Ref. Data, 9,523,1980) 
k-1  thermodynamics and microreversibility <mr> 
k2 Ea = Hfxn + 3.75 (evaluated literature for HC1 eliminations)

A = (ekT/h) expS/R (Transition State Theory) S = 0.0 
k3 A3  factor based on thermodynamics and microreversibility.

A_3 taken as that for C2 H5  + CH3  (Allara & Shaw)
= Hjxn - RT

<v> = 1575.0 cm" 1
Lennard-Jones parameters : o  = 4.18 A, s/k = 350.0 K

Table C.2. CH2 CI + CH2 C1 QRRK calculation input parameters

CH2 C1 + CH2 C1 <— => [CH2 C1CH2 C1]# — > Products

Reaction A Ea
kl CH2C1 + CH2CI —> CH2C1CH2C1 4.0E+12 0 .0

k-1 CH2C1CH2C1 —> CH2C1 + CH2C1 4.8E+17 89.2
k2 CH2C1CH2C1 —> CH2C1CH2 + Cl 6.0E+15 80.7
k3 CH2C1CH2C1 —> C2H3C1 + HC1 1.9E+13 55.4

k l. A j factor taken as that for I-C 3 H7  + I-C 3 H7

(Allara,D.L. and Shaw, R.J., J. Phys. Chem. Ref. Data, 9,523, 1980) 
k-1  thermodynamics and microreversibility <mr>. 
k2. A2  factor based on thermodynamics and microreversibility.

A_2  taken as that for C3 H7  + CH3  (Allara & Shaw)
Ea = Hfxj! - RT 

k3 Ea = Hjxn + 38 (evaluated HC1 eliminate rate data)
A = (ekT/h) expS/R (Transition State Theory) x Degeneracy 
S = -4.0

<v> = 797.2 cm-1
Lennard-Jones parameters : ct = 5.12 A, e/k = 471.2 K
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Table C.3. CHjCl + OH QRRK calculation input parameters

CH2 CI + OH <-------> [CH2 C10H] # — > Products
Reaction A Ea

kl CH2C1 + OH —> CH2C10H 1.6E+13 0 . 0

k-1 CH2C10H —> CH2C1 + OH 2.4E+16 91.0
k2 CH2C10H —> CH20H + Cl 5.5E+15 81.2
k3 CH2C10H —> C H 20 + HC1 7.6E+13 40.6

kl A\ factor taken as that for CH2 CI + CH3

(Allara,D.L. and Shaw, R.J., J, Phys. Chem. Ref. Data, 9,523,1980) 
k -1  thermodynamics and microreversibility. 
k2 A3  factor based on thermodynamics and microreversibility.

A_3 taken as that for C2 H5  + CH3  (Allara & Shaw)
Ea = Hfjtn - RT 

k3 Ea = Hpm + 38 (evaluated HC1 eliminate rate data)
A = (ekT/h) expS/R (Transition State Theory) x Degeneracy 
S = -4.0

<v> = 1 2 0 0 .0  cm" 1

Lennard-Jones parameters : a = 4.61 A, e/k = 535.0 K

Table C.4. CH2 CI + CIO QRRK calculation input parameters

CH2 C1 + CIO < = = = >  [CH2 C10C1]# — > Products
Reaction A Ea

kl CH2C1 + CIO —> CH2C10C1 6.5E+12 0 . 0

k-1 CH2C10C1 —> CH2C1 + CIO 2.3E+16 86.3
k2 CH2C10C1 —> CH2C10 + Cl 3.0E+15 64.0
k3 CH2C10C1 —> CHCIO + HC1 9.6E+12 34.0
k l A\ factor taken as 1/2 that for CH3  + CIO (Table 9, k l)
k-1  thermodynamics and microreversibility. 
k2 A = (ekT/h) expS/R

(Benson,S.W., "Thermochemical Kinetics", John Wiley & Son, 2nd ed. N.Y., 1976. 
CH3I —> CH3 + 1) S = 9.0, Ea = Hjxn - RT 

k3 Ea = Ring Strain + abstraction +
A = (ekT/h) expS/R (Transition State Theory) x Degeneracy 
S = -4.0

<v> =797.2 cm"1
Lennard-Jones parameters : o  = 5.12 A, e/k = 471.2 K
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Table C.5. CH2 CI + O QRRK calculation input parameters

CH2 CI + O <— > [CH2 C1Q]# — > Products
Reaction A Ea

k l CH2C1 + O —> CH2C10 2.0E+13 0.5
k -1 CH2C10 —> CH2C1 + O 1.2E+16 84.5
k2 CH2C10 —> C H 20 + Cl 3.0E+13 7.0
k3 CH2C10 —> CHO + HC1 7.3E+13 34.0

k l . A j factor taken as 1/3 that for CH3  + O
(Washido & Bayes, J. Chem. Phys. 73,1665,1980) 

k_i thermodynamics and microreversibility. 
k2. A factor taken as that CCCC. —> C2H5 + C=C 

(Dean, A.M., J. Phys. Chem. 1985)
Ea = Hj-jm + 7.0 

k3 Ea = Ring Strain + abstraction + H , ^
A = (ekT/h) expS^R (Transition State Theory) x Degeneracy 
S = 0.0

<v> = 1247.0 cm 'l
Lennard-Jones parameters : a  = 4.61 A, s/k = 535.0 K

Table C.6 . CH2 CI + 0 2  QRRK calculation input parameters

CH2 C1 + 0 2  <— > [CH2 C1Q0.]# < = = >  [C.H2 OOCl]# —> CH2Q + CIO
Reaction A Ea

kl CH2C1 + 0 2  —> CH2C100. 4.0E+12 0 .0

k -1 CH2C100. - >  CH2C1 + 0 2 3.5E+15 25.4
k2 CH2C100. —> C.H200C1 4.8E+12 26.0
k- 2 C.H200C1 — > CH2C100. 3.0E+11 19.0
k3 C.H 200CI —> C H 20 + CIO 5.0E+13 1 .0 0

k l A j factor taken as that for 1-C3 H7  + 0 2

(Mark et.al. Chem. Phys. Lett. vol. 132, p 4 1 7 ,1986) 
k-1  thermodynamics and microreversibility <mr>.
k2 A  = (ekT/h) expS/R (Transition State Theory) S = -4.0, Estimate a barrier o f  26 

Kcal/mol ( 19 Kcal for ring strain and 7 Kcal for ROO. abstraction o f Cl) 
k - 2  <mr>
k3 A 3  factor based on <mr>; A . 3  taken as 1/2 that for CH20  + OH

( Dean, A.M. and Westmoreland, P.R. Int'l. J. o f Chem. Kinetics, Vol. 19, 207- 
228, 1987) Ea = 1.0 

<v> = 1116.0 cm" 1
Lennard-Jones parameters : o  = 4.90 A, s/k = 356.0 K
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Table C.7. CH2 CI + CH3  QRRK calculation input parameters

CH2 C1 + CH3 <— > [CH2 C1CH3]# — >Products
Reaction A Ea

kl CH2C1 + CH3 - - >  CH2C1CH3 2.00E+13 0 .0

k -1 CH2C1CH3 —> CH2C1 + CH3 1.63E+17 90.6
k2 CH2C1CH3 —> C2H4 +HC1 3.24E+13 56.6
k3 CH2C1CH3 —> C2H5 + Cl 2.17E+15 84.1
k l A] factor taken as that for C3 H7  + CH3  (A =2.0 E+13)(Allara,D.L. and Shaw, R.J., 

J. Phys. Chem. Ref. Data, 9,523,1980) (Bond energy ref: Weissman,M and 
Benson,S.W., J. Phys. Chem., 87,243,1983) 

k-1 thermodynamics and microreversibility. Ea = 0.0,
k2 Benson,S.W., "Thermochemical Kinetics", John Wiley & Son, 2nd ed. N.Y., 1976 
k3 A3  based on <mr>, A . 3  taken as that CH3 CH2  + CH3  (A = 2.0 E + l3)

Ea = AHr - RT

<v> = 1265.3 cm 'l
Lennard-Jones parameters : ct = 4.90 A, e/k = 300.0 K

Table C.8. CH2C1 + CHC12 QRRK calculation input parameters

CH2 C1 + CHC12  < = = >  [CH2 C1CHC12]# — >Products
Reaction A Ea

kl CH2C1 + CHC12 ™> CH2C1CHC12 3.97E+12 0 .0

k -1 CH2C1CHC12 - - >  CH2C1 + CHC12 5.28E+17 90.1
k2 CH2C1CHC12 - - >  CH2CC12 +HC1 4.80E+12 52.2
k3 CH2C1CHC12 —> CHC1CHC1 + HC1 1.92E+13 52.6
k l A\ factor as 1/2 that for C4 H9  + 2 -C3 H7  (A = 7.94 E + l2) (Allara,D.L. and Shaw) 

(Bond energy ref: Weissman,M and Benson,S.W., J Phys. Chem., 87,243,1983) 
k-1 thermodynamics and microreversibility. Ea = 0.0, 
k2 Ea = Hfxn + 38.5 (evaluated HC1 eliminate rate data)

A = (ekT/h) expS/R (Transition State Theory) x Degeneracy 
S = -4.0

k3 A3 = 10!3.72 * i0(-4/4.6) * 4 
Ea = AH + 38.5

<v> = 678.7 cm 'l
Lennard-Jones parameters : a  = 5.72 A, E/k = 498.9 K
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Table C.9. CH3  + CIO QRRK calculation input parameters

CH3  + CIO <— => [CH3 OCl]# —-> products
Reaction A Ea

kl CH3 + CIO - >  CH30C1 1.3E+13 0 .0

k-1 CH30C1 - >  CH3 + CIO 3.7E+15 90.3
k2 CH30C1 - - >  C H 30 + Cl 3.0E+15 63.8
k3 CH30C1 —> C H 2 0  + HC1 1.4E+13 34.0
kl A j factor taken as 1/2 that for CH3  + OH

(Dean et al. Int'l J. Chem. Kin., 19,207,1987.) 
k -1  thermodynamics and microreversibility. 
k2 A = (ekT/h) expS/R

(ref: Benson CH3I —> CH3 + 1) S = 9.0 
E a=  H rxn -R T  

k3 Ea = Ring Strain + abstraction +
A = (ekT/h) exp^/R (Transition State Theory) x Degeneracy 
S = -4.0

<v> = 1 1 1 1 .0  cm* 1
Lennard-Jones parameters : a  = 5.12 A, e/k = 537.0 K

Table C.10. CH3  + CHCI2  QRRK calculation input parameters

CH3  + CHCI2  < = = >  [CH3 CHC12]# — > Products
Reaction A Ea

kl CH3 + CHC12 —> CH3CHC12 1.5E+12 0 .0

k -1 CH3CHC12 —> CH3 + CHC12 2.0E+17 91.9
k2 CH3CHC12 —> CH3CHC1 + Cl 3.9E+15 76.8
k3 CH3CHC12 —> C2H3C1 + HC1 4.0E+13 55.4
k l A] factor taken as that for CH3  + 2 -C4 H9

(Allara,D.L. and Shaw, R.J., J. Phys. Chem. Ref. Data, 9,523,1980) 
k -1  thermodynamics and microreversibility.
k2 A2  factor based on <mr>, A_2  taken as that for C3Hy + CH3  (Allara & Shaw) 

E a=  H p m -R T  
k3 Ea = Hfxn + 38 (evaluated HC1 eliminate rate data)

A = (ekT/h) expS/R (Transition State Theory) x Degeneracy 
S = -4.0

<v> = 797.2 cm‘ l
Lennard-Jones parameters : o  = 5.12 A, e/k = 471.2 K
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Table C .ll. CHCI2  + CHCI2  QRRK calculation input parameters

CHCI2  + CHCI2  <=— > [CHCl2 CHCl2 ]# —-> Products
Reaction A Ea

k l CHC12 + CHC12 —> CHC12CHC12 1.2E+12 0 .0

k -1 CHC12CHC12 - - >  CHC12 + CHC12 5.9E+17 8 8 .6

k2 CHC12CHC12 —> CHC12CHC1 + Cl 6.7E+15 74.6
k3 CHC12CHC12 —> C2HC13 + HC1 1.9E+13 51.1
k l A j factor taken as 1/4 that for I-C4 H9  + I-C4 H 9

(Allara,D.L. and Shaw, R.J., J. Phys. Chem. Ref. Data, 9,523,1980) 
k-1  thermodynamics and microreversibility.

k2 A2  factor based on <mr>, A_2  taken as that for C4 H9  + CH3  (Allara & Shaw) 
Ea = Hfxn - RT 

k3 E a =  Hrxn -t- 38 (evaluated HC1 eliminate rate data)
A = (ekT/h) expS/R (Transition State Theory) x Degeneracy 
S = -4.0

<v> = 578.0 cm 'l
Lennard-Jones parameters : a  = 5.91 A, e/k = 525.9 K

Table C.12. CH 2 CHCI + H  Q RRK  calculation param ters

CH2 CHCI + H < = >  [CH2 CH2 C1]# — > Products
Reaction A Ea

kl C2H3C1 + H —> CH2CH2C1 1.33E+13 5.8
k -1 CH2CH2C1 —> C2H3C1 + H 1.27E+13 45.1
k2 CH2CH2CI —> C2H4 + Cl 3.13E+13 20.7
k3 CH2CH2CI —> C2H3 + HCI 9.60E+12 62.3
k l A\ factor taken as 1/3 that for CH2 CH2  + H (A=4.0 E+13,Ea=2.6)(Allara and Shaw) 

Ea taken as average o f C2 H4  + H and C2 CI4  + H
(Tsang, W. and Walker, J.A., poceeding 23rd Symposium on Combustion Int'l 
Combustion Inst, p i 39,1991; C2 CI4  + H, Ea=9.0) 

k-1  thermodynamics and microreversibility.
k2 A2  from <mr>, A_2  taken as that for CH2 CH2  + Cl (A = 1.6 E+l 3, Ea = 0.0)

( Kerr,J.A. and Moss,S.J. ."Handbook o f Bimolecular and Termolecular Gas 
Reaction Vol. I & II", CRC Press Inc.,1981) 

k3 Ea = Hjxn + 38 (evaluated HC1 eliminate rate data)
A = (ekT/h) expS/R (Transition State Theory) x Degeneracy 
S = -4.0

<v> = 1265.3 cm'l
Lennard-Jones parameters : a  -  4.9 A, e/k = 300.0 K
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Table C.13. CH2 CCI2  + H QRRK calculation paramters

CH2 CCI2  + H <— > [CH2CHCl2]# —-> Products
Reaction A Ea

kl CH2CC12 + H —> CH2CHC12 7.00E+12 7.5
k-1 CH2CHC12 —> CH2CC12 + H 8.08E+12 43.8
k2 CH2CHC12 —> C2H3C1 + Cl 4.62E+14 22.4
k3 CH2CHC12 —> CHC1CH + HC1 2.40E+13 57.7
k l A j factor taken as 1/2 that for C2 CI4  + H (A=l .4 E+13)

( Tsang, W. and Walker, J.A., Proceeding 23rd Symposium on Combustion Int'l 
Combustion Inst, p i 39,1991) 

k-1  thermodynamics and microreversibility. 
k2 A 2  based upon <mr>, for CH2 CHCI + Cl = CH2 CHC12  

with A - 2  = 2.0 E+13 and Ea_2  =1.5
(Kerr,J.A. and M oss,S.J.,"Handbook o f Bimolecular and Termolecular Gas 
Reaction Vol. I & II", CRC Press Inc., 1981) 

k3 E a=  Hfxn + 38 (evaluated HC1 eliminate rate data)
A = (ekT/h) expS/R (Transition State Theory) x Degeneracy 
S = -4.0

<v> =736.0 cm- 1
Lennard-Jones parameters : a  = 5.1 A, e/k = 435.9 K

Table C.14. CHC1CHC1 + H QRRK calculation parameters

CHC1CHC1 + H < = = >  [CH2 C1CHC1]# — > Products
Reaction A Ea

kl CHC1CHC1 + H —> CH2C1CHC1 2.60E+13 5.8
k -1 CH2C1CHC1 —> CHC1CHC1 + H 1.41E+13 47.2
k2 CH2C1CHC1 —> C2H3C1 + Cl 1.72E+14 27.3
k3 CH2C1CHC1 —> CH2CC1. + HC1 2.40E+13 57.7
k l A j factor taken as 2 that for C2 H3 CI + H (A=1.3 E+13)

(Tsang, W. and Walker, J.A., Proceeding 23rd Symposium on Combustion Int'l 
Combustion In st p i 39,1991) 

k-1  thermodynamics and microreversibility. 
k2 A 2  based upon <mr>, for CH2 CHCI + Cl = CH2 CHCI2

with A_2  = 2.0 E+13 and Ea_2  = 1.5 (Kerr,J.A. and Moss,S.J. 1981) 
k3 Ea = + 38 (evaluated HC1 eliminate rate data)

A = (ekT/h) expS/R (Transition State Theory) x Degeneracy 
S = -4.0

<v> = 736.0 cm'*
Lennard-Jones parameters : ct = 5.1 A, e/k = 435.9 K
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Table C.15. CHCICCI2  + H QRRK calculation parameters

CHCICCI2  + H < = >  [CH2C1CC12]# -- ->  Products
Reaction A Ea

kl CHC1CC12 + H —> CH2C1CC12 1.33E+13 5.8
k-1 CH2C1CC12 —> CHC1CC12 + H 1.18E+13 49.5
k2 CH2C1CC12 —> CH2CC12 + Cl 7.30E+13 22.5
k3 CH2C1CC12 —> C2HCI2 + HC1 9.60E+12 64.5
k l A j factor taken as that for C2 H3 CI + H (A=1.33 E+13)

(Tsang, W. and Walker, J.A., Proceeding 23rd Symposium on Combustion Int'l 
Combustion Inst, p i 39, 1991; 

k -1  thermodynamics and microreversibility. 
k2 A2  based upon <mr>, for C2 CI4  + Cl = C2 CI5

with A_2 = 1.26 E+13 and Ea_2  = 0.0 (Kerr,J.A. and Moss,S.J. 1981) 
k3 Ea = Hjxn + 38 (evaluated HC1 eliminate rate data)

A = (ekT/h) expS/R (Transition State Theory) x Degeneracy 
S = -4.0

<v> =666.62 cm - 1

Lennard-Jones parameters : c  = 5.6 A, s/k = 510.0 K

Table C.16. ICH2  + H2  QRRK calculation parameters

ICH2  + H2  <= = > [CH4 ]# — > Products
Reaction A Ea

kl 1CH2 + H2 —> CH4 7.0E+13 0 .0

k-1 CH4 ~ >  1CH2 + H2 5.9E+15 119.34
k2 CH4 —> CH3 + H 1.0E+16 105.0

k l Miller, J.A. and Bowman, C.T., Prog. Energy. Combust. Sci., p 1 ,1989. 
k -1  thermodynamics and microreversibility. 
k2 Dean, A. M., J. Phys. Chem., 89,4600,1985

<v> = 1957.0 c m '1
Lennard-Jones param eters: o  = 3.76 A, e/k = 148.6 K
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Table C.17. lCH2  + CH4  QRRK calculation input data

1CH2  + CH4  < = = >  [CH3 CH3 ]# — > Products
Reaction A Ea

kl ^CH2 + CH4 —> C2H6 4.00E+13 0 .0

k-1 C2H6 —> *CH2 + CH4 1.46E+16 103.78
k2 C2H6 —> CH3 + CH3 8.00E+16 90.4
k3 C2H6 ™> C2H5 + H 1.30E+16 100.7

k l Miller, J.A. and Bowman, C.T., Prog. Energy. Combust. Sci., p 1 ,1989. 
k-1  thermodynamics and microreversibility. 
k2 Dean, A. M., J. Phys. Chem., 89,4600,1985 
k3 Dean, A. M., J. Phys. Chem., 89,4600,1985

<v> = 1509.0 cm 'l
Lennard-Jones parameters : a  = 4.342 A, e/k = 246.8 K

Table C.18. ^CHj + CH3 CI QRRK calculation input parameters

1CH2  + CH3 CI < = = >  [CH2 C1CH3]# — > Products
Reaction A Ea

kl 1CH2 + CH3C1—> C2H5C1 2.00E+13 0 .0

k -1 C2H5C1 —>TCH 2  + CH3C1 8.71 E+l 5 108.68
k2 C2H5C1 —> C2H4 + HC1 3.24E+13 56.6
k3 C2H6 —> C2H5 + Cl 2.17E+15 84.1

k l A\ factor taken as that for ^CH2  + CH4  (A =4.0 E+13) 
k-1 thermodynamics and microreversibility. Ea = 0.0,
k2 Benson,S.W., "Thermochemical Kinetics", John Wiley & Son, 2nd ed. N.Y., 1976 
k3 A 3  based on thermodynamics and microreversibility.

A . 3  taken as that CH3 CH2  + CH3  (A = 2.0 E+13)
Ea = AHr - RT

<v> = 1265.3 cm’ 1
Lennard-Jones parameters : a  = 4.898 A, e/k = 300.0 K



APPENDIX D

EXPERIMENT AND MODELING RESULTS FIGURES

145



Reactor Bypass

0

3-way
valve

I
quartz 3-zone electric furnace

reactor tube
TC: | t c  | pic .

Exit
to

fume
hood

Saturation 
Bubbler(0 C)

Oxygen
supply

f 0 port sampling valve

Perkin Elmer 900
GC with

FID and TCD

HQ
trap

Argon
supply

Hydrogen

supply

Helium 

Carrier Gas

Vacuum
Pump

Fig 2.1 Experim ental A pparatus



T

Relay Contacts 
(switch) Relay Coil

110 VAC

Variac

Heater

Voltage / Current 
for Heater

Temperature Controller

110 volt to 220 volt 
INPUT

Output 110 volt, low AMP 
to switch the Relay 
(time proportional)

Thermocouple Input 
to Controller for 
Heat measure position

Switched Current 
(time proportional) 
To Heater

Fig 2.2 Schematic of Voltage and Thermocouple Input to Temperature Controller



J

1000

800

600 

400

200

0

0 5 10 15 20

Axial Distance (inches)

Temperature (C)

 1--------- 1-------1---- 1----------1---------1--1--------- 1---1---------1------- 1---------1------- 1---- 1— «j_
— *— *— *— * — * — *— *— * — *— * — * — * — * — * —  

* 0 - 0  B--- B ---B---B  B --B  B ---B-B  B --- B --- B ---B --
— a — a — a— a — -a— a— a— a — a — a — a— $— a — a—  
— X  x ) (  X — X  X  - X -  X  X — X -  X  X __

©— e — ©— ©— e — ©— e -  o — e — ©— ©— e — ©— ©— ©—

-©•500 C * 6 0 0  C -B-700C * 7 5 0  C + 8 0 0  C + 6 5 0  C

Fig 2.3 Temperature Profile
00



Column: 1.5m x 1/8" OD, 1% AT-1000 on Graphpac GB 

Detector: FID, 250 C

Temperature: 35 C, 2 min, 15 C/min. to 200 C 

Carrier Gas: He, 25 ml/min.
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F igure 2.4 Sample Chromatogram of CH2CI2 /O2 /H2 Decomposition



Column: 1.8m x 1/8" OD, GCA-013 SPHEROCARJB 100/200 

Detector: TCD, 100 C, 175 mA 

Temperature: 35 C, 2 min, 15 C/min. to 200 C 

Carrier Gas: He, 30 ml/min.

b l

Figure 2.5 Sample Chromatogram of CH2 CI2 /O2 /H2  Decomposition
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