

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

University Microfilms International
A Bell & H owell Information C o m p an y

3 0 0 North Z e e b R oad . Ann Arbor. Ml 4 8 1 0 6 -1 3 4 6 USA
3 1 3 /7 6 1 -4 7 0 0 8 0 0 /5 2 1 -0 6 0 0

Order Number 9409121

A com p reh en sive p a rt m o d el and grap h ica l sch em a rep resen ta tion
for o b ject-or ien ted d ata b a ses

Halper, Michael Howard, Ph.D.

New Jersey Institute of Technology, 1993

Copyright ©1993 by H alper, M ichael Howard. All rights reserved.

U M I
300 N. Zeeb Rd.
Ann Arbor, Ml 48106

A C O M P R E H E N S IV E PART M O D EL A N D G R A P H IC A L SC H E M A
R E P R E SE N T A T IO N

FO R O B JE C T -O R IE N T E D D A T A B A SE S

by

M ichael H. H alper

A D isserta tion
Su bm itted to th e Faculty o f

N ew Jersey In stitu te o f T echnology
in P artia l Fulfillm ent of th e R eq u irem en ts for th e D egree o f

D octor of P h ilosoph y

D ep artm en t of C om puter and Inform ation Science

O ctober 1993

Copyright © 1993 by Michael H. Halper

ALL RIGHTS RESERVED

APPROVAL PAGE

A Comprehensive Part Model and Graphical Schema Representation
for Object-Oriented Databases

Michael H. Halper

Dr. Yehoshua Perl, Dissertation Advisor 	 (date)
Professor, Computer and Information Science Department,
New Jersey Institute of Technology

r 	
Dr. James Geller Dissertation Co-Advisor (date)
Assistant Professor, Computer and Information Science Department,
New Jersey Institute of Technology

Dr. Reggie J. Caudill, Committee Member 	 (date)
Professor, Mechanical Engineering Department, and
Executive Director, Center for Manufacturing Systems,
New Jersey Institute of Technology

Dr. Peter A. Ng, Committee Member 	 (date)
Professor and Chairman, Computer and
Information Science Department,
New Jersey Institute of Technology

 Dr. Jason T. L. Wang, Committee Member

				

(date)
Assistant Professor, Computer and Information Science Department,

New Jersey Institute of Technology

A B ST R A C T

A C om prehensive Part M odel and G raphical Schem a R ep resen ta tion
for O b ject-O riented D atab ases

by

M ichael H. H alper

Part-whole modeling plays an important role in the development of database

schemata in data-intensive application domains such as manufacturing, design, com

puter graphics, text document processing, and so on. Object-oriented databases

(OODBs) have been targeted for use in such areas. Thus, it is essential tha t OODBs

incorporate a part relationship as one of their modeling primitives. In this disserta

tion, we present a comprehensive OODB part model which expands the boundaries

of OODB part-whole modeling along three fronts. First, it identifies and codifies

new semantics for the OODB part relationship. Second, it provides two novel real

izations for part relationships and their associated modeling constructs in the context

of OODB data models. Third, it provides an extensive graphical notation for the

development of OODB schemata.

The heart of the part model is a part relationship that imposes part-whole in

teraction on the instances of an OODB. The part relationship is divided into four

eharacteristic dimensions: (1) exclusive/shared. (2) cardinality/ordinality, (3) de

pendency. and (-1) value propagation. The latter forms the basis for the definition of

derived attributes in a part hierarchy.

To demonstrate the viability of our part model, we present two novel realizations

for it in the context of existing OODBs. The first realizes the part relationship as

an object class and utilizes only a basic set of OODB constructs. The second real

ization, an implementation of which is described in this dissertation, uses the unique

metaclass mechanism of the VODAK Model Language (VML). This implementa

tion shows tha t our part model can be incorporated into an existing OODB without

having to rewrite a substantial subsystem of the OODB, and it also shows that

the VML metaclass facility can indeed support extensions in terms of new semantic

relationships.

To facilitate the creation of part-whole schemata, we introduce an extensive

graphical notation for the part relationship and its associated constructs. This no

tation complements our more general OODB graphical schema representation which

includes symbols for classes, attributes, methods, and a variety of relationships. 0 0 -

dini, a graphical schema editor that employs our notation and supports conversion

of the graphical schema into textual formats, is also discussed.

BIOGRAPHICAL SKETCH

Author: Michael Howard Halper

Degree: Doctor of Philosophy in Computer Science

Date: October 1993

Education:

• Doctor of Philosophy in Computer Science,
New Jersey Institute of Technology, Newark, NJ, 1993

• Master of Science in Computer Science,
Fairleigh Dickinson University, Teaneck, NJ, 1987

• Bachelor of Science in Computer Science, Summa Cum Laude,
New Jersey Institute of Technology, Newark, NJ, 1985

Publications:

• M, Halper, J. Geller, and Y, Perl, An OODB "part" relationship model. In
Y, Yesha, editor, Proc, 1st Int'l Conference on Information and Knowledge

Management. pages 602-611, Baltimore, MD, Nov, 1992.

• M. Halper, J. Geller, and Y. Pert. -Part" relations for object-oriented data-
bases. In G, Pernul and A. Tjoa, editors, Proc. 11th Int'l Conference on the
Entity-Relationship Approach, pages 406-422, Karlsruhe. Germany, Oct, 1992,

• M, Halper, J. Geller, and Y. Perl. Value propagation in OODB part hierar-
chies. To appear in Proc. 2nd Int'l Conference on Information and Knowledge

Management, 1993.

• NI, Halper, .1, Geller, Y. Peri, and E, J, Neuhold, A graphical schema rep-
resentation for object-oriented databases. In R, Cooper, editor, Interfaces to
Database Systems, pages 282-307, Springer-Verlag, London, 1993.

iv

D ed icated to

June, D oc, M att

and

Julie and Ernie

A CK NO W LEDG M EN T

First of all. let me extend a warm thanks to my advisors Yehoshua Perl and Jim
Geller. They have shown me how to produce a real piece of research and have made
this dissertation possible. It is said that a student betrays his teacher if he remains
a student forever. Therefore, it is with a profound sense of pleasure that I now call
them colleagues and friends. To the two of them, I offer this toast: L ’Chaim.

Let me next extend my sincere gratitude to Erich J. Neuhold of GMD-IPSI who
so graciously served as my outside reader. His intelligence and insightfulness have
greatly added to the quality of this work. His enthusiasm is infectious. I’m happy
to consider him one of my friends.

Next, let me thank the members of my dissertation committee: Reggie J. Caudill,
Peter Ng, and Jason Wang. I single out Peter Ng, chairman of our department, for
his unwavering support through all my years of study.

Bill Anderson, chairman of the Math and Computer Science department at FDU,
was the one who first encouraged me to pursue this degree. Let me step back now
and thank him for his support and encouragement and all he has done on my behalf.
I'm glad to count him among my friends, too.

Next. I thank Fritz Lehmann for the enjoyable and, at times, rhapsodic conver
sations we had at CIKM’92. I’m grateful for his pointers to the classical literature.
Leibniz's view aside. Fritz, the integers are one of m an’s greatest fictions.

Many people at GMD-IPSI are to be thanked as well. They include Peter
Fankhauser who delivered a paper for me in Karlsruhe. Gisela Fischer answered
all my VML questions with alacrity and precision. Wolfgang Klas hosted my visit
to Darmstadt.

Also from GMD-IPSI is Jian Zhao, who I fortuitously met in Glasgow. Since
then. .Jian has become a close friend, and his companionship and generosity made
my stay in Germany a pleasure. By the way, my compliments to the photographer.
(The cooking isn't bad, either.) In the port of Amsterdam . . .

From the OOdini group, I thank Subrata Chatterjee. Shiv Ivuncham. Soniya
Shah. Gowthami Nadella. Dipak Shah, and Ram Madapati. Subrata. in particular,
brought an overflowing intelligence to the project. His abundant wit was a welcome
asset, too. Let me also thank Ken Sayers for his work on the Smalltalk implementa-
lion of the part model. See you on the fairways (or in the woods?!?). From the rest
of our group, let me say thanks to Ashish Mehta, Aruna Kolia, and Nevil Patel.

I also thank fellow doctoral students Fortune Mhlanga, Tami Zemel, and Rakesh
Kushwaha for their moral support throughout the whole process. Guys, I hope to
make it out to your necks of the woods one of these days. Au revoir and good luck!

Finally, let me thank mi familia. to whom this dissertation is dedicated: Morris,
June, and Matt Halper. and Julie Halper-Wilson and Ernie Wilson. They all know
their contributions, so I’ll spare them the verbiage. ("All composed out.”)

TABLE OF CO NTENTS

Chapter Page

1 INTRODUCTION ... 1

1.1 The Part Relationship’s Place in the Evolution of Data Models 7

1.2 The Part Relationship in Other Fields ... 11

1.3 Graphical Schema Representations .. 18

1.4 Outline of the D isse r ta tion ... 20

2 A GRAPHICAL SCHEMA REPRESENTATION FOR O O D B s 23

2.1 Previous Work ... 23

2.1.1 A General Approach to Describing OODB S c h e m a t a 29

2.2 Classes and A t t r i b u t e s ... 33

2.3 Generic Relationships... 37

2.4 User-defined and Constraint R e la t io n sh ip s ... 40

2.5 M e th o d s .. 47

2.6 A b rid g em en ts .. 55

2.7 Representing Instances G ra p h ic a l ly .. 57

3 OOdini. AN OODB GRAPHICAL SCHEMA E D I T O R 59

3.1 X Windows, the X Toolkit, and OSF/Motif ... 60

3.2 OOdini's Features and O p e r a t i o n ... 66

3.3 OOdini Code C onversion .. 73

vii

C hap ter

4 AN OODB PART RELATIONSHIP..

4.1 Part Relationships in O O D B s ..

4.2 A Generic Part R ela tionsh ip ...

4.3 The Exclusive/Shared D im e n s io n ...

4.4 The Cardinality/Ordinality D im e n s io n ...

4.5 The Dependency D im e n s io n ...

5 VALUE PROPAGATION AND DERIVED ATTRIBUTES IN OBJECT-
ORIENTED DATABASE PART H IE R A R C H IE S ...

5.1 The Value Propagation Dimension...

5.1.1 Graphical Schema Notation for Value Propagation and De
rived A t t r ib u te s ...

5.1.2 Realization of Value P r o p a g a t io n ..

5.2 Interaction of Part Relationship D im e n s io n s ...

5.3 Generalized Derived A t t r i b u t e s ..

i) IMPLEMENTING THE PART MODEL USING METACLASSES
IN V M L ..

6.1 The VML Data Model and M etaclasses...

6.2 The HolonvmicMeronymic Instance T y p e ..

6.2.1 Creating and Querying an HM C l a s s ...

6.2.2 Capturing the Creation Semantics of the Part Relationship
using make ..

6.2.3 Capturing the Deletion Semantics of the Part Relationship us
ing destroy ..

viii

C h ap ter Page

6.3 The HolonymicMeronymic Instance-Instance T y p e 188

6.3.1 Establishing Part-Whole Connections between Instances . . . 189

6.3.2 Breaking Part-Whole Connections between I n s t a n c e s192

6.3.3 Querying a Part H ie ra rchy ... 194

6.3.4 Performing Value Propagation using N O M E T H O D 195

7 CONCLUSIONS AND FUTURE W O R K ...199

A VML CODE FOR THE HolonymicMeronymic M ETACLASS..........................211

B A SAMPLE VML PART S C H E M A ...255

R E F E R E N C E S ... 259

ix

LIST OF TABLES

Table Page

2.1 The graphical schema constructs ... 55

5.1 Interaction of part relationship dimensions ..154

5.2 The part relationship symbols by d im e n s io n ... facing 164

x

LIST OF FIG URES

Figure Page

2.1 The class custom er and its a t t r ib u te s ... 34

2.2 The class c u s t o m e r s .. 34

2.3 The attribute age with default value 2 0 .. 34

2.4 A tuple class ... 36

2.5 A specialization hierarchy... 38

2.6 The s e c t io n - s tu d e n t e x a m p l e ... 39

2.7 The ER model of Figure 2 . 6 .. 41

2.8 Alternative form of Figure 2 . 6 ... 43

2.9 An essential r e la t io n sh ip ... 45

2.10 A range-restricted re la tionsh ip ... 45

2.11 The s e c t io n - s tu d e n t example with m e t h o d s .. 51

2.12 Some example path m e th o d s .. 53

2.13 An excerpt from a university database s c h e m a .. facing 55

2.14 An instance of p e rso n which owns an instance of c a r 57

3.1 The X Windows software architecture ... 61

3.2 Communication between a C client and X Server using the X l i b 62

3.3 Communication between a C client and its Xt widgets 65

3.4 OOdini’s main s c ree n ... 67

3.5 OOdini in a Level 2 d i s p l a y ..facing 73

Figure Page

3.6 OOdini in a Level 3 d i s p l a y ... facing 74

3.7 Conversion from OOdini into an OODB l a n g u a g e .. 74

3.8 Alternative conversion paths from OODAL into OODB language............. 75

4.1 A part relationship between meronymic class B and holonymic class A . 84

4.2 The generic realization of the part relationship ... 84

4.3 A muffler owned exclusively by a. boat .. 89

4.4 A document database schema.. 90

4.5 Class B in n part relationships .. 90

4.6 Part relationships in a music publication d a ta b a s e .. 92

4.7 An ensemble score and its score expression sequence..................................... 93

4.8 Global exclusive part relationships ... 96

4.9 Revised document schema with class exclusiveness and sharing 97

4.10 Students limited to at most six sections .. 97

4.11 Realization of e x c lu s iv en ess .. 98

4.12 Realization of sharing ...100

4.13 Realization of limited s h a r i n g ..102

4.14 Newsletters in a document database .. 106

4.15 Inadequate model for the minutes of a meeting .. 107

4.16 An adequate model for the minutes .. 108

4.17 Newsletter s c h e m a ..109

Figure Page

4.18 A single-valued part relationship ..109

4.19 A multi-valued part relationship ..110

4.20 A fixed-cardinality part relationship ... 110

4.21 Article with an essential bibliography ..I l l

4.22 Article with at least one constituent s e c t i o n ... I l l

4.23 Minutes with an ordered list of p a r t s ... 113

4.24 Books with an indefinite number of chapters.. 114

4.25 Books with text segments as chapters ... 115

4.26 Realization of range-restriction ...115

4.27 Realization of ordering .. 116

4.28 Dependency of meronyms on holonym ..119

4.29 Table of contents dependent on its b o o k .. 121

4.30 Bicycle dependent on its part frame ... 121

1.31 Realization of part-to-whole d e p e n d e n c y .. 122

4.32 A part schema with possible deletion c o n f l ic t s ..123

5.1 Age propagated from airframe to plane .. 126

5.2 The attribute fon t being propagated from book to c h a p te r 145

5.3 The attribute age propagating upward from a i r f r a m e to p l a n e146

5.4 Attribute color propagating upward from rim to p iano 146

5.5 The relationship attachedTo propagated from hinge to door 147

xiii

Figure Page

5.6 The class a m p l i f i e r getting reliability from t r a n s i s t o r147

5.7 Students obtaining their enrollment credits from their sections148

5.8 Car body getting its color through an upward p r o p a g a t io n148

5.9 The relationship taughtBy propagated downward cum u la tiv e ly149

5.10 The dateOfPubl propagated from the first volume to the complete works 149

5.11 Realization of upward value p ro p a g a t io n ..151

5.12 Redundant value p r o p a g a t io n ..155

5.13 Plane getting its colors from its fuselage, wings, nose, and t a i l 161

5.14 Fuselage getting its own color propagated from its constituent sections . 162

5.15 The weight of a boat as the sum of the weights of its parts 163

5.16 The New York Times editorial page ... 166

6.1 The instance type's effect on a class’s instances .. 169

6.2 The interaction between metaclasses, classes, and instances 170

6.3 The class c a r without part re la t io n sh ip s ...175

6.4 Car and its parts engine and body ..177

xiv

CH APTER 1

IN T R O D U C T IO N

The problem of defining a database schema is that of expressing a real-world system

or enterprise in a stylized description language. This language, commonly referred

to as a data definition language (DDL), ideally comprises an extensive set of core

epistemological constructs such as categorization, attribution, association (i.e., re

lationships between categories or classes), taxonomy (i.e.. specialization and gen

eralization). and aggregation. (Cf. [164]; also [103] and [25].) Categorization and

taxonomy are ordinarily grouped under a single heading and referred to as classifi

cation. A more predominant catch-all phrase for the two is “IS-A” [22]. The last

member, variously referred to as part decomposition, mereology [195], or meronymy

[210], is typically denoted by the English phrases “is part of” or, conversely, “has

part.”

This dissertation focuses on the problem of aggregation or part-whole modeling in

the context of object-oriented database (OODB) systems. In particular, we present

an OODB “part" model comprising a number of different aspects. At the heart of

the part model is a part relationship [107] which is used to relate a pair of object

classes, making one a “whole” class and the other a "part” class with respect to each

other. Relating two classes in this manner has the effect, at the instance level, ot

making a pair of respective objects of the classes whole and part in relation to each

other.

1

2

The part model we present in this dissertation expands the boundaries of OODB

part-whole modeling along three fronts:

1. It identifies and codifies new semantics for the OODB part relationship.

2. It offers two novel realizations for part relationships and their associated mod

eling constructs in the context of OODBs.

3. It provides an extensive graphical notation for the development of OODB

schemata.

Regarding the first item, an OODB part relationship can be seen as comprising a

variety of semantics, which, in our terminology, we separate into different character

istic dimensions. ORION, the only OODB system among the commercially-available

OODBs1 that olfers such a modeling construct, divides its part relationship along

two lines, exclusiveness and dependency, both of which are refined in our treatment.

Because, we have found ORION’s notion of exclusiveness too restrictive under cer

tain circumstances, we have refined it into two kinds, global exclusiveness and class

exclusiveness . On the other hand, their complementary notion of sharing can be too

unrestricted for the development of "logical part hierarchies,” which is one of the

issues that the ORION part model addresses [107], For this reason, we have found

it necessary to otfer a more restricted form of sharing that we refer to as limited

sharing.

' T h e O O D B sy s tem s vve are referring to here, the so-called Big Seven , are O N T O S [149, 191],
Ob.jectStore [112], O R IO N , 0 2 [47, 48], G em S to n e [24], Versant [74], and O p e n O D B (formerly
IRIS) [57].

Our notion of dependency supersedes that of ORION by accounting for the possi

bility of “ontological dependency’’ [187], where the existence of a whole is dependent

on the existence of some defining part. In fact, in our model, dependency can be

specified in either direction across the part relationship, from the part to whole or

the whole to part. ORION allows parts to be dependent on their wholes, but not

vice versa.

Value propagation (variously referred to as attribute propagation [145] or local

predication [187]) is the means by which property values at one level of a part

hierarchy are assimilated by objects at another level. The mechanism forms the

basis for the definition of derived attributes [94] which play an important role in the

development of OODB part schemata. Our part model extends the notion of value

propagation across a part relationship, as first introduced in SHOOD [145] and

subsequently in SORAC [127], by formally identifying three types of propagation

that we have found to be prevalent in part hierarchies: invariant, transformational,

and cumulative. The invariant propagation serves to formalize SHOOD’s a ttribute

propagation, which, as it happens, is limited to the upward direction, from part to

whole. All of our types of propagation, in contrast, may occur in either of the two

directions across the part relationship. SORAC [127] seems to lay the foundation

for a more general kind of propagation with its derivation relationship. However,

like SHOOD. it informally introduces the notion, and it fails to distinguish properly

4

among the kinds of value propagation that occur in part hierarchies and the kinds

of derived attributes that can be induced by these processes.

Any OODB part model that is worth its salt must be able to express facts such

as "the weight of a car is the sum of the weights of all its parts, regardless of their

classes." As a further extension to OODB part-whole modeling, we introduce, in

our model, the formal notion of a generalized derived a ttribu te which can encompass

value propagations from any number of part relationships simultaneously. Not only

is such a construct a powerful means of expression, but, as we will discuss, it serves

as a natural solution to the “multiple value propagation” problem in the context of

part hierarchies (which is analogous to the “multiple inheritance” problem [190] of

ordinary OODB IS-A hierarchies).

We offer two realizations for our part model which serve to demonstrate its via

bility. The first of these, following in the tradition of the Entity-Relationship (ER)

Model [36] and other semantic data models [94, 155], realizes the part relationship

as an object class in its own right (or. as some would say, as a "fat link” [55]). The

realization is noteworthy for its strict adherence to basic OODB modeling primi

tives. Due to this fact, our model may be incorporated into any number of different

OODB settings, and it is hoped that developers of other OODBs will make use

ot it to quickly and easily add part modeling capabilities to their own systems.

While the technique of modeling a "second order” construct as a “first order” con

struct has been suggested bv previous work in the object-oriented community (e.g.,

[8, 49. 108. 127. 170]), this is the first time that it has been applied exclusively to a

part model.

In [108], Wolfgang Klas proposed an innovative metaclass mechanism as a means

for incorporating new semantic relationships (such as the part relationship) into

an underlying OODB data model. He was motivated by the view th a t no one can

predict all the future needs of database designers and that therefore an OODB should

employ an open architecture and extensible data model. Recently, his mechanism

has become available in the VODAK Model Language (VML), an OODB being

developed at GMD-IPSI.2

The second realization of our part model is an entirely novel approach using

the VML metaclass facility. This realization, which we have actually implemented,

has as its foundation a custom VML metaclass called the “HolonymicMeronymic”

metaclass tha t captures the semantics of classes participating in part relationships.

(The complete specification for the HolonymicMeronymic metaclass can be found

in Appendix A.) From a research standpoint, this implementation addresses two

important questions:

1. Can our part model be incorporated into an existing OODB without having

to rewrite a meaningful subsystem of the OODB?

2. Can the VML OODB with its open architecture and metaclass facility support

t he introduction of such an extension?

■’T h e Integrated Publication and Information S y stem s Institute o f the Gese l l s cha f t f u r Maihc-
m at ik und Daienverarbei inng, th e G erm a n gov ern m en t’s com p uter sc ience research in s titu te .

6

As demonstrated by the work reported herein, both of these questions can be an

swered in the affirmative.

An important tool in the development of complex OODB schemata is the graph

ical schema representation. (We discuss this issue further below.) This is especially

true when we introduce a part model and all its additional complexity into the OODB

data model. For this reason, we present an extensive schema notation for the part

relationship which goes beyond some earlier notational conventions [16, 39, 171].

In fact, we use an enhancement of OM T’s [171] aggregation (i.e.. part relationship)

symbol as the basis for a rich set of symbols that denote the part relationship in all its

various guises. Separate graphical symbols are also provided for the different kinds of

value propagation as well as for their associated derived attributes. Together, these

symbols can graphically define both a derived attribute and its implementation as

the propagation of a data value across a single or multiple part relationships.

To provide a framework within which to carry out the development of OODB

part schemata, we also introduce a general graphical notation for the representation

of OODB schemata. This graphical language comprises a broad range of OODB con

structs including classes, attributes, methods, and a variety of different relationship

types, thus making it applicable to a wide group of OODB systems. To complement

the graphical language, we have built the OOdini graphical schema editor. Not only

does OOdini allow for the creation and browsing of OODB schemata described in

our notation, it also provides for the conversion of the graphical schema diagram into

7

a number of textual representations. Included among these is VML source code. As

such, OOdini can serve as an effective graphical interface for an OODB.

As we alluded to above, the part relationship at the foundation of our part

model is defined in terms of a number of characteristic dimensions which specify

constraints and functionalities that impose real-world, part-whole semantics on the

instances of the participating classes. Among these dimensions are: (1) exclusive

ness/sharing, which controls the way parts may be distributed among wholes; (2)

cardinalitv/ordinalitv, which addresses how parts are combined to form wholes; (3)

dependency, which describes the deletion semantics of parts and wholes; and (4)

value propagation, which allows for the assimilation of data values by wholes or

parts and provides the basis for the definition of derived attributes.

Overall, the work presented in this dissertation can be viewed as the marriage

of an improved part model with an existing general OODB data model. We see

this marriage as another step in the ongoing effort to make database DDLs more

epistemologically complete, or. if vou prefer, more •‘semantic" [41. 46]. For this

reason, before getting to some of the background material on the part relationship

itself, let us briefly consider the evolution of DDLs and the part relationship’s place

in it.

1.1 T he Part R ela tion sh ip ’s P lace in th e E vo lu tion o f D a ta M odels

The ubiquitous relational model [12, 46, 40, 198. 205] has gained tremendous pop

ularity, much ol which has resulted from its simplicity. This simplicity derives from

8

the fact that it incorporates only two of the above mentioned epistemological primi

tives: categorization in the form of relations (or tables), and attribution as expressed

in the fields of these relations. Association (between categories or relations) is not

really a core construct, but rather a derivation based on relations and the extrinsic

notion of foreign key [89].

The Entitv-Relationship (ER) model [36], which was originally introduced as a

diagraming methodology for relational schemata, goes a step beyond the relational

model by making association fundamental in the design of schemata. In the devel

opment of an ER schema, an application domain is mapped onto a group of entity

sets along with a set of named relationships (associations) between these. The ap

proach’s intuitive appeal has made it very popular and successful. Of course, its

success comes in no small part because of its graphical notation, which has become

a de facto standard in the field of data modeling.

Classification or taxonomic analysis, the ability to recognize and exploit simi

larities and differences between categories or classes of objects, is one of the most

important facets of human knowledge and reasoning [166. 188]. In AI, taxonomy and

its accompanying IS-A relationship have spawned a whole body of literature, includ

ing research into precise semantics [22. 204] and efficient implementations of “class”

reasoners [54, 63. 181]. Early DDLs, such as those just mentioned, provided no facil

ities for taxonomic descriptions of the application domain. Employing classification

in the description of database schemata has the following advantages:

1. It is conceptually natural and promotes better modeling.

2. It provides a more precise view of the application domain.

3. It promotes the reuse of software and specifications, which yields more compact

schemata.

While work was done to overlay classification on the relational model (e.g., [41, 189])

and the ER model (e.g., [177]), it was not until the emergence of the semantic data

models [94, 132, 155], such as TAXIS [141], SDM [88], IFO [4], and so on. that

IS-A became a staple of DDLs. Since then, it can be found in most data models,

including the extended relational [122, 168], enhanced ER [50, 51, 52], and, of course,

the entire family of OODB models. In fact, the construction of the IS-A hierarchy

has been called by H. J. Kim "the main theme of schema design for object-oriented

databases’’ [105].

Aggregation, which can loosely be described as the building up of higher-level

objects from lower-level components, is an epistemological construct which is as

fundamental as classification and can offer many of the same benefits. The term

aggregation has been used in two distinct senses within the field of data modeling

[51]: (1) to describe the process of combining attributes to form entities (e.g., an

employee is said to be an aggregate of nam e , age, lelephone-number. and address);

and (2) to describe the construction of higher-level entities from lower-level ones. In

the former sense, the attributes constitute parts of the computer representation (or

structure) of the integral object, and not the integral object itself. That is, attributes

10

are just containers for data values and are not objects in themselves. In the second

sense, we usually talk about aggregation as constituting a part relationship between

objects of different kinds.

Aggregation in the second sense occupies a niche in data modeling in many

advanced application domains. For instance, one of the main activities of manu

facturing [95] is combining parts to produce whole products. In Computer Aided

Design (CAD) [14. 18, 79. 98, 99. 125], substructures are pieced together to form

complete designs. In architectural CAD [125], windows, walls, and doors form rooms,

rooms and corridors form floors, floors form buildings, and so on. Similar s tructur

ing activities occur in other areas such as graphics [61, 71], multimedia processing

[37. 211. 212], text document processing [91, 92, 197], and Computer Aided Software

Engineering (CASE) [39. 121].

Many of the areas just mentioned have been heralded as ideal proving grounds

for the new generation of OODB systems. However, if OODB systems are to fulfill

their expectations, it is imperative that they provide support for aggregation in

sense (2). This means formally defining a notion of part relationship along with

all its appropriate semantics and functionalities. The work in this dissertation does

just that and provides an extensive framework within which to carry out part-whole

modeling in an OODB.

11

1.2 T he Part R elationsh ip in O th er F ields

In this section, we investigate how aggregation and the part relationship have been

employed in other fields of research. As we have said, aggregation is a fundamental

notion, and we will see tha t it has had far-ranging im pact on many disparate areas.

The part-whole organizational method is such an intuitive notion tha t attem pts

have even been made, mainly in the 2 0 ^ century, to place a formal notion of part

relationship a t the foundation of many fundamental m athem atical disciplines. The

Polish m athem atician Lesniewski. the founder of so-called classical extensional mere-

ology (CEM) [187, 195], intended his Mereology, along with its underlying theories

of P rotothetic and Ontology, as nothing less than a new foundation for all of m athe

matics. Lesniewski was driven in no small part by his distrust of sets and set theory,

which was fueled by Russell’s famous paradox [137]. He believed that the notion of

a part relationship was more fundamental and far more intuitive and would provide

a sounder basis for modern mathematics.

Tarski, a student of Lesniewski’s. used his own mereology as the basis for an

account of solid geometry [202]. Earlier. W hitehead had planned a similar program

which was to become the fourth volume of the Principia M athematica , though this

was never carried through. It was later discovered tha t his mereology contained a

number ol critical flaws. Leonard’s and Goodman's Calculus of Individuals [119],

the predicate logic version of CEM, was meant as a replacement for set theory [75].

12

Mereology also makes an appearance in m athem atical topology, as in the theories of

Tiles [203] and Clarke [38].

Lehmann [115] provides extensive references to the classical literature in the

field of mereology. Sowa [195] discusses the history of some of its terminology and

concepts. Simons [187] presents a comprehensive survey of mereology while unifying

many of its disparate theories and proposing further extensions. While his work is

couched in very rigorous m athem atics. Simons is primarily concerned with dealing

with some of the chief philosophical problems surrounding parts and wholes.

One of the classic part problems in philosophy is that of the ship of Theseus

[78, 187]. Legend has it that Theseus, king of Athens, sent a sailing vessel to explore

the uncharted seas. At the outset of its voyage, the ship encountered heavy weather

which resulted in damage to some of the planks of its hull. These were promptly

replaced and discarded on a deserted island. Subsequently, another violent storm

caused the ship’s mast to snap. The broken mast was also replaced and left as refuse

on some deserted island. This continued and. as it turned out, during the entire

course of its voyage, every part of the ship was damaged, replaced, and discarded.

Now. as it happened, a man in another ship was following Theseus’s throughout its

journey and was collecting all the abandoned parts. Determining th a t the parts were

in relatively good shape, he repaired them and reassembled them into a ship. The

question then arises: Which one of the two ships is the ship of Theseus?

13

Another form of this problem involves the proverbial axe tha t George Washington

used to chop down the cherry tree. In due tim e, the axe comes up for auction and

is bought by a practical man who does not believe in just mothballing items which

can be put to good use. Of course, over time, the head of the axe wears out and has

to be replaced. Eventually, the handles cracks and is replaced, too. After all that,

is the man still the proud owner of W ashington’s axe?

As for an answer to these problems, an appeal to a continuity of m aterial would

say that the ship reassembled from the original parts is Theseus's. On the other

hand, an appeal to the continuity of function would insist tha t the one containing

his crew and carrying out his mission is Theseus’s ship.

Interestingly, in the context of an OODB. where we are dealing only with surro

gates of reality, there is a third argument, which is the continuity of object identi

fication 15], In an OODB. we instantiate separate objects for every part as well as

for the whole. Thus, it is quite reasonable in such a system to posit the existence

of the whole (i.e.. instantiate an object for it) without the existence of its parts. Of

course, this is somewhat counter-intuitive because in a real-world physical system,

the existence of a whole is predicated on the existence of its parts; destroy or discard

all the parts, and the whole is reduced to a cipher. This is a form of the notion ol

the "ontological dependence" [187] of the whole on its parts. As we will see, our

part model does support the enforcement of such dependence, if desired. Anyhow,

if we decide to create an object representing Theseus’s ship, and this object is given

14

an OID x, then, for us. Theseus's ship will always be the one with identification x.

Changing the parts is not a problem due to the im m utability of the ship’s OID. Even

though its composition in terms of other system objects is in flux, the identity of the

ship remains the same, following the functional point of view.

A classical statem ent of the conflicting interpretations of integral objects can be

found in a passage of P la to ’s Theaetetus (203E) which is used by Simons as the

epigraph of his book [187]:

Perhaps we ought to have maintained tha t a syllable is not the letters,
but rather a single entity framed out of them , distinct from the letters,
and having its own peculiar form.

The philosophical and logical problems of parts and wholes carry over naturally

into the area of linguistics and cognitive psychology, where a pervading issue revolves

around the part relationship’s transitivity [44. 96. 163. 210]: Is it always transitive,

and if not. when isn't it? This, of course, has direct bearing on the problem of when

syllogisms of the form "A is part of B. and B is part of C. hence A is part of C”

constitute valid inferences. For example, consider the strangeness of the following

argum ents [210].

(la) Sm ith’s arm is part of Smith.
(lb) Smith is part of the philosophy departm ent.
(Ic) Smith's arm is part of the philosophy departm ent.

15

Or:

(2a) The refrigerator is part of the kitchen.
(2b) The kitchen is part of the house.
(2c) The refrigerator is part of the house.

In their seminal work, Winston, Chaffin, and Herrmann [210] draw an elaborate

distinction between different types of part-whole sem antic relationships to answer

the question of transitivity in the negative. In particular, they distinguish between

six types of part relationships which are described as follows: (1) com ponent/integral,

(2) mem ber/collection, (3) portion/mass, (4) stuff/object, (5) feature/activity, and

(6) place/area. Suggestive examples of each of these are: (1) A wheel is part of a

car; (2) a battleship is part of a fleet; (3) a slice is part of a pie; (4) a bicycle is

partly composed of steel; (5) paying is part of shopping; and (6) the Everglades is

part of Florida.

Their discrimination between the different part relationships is based on the ap

plicability of certain sentence frames and on the so-called common argum ent criterion

which may be stated as: If it is possible to ask two different questions about one and

the same object (the common argument) and receive two different answers th a t both

contain the word ‘‘part” (or some variation or synonym of it), then the two answers

must correspond to two different part relationships. As an example, consider the

following two questions about a bicycle: "W hat are its parts?” and “W hat is it

made of?” It is easy to devise answers to these using “part” : “The wheels (among

other things) are parts of the bicycle.” and “the bicycle is partly steel.” Thus, there

16

m ust be two distinct part relationships at play here, the com ponent/integral type

and the stuff/object type.

After all their analyses, they reach the conclusion th a t the part relationship

is transitive as long as one does not mix its different types in a single argument.

Mixing the different types (as we have done in the sample argum ents above) is a

form of equivocation, and, in such cases, the entire argum ent breaks down. Similar

conclusions are found in [96], where an alternative analysis yields another set of

four different part relationships. A dissenting voice is heard in [187] where Simons

argues that the part relationship is always transitive. Any denial of this, he says, is

a misconception based on notions external to parts. In Artificial Intelligence (AI),

the transitivity of part-whole has also been taken for granted by some researchers

[54, 154. 162].

Other research on the part relationship has concentrated on its fundam ental na

ture. Concerns include whether or not the part relationship is semantically primitive,

and whether or not it can aid in the formation of a valid model of human memory

[130]. Several studies by Chaffin and Herrmann [31, 32] have focused on the human

c apacity to distinguish the part-whole relationship from other semantic relations.

In A I. attention has also been given to the fundam ental nature of the part re

lationship. especially as it applies to reasoning [30, 77. 93. 130, 139, 178. 184]. In

the context of semantic networks, the part relationship is used in the analysis of

granularity [131]. In [161]. Clarke's mereo-topology is extended to capture notions

17

of space and time. A comprehensive survey of related work in semantic nets appears

in [115]. Drawing on the work of [210], Huhns and Stephens [93] propose an algebra

for the composition of various semantic relationships including the part relationship.

As in [210], the analysis is based on the decomposition of relationships into basic

relational elements. Their work is being incorporated into the Cyc knowledge base

system [117, 118]. The representation of part-whole configurations in artificial neural

nets has also been investigated [90].

Geller [60], following the work of [210], also distinguishes between different kinds

of part relationships as an aspect of his general theory of natural language graphics

(NLG) [59, 61]. The various part relationships are referred to descriptively as: (1)

additive. (2) constituting, (3) replacing, and (4) invoking. All are used for graph

ical inference and to help supply information needed in the construction of useful

diagrams. Specifically, they help to determine what content to place on the dis

play screen of an NLG system and how to organize that content to be optimally

useful to a viewer. The general problem of organizing such user presentations in

knowledge-based systems has been referred to as presentation planning [9].

Our part model draws freely on and has been influenced by much of the work

mentioned in this section. Our formal description of the part relationship as a m ulti

dimensional mathem atical structure encompassing various characteristic dimensions

is reminiscent of the description of the part relationship in terms of basic relational

elements in [210] and [93]. We also see our part relationship as serving in the role of

18

an epistemo-linguistic construct in an OODB environment. In other words, we see

it as a general modeling vehicle and not one which is limited to the narrow sense

of “p a rt” as it is often used in the description of physical assemblies (e.g., cars and

boats). As such, it can be used to model the fact th a t a student is part of the section

of a course he is taking, or a battleship is part of a naval fleet.

1.3 G raphical Schem a R ep resen tation s

As we have mentioned above, the graphical representation of the database schema

has become a standard tool in database design and user orientation. In this section,

we consider this issue further as it relates to OODBs.

When designing an OODB schema, one is faced with a number of challenges.

Among these is the need to create and organize and thus comprehend a large number

of object classes. The designer must insure that each class contains the attributes

and m ethods necessary to describe its objects. The classes must also be connected

with the appropriate relationships, which convey semantic information and allow for

the retrieval of relevant, remote data. To accomplish these tasks, the designer needs

a solid grasp of the overall structure of the database.

For the user of an OODB, the requirement of understanding the overall structure

may be felt even more intensely. Having not built the database's conceptual model,

the user must be provided with a means for becoming acquainted. One finds a similar

situation in hypertext systems, where the disoriented user is said to be “lost in space”

[42]. Natural language descriptions or presentations of the written specification of

19

the OODB schema are often cumbersome and tend not to serve as apt guides on the

road to comprehension.

Consider, also, the need to devise path methods [134, 144, 179, 180] (sometimes

called path expressions [104, 141]), which are used to retrieve information relevant to

a given class from other distant, related classes. Usually, a path method is composed

of a sequence of user-defined or generic (system-defined) relationships, and sometimes

it ends with an a ttribute. The non-trivial task of creating such a sequence can be

further complicated if the designer or user is only vaguely familiar with the “sur

rounding landscape.” In order to construct such methods effectively, a general view

of the OODB schema is extremely helpful. A considerable research effort has gone

into the problem of providing software support for the construction of such methods.

The results of some of this research can be found in [133, 134. 135, 136]. In par

ticular, in [133, 136], a path method generation (PM G) system is described which

works interactively with a database user or designer and assists in the formulation

of path methods to retrieve desired, distant information based on given source and

target data. The system is particularly effective when the user has incomplete or

even incorrect knowledge of the database schema. Currently, the system runs in the

VML database environment, where it uses a variety of graph traversal algorithms

to scan through a VML schema. The graphical schema notation described here was

used extensively in that research [133].

20

The problem of comprehending the structure of a database is not unique to

OODBs. but due to the rich modeling capabilities of such systems, this task becomes

even more difficult in tha t context. A medium-sized OODB typically comprises

hundreds to thousands of classes. The university database application [19, 34, 120,

209] which our research group has built in VML as a test-bed for ongoing research

comprises a couple of hundred classes and far more relationships and other schema

connections. Another group project, an electrical circuit design package [206], uses

about a hundred classes. Remembering the names of a few dozen of these, let alone

a few hundred, as well as the interconnections between them , is almost impossible.

W ith all this in mind, we have designed a graphical language for the represen

tation of OODB conceptual schemata, a language useful to both schema designers

and users. The language includes symbols for classes, a ttribu tes, methods, user-

defined relationships, constraining relationships, and generic relationships—a wide

enough variety to satisfy a diverse group of OODB data models. This general schema

language serves as a basis for the development of the part-whole graphical schema

notation for the part relationship and derived attributes which form an im portant

point of our part model.

1.4 O utline of th e D isserta tion

The remainder of this dissertation is organized as follows. In C hapter 2, we describe

our general graphical schema representation for OODBs. First, we review some of

21

the previous work on graphical schema representations. After th a t, we go on to

discuss the details of the various constructs of the language.

In Chapter 3. we present OOdini, a graphical schema editor tha t we have built

to support and promote the use of the graphical language introduced in C hapter 2.

OOdini allows a user to create and m anipulate OODB schem ata described in tha t

graphical notation. Using its various levels of display, it can also serve as an OODB

schema orientation or browsing tool. The system comprises about 30,000 lines of C

Language code and runs in the X Windows and O SF/M otif environment. At first,

we will cover the details of tha t windowing environment. After tha t, we describe the

operation and features of OOdini. Also supported by OOdini, making it an effective

OODB graphical interface, is the conversion of its pictorial representation into the

syntax of the VML OODB and other abstract textual languages [35]. We discuss

the details of OOdini's code conversion at the end of the chapter.

The details of our part model are presented in Chapters 4 and 5. In Chapter 4,

after a survey of the relevant background literature, we go on to present the m ath

em atical aspects of the part relationship and all its various semantics and function

alities. Included in the formal treatm ent is a presentation of the graphical schema

notation for the part relationship. The various symbols presented there serve to en

hance the language of Chapter 2. We also present the realization of the part model

using the ordinary constructs of an OODB data model. In C hapter 4, the first three

characteristics dimensions of the part relationship are considered: the discussion of

22

the fourth dimension, that of value propagation, is deferred to Chapter 5. There,

we introduce the value propagation mechanism which serves as a powerful basis for

the definition of derived attributes in the context of part hierarchies. Once again,

to complement the formal aspects of value propagation and derived a ttribu tes, we

present a graphical schema notation to be used with the general schema language.

In Chapter 6. we describe the implementation of our part model using the m eta

class facility of VML. At first, we discuss the theory behind the metaclass mecha

nism. Afterward, we give the details of our own metaclass, the HolonymicMeronymic

metaclass, which captures the various semantics of classes participating in part re

lationships and part hierarchies.

Finally, in Chapter 7, we conclude with a sum m ary and a discussion of future

research directions. Preliminary and shorter versions of the work presented in this

dissertation may be found in [83. 84. 85, 86. 87],

C H A PTER 2

A G R A P H IC A L SC H E M A R E P R E S E N T A T IO N FO R O O D B s

In this chapter, we introduce our graphical schema notation for the representation

of OODB schemata. The notation is designed to serve as an intuitive data definition

language [46] for OODBs. At first, we survey previous work tha t has been done

on graphical schema representations, not only in the database field but in other

related areas as well. After that, we discuss the details of the underlying OODB

data model. Then, in subsequent sections, we present the entire schema notation

which includes a wide range of symbols including those for classes, attributes, a

variety of relationships, and methods. At the end of the chapter, we extend this by a

generic notation for objects which can be used when hybrid class/instance diagrams

are called for.

2.1 P revious W ork

The usefulness of the graphical representation of knowledge-base schem ata has long

been acknowledged. Early on. the knowledge representation community recognized

the im portance of graphical aides. Semantic Nets [23, 116, 195] are invariably pre

sented in a graphical form. The idea of presenting knowledge graphically is not

a particularly recent development. Lehmann [115] shows what he claims to be a

precursor of today’s semantic nets: A coat-of-arms from the middle ages with its

inherent religious symbolism. In the 19^ century, the English lawyer Alfred Bray

23

Kempe developed a relationship diagraming system for the expression of conceptual

knowledge ([101, 102] as cited in [115]). The American philosopher Charles Pierce

was so convinced of the power of graphical notations tha t he developed an alterna

tive formalism to predicate logic which he called existential graphs [158, 165, 195].

The Conceptual Graphs of Sowa [192, 193, 194], which were influenced by the work

of Pierce, were designed as a graphical formalism, though a (less effective) textual

form is provided for use with older generation technology. The representational the

ory Conceptual Dependency [124. 164, 173. 174] also employs a graphical formalism.

Even frames have been given a pictorial form [164].

In the database community, there are a number of da ta models which present

schemata in diagram m atic fashion. Perhaps none of these is more prevalent than

the Entity-Relationship (ER) model [36, 51, 205]. In fact, this graphical language is

often used as a diagraming device for other data models such as the relational (e.g.,

Schemadesign [29]). Due to its popularity, some of the ER notation has made its

way into our representation.

Another semantic da ta model with a graphical schema representation is Galileo

[6]. Actually, Galileo is a full database programming language with support for ER-

like relationships [8]. The schema editor Sidereus [7] has been built as a tool for the

construction and realization of Galileo schemata.

The schem ata of the formal semantic model IFO [4] are depicted in graphical

diagrams. SNAP [26], developed by the originators of IFO, is a graphical schema

25

editor for IFO which allows for the creation and m anipulation of schem ata as well as

for the querying of any database instantiations. The Functional Model of Shipman

[186], which influenced IFO, also employs a pictorial representation of its schemata.

The GOOD [72, 81, 82] database model, also related to the Functional Model,

is a model based entirely on graphs. As such, it employs a graphical notation for

everything from the schema description through queries against instances of the

schema. While the designers of the model make claims to its object-orientation

and dem onstrate a correspondence between some of the object-oriented concepts

promulgated in [13] and their own constructs, most of these constructs are derived

or simulated and are not inherent parts of the underlying model. Due to this, their

model does not lend itself to the direct representation of all our constructs discussed

in Section 2.1.1 below. For example, the notion of a node label in GOOD schemata

can be associated with the notion of class in OODB schemata. However, node labels

perm it multiple and separate descriptions which corresponds to m ultiple definitions

of a single class—an unintuitive situation.

W ithin the OODB community, some system designers have considered the graph

ical representation of the class hierarchy. Among these systems are Ode, Iris [57],

O2 , and Ontos [149]. Unfortunately, the class hierarchy relates only a lim ited part of

the interrelations between classes. Kim [106] presents a notation he calls a schema

graph which captures the normal class hierarchy as well as the class-composition

26

hierarchy. The Object-Oriented Entity-Relationship Model [76], an object-oriented

extension of the ER model, uses a diagram derived from the ER model.

The GemStone OODB [24, 27], based on a Smalltalk model originally proposed

in [43], now has an accompanying graphical development environment called Geode.

Included in this package is a schema design tool which allows for the interactive de

velopment of GemStone schemata. However, due to the designers’ view [182] th a t a

schema design tool which supports semantic constructs (e.g., the constraint relation

ships discussed below) is more of a computer-aided software engineering (CASE) tool

than a database utility, the system is primarily a visualization mechanism for the

structures (e.g., classes) of the underlying Smalltalk object model. Their approach

is guided, in part, by their Smalltalk model, where the additional “sem antics” of

sem antic relationships must be hand-coded into methods by the schema designer.

Our schema representation, on the other hand, accommodates a number of seman

tic constructs. We also graphically represent path methods and different generic

relationships.

In the area of object-oriented modeling and design, there exists a graphical nota

tion which complements the Object Modeling Technique (OMT) [171]. This notation

is geared more toward the general description of software systems built using object-

oriented analysis and design rather than the description of OODB schem ata per se.

In this light, it can be seen as a CASE notation. A software editor, called OM-

Tool [171], is now available to create OMT diagrams. Currently, the system only

27

allows for the realization of an OMT diagram as a C + + application. Support for

the generation of applications which are coupled with bona fide OODBs is under

development.

Aside from OMT, there has been a flurry of activity regarding graphical for

malisms in the CASE community. This has lead to a plethora of new notations.

Examples of these include the OOD notation of Coad and Yourdon [39], that of

Booch [20], the Ptech notation [11], etc. Most such notations now have accompa

nying graphical editors which will automatically generate software systems based

on the graphical design. The P-Tech notation is notable for its extensive graphical

description of the system dynamics. It also has a close coupling with the ONTOS

OODB, and C + + software applications generated with it exploit ONTOS as their

persistent store. Another CASE tool of note is ObjectM aker [129], which supports

no less than twenty different notational conventions. However, none of these repre

sents an OODB schema. In fact, as this dissertation is being written, we are in the

process of negotiating with the company that produces it to have our own schema

notation incorporated into ObjectMaker. A shortcoming of some of the CASE no

tations (e.g., BooclTs [20]) is their reliance on textual m atter to fill in the details of

the system design (e.g., the attributes and methods of a class). Our notation, on the

other hand, concentrates almost exclusively on graphical constructs, with graphical

representations provided for all the major OODB schema components.

28

As with OODBs. object-oriented programming languages (OOPLs) can greatly

benefit from graphical representations. The designers of the language Eiffel have rec

ognized this and introduced some graphical conventions in [138]. These conventions

constitute a portion of a larger graphical formalism which is under development. As

was alluded to by Meyer [138], the formalism will focus mainly on aspects unique to

OOPLs. such as class preconditions, post-conditions, and invariants.

In [97]. Kappel and Schrefl combine aspects of both OODBs and OOPLs by pre

senting object/behavior diagrams for OODBs. Since they are presenting the object

diagram in the context of behavior diagrams, they have chosen to represent class

interconnections with symbols inside the class construct rather than w ith connect

ing arrows. As with the CASE tools mentioned above, they rely on textual notation

to convey much of the schema information, which appears counter-intuitive to the

very idea of a graphical tool, and which we therefore decided to avoid in our own

graphical notation.

From our review, we observe that many of the graphical OODB representations in

use today were influenced by other data models such as the ER model or functional

model. Others were guided bv the needs of CASE or behavioral aspects. The

influences are reflected in the choice of graphical symbols. In our own work, we are

seeking a graphical schema representation purely motivated by the needs of OODBs.

29

2 .1 .1 A G eneral A pproach to D escrib ing O O D B Schem ata

Fundam ental to an OODB system is the notion of a class, which can be regarded as

a container for objects that are similar in their structure and semantics in the appli

cation [208]. To describe a class, we will avail ourselves of four kinds of properties,

defined informally as follows [142, 69]:

1. A ttributes-containers (variables) for values of a given data type. They may be

required to always have a value, or they may be given a default value [164].

2. User-defined relationships-named references to other classes. Note th a t we will

drop the qualification and refer to these simply as relationships when there is

no possibility of confusion (cf. generic relationships below).

3. M ethods-operations which can be applied to instances of a given class.

4. Generic rclationships-similar to relationships in tha t they are references to

other classes: however, t hese are system-defined, while relationships are user-

defined.

To give a formal basis to these characteristics, we follow [214] and define the

readable properties of a class [namely, its a ttributes, relationships, and (readable)

methods] as functions which map the extension of the class into some given data

type. For example, the a ttribute height of class p e rso n maps persons into the type

FLOAT (floating-point numbers). That is. height: E fperson) —» FLOAT, where, in

general. E(A) denotes the extension (i.e., the set of all instances) of the class A. A

30

property may be a partial function, meaning th a t it may be undefined for certain

elements of its domain. To guarantee that a property is a total function, a default

value (i.e., some constant from the property’s underlying domain) can be used: In

the case of an object where a value for the property has not been assigned, the

property is given this default value.

As defined, relationships and attributes actually reduce to the same underlying

theoretical construct. In fact, a relationship can be viewed as a special kind of a t

tribu te with type OIDTvpe [56. 108] holding an object identifier (OID) [5, 114] of an

object from the target class. Plowever, without straying into an extended discussion

of semantic relativism (e.g., see [39, 88, 103]), we regard them as separate and dis

tinct property types because attributes actually store data which is relevant to a class

(or, more precisely, to its instances) while relationships provide pathways to remote

data. Distinguishing the two tends to produce clearer schem ata and promotes a bet

ter intuitive understanding of the application domain. This view is reflected strongly

in the structure and style of our graphical representation language. By clearly dis

playing the class interconnections and their various semantics, our representation

provides better expressive power and enhanced readability.

The basis for our graphical language is the labeled, directed graph, where both

vertices and edges are labeled. The vertex labels allow us to represent the different

kinds of classes (see Section 2.2 below). Similarly, the edge labels perm it the rep

resentation of the various generic and user-defined relationships, and path methods.

31

In designing this language, we have taken into account the mnemonic value of the

graphical icon. Different mnemonic devices are introduced along with the symbols.

Various features of a symbol itself are used to convey its semantics and functionality.

This is especially true for relationships, where the edge labels are stylized to capture

the intended meaning.

The choice of symbols was also influenced by historical precedents. Because

certain symbols have been in wide-spread use for a long tim e, some user intuition

now rests on them. It is also the case that certain OODB constructs correspond

very closely with those in earlier data models. Therefore, to exploit the acquired

intuition and m aintain compatibility with earlier models and notations, we have

drawn on some previous data models. For example, the similarity between some of

our notation and the ER notation is readily apparent. We have also been influenced

by the work of Rumbaugh [171]. who also used the ER notation as his starting point.

Another m ajor factor in our design was our desire to see the graphical represen

tation used as a pencil-and-paper device. The task of constructing a large database

schema is an arduous one. Advances often occur away from any computer work

station. The ability to quickly jot down ideas 011 paper at such times is a great

advantage. Also, some people prefer to do their designing away from the computer.

A notation which permits hand-written diagrams is bound to be of greater utility

than one which does not. (Witness the great popularity of the ER model.) The

simplicity of our symbols readily lends itself to this purpose.

32

The graphical schema representation presented herein has. to date, been em

ployed successfully in a number of large modeling projects. These include model

ing a telecommunication schema at Bellcore [66]. This schema modeled the phone

company's business of providing telephone and other communication services to its

customers. It also captured many of the aspects of the physical infrastructure of its

circuit and switching systems. The schema provided a framework for research into

the problem of database integration [64, 66, 67, 68, 70]. In particular, the research

spawned a new type of integration called structural integration.

A hypothetical company’s purchasing departm ent was another modeling task

which was accomplished with our graphical notation [68]. This model tracked the

activities of such a departm ent, and as with the Bellcore schema, was used as a test

bed for investigating the benefits of structural integration. Both schem ata comprised

on the order of fifty to one hundred object classes.

An even larger schema, developed in our research group here at N JIT, is the one

which models the activities, data processing requirements, and the overall organiza

tional structure of a university [34. 142]. The schema comprises approximately two

hundred and fifty object classes and was constructed using our graphical language

and the OOdini schema editor. Conversion of the graphical schema into VML syn

tax was accomplished autom atically by OOdini. Particularly useful in this endeavor

were the various levels of display (discussed below) which enhanced communication

and fostered a better understanding of the domain among the many participants in

33

this project. As was mentioned above, this schema has been employed successfully

in research into the generation of path methods in OODBs.

One last application worth mentioning is an electrical circuit design program

built using the VML OODB and the X Windows and O SF/M otif windowing en

vironm ent. This work focused on migrating an application based on the theory of

graphical deep knowledge [59] from an Artificial Intelligence (i.e., sem antic network)

environm ent to an OODB. As with the university schema, the underlying schema

for the electrical component data was constructed using the OOdini schema editor.

VML code was generated by OOdini, as well. And here, too, the graphical language’s

levels of display helped to promote an understanding of the project among successive

participants.

The rem ainder of this chapter describes the graphical schema constructs in detail.

Classes and attributes are discussed in Section 2.2. Generic relationships are con

sidered in Section 2.3. while user-defined and constraint relationships are presented

in Section 2.4. Path methods are presented in Section 2.5 followed by abridgements

to the representation in Section 2.6. The chapter concludes with a brief discus

sion of how we represent objects (i.e., instances of schema classes) when a mixed

instance/schem a diagram is necessary.

2.2 C lasses and A ttr ib u tes

We follow the ER practice and represent an object class as a rectangle with its name

printed inside. An attribute is an ellipse which is connected to the class rectangle

34

accoumt N umb er creditLine

balancecustomername

phoneN um beraddress

F ig u re 2.1 The class custom er and its attributes

via an unlabeled line. The attribute name resides inside the ellipse (Figure 2.1).

An a ttrib u te can be further classified as essential, meaning tha t its value m ust be

non-nil. In other words, the a ttribu te must be a total function from the extension

of the class to the values in its domain. To denote this, an inscribed circle is added

to the ellipse. As we will see. the circle will be used consistently throughout our

graphical language to represent essentiality (or totality). The attributes name and

accountNumber of the class custom er in Figure 2.1 are designated essential.

num ber reasonForGroupingcustomers

F ig u re 2.2 The class custom ers

age, 20student

F ig u re 2.3 The a ttribu te age with default value 20

35

As an alternative to the essentiality condition, an a ttrib u te may be given a default

value. For example, without knowing a studen t’s age, we may assume that he is

twenty years old (and not eligible to drink alcohol). An a ttr ib u te ’s default value is

w ritten alongside sides its name, inside the ellipse; a comma separates the two. This

is illustrated in Figure 2.3.

In addition to a simple class, our system is capable of representing composite

classes obtained from other classes by two types of constructors:

1. the set constructor.

2. the tuple constructor.

The set constructor is used to obtain a class whose instances are sets of instances

of another class. For example, the class custom ers of Figure 2.2 is obtained by

applying the set constructor to the class custom er. Such a class might have an

instance representing the set of all customers who purchased a given product or any

product on a given day.

The graphical representation of a set class is a rectangle with a double-framed

border. The double-frame is used to convey the inherent multiplicity of sets, their

non-atomic nature (Figure 2.2).

The tuple constructor is used for association purposes, i.e., to gather a group

of classes together. As a typical example, consider a ternary relation. Sometimes

the information expressed in a ternary relation cannot be captured by three binary

relations between the pairs of classes [51]. In an OODB, the tuple constructor is

36

date cost

shipm ent

officeNumberaddress

nam e name

pricename

serialNumber

product

supplier departm ent

F ig u re 2.4 A tuple class

used to form a class comprising the three classes of interest. A concrete example

of this situation is the class shipm ent, which is defined to be a triple composed of

s u p p lie r , p ro d u c t, and departm ent, as shown in Figure 2.4.

The graphical construct for a tuple class is a rectangle with a heavy borderline

representing the class itself. From a branching point, a circle enclosing an “X,”

em anate the connections to the constituent classes. Each of these connections is a

line with a label indicating the selector for the particular class. The thick-framed

rectangle and its corresponding branching point are connected with an unlabeled

line. The branching point has been used for two reasons. First, it distinguishes this

intersection of lines from the inevitable incidental crossings of lines in the picture.

Second, it conveys the fact that the class is the '‘Cartesian product” of its component

37

classes. (More precisely, its domain is such.) Figure 2.4 shows the graphical form of

the class shipm ent.

To summarize, the symbol we use for an object class is a rectangle. Compos

ite (i.e., set- and tuple-constructed) classes are represented using rectangles with

modified borders: double-framed for sets, and thick for tuples.

2.3 G eneric R elation sh ip s

As mentioned above, we use the term generic relationship to refer to a connection

between classes which, due to its generality and importance, is system-defined (or,

in other words, is a modeling primitive of the system). The most im portan t generic

relationship is subclass (IS-A), which enables the expression of specialization and

the creation of a class hierarchy. This hierarchy normally forms the skeleton of an

application, and its comprehension is essential to an overall intuitive understand

ing. Thus, in any graphical representation, the hierarchy must be emphasized. For

this reason, we have chosen to specify subclass as a heavy line directed from the

specialized class (subclass) to the more general class (superclass). As we shall see,

user-defined relationships are represented using thin arrows: therefore, subclass is

duly highlighted, and its hierarchy is readily apparent on even the most cursory

inspection. To further emphasize the hierarchy, we encourage the placem ent of a

subclass below its superclass.

In the case where the subclass specialization is in a different context from th a t of

the superclass, we call the generic relationship roleof [144, 179, 180]. The graphical

38

person I* s
customer

7 3
employee

currentCustomer pastCustomer technicalEmployee

engineerz
juniorEngineer

Z7\
adminEmployee

technician
u

manager secretary

seniorEngineer

F ig u re 2.5 A specialization hierarchy.

representation for roleof retains the heavy arrow of subclass; however, the line is

not solid, but a dot-dash pattern. The mnemonic device employed here is borrowed

from the world of maps. There, the boundary between any two territorial units, such

as states or countries, is defined using a dot-dash pattern. In our case, we denote

the crossing of the boundary between contexts. Figure 2.5 presents a specialization

hierarchy, including subclass and roleof.

There are two more generic relationships which have to be considered, se to f and

its converse relationship memberof. A class A is in a se to f relationship with class

B if the instances of A are sets of instances of B . Conversely, B is in a memberof

39

has

num ber

section
teaches

has

takes

tau gh t.b y

course

student

sections

instructor

F ig u re 2.6 The s e c t io n -s tu d e n t example

relationship with A. In such cases, A is obviously a set class and is notated using the

double-framed rectangle discussed above. In Figure 2.6, s e c t io n and s e c t io n s are

in a memberof / se to f configuration. In contrast to the other generic relationships,

there is no hierarchy implied by setof and m em bero f .

In our graphical representation of these two generic relationships, the two par

ticipating classes are drawn so that they touch at one of their corners (Figure 2.6).

The set class is, as usual, drawn with a double-framed box. There are a number of

reasons why this appears to be a good representation. First, there is the practical

issue of conserving space in the picture. Our approach eliminates two bidirectional

arrows. In addition, all four sides of each rectangle remain accessible from a graph

ical standpoint. The adjacency of the two classes along with the presence of the

symbol for a set-constructed class clearly conveys the mem berof / s e to f relationships

between them.

40

2.4 U ser-defined and C onstraint R ela tion sh ip s

A relationship is a named, user-defined connection directed from one class to another.

Since it can be viewed as a pointer, we draw it as a labeled arrow from its class of

definition to the target class. The arrow is thin as compared with the heavy arrows

of the hierarchical generic relationships.

Often an application requires a relationship from a class A to a class B, as well

as its converse. This situation is handled using a pair of arrows pointing in opposite

directions. One should contrast this approach with the ER model, where a rela

tionship is bidirectional and given an “existence” of its own, complete with its own

attributes. In OODBs, a relationship is typically defined as a property of one class,

acting as a reference to another class.

The ER model supports one-to-many or what we call m ultivalued relationships.

The object-oriented approach supports multivalued relationships in two different

ways. The first is a multivalued relationship connection which indicates th a t an

instance of one class can be related to any number of instances of the class to which

the relationship is directed. An example of this is the relationship between the classes

s e c t io n and s tu d e n t, where a given section can have many students (Figure 2.6).

We have chosen to represent the multivalued relationship as a dual-lined arrow. This

choice emphasizes the multiplicity of the relationship, just as in the case of the set-

constructed class (cf. Section 2.2). For comparison, we have included in Figure 2.7

an ER rendition of Figure 2.6.

41

has

number

teaches takes

course

section

studentinstructor

F ig u re 2.7 The ER model of Figure 2.6

The second alternative is to define a set class. In this case, the multivalued

relationship is captured by creating a set class at the “many end” and directing an

ordinary single-valued relationship to it. Consider a related example: a student can

be in many sections. Using the set alternative, vve create a new class s e c t io n s ,

defined with respect to s ec t io n . We then create a single-valued relationship from

s tu d e n t to s e c t i o n s (Figure 2.6). In this way, we have related a single student

with many sections. Here, however, we are required to explicitly group the section

objects into a set.

While the two approaches are basically equivalent, the usefulness of the set class

alternative becomes apparent when trying to model relationships with cardinality

constraints. Assume that we are trying to model the interrelations between courses,

42

instructors, and students. We first define the classes cou rse , i n s t r u c t o r , and

s tu d en t . Because there are a number of sections offered for each course, we also

need a class s e c t io n . Now assume the following constraints:

• at most r sections of a given course can be offered in a semester.

• an instructor may teach no more than s sections in a given semester.

• a student may take at most t sections per semester.

We could model this situation bv having relationships from each of the three classes

course , i n s t r u c t o r , and s tu d e n t to a set class s e c t io n s , defined with respect to

s e c t io n . S e c t io n s would be given the attribute number to maintain the cardinality

of an instance, as well as an attribute m aximum which would hold the maximum

cardinality (Fig. 2.6). This latter attribute would be set at instantiation time to an

appropriate value (e.g., to r if the set were to consist of the sections of a particular

course). The method to add an instance of s e c t io n to a given instance of s e c t io n s

would then check the current cardinality and deny any request which would violate

the prescribed maximum.

These cardinality constraints could alternatively be enforced by each of the three

classes course , i n s t r u c t o r , and s tu d e n t individually. This can be done by placing

two additional attributes. numbero/S cat ions and maxNumberoj Sections, in each ot

the three classes. These attributes play the same roles that the attributes number

and m axim um did in the class s e c t io n s above. Next, multivalued relationships are

43

num berofSections m axN u m b ero fS ection s

lias

tau gh t.b y

takesteaches has

nu m b erofS ection s

nu m b erofS ection s
m axN u m b erofS ection s

m axN u m b erofS ection s

course

section

instructor

student

F ig u re 2.8 Alternative form of Figure 2.6

established between each of the classes and s e c t io n (Figure 2.8). Lastly, each class

is equipped with methods to monitor the constraints.

There are a number of reasons why this is not as elegant a solution as the former.

First, the multivalued relationships do not convey information about the required

cardinality constraints. The set alternative makes the structure of the model more

meaningful. Second, the cardinality constraint is really a characteristic of the set of

sections associated, for example, with a given course, not of the course itself. Hence,

this constraint should be defined as a property of s e c t io n s rather than course,

f inally, redundant specifications are eliminated by placing the two attributes and

the corresponding "watchdog" method in s e c t io n s , instead of repeating them three

times.

44

Constraint relationships are those which impose additional semantic constraints

on the participating classes. In general, a constraint relationship requires two aspects

of definition: the static or state definition which imposes constraints on the database

at any fixed instant of time; and the dynamic or transient definition which expresses

the behavior tha t it implies in the context of change (i.e., the creation, deletion, and

update semantics). The dynamic aspect of any constraint relationship is required to

maintain the constraints imposed by the static aspect.

We represent three kinds of constraint relationships, essential, range-restricted.

and dependent. All of these relationships are ordinarily used to maintain referential

integrity [46] among the instances of the database.

An essential relationship is one which must always refer to an existent object (i.e.,

which may not have a nil value). Its creation semantics is such that the referent class

of the relationship must have instances before any instances of the source class can

be created. The update semantics is: the relationship cannot be assigned a value of

nil. Finally, the deletion of an instance of the referent class is forbidden il there exist

instances of the source class which refer to it.

To represent an essential relationship, we place a small circle behind the head

of the arrow representing such a relationship. This symbol was chosen to maintain

consistency with respect to the rest of the graphical representation, as essential

attributes are also denoted by the addition of a circle. Hence, adding a circle to an

a ttribu te or relationship consistently expresses essentiality.

45

employee
works_in

- e - department

F ig u re 2.9 An essential relationship

An example will clarify the above points (Figure 2.9). In this database, every

employee must have an associated department (and. in fact, exactly one of them). If

there are no departments, then no employee can be hired (created). If a department is

abolished (deleted), then first all its employees must be moved to other departments

or fired. Figure 2.9 could be read: Working in a department is essential to an

employee.

employee
worksJnfl, 2)

departm ent

F ig u re 2.10 A range-restricted relationship

An essential relationship is a special case of the more general range-restricted.

relationship which imposes a range restriction on the cardinality of the set of referent

objects of any source object. For example, instead of requiring that an employee work

in exactly one department, we may want to allow an employee to work in one or two

departments. Thus, the relationship works-in should be given a restriction conveying

t his information. Such a range restriction is denoted by placing a numerical range

in parentheses next to the relationship's name. So. in our example. " (L. 2)” is added

to the relationship symbol as illustrated in Figure 2.10. Note that the relationship is

written with a double line to indicate that, in general, it is multivalued. Omission of

46

either of the bounds is indicated by writing in its place. If both the upper and

lower bounds are the same, then we consolidate them into a single number written

in parentheses.

A dependent relationship has the following deletion semantics: Assume that the

class A has a dependent relationship to class B; if an instance a of A refers to an

instance b of B, and b is deleted, then a is also (automatically) deleted. Thus, the

existence of an instance of A is dependent on the existence of an instance of B.

We represent a dependent relationship as a double-headed arrow (either single-lined

or dual-lined). The double head of the arrow emphasizes the "stronger” directed

connectivity of this type of relationship. In Figure 2.6 and Figure 2.8, we see the

dependent relationship is.offering.of from s e c t io n to course , indicating that if a

course is deleted, all its associated sections are deleted, too.

Fssentiality and dependency may also occur in the context of multivalued rela

tionships. A multivalued essential relationship is one which carries a ‘‘one or more”

semantics, meaning that each object of the source class is required to have one or

more referent objects of the target class. Clearly, such a relationship is equivalent

to the special case of a range-restricted relationship with a lower bound of 1 and no

upper bound. Nevertheless, for this special case we adopt, the convention of adorning

the multivalued relationship symbol with a circle. A multivalued dependent relation

ship is similar to an ordinary dependent relationship except here, with possibly many

referent objects in general, the deletion is not propagated to the source until the set

47

of referents becomes empty. Such a relationship is denoted by placing a double arrow

on the multivalued relationship symbol.

2.5 M ethods

We distinguish between two types of methods in OODBs: path methods and local

methods. As their name implies, local methods operate strictly locally to an object;

i.e.. no remotely accessed data is used in their operation. (We note, however, that

calls could be made to other objects provided as parameters.) Local methods can be

divided into selectors/mutators (also referred to as readers/writers [100]) and derived

attributes [94]. (In later chapters, we will extend the notion of derived attribute so

that it may be defined in terms of constructs external to a class. In particular, we

introduce derived attributes defined in terms of information propagated across part

relationships.) A selector method simply reads a given attribute. In contrast, a mu

tator assigns a value to an attribute. Selectors and mutators do not require separate

graphical representations. The symbol representing the attribute they operate on is

sufficient.

Derived attributes are very similar to the selectors of attributes. These methods

derive values from one or more attributes through some computation. An example of

a derived attribute is the “available" method of the set class s e c t io n s . This method

computes the available "room" in a given set by subtracting the a ttribute number

from the attribute maximum. Derived attributes require a unique symbol. We have

chosen an ellipse with a dashed perimeter enclosing the derived a t tr ibu te ’s name.

48

The ellipse, as usual, is attached to its class via an unlabeled line (Figure 2.11).

The reason for our choice is that a derived attribute can be viewed as a hybrid of

an attribute and path method, and attributes are represented using ellipses while,

as we will see presently, path methods are represented with dashed arrows. (This

dashed representation, as shall be seen, is also consistent with our notation for part

relationships introduced in succeeding chapters.)

A path method [133, 134, 135, 136] is a method which traverses from a source

object through a sequence of relationships of a schema of classes to retrieve some

related (target) object or the value of an a ttribute of that target object. In general,

it can be concatenated with some mathematical operation. A path method can be

viewed equivalently as a sequence of messages passed along a path of relationships, or

(using Smalltalk terminology) as a nested message. The concept is similar to that of

path expression as presented in [24] and, even earlier, in [141]. The more general no

tion of path expression as defined in [104], which subsumes the preceding definitions,

will also be employed in this dissertation when we discuss part relationships.

Before getting to the graphical representation for path methods, let us introduce

a, special textual notation for them which we will be employing later on. The notation

should help to clarify what we mean by the concept of path method.

Syntactically, a path method comprises two distinct parts: (1) a head or signature

which includes information regarding its name and formal parameters; and (2) a

body describing the path traversed through the schema by the method. The head of

49

the method, comprising the method’s name followed by a pair of parentheses (which

enclose the optional formal parameters), is written in front of the method’s body and

is separated from it by a colon. The body is written as a colon-separated sequence of

pairs of the form r t- —» A,-, where r,- is a relationship and A; is a class for 1 < i < n.

Each such pair represents the traversal of r, from the class A;_i (of which r,- is a

property) to A,-. .4o is the method’s class of definition, one of whose properties is the

relationship rq; the class A n is the method’s destination. As an example, consider a

method uget_object-’ defined on a class .4 which retrieves objects of class D related

bv a sequence of relationships r, .s, t (the latter two defined on classes B and C,

respectively). This method would be written as:

get_object() : r —* B : s —> C : t —> D.

Alternatively, if the method retrieves the value of an attribute, the final pair is of

the form a —»■ F. where a is an attribute of the class of the penultimate pair and T

is its da ta type. For example, if the above method is revised to retrieve the value of

a ttr ibu te cl (defined on class D with type r) of the related object, then it would be

written as:

get_attribute() : r —* B : s C : t D : d t .

50

We also note the convention that a path method may replace a relationship in a

pair, in which case the second element represents the class at the terminus of that

method.

If the relationship in a pair is multivalued, then the transition, in general, will

yield a set. This situation is denoted by placing the second item, i.e., the class,

in curly brackets. The succeeding pair, if it exists, is also affected in tha t it now

represents an iterative application of the given relationship to the resultant set. The

iteration is denoted by placing the sign in front of the relationship. Because the

result of this transition is a set as well, its class, too, is written in curly brackets.

As an example, assume A has a multivalued relationship u to E , which itself has a

relationship v to F, The method to retrieve those F's indirectly related to an A is

written as:

get_Fs() : u —* {E } : —► {F } .

If the multivalued transition precedes a pair which accesses an attribute, then the

iteration will actually yield a multiset. This case is distinguished by placing the

subscript "m" after the brackets surrounding the name of the data type. The pair

following such an iterative attribute access may represent a mathematical operation

(e.g.. min) intended for the multiset as a whole. In such cases, the "iQ!” designating

an iteration is omitted.

The symbol employed for path methods is a dashed, thin-lined arrow pointing

from the source class (i.e., the method’s class of definition) to the class or attribute

51

of the target data object. Any trailing mathematical operations of the method need

not be represented graphically and are omitted from our discussion. The reason for

the choice of this symbol is as follows. The function of a path method is similar to

tha t of a relationship: Each is used to retrieve relevant information from another

class. We therefore chose the thin arrow so as to make the symbol for a path method

reminiscent of the representation of a relationship. However, there is a difference

between relationships and methods. A relationship is a direct connection, while a

method is an indirect connection established via a chain of other connections. In

this sense, a method can be viewed as a composite construct, and we employ the

dashed-line to convey this composition. The pieces of the line signify the pieces of

t he schema path.

/ /
m a x im u m/ /

/ /
/ has/ /

\ is_offering_of

available)
get_courses \ \

teaches

has

lakes

taught_by
student

F ig u re 2.11 The s e c t io n - s tu d e n t example with methods

52

As an example, consider t,he method ”get_courses” of the class i n s t r u c t o r (Fig

ure 2.11). This method returns the names of all the courses taught by a particular

instructor. To accomplish this, it accesses the attribute name of co u rse through

the user-defined/generic relationship path: teaches, seto f, is .o ffering-of . More

specifically, it operates as follows. It starts by applying the relationship teaches

to i n s t r u c t o r yielding s e c t io n s . Applying se to f then gives a set of instances of

s e c t io n . Next, applying is ̂ offering.of to each instance of the set of sections yields

a set of instances of course. And. finally, applying the a ttribute name to each in

stance of this set produces the desired result, a set of course names. In the textual

notation described above, the method is written as follows, where "nameType” is

the data type of the attribute nam e :

get_courses() : teaches —> s e c t io n s : se to f —> {sec tion} :

'I' is .offering, o f —* {course} : A1 name —> {nameType}.

Since the desired data is stored as the a ttribute name of the class cou rse , we rep

resent this method as a dashed line pointing from i n s t r u c t o r to name. The fact

tha t it is a double line indicates that the path method is, in general, multivalued.

We also show the pictorial representations of the example methods “get.object,”

“get_attribute." and "get_Fs” in Figure 2.12. Again, note that, just as with a mul-

53

;et_object

get_attributeget.Fs

F ig u re 2.12 Some example path methods

tivalued relationship, a multivalued method like “get_Fs” is drawn with a dual line

to convey its multiplicity.

There are actually two aspects of a path method which should be represented

graphically. The first one, which we have just presented, displays the connection

between the source class and target data item of the method. This aspect reflects

the retrieval effect of the path method (i.e., what data it actually returns). As we

mentioned above, this aspect functions similarly to a relationship, and hence was

given a graphical symbol similar to the relationship icon.

The second aspect of a path method is the chain composed of classes which are

connected by generic and user-defined relationships. This aspect reflects the imple

mentation of the retrieval mechanism. Clearly, it is a critical portion of the definition

of a path method. Without it. one cannot judge if the method is semantically correct,

i.e.. whether it correctly retrieves the desired information.

Obviously, we need a graphical representation of this second aspect as well. Since

it is a chain composed of elements which are already represented graphically, it

54

is natural to simply highlight those elements in some manner. We have chosen

to “stripe” the elements (see Figure 2.11), though alternate forms of highlighting

which do not clash with other parts of the schema representation would be perfectly

acceptable. For example, in the context of an editor program (such as the OOdini

system), the elements could be emboldened or given some tiling pattern or color.

We note, however, that highlighting the chains of all path methods in a schema

will leave much of the schema highlighted and render most chains unrecognizable

due to overlaps. Therefore, this highlighting must be used sparingly. In this sense,

it is similar to italicization in written natural language. If overused, it becomes

confusing and ineffective. In fact, it has been our experience that a designer or

user is not interested in the chains of all path methods simultaneously. Typically,

one wants to concentrate on the implementation of a single method. In such cases,

only the method of interest would be highlighted. If one wants to determine all the

available methods, the retrieval aspect represented by the dashed line is sufficient.

Therefore, we view the highlighted aspect of the representation of a path method as

optional. If employed, it should be restricted to one or a small number of methods.

To conclude our discussion of the graphical language, we provide a summary of all

the graphical symbols in Table 2.1. Note that any text in parentheses is descriptive

material and is not an aspect of the symbols themselves.

facing 55

HasPrereq
courses

PertainsTo
coursecourse record

name

HasRecords

IsOfferingOf
HasTranscript

transcnpt
person

HasMembers CurrentSections
former stud

HasTranscript sectionsIsMemberOf

Chair student section

getjevalasMembersumni_org name
union

, HasSupervisor
I1

BelongsToundergrad_stud

employee

grad_student

assistant instmctor
n

get_students

11- = . - ^ . -
get_courses

F igu re 2 .13 An excerpt from a university database schema

55

T ab le 2.1 The graphical schema constructs

class

set class

tuple class

attribute

relationship
- >

multi-valued relationship

path method
->

([attribute) (derived)

(subclass)

relationship

multi-valued relationship
^ - — - C r-

(roleof)

attribute

(essential)

relationship

multi-valued relationship ^ (dependent)

Finally, in Figure 2.13 we present a larger schema example which has been ex

tracted from the university database schema developed in our research group. Ex

tended versions of this can be found in [19, 34. 120. 209].

2.6 A b r id g e m e n ts

An important issue for any graphical representation language is that of abridge

ments. It should possible to omit certain features of the language and still have a

meaningful picture. The process of omitting extraneous features from a diagram has

been referred to as graphical abstraction [159. 160], The omission of features can be

important for a couple of reasons. One obvious, and perhaps mundane, reason is

56

for the preservation of screen real estate. Anyone who has attempted to construct

schema diagrams interactively knows how precious additional screen space is. An

other more important reason is for conceptual clarity. If a user is trying to become

oriented with the schema, then it is probably better to skip the fine details (e.g.,

the attributes) and just display the higher level constructs like the classes and their

associated IS-A hierarchy. This way, the user is not overwhelmed by a flood of too

detailed data.

For our graphical language, we have opted for two levels of abridgement or, if

you prefer, three “levels of display.'’ These levels of display are characterized by the

following:

1. no omissions.

2. omission of attributes and local methods, except for those which participate in

path methods.

3. omission of all attributes, relationships, and methods, leaving only the classes,

hierarchical generic relationships, and the se to f / memberof relationships.

Of course. Level 1 is the full-blown representation, where all the details of the schema

are included. Level 2 is provided for situations that do not require such fine detail.

Browsing the schema for pertinent classes and relationships is an example of such a

situation. Level 3 gives an isolated view of the class hierarchy. During the course of

our own modeling endeavors, we found this to be particularly useful. Establishing the

57

IS-A hierarchy and gaining a clear understanding of it is critical when modeling with

OODBs. We will see that the same is true when modeling with the part relationship.

Its hierarchy is also included in a Level 3 display.

2.7 R ep resen tin g Instances G raphically

In circumstances where we need to show instances of a database (e.g., when we

are discussing constraints imposed on instances by the schema definition), we will

employ mixed class/instance diagrams. These diagrams will contain ordinary schema

symbols as well as a special notation for instances. For the representation of an

individual object, we will follow the convention set forth in [171]. An object will be

denoted as a rectangle having rounded edges; the name of its class will be written

in parentheses inside of it. This latter convention implicitly captures the “instance

of” relationship between an object and its class. Explicit “instance of” arrows tend

to clutter the diagram and are avoided. Deviating slightly from the notation of

[171], we will typically include an arbitrary OID and perhaps some annotation for

an object. The OID carries no specific meaning. It is employed solely to distinguish

one instance from another.

N

(person)

111
V J

owns (car)

2001

F ig u re 2.14 An instance of person which owns an instance of c a r

58

An occurrence of a relationship (i.e.. an instance-to-instance reference with re

spect to a schema relationship) will be designated by drawing a curved line con

necting the participating instances. The curved line will be labeled accordingly. An

illustration of this appears in Figure 2.14, where we show person “111” as the owner

of car “2001.” The notation for the occurrence of a relationship will be employed

extensively when we introduce the part relationship in Chapter 4.

C H A PTER 3

O O dini, A N O O D B G R A P H IC A L S C H E M A E D IT O R

To facilitate and promote the use of the OODB graphical schema notation tha t we

introduced in Chapter 2. we have built a software system called OOdini (Object-

Oriented diagrams, New Jersey Institute of Technology). OOdini is a graphical

schema editor that allows a user to create and manipulate an OODB schema de

scribed in our graphical schema representation. It can also serve in the role of a

schema browser as it did frequently in our various research efforts on OODB model

ing [34, 120]. Furthermore. OOdini provides the means for converting the graphical

schema representation into a number of OODB data definition languages, includ

ing the VODAK Model Language (VML) [56. 109] of GMD-IPSI. As such, it is an

effective OODB graphical interface.

OOdini comprises about 30.000 lines of C Language code. It runs on a Sun

1/20 workstation and operates in the X Windows [175], X Toolkit (Xt) [10], and

OSF/M otif environment [150. 151. 152]. The Motif widget1 set (see, e.g., [213])

was used exclusively to build its user interface. The work that went into OOdini’s

construction is reported in a number of Master's projects and theses [35, 111, 128,

183].

In this chapter, we will cover the details of OOdini. First, we give an overview

of the X Windows and Motif environment in which OOdini operates. After that, we

'A w id g e t , in X W indow s parlance, is s im p ly a co m p o n en t o f a grap h ica l user in terface. For
ex a m p le , push b u tto n s , m enu bars, sliders, and so on . are a ll w id gets .

59

60

describe the operation and features of OOdini. Finally, we consider the conversion

of OOdini’s graphical schema to textual code representations for various OODBs. In

particular, we discuss how OOdini converts the graphical schema into an abstract

OODB language, that we have devised, called OODAL. OOdini is also capable of

conversion into Dual Model [65, 143] syntax (referred to as DAL) and, as mentioned

above, VML.2

3.1 X W indow s, th e X T oolk it, and O S F /M o tif

X Windows [175, 176] (or just X) is a device-independent, network-transparent win

dowing system which was developed to support the use of powerful input/output

hardware such as high-resolution bit-mapped graphics displays, mice, track-balls,

etc. X employs a client-server software architecture as illustrated in Figure 3.1. At

the foundation of a working X implementation is a process called an X Server (or

just Server, for short). The Server is in charge of managing all of the I/O resources

ol a single computer system. On the input side, it monitors the keyboard, mouse,

and any other input devices connected to the system, and informs clients when

input events occur. On the output side, the Server manages the system’s display

screen, maintaining its cursor (or sprite [213]) and doing all text and two-dimensional

graphics drawing requested by clients. Most importantly, the Server allows clients

t o partition the display screen by creating windows. A window is simply defined to

be a rectangular region of the display screen. Windows may overlap and obscure

■’It d oes require som e hum an p ost-ed itin g .

61

each other. Each window is owned by a single client, which is always the one that

created it.

Network Connections

X Server

Client

Client

Client

Figure 3.1 The X Windows software architecture

Communication between a client and the Server takes place across a two-way

network connection, as shown in Figure 3.1. An important point to remember is

tha t the client and server need not be running on the same machine. In fact, the

network may be anything from an intercontinental long-haul link to a local-area

network contained within a single building or room. If the Server and the client

happen to reside on the same machine, then the network connection is made using

62

the ordinary interprocess-communication mechanism of the host operating system

(e.g., the pipe mechanism of UNIX).

Clients pass messages to the Server to issue orders or obtain information concern

ing the I/O hardware. For example, a client may request that a window be created;

or it may query the Server to determine the background color of an existing window.

Such messages must conform to a special communication protocol referred to simply

as the X Protocol [146. 176]. The server also responds using this protocol.

Function Calls

X Protocol Requests '

X Server Xlib C client

X Protocol Responses
i

Return Values

F ig u re 3.2 Communication between a C client and X Server using the Xlib

A client written in C (such as OOdini) or L lS P can use the X Library (Xlib, for

short) to communicate with the Server. The Xlib is a collection of functions which

translate requests from the client into actual X Protocol messages across the network.

We illustrate this in Figure 4.2. In order to issue a request (e.g., to create a window),

the client calls a specific Xlib function. (See [147] and [167] for complete descriptions

of the available Xlib functions.) The function then sends a corresponding X Protocol

request via the network to the Server. If appropriate, the Server replies with an X

63

Protocol message of its own. This is then translated by the Xlib function into an

appropriate return value for use by the client process.

The interaction between a client employing Xlib and the X Server usually follows

a set pattern. The client first issues requests to the Server to establish certain I/O

resources such as windows. The client then informs the Server of the kinds of I /O

events tha t it is interested in receiving. (I/O events include such things as key presses,

mouse button presses, mouse movement, window exposure, and so on.) After that,

the client process enters an event, loop [147] where it waits for any incoming event

messages from the Server. When a desired event (e.g., a mouse button press) occurs,

the Server sends the client an event message containing all the details of the event

(e.g., which mouse button was actually pressed). The client, of course, can then act

on the message as it sees fit. Once it finishes processing the current message, the

client re-enters the event loop to await additional messages.

The above described interaction between a client and the Server takes place at the

level ol the I/O hardware, i.e.. in terms of input events and window manipulation.

As such, it is often described as a low-level interaction [10]. However, for a client

(such as OOdini) to effectively employ an advanced graphical user interface (GUI),

it must be able to operate at a higher level of abstraction. For example, a client

using a push button only cares to know that the button was ‘'pushed” or activated,

not that the 1st mouse button was pressed while the screen cursor was in the region

ol the graphic display where the button is drawn. Using Xlib. a client would be

64

forced to make such translations itself, which would entail an enormous and complex

software construction effort. What is needed is the means for a client to operate

exclusively at the higher-level of abstraction. This is provided by the X Toolkit or

Xt [10, 148, 153].

Xt, built on top of Xlib. is a software module which provides the framework for

the construction of advanced GUIs. At the heart of this framework is an abstraction

known as a widget. As we mentioned above, "widget” is just a generic term for any

graphical user interface component. Such components include things like command

buttons, scrollbars, dialog boxes, menus, and so on. Each kind of widget is endowed

with a set of abstract behavioral patterns (analogously to objects in the object-

oriented paradigm). For example, the push button, mentioned earlier, can exhibit

three types of behavior: arming, disarming , and activation [150, 151]. More complex

widgets like scrolled lists and menus exhibit a larger variety of behavioral patterns.

To build a GUI using Xt. a client does the following three things. First, it

creates a group of widgets of various types. It then pieces these together to form the

complete GUI that is presented to the user. Finally, the client attaches the widgets

to various aspects of its own functionality as described presently.

In order to connect widgets to their clients, a list of callback functions (or simply

callbacks) is associated with each type of abstract behavior. A callback is an appli

cation function registered with the widget by the client to be invoked any time the

widget exhibits (or is forced to exhibit) a specific behavioral pattern. For example,

65

Callback Registrations

X Toolkit
X Protocol
Requests □ a x

□
□

n
X Protocol
Responses

Widgets

X Server Xlib C client

Invocation of Callback Functions

Figure 3.3 Communication between a C client and its Xt widgets

every push button widget has an "activation'’ callback list. When such a button is

pushed (i.e., activated), each of the client’s functions appearing on its activation call

back list is invoked in succession. The client can then perform actions commensurate

with the button activation (such as carrying out a prescribed task). The expression

"call back” reters to the fact that, after registering functions with a widget, a client

is "called back” at a later time. The callback interaction model between a client and

its widgets is illustrated in Figure 3.3. There it can be seen that, instead of working

with the low-level Xlib. a client communicates exclusively with its widgets; direct

interaction with the Server is left for the widgets themselves.

As it turns out, Xt only provides a core set of widgets. It is up to outside

developers to build sets of widgets which exhibit desired behavior or "look and feel”

66

[213]. Widget sets have been created by a number of organizations, most notably

AT&T with its OPEN L o o k widgets [201] and the Open Software Foundation (OSF)

with its Motif widget set [150, 151]. Motif, in fact, comprises not only a widget set

but also a window manager [147, 150] and a GUI style guide [152]. Of course,

the Motif widgets were designed to conform to and promote OSF’s own preferred

interface style which is laid out in [152]. The OOdini interface is constructed entirely

from the Motif widget set. In the next section, we discuss OOdini’s functionality

and refer to some of the Motif widgets that went into its interface.

3.2 O O din i’s Features and O peration

OOdini is a constraint-based graphical schema editor designed specifically for the

OODB schema representation presented in Chapter 2. To see what we mean by

constraint-based, consider the case of a user-defined relationship which is defined as a

labeled arrow directed from some source class to a target class. Specifically, consider

I he case where such a relationship is emanating from a class but left dangling or

unattached at its other end. Clearly, such a construction is meaningless in our schema

language and. hence, should not be allowed. Toward this end, OOdini constrains

a relationship symbol such that it always touches a class at both of its ends. So,

during input. OOdini requires that the user fasten each end of a relationship to some

class. Moreover, if at a later time one of these classes is moved, the relationship is

automatically moved relative to it to maintain the proper connection. In this way,

OOdini guarantees that the integrity of the schema diagram is always maintained,

67

and it relieves the user of excessive, tedious manipulation. We do point out that

OOdini is not a general-purpose editor incorporating the features of a graphical-

constraint toolkit such as Garnet [140]. Rather, it is a software tool fine-tuned for

the manipulation of our own OODB schema representation.

Hie Edit View

\ Q a n i t i w Q
 Sections , »• -■-------------
—r i» t]♦ a ass

0 Keishfi

0 Attrib

0 Tupla

0 Set

0 EssIRel

0 OaptRel

0 MvRel

0 MvERel

0 MvDRel

0 EsstAttr

0 Roleof

0 Partof

0 Subctas

0 PMetftod

0 DrvdAttr

T ra n sc rip t t

5tudent

student*

Course

Reai*»e

Iau9htiiy

0 input

0 Movo

0 Oelala

0 Print

re f re s h

F ig u re 3.4 OOdini's main screen

68

To maintain conformance with the Open Software Foundation/Motif Style Guide

[152] and allow OOdini to fit smoothly into the Motif working environment, OOdini’s

primary interface is built using Motif’s requisite MainWindow widget [150]. (See

[152] for further details.) This widget holds a variety of other widgets which permit

access to OOdini’s functionality. OOdini’s main window can be seen in Figure 3.4.

(The schema shown there is an excerpt from our university database schema; it

includes examples of most of OOdini’s graphical schema symbols.) At the uppermost

portion of this main window, we see the menu bar which contains the standard array

of entries. “File,” “Edit.” and “View.” Each of these activates a pull-down menu

comprising commands relevant to the topic. These will be discussed below. On

the left-hand side appears a pair of RadioBox widgets (which are special forms of

RowColumn widgets [151, 213]). The upper one, labeled “Object,” is used to select

the current type of schema object. For example, if we are currently interested in

working with (e.g., inputting) classes, then we select the button labeled “class” in

this radiobox. We refer to this widget as the Object Radiobox. The other one, which

lias the title “Mode.” allows the user to select the current system mode which may

be “input.” “move,” “delete.” or “print.” It is called the System Mode Radiobox.

Beneath the radioboxes are command buttons for viewing the roadmap (discussed

below) and refreshing the screen. The graphical schema itself is constructed in the

DrawingArea widget (the canvas) on the right-hand side of the interface. As we can

69

see, the canvas is equipped with horizontal and vertical scrollbars tha t are used when

working with large schemata.

As with most software systems built on top of Xt, OOdini primarily relies on

the mouse for interaction with the user. The keyboard is required occasionally in

response to a dialog box in order to input textual data, such as the name of a class.

Most of the interaction with OOdini occurs in the DrawingArea widget where the

graphical schema is constructed. The interaction during schema creation follows a

regular pattern: The user first puts OOdini in input mode by selecting “input” in

the System Mode Radiobox. Next, the user selects the desired schema construct,

such as a class or a relationship, from the Object Radiobox widget and then proceeds

to add any number of instances of that symbol to the schema. The techniques for

inputting the different symbols are described in [i l l , 128, 183]. When finished with

this “current” symbol, the user may choose another from the Object Radiobox and

further expand the schema by inputting instances of this new symbol type. This

continues until the schema is complete, at which time the user can request that it be

saved to disk or printed. If the user wishes to modify the schema, say, by moving or

deleting an instance of a schema object, then he selects one of the alternative system

modes "move” or “delete” from the System Mode Radiobox. We emphasize that

all modifications to the schema are constraint-based. For example, the movement

of a class always entails the movement of all its associated graphical symbols (e.g,

70

attribu tes, relationships, set classes, and so on). Likewise, the deletion of a class

propagates into the deletion of those associated symbols.

As alluded to above. OOdini manages a large drawing canvas, allowing the data

base designer to create extremely large schemata. This is a very im portant charac

teristic of the system because OODBs typically comprise many hundreds of classes.

Our university database [34, 1 2 0] includes about two hundred and fifty. A schema

editor which provides only a single “sheet” on which to draw a schema becomes to

tally worthless for such applications. Horizontal and vertical scrollbars are provided

to allow the user to reposition the current working window (in the ordinary graphics

sense) of the canvas. Using the scrollbars, the user can readily pan left and right, or

up and down through the schema.

While it is possible for the user to quickly navigate to and view any portion of the

canvas, the current working area presents only a small fraction of the entire schema.

It is normally not possible to display a schema of substantial size in its entirety with

a reasonable magnification. To give the user the ability to view the schema globally,

we provide a mechanism which we call a roadmap. The roadmap is a special kind of

dialog box which serves the following two purposes:

1. It provides a global schema view, that is. a reduced view of the schema showing

all its elements at one time.

71

2. It provides a means for repositioning the current working area of the canvas.

The repositioning is accomplished by moving a “focus rectangle” (i.e., a rect

angle representing the current working window) with the mouse.

The second feature of the roadmap is particularly useful when it comes to rapidly

moving between distant regions of the schema. Of course, the scrollbars could be

used for this same purpose, but they can be tedious; the destination area is not in

full view, and it is likely that the user will end up “oscillating" about th a t desired

region during the search. In general, we have found th a t the scrollbars are used to

make fine positional adjustments to the current working region, while the roadmap

is employed for large jumps.

The “File” entry in the menu bar drops down a menu giving the user access to a

number of disk storage and retrieval commands. Among these are ordinary “New,”

"Open," “Save," and “Save As" commands. (See [128, 152] for a description of

their operation.) Also included is the command “Print Screen" which can be used

to print the canvas's entire current working area to disk as a figure in a special X

Window format. System utilities then allow for the conversion of the figure into

a variety of formats for printing on different kinds of laser printers. Furthermore,

through this mechanism, figures may be converted into a special PostScript format

for use with the IATj?X macro package Psfig. In this way, the schemata created with

OOdini can be easily incorporated into a lATgX document. This can be an extremely

handy feature for researchers and database system annotators. As a complementary

72

feature, by putting OOdini in “print” mode (using the System Mode Radiobox),

one can select a sub-portion of the schema for storage in the X Window format.

Thus, one can extract fine details of a schema for inclusion in documents. The File

menu also contains command buttons for storing the schema in the various textual

formats. We discuss these in the next section.

The “Edit” menu simply provides the user with a command “Clear” for clearing

all the components of the current schema. The “View” menu offers two commands:

“Level” lets the user alter the schema’s current level of display (see Section 2.6 in

the previous chapter), and “Search For” seeks out a schema component with a given

name and repositions the canvas’s current working window around it.

Invoking the command “Level” pops up a dialog box comprising a slider which

ranges in value from 1 to 3, corresponding to the three levels of display that we

defined in the last chapter. To select a level, the user simply adjusts the slider to

the desired value and then presses “OK.” The schema is then shown according to

the rule governing the chosen level. For example, by setting the slider value to “2”

and pressing “OK,” the schema is shown in Level 2, meaning that attributes are

no longer visible. Choosing “3” leaves only classes and generic relationships on the

screen. A choice of “1” restores the schema back to the full-blown representation. By

exploiting these different levels of display, OOdini can serve as an effective schema

browser or OODB orientation device. To illustrate the effect of the different levels,

facing 73

BUnodMArtvdatatoaseB ■was
File Edit View

♦ Oass

O Hoist^l

O Altrti

<► Tiqila

O Set

^ Esstnoi

O DeiiUtol

O MvRel

O MvEHfll

O MvORgI

O EsslAUr

^ Ralaof

O fwior
O Subclas

O PMelhail

O OvilAltr

O input

O Muvd

^ Dublin
4 Prinl

Sections.

Student

Student*

Figure 3.5 OOdini in a Level 2 display

73

we show the schema of Figure 3.4 (which is in a Level 1 display) in Level 2 in

Figure 3.5 and Level 3 in Figure 3.6.

After choosing “Search For,” the user is presented with a pop-up dialog box

comprising two main components. The first, a so-called option menu [152, 151],

displays the type of schema object to search for. (By default, the system looks

for classes). The other, a selection box, presents a scrolled list of the names of all

components of the selected type that currently appear in the schema. Again, the list

comprises only components of a single type (e.g., classes). If one wanted to see the

names of, say, all relationships, then one would choose “Relationship” in the option

menu. Selecting one of these names from the list causes the current working window

to be repositioned in such a way that the chosen object is at its center. Therefore, as

with the roadmap, this command gives the user yet another method of repositioning

the current working window. It, too, can aid both browsers and designers in their

navigation through the schema.

3.3 O O dini C ode C onversion

The “File” pull-down menu contains three command buttons which can be used to

save OOdini’s graphical schema in various textual formats. The first of these is

an abstract textual language which we have devised called OODAL (from OOdini

Abstract Language) [35]. The entire BNF specification for OODAL syntax can

be found in [35]. The constructs of OODAL mirror those of the graphical schema

language and, in fact, there is a one-to-one correspondence between the two. OODAL

facing 74

♦ Oas»

O ftolsh(i

O AlMi
O Tiqila

O Set

O Essinoi

O D«|iUtol

« MwRl'1

O MvEnel

O MuDRol

Q CsslAUr

O Rolaof

O rRrtor
O Svbclas

O PHothail

O DrvilAltr

O Mavo

refresh

Figure 3.6 OOdini in a Level 3 display

was created primarily as an intermediate stage between the graphical representation

and bona fide OODB data definition languages, and its syntax was constructed in

such a way as to make this readily attainable. As it happens, we use OODAL in

the conversion process from the graphical schema to VML code. The VML code

converter is also available as a command in the “File” menu. The conversion into

an OODB language through OODAL is illustrated in Figure 3.7.

VML
OODAL

(Textual Form at)

OOdini
(G raphical Form at)

J
OODB

Languages

F ig u re 3 .7 Conversion from OOdini into an OODB language

Because the Dual Model [65, 143] has played a central role in much of the mod

eling work carried out in our research group, we have included the means to convert

an OOdini schema into its syntax. A command to carry this out is found under

the “File menu. The Dual Moders distinction between structure and semantics

[69] requires the bifurcation of the OOdini description of a class and its properties

into separate class and object type representations. (Actually, the same is true for

VML which also employs a kind of Dual Model; the details of VML’s d a ta model are

covered in Chapter 6 .) We refer to the Dual Model’s target syntax as DAL which

75

is short for Dual Model Abstract Language. Again, a complete BNF account of its

syntax can be found in [35].

Through
compiler

from OOdini VML

Through
C application

Flat Text
File

OODAL
API:

C S tructure
Access

F igure 3.8 Alternative conversion paths from OODAL into OODB language

OODAL code generated by OOdini is normally stored in a “flat” tex t file. To

convert this text file into the syntax of some OODB language, a compiler m ust be

constructed [35]. To circumvent this requirement and facilitate the development of

OODAL converters for other OODB languages, we provide an application program

ming interface (API) to OODAL as a C Language library and header file. This

API perm its direct access to a C language graph structure containing the OODAL

representation of a given schema. This structure can be easily traversed at the pro

gramming level to generate code for various OODB data definition languages. In

fact, our VML converter was constructed in this manner. Use of the API is de

scribed thoroughly in [35]. The two alternative conversion paths from the graphical

schema of OOdini through OODAL are illustrated in Figure 3.8.

C H A PTER 4

A N O O D B PART R E L A T IO N SH IP

In this chapter, we introduce the notion of a part relationship in the context of

OODBs. At first, we consider previous work on part relationships in the context of

OODB systems. Next, we go on to describe what we call a “generic” part relationship

for connecting two object classes as holonymic and meronymic classes. After th a t, we

discuss the different characteristic dimensions of the part relationship which capture

the various semantics and functionalities of part-whole modeling. In the process of

describing the formal aspects of the different dimensions, we also present a graphical

schema notation for the part relationship to be used in the construction of OODB

part schemata. At the same time, we provide a realization for the part relationship

using the basic modeling constructs of the OODB model as described in C hapter 2.

4.1 Part R elation sh ip s in O O D B s

Among existing OODBs, ORION [15] incorporates a part model [107] which distin

guishes between four kinds of part relationships, derived by imposing exclusiveness

and /o r dependency on weak references [or what we call user-defined relationships

(C hapter 2)]. In the ORION model, the exclusiveness constraint imposes a “p a rt”

reference restriction on the entire database topology. For example, if an engine is

part of some car. then an exclusiveness constraint would require tha t it not be part

of another car or any other type of object (e.g., a plane) at the same time. We have

76

77

found tha t such a restriction is too broad in certain circumstances, and we refine

it by allowing exclusiveness to be imposed on a single class and relaxed otherwise.

This refinement leads to two types of exclusiveness, global exclusiveness and class

exclusiveness, whose formalizations follow very closely tha t offered in [107]. As a

refinement to O RION’s sharing, we also allow for the specification of a range re

striction on the number of holonyms of a given type which may contain a certain

meronym.

ORION also allows a part to be made dependent on the existence of its whole:

If the whole is deleted, then the part is deleted automatically. Such a feature is

useful in alleviating the burden of having to search out and manually delete parts,

particularly in cases where the whole is a very complex object like a CAD drawing. A

whole, however, is sometimes barely more substantial than one of its defining parts,

as in the case of a bicycle and its frame. (Cf. the notion of “ontological dependency”

discussed in Chapter 1 .) In such circumstances, it may be desirable to define the

whole as dependent on its part. For this reason, our part relationship perm its the

specification of dependency in either of the two directions, from the part to the

whole, or vice versa.

The SHOOD model [145]. an object model couched in a knowledge representation

framework, incorporates some of the exclusiveness and dependency semantics of the

ORION model. In addition, it addresses the issue of value propagation or what the

developers call a ttribu te propagation [145], which is the assimilation by holonyms

78

of da ta values from meronvms. (In extensional mereology, the same phenomenon

is referred to as local predication [187].) As an example of this process, the color

of a car as a whole may be obtained from the color of the body which is its part.

In SHOOD, a ttribu te propagation is limited to the upward direction, from parts to

wholes. Moreover, the whole treatm ent of the issue is informal. In the next chapter,

we formalize the notions of both upward and downward value propagation and their

attendant derived schema components, called derived attributes. We also expand the

notion of value propagation to encompass many part relationships simultaneously

and more general computations with respect to propagated values. This leads to a

powerful mechanism for the definition of derived attributes, perm itting the specifi

cation in the database schema of expressions such as “the weight of a car is the sum

of the weights of its parts, regardless of their classes.”

The SORAC data model [127], another object model built within a knowledge-

based environment and influenced by the semantic data models [155], includes a

generic is-part-of as one of its set of core semantic relationships. In a schema, an

actual part relationship (such as the “has-part” relationship of the design-support

system ArchObjects [125] which is being built on top of SORAC) is constructed using

underlying semantic relationships like is-part-of, collection, and derivation. These

relationships are. in turn, constructed from a "menu" of semantic options (cf. [103]),

which are described as update rules [156] affecting the creation and deletion semantics

of the various related objects. In all this, there is an assumption of an underlying

79

rule manager [196]: we make no such assumptions about rule handling in our base

OODB model. While the is-part-of relationship allows cardinality constraints on the

number of wholes per part, it omits the global exclusiveness semantics of ORION. It

does offer a variety of warning, error, and blocking semantics, where an outside agent

can be alerted to violations of certain integrity constraints. In the formal description

of our part model, we omit such considerations. Decisions on them are deferred to

an actual implementation, such as the one using metaclasses which we present in

Chapter 6 . This issue will be brought up again at the end of this chapter and in the

next. SORAC’s derivation relationship, which allows for the definition of derived

attributes, fails to capture any of the formal aspects of the derived computation.

Instead, it addresses the issue of late versus early evaluation [196], which is more an

im plem entation detail than a conceptual modeling concern.

The Object Modeling Technique (OMT) [171] and the conceptual object-oriented

model (C’OOM) of [16] also approach the part relationship as a higher-level structure

composed from a set of semantic options, as suggested previously in [103]. Both

present a graphical notation for the various guises of their informal part relationships.

Actually, OMT is a general object-oriented design or CASE methodology rather than

just an OODB schema notation. In fact, a CASE tool called OMTool [171] based

on OMT is now available from Cencral Electric, where OMT was developed. This

program automatically generates a software system in C + + code from a description

in the OMT graphical notation. As for conceptual modeling, OMT permits all

80

the characteristics of ordinary associations (such as cardinality constraints) to be

overlaid on its part relationship. However, it too fails to consider the exclusiveness

and dependency semantics presented in [107]. As for the notation itself, we will draw

on it as a basis for our own palette of part relationship symbols introduced below.

The reasons for this will be discussed there.

C’oad and Yourdon [39] also introduce a CASE methodology for object-oriented

software development which includes a part-whole relationship and a graphical de

sign notation. Their symbol for the part relationship is a directed line from the

meronymic class to the holonymic class. As we will discuss below, we feel this is an

inadequate notation for part-whole modeling. As with OMT, the part relationship

can be loaded with the same constraints as ordinary relationships (e.g., with cardi

nality constraints). Interestingly, the technique encourages the use of part-whole in

three different senses which are not distinguished graphically: (1) A ssem bly/Parts,

(2) Container/Contents, and (3) Collection/Members. While (1) and (3) have cor

responding senses among those of Winston. Chaffin, and Herrmann [210] discussed

earlier. (2) seems somewhat dubious. Instead of being synonymous with sense (3)

[or even sense (1)], as it apparently is. (2) is distinguished from it with an example

that describes a pilot as part of the aircraft he is flying because he is inside [39, page

9-1]!

81

4.2 A G eneric Part R ela tion sh ip

In this section, we present a formal definition of a “generic” part relationship between

a pair of OODB classes. This relationship is described formally as a quintuple

comprising a relation between the extensions of the participating classes, and four

“characteristic” dimensions: (1) exclusiveness/sharing , (2) cardinality/ordinality ,

(3) dependency , and (4) value propagation. The first of these addresses the issue of

how parts may be distributed among wholes. The next is concerned with the way

parts of the same kind are collected together to form wholes. The third dimension

deals with the dependency semantics, i.e.. how the deletion of a holonym or meronym

affects its counterpart in a part-whole arrangement. The final dimension addresses

the issue of propagating relevant data across the part relationship from the whole to

the part, or vice versa, leading to the definition of derived attributes. A discussion

of this la tter dimension is deferred until Chapter 5.

We use the term “generic” in this context because the formal definition is really a

tem plate for the actual part relationships. Portions of the quintuple may be refined

into nested structures in order to accommodate other defining elements implied by

certain values of the characteristic dimensions. There are also interactions among

dimensions, where a given value in one dimension precludes some values in others.

These, too. are not captured explicitly in the description of the generic relationship,

but are elucidated as we consider each dimension in turn.

82

A generic part relationship between a meronymic class B and holonymic class A

(w ritten P b , a) is defined as the following quintuple:

P b ,a - (o , x , k , 6 , v) (4.1)

where o is a relation from E (B) to E (A) . The pair (b ,a) 6 o indicates tha t the

instance b of class B is part o f the instance a of class A. We will ordinarily express

this fact in an infix expression as b o a. At times, the relation o may carry a subscript

to distinguish between multiple part relationships. For example, if we have a part

relationship P b u a between the classes B\ and A and another part relationship P b 2,a

between the classes B 2 and A, then we would write their constituent relations as Oi

and o2.

The remainder of the quintuple represents the values of the four characteristic

dimensions which have the following domains:

\ € X = {global-exclusive, class-exclusive, limited-shared},

k E C = {range-restricted. ordered-definite, ordered-indefinite] ,

b € D = {part-to-whole, whole-to-part, n i l}, (4.2)

v 6 V = {up, down, up Trans, downTrans, up & down, nil}.

Note that the values of both 8 and v may be nil, indicating tha t the particular charac

teristic (either dependency or value propagation) is inapplicable. Complete accounts

83

of each dimension will be given in subsequent sections, where formal descriptions

of each dimension are provided. To accomplish this, we will need the following two

definitions. Assume that there exists a part relationship P b .a -

D e fin itio n 1: Va £ E (A) , let M o(a) = {b \ b £ E (B) A 6 0 a}. M o(a) is called the

m eronym set of a with respect to the part relationship Pb.Ai i.e., the set of instances

of B which are parts of a.

D e fin itio n 2: V7> £ E (B) , let Ho(b) = {a \ a £ E(A) A b o a } . Ho{b) is called the

holonym set of b with respect to the part relationship Pb.a, i-e-- the set of instances

of A of which 6 is a part.

In Chapter 2. we presented a graphical schema representation for OODBs that

encompasses a wide range of schema constructs. We now begin to enhance that

notation with a basic graphical symbol for the part relationship. This symbol serves

as a basis for a variety of symbols which denote the part relationship in its various

guises. In the course of this chapter and the next, we further augment the symbol

to mnemonically capture the part relationship’s rich semantics and functionalities.

The graphical symbol for the part relationship is a bold, dashed line connecting

the meronymic and holonymic classes. A diamond head at one end of the line

indicates the holonymic class. Figure 4.1 shows a part relationship between classes

B and /l. (As we will see much later, this symbol actually represents a shared,

single-valued part relationship with neither dependency nor value propagation.)

84

A

¥
a
i
B

JL
B

F igure 4.1 A part relationship between meronymic class B and holonymic class A

B

PBholonym

meronym

_______ I

B-PART-A

Figure 4.2 The generic realization of the part relationship

A goal in the design of our graphical schema language has been to exploit the

mnemonic nature of the graphical icon. The dashes of the part relationship’s symbol

have been used expressly for this purpose. Here, the mnemonic device is the asso

ciation between the pieces of the line and the parts of the object. Just as a whole

object is decomposed into individual part objects, so too is the part relationship’s

line broken into constituent segments. The choice of the bold aspect of the line

was influenced by the desire to highlight the connection in the overall context of

the schema and contrast part relationships with “ordinary,” user-defined relation

ships, which are represented with thin lines. This contrast is im portant because it

makes the hierarchy produced by part-whole relationships clearly recognizable as a

backbone of the graphical schema, just as with the graphical representation of the

specialization (IS-A) hierarchy where bolds lines were used for emphasis. As such,

it helps to promote an intuitive understanding of the application. The final aspect

of the part relationship symbol, namely, its diamond head, maintains consistency

with the OMT notation [171], and is employed, instead of the customary arrowhead,

to avoid the impression of directedness which would belie the fact tha t our part

relationship constitutes a powerful two-way access and constraint mechanism. Nev

ertheless, there is a need to distinguish the parts from the wholes, and the location

of the diamond head near the holonymic class serves this purpose.

The realization of the part relationship is based on its expansion into an object

class in its own right along with a set of connecting relationships and methods. Ini

tially, we present the realization of a part relationship devoid of any of the semantics

embodied by the different characteristic dimensions. We will refer to this as the

"generic realization,” and, as with the graphical schema symbol, its augmentation

will allow us to realize all the desired semantics.

The generic realization for the part relationship between meronymic class B and

holonymic class A can be seen in Figure 4.2. There, we can see the four aspects of

this realization: (1) a class B-PAET-A, (2) a pair of outgoing, essential relationships,

86

holonym and m eronym , from this new class, (3) two incoming relationships, pb and

to,4 , to the new class from the holonymic and meronymic classes, respectively, and

(4) a pair of path methods, A and £ , defined on the meronymic (holonymic) class

and referring to the holonymic (meronymic) class.

The instances of B-PART-A are the occurrences of the part relationship P b ,a (he.,

elements of o), and its two outgoing relationships, holonym and m eronym , represent

the projections of o onto the holonymic and meronymic classes, respectively. In

other words, for each pair (6 , a) E o, there exists an instance o. whose relationships

m eronym and holonym have values b and a, respectively. We will write o(b,a) when

referring to this instance. This approach of modeling a “second order” object as a

“first order” object follows in the tradition of the ER and other semantic models

and has been suggested by previous work in the object-oriented community (e.g.,

[8 , 49. 108, 127, 170]). Semantic relationships realized in this m anner have been

referred to as “fat links” [55].

The relationships holonym and meronym are defined as essential (total) as a con

sequence of our extensional approach of relating actual instances of the participating

classes (cf. [103]), as opposed to an intensional or type-based approach. An instance

of B-PART-A cannot exist without the existence of those instances of the holonymic

and meronymic classes that it serves to relate as whole and part. By making the

two properties essential, we ensure tha t any transaction which creates an instance of

B-PART-A (i.e., some “make part of” transaction) also assigns these properties values

87

th a t are valid references to existing objects of the referent classes. It also implies

th a t the deletion of a meronym or holonym is disallowed until its part connection

is broken by the deletion of any relational elements of the class B-PART-A it may

participate in. (The dependency characteristic can alter this such th a t deletion of

a part or whole propagates into the autom atic deletion of the relational elements.

This is discussed below.)

The relationships pb and are added to the holonymic and meronymic classes,

respectively, and are used for two purposes. First, they aid in the imposition of

some of the constraints defined by the various characteristic dimensions of the part

relationship. Second, each constitutes a portion of the “bridges” between the part

and whole. These bridges, the path methods B and A , provide the means by which

a whole can access its part, and a part can access its whole, and in this respect, play

a role in our value propagation mechanism. In our "path” notation, the m ethod B

for retrieving a part B from its whole A is defined as:

& {) '■ Pb B-PART-A : meronym —> B.

In other words. B first traverses the relationship p s to reach the class B-PART-A.

From there, it crosses meronym and arrives at its destination, the class B . Likewise,

the m ethod A of class B which acts as a selector for a whole within a part is defined

as follows:

.4Q : w f\ —► B-PART-A : holonym —> A .

88

This traversal proceeds through w,\ to B-PART-A, after which it crosses holonym to

reach A.

We note th a t the selector methods A and B are defined as multivalued when

there are many wholes per part and many parts per whole, respectively. The traver

sals in such cases are actually iterative, and the m ethod bodies are w ritten slightly

differently (as discussed in Chapter 2) to reflect this.

4.3 T he E x clu sive/S h ared D im en sion

The exclusive/shared dimension of the part relationship P b , a regulates the way th a t

meronyms may be distributed among different holonyms. In particular, each value

from its domain

X = {global-exclusive, class-exclusive, limited-shared,}

imposes a different set of constraints on the cardinalities of the holonym sets of the

instances of B . Before getting to the formal specifications of these constraints, let

us first consider the ways in which we would like to d istribute parts among wholes

and see how this leads to our three-way distinction.

Part relationships in general can be divided along the lines of exclusive and

shared [107. 145]. Exclusiveness refers to the constraint tha t the ownership of a

meronym be restricted to a single holonym. In other words, a meronym may be part

of only one holonym. Exclusiveness represents perhaps the most intuitive constraint

89

which may be imposed on objects in a part-whole relationship as it is a fundamental

characteristic of physical assemblies such as boats, bridges, and buildings, things

th a t one can “go out and kick” [39]. Two boats, naturally, cannot share the same

muffler.

(boat)
892

(boat)

(muffler)
9012

2001

These 2 occurrences
are not permitted

F ig u re 4 .3 A muffler owned exclusively by a boat

Beyond th a t fact, it is also the case that a boat and car cannot share a muffler

either. Hence, in a database (as illustrated in Figure 4.3), the exclusive constraint on

the part relationship between the classes boa t and m u ff le r must have implications

on the part relationship between c a r and m u ff le r , and, in fact, on any part rela

tionship tha t m u ff le r participates in as the meronymic class. Therefore, to be more

precise, our original statem ent of exclusiveness must be revised to read: a meronym

may be part of one and only one holonym, regardless o f the holonym's class.

90

book

proceedings compilation

article conference_program

% ' - p — ■■ ------------

\ /
A L.
abstract

F ig u re 4 .4 A document database schema

While this constraint is valid for physical assemblies, there are other situations

where it is too rigid. For instance, consider a document database m aintained for

all the publications of an organization which sponsors technical conferences and

workshops. A partial schema for such a database is shown in Figure 4.4 where there

appear six classes, p ro ceed in g s, a r t i c l e , a b s t r a c t , conference_program . book,

F ig u re 4.5 Class B in n part relationships

91

and c o m p ila tio n . Part relationships in this schema are indicated by the generic

symbol. We see that a proceedings has articles as parts, and an article, in turn, has

an abstract as a part. (Note that the multiplicity of the part relationship between

p ro c e e d in g s and a r t i c l e is not made explicit in this diagram. This issue will be

addressed later.) Furthermore, it is obvious th a t two articles cannot share the same

abstract, so an exclusive reference constraint should be imposed on the relationship

between their respective classes. However, a conference program might contain the

abstracts of the articles appearing in the proceedings. Therefore, while an abstract

cannot be shared among articles, it can be part of both an article and a conference

program.

A similar situation exists in the case of articles and their relationships to proceed

ings and compilations. While an article cannot appear in more than one conference

proceedings, it is often the case that selected articles from conferences are reprinted

in compilations (i.e., books comprising articles of related interest). Again, even

though a given article may only appear in a single proceedings, it can also be part

of some compilation.

As another example, consider the case of a musical document publication OODB

system. In music publication, the score for an orchestral composition is typically

available in two formats, the full (or ensemble) score and individual instrum ent

scores. The “staff object” representing the music to be played, say, by the first

violin section in Beethoven’s Ninth Symphony can be modeled as part of both an

92

ensemble score object and an instrument score object. However, it cannot be part

of more than one ensemble score because different musical compositions do not have

identical music played by the same instrument. For example, the music for the first

violin section is not the same for Shostakovich’s N inth as it is for Beethoven’s Ninth

(Figure 4.6). Thus, we do want an exclusive ownership restriction enforced by the

part relationship between the classes ensem ble_score and s t a f f : but we do not

want this part relationship to impose this constraint on other part relationships (in

particular, the one between in stru m en t_ sco re and s t a f f) . We illustrate this point

in Figure 4.6.

(ensemble_score)
Beethoven

9th Symphony

(instrument_score)
Beethoven

9th Symphony
1st Violin

(ensemble_score)
Shostakovich
9th Symphony

This one is fine

(staff)This occurrence
is not permitted

F ig u re 4 .6 Part relationships in a music publication database

93

Score Expression Seq. I Allegro accel. rit.

Violin

Viola

Cello

1

Figure 4 .7 An ensemble score and its score expression sequence

In this modeling environment, vve find tha t the same constraints are re

quired for the part relationship between the classes ensem ble_score and

sco re-ex p ressio n _ seq u en ce (Figure 4.7). A score expression sequence is the line

above the staff of a musical score containing annotations such as “Allegro” (e.g.,

see the musical excerpt in Figure 4.7). As tempo markings and other such perfor

mance notation vary from score to score, a score expression sequence object will

always be part of only a single ensemble score. In contrast, the same score ex

pression sequence will always constitute a part of all instrum ent scores associated

with a particular ensemble score. Thus, once again we would like to impose the

exclusive ownership constraint on the part relationship between ensem ble_score

and score_expression_sequence and not have it affect tha t between the classes

in s tru m en t_ sco re and score_expression_sequence (which, itself, happens to be

shared). In this situation, and in those discussed above, the exclusive ownership

restriction is inappropriate.

94

In all these scenarios, what is required is the imposition of the exclusivity con

strain t with a single holonymic class (e.g., on a r t i c l e in relationship to a b s t r a c t)

and its relaxation with regard to other classes. For this reason, we distinguish be

tween two types of exclusiveness:

• Global exclusiveness - Enforces the exclusive reference restriction on the entire

database topology.

• Class exclusiveness - Enforces the exclusive reference restriction only within a

single class, and relaxes it otherwise.

Those part relationships which are neither global exclusive nor class-exclusive are

referred to as shared , in which case a meronym may be shared freely among any

num ber of holonyms. Such is the case for the part relationship between a r t i c l e

and co m p ila tio n , where an article may appear in any number of compilations.

Actually, the example of sharing just mentioned is a special case of the more

general limited-sharing supported by our part relationship. Such a part relationship

enforces a range constraint on the number of holonvms that a part may be owned by.

For example, we may wish to restrict the number of compilations that an article can

appear in to, say, no more than three in order to satisfy some licensing agreement.

Or if we choose to model students as parts of the sections tha t they are registered

for. then we mav want to require that a student be registered for at most six sections

in any one semester. Likewise, the navy may model its forces in such a way tha t a

battleship is part of between one and two fleets.

95

To formalize the different notions of exclusiveness and sharing, constraints are

placed on the cardinalities of the holonym sets of the instances of the meronymic

class. First, global exclusiveness: Assume that there exist n part relationships

P b . A \ , P b . a 2 '. • • •; P b A h i as >n Figure 4.5, with constituent relations Oi,o2, . . . ,o„,

respectively.

D efin ition 3: The part relationship P b . a , >s global exclusive (i.e., \ = global-exclu

sive) ifV 6€ E (B) , 3 a £ E(A{) such that bo , a =4> |/fo ,(^)| = l AVj ^ i, \H<>j(b)\ — 0.

As we see. the global exclusive part relationship P b . a , not only places constraints on

the holonym sets defined with respect to itself, but on all holonym sets defined with

respect to the class B. Thus, its existence has ramifications on the entire database

topology, placing limits on "part” references to instances of B from instances of its

holonymic class A, as well as from instances of all the other holonymic classes of B .

D efin ition 4: The part relationship P b . a class-exclusive (i.e.. \ = class-exclusive)

if VAe E(B) . \JIo(b)\ < 1.

In other words, the part relationship between a meronymic class B and holonymic

class ,4 is class-exclusive if o is a partial function from E (B) to E (A) and the

relationship does not impose the additional constraints of global exclusiveness. It

should be noted that global and class exclusiveness are equivalent if the meronymic

class participates in only a single part relationship.

To formally define the limited-shared part relationship, we will need to modify the

quintuple into a more deeply nested one in order to include the additional information

96

(namely, the bounds of the range restriction). In the following definition, N denotes

the natural numbers { 0 ,1 ,2 ,...} , and Z+ is the set of positive integers.

D e fin itio n 5: The part relationship Pb .a = (o, (limited-shared,p,q),K , 6. v), with

o, k , 6, and v defined as in (4.1) and (4.2), and p £ N , q £ Z + U {oo}, and p < q,

is called a limited shared part relationship and satisfies the following: V6 £ E (B),

P < \Ho{b)\ < q. The condition q = oc means that the upper bound does not apply.

Theoretically, the symbolic value limited-shared appearing in the triple at the second

position of the quintuple is extraneous. It is used strictly for the sake of readability

to make the interpretation clear. Following the terminology of [107], we will refer

to a lim ited-shared part relationship with a lower bound of 0 and an upper bound

of oo (i.e., one with no cardinality constraints on the num ber of wholes per part) as

simply shared.

boat car

% f

muffler

F ig u re 4.8 Global exclusive part relationships

YVe add an "X” to the generic graphical symbol to indicate that a part relation

ship is global eXclusive (Figure 4.8). An “X” inscribed in a rectangle adorns the

generic symbol in the case of class eXclusiveness. As sharing implies the lack of any

97

book

proceedings compilation

A L
article conference_program

abstract

F ig u re 4 .9 Revised document schema with class exclusiveness and sharing

exclusivity constraints, it is indicated by the lack of these two embellishments. Class-

exclusive and shared relationships can be seen in the revised publication schema of

Figure 4.9.

section

>5
ii
a

 u___
student

F ig u re 4.10 Students limited to at most six sections

In the case of a limited-shared part relationship, we modify the class-exclusive

symbol slightly to incorporate the desired cardinality constraint. Instead of drawing

98

an “X” inside the rectangle, we write the lower bound in its left half and the upper

bound in its right. Either of the bounds may be omitted by writing in place

of a number. This representation was chosen because, as can be gathered from the

definitions, class exclusiveness is a special case of limited sharing. To be consistent

with the rest of our notation, if it is essential for a part to be in a whole (i.e., if

the bounds are both 1), then we inscribe a circle inside the rectangle to indicate the

essentiality. In Figure 4.10, we show that a student is limited to enrolling in at most

six sections.

holonym P a r t i c l e

meronym 'proceedings

article

proceedings

article-PART-proceedings

Figure 4.11 Realization of exclusiveness

The realization of the semantics of this characteristic dimension is based on the

manipulation of the relationship iu,\ defined on the meronymic class in the generic

realization. This manipulation encompasses two aspects. The first involves modi

fying the relationship's cardinality which was originally defined as single-valued. It

remains that way for the two kinds of exclusiveness but is changed to multivalued for

sharing. The second aspect revolves around the augmentation of the relationship’s

99

writer method [1 0 0], using it as a facet in the sense of frame-based knowledge repre

sentation systems [55,115, 123. 207]. In the language of tha t area, the facet monitors

the value of the "slot” u?.4 to ensure its integrity. In particular, the facet is used to

realize the insertion semantics or "make-component” rules [107] of exclusiveness and

sharing.

The class-exclusive part relationship is realized with re4 single-valued as in the

generic realization. Consider, for example, the realization of the part relationship

(minus the path methods) between a r t i c l e and p roceed ings , shown in Figure 4.11.

With ^ p ro c e e d in g s single-valued, an instance of a r t i c l e may be related to just

one instance of a rtic le -P A R T -proceed ings. This, in turn, implies that it can only

be part of a single p roceed ings , which means that such a proceedings has exclusive

ownership of the article with respect to all other proceedings. The configuration,

though, in no way precludes an object of another class (e.g., a compilation) from

also having the article as its part. Hence, the expansion as given seemingly cap

tures the desired class-exclusive semantics. However, there is a subtlety which is

not captured, namely, the constraint placed on this part relationship by any global

exclusive part relationships that the meronymic class happens to participate in. By

definition, a global exclusive part relationship affects the insertion semantics of class

exclusiveness as follows: If a meronym is already part of some holonym with respect

to a global exclusive relationship, then the meronym cannot be made part of another

100

holonym with respect to a class-exclusive relationship. A facet for wa will enforce

this additional constraint, as discussed below.

Global exclusiveness, in isolation, can be realized using the configuration for class

exclusiveness because a meronym must still be part of at most one holonym. But,

while by its very existence it imposes constraints on all other part relationships

(involving the given meronymic class), a global exclusive part relationship is con

strained by these in turn. Its definition does not call for it to override any previously

established part connection for a given meronym involving another part relationship,

be it shared, class-exclusive, or global exclusive. Therefore, before allowing the es

tablishment of a part connection with respect to the global exclusive relationship, it

must be verified that there exists no other part connection involving the meronym of

interest. This precondition is monitored by the “global exclusive ' 1 facet, which will

be considered shortly.

P a r t i c l eholonvm

meronym
c o m p ila t io n

compilationarticle

compilation

article-PART-compilation

Figure 4.12 Realization of sharing

101

The configuration for a shared part relationship is obtained by making w a mul

tivalued. which implies that a meronym may be associated with many “part rela

tionship" objects and, therefore, with many holonyms. The realization of the part

relationship between a r t i c l e and co m p ila t io n is given in Figure 4.12. (Recall that

the dual line of the relationship ^ c o m p ila t io n indicates its multivaluedness.) As

with class exclusiveness, the insertion semantics of a shared part relationship is af

fected by the existence of any global exclusive relationships. This, too, is captured

by a facet for w a , which is discussed below. Due to the fact that wa is multivalued,

the selector method for the holonym A is multivalued as well. In our path notation,

it is written as:

A () : 10a —► {B-PART-A} : @holonym —>{/!}.

The initial traversal across wa now yields a set of relational objects. After that, the

relationship holonym is applied iteratively to this set, yielding a set of A, the holo

nyms of a given meronym. As an example, see Figure 4.12 again, where the selector

method "compilation" is written as a dual, dashed line to indicate its multiplicity.

The realization of the limited-shared part relationship is similar to that for the

shared, except that the relationship id.4 now has a cardinality range restriction im

posed 011 it. This can be seen in Figure 4.13 where students are required to be part

of at least three and at most five sections.

102

Pstudentholonym

meronym

sectionstudent

section

student-PART-section

Figure 4.13 Realization of limited sharing

The different facets for 10.4 that we have been discussing essentially encode a

variation of the "make-component” rule of [107] which here is supplemented by the

class-exclusive/global exclusive distinction. Depending on the type of part relation

ship, either global exclusive, class-exclusive, or shared, one of three different facets

replaces 10.4 ’s ordinary writer method. Each of these three defines a precondition

tha t must be met before the assignment of to4 , and hence the establishment of a

part relationship occurrence, can take place.

As its precondition, the global exclusive facet verifies that the target meronym

does not belong to a holonym with respect to any other part relationship. To be more

specific, assume once again that we have the schema configuration as in Figure 4.5,

with meronymic class B in n different part relationships and Pb .a , global exclusive.

The precondition can then be stated as: For the target meronym, each to.4 ; (j ^ i)

must either be nil when it is single-valued or the empty set 0 when it is multivalued.

The facet for to .4 , is specified in the following. Recall that to.4 , is single-valued for

103

a global exclusive part relationship and is assigned the OID of a single relational

object [denoted o(b, a)] if the precondition is satisfied. (We use ” to denote the

assignment operator.) Also note that we use the shorthand notation -iwAj for the

above said condition, that is, w Aj equal to nil or 0 , depending on its cardinality.

GLOBAL EXCLUSIVE FACET u;.4 ,[o(6 ,a)]

IF Vj : 1 < j < n, ->wA}

THEN wAi <— o(b, a)

ELSE Signal Failure.

The ELSE clause is used to indicate to the invoking "make-component” transaction

that the necessary precondition was not satisfied and the part connection could not

be established as requested.

In the case of class exclusiveness, the facet need only check those w Aj ’s associated

with global exclusive part relationships for nil, as its precondition. This is because

if the target meronvm already participates in one of these, then it obviously may

not participate in the desired class-exclusive relationship. However, as the mero-

nvm may participate freely in any other class-exclusive or shared part relationships

simultaneously, these have no bearing on the assignment and can be ignored. So,

assuming that P n . A k 0 n Figure 4.5) is class-exclusive, its facet looks like:

104

CLASS EXCLUSIVE FACET ivAk[o(b,a)}

IF V? such that Pb ,a} is global-exclusive, -uu

THEN w Ak *— o{b,a)

ELSE Signal Failure.

The precondition of the facet for a limited-shared (and, likewise, a shared part

relationship) is identical to that for class exclusiveness. But since w A is a multivalued

relationship (i.e., a set of OIDs), the assignment now involves the union of the facet’s

argument (taken as a singleton set) with the set of existing referents (i.e.. wA s current

value). The facet for a shared Pb ,a , looks like:

SHARED FACET ^ , [0 (6 , 0)]

IF V7 such that Pb ,a , 's global-exclusive, ~>wA

THEN w A, <— iva , U {u(b,a)}

ELSE Signal Failure.

Of course, for the limited-shared part relationship, the range restriction on wA must

also he enforced. This is handled automatically by the range-restricted relationship

in the schema of Figure 4.13. and we do not need to explicitly include it in our

precondition.

4.4 T he C ard in a lity /O rd in a lity D im en sion

The next characteristic dimension of the part relationship deals with the ways in

which parts from a single meronymic class can be grouped together to form wholes.

105

In our part model, there are three ways to do this as reflected in the domain of this

dimension:

C — {range-restricted, ordered-definite, ordered-indefinite) .

Actually, the latter two are related, and so the model offers two distinct possibilities

for the combination of parts:

1. As sets, possibly with cardinality restrictions.

2. As ordered lists where each part functions in some capacity, according to its

position in the list.

The first of these is employed when the model does not call for any inherent ordering

of the parts: the parts are collectively viewed as a set which may have explicit range

restrictions imposed on its cardinality [21, 53, 103]. As an example, consider the

model of a newsletter in a document database. A newsletter can, among other

things, be viewed as a collection of articles of no particular order, whose layout is

determined by an algorithm defined as a method for newsletters. As there is normally

a strict page limit on such documents and a newsletter needs to contain articles on

a variety of subjects in order to appeal to all its readers, we may want to hold the

number of articles within some tight bounds such as five to six, as seen in Figure 4.14.

The portion of the database state appearing on the right side of the figure represents

106

an integrity violation because the newsletter there has too few articles. That on the

left side constitutes a valid state of the database.

Integrity Violation
i----------------------------

S \
(newsletter)

3287
v _____/

?
I
\
1

 ?----(article)
772

V _ - J

F ig u re 4.14 Newsletters in a document database

In many modeling situations, the parts from a given meronymic class function

in different capacities within the holonvm. For instance, the “text segments,” which

make up the minutes of a meeting, ordinarily assume three different capacities: the

topics considered, an account of the general discussion, and the decisions arrived

at. The model in Figure 4.15 showing an instance of minutes with a set of three

text segments is inadequate because it fails to distinguish between these. The topics

segment, discussion segment, and decisions segment cannot be distinguished from

one another.

Valid State

(newsletter)
(article)

(article)

(article)

(article)
(article)

107

(minutes)
877 O — -----------

set of 3
instances

(text_segment)
111

(text_segment)
209

(text_segment)
4004

F igure 4.15 Inadequate model for the minutes of a meeting

To properly model the minutes, there must be an ordering or explicit naming

of the capacities of its various text segments. This is illustrated in Figure 4.16,

where the part link occurrences between instances have been labeled according to

the capacity of the part within the whole. Because there are a fixed and definite

number of parts of the given type, we refer to this case as an ordering o f definite

number (ODN).

An ordering o f indefinite number (OIN) is used when the number of parts varies

or cannot be determined a priori, i.e.. at the time of class definition. Modeling the

part relationship between an article and its sections is just such an application. An

108

1 0 “ - _______

(minutes)

877

“topics”

‘discussion”

(text_segment)

111

(text_segment)

209

- b .

‘decisions ’ \ (text_segment)

F ig u re 4.16 An adequate model for the minutes

article comprises an ordered sequence of sections, but the size of the sequence varies

from article to article and cannot be fixed in advance.

As in the case of the limited shared part relationship, to formally define P b ,a in

t his context, we will need to modify the quintuple into a more deeply nested structure

to include additional information. The range-restricted version of the part relation

ship requires the addition of a numerical range, while ordering requires revisions to

the base relation o.

D efin ition 6: The part relationship P b . a — (<>• \ , { range-restricted, m ,n) , 8, u) , with

o. \ , 6. and u defined as in (4.1) and (4.2). and m £ N , a £ Z+ U {oo}, and m < n,

is called a range-restricted part relationship and satisfies the following: V a €. E(A) ,

in < |.Uo(a)| < n. The condition n — oc means that the upper bound does not

apply.

109

Once again, the value range-restricted appearing in the triple at the third position

of the quintuple is extraneous. It is retained to make the interpretation clear.

newsletter

11 (5, 6)
II

 U_____
article

F ig u re 4.17 Newsletter schema

book

~ T
I
i
i

index

F ig u re 4 .18 A single-valued part relationship

Pictorially, the range-restricted part relationship is a twofold modification of

the generic symbol. First, the dashed line is doubled up in order to convey the

relationship's multiplicity (‘‘multiple lines represent multiple parts”). Second, its

numerical range restriction is placed along side the line in parentheses. The range,

as defined above, is interpreted as including both endpoints. The values m — 0 and

?? = oo signify the omission of the respective bounds and are by convention written as

The schema representation for the newsletter example is shown in Figure 4.17.

110

bibliography

V

II
II

 U_____
bib_entry

Figure 4.19 A multi-valued part relationship

essay

" (5)
II

 u ______
paragraph

Figure 4 .20 A fixed-cardinality part relationship

There are many interesting special cases of range restriction which we denote

with a variety of symbols. An obvious case of interest is m = 0 and n — 1, where

the converse of o (which denotes the “lias part’’ direction of the relationship) is

required to be a partial function from E (A) to E (B) . For this case, referred to as

the single-valued part relationship, the numerical range is omitted altogether and the

generic symbol’s single-lined connection is restored to convey the single-valuedness

(Figure 4.18). (The mnemonic: "a single line represents a single part.”) With m = 0

and n = oo (i.e.. no constraints at all on the cardinalities of the meronym sets), we

have what we call a multi-valued part relationship. Here, the range is also omitted,

but the dual-line is retained (Figure 4.19).

I l l

article

bibliography

Figure 4.21 Article with an essential bibliography

article

T
 U___

section

F igure 4.22 Article with at least one constituent section

When in = n, Pb.a is said to be a fixed-cardinality part relationship. Instead of

writing two identical numbers side bv side, we consolidate them into a single number

within parentheses as in Figure 4.20. A separate notation is provided for the special

case where in = n = 1 . that is. the case of essentiality. Essentiality refers to the fact

that the mapping from E(A) to E{ B) is essential or total, with all holonyms having

exactly one part of the given type. Stated differently, it is essential that a holonym

have a part ol that type. To represent this, we forgo the parentheses and adorn the

single-valued part relationship symbol with a circle. (This convention is consistent

with that used in [2 1 1] and the one we used for ordinary essential relationships in

Chapter 2 .) We see in Figure 4.21 that an article is required to have exactly one

112

bibliography. Multi-valued essentiality denotes a “one or more” semantics and is

represented by the multi-valued symbol adorned with a circle (Figure 4.22).

The part relationship which models ODN requires a modification to o, as follows:

D efin i t io n 7: Let (s i , s 2, • • • , s n) be an n-tuple of selectors with n > 1. The ordered

part relationship o f definite number is defined as P b ,a = (<>^\ X> ordered-definite, 6, v) ,

where = (o^D, o ^ , . .. , o ^ n*) is an n-tuple of relations from E (B) to E (A) such

that for 1 < i < n, the converse of is a partial function from E (A) to E(B) .

If (b, a) € o^'*, then b is said to be part of a in the capacity of s,-. The condition that

the converses be partial functions means that for a given holonym each capacity will

be filled by at most one meronym.

With o replaced by an n-tuple of relations, the definitions of the meronym and

holonym sets, and consequently the constraints of the previous characteristic dimen

sion. become inapplicable. To remedy this, we define o = Ui<i<n0*s'* f°r an ODN

part relationship and note that (b.a) £ o indicates tha t b is part of a independent of

capacity.

The graphical schema representation for the ODN part relationship involves the

replacement of the numerical range bv the list of selectors £q, s2, . • •. *’»i written in

square brackets. In Figure 4.23. minutes are defined to have text segment parts with

capacities topics. discussion, and decisions.

An OIN part relationship is defined similarly to that above.

113

minutes

^ [topics, discussion, decisions]
I I

 II

text_segment

Figure 4 .23 Minutes with an ordered list of parts

D e f in i t io n 8 : The ordered part relationship o f indefinite number is defined as Pb ,a =

(<>(s\ y, ordered-indefinite. 8, i>), where = {o(sd] is a sequence of relations from

E (B) to E (A) such that Vi G Z +, the converse of o*sd js a partial function from

E{ A) to E(B) .

In this case, if (b.a) G ob>. we say that b is part of a in the capacity of its i ^ 1 part with

respect to P b ,a - This part relationship defines, for each holonym, a partial mapping

of the positive integers to E (B) , and, as above, it comprises a sequence of relations

cTd rather than a single relation o. Therefore, we similarly define o = ^

should be noted that Definition 8 does not force any continuity on the sequence of

meronyms associated with a holonym. So, while it is being written, an article can

have, say, a section three without a section two.

Graphically, the schema symbol for OIN is nearly identical to that for ODN.

Instead of the selectors, however, an ellipsis is placed in the square brackets to

convey the indefiniteness (Figure 4.24). In some situations, it may be necessary to

label the sequence of parts in order to improve readability. For example, the chapters

114

of a book might be modeled as text segment objects and not as chapters per se. So,

a label “chapter” can be placed in front of the brackets to make clear the exact

function of the text segments (Figure 4.25).

The realization of range-restriction is accomplished by placing the restriction

directly on a multivalued pg of the generic realization. In this way, holonyms are

forced to have some number of associated relational objects and, hence, parts in

turn. The realization of the newsletter example is shown in Figure 4.26, where the

relationship pa r t i c l e l̂as a range-restriction of 5-6.

Because the relationship pg is now multivalued and there may exist many parts

per holonym, the selector method B defined on the holonymic class to retrieve the

parts is, in general, multivalued, too. It is written in our path notation as follows:

B() : pg —► {B-PART-A} : Qmeronym —> {B }. (4.3)

The initial transition across pg yields a set of relational objects. The next transition,

which iteratively applies meronym to that result, produces the desired set of parts. In

book

If
11 t...j
II

 II
chapter

F igure 4.24 Books with an indefinite number of chapters

115

book

>r
^ chapter[...]
II

II
text_segment

F ig u re 4.25 Books with text segments as chapters

holonym

meronym ^ n e w s l e t t e r

article

newsletter

article-PART-newsletter

F ig u re 4.26 Realization of range-restriction

the cases ol single-valuedness and essentiality, the iteration in the second transition

is degenerative, and the resulting set reduces to a singleton.

The basis of the realization for the two types of ordering is the addition of an

attribute capacity to the definition of the part relationship class B -P A R T -A (see Fig

ure 4.27: note that /;g is multivalued without a range-restriction). This attribute, as

its name implies, serves as a discriminator for the different capacities that a part mav

function in. (As such, it may be referred to simply as the discriminator). Its domain

is either the set of specified selectors (i.e., a finite subset of the type STRING) in the

116

PBholonym

capacity

meronym w .4

B-PART-A

F ig u re 4.27 Realization of ordering

case of ODN. or the positive integers for OIN. So, for example, if the object o(b,a)

is an instance of B -P A R T -A and capacity[o{b,a)\ = x, this means that b 6 E (B) is

part of a 6 E (A) in the capacity x.

In conjunction with this new attribute, the selector method B for the parts must

be refined to accommodate the notion of capacity. In particular, it must traverse

the schema path occurrence (from A to B) satisfying the condition that the part

(i.e.. the terminus of the path) serve in the capacity supplied as an argument to the

method. Satisfaction of the condition is determined by examining the terminus of

the path from ,4 to the discriminator. Since our own path notation is not powerful

enough to express this selection query, we turn to the more general concept of path

expression as defined in [104]. Using a notation based on that of XSQL [104], the

method B is written in the following, where .4 is the holonymic class, and B the

meronvmic class.

117

METHOD 13(x : capacityType) —> B

SELECT y

FROM A z OID 2

W HERE z.pB-B-PkKT-k.meronym[y]

and z. pg.B -P A R T -A . capacity [a;]

The variable 2 is bound to the instance of A for which the method is invoked, as

lL
expressed in the "FROM” clause. (As normal, it can be taken as the implicit 0

argument to the method.) As seen 011 the signature line, the method itself is defined

to return the instance b (of class B) which serves as a part of 2 in the capacity

x (the formal parameter of the method). The body of the method is a selection

query written in XSQL notation. The first conjunct of the “W HERE” clause states

the obvious condition that the result y must be part of z with respect to the given

part relationship (independent of capacity), and is analogous to the previous path

notation for 13. The second says that y must fill the given capacity x in 2 .

For flexibility, we alternatively allow 13's argument to be omitted, with the con

sequence that all parts, regardless of their capacities, are returned as the result. In

this case. 13 reduces to the method (4.3) above.

Part ordering, be it ODN or OIN. calls for a slight modification to the realizations

of global and class exclusiveness in order to maintain the proper semantics. Both

types of exclusivity dictate that a part have no more than one holonym and enforce

this by making the relationship wA single-valued. Neither, though, says anything

118

about a part functioning in more than one capacity within the same holonym. But

with w A single-valued, this is inherently disallowed, adding a constraint not called

for by either. To correct this, the following modifications are made to the realization

of a given global or class exclusive part relationship in the presence of ordering.

First, its relationship wa is made multivalued, and the assignment carried out by

its facet is changed to a “union” statement like that in the shared facet. Second,

the precondition of the facet is augmented with a clause requiring that the following

hold: Either the target meronym does not already participate in the given part

relationship, or, if it does, it does so with respect to the same holonym in a different

capacity.

4.5 T he D ep en d en cy D im ension

In our part model, a part relationship can be endowed with different forms of de

pendency as specified by the domain of the third characteristic dimension:

6 £ D — {part-to-whole, whole-to-part, nil}.

The third value indicates that the part relationship lacks any dependency semantics.

Earlier, we discussed the philosophical issue of ontological dependency in the

context of parts and wholes. Wholes may be said to lose their identity or go out

of existence when all their parts are removed or destroyed. In OODB modeling,

dependency is a more mundane notion, used more for the sake of convenience than

119

as a conceptual tool. Dependency, in this context, describes the deletion semantics

of parts and wholes. If, for example, a part b is made dependent on a whole a. and

the whole a is deleted, then the part b is deleted automatically.

Such dependency semantics is often desired when modeling with parts [107], es

pecially when the holonyms are large objects comprising numerous meronyms. Such

a scenario is illustrated in Figure 4.28 where we show a CAD drawing along with its

many parts (in the figure, one part relationship symbol denotes all the occurrences).

Having the parts deleted in one clean sweep on the deletion of the drawing as a

whole would alleviate the burden of searching these parts out and deleting them

explicitly. As is meant to be conveyed by the picture, such a process can be tedious

and time-consuming. For this reason, we include part-to-whole dependency in our

model.

a □

(CAD_Drawing)

a a Q

a D ° o °

' --- ' a a CD
□ 0

Deletion here ----------------- W agates ^ Deletion of all
into

objects here

F ig u re 4.28 Dependency of meronyms on holonym

120

Of course, guided by philosophical insights, one may view a specific type of

part in a part-whole configuration as a defining element for the whole, without

whose existence the whole becomes rather insubstantial. Consider, for example,

tha t without its frame, a bicycle may be seen as nothing more than a collection of

“spare" parts. In this case, it makes sense to propagate the deletion of a frame into

the deletion of its containing bicycle. We refer to the situation where the deletion of

the part propagates into the deletion of the whole as whole-to-part dependency and

include it as an alternative in our part model.

To be more precise about the two types of dependency, we define part relation

ships which exhibit these characteristics in the following. There, we use the notation

del (x) to denote the application of a method to delete the instance x [107]. (Cf. the

methods dellnstance and destroy in Chapter 6 .)

D e f in i t io n 9: The part relationship Pr ,a is part-to-whole dependent (i.e.. 6 =

part-to-whole) if Vr/. E E(A) dtd(a) => V/) E E{ B) such tha t b o a A Ho(b) = {«},

del(b).

D efin i t io n 1 0 : The part relationship Pb ,a is whole-to-part dependent (i.e., 8 =

whole-to-part) if V6 E E (B) del(b) => Vr/ E E(A) such that b o a A Mo(a) = {b},

del (a).

If the value of 8 is nil, then neither of the above deletion semantics is applicable. It

will be noted that in both cases, the condition requiring that the independent deleted

item (e.g., a in the case of part-to-whole dependency) be the only existing referent

121

implies a “multivalued” deletion semantics in that the deletion is not propagated

until the set of referents on which a given object depends becomes empty (cf. [107]).

bookT
§

_________ i__________
table_of_contents

F ig u re 4 .29 Table of contents dependent on its book

bicycle

frame

F ig u re 4.30 Bicycle dependent on its part frame

To express the dependency in our graphical schema representation, an arrowhead

facing in the direction of the dependency (i.e., against the direction of the deletion

propagation) is placed immediately behind the diamond head. This is systematic

with our notation for dependency in Chapter 2. Figure 4.29 shows the dependency of

the table of contents on its book, while Figure 4.30 shows the converse dependency

of bicycle on its constituent frame.

The realization of the dependency semantics is accomplished by making the con

nections along the path between the two classes dependent in the direction of the

dependency. This means that for part-to-whole dependency both 10 .4 and holonym

122

are made dependent, as in Figure 4.31 where we show the realization of the schema

from Figure 4.29. Likewise, for the whole-to-part case, the relationships ps and

m eronym are made dependent.

holonym P ta b le .o f .c o n te n t s

meronym

book

table_of_contents

table_of_contents-PART-book

F ig u re 4.31 Realization of part-to-whole dependency

While the dependency dimension constitutes a set of imperatives tha t explicitly

alfects the deletion semantics of parts and wholes, there is also deletion semantics

implied bv the cardinality constraints of the previous characteristic dimension. For

example, if we say that an article must have one and exactly one abstract (i.e., it is

essential for an article to have an abstract), then we are committed to disallowing

the deletion of any abstract which is currently part of some article and being used

to satisfy the foregoing constraint. As we will now see, the combination of these

constraints and imperatives across different part relationships in an OODB schema

can lead to certain conflicts when it comes time for enforcement.

123

F ig u re 4.32 A part schema with possible deletion conflicts

Consider the schema shown in Figure 4.32 which contains three classes A , B ,

and C. There, we see two part relationships: A shared, part-to-whole dependent

relationship between B and A and a shared, essential relationship between B and

C. The presence of these two part relationships implies the following:

1 . An instance of B may be a part of an instance of A and an instance of C at

the same time.

2. Deleting an instance of A requires deleting its part which is an instance of B.

3. An instance of C must at all times have one and only one part B.

Xovv, assume that there exists an instance b of B such that b is part of an instance

<i of A and is. at the same time, part of an instance c of C. [This is permitted

by (1).] Furthermore, assume that a is /■>’s only holonym from the class A. What

happens, at this point, if an attem pt is made to delete a ? According to (2). b must

be deleted. However, (3) requires that c always have exactly one part which is an

instance B. Deleting b would deprive c of such an essential part. Therefore, we have

124

t,wo conflicting imperatives which are products of the two part relationships: Thou

shalt delete 6 , and thou shalt not delete it.

While such conflicts are not an inherent part of the above schema (i.e., the conflict

does not necessarily arise for all instances of i?), some measures must be decided

upon in the context of a realization to make certain tha t such conflicts are resolved

when they do come up. One possible measure, for example, is to defer a decision on

the m atter to some external agent, such as a database user (the warning semantics

option) [127]. Another choice would be to raise a system exception, and invoke an

exception handler to break the deadlock (the error semantics option). Yet another

option would be to prioritize the part relationships and to defer to one over the other.

This latter approach is the one employed in our VML metaclass realization discussed

in Chapter 6 , where we adhere to the conservation o f cardinality constraints , giving

strict existence constraints priority over dependency. So. in the above scenario, the

object b would not be deleted because the essentiality constraint would override the

dependency.

Other issues such as this, affecting the deletion semantics of parts and wholes,

are implied by certain part relationship configurations within a schema. These will

be addressed when we take up the matter of the “destroy" method in the context of

our metaclass realization in Chapter 6 . There, we present rules which, along with

the constraints and imperatives of the various characteristic dimensions, govern the

deletion semantics within a part hierarchy.

C H A PTER 5

V A LU E PR O PA G A T IO N A N D D E R IV E D A T T R IB U T E S IN
O B JE C T -O R IE N T E D D A T A B A SE PA R T H IE R A R C H IE S

In this chapter, we describe the notion of value propagation and its concomitant de

rived attributes. In the first section, we introduce the last characteristic dimension of

the part relationship, the value propagation dimension. In this context, we present

the various kinds of propagation that can take place across a single part relationship.

As we will see, this dimension provides a powerful means for defining derived a ttrib

utes of classes with respect to the part relationship. After that, we give a summary

of the interaction of the various characteristic dimensions of the part relationship.

Finally, we present the notion of generalized derived attribute which may be defined

in terms of value propagations across many part relationships.

5.1 T he Value Propagation D im en sion

There are times, when modeling with parts and wholes, that a certain feature of a

part is naturally assimilated as a feature of its whole, or vice versa. For example,

the age of a plane may be modeled as the age of its airframe rather than as an

intrinsic property of the plane as a whole [145]. Likewise, the color of the plane can

be taken to be the color of its fuselage, or alternatively the plane may be regarded

as multi-colored with the set of colors being obtained, for example, from its fuselage,

wings, and tail. In the former case, the value of age, rather than being duplicated

as an a ttribute of plane, should be stored solely with the airframe and propagated

125

126

upward on demand (Figure 5.1). Age, in this sense, is a derived property of plane.

Such derived schema components have been a mainstay of traditional semantic data

modeling [94]. Their use tends to make a database’s conceptual schema a more

accurate reflection of the application domain it is designed to model. They also

promote more concise representations and alleviate the burden of explicit integrity

maintenance and the anomalies associated with redundant data storage [46]. In this

chapter, we introduce formal notions of value •propagation and derived attribute to

address these issues. Informally, value propagation can be described as the flow of

data values across the part relationship in either direction, allowing for the access of

additional, derived properties at the receiving class.

plane

G E >

i
i
R
I
a

airframe

(plane)

propagates to

(airframe)
1001

age= 2 yrs

F ig u re 5.1 Age propagated from airframe to plane

In our part model, value propagation is defined in terms of two aspects: (1) An

underlying formal connection between instances (either meronyms or holonyms) and

the da ta values being propagated to them, and (2) a derived attribute of the receiving

127

class complete with its own method and message in the class’s public interface. The

second item gives value propagation a resemblance to IS-A inheritance. In fact, it

may even be referred to as part-whole inheritance, but we try to avoid this because

it leads to confusion and tends to blur the distinctions between the two. Let us

consider some of these distinctions.

The inheritance of IS-A is, at bottom, a template sharing mechanism [73] which

transmits the definitions of all properties from one class (the superclass) to another

i the subclass). The assignment of values for these properties for instances of the

subclass, however, is in no way a function of the IS-A link (except, in the case of

defaults). In contrast, value propagation along the part relationship always takes

place at the instance level, directly between meronyms and holonyms, with values for

a selected property being passed from one object to another. The resulting, newly

defined property of the receiving class, which we shall refer to as a derived attribute,

is inherently given a value through this mechanism. We note tha t there are other

proposals which exploit such instance-to-instance transfers. For example, in [33], a

"value inheritance" between objects is used as a means for supporting versioning.

There, too. it is noted that such value transmissions can. in general, be defined across

any system-defined relationship connecting instances.

Objects can theoretically be represented in a "delta” fashion across IS-A links

; 1 1 . 51. 1 1 0], with basic instantiation occurring at all levels of the hierarchy. With

this division of an object's representation, property inheritance indeed becomes an

128

instance-level affair. Creating an instance of. say, g rad _ s tu d en t would cause the

creation of an instance of its superclass s tu d e n t and an instance of tha t class’s

superclass person, etc. An instance of g rad_studen t might then be forced to obtain

its student identification number from its associated instance of s tu d e n t .

Some attempts to overload IS-A with additional semantics regarding “roles” and

“contexts” [65, 110] also call for the division of an object’s representation and, in

effect, set up a system of value inheritance. Additionally, in framed-based knowledge

representation [207], value inheritance is used across IS-A links to aid in the definition

of “class” frames and to give instance frames default values.

Even if it is granted that the division of an object’s representation among super

classes is conceptually significant, there is no chance that an object of the subclass

will ever have more than one such associated object in a single superclass. This is

key to our second and most important distinction, explained presently.

Value propagation across a single part relationship has the potential for being

ambiguous while inheritance across a single IS-A link does not. In any OODB

model, a given property (i.e.. one with a given identifier) cannot be defined more

than once for the same class. Therefore, only one definition for it will ever cross a

single IS-A link. On the other hand, because value propagation is an instance to

instance phenomenon and the part relationship allows a single holonvm to have many

ineronyms, or vice versa, there is a chance that the source of the propagation may

129

not be well defined. As it turns out. this potential ambiguity gives the mechanism

its power and adds richness to the definition of derived attributes.

In our part model, we offer two ways of dealing with the potential ambiguity. The

first is to require the uniqueness of the source and pass along the value as it appears

there. This we call invariant value propagation. The second approach is to permit

the ambiguity of the source and allow for the specification of a family of symmetric

operators [58] that transform the multiple values into a single value of the data type

of the property. This latter approach is called transformational value propagation.

We also define a special case of this, called cumulative value propagation, similar to

union inheritance in frame-based knowledge representation systems [207], where the

values are collected together into a set of the given type. We have already alluded

to an example of this where the color of a plane is taken to be the set of colors of its

wings (among other things). Another example would be the body of a car obtaining

its color as the union of the colors of its constituent panels.

The foregoing discussion should not be confused with the ambiguity problems

created by multiple inheritance involving many different part or IS-A relationships

[190]. That issue will be addressed in Section 5.3, where we will further extend the

notion of derived attribute so that it may be defined in terms of ambiguous value

propagations across a variety of part relationships. Canonical examples of this are

''weight ' 1 and "cost" (of. e.g., a car), defined as sums of values of properties from all

constituent parts, regardless of class. Or, as another example, the material make-up

130

of a golf club is the set of materials from its shaft, head, and grip. We will see that

this mechanism serves as a natural third resolution strategy for the “multiple value

propagation” (or the “multiple inheritance”) problem within part hierarchies. An

analogue to this solution is not applicable in ordinary OODB IS-A hierarchies.

A third distinction between value propagation across the part relationship and

IS-A inheritance is that the former may be defined in either direction across the

link, whereas the latter ordinarily proceeds strictly downward from superclass to

subclass. We do note, however, that in [179]. an upward inheritance mechanism

along IS-A is proposed for defining generalization classes to integrate other classes.

In AI, where IS-A is sometimes erroneously employed both at the instance and class

level [22], upward inheritance has been used to derive default values [28, 62]. We

have already seen examples of upward propagation from part to whole; an example

of downward propagation is the case where the type-font of a book is passed along

to its constituent chapters.

In our part model, the value propagation dimension may take on six different

values as expressed by its domain:

V — {up, down, up Trans, down Trans, up & down, nil).

A value of up signifies upward invariant propagation: a value of down , downward

invariant propagation. The two succeeding values stand for upward and downward

transformational propagation, respectively. A value of up&down indicates tha t there

131

is both upward and downward propagation, and nil indicates the absence of any

propagation.

Recall that, following [214], we define the (readable) properties of a class as

functions which take instances into values of an associated type. For example, the

a ttribute age is a function which maps instances of class p e rso n into values of

type REAL (or some restricted range thereof). First, let us consider the invariant

propagations.

D ef in i t io n 1 1 : Let k ,\ : E (A) —* r be a property of class A. The invariant downward

propagating part relationship which propagates the value o f 7T.4 is defined as P b .a —

(o, x', k . 8. {down. T>„A)). Here, € A’\ {limited-shared}, t is any data type, and the

function P Ka : B { B) —► r. called a "derived a ttr ibu te .” is defined as follows (where

C £ r) :

!7r.t (a), if 3a 6 Ho{h) A tt . f a) is defined
'

C. otherwise.

We note that the derived attribute, the new property of B. is a function defined

simply as the value of the property tt.i for the holonym a when such a holonym exists

for the given part h. One will note the stipulation in the definition that states that

invariant downward propagating part relationships cannot be limited-shared. This

restriction ensures tha t o is a partial function and. consequently, tha t the derived

attribute V„A is well defined. In other words, it ensures tha t there is no ambiguity

132

regarding the instance a which is the source of the propagation, because there can be

at most one a. In the case where the meronym b does not have a holonym a £ E (A)

or the holonym’s property 7^4 is undefined, then the derived a ttribute takes on the

default value C [164], some constant value of the data type r . This default value

may be omitted with the consequence that the derived a ttribu te may be undefined

for some elements of its domain.

Derived attributes, as with any derived schema components, should fit seamlessly

into their respective classes and be accessible in the same manner as every other

property. Toward this end, we augment the public interface of the class B with

a message to retrieve the value of the derived attribute. The introduction of this

message serves to make the value propagation mechanism transparent in that the

value of the derived attribute is obtained like any other locally defined property.

Following the conventions discussed in [138], this message is chosen to be the same

as tha t for accessing the property 7r.i at class A. So. for example, the interface of

the class c h a p te r would be augmented with the message "font” which, for any of its

instances, would retrieve the value of the derived attribute T>j-on f. defined as:

oman. otherwise.

if 3k 6 Hole) A fon t{k) is defined

133

In this example, we see that if a chapter is not currently part of a book or if the

book has not yet received a font assignment, then the chapter is displayed or printed

using a times-roman font.

Invariant propagation in the direction from the part to the whole is defined

analogously to that above:

D e f in i t io n 12: Let kb • E (B) —► r be a property of B . The invariant upward

propagating part relationship which, propagates the value o f ttb is defined as P b ,a —

(o , \ , (range-res tr ic ted .m ' , i i ') ,6 .(up , 'D nB)). Here. 0 < m' < n' < I, n' ^ 0, r is any

d a ta type, and the function : E (A) —> r, called a derived attribute, is defined

as follows:

7rs(6). if 36 6 Mo(a) A ?rs(6) is defined

Once again, we see that the derived attribute is a function defined simply as the value

of the property 7rg for the part 6 when such a part exists for the given whole a. This

kind of part relationship is required to be either single-valued or essential in order to

ensure that o _l is a partial function and that, therefore, the derived a ttribute is well

defined (meaning that the propagation source, an instance 6, is unique if it exists).

As above, a default value C. a constant of the da ta type r , may be given tor cases

when the given whole a does not have a part 6 E E (B) or the pa rt’s property ttb is

undefined.

134

For the example of age propagating from airframe to plane, the derived attribu te

T>age is defined as:

Here, vve say nothing about the age of a plane when its airframe is missing. As

with downward propagation, the receiving class of the upward propagation (i.e., the

holonymic class) is equipped with a message in its public interface to handle requests

holonymic class p lan e is given the additional message “age" that is used to retrieve

a given plane’s age.

As an example with a default, a piano as a whole could be defined to obtain its

color from its rim, and since we know that most pianos are black, we may wish to

make tha t the default value as in:

whole is not restricted to a simple attribute but may be any readable property of the

'Dage(l) — *
age(r), if 3r £ M<>(/) A age(r) is defined

undefined, otherwise.

for the value of the derived attribute. In the example, the public interface of the

color(r), if 3?- £ iV/<>(n) A color(r) is defined

BLACK, otherwise.

where n is a piano and r is its rim.

According to our definition, the property being propagated from the part to the

class, including relationships or even methods. For example, in a CAD environment

135

[127], we may want to propagate the value of an attachedTo relationship: If a door’s

hinge is attached to some wall, then the door itself is attached that wall. So, the

derived attribute T>attachedTo is defined as:

{ attachedTo (h). if 3h £ Mo(d) A attachedTo(h) is defined

NULL. otherwise,

where h is a hinge, and attachedTo: Zf(hinge) —» OIDType. If a door does not have

a hinge, then it is not attached to any wall and the value for the derived attribute

is the default value NULL, the null object identifier [56].

Now. let us extend the above ideas and move on to transformational propaga

tion. Transformational upward value propagation relaxes the restriction on the part

relationship’s cardinality, allowing any number of source meronyms to be present.

As its name implies, it is designed to transform the multiple property values from

these meronyms into a single value of the property's data type using algebraic tools.

In particular, the transformation is carried out with the use of a specified family of

symmetric operators [58].

D efin ition 13: Let ttb ■ E(B) —* r be a property of 13. The transformational

upward propagating part relationship which propagates ttb is defined as P b .a =

(o. \ , k. b. (upTrans. {7’(n*})). Here, r is any data type, {T*n*} is a tamily ol

symmetric operators T (n) : r" — r. with n > 0, and the function 'D„l} : E(A) —> r,

136

called a derived attribute, is defined in terms of { T ^ } as follows. (Note that the

meronym set of an instance a of A is taken to be Mo(a) — {6 1 , 6 2, bm }, m > 0.)

r (m) [7 r s (6 i) , 7 r B (6 2) , . . . , 7 r s (6 m)] , m ^ 0 A 7tb (6 ,) i s

defined for 1 < i < m

C, otherwise.

As an example of this type of part relationship, we turn to electronics where the

reliability of an amplifier could be defined as the minimum reliability of the tran

sistors which constitute its various stages. The derived a ttribute Reliability

the class am p lif i e r would then be written in terms of the a ttribu te reliability :

^ ’(t r a n s i s t o r) —> PERCENT of the class t r a n s i s t o r , as follows:

R cliab il i tv (rt) ~

m i n [r e l i a b i l i t v (/ . i) , . . . , r e l i a b i l i t y (t n)] , n ¥= 0 A reliability(f ,) is

defined for 1 < /' < n

0.99, otherwise,

where / .] J.n are the transistors of an amplifier a. I11 this application, the data

lype PERCENT is assumed to be some normalized quantity falling in the range

of 0 to 1 . In this example, we have specified a default reliability of 0.99 for cases

where a value cannot be acquired from the transistors. While this value was chosen

arbitrarily here, in a real application it might be decided upon through a statistical

analysis of previous reliability measures.

137

As with invariant propagation, the property being propagated does not necessar

ily have to be an attribute but may be a relationship or method. As an example,

assume that there is a method wordCount defined on the class s e c t i o n which for a

given section of text computes the number of words it contains. Using this method,

we can define a propagating part relationship which computes the number of words

in an entire article. The derived attribute defined on the class a r t i c l e

is given as follows:

R vordCount^
wordCount(si), n / 0

0 . otherwise.

where s i , s 2, are the sections of the given article a. An article is assumed to

be of length 0 if it has no sections. Here, we assume that wordCount is a total func

tion (i.e., defined for all existing sections). This is reasonably because the property

wordCount is a. method, and no explicit assignment for it need be done.

A special case of transformational propagation, referred to as cumulative value

propagation, is defined in terms of a set-valued derived attribute 'VVB : E (A) —> {r}

(where {r} denotes a type comprising sets of values of t) , specified as follows:

D*n (a) = <
U 'U R s l M } , n ^ O

C. otherwise.

138

This transformation amounts to the union over the sets created through canonical

injection of every property value into a singleton set. It thus corresponds to a form

of union inheritance [207], As usual, the default value is C which may be the empty

set. The color of the body of a car modeled as the unique colors of its constituent

panels is an application of cumulative propagation, where the set-valued, derived

attribute 'E>co[or has the specification:

^ color
\Jl=i{color(pi)}, it 7 ^ 0

undefined, otherwise.

where a is a car body and the p,-’s are its panels. Here, we leave the color of the

body undefined until it is obtained from the panels.

Transformational value propagation in the downward direction is defined analo

gously to tha t in the upward direction.

D efin i t io n 14: Let n.\ : E{A) —> r be a property of A. The t rans format iona l

d o w nw a rd propagat ing part relat ionship which propagates 7r..i is defined as P b ,a —

(o , X , K , 6 , (d o w n T r a n s A D Klj, {T*’1*})). Here, r is any data type. {T^n }̂ is a family ot

symmetric operators T’*n) : r '1 —> r, with n > 0, and the function 'DWn : E [A) —> r,

called a derived attribute, is defined in terms of {T(n)} as follows. (The holonym set

of an instance b of D is taken to be IIo{b) = {«!,«•).........(im), in b.)

139

=

r (m)[7T.4 (a 1) , 7r.4 (a 2) 7r.4 (a m)], m ± 0 A 7r4 (a,-) i s

defined for 1 < i < m

C, otherwise.

As an example of this kind of propagation, we return to the university environment.

Earlier, we modeled students as parts of the sections which they are taking. Of

course, students may be part of many sections. (Above, we placed an upper bound

of six on the number of such sections.) Ordinarily, the class s e c t i o n has a property

credits which for any section gives the number of academic credits it is worth. This

property may be an a ttribute or even a path method defined with respect to a class,

say, course . In any event, the number of credits tha t a student is currently enrolled

for is just the total number of credits of all the sections tha t he is part of. Thus,

the property credits of class s tu d e n t is a derived attribute defined with respect to a

downward transformational value propagation across the part relationship between

s tu d e n t and s e c t io n . Formally, the derived attribute T^cre(Hts (whose message in

the public interface of s tu d e n t is "credits") is defined as follows:

® credits^*}
H"=1 c r e d i t s (Cj) , n ^ 0

U. otherwise.

140

where c i ,c2, c n are the sections of the given student s. We assume tha t the

property credits of the class s e c t io n is a total function. A student tha t is not part

of any section is deemed to be enrolled for 0 credits.

The derived attribute for a cumulative downward propagation of a property 7ra

is also set-valued. In general, it has the following definition.

v „ A b) =
U"= i { " / i (a ,) } , n ^ O

0. otherwise.

As a specific example of this phenomenon, we again turn to the part relationship

between s tu d e n t and s e c t io n . The class s e c t io n is assumed to be related to

the class i n s t r u c t o r via a relationship taughtBy, which for any section refers to

the instructor teaching that section. At the class s tu d e n t , the derived attribute

taughtBy denoting the set of teachers that a given student is currently being taught

bv is defined in terms of a cumulative downward propagation of the relationship

taughtBy of class s e c t io n . Once again, this example demonstrates tha t properties

other than attributes may serve as the source of propagation. The derived attribute

®taughtBy s1:uden t is given as follows:

^ taugh tB y^ ~
U 'Ui { taughtBy(ci)}, n ^ 0

0. otherwise,

141

Here, as above, c\. c2, c„ are the sections of the given student s. A student not

enrolled in any sections is not taught by anyone; hence, the empty set as a default

value.

There is also the possibility tha t one property may be propagated downward and

another upward across the same part relationship. This situation is described in the

following.

D e f in i t io n 15: Let it a '• E{A) —> r be a property of class A, and let ttb'- E { B) —> d

be a property of the class B . The invariant propagating part relationship which

propagates the value o f it a dowmoard and the value o f ttb upward is defined as

Bb ,a = (o, A'\ { range-restricted, m', n'), 8, {up&down, T>r g , V VA)). Here, x ' G X \

{limited-shared}, 0 < in' < n' < T & 0, r and d are any data types. The

function : E (B) —► r, the derived attribute of the class B, and the function

"V„B : E{ A) —* i), the derived attribute of the class A, are defined as in Definition 11

and Definition 12. respectively. The properties t t and ttb must not be equal in the

sense tha t they not have the same identifiers (or messages in the public interfaces of

the respective classes).

We note tha t the last restriction is necessary to avoid a circular definition. It will

also be noted that we have limited the definition of the up&down propagating part

relationship to invariant propagations in both definitions. Clearly, this is an artificial

limitation which can easily be relaxed. There is no reason why we cannot have a

transformational upward propagation and an invariant downward propagation, or

142

a pair of transformational propagations, or any other combination across a single

part relationship. We have limited ourselves, in this respect, solely to simplify the

exposition. In fact, there are some other simplifying assumptions which we have

employed so far in our discussion of this dimension. Their relaxation leads to other

straightforward extensions, which we discuss presently.

In our descriptions of the various types of value propagation, we have limited the

discussion to a single propagated property. This was done for two reasons. First of

all. as alluded to, this helped to simplify the discussion. Second, it emphasized the

fact that “part-whole inheritance'1 is done selectively, with the choice of propagated

properties left solely to the database designer. This is. of course, in contrast to IS-A

where there is wholesale property inheritance, with all properties of the superclass

appearing as properties of the subclass. Such wholesale propagation is rarely, if ever,

necessary in the context of parts and wholes.

Aside from these issues, there are no theoretical reasons why the single property

restriction is necessary. In fact, in general, it is undesirable. For example, if we

store the font family as an attribute with a class book and propagate it downward

as we did above, then it is likely that we would also want to store a nominal font

size there and propagate it. too. (iATpX [113] employs this sort of arrangement.)

Therefore, as an extension to the above definitions, we allow a set of properties to

be specified for propagation in place of the single property. For transformational

propagation, each such property requires its own family of operators, so properties

143

and operator families must be specified in pairs. For the case where upward and

downward propagation coexist, we require that the set of properties going upward

be disjoint from that going downward. This is analogous to the earlier restriction in

Definition 15 and avoids the possibility of any circular definitions. We will see that

in our metaclass realization in VML, which we discuss in Chapter 6, we allow any

number of properties to propagate in either direction across the part relationship.

The use of a family of symmetric operators in the definition of upward transforma-

fional propagation (Definition 13) ignores any ordering which may exist among the

parts. However, in certain modeling situations, we may wish to exploit the additional

information provided by the capacities in the computation of a derived attribute. For

example, consider the complete works of an author or composer appearing as a single

edition in many volumes.1 The date of publication for the collection as a whole is

normally considered to be the date on which the first of its volumes appears, even

though successive volumes may appear later. Thus, this value should be propagated

from the single part that is in the capacity of the first volume; all other such values

should be ignored. For this reason, we drop the symmetry requirement in Defini

tion 13 when the part relationship is ODN or OIN so that the capacities of the

different parts may be exploited by the operators. We still insist, however, that the

same property from each or some of the parts be used in the computation of the

derived attribute at the holonymic class.

’ In Engl ish, there is no s ingle technical term for such a col lect ion. It is also variously re
ferred Lo as a "complete edit ion" [157] or just s imply an "edition" [-15]. In Germ an , the term is
(I t samtausgahe .

144

5.1 .1 G raphical Schem a N o ta tio n for V alue P rop agation and D erived
A ttrib u tes

The invariant propagating part relationships are represented graphically in a schema

by two aspects. First, a propagation label is written alongside the ordinary part

relationship symbol. This propagation label comprises the name of the propagated

property written in parentheses with an arrow placed out in front to indicate the

direction of the propagation: an up-arrow for part to whole, and a down-arrow

for whole to part. Following the name of the property inside the parentheses and

separated from it by a comma is C. the default value of the derived attribute. Second,

the class receiving the propagation is given a derived attribu te whose symbol is a

dashed ellipse. (Recall that an ordinary attribute is a solid ellipse, and that the

derived attribute which is a form of local method also uses a dashed ellipse.) As

we have discussed, the name of the derived attribute (i.e., its message in the public

interface) is exactly the same as that of the propagated property. Thus, the same

name which appears in the propagation label also appears as the name inside the

dashed ellipse. We have employed the dashed ellipse in order to signify tha t the

attribute is derived by means of a part relationship propagating its value. In fact, the

overall representation can be seen as symbolically defining both a derived attribute

and its implementation in terms of the propagation of a da ta value across a single

part relationship. Remember that owing to the fact that the invariant propagations

impose constraints on other characteristic dimensions of the part relationship, the

145

part symbol must also convey global or class exclusiveness in the upward case, and

single-valuedness or essentiality in the other.

fontbook

II
II >l(font, times-roman)

JJ__
chapter -C font ^

F ig u re 5.2 The attribute font being propagated from book to c h a p te r

To illustrate the invariant propagation, we show some of the above mentioned

examples in pictorial form. In Figure 5.2, we see the propagation of fon t from book

to ch ap te r . Note the default value of ‘‘times-roman” in the propagation label. The

example of a plane obtaining its age from its airframe can be seen in Figure 5.3.

In that example, no default was specified, so only the property’s name appears

in the propagation label. In contrast, the propagation label denoting the upward

propagation of the attribute color from rim to p iano contains a default value of

BLACK, as shown in Figure 5.4. The propagation of the relationship attachedTo

from h inge to door is shown in Figure 5.5.

The graphical schema notation for transformational value propagation is similar

t o that for invariant propagation. The difference is that here we must further provide

t he family of symmetric operators which define the computation for the derived a t

tribute. To do this, we modify the propagation label slightly. A symbol representing

146

plane - (age ^

I T(age)
I

ageairframe

F ig u r e 5.3 The attribute age propagating upward from a i r f r a m e to p la n e

piano

Y
I

/ 'x
-(color ;

T(color, BLACK)

H
A
rim <T̂ °Q

F ig u r e 5.4 Attribute color propagating upward from rim to p iano

the entire family is written inside the parentheses in front of the name of the prop

agated property, which itself now appears in square brackets. Of course, in general,

t here will be no single graphical symbol for the entire family. In such cases, we will

use some generic label (such as "T”) and place an annotation for it in a legend for

the overall schema. For some common families, such as summation, multiplication,

min. max. and so on. whose operators can be decomposed into a closed, commu

tative. associative, binary operation, we use the ordinary operation symbol in the

propagation label: E.g., upward propagating summation is written as T (+ M) i and

147

door

T
I

~C attachedTo N

T(attachedTo, NULL)

attachedTo
wallhinge

F ig u re 5.5 The relationship attachedTo propagated from hinge to door

multiplication is written as] (*[7r]), where 7r is the propagated property. The same

holds lor min and max. As an illustration, we show that an amplifier derives its

reliability measure as the minimum value of that of its transistors in Figure 5.6. The

default value is 0.99. For a downward propagating example, we present in Figure 5.7

the schema ol a student getting his total number of credits from the sections that

he is a part of. The default here is 0.

amplifier y n »reliability N

If
ii
II T(min[reliability], 0.99)
II
II

_U___
transistor -(^rdiability^)

F ig u re 5.6 The class am plif i e r getting reliability from t r a n s i s t o r

YVe adopt a special convention for the propagation label for cumulative value

propagation. Instead ol the parentheses, operator family symbol, and square brack-

148

section

T T
ii
II i(+[credits], 0)
II
II

_U__
student credits ^

F ig u re 5 .7 Students obtaining their enrollment credits from their sections

body

f
11 *II T{color}
II

colorpanel

F ig u re 5.8 Car body getting its color through an upward propagation

ets. the label comprises a pair of curly brackets enclosing the name of the desired

property. The graphical representation of the derived attribute is changed to a dou

ble ellipse to reflect the fact that it is set-valued. In Figure 5.8, we show the schema

for the car body and its panels. The color of the body is not given a default value.

For the example of a cumulative propagation of a relationship, we show the schema of

the relationship taughtBy being propagated from s e c t io n to s tu d e n t in Figure 5.9.

For an upward transformational propagation in the presence of ordering where

the operators are not symmetric, we alter the propagation label as follows: Instead of

149

taughtBysection instructor

II
II taughtBy}

II
_U___

student
—

— (f taughtBy

F ig u re 5.9 The relationship taughtBy propagated downward cumulatively

placing a symbol for the operators in front of the property’s name, we write the prop

erty first, followed, in parentheses, by an expression representing the computation

of the derived attribute in terms of the capacities which themselves are written in

angled brackets. For the example of the propagation of the date of publication (i.e.,

the a ttribu te dateOfPubl) from the first volume to the collection of complete works

as a whole, we use the propagation label ^ (dateOfPubl((1)), as seen in Figure 5.10.

Here, (1) denotes the volume in the capacity of the first book in the collection.

complete_works

IF
dateOfPubl

II
II T(dateOfPubl«l»)
II
II

_1L
dateOfPublvolume

F ig u r e 5.10 T he dateOfPubl propagated from the first volume to the complete
works

150

5.1 .2 R ea liza tio n o f Value P ropagation

The realization of value propagation is accomplished by introducing a path method

for the derived attribute in the receiving class. This method, called the propagation

method , is invoked by the message added to the public interface for the derived

a ttribute and is given an identical name. This redundant naming (which is used

intentionally to emphasize the correspondence) may cause some confusion in our

descriptions below, blurring the distinction between the propagated property and

the propagation method used to retrieve it. We will, therefore, alter the propagation

m ethod’s name slightly by capitalizing its first letter to avoid any confusion (e.g.,

,4Age” instead of “age” below). In what follows, we limit ourselves to the realization

of upward value propagation. The entire discussion can easily be recast in terms of

downward propagation without further comment.

Assume tha t we have an invariant upward value propagation of a property 7rg (of

type r) from meronymic class B to holonymic class A. The propagation method fig

which realizes this propagation is added to A and is defined in terms of the selector

method B for the meronym (introduced earlier in Section 4.2) as follows:

fle() : B —► B : 7rfi -+ r.

If we expand B fully, the method looks like:

r i f lO : pb —* B -P A R T -A : meronym —> B : ttb —* T-

151

In our example of the airframe propagating age to plane, the propagating method

“Age” is:

Age() : P a ir f ram e airframe-PART-plane : meronym —> a i r f r a m e :

age INTEGER.

The method “Age” is illustrated in the schema diagram of Figure 5.11.

derived attribute
age

propagation method
Age

airframeholonym

propagated property

meronym w plane

age

plane

airframe

airframe-PART-plane

F ig u re 5.11 Realization of upward value propagation

Transformational upward propagation is realized by a method defined as a com

position of the aboved described path method and the speciiied family of operators.

The propagation method "Reliability” for the reliability of an amplifier is given in

152

the following, where "PERCENT” is the da ta type of the a ttribute reliability.

ReliabilityQ : P t r a n s i s t o r —y { t ra n s is to r -P A R T -a m p lif ie r} :

@meronym —>• { t r a n s i s t o r } : ©reliability —► {PERCENT}m :

min - PERCENT.

Because the relationship P t r a n s i s t o r ' s multivalued, the first transition yields a

set of the relational objects. To each of these, the relationship m eronym is applied,

producing a set of transistors. An iterative application of the a ttr ibu te reliability

to this set, in the penultimate transition, yields a multiset of percentages. The

min operator in the final pair is then taken over this multiset, resulting in a single

percentage.

5.2 Interaction o f Part R ela tion sh ip D im en sio n s

Before moving on to the notion of generalized derived attribute, we give a syn

opsis of the interactions between the various characteristic dimensions of the part

relationship. In particular, we examine the constraints tha t certain values in one

dimension impose on those in another. All these were already mentioned explicitly

in the discussions of the various dimensions themselves, but are reiterated here for

clarity.

To begin with, we note that the first two characteristic dimensions, the exclu

sive/shared (E/S) dimension and the cardinality/ordinality (C /O) dimension, are

153

entirely orthogonal and have no impact on each other. The E/S dimension does

not affect the value of the dependency dimension, either. It does, however, have an

interaction with the value propagation dimension, which we will review momentarily.

The values ordered-definite and ordered-indefinite in the C /O dimension cause the

base relation o to be refined into finite and infinite sequences of relations, respectively.

The C /O dimension is independent of the dependency dimension but does have an

interaction with value propagation, also discussed momentarily.

Dependency, as mentioned, is orthogonal to both the E/S and C /O dimensions.

In fact, unlike them, it has no interaction with the value propagation dimension and

the base relation, and is thus an orthogonal concept to all other dimensions.

Invariant, upward value propagation requires that, for any holonym, the source

meronym be unique, if it exists. This is the same as saying that any holonym may

have at most one meronym, which is a constraint on the C /O dimension. Therefore,

for this type of value propagation, the part relationship must be either single-valued

(with m = 0 and n = 1 in Definition 6) or essential (with m = n = 1).

A similar constraint exists for invariant, downward propagation. In this case,

though, the unique source requirement falls on the holonyms, meaning that for any

meronym. there may be at most one holonym. This translates into the restriction

on the ES dimension that it be either global exclusive or class exclusive; sharing in

this context is prohibited.

154

Transformational value propagations in either direction do not impose any restric

tions on the meronym or holonym sets of the instances of the participating classes.

Thus, they do not constrain the values of the other dimensions.

The interactions of the different dimensions are summarized in Table 5.1. An

entry in the table denotes the logical condition(s) characterizing the interaction be

tween the respective dimensions. An “X” denotes no interaction. Note tha t the table

is symmetric; so entries have been omitted from the upper half. One should consult

the corresponding entries in the lower half.

T ab le 5.1 Interaction of part relationship dimensions

^ \ d i m e n s .

dimens. N ,
0 Exclusive/Shared (EIS) Cardinality/Ordinality (C/O) Dep. Value

Prop.

0 WMM (Table is symmetric. See lo' rer hall for

E/S X
corresponding enti y-)

C/O ODN <=* 0<* >
OIN<=>{0(i)} X

Dep. X X X HI
Value
Prop. X dow n = > N O T " up => sin g le-va lu ed OR essen tia l X HU

5.3 G e n e ra l iz e d D e riv ed A t t r i b u t e s

Earlier in this chapter, we introduced different ways to define derived attributes in

terms of a single part relationship propagating the value of some property from the

meronymic class to the holonymic class, or vice versa. In this section, we extend

the notion of derived attribute so that it may be defined with respect to many value

155

propagations stemming from different part relationships simultaneously. Throughout

this section, to simplify the presentation, we will limit the discussion to upward value

propagation without any loss of generality.

T(7t)

m

F ig u re 5.12 Redundant value propagation

An obvious problem that can arise when specifying derived attributes in part hier

archies is similar to the so-called “multiple inheritance” problem in IS-A hierarchies.

In Figure 5.12, we illustrate the problem. There, we see multiple part relationships

propagating the value of the same property 7r to a single class A. In this schema, it

is not at all obvious what the value of 7r at A should be; in fact, the schema is not

well defined.

To resolve this problem, we could employ one of the two strategies ordinarily

used in IS-A hierarchies: Either we could disallow such ambiguous value propaga

tion altogether and consider the schema invalid, or we could employ a precedence list

[100, 190]. However, in part hierarchies, there exists a third, more natural solution,

which is not available for IS-A hierarchies. (We note that, at times, the solution

can be used in roleof hierarchies.) Often, it is sensible to model a property of the

whole in terms of the values of the same property at its parts, regardless of their

classes. Many examples readily come to mind: the color of an airplane is the com

bined colors of its fuselage, wings, nose, and tail; the weight of a car is the sum of

the weights of its engine, drive train, frame, fenders, and so on; the reliability of a

computer is the minimum of that of its monitor, CPU, disk drive, and keyboard;

the materials of a golf club are those of its shaft, head, and grip; etc. We therefore

view the inherent ambiguity of this “multiple value propagation” as a desired gen

eralization of transformational value propagation across a single part relationship.

We resolve it in an analogous manner by combining the multiple values with the use

of a specified symmetric transformation. The new derived attribute induced by this

process is called a generalized derived attribute because it is defined across many part

relationships and supersedes those derived attributes which are induced by each part

relationship individually. In a pattern mirroring the structure of the part hierarchy

itself, the value propagation from each part relationship contributes to the value of

the generalized derived attribute at the holonymic class. As before, the holonymic

class’s public interface is augmented with a message (having the same name as the

propagated property) to retrieve the value of this new property for a given whole.

Let us now formally define what we mean by a generalized derived attribute and

consider the conditions under which it is applicable.

157

D e f in i t io n 16: Let 7r be a property (of data type r) of the classes f?i, B 2 , • • . , B m

(i.e., for all 1 < i. < m , it: E(Bi) —v r) . Assume tha t we have part relationships

Pb\,Ai Pb7,a, ■ ■ ■ , PBm,A such that each propagates the value of it up to A as in Fig

ure 5.12. Assume also that there does not exist a part relationship Pa,q which prop

agates a value for tt down to A. Furthermore, for all 1 < i < m . let V f t : E (B {) —► r

be the function defined for Pb,,a which ordinarily serves as the definition for the

derived attr ibu te induced by that part relationship. The function E (A) —> r ,

called a generalized derived attribute, is defined in terms of the symmetric operator

tp: r m —y t as follows:

Vv{a) =
tf[2?W(a), D<2>(a),. . . , V W (a) \ , if for all 1 < i < m. V ^ (a) is defined

C, otherwise.

The generalized derived attribute resolves the redundant value propagations by com

bining the values of each individual propagation (i.e., the values of the functions

1 < i < m) into a single value through the symmetric transformation ip. In this way,

the value of the derived attribute T)„ for a given holonym a £ E (A) is now deter

mined by all a ’s parts participating in a relationship propagating i t , regardless of

their classes. It should be noted that the definition makes no stipulation regarding

the kind of value propagation that an individual part relationship may perform; it

may be either invariant; or transformational, with the function defined accord

ingly (as in Definition 12 or Definition 13 above). Therefore, the generalized derived

158

attribute may obtain a contribution for its value at some whole a invariantly from

some lone part of a of a given type, or collectively from multiple parts through a

transformation. The only requirement in this respect is tha t the resultant values

from all the value propagations be of the same da ta type r . We point out tha t if

the provision excluding a downward propagation of ir to A is violated, then the part

hierarchy in toto is deemed invalid. As with the derived attributes from the previous

sections, the generalized derived attribute may be given an optional default value C.

If the default is omitted, then the generalized derived a ttribute may be undefined

for certain elements of its domain.

As it stands, Definition 16 contains some restrictions which we adopted to simplify

the presentation. These restrictions include the following:

1. The data type of the generalized derived attribu te must be identical to the

types of the propagated properties.

2. Cumulative propagation is not supported.

3. The data type of the property n at each meronymic class must be identical.

We will now consider how the relaxation of these restrictions generalizes our repre

sentation further.

As defined, the function ZV yields a value of data type r , the type of the prop

agated properties. In a manner analogous to cumulative value propagation across a

single part relationship, we relax the first restriction by allowing the alternate form

159

X>„: E (A) —► {r}, where the generalized derived attribute is now defined to accumu

late each part relationship’s propagation value (taken as a singleton set) into a set

of values of r .

Regarding the second restriction, Definition 16 also assumes tha t all part rela

tionships propagate a value of type r (i.e., for all 1 < i < m , the range of is

t) , the type of the property w at each meronymic class. As such, cumulative value

propagation is not permitted in this context. To remove this restriction, we allow

an alternative form of the operator 0 such that it takes arguments which are sets of

values of type r and, in turn, yields a single set of such values via some symmetric,

set-theoretic operation. In this new form, 0 : {r}m —+ {r}. And, as in the case

of cumulative propagation, the generalized derived a ttribute becomes set-valued:

V„: E (A) —> {r}. We still do require that the type of value propagated by each part

relationship, whether it is atomic or set-valued, be uniform across all relationships.

Although the property ir at each meronymic class is taken to be semantically

analogous to the same property at all other meronymic classes, the third restriction

requiring that each have the same data type is often too limiting. For example, there

may be discrepancies in the data types which really should not inhibit our ability

to define a generalized derived attribute in terms of these properties. Consider the

case where the weight of an airplane’s engine is described in kilograms, while its

fuselage’s weight is given in pounds. Or consider the case where one of the weights

is represented as an integer, and the other as a floating-point number. (One can find

160

similar problems arising in the field of database integration [17, 185].) Because such

discrepancies should not impede the definition of the generalized derived attribute,

we adopt the following convention: As long as the data types of each 7T are compatible

with each other, either in the sense that they have a common supertype in some

type lattice [1] or that they can be cast into one another, then the definition of the

generalized derived attribute is deemed valid. However, we still insist tha t the types

of the values propagated by each part relationship be identical, with any required

type conversion incorporated into the family of operators defined by the

schema designer for the individual part relationships.

To carry this point further, it may even be the case tha t the property 7r is set

valued at one meronymic class and single-valued in another, as when the fuselage of

a plane is multi-colored, while its tail is of a single color. As above, if the values

can be type-cast into uniform arguments for 0 (e.g., through a canonical injection of

the atomic values into singleton sets), then the third restriction may be relaxed and

the definition of the generalized derived attribute is admissible. Again, if one part

relationship propagates a set. then all other relationships must do the same.

The graphical representation for a generalized derived a ttribute is based on the

notation used for the derived attributes already presented. The only additional item

is the operator ?/>. which is handled in a similar manner to the family of operators in

the propagation label of transformational value propagation. A symbol representing

i/’ is placed in front of the derived attribute’s name, which is now bracketed, inside

the dashed ellipse. Following our above stated convention, if the family of operators

comprises related iterative binary operations, then the symbol for tha t binary oper

ation (e.g., “+ ”) is employed in the schema representation; otherwise, some generic

symbol and an annotation are required. The individual participating part relation

ships, as we have discussed, may be either invariant or transformational and retain

their ordinary propagation labels to indicate their contributions to the computation

of the generalized derived attribute’s value. If the generalized derived attr ibute has

a default value defined for it, then this is placed after its name inside the ellipse.

 ((u[color] t
s'" - _ — —■-> ‘

Tfcolor. (W }} /
/ T{color, {W)) ■ T{color, (W } } l

colorcolor

color color

nose wingtailfuselage

plane

F ig u re 5 .13 Plane getting its colors from its fuselage, wings, nose, and tail

In Figure 5.13. we show how the color of a plane is defined as the union of

the colors of its fuselage, wings, nose, and tail. The propagation from the class

wing is a cumulative propagation because there may be several wing instances per

plane. Because of this, the propagations from fu s e la g e , nose, and t a i l require the

transformation of the single color value into a singleton set. The derived a ttribu te

color of p lan e , being multivalued in general, is depicted by a double ellipse. The

162

“ U ” in front of its bracketed name indicates tha t the operator family is tha t of the

set-union operators. Therefore, the value of color (for a given instance of p lane)

is the union of the sets of colors propagated to it through the four respective part

relationships. Note tha t, by default, each part relationship sends a singleton set

containing the color white (represented by “W”), so there is no need to give the

generalized derived a ttribute color at the class p la n e a default of its own.

plane

t(color) t
■
i

h - C C u[color]

£ t{color, (W})B T(color,
' B

fuselage nose

color
T{coior. (W)}

color fuselage_section

tail

*
T{color. (W)}

*_ll_____
wing

color color

F ig u re 5.14 Fuselage getting its own color propagated from its constituent sections

To demonstrate tha t derived attributes may be manipulated in the same way as

other class properties, let us consider a revised version of the above airplane schema

where the description of fuselage is further refined into a set of constituent sections

(Figure 5.14). Now. the property color of the class f u s e l a g e is itself a set-valued,

derived attribute defined with respect to a cumulative value propagation from the

class fu s e la g e _ s e c t io n . Because of this, the propagation of color from f u s e l a g e to

1 6 3

boat

/ *
T(weight, 0) f

-(+[weight])
______ X*

flyingBridge

weight

I
I
8

W
*
\ \

4 T(weight, 0) | f(weight, 0) ^(+[weight], 0)
A-------- —. - - t t -

V t (weight, 0)

deckhouse engine

weight

generator

F ig u r e 5 .15 The weight of a boat as the sum of the weights of its parts

p la n e is no longer transformational but rather invariant as indicated by the ordinary

parentheses enclosing “color” in the propagation label. The value propagation from

wing remains cumulative, and, as before, the propagations from n o se and t a i l must

be cumulative in order to bring their data types in line with the other two.

In our final example (Figure 5.15), we show how a boat’s weight may be written

as the sum of the weights of its parts. Let us observe a few subtleties of this schema.

First, the propagation label T (+[weight], 0) of the part relationship between eng ine

facing 164

T able 5 .2 The part relationship symbols by dimension

Exclusive/Shared

*

i
B
I
I
B

B
B
fl
I

|m ~n |

fl
fl
B

Cardinality/Ordinality

t H H *
II fl
II (p, q) 1

II
II 0 0 II [Si, s2, s j | |

II fl II 1 II II II
II fl II 1 II II II
II B II H II II II
II 1 II B II II II

Dependency

t t
Y Y

B
fl
B
B

fl
B
B
fl

Value Propagation and Derived Attributes
— S s

A (K V—
v> . _____X A (T% y*~

d >

I
■ t(ic)
I
B

J L _
B

Y

g o . B B

164

and b o a t indicates a transformational value propagation, whose contribution is a

single weight value derived as the sum of the weights of all engines (of a given

boat). In contrast, the similar expression +[weight] appearing in the symbol for the

generalized derived attribute at class b oa t means that the weight of a specific boat is

the sum of the weights propagated to it from the classes h u l l , engine, deckhouse,

and so forth. Note that the default value of each of the value propagations is 0. So,

a boat without any parts has no weight.

The realization for a generalized derived attribute is a method which is a straight

forward combination of those which otherwise would have been defined for each of

the part relationships separately (see Section 5.1). For example, the realization for

the derived a ttribu te weight of class b oa t is defined as the sum of the results of the

path methods to retrieve the weights from h u l l , f ly in g B r id g e , and so on.

At this point, we would like to summarize all the graphical notation that we have

introduced for the part relationship. Refer to Table 5.2 where we have categorized

the symbols according to their characteristic dimensions. At the top is the exclu

sive/shared dimension where we show, from left to right, the symbols for: global

exclusiveness, class exclusiveness, limited sharing, and unrestricted sharing. Next

is the cardinalitv/ordinality dimension, where again from left to right we have part

relationships exhibiting range-restriction. single-valuedness, multivaluedness, single

valued essentiality, multivalued essentiality, ordering of definite number, and ordering

of indefinite number. The dependency dimension has two symbols: part-to-whole

dependency is depicted with an arrowhead pointing to the holonymic class (which

is allows located at the end of the connection where the diamond head is situated);

whole-to-part dependency is denoted by an arrowhead pointing in the opposite direc

tion. The bottom of the table shows the symbols associated with value propagation,

namely, the propagation labels and derived attributes. On the left is the propagation

label for invariant propagation, which here indicates the upward propagation of the

property n from class B to class A. The derived attr ibu te at A is drawn with a

dashed ellipse. In the middle, we show the upward transformational propagation of

7r involving the generic operator *. Finally, on the right side, we see an example of

cumulative value propagation. Note that the derived a ttr ibu te at A is drawn with a

double, dashed ellipse to indicate that it is set-valued.

Before moving on to the realization of the part relationship using metaclasses,

we present a part schema in Figure 5.16 which models the editorial page of The

Nexu York Times. Some things to note about the schema: First, the masthead is

the item 011 the editorial page which contains information such as the newspaper’s

official name, its publisher, and the editorial staff. As these items change infre

quently, the masthead may remain the same for a number of years and be shared by

many papers. The business masthead , found among the letters, displays information

regarding the newspaper’s ownership. It. too, changes very rarely and is shared.

One will note that some parts obtain their date through a value propagation, while

others inherently contain this property. For example, editorials receive their date

166

through a sequence of propagations from the newspaper as a whole. (In fact, the

class new spaper is included solely for this reason; as indicated by the ellipsis, its

description is incomplete.) On the other hand, letters are dated independently of

the paper and, therefore, have their own attribute da te .

newspaper date

<?
B i(date)
B

j i________
editorial_page

<J

^

-T date j

#

X
I 4-(date)

\
t x

M B -----
letters_columnmasthead editorial column , ̂ . 'S— (date ;v ___✓ P A

X
,3.4, jj

II 4(date)

(date editorial
business masthead

%
Iheadline. body]

&

illustration

writer

w\X_
O Iheadline, body, annotation]

A
text_segment

Figure 5.16 The N ew York T im es editorial page

C H A PT E R 6

IM P L E M E N T IN G T H E PA R T M O D EL U S IN G M E T A C L A SSE S
IN V M L

In this chapter, we address the issue of incorporating a realization of our part model

into an existing OODB without having to rewrite a meaningful subsystem of the

OODB and without causing a fundamental upheaval in its underlying da ta model.

Specifically, we show how this can be done in the context of an OODB with an open

architecture designed to anticipate such additions. The VODAK Model Language

(VML) [56, 109] was built with a metaclass subsystem [108] to facilitate extensions

and allow for the customization of its data model in terms of new semantic rela

tionships [108]. We have availed ourselves of this metaclass mechanism and built

a custom metaclass called the “HolonymicMeronymic” metaclass tha t captures the

semantics of classes which participate in part relationships and part hierarchies. The

entire VML code specification for our metaclass can be found in Appendix A.

The work reported in this chapter also addresses another important issue, and

tha t is whether or not the VML OODB, with its open architecture and metaclass

mechanism, can support the introduction of a part model extension. The imple

mentation of the HolonymicMeronymic metaclass described in this chapter and the

VML code which appears in Appendix A demonstrate that such an extension is

indeed possible.

For a realization of our part model in an OODB without metaclasses, we refer

the reader back to Chapters 4 and 5. where we have presented one tha t only requires

167

168

the use of basic OODB constructs. Presently, that realization is being carried out in

a Smalltalk environment as part of a s tudent’s M aster’s thesis [172].

The chapter is organized as follows. First, we give an overview of the VML

data model. The focus will be on the use of metaclasses to implement various

semantic, generic relationships. After that, we go on to discuss the different aspects

of the HolonymicMeronymic metaclass. Specifically, we first describe the metaclass’s

“instance type” which affects the behavior of its instances which themselves are

classes. This instance type captures the creation and deletion semantics of parts and

wholes through the definition of two methods, make and destroy. Finally, we present

the metaclass’s “instance-instance type” which affects the structure and behavior of

instances of the metaclass’s instances which, as noted, are classes in a part hierarchy.

In this manner, such instances of the metaclass’s instances are given the “look and

feel” of parts and wholes with respect to each other. In particular, they are given

methods (defined in the instance-instance type) tha t allow them to be updated and

queried as parts and wholes.

6.1 T h e VM L D ata M od el and M etaclasses

VML employs a variant of the Dual Model [65, 143] to describe the structure and

semantics of the classes and objects of an OODB. The duality arises through the

separation of the notions of class and object type [69]. Each class in the schema

is associated with exactly one object type, referred to as the instance type, which

defines the structure and behavior of the instances of the class. This is illustrated in

169

Figure 6.1 where we have used a shading pattern to show the effect of the instance

type on an instance of the class. A single object type, on the other hand, may be

associated with any number of classes. The benefits of such an arrangement have

been discussed in detail in [143, 142, 65].

Instance TypeClass

instanceOf

Instance

F ig u r e 6.1 The instance type's effect on a class’s instances

To maintain uniformity in the data model, all classes are considered objects

in VML (cf. Smalltalk [73]). As such, classes themselves are instances of other

classes, which are referred to as metaclasses. However, as described in [108, 109],

the interaction between types, classes, and metaclasses has a different character

than that between types, instances, and classes. Just as with an ordinary class,

a metaclass has an associated object type that describes its instances, which in

this case are classes. This object type is. as above, referred to as the instance

type of the metaclass. Furthermore, as an interesting and powerful extension, one

may associate a second object type with a metaclass to augment the structure and

170

a Instance Type \

Metaclass

Instance-instance Type

instanceOf

77ZZZZZZZZZZ*
Instance Type

instanceOf

1
Instance

m
F ig u re 6.2 The interaction between metaclasses. classes, and instances

behavior of the instances of the classes which are instances of the metaclass. This

object type has been given the colorful name instance-instance type [108]. Thus,

through its two associated object types, a metaclass influences the structure and

behavior of both its own instances, which are classes, and the instances of these

classes. This arrangement is illustrated in Figure 6.2 where we have again employed

shading patterns to demonstrate (a) the effect of the metaclass’s instance type on

171

a class and (b) the effect of the metaclass’s instance-instance type and the class’s

instance type on the class’s own instances.

In VML, one does not actually define a separate entity to represent a generic,

semantic relationship, such as the part relationship, as we have done in previous

chapters. Instead, one creates a new, custom metaclass which endows its instances

(which are classes) and their instances, in turn, with structure and behavior befitting

the semantic relationship of interest. In this manner, the VML data model is an open

model which can be tailored to the needs of specific applications or whole application

domains in general.

Custom metaclasses introduced into the VML model are always defined as sub

classes of METACLASS, the root of the VML metaclass hierarchy, or one of its sub

classes. We will refer to METACLASS simply as M . As the root of the metaclass

hierarchy M defines the basic behavior for all system classes and objects. For exam

ple, it provides all classes with the methods neiu and dellnstance that allow classes,

respectively, to create and destroy their instances. Through M 's instance-instance

type, each instance gets the method class, which may be used to determine its class.

Actually, the custom metaclass is not directly made a subclass of M . Rather, one

defines the new instance type and instance-instance type as subtypes of the cor

responding types of M . This scheme effectively captures the subclass relationship

between the metaclasses and permits the requisite property inheritance.

172

We have expanded the base VML object model to include a part-whole semantic

relationship by defining the HolonymicMeronymic metaclass. Any class participating

in a part hierarchy is defined as an instance of this metaclass. We will refer to

such classes as HolonymicMeronymic (HM) classes. Through its instance type and

instance-instance type, the metaclass does the following for HM classes and their

instances:

• It provides the means for establishing a part relationship between a pair of HM

classes, making one a holonymic class and the other a meronymic class.

• It furnishes an HM class with methods make and destroy which replace the

standard methods new and dellnstance. (Note: The current version of VML

does not allow overriding of methods or method combination, as would be

appropriate in this situation. To deal with this, we have chosen this renaming

scheme to avoid any identifier conflicts and have defined the methods make

and destroy as "front-ends" to the standard methods.)

• It provides an HM class's instances with a standard palette of methods for up

dating and querying with respect to the various part relationships tha t the class

participates in. Such methods include addPart. rem ovePart, and getParts.

• It provides the means for performing upward and downward value propagation

across part relationships.

173

In succeeding sections, we go on to discuss the details of the instance type and

the instance-instance type of the HolonymicMeronymic metaclass and describe what

each of these contributes. Included are discussions of the various methods that each

defines.

6.2 T he H olonym icM eronym ic In stance T yp e

In this section, we describe the details of the HolonymicMeronymic instance type

which augments the structure and behavior of classes participating in part hierarchies

(i.e., HM classes). We first present the actual public interface of the instance type

which represents the instance type’s contribution to the public interface of any HM

class. In subsequent sections, we discuss the ways in which these methods capture

some of the semantics of the part relationship.

The public interface for the HolonymicMeronymic instance type is as follows. (We

include the object type’s signature on the first line for clarity. Note tha t it is defined

as a subtype of “Metaclass_InstType," which is the instance type of METACLASS.)

OBJECTTYPE H o l o n y r a i c M e r o n y m i c _ I n s t T y p e SUBTYPEOF M e t a c l a s s . I n s t T y p e ;
INTERFACE

METHODS
m a k e (s o m e P a r t s : { O I D }) : OID READONLY; / / r e p l a c e s m e t h o d "new "
d e s t r o y (a n O b j e c t : OID) READONLY; / / r e p l a c e s " d e l l n s t a n c e "
d e f M e r o n y m i c R e l s h p s (s o m e R e l s h p s : { P a r t R e l a t i o n s h i p T y p e })

READONLY;
d e f H o l o n y m i c C l a s s e s (s o m e C l a s s e s : { O I D }) READONLY;
i s M e r o n y m i c C l a s s O f (a C l a s s : O I D) : BOOL READONLY;
i s H o l o n y m i c C l a s s O f (a C l a s s : O I D) : BOOL READONLY;
g e t M e r o n y m i c C l a s s e s O f () : { O I D } READONLY;

174

g e t H o l o n y m i c C l a s s e s O f () : { O I D } READONLY;
e x s h (a C l a s s : O I D) : E x S h T y p e READONLY;
m i n C a r d (a C l a s s : O I D) : INT READONLY;
m a x C a r d (a C l a s s : O I D) : INT READONLY;
d e p e n d e n c y S t a t u s (a C l a s s : O I D) : D e p e n d T y p e READONLY;
p r o p e r t y U p P r o p a g a t e d (m e t h : STRING, a C l a s s : O I D) : BOOL READONLY;
p r o p e r t y D o w n P r o p a g a t e d (m e t h : STRING, a C l a s s : O I D) : BOOL READONLY;

This public interface shows that the HolonymicMeronymic instance type provides

fourteen new methods for all HM classes. Remember, a class in VML is itself an

object, and these methods augment the behavior of a class, not the behavior of

the class's instances. As we have discussed above, the methods make and destroy

are used, respectively, to create and delete instances of an HM class, and encode

the creation and deletion semantics of the part relationship. Each one, in turn, is

discussed in detail in Sections 6.2.2 and 6.2.3. The remainder of the methods are

used to establish and obtain information about the actual part relationships that an

HM class participates in. All are described further in the next section.

6.2 .1 C reating and Q uerying an H M Class

Before we begin our discussion of HM classes, let us first consider the task of creating

an "ordinary" application class [109] in VML. i.e.. one without any part relationships.

Phis will help to demonstrate the exact impact of introducing part relationships

into class definitions. Assume that we are working in an automotive manufacturing

environment and wish to define a class c a r which has the schema illustrated in

Figure 6.3. There, we see that c a r has three attributes serialNumber , m odel , and

year, and a single relationship manufacturedBy to the class c o m p a n y .

175

manufacturedBymodel

year

car company

F ig u re 6.3 The class c a r without part relationships

Recall tha t in VAIL, an object type is associated with each class as its instance

type in order to define the structure and behavior of the class’s instances. There

fore, the complete specification of a class is divided into two portions, an object

type declaration and the class declaration itself which contains a reference, via its

•‘IN STTY PE” clause, to the object type. To illustrate this, we show the VML code

for the class c a r in the following.

CLASS C a r
IN STTY PE c a r T y p e

END;

OBJECTTYPE c a r T y p e ;
IMPLEMENTATION

PROPERTIES
s e r i a l N u m b e r : IN T;
m o d e l : m o d e l T y p e ;
y e a r : y e a r T y p e ;
m a n u f a c t u r e d B y : C om p an y;

END;

At the top. we see the class declaration which is denoted by the keyword “CLASS.”

Its initial line is used to convey two pieces of information. The first is the class’s

176

name, written immediately after the keyword. By convention, the names of classes

in VML are capitalized, so we have written “Car” instead of “c a r .” The second

item, which happens to be optional, is the name of the class’s metaclass. In the

specification, this is preceded by the reserved word “METACLASS,” and the two

together appear after the class’s name. If the metaclass is omitted, as is the case here,

then the class is taken to be an instance of the default KERNEL-APPLICATION-

METACLASS [109] which is used for ordinary application classes (i.e., those without

semantic relationships).

The instance type of Car is the object type carType, as indicated by the “INST

T Y P E ” clause on the second line. In the declaration of the object type,1 shown below

the class declaration, we see the definition of the four properties from Figure 6.3. In

VML, there is no syntactical distinction between attributes and relationships, and

they are written together in the "PROPERTIES” section. However, the three a ttrib

utes are followed bv appropriate data types, while the relationship manufacturedBy

is instead followed by the name of its referent class Company (not shown here).

To define a class as a member of a part hierarchy (i.e.. as an HM class), one

does two things. First, one defines the class to be an instance of the Holonymic-

Meronvmic metaclass (using the METACLASS keyword on the opening line). Sec

ond. one invokes, through the class’s "INIT” clause, the two companion methods

(IcfMci'onymicRclshps and dc/HolonymicClasses to establish the desired part rela-

1 YVe have o m itted som e o f the d e la ils o f the ob ject typ e d eclaration th a t are n ot relevant here.
S ee [109] for a descrip tion o f the com p lete syn tax .

177

car

* \

engine body C color

F ig u re 6.4 Car and its parts engine and body

tionships between the new class and other HM classes. Specifically, the method

(lefHolonymicClasses informs the class of all classes which are holonymic classes

with respect to it in part relationships. The method defMeronymicRelshps, on the

other hand, informs the class of all its related meronymic classes. The naming dis

crepancy between the two (i.e., '‘Classes” versus “Relshps”) denotes the fact that,

besides the names of the meronymic classes. defMeronymicRelshps carries additional

information pertaining to the characteristic dimensions of the respective part rela

tionships. In particular, it provides the values of all characteristic dimensions to the

new class, which, of course, plays the role of the holonymic class in such part rela

tionships. This arrangement is necessitated by the fact that, in our implementation,

we have decided to store all such information about a part relationship with the class

participating in it as the holonymic class. While we could have done otherwise (e.g.,

we could have relegated all information to the meronymic classes), we believe that

the inherent bottom-up construction associated with part hierarchies— where inte

178

gral objects are built-up from lower-level component objects—makes this a natural

choice.

To illustrate the above points, let us expand our earlier example a n d d e f i n e c a r

as the holonymic class in two part relationships, one with the class e n g i n e and

the other with the class b o d y . These classes and the part relationships are shown

graphically in the schema of Figure 6.4. There, we have omitted all the properties

of c a r presented earlier and have included only one attribute, color of the class

b o d y , which we will later propagate upward. The VML syntax corresponding to

this schema is as follows. Note that we have not included the declarations of the

instance types c a r T y p e , e n g i n e T y p e , and b o d y T y p e because they are not relevant

to the discussion.

CLASS C a r METACLASS H o l o n y m i c M e r o n y m i c C l a s s
INSTTYPE c a r T y p e
I N I T C a r - > d e f M e r o n y m i c R e l s h p s (

{
[t h e M e r o n y m i c C l a s s : E n g i n e ,

es:G LO BA L_EX C L,
c a r d i n a l i t y : [m i n : 0 , m a x : 1] ,
d e p e n d e n c y : NONE,
u p S e t : O ,
d o w n S e t : { }] ,

[t h e M e r o n y m i c C l a s s : B o d y ,
e s :G L 0 B A L _ E X C L ,
c a r d i n a l i t y : [m i n : 0 , m a x : 1] ,
d e p e n d e n c y : NONE,
u p S e t : O ,
d o w n S e t : { }]

>

)
END;

179

CLASS E n g i n e METACLASS H o l o n y m i c M e r o n y m i c C l a s s
IN STTY PE e n g i n e T y p e
I N I T E n g i n e - > d e f H o l o n y m i c C l a s s e s ({ C a r })

END;

CLASS B o d y METACLASS H o l o n y m i c M e r o n y m i c C l a s s
INSTTYPE b o d y T y p e
I N I T B o d y - > d e f H o l o n y m i c C l a s s e s ({ C a r })

END;

As we see, the first line of the declaration of C a r — as well as the first lines of

Engine and Body—now contains an explicit reference to the HolonymicMerony-

mic nretaclass. which, in its actual code specification, has been given the name

"HolonymicMeronymicClass-’ in order to follow VML conventions. (See the ap

pendix for all the details of the code; in our discussions, we will continue to use the

shorter '‘HolonymicMeronymic.-’) Thus, C a r , Engine, and Body are all instances of

the HolonymicMeronymic metaclass (i.e., they are all HM classes).

The INIT clause is a characteristic of all classes in VML. It is used as a means

for performing certain initialization procedures at the time the class is created (i.e.,

instantiated). In our case, as was mentioned, we use it to invoke the methods

defHolonymicClasses and defMeronymicRelshps in order to establish the part rela

tionships between HM classes. It will be noted that for a class that has no associated

holonymic classes (i.e.. a class which is the root of a part hierarchy), such as C a r in

the example, t he method defHolonymicClasses is not needed in the INIT clause. For

those classes with no associated meronymic classes (i.e., leaves of a part hierarchy),

180

the method defMeronymicRelshps is not included. Such is the case for the classes

E n g i n e and B o d y .

The argument to defHolonymicClasses. as can be seen in the declarations of

Engine and Body, is the set of holonymic classes of the given class. In the example,

we see that both Engine and Body have the single holonymic class C a r , which is

passed as a singleton set to defHolonymicClasses in their INIT clauses.

The argument to defMeronymicRelshps is more complicated because the values

of the characteristic dimensions of the respective part relationships must accompany

each meronymic class. Therefore, rather than just being a set of classes, the argument

is a set of structures of type “PartRelationshipType” having the following definition:

DATATYPE P a r t R e l a t i o n s h i p T y p e = [t h e M e r o n y m i c C l a s s : O ID ,
e s : E x S h T y p e ,
c a r d i n a l i t y : C a r d T y p e ,
d e p e n d e n c y : D e p e n d T y p e ,
u p S e t : { S T R I N G } ,
d o w n S e t : { S T R I N G }] ;

The first member of the structure is the name of the meronymic class which, in

VML, is just an alias for the class's OID—hence, the da ta type “OID” for this mem

ber. (Remember, classes in VML are objects, too.) The second, third, and fourth

members hold the values for the first three characteristic dimensions of the part re

lationship. In the declaration of c a r above, we see that its part relationship with

e n g i n e is global exclusive (represented by the symbolic constant GLOBAL-EXCL)

181

and single-valued (represented by a minimum cardinality of 0 and a maximum car

dinality of 1). It also lacks any dependency semantics as specified by NONE, which

is used instead of nil.

The last two members of the structure represent, respectively, the set of properties

being propagated upward across the part relationship and the set of properties being

propagated downward. As we have mentioned in the previous chapter, these sets

must be disjoint. One will note that the properties are specified as VML strings. We

will see how this is exploited when we discuss the realization of value propagation

using the NOMETHOD clause below. In the example, we notice that both sets are

empty, meaning that no propagation takes place with respect to this specific part

relationship.

Because all the information about a part relationship is stored with its respective

holonymic class, it is necessary to directly query that class in order to obtain such

information. This can be done with certain methods that are provided by the Holo

nymicMeronymic instance type. These are described in the following. The methods

isMeronymicClassOf and isHolonymicClassOf are predicates which determine, re

spectively, whether or not the target class is a meronymic class or a holonymic class

of the class given as an argument. The related methods yetM eronymicClassesOf and

yelH.olonymicClasse.sOf return the meronymic classes and the holonymic classes of

the target class, respectively. To determine the values of the various characteristic

dimensions of the part relationship between a meronymic class B and holonymic

182

class .4. the last six methods of the HolonymicMeronymic instance type can be

invoked for A with B as their argument. The method exsh returns the value of

the part relationship’s exclusive/shared dimension, which may be GLOBAL.EXCL,

CLASS_EXCL, or SHARED. To obtain cardinality information, we use the methods

m inCard and maxCard , each of which returns an integer. The maximum cardi

nality may have the symbolic value INFINITY indicating the absence of an upper

bound. Dependency information is gathered through dependencyStatus whose possi

ble values are PART.TCLWHOLE. WHOLE.TO.PART. and NONE. As mentioned

above. NONE denotes the lack of any dependency semantics. The final two m eth

ods. property Up Propagated and property DownPropagated. are predicates used by the

NOMETIIOD clause to perform value propagation. We defer a discussion of them

to below.

6 .2 .2 C apturing th e C reation Sem antics o f th e Part R e la tio n sh ip using
make

The method make defined by the HolonymicMeronymic instance type as a replace

ment for the method new is the means bv which instances of an HM class are created.

Encoded in this method are the creation semantics dictated by the various character

istic dimensions of the part relationships which we will consider shortly. To create an

instance ol an HM class, one simply invokes make for that class. In VML. a method

invocation is denoted using an arrow notation: An alias for the target object’s OID

183

(such as a class name or variable) is followed by and the name of the desired

method. So. to create a new instance of car . we write:

car-> m ak e({});

Since the method returns the OID of the newly created object (or the constant NULL

on failure), we ordinarily find such an expression in the midst of a VML assignment

statement.

From its signature, we see that make takes as its argument a set of OIDs. This

set comprises parts which are to be initially attached to the new object. The set is

heterogeneous in that it may contain the OIDs of objects of any type. Obviously,

if any of the objects is from a class other than the prescribed meronymic classes

of the target class, then the creation of the new instance is aborted. In the above

invocation, the argument is just the empty set. so no engine is installed in the new

car initially.

The method make is responsible for monitoring two constraints. First, it must

ensure tha t any cardinality constraints imposed by the part relationships of the target

class are satisfied. In other words, if we wish to create an instance of class A and the

part relationship P b .a requires that such an instance have between, say, m and n

parts from B , then it is the responsibility of make to ensure that this constraint holds

at the outset of the instance's lifetime. (As we will see below, the methods addPart

and remove Part of the instance itself carry this same responsibility for the remainder

of the instance's lifetime.) If. among the given set of initial parts, make detects a

184

violation of the constraint (e.g.. there are too few or too many parts of type S) , then

it aborts the creation and returns NULL, a special VML constant. Since using make

is the only way to create an instance of an HM class, this arrangement guarantees that

no holonym comes into existence with any of its cardinality constraints in violation.

The second constraint, related to the first, involves the semantics of exclusiveness

and sharing. Even if make receives a valid number of parts from a meronymic class,

it may still be the case that some of these may not be legally installed as parts of

the new instance. This can happen if a given meronym is already part of another

holonym having exclusive ownership of it and thus precluding the desired installation.

This possibility is also handled by make which, if it discovers such a problem, aborts

the instantiation.

6 .2 .3 C aptu ring th e D eletion Sem antics o f th e Part R ela tion sh ip using
destroy

Instances of an HM class are deleted using the method destroy instead of VML’s

customary dellnstance. To delete an instance c of the class ca r , we invoke destroy

as follows:

c a r - > d e s t r o y (c) ;

The argument c will ordinarily be a variable of VML data type OID holding a

reference to the object of interest.

Analogously to m ake , destroy encodes the part relationship’s deletion semantics,

which are primarily dictated by the first three characteristic dimensions. Other

185

external factors also exert influence. As was discussed in Chapter 4, we must take into

account the possible conflicts that can arise between the dependency specification

of one part relationship and the cardinality constraints of another. Also, in order to

conform to our alternative realization using classes, we require tha t all part-whole

connections of a given instance be dissolved before that instance is allowed to be

deleted. This latter behavior is overridden by dependency.

Because destroy directly encodes the deletion semantics of the part relationship,

it is important to understand its operation. Assuming that it is given the instance

O of some HM class to delete, destroy operates in accordance with the following five

cases:

1. O does not participate in any part relationships.

In this case, it is immediately deleted.

2. O participates either as a meronvm or as a holonym in a part relationship

where there is no dependency.

In this case, the deletion of O is disallowed. Any such part connections must

be broken explicitly using the method removePart or changePart (discussed

below) before the deletion is allowed to take place.

As an exception to this case. O is allowed to be deleted if it is strictly a holonym

(i.e.. it is not a meronvm with respect to any existing instance) and the part

relationships it is participating in all have minimum cardinality constraints

186

greater than zero. In such a scenario, there is absolutely no way to break all

of O ’s part-whole connections prior to invoking destroy. (At some point, the

method removePart would forbid a part removal because it would leave O in

violation of a cardinality constraint.) Thus, we would have the unacceptable

situation that the instance O could never be deleted from the database.

3. O participates in a part relationship where it is dependent on the associated

object, be it a holonym or meronym.

As in Case 12). the deletion of O is disallowed; it can only take place after all

such connections have been undone explicitly using removePart or changePart.

4. O is a meronym with respect to a part relationship that has a minimum car

dinality greater than zero.

In such a case, the deletion of O may cause the cardinality constraint to be

violated. Therefore, we defer to that constraint and do not allow the deletion

of O. (Cf. Case [5, (b)] below.)

5. O participates only in part-whole relationships where the associated objects,

be they holonvms or meronvms. are dependent on it.

In this case. O is deleted. Furthermore, for each object Q tha t is dependent

on O. we have the following subcases. [In the following, we assume that Q is

a part; analogous conditions hold for wholes. Case (b), in fact, is identical for

both parts and wholes.]

187

(a) Q is part of another object O' in O ’s class.

Here, Q is not deleted. This case captures the multivalued dependency

semantics which we ascribed to the part relationship (Section 4.5).

(b) Q is part of an object W which has a minimum cardinality restriction

greater than zero with respect to the part relationship between them.

In this case, propagating the deletion to Q may leave W without a required

part, as was the case in the scenario discussed in Section 4.5. To resolve

such potential conflicts between dependency and cardinality constraints,

we defer to the cardinality constraint and do not delete Q. We refer to

this as the conservation o f cardinality constraints.

(c) Q is not part of any such instances as described in (a) and (b).

In this circumstance, the deletion is propagated to O with the following

actions taken in order:

i. All of Q ’s part-whole connections with objects which are not depen

dent on it are explicitly broken,

ii. The method destroy is then invoked for the deletion of Q. Note

that by performing the disconnections in Step (i), we ensure that

either Case (1) or Case (5) is applicable on the iterative invocation

of destroy. Thus. Q is certain to be deleted. All objects dependent

on it (if any exist) will be handled by an iterative application of the

present case.

188

Again, one will note that this method is in charge of enforcing the semantics of

dependency as laid out in Case (5). If an object in a part-whole relationship is

dependent on O and certain other conditions are satisfied, then it too is deleted.

It should also be noted that while the method destroy is invoked from the body of

destroy , this is not a recursive call. Rather, it is iterative because the reference is to

the destroy method of another HM class.

6 .3 T he H olonym icM eronym ic In stan ce-In stan ce T yp e

In this section, we cover the details of the instance-instance type of the Holony

micMeronymic metaclass. In a centralized and uniform manner, this object type

endows instances in a part hierarchy (i.e., meronyms and holonyms) with structure

and behavior consistent with the semantics of the part relationship. Specifically, it

gives such instances the ability to establish and break part-whole connections with

other instances. It also allows those connections to be changed or queried. And

furthermore, through its NOMETHOD clause, it provides the means by which value

propagation is accomplished.

The public interface for the instance-instance type is as follows.

OBJECTTYPE H o l o n y m i c M e r o n y m i c . I n s t I n s t T y p e
SUBTYPEOF M e t a c l a s s . I n s t l n s t T y p e ;

INTERFACE
METHODS

a d d P a r t (a P a r t : O I D) : BOOL READONLY;
a d d W h o l e (a W h o l e : OID) READONLY;
r e m o v e P a r t (a P a r t : O I D) : BOOL READONLY;

189

r e m o v e W h o l e (a W h o l e : OID) READONLY;
c h a n g e P a r t (o l d P a r t : O ID , n e w P a r t : O I D) : BOOL READONLY;
g e t P a r t s O : { O I D } READONLY;
g e t W h o l e s O : { O I D } READONLY;

The above is actually not the entire public interface, which can be found in the

appendix. We have omitted certain utility methods that are not of interest here

and have shown only those methods which are used to manipulate instances of HM

classes as parts and wholes. In the following sections, we turn our attention to these

methods.

6 .3 .1 E stab lish in g P art-W h ole C onnections b etw een In stan ces

Assume that we have a part relationship Pb ,,i between the meronymic class B and

the holonymic class A. To establish a part connection between the instance b of B

and the instance a of A, we invoke the addPart method for a as follows.

a - > a d d P a r t (b) ;

Here, we take a and b to be VML variables of type OID holding the OIDs of the

respective objects.

According to its signature. addPart returns a Boolean value which is used to

indicate whether or not the desired part installation was carried out successfully.

TRUE indicates that all went well, while FALSE signals a failure. Failures can occur

in two different scenarios. First of all, if the given object b is not an instance of an

appropriate meronymic class (i.e., an HM class serving as a meronymic class in a

190

part relationship with respect to a s class), then it certainly cannot be attached to

a. Because addPart is defined genericallv in the metaclass’s instance-instance type

with a formal parameter of data type OID instead of one that is more specific, it is

not possible to statically check for such an error. Thus, the method itself must do

this checking and abort the attachment if an incompatibility is found.

A failure can also occur if the method detects a potential violation of a prescribed

constraint of a characteristic dimension. Specifically, addPart , like m ake , is respon

sible for upholding the constraints of the first two part relationship dimensions: the

exclusive/shared dimension and the cardinality dimension. In the first place, it must

ensure that the addition of the new meronym does not violate the maximum cardinal

ity of the part relationship in question. If it does, then the connection is disallowed.

Of course, there is no possibility of a minimum cardinality violation as with m ake , so

this is not an issue. Secondly, addPart must make certain that attaching the given

part does not violate an exclusive ownership held on it. The process of confirming

that this second constraint is not violated is more involved because it requires that

the method query the new part and then inquire with its existing wholes and their

part relationships about ownership rights. The details of this activity can be gleaned

from the code in the appendix. Obviously, if the part has 110 holonyms, then the

attachment can be made straight away.

To simplify the coding of addPart and other various methods, we have adopted,

without loss of generality, a protocol that requires the establishment of part con

191

nections at the holonym only. That is, parts are attached to wholes, but not vice

versa. Thus, only the method addPart should ever be used by an application to

relate two instances. The use of add Whole is strictly reserved for trusted clients like

the method addPart itself. In fact. addPart takes responsibility for informing the

holonym that it has a new meronym and invokes addWhole to accomplish this. So,

at the end of its execution, both objects are aware that they are part and whole with

respect to each other, and each can be queried in this regard.

Actually, addWhole should not even appear in the public interface of the instances

of HM classes. However, due to a limitation of the current version of VML, we are

forced to expose it in this manner. What we would have preferred to do was make it a

“friend function" (C + + terminology [199. 2T[) for use only by methods in the related

holonymic classes. However, this option is currently not available in VML. Besides,

because such holonymic classes could not have been made available to addWhole

when it was defined (remember, its definition appears in the HolonymicMeronymic

instance-instance type and is independent of any specific HM class). What is needed

is a kind of "parameterized friend function" where the friendly classes can be specified

parametrically at the time an HM class is instantiated. We see such a mechanism as

a useful and even necessary extension to the concept of friend function in the context

of metaclasses.

57

192

6.3 .2 B reak ing P art-W h ole C onn ection s b etw een Instan ces

Our adopted protocol also requires that part-whole connections be broken at the

whole and not at the part. This is done using the method removePart. For example,

to remove the meronym 6 from the holonym a, removePart is invoked as follows:

a - > r e m o v e P a r t (b) ;

Both a and b are once again taken to be VML variables holding the respectives OIDs.

The method removePart. operating analogously to addPart. guarantees that the

involved meronym is properly informed of the disconnection. The corresponding

method removeWhole need not be invoked explicitly and. in fact, should never be

invoked by an application program. As with addWhole. it appears in the public

interface of the instance-instance type only because of a limitation of the current

version of VML. It, too, would be better defined as a friend function of the respective

holonymic classes.

A return value of TRUE for removePart indicates that it was able to remove the

given meronym: FALSE signals a failure, which may have occurred for one of two

reasons. First of all, the instance passed as its argument may not actually have been

a part of the target whole, in which case there was nothing to be done. Second, it

may have detected a potential violation of the minimum cardinality constraint of

the part relationship under consideration and thus refused to perform the requested

action.

193

It should be pointed out that in the case of a fixed-cardinality part relationship

(i.e., one with identical upper and lower cardinality bounds), removePart is guar

anteed to tail because the removal of any such part is certain to violate the lower

bound. Thus, it is not possible, using the methods described so far, to remove one

part and exchange it with another in such circumstances. To rectify this, we provide

an additional method changePart which in a single transaction removes a part of a

given type and replaces it with another of the same type. For example, to replace

part 6| with &2 in the whole a. we do the following:

a - > c h a n g e P a r t (b l , b 2) ;

As with the other methods of the instance-instance type discussed thus far, change

Part returns a Boolean value to indicate success or failure. If b\ and &2 are not

ol the same type, then the exchange is aborted. Clearly, there is no chance of a

cardinality violation because the cardinality of the respective meronvm set will be

the same both before and after the transaction. However, there is still the potential

for a violation of an exclusive ownership constraint with respect to the replacement

part. The detection of this leads to a failure.

Because of our protocol, there is no need for the definition of a corresponding

method changeWhole in the HolonymicMeronymic instance-instance type. All the

necessary notifications are performed by changePart using the methods already de

scribed.

194

6 .3 .3 Q uerying a Part H ierarchy

Once part-whole connections have been established between instances of various HM

classes, we would like to be able to query the instances with respect to their part

relationships. This can be done using the methods getParts and getWholes provided

by the instance-instance type.

The method getParts returns all the parts of the target instance. As is customary

in VML, the result of the method is the set of OIDs of the particular meronyms. This

result can be assigned to a VML variable of type "set of OID” for further processing.

For example, to get the parts of an instance a. we do the following:

t h e P a r t s = a - > g e t P a r t s () ;

Here, the set of parts returned by the method is assigned to the VML variable

"theParts .” If the target instance has no parts, then the resultant set is empty.

To obtain all the holonyms of an instance a of an HM class, we use the method

getWholes as in:

t h e W h o l e s = a - > g e t W h o l e s () ;

Once again, the result is a set of OIDs which in this case is assigned to “theWholes,”

a VML OID-set variable. If the instance is not part of any wholes, then the result

is empty.

We note that each of the two methods does not take anv arguments. It is also

important to note that each returns a set of undifferentiated instances. That is,

195

getParts returns all of an instance's parts, irrespective of their classes, and in the

same fashion getWRioles returns all its wholes. It is a straightforward matter, for

example, to write a VODAK Query Language [3, 2] selection query in terms of

the result of getParts to obtain the meronym set with respect to a particular part

relationship or meronymic class.

6 .3 .4 Perform ing Value Propagation using N O M E T H O D

In VML, the inheritance behavior specified by a semantic relationship is captured us

ing the NOMETHOD clause (or simply NOMETHOD) [109] of the instance-instance

type of a custom metaclass. As its name implies. NOMETHOD is the mechanism by

which an instance in a VML database deals with a message that it is not equipped

to handle (i.e., for which it has no method). NOMETIIOD is actually a VML code

segment that is invoked automatically when an unknown message is encountered

by an object. It looks very much like an ordinary method, with the following ex

ceptions. First. NOMETIIOD cannot be given any formal parameters. Second, in

its scope, there are two special, predefined identifiers: (1) currentMeth , which is

bound to the offending message (or method name) that was sent to the object and

caused NOMETIIOD to be invoked: and (2) arguments, which is bound to the list

of arguments of that message.

The NOMETIIOD clause mav be defined simply to pass currentMeth and argu

ments along "as is" to some related object of the target through another method

invocation. This is what happens in the case of category specialization [108]. How

196

ever, by passing currentMeth through a filter. NOMETHOD can implement different

forms of selective inheritance [108, 109]. As it happens, the identifier currentMeth

is of da ta type VML string, and our filters for it take the form of characteristic

functions of sets of constant VML strings. Such a filter was used previously in the

implementation of a filter-based role specialization semantic relationship [109] in

VML. We have adapted the technique to perform value propagation in the context

of the part relationship.

For each part relationship, we employ two filters described by the following sets

of property names (represented as constant VML strings): upSet which holds the

names of properties being propagated upward, and downSet which holds the names

of properties being propagated downward. Each of these is specified declaratively

as a portion of the “part relationship structure” passed to defMeronymicRelshps at

the time an HM class is instantiated. For example, assume tha t we have two classes,

c a r and body. If we wish to define a part relationship between them such that the

property color is propagated upward from body to ca r , then we write:

CLASS C a r METACLASS H o l o n y m i c M e r o n y m i c C l a s s
INSTTYPE c a r T y p e
I N I T C a r - > d e f M e r o n y m i c R e l s h p s ({ [t h e M e r o n y m i c C l a s s : B o d y ,

e s : G L 0 B A L _ E X C L ,
c a r d i n a l i t y : [m i n : 0 , m a x : 1] ,
d e p e n d e n c y : NONE,
u p S e t : { ' c o l o r ' } ,
d o w n S e t : { }] })

END;

197

CLASS B o d y METACLASS H o l o n y m i c M e r o n y m i c C l a s s
INSTTYPE b o d y T y p e
I N I T B o d y - > d e f H o l o n y m i c C l a s s e s ({ C a r })

END;

As we see, the upSet contains a single element, the constant VML string ‘color’ (writ

ten in single quotes). So, only that property is propagated upward. The downSet

is empty, indicating tha t no properties are propagated downward. As we have men

tioned, the two sets should always be disjoint. Moreover, no two part relationships

should pass the same property to a single class.

As with all other information concerning a specific part relationship, both the

upSet and the downSet are stored with the class participating as holonymic class

in the part relationship. Access to these sets is limited to the predicates (filters)

property Up Propagated and property DownPropagaled. respectively. Given a VML

string 777 . representing the name of a property, and the OID of a meronymic class

B, property Up Propagated determines whether or not m is propagated upward from

class B to the target holonymic class. Likewise, propertyDownPropagated indicates

whether or not a property is propagated downward from the target class to the given

meronymic class.

The NOMETHOD clause uses these filters to perform value propagation as fol

lows. Given an offending message bound to the predefined identifier currentM eth ,

NOMETIIOD first successively scans the holonyms of the target object and uses

the method propertyDownPropagatcd of their respective classes to determine if any

of them propagates the property currentMeth downward to the target. If one that

198

does is found, then the message currentMeth is delegated to it through a method

invocation in order to obtain the desired property value. If not, then NOMETHOD

next iteratively scans the parts of the target and employs property Up Propagated to

determine if any propagates currentMeth upward to the target. If one does, the

message currentMeth is delegated to it to get the requested property value. The

fine details of this filtering process can be found in the code for NOMETHOD in

Appendix A. If the message cannot be handled by any of the target object’s wholes

or parts, then NOMETHOD fails and a run-time error occurs [109].

Of course, the NOMETHOD clause may be invoked iteratively in situations

where a property is propagated across many levels of a part hierarchy. Such is

the case in our model of the editorial page of The New York Times (see Section 5.3),

where the property date is propagated downward four levels from newspaper to

e d i t o r i a l . We show some of the VML code for that schema in Appendix B. In

the specification of the part relationships as arguments to defMeronymicRelshps , a

derived attribute, which itself is being propagated, is treated in the same manner as

any other propagated properties. An example of this can be seen in the definition

of ed i to r ia l_ c o lu m n which receives date from e d i to r ia l_ p a g e and propagates it

downward to e d i t o r i a l .

C H A P T E R 7

C O N C L U SIO N S A N D F U T U R E W O R K

In this dissertation, vve have presented a comprehensive OODB part model which

greatly enhances the usefulness and effectiveness of part-whole modeling in the con

text of OODBs. The contributions of our work stretch in three directions: (1) New

semantics for the part relationship has been identified and codified. (2) Two novel

realizations for the part relationship and its accompanying modeling constructs have

been introduced. (3) An enhanced graphical schema notation for the development

of OODB part schemata has been presented.

At the heart of our part model is a mathematical part relationship comprising a

variety of semantics and functionalities. In particular, the part relationship is divided

into four characteristic dimensions: (1) exclusive/shared, (2) cardinality/ordinality,

(3) dependency, and (4) value propagation.

I'he exclusive/shared dimension refines the semantics of the ORION part model

[107] and distinguishes three wavs that parts can be distributed among wholes. A

whole can be given exclusive ownership of a part across the entire database topol

ogy, forbidding any other objects from claiming that part as their own; this is the

exclusiveness of ORION which we refer to as global exclusiveness. Because such a

constraint can be too restrictive under certain circumstances, we have also defined

another kind of exclusiveness, called class exclusiveness, where the exclusive refer

ence restriction is confined to the extension of the holonymic class. Unrestricted

199

200

sharing of parts, which is the alternative in ORION, has been found to be too loose

or unrestrictive for the construction of logical part hierarchies. For this reason, our

part model offers the more refined notion of limited sharing. Ordinary, unrestricted

sharing appears as a special case of this.

The cardinality/ordinality dimension of the part relationship describes how many

and in what ways parts of a specific type are combined in the formation of wholes.

Parts of a single type can be grouped together as a set which has constraints on its

cardinality. Alternatively, the parts can be organized in an ordered list, with each

part functioning in a certain capacity denoted by its position in the list. The length

of the list can be fixed for all the holonyms of a class at the time the class is created;

this yields an ordering of a definite number of parts. It is also possible to have the

length of the list vary from holonym to holonym, in which case we have an ordering

of an indefinite number of parts.

The dependency dimension deals with the deletion semantics of parts and wholes.

As we discussed, there are times when it is desirable to have the deletion of a whole

imply the deletion of some or all of its parts. Such an arrangement can be particu

larly useful when the holonym is an extensive object comprising a large number of

meronyms. The ORION part relationship allows for this kind of dependency. On

t he other hand, in our part model, we also avail ourselves of ontological dependency,

where the existence of a whole can be made dependent on the existence of some one

201

or more defining parts. Thus, in our model, dependency may be defined in either

direction, from the part to whole, or vice versa.

Part hierarchies are a natural place in which to employ derived attributes. Often,

characteristics of parts are assimilated by their wholes, or vice versa. The fourth

dimension of the part relationship, the value propagation dimension, forms the basis

for the formal definition of such constructs in our part model. Specifically, it is used

to define derived attributes with respect to propagations of property values across the

part relationship, in the direction from the holonymic class to the meronymic class,

or the other way around. In our model, a value propagation can take on one of the

following three forms which extend and formalize previous notions of propagation

in OODB part hierarchies [127, 145]: invariant, transformational, or cumulative.

The first of these limits the source of the propagation to a single object (which is

either a whole or a part, depending on the propagation’s direction), and data values

are passed along “as is” without any intervening computation. Transformational

propagation drops the uniqueness requirement for the source object and allows for

the specification of a computation in the process of propagation. In this way, it

can be used to transform property values obtained from (possibly) many source

objects into a single value of a given data type. Cumulative value propagation,

like transformational propagation, does not require a unique source object; however,

instead of producing a single data value, it collects the multiple property values into

a set which is propagated to the target object. All three types of value propagation

2 02

together provide a powerful means for the definition of derived attributes in terms

of a single part relationship.

In a part hierarchy, derived attributes are often best described in terms of iden

tical properties of many source objects, regardless of their classes. A canonical

example of this is the fact that the weight of a car is the sum of the weights of all

its parts, not just those of a single type. Or, for example, the material make-up of

a golf club is the set of materials from its shaft, head, and grip. To accommodate

these situations, our part model allows identical properties from different classes to

be propagated simultaneously across many part relationships to a single source class.

In a pattern mirroring the part structure itself, the values of these propagations are

combined to form what we call a generalized derived attribute. As was mentioned,

this mechanism constitutes a third resolution strategy for the “multiple inheritance”

problem (or more precisely, the multiple value propagation problem) in the context

of OODB part hierarchies.

To facilitate the construction of OODB part-whole schemata and provide a sound

means for communicating about parts and wholes in an OODB environment, we

have introduced an extensive graphical notation for the part relationship with all its

various semantics and functionalities. Our notation extends some previous graphical

conventions and. in fact, uses an enhancement of the OMT [171] part relationship

symbol as its basis. Variations of a small set of symbols, including the one for the

part relationship derived from OMT, mnemonicallv express all the different semantics

203

prescribed by the part relationship’s characteristic dimensions. There are graphical

symbols for the three different types of value propagation and accompanying symbols

for the derived attributes induced by that process. Using these, one can symbolically

define both a derived attribute and its implementation in terms of the propagation

of a property value across a part relationship. Symbols are also provided for the

representation of generalized derived attributes and their computation.

In order to provide a framework within which to do OODB part-whole model

ing, we have developed a general graphical notation for the representation of OODB

schemata. This language captures a full range of OODB constructs including classes,

attributes, methods, and a variety of different relationship types. As such, it is ap

plicable to a wide group of different OODB data models. In designing this graphical

language, we have taken into account the mnemonic value of the graphical icon and

have chosen our symbols accordingly. Features of the symbols themselves are used

to convey aspects of the semantics of the constructs they stand for. This graph

ical notation has been employed successfully in a number of large data modeling

projects undertaken by our research group. It is also currently under consideration

for inclusion in a commercially-available CASE tool called ObjectMaker [129].

To promote and support the use of our graphical schema representation, we have

built the OOdini software system. OOdini is a constraint-based graphical editor

designed specifically for the creation and manipulation of OODB schemata described

using our representation. The fact that OOdini is fine-tuned to our notation means

204

tha t it can ensure the integrity of such diagrams and greatly facilitate their creation.

Various features of OOdini also make it an excellent OODB schema orientation or

browsing tool. Besides this, OOdini permits conversion of a graphical schema into an

OODB abstract textual language called OODAL. OOdini also supports conversion

into Dual Model syntax (referred to as DAL) and the VODAK Model Language.

In this manner, OOdini is an effective OODB graphical interface. The construction

of converters for other OODB languages is simplified by the use of an application

programming interface (API), provided with OOdini, for access to an internal C

Language representation of OODAL code.

We have demonstrated the viability of our part model by presenting a pair of

alternate realizations for it in the context of OODB data models. Following in the

tradition of the ER model and other semantic data models, the first of these realizes

the part relationship as an ob ject class in its own right whose instances stand for part

relationship occurrences. As with the graphical symbols, variations of a “generic”

realization are used for all the different types of part relationships. A strength of

this realization is its strict reliance on a basic set of existing OODB constructs,

avoiding the need for any new modeling primitives. It is our hope that the designers

of different OODBs will exploit our part model to quickly and easily add part-whole

modeling capabilities to their own systems. We see such prospective implementations

as invaluable sources of feedback on our work. In fact, at present, an implementation

205

of our part model is being carried out in Smalltalk as part of a s tuden t’s Master’s

thesis [172].

The second realization, an implementation of which has been described in detail

in Chapter 6, exploits the metaclass mechanism of VML. The VML OODB data

model is based on an open architecture tha t can be tailored through introduction

of new semantic relationships. The tailoring is done with the use of an extensible

metaclass system. To implement our part model, we have constructed a custom

metaclass, called the HolonymicMeronymic metaclass, which endows the classes of a

part hierarchy (what we call HM classes) and, in turn, their instances with structure

and behavior appropriate to the part relationship. (We note that while it is certainly

possible to define all classes of a schema to be HM classes, this adds unnecessary

overhead to classes which do not actually participate in part relationships.) Through

the HolonymicMeronymic instance type, an HM class is given methods for the spec

ification and maintenance of its part relationships with other HM classes. Because

the part relationship imposes its own specific creation and deletion semantics, an

HM class is also provided with special methods make and destroy for creating and

deleting instances, respectively. Both are designed to enforce the various constraints

dictated by the characteristic dimensions. The instance-instance type of the Holony

micMeronymic metaclass augments the instances of HM classes with new methods

to give them the "look and feel” of meronvms and holonyms with respect to each

other. Specifically, such instances are given the ability to establish and break part-

2 0 6

whole connections with other instances. These connections can also be changed or

queried, with the parts or wholes of an instance accessible through a single method

call. W ith the aid of the VML NOMETHOD clause in the HolonymicMeronymic

instance-instance type, value propagation in either direction across a part relation

ship is carried out.

The implementation of our part model in terms of a VML metaclass has demon

strated two important points: (1) Our part model can be seamlessly incorporated

into an existing OODB system. In other words, the introduction of our part model

does not require the rewriting of a substantial subsystem of the OODB. (2) The

VML metaclass facility can indeed support extensions in terms of new semantic

relationships such as our part relationship.

During our implementation work in the context of VML, we uncovered the need

for a new type of friend function [199] which we have named “parameterized friend

function.” The need for such a construct is a consequence of VML’s unique metaclass

facility. The instance-instance type of a metaclass is defined generically, or, in other

words, it is defined before any of the classes (and their respective instances) that

it affects. Thus, methods in the instance-instance type cannot be given “friends”

at the time they are defined—as is usually the case—because these are not known.

Instead, the friends must be specified as parameters at the time an instance (which,

of course, is a class) of the metaclass is created. Furthermore, the friends of a given

207

method will vary among the different classes that are instances of the metaclass in

question.

Another issue for future research is the explicit incorporation of the different

linguistic usages (e.g., the six usages of [210]) of the part relationship into our own

OODB part model. For example, it might make sense to allow the database de

signer to tag each part relationship with its intended linguistic sense, such as com

ponent/integral or member/collection. A potential use for such tags is in the context

of performing part retrieval, where one may wish to recursively retrieve all the parts

of some whole along a portion of the part hierarchy restricted to one sense of the

part relationship. For example, one may request the retrieval of all parts that are

components of the whole (or its parts) in the component/integral sense.

As we have discussed, the distinctions of [210] have been employed by Huhns

and Stephens in an algebra of semantic relationships [93]. This algebra is designed

to provide a means for performing valid inferencing in the context of a knowledge-

based system. Currently, there is an effort to introduce the algebra into the CYC

knowledge-based system [117].

In a system like CYC. it makes sense to limit valid “part” inferences to those

involving part relationships of a single type. However, in a database environment,

we would not want to impose such a severe restriction on recursive part retrieval.

Consider, for example, the case of a factory which produces a daily allotment of

cars. Now, assume that we wish to know all the parts used in the production of

208

cars on a specific day. If, in our database, we have modeled each daily allotment as

a collection of cars with respect to a member/collection part relationship, and each

car is decomposed using component/integral part relationships, then this query can

be formulated simply as a recursive part retrieval involving two senses of the part

relationship. Therefore, strictly adhering to the linguistic distinctions and ruling out

such a retrieval a priori is totally inappropriate in this context.

Another area of investigation which should prove fruitful is the introduction of

rules into the part model. Of course, the use of rules would require the introduction

of some sort of rule manager into the underlying OODB data model (see, e.g., [169,

196]). We have not made any assumption about the existence of such a rule manager

in the course of this dissertation. Rules could be used to augment aspects of the

constraints imposed by the various characteristic dimensions. In the context of the

exclusive/shared dimension, for example, rules defined in terms of derived attributes

could serve to enhance the constraints on the number of wholes a part can appear in.

So, instead of stating that a student may be part of at most some maximum number

of sections, we may want to have a rule stating that a student may be part of any

number of sections as long as the value of his derived attribute credits (obtained

from class s e c t i o n across the part relationship and indicating his total number of

credits enrolled for) remains below some fixed amount.

We also see rules playing a role in the specification of parameterized constraints

in OODB part hierarchies. For example, instead of working with constant values

209

to define constraints (such as the range-restriction of the cardinality/ordinality di

mension), one may want to employ the properties of an HM class for this purpose.

In this manner, the constraints could be specified at object instantiation-time and

vary from instance to instance. Thus, we could impose, say, different limits on the

number of articles tha t appear in different newsletters.

Rules may also prove to be of interest in the definition of derived attributes. A

rule, for instance, could replace a default value and designate an alternate source

of value propagation when an appropriate one is not available. Or rules could be

used instead of algebraic operators to specify conversions in a transformational value

propagation.

Currently, OOdini is not fully equipped to handle all the symbolic machinery we

have introduced for our part model. It only provides an unqualified part relationship

that conveys a general “is part of” interpretation. As future work, the full range of

graphical symbols could be integrated into OOdini. This would allow it to convert

graphical part schemata directly into a VML syntax enhanced by our metaclass

implementation. In this way. database designers would be further alleviated of the

burden of doing hand-coding.

As an important line of future work, we see the application of the methodology

used in this dissertation to other semantic relationships besides the part relationship.

Its use in the formalization of the part relationship can serve as a prototype for the

characterization of others. One such relationship that could readily benefit from a

2 1 0

dimensional decomposition of its semantics is roleof. Informally, roleof is a semantic

relationship used to connect disparate database objects representing the same real-

world entity in its various “roles."1 For example, a person can be represented as

an employee in one context and a student in another. A major problem with this

relationship has been the lack of agreement on precise semantics. In fact, four

different versions of it (or its converse hns-role) can be found in [108, 126, 143, 179].

Thus, roleof could very much benefit from the unified treatment of its different

semantics and varied inheritance behavior [108. 143]. Other semantic relationships

tha t also come to mind are versioning, ownership, and containment. In conclusion,

we see ahead the application of our methodology as an important tool in the ongoing

effort to expand, in a controlled way, the set of semantic relationships that are

actually useful in enterprise modeling within OODBs.

A P P E N D IX A

V M L C O D E FO R T H E H olon ym icM eronym ic M ET A C L A SS

In this appendix, we provide the entire VML code specification for our Holonymic

Meronymic metaclass. Included are the definition of the metaclass itself, various

supplementary data types, and the metaclass’s instance type and instance-instance

type.

SCHEMA H M M e t a C l a s s

/
/ /
/ / T h e e x c l u s i v e / s h a r e d d i m e n s i o n t y p e .
/ /
/ /

DEFINE CLASS_EXCL 1
DEFINE GLOBAL_EXCL 2
DEFINE SHARED 3
DATATYPE E x S h T y p e = INT;

/
/ /
/ / T h e c a r d i n a l i t y d i m e n s i o n t y p e .
/ /
/

DEFINE I N F I N I T Y 3 2 7 6 7
DATATYPE C a r d T y p e = [m i n : I N T , m ax: I N T] ;

/
/ /
/ / T h e d e p e n d e n c y d i m e n s i o n t y p e .
/ /
/ /

211

212

DEFINE PART_TO_WHOLE 1 / / p a r t s d e p e n d o n w h o l e s .
DEF IN E WH0LE_T0_PART 2 / / w h o l e s d e p e n d o n p a r t s .
DEF IN E NONE 3 / / n o d e p e n d e n c y .
DATATYPE D e p e n d T y p e = INT;

/ /

T h e f o l l o w i n g t y p e i s u s e d t o s t o r e i n f o r m a t i o n a b o u t
a p a r t r e l a t i o n s h i p t h a t a g i v e n c l a s s m i g h t p a r t i c i p a t e
i n . F o r a n y c l a s s i n t h e h i e r a r c h y , w e w i l l k e e p a s e t o f
s u c h s t r u c t u r e s t o r e c o r d a l l t h e " p a r t " c l a s s e s r e l a t e d
t o t h e g i v e n c l a s s .

S t r u c t u r e M e m b e r s :

t h e M e r o n y m i c C l a s s : OID o f t h e m e r o n y m i c c l a s s ,
e s : v a l u e o f t h e e x c l u s i v e / s h a r e d d i m e n s i o n ,
c a r d i n a l i t y : t h e r e q u i r e d n u m b e r o f p a r t s f o r a

h o l o n y m ; g i v e n a s a n u m e r i c a l r a n g e ,
d e p e n d e n c y : t h e t y p e o f d e p e n d e n c y a s s o c i a t e d

w i t h t h e r e l a t i o n s h i p ; e i t h e r PART_T0_WH0LE,
WH0LE_T0_PART, o r NONE.

u p S e t : T h e s e t o f p r o p e r t i e s b e i n g p r o p a g a t e d
f r o m t h e m e r o n y m i c c l a s s t o t h e h o l o n y m i c
c l a s s .

d o w n S e t : T h e s e t o f p r o p e r t i e s b e i n g p r o p a g a t e d
f r o m t h e h o l o n y m i c t o m e r o n y m i c c l a s s .

/ /

DATATYPE P a r t R e l a t i o n s h i p T y p e = [
t h e M e r o n y m i c C l a s s : O I D ,
e s : E x S h T y p e ,
c a r d i n a l i t y : C a r d T y p e ,
d e p e n d e n c y : D e p e n d T y p e ,
u p S e t : { S T R I N G } ,
d o w n S e t : { S T R I N G }] ;

213

/
/ /
/ / T h e f o l l o w i n g c o n s t a n t d e t e r m i n e s t h e m a x i m u m n u m b e r
/ / o f t y p e s o f p a r t s .
/ /
/

DEFINE MAX_PART_CLASSES 10

/
/ /
/ / T h e d e c l a r a t i o n o f t h e H o l o n y m i c M e r o n y m i c C l a s s m e t a c l a s s
/ /
/ /

CLASS H o l o n y m i c M e r o n y m i c C l a s s METACLASS M e t a c l a s s
IN STTYPE H o l o n y m i c M e r o n y m i c _ I n s t T y p e
I N STI N ST TY PE H o l o n y m i c M e r o n y m i c . I n s t I n s t T y p e

END;

/
/ /
/ / T h e H o l o n y m i c M e r o n y m i c m e t a c l a s s ' s I n s t T y p e .
/ /
/ /

OBJECTTYPE H o l o n y m i c M e r o n y m i c . I n s t T y p e
SUBTYPEOF M e t a c l a s s . I n s t T y p e ;

INTERFACE
METHODS

m a k e (s o m e P a r t s : { O I D }) : OID READONLY; / / r e p l a c e s m e t h o d "new"
d e s t r o y (a n O b j e c t : OID) READONLY; / / r e p l a c e s " d e l l n s t a n c e "
d e f M e r o n y m i c R e l s h p s (s o m e R e l s h p s : { P a r t R e l a t i o n s h i p T y p e })

READONLY;
d e f H o l o n y m i c C l a s s e s (s o m e C l a s s e s : { O I D }) READONLY;
i s M e r o n y m i c C l a s s O f (a C l a s s : O I D) : BOOL READONLY;
i s H o l o n y m i c C l a s s O f (a C l a s s : OID) : BOOL READONLY;
g e t M e r o n y m i c C l a s s e s O f () : { O I D } READONLY;
g e t H o l o n y m i c C l a s s e s O f () : { O I D } READONLY;
e x s h (a C l a s s : O I D) : E x S h T y p e READONLY;
m i n C a r d (a C l a s s : O I D) : INT READONLY;

214

m a x C a r d (a C l a s s : O I D) : INT READONLY;
d e p e n d e n c y S t a t u s (a C l a s s : O I D) : D e p e n d T y p e READONLY;
p r o p e r t y U p P r o p a g a t e d (m e t h : STRING, a C l a s s : O I D) : BOOL READONLY;
p r o p e r t y D o w n P r o p a g a t e d (m e t h : STRING, a C l a s s : O I D) : BOOL READONLY;

IMPLEMENTATION

EXTERN p r i n t s (s : S T R I N G) ;
EXTERN e n d l i n e Q ;

PROPERTIES
t h e P a r t R e l s h p s :

ARRAY [SUBRANGE 1 . . MAX_PART_CLASSES] OF
P a r t R e l a t i o n s h i p T y p e ;

n u m b e r O f P a r t R e l s h p s : I N T ;
t h e H o l o n y m i c C l a s s e s : { O I D } ;

METHODS

/
/ /
/ / T h e m e t h o d "m ake" r e p l a c e s t h e m e t h o d "n ew " f o r
/ / a n y c l a s s w h i c h p a r t i c i p a t e s i n a p a r t h i e r a r c h y .
/ / T h a t i s , a n o b j e c t o f a n y s u c h c l a s s i s c r e a t e d
/ / b y i n v o k i n g m a k e r a t h e r t h a n n e w .
/ /
/ /

m a k e (s o m e P a r t s : { O I D }) : OID READONLY;
{

VAR a N e w O b j e c t : OID;
VAR a P a r t : OID;
VAR t h e P a r t s C l a s s : OID;
VAR i : INT;
VAR f o u n d : BOOL;

/ /
/ / T h e f o l l o w i n g a r r a y r e p r e s e n t s a m a p p i n g f r o m a
/ / m e r o n y m i c c l a s s t o t h e n u m b e r o f i t s i n s t a n c e s
/ / s e n t i n t h e a r g u m e n t o f t h i s m e t h o d . I f a n y
/ / o f t h e s e n u m b e r s v i o l a t e s t h e c a r d i n a l i t y c o n s t r a i n t s

215

/ / d e f i n e d b y t h e r e s p e c t i v e p a r t r e l a t i o n s h i p , t h e n t h e
/ / c r e a t i o n o f t h e n e w o b j e c t i s a b a n d o n e d a n d t h e m e t h o d
/ / r e t u r n s NULL. T h e c o r r e s p o n d e n c e b e t w e e n an e n t r y
/ / i n t h i s a r r a y a n d t h e c l a s s i s d e t e r m i n e d u s i n g t h e
/ / s t r u c t u r e " t h e P a r t R e l s h p s " d e f i n e d a s a p r o p e r t y o f
/ / t h e c l a s s .
/ /

VAR p a r t C o u n t : ARRAY [SUBRANGE 1 . . MAX_PART_CLASSES] OF IN T ;

/ /
/ / D e t e r m i n e h o w m a n y p a r t f r o m e a c h m e r o n y m i c c l a s s
/ / a r e r e p r e s e n t e d i n t h e g i v e n s e t .
/ /

F 0 R (i := 1; n u m b e r O f P a r t R e l s h p s ; 1)

p a r t C o u n t [i] := 0 ;

FORALLC a P a r t I N s o m e P a r t s)
{

t h e P a r t s C l a s s : = a P a r t - > (O I D) c l a s s () ;

/ /
/ / F i r s t o f a l l , c h e c k t h a t t h e c u r r e n t p a r t i s a n
/ / i n s t a n c e o f a n a c c e p t a b l e c l a s s , t h a t i s ,
/ / c h e c k t h a t t h e p a r t ' s c l a s s i s a m o n g t h e m e r o n y m i c
/ / c l a s s e s o f t h e t a r g e t c l a s s .
/ /

I F (NOT t h e P a r t s C l a s s - > (B O O L) i s M e r o n y m i c C l a s s O f (S E L F))

p r i n t s (' Error in method "make":'); e n d l i n e O ;
p r i n t s (' A g iv e n o b je c t i s not an in s t a n c e o f a n ') ;

e n d l i n e O ;
p r i n t s (' a p p r o p r i a t e m e r o n y m i c c l a s s . ') ;

e n d l i n e O ; e n d l i n e O ;
RETURN NULL;

}

216

ELSE
{

/ /
/ / d e t e r m i n e t h e a p p r o p r i a t e i n d e x i n t o t h e " c o u n t " a r r a y
/ / a n d i n c r e m e n t t h a t e n t r y .
/ /

f o u n d := FALSE;
i : = 1;

WHILE((NOT f o u n d) & (i <= n u m b e r O f P a r t R e l s h p s))
{

I F (t h e P a r t s C l a s s ==
t h e P a r t R e l s h p s [i] . t h e M e r o n y m i c C l a s s)

f o u n d := TRUE;

ELSE

i : = 1 + 1;

>

p a r t C o u n t [i] := p a r t C o u n t [i] + 1 ;

>

>

/ /
/ / N o w , c h e c k t o s e e t h a t t h e n u m b e r o f p a r t s
/ / f r o m e a c h c l a s s a t l e a s t s a t i s f i e s t h e m i n i m u m
/ / p a r t c o n s t r a i n t f o r t h e p a r t i c u l a r r e l s h p . I f
/ / a n y d o e s n o t , t h e n r e t u r n NULL.
/ /

F 0 R (i := 1; n u m b e r O f P a r t R e l s h p s ; 1)
{

217

/ /
/ / I s t h e m i n c a r d i n a l i t y c o n s t r a i n t v i o l a t e d ?
/ /

I F (p a r t C o u n t [i] < t h e P a r t R e l s h p s [i] . c a r d i n a l i t y . m i n)
{

p r i n t s (' E r r o r i n m e t h o d " m a k e " : ') ; e n d l i n e O ;
p r i n t s (' T h e m i n c a r d i n a l i t y r e s t r i c t i o n o f o n e o f t h e ') ;

e n d l i n e O ;
p r i n t s (’ p a r t r e l a t i o n s h i p s w a s v i o l a t e d . T h e c r e a t i o n ') ;

e n d l i n e O ;
p r i n t s (' o f t h e n e w o b j e c t w a s a b o r t e d . ') ;

e n d l i n e () ; e n d l i n e () ;
RETURN NULL;

>

>

/ /
/ / A t t h i s p o i n t , we c a n g o a h e a d w i t h t h e c r e a t i o n o f t h e
/ / n e w o b j e c t , a n d w e c a n t r y t o a t t a c h a l l t h e g i v e n p a r t s .
/ / N o t e t h a t w e ma y f a i l d u e t o a v i o l a t i o n o f a m a x im um
/ / c a r d i n a l i t y o r a n e x c l u s i v e / s h a r e d c o n s t r a i n t .
/ /

a N e w O b j e c t := S E L F - > n e w () ;

/ /
/ / N o t e : t h e f o l l o w i n g t w o m e t h o d s m u s t o n l y b e
/ / i n v o k e d a t t h i s p o i n t a n d n o w h e r e e l s e ! ! !
/ /

a N e w O b j e c t - > i n i t M e r o n y m S e t () ;
a N e w O b j e c t - > i n i t H o l o n y m S e t () ;

/ /
/ / T r y t o a t t a c h t h e p a r t s .
/ /

F O R A L L (a P a r t I N s o m e P a r t s)
{

218

IFCNOT a N e w O b j e c t - > (B O O L) a d d P a r t (a P a r t))

p r i n t s (' E r r o r i n m e t h o d " m a k e " : ') ; e n d l i n e O ;
p r i n t s (' C o u l d n o t a t t a c h o n e o f t h e g i v e n p a r t s O ;

e n d l i n e O ;
p r i n t s O t o t h e n e w l y c r e a t e d o b j e c t . T h i s m a y h a v e O ;

e n d l i n e O ;
p r i n t s O been due to a v i o l a t i o n o f a maximum c a r d i n a l i t y ') ;

e n d l i n e O ;
p r i n t s (' c o n s t r a i n t o r a n e x c l u s i v e o w n e r s h i p c o n s t r a i n t . ') ;

e n d l i n e O ;
p r i n t s O T h e c r e a t i o n o f t h e n e w o b j e c t w a s a b o r t e d . ') ;

e n d l i n e O ; e n d l i n e O ;

/ /
/ / R e m o v e t h e r e f e r e n c e t o t h e n e w o b j e c t f r o m
/ / a l l t h e p a r t s .
/ /

F 0 R A L L (p I N s o m e P a r t s)

p - > r e m o v e W h o l e (a N e w Q b j e c t) ;

/ /
/ / d i s c a r d t h e n e w o b j e c t .
/ /

S E L F - > d e l I n s t a n c e (a N e w O b j e c t) ;

/ /
/ / r e t u r n NULL t o i n d i c a t e f a i l u r e .
/ /

RETURN NULL;

}

>

RETURN a N e w O b j e c t ;

>;

219

/ /

T h i s m e t h o d r e p l a c e s t h e m e t h o d " d e l l n s t a n c e " f o r
a n y c l a s s i n a p a r t h i e r a r c h y .

l u i i i i i i i i i i i i i u i i i i u i i i i i i i i i i u i i i i u u i i i i i i i i i i m m i i u

d e s t r o y (a n O b j e c t : OID) READONLY;
{

VAR o b j H o l o n y m S e t : { O I D } ; VAR o b j M e r o n y m S e t : { O I D } ;
VAR o b j C l a s s : OID; VAR p : OID; VAR w: OID;
VAR a n o t h e r W h o l e : OID; VAR a W h o l e s C l a s s : OID;
VAR a P a r t s C l a s s : OID; VAR p s H o l o n y m S e t : { O I D } ;
VAR p s M e r o n y m S e t : { O I D } ; VAR w s H o l o n y m S e t : { O I D } ;
VAR w s M e r o n y m S e t : { O I D } ; VAR p s C l a s s : OID;
VAR w s C l a s s : OID; VAR c u r r e n t W h o l e C l a s s : OID;
VAR s o m e P a r t : OID; VAR s o m e W h o l e : OID;
VAR s o m e W h o l e C l a s s : OID; VAR t h e D e p e n d S t a t u s : D e p e n d T y p e ;
VAR t h e M i n C a r d : IN T ; VAR h a s N o n D e p e n d e n t R e q u i r e d P a r t s : BOOL;
VAR f o u n d : BOOL;

o b j H o l o n y m S e t := a n O b j e c t - > ({ O I D }) g e t W h o l e s () ;
o b j M e r o n y m S e t := a n O b j e c t - > ({ O I D }) g e t P a r t s () ;
o b j C l a s s := a n O b j e c t - > (O I D) c l a s s () ;

/ /
/ / C a s e 1 :
/ / I f t h e o b j e c t i s n o t p a r t i c i p a t i n g i n a p a r t r e l s h p . ,
/ / t h e n d e l e t e i t .
/ /

I F ((o b j H o l o n y m S e t == { }) & (o b j M e r o n y m S e t == { }))

S E L F - > d e l I n s t a n c e (a n O b j e c t) ;

/ /
/ / C a s e s 2 , 3 , a n d 4 :
/ / I f t h e r e i s a p a r t o r w h o l e o f t h e o b j e c t w h i c h i s
/ / n o t d e p e n d e n t o n i t , t h e n r e f u s e t h e d e l e t i o n .
/ / O r , i f d e l e t i n g t h e o b j e c t m i g h t c a u s e a c a r d i n a l i t y

2 2 0

/ / v i o l a t i o n , t h e n d o n ' t d e l e t e i t e i t h e r . We a l s o
/ / m u s t c h e c k f o r t h e e x c e p t i o n t o c a s e 2 w h e r e a n
/ / o b j e c t h a s o n l y r e q u i r e d p a r t s a n d t h e s e c a n n o t
/ / p o s s i b l y b e r e m o v e d .
/ /

ELSE
{

/ /
/ / F i r s t , c h e c k t h e w h o l e s .
/ /

F 0 R A L L (w I N o b j H o l o n y m S e t)

a W h o l e s C l a s s := w - > (O I D) c l a s s () ;

t h e D e p e n d S t a t u s : = a W h o l e s C l a s s - > (D e p e n d T y p e)
d e p e n d e n c y S t a t u s (S E L F) ;

t h e M i n C a r d : = a W h o l e s C l a s s - > (I N T) m i n C a r d (S E L F) ;

I F ((t h e D e p e n d S t a t u s != WH0LE_T0_PART) I
(t h e M i n C a r d > 0))

RETURN;

>

/ /
/ / Now t h e p a r t s .
/ /

h a s N o n D e p e n d e n t R e q u i r e d P a r t s := FALSE;

F 0 R A L L (p I N o b j M e r o n y m S e t)
{

a P a r t s C l a s s : = p - > (O I D) c l a s s () ;

t h e D e p e n d S t a t u s : = S E L F - > (D e p e n d T y p e)
d e p e n d e n c y S t a t u s (a P a r t s C l a s s) ;

221

t h e M i n C a r d : = S E L F - > (I N T) m i n C a r d (a P a r t s C l a s s) ;

I F (t h e D e p e n d S t a t u s != PART_T0_WH0LE)

I F (t h e M i n C a r d == 0)
RETURN;

ELSE
h a s N o n D e p e n d e n t R e q u i r e d P a r t s : = TRUE;

>

/
/ N o w , i f w e a r r i v e d h e r e , t h e n w e k n o w t h a t t h e o b j e c t o f
/ i n t e r e s t s h o u l d b e d e l e t e d . H o w e v e r , i f i t h a s
/ n o n d e p e n d e n t r e q u i r e d p a r t s , (i . e . ,
/ h a s N o n D e p e n d e n t R e q u i r e d P a r t s = = T R U E) , t h e n t h e s e
/ m u s t b e r e m o v e d a t t h i s p o i n t . A f t e r t h a t ,
/ C a s e 5 w i l l h o l d (o r i t s s p e c i a l c a s e : C a s e 1) , a n d
/ we c a n p r o c e e d s t r a i g h t t o t h e p r o c e s s i n g o f t h a t c a s e .
/

I F (h a s N o n D e p e n d e n t R e q u i r e d P a r t s)
{

F 0 RALL(p I N o b j M e r o n y m S e t)

a P a r t s C l a s s : = p - > (0 I D) c l a s s () ;

t h e D e p e n d S t a t u s := S E L F - > (D e p e n d T y p e)
d e p e n d e n c y S t a t u s (a P a r t s C l a s s) ;

I f t h e p a r t i s n o t d e p e n d e n t o n a n O b j e c t ,
t h e n i t m u s t b e d e t a c h e d r i g h t n o w . O t h e r w i s e
i t w o u l d b e s u b j e c t t o d e l e t i o n (w h i c h i t
s h o u l d n ' t b e .

I F (t h e D e p e n d S t a t u s != PART_T0_WH0LE)

222

{
a n O b j e c t - > r e m o v e P a r t P r i v a t e (p) ;
p - > r e m o v e W h o l e (a n O b j e c t) ;

>

>

>

I f w e h a v e m a d e i t t h i s f a r , t h e n w e a r e d e a l i n g
w i t h c a s e 5 . T h a t i s , t h e g i v e n o b j e c t 0 h a s p a r t s
a n d / o r w h o l e s , a l l o f w h i c h a r e d e p e n d e n t o n i t , a n d
t h e r e i s n o p o s s i b i l i t y t h a t t h e d e l e t i o n o f 0 w i l l
v i o l a t e a n i n t e g r i t y (c a r d i n a l i t y) c o n s t r a i n t . T h e r e f o r e ,
0 ma y b e d e l e t e d ; h o w e v e r , we s t i l l n e e d t o e x a m i n e e a c h
o b j e c t w h i c h i s d e p e n d e n t o n 0 t o s e e i f t h e d e l e t i o n
s h o u l d b e p r o p a g a t e d t o i t . I f s u c h a n o b j e c t (s a y Q)
i s i n a p a r t - w h o l e r e l a t i o n s h i p w i t h a n o t h e r o b j e c t f r o m
0 Js c l a s s , o r i f Q i s a m e r o n y m i n a p a r t r e l a t i o n s h i p
w i t h s o m e m i n i m u m c a r d i n a l i t y > 0 , t h e n w e i g n o r e i t
(i . e . , d o n o t p r o p a g a t e t h e d e l e t i o n t o i t) . O t h e r w i s e ,
we a c t a s d i s c u s s e d i n c a s e (i i i) a b o v e .

F i r s t , s t a r t w i t h t h e p a r t s . Of c o u r s e , w e m u s t
r e f r e s h " o b j M e r o n y m S e t " b e c a u s e c e r t a i n p a r t s
ma y h a v e b e e n r e m o v e d .

o b j M e r o n y m S e t := a n Q b j e c t - > ({ O I D }) g e t P a r t s () ;

F 0RALL(p IN o b j M e r o n y m S e t)
{

/ /
/ / F i r s t , d i s c o n n e c t t h e p a r t f r o m t h e
/ / o b j e c t w h i c h i s b e i n g d e l e t e d . N o t e t h a t
/ / we d o n o t u s e " r e m o v e P a r t " h e r e b e c a u s e we
/ / d o n o t c a r e a b o u t a n y e x i s t i n g c a r d i n a l i t y
/ / c o n s t r a i n t s ; t h e t a r g e t w h o l e o b j e c t i s b e i n g
/ / d e l e t e d f r o m t h e s y s t e m a t t h i s p o i n t , n o m a t t e r
/ / w h a t . I n s t e a d , we u s e t h e s p e c i a l m e t h o d

223

/ / " r e m o v e P a r t P r i v a t e " w h i c h d o e s n o t t e s t f o r
/ / i n t e g r i t y v i o l a t i o n s .
/ /

a n O b j e c t - > r e m o v e P a r t P r i v a t e (p) ;
p - > r e m o v e W h o l e (a n O b j e c t) ;

/ /
/ / n o w s e e i f t h e r e a r e o t h e r w h o l e s o f p i n
/ / a n Q b j e c t ' s c l a s s . A l s o , s e e i f t h e r e
/ / a r e a n y w h o l e s w h i c h ma y r e q u i r e p i n o r d e r
/ / t o s a t i s f y a m i n i m u m c a r d i n a l i t y c o n s t r a i n t .
/ /

f o u n d := FALSE;
p s H o l o n y m S e t := p - > ({ O I D }) g e t W h o l e s () ;
p s C l a s s := p - > (O I D) c l a s s () ;

F 0RALL(a n o t h e r W h o l e I N p s H o l o n y m S e t)
{

c u r r e n t W h o l e C l a s s := a n o t h e r W h o l e - > (O I D) c l a s s () ;

I F ((c u r r e n t W h o l e C l a s s = = o b j C l a s s) I
(c u r r e n t W h o l e C l a s s - > (I N T) m i n C a r d (p s C l a s s) > 0))

f o u n d : = TRUE;
>

I F (N O T f o u n d)
{

/ /
/ / OK, s o p s h o u l d b e d e l e t e d , t o o .
/ / B r e a k a l l t h e p a r t - w h o l e c o n n e c t i o n s
/ / o f p , e x c e p t f o r t h o s e w h i c h a r e d e p e n d e n t
/ / o n p . S t a r t w i t h i t s p a r t s .
/ /

p s M e r o n y m S e t := p - > ({ 0 I D }) g e t P a r t s () ;

F0RALL(s o m e P a r t IN p s M e r o n y m S e t)
{

224

I F (p s C l a s s - > (D e p e n d T y p e)
d e p e n d e n c y S t a t u s (s o m e P a r t - > (O I D) c l a s s ()) !=

PART_TO_WHOLE)
{

p - > r e m o v e P a r t P r i v a t e (s o m e P a r t) ;
s o m e P a r t - > r e m o v e W h o l e (p) ;

>

>

/ /
/ / Now t h e w h o l e s .
/ /

F0RALL(s o m e W h o l e IN p s H o l o n y m S e t)
{

I F (s o m e W h o l e - > (O I D) c l a s s () - > (D e p e n d T y p e)
d e p e n d e n c y S t a t u s (p s C l a s s) != WH0LE_T0_PART)

/ /
/ / " r e m o v e P a r t " c a n n o t f a i l h e r e b e c a u s e
/ / we k n o w t h a t t h e m i n C a r d o f t h e r e l a t i o n s h i p
/ / i s 0 .

s o m e W h o l e - > r e m o v e P a r t (p) ;
>

/ /
/ / Now d e s t r o y p .
/ /

p s C l a s s - > d e s t r o y (p) ;

>

} / / FORALL p a r t s o f t h e g i v e n o b j e c t t o b e d e l e t e d .

225

/ /
/ / N o w , t a k e c a r e o f t h e g i v e n o b j e c t ' s (i . e . , a n O b j e c t ' s)
/ / w h o l e s .
/ /

FORALLC w I N o b j H o l o n y m S e t)
{

/ /
/ / R e m o v e t h e g i v e n o b j e c t f r o m t h e w h o l e . A g a i n ,
/ / r e m o v e P a r t c a n n o t f a i l b e c a u s e w e k n o w t h a t a l l
/ / t h e p a r t r e l s h p s t h a t a n O b j e c t p a r t i c i p a t e s i n
/ / a s a p a r t h a v e a m i n C a r d o f 0 .
/ /

w - > r e m o v e P a r t (a n O b j e c t) ;

/ /
/ / n o w s e e i f t h e r e a r e o t h e r p a r t s o f w i n
/ / a n O b j e c t ' s c l a s s . A l s o , s e e i f t h e r e
/ / a r e a n y w h o l e s w h i c h may r e q u i r e w i n o r d e r
/ / t o s a t i s f y a m i n i m u m c a r d i n a l i t y c o n s t r a i n t .
/ /

f o u n d := FALSE;
w s H o l o n y m S e t := w - > ({ 0 I D }) g e t W h o l e s () ;
w s M e r o n y m S e t := w - > ({ 0 I D }) g e t P a r t s () ;
w s C l a s s := w - > (0 I D) c l a s s () ;

FORALLC a n o t h e r P a r t IN w s M e r o n y m S e t)
{

I F (a n o t h e r P a r t - > (O I D) c l a s s () = = o b j C l a s s)
f o u n d := TRUE;

}

I F (N O T f o u n d)
{

FORALLC s o m e W h o l e IN w s H o l o n y m S e t)
{

s o m e W h o l e C l a s s := s o m e W h o l e - > (O I D) c l a s s () ;

I F (s o m e W h o l e C l a s s - > (I N T) m i n C a r d (w s C l a s s) > 0)

226

f o u n d : = TRUE;

I F (N O T f o u n d)
{

OK, s o w s h o u l d b e d e l e t e d .
B r e a k a l l t h e p a r t - w h o l e c o n n e c t i o n s
o f w e x c e p t f o r t h o s e w h i c h a r e d e p e n d e n t
o n i t . S t a r t w i t h w ' s p a r t .

FORALLC s o m e P a r t I N w s M e r o n y m S e t)
{

I F (w s C l a s s - > (D e p e n d T y p e)
d e p e n d e n c y S t a t u s (s o m e P a r t - > (0 I D) c l a s s ()) !=

PART.TO.WHOLE)
{

w - > r e m o v e P a r t P r i v a t e (s o m e P a r t) ;
s o m e P a r t - > r e m o v e W h o l e (w) ;

}
}

/ /
/ / Now t h e w h o l e s .
/ /

FORALLC s o m e W h o l e IN w s H o l o n y m S e t)

I F (s o m e W h o l e - > (O I D) c l a s s () - > (D e p e n d T y p e)
d e p e n d e n c y S t a t u s (w s C l a s s) != WHOLE.TO.PART)

" r e m o v e P a r t " c a n n o t f a i l h e r e b e c a u s e
we k n o w t h a t t h e m i n C a r d o f t h e r e l a t i o n s h i p
i s 0 .

s o m e W h o l e - > r e m o v e P a r t (w) ;

}

227

/ /
/ / Now d e s t r o y w.
/ /

w s C l a s s - > d e s t r o y (w) ;

>

} / / FORALL w h o l e s o f t h e g i v e n o b j e c t t o b e d e l e t e d .

/ /
/ / F i n a l l y , d i s c a r d t h e g i v e n o b j e c t .
/ /

S E L F - > d e l I n s t a n c e (a n O b j e c t) ;

>

>;

/ /

T h i s m e t h o d e s t a b l i s h e s t h e p a r t r e l a t i o n s h i p s
f o r a g i v e n h o l o n y m i c c l a s s . I t s h o u l d b e i n v o k e d
o n l y o n c e i n t h e I N I T c l a u s e f o r t h e c l a s s .

/ /

d e f M e r o n y m i c R e l s h p s (s o m e R e l s h p s : { P a r t R e l a t i o n s h i p T y p e })
READONLY;

{
VAR i n d e x : I N T ;
VAR r : P a r t R e l a t i o n s h i p T y p e ;

i n d e x := 1;

/ /
/ / P l a c e t h e g i v e n p a r t r e l a t i o n s h i p s i n t h e l i s t o f
/ / o f t h i s c l a s s .
/ /

228

F OR ALL(r IN s o m e R e l s h p s)
{

t h e P a r t R e l s h p s [i n d e x] : = r ;
i n d e x := i n d e x + 1;

>

/ /
/ / r e c o r d t h e n u m b e r o f p a r t r e l a t i o n s h i p s t h a t t h e
/ / g i v e n c l a s s p a r t i c i p a t e s i n .
/ /

n u m b e r O f P a r t R e l s h p s := i n d e x - 1;

>;

/ /

T h e f o l l o w i n g m e t h o d r e c o r d s t h e h o l o n y m i c
c l a s s e s f o r t h e g i v e n m e r o n y m i c c l a s s . I f
t h e c l a s s i s t h e r o o t o f a p a r t h i e r a r c h y ,
t h i s s e t w i l l b e e m p t y .

/ /

d e f H o l o n y m i c C l a s s e s (s o m e C l a s s e s : { O I D }) READONLY;

t h e H o l o n y m i c C l a s s e s := s o m e C l a s s e s ;
>;

I U I

T h i s m e t h o d d e t e r m i n e s i f t h e t a r g e t c l a s s i s a
m e r o n y m i c c l a s s i n a p a r t r e l a t i o n s h i p w i t h
t h e g i v e n (h o l o n y m i c) c l a s s .

/ /

i s M e r o n y m i c C l a s s O f (a C l a s s : OID) : BOOL READONLY;
{

RETURN a C l a s s IN t h e H o l o n y m i c C l a s s e s ;
>;

229

/ /

T h i s m e t h o d d e t e r m i n e s i f t h e t a r g e t c l a s s i s a
h o l o n y m i c c l a s s i n a p a r t r e l a t i o n s h i p w i t h
t h e g i v e n (m e r o n y m i c) c l a s s .

/ /

i s H o l o n y m i c C l a s s O f (a C l a s s : OID) : BOOL READONLY;
{

VAR i : IN T;
VAR f o u n d : BOOL;

i := 1 ; f o u n d : = FALSE;

/ /
/ / s c a n t h e p a r t r e l a t i o n s h i p s o f t h i s c l a s s t o d e t e r m i n e
/ / i f t h e g i v e n c l a s s i s a m o n g i t s m e r o n y m i c c l a s s e s .
/ /

WHILE((NOT f o u n d) & (i <= n u m b e r O f P a r t R e l s h p s))
{

I F (a C l a s s = = t h e P a r t R e l s h p s [i] . t h e M e r o n y m i c C l a s s)
f o u n d := TRUE;

ELSE
i : = i + 1;

>

RETURN f o u n d ;

>;

/ /

T h i s m e t h o d i s t h e s e l e c t o r f o r t h e m e r o n y m i c c l a s s e s
o f t h e t a r g e t c l a s s (i . e . , i t r e t u r n s a l l t h e m e r o n y m i c
c l a s s e s a s a s e t) .

/ /

230

g e t M e r o n y m i c C l a s s e s O f () : { D I D } READONLY;
{

VAR i : INT;
VAR t h e C l a s s e s : { O I D } ;

t h e C l a s s e s : = { } ;

/ /
/ / C o l l e c t t h e m e r o n y m i c c l a s s e s i n t o a s e t
/ / a n d r e t u r n t h i s s e t .
/ /

F O R (i : = 1; n u m b e r O f P a r t R e l s h p s ; 1)

INSERT t h e P a r t R e l s h p s [i] . t h e M e r o n y m i c C l a s s INTO t h e C l a s s e s ;

RETURN t h e C l a s s e s ;

};

/ /

T h i s m e t h o d i s t h e s e l e c t o r f o r t h e h o l o n y m i c c l a s s e s
o f t h e t a r g e t c l a s s (i . e . , i t r e t u r n s a l l t h e h o l o n y m i c
c l a s s e s a s a s e t) .

/ /

g e t H o l o n y m i c C l a s s e s O f () : { O I D } READONLY;
{

RETURN t h e H o l o n y m i c C l a s s e s ;
};

/ /

T h i s m e t h o d g e t s t h e v a l u e o f t h e e x c l u s i v e / s h a r e d
d i m e n s i o n o f t h e p a r t r e l a t i o n s h i p o f w h i c h t h e
a r g u m e n t i s t h e m e r o n y m i c c l a s s a n d t h e t a r g e t c l a s s
i s t h e h o l o n y m i c c l a s s .

/ /

231

e x s h (a C l a s s : O I D) : E x S h T y p e READONLY;
{

VAR t h e D i m e n s i o n V a l u e : E x S h T y p e ;
VAR i : INT;
VAR f o u n d : BOOL;

i : = 1;
f o u n d := FALSE;

/ /
/ / S c a n t h r u t h e l i s t o f p a r t r e l s h p s u n t i l t h e
/ / c o r r e c t o n e i s f o u n d .
/ /

WHILE((NOT f o u n d) & (i <= n u m b e r O f P a r t R e l s h p s))
{

I F (a C l a s s == t h e P a r t R e l s h p s [i] . t h e M e r o n y m i c C l a s s)

f o u n d := TRUE;
t h e D i m e n s i o n V a l u e : = t h e P a r t R e l s h p s [i] . e s ;

>
ELSE

i : = i + 1;
>

I F (N O T f o u n d)
{

p r i n t s (' E r r o r i n m e t h o d " e x s h " : ') ; e n d l i n e Q ;
p r i n t s (' G i v e n c l a s s i s n o t a m e r o n y m i c c l a s s o f

t h e t a r g e t ') ;
p r i n t s (' c l a s s . ') ;

e n d l i n e Q ;
p r i n t s (' M e t h o d r e t u r n e d a v a l u e o f SHARED, b u t

t h i s s h o u l d ') ;
e n d l i n e O ;

p r i n t s (' n o t b e c o n s i d e r e d m e a n i n g f u l . ') ;
e n d l i n e () ; e n d l i n e () ;

t h e D i m e n s i o n V a l u e : = SHARED;
}

232

RETURN t h e D i m e n s i o n V a l u e ;

>;

i n i i i i i n i i i i i n m i i i i i i i i i i

T h i s m e t h o d g e t s t h e v a l u e o f t h e m i n i m u m n u m b e r o f
p a r t s t h a t a h o l o n y m i s r e q u i r e d t o h a v e w i t h r e s p e c t
t o g i v e n r e l a t i o n s h i p (d e t e r m i n e d b y a g i v e n m e r o n y m i c
c l a s s) .

/ /

m i n C a r d (a C l a s s : O I D) : INT READONLY;
{

VAR t h e V a l u e : INT;
VAR i : I N T ;
VAR f o u n d : BOOL;

i : = 1 ;
f o u n d : = FALSE;

/ /
/ / S c a n t h r u t h e l i s t o f p a r t r e l s h p s u n t i l t h e
/ / c o r r e c t o n e i s f o u n d .
/ /

WHILEC (NOT f o u n d) & (i <= n u m b e r O f P a r t R e l s h p s))
{

I F (a C l a s s = = t h e P a r t R e l s h p s [i] . t h e M e r o n y m i c C l a s s)
■C

f o u n d := TRUE;
t h e V a l u e := t h e P a r t R e l s h p s [i] . c a r d i n a l i t y . m i n ;

}
ELSE

i : = i + 1;
>

I F (N O T f o u n d)
{

233

p r i n t s (' E r r o r i n m e t h o d " m i n C a r d " : ') ; e n d l i n e O ;
p r i n t s (' G i v e n c l a s s i s n o t a m e r o n y m i c c l a s s o f t h e ') ;
p r i n t s (' t a r g e t c l a s s . ') ;

e n d l i n e O ;
p r i n t s (' M e t h o d r e t u r n e d a v a l u e o f 0 , b u t t h i s s h o u l d ') ;

e n d l i n e O ;
p r i n t s (’ n o t b e c o n s i d e r e d m e a n i n g f u l . ') ;

e n d l i n e O ; e n d l i n e O ;
t h e V a l u e : = 0 ;

}

RETURN t h e V a l u e ;

>;

/ /

T h i s m e t h o d g e t s t h e v a l u e o f t h e maximum n u m b e r o f
p a r t s t h a t a h o l o n y m i s r e q u i r e d t o h a v e w i t h r e s p e c t
t o g i v e n r e l a t i o n s h i p (d e t e r m i n e d b y a g i v e n m e r o n y m i c
c l a s s) .

/

m a x C a r d (a C l a s s : O I D) : INT READONLY;
-c

VAR t h e V a l u e : INT;
VAR i : INT;
VAR f o u n d : BOOL;

i : = 1;

f o u n d := FALSE;

/ /
/ / S c a n t h r u t h e l i s t o f p a r t r e l s h p s u n t i l t h e
/ / c o r r e c t o n e i s f o u n d .
/ /

WHILE((NOT f o u n d) & (i <= n u m b e r O f P a r t R e l s h p s))
{

I F (a C l a s s == t h e P a r t R e l s h p s [i] . t h e M e r o n y m i c C l a s s)

234

{
f o u n d := TRUE;
t h e V a l u e : = t h e P a r t R e l s h p s [i] . c a r d i n a l i t y . m a x ;

>
ELSE

i : = i + 1;
>

I F (N O T f o u n d)
{

p r i n t s (' E r r o r i n m e t h o d " m a x C a r d " : ') ; e n d l i n e O ;
p r i n t s (' G i v e n c l a s s i s n o t a m e r o n y m i c c l a s s ') ;
p r i n t s (' o f t h e t a r g e t c l a s s . ') ;

e n d l i n e O ;
p r i n t s (' M e t h o d r e t u r n e d a v a l u e o f 0 , b u t t h i s s h o u l d ') ;

e n d l i n e O ;
p r i n t s (' n o t b e c o n s i d e r e d m e a n i n g f u l . ') ;

e n d l i n e O ; e n d l i n e O ;
t h e V a l u e : = 0 ;

}

RETURN t h e V a l u e ;

>;

/ /

T h i s m e t h o d g e t s t h e v a l u e o f t h e d e p e n d e n c y
d i m e n s i o n o f t h e p a r t r e l a t i o n s h i p o f w h i c h t h e
a r g u m e n t i s t h e m e r o n y m i c c l a s s a n d t h e t a r g e t
i s t h e h o l o n y m i c c l a s s .

/ /

d e p e n d e n c y S t a t u s (a C l a s s : O I D) : D e p e n d T y p e READONLY;
{

VAR t h e D e p e n d V a l u e : D e p e n d T y p e ;
VAR i : INT;
VAR f o u n d : BOOL;

i := 1;

235

f o u n d := FALSE;

/ /
/ / S c a n t h r u t h e l i s t o f p a r t r e l s h p s u n t i l t h e
/ / c o r r e c t o n e i s f o u n d .
/ /

WHILE((NOT f o u n d) & (i <= n u m b e r O f P a r t R e l s h p s))
{

I F (a C l a s s = = t h e P a r t R e l s h p s [i] . t h e M e r o n y m i c C l a s s)

f o u n d := TRUE;
t h e D e p e n d V a l u e := t h e P a r t R e l s h p s [i] . d e p e n d e n c y ;

>
ELSE

i : = i + 1;
>

I F (N O T f o u n d)

p r i n t s (' E r r o r i n m e t h o d " d e p e n d e n c y S t a t u s " : ') ; e n d l i n e O ;
p r i n t s (' G i v e n c l a s s i s n o t a m e r o n y m i c c l a s s o f t h e ') ;
p r i n t s (' t a r g e t c l a s s . ') ; e n d l i n e O ;
p r i n t s (' M e t h o d r e t u r n e d a v a l u e o f NONE, b u t t h i s

s h o u l d ') ;
e n d l i n e O ;

p r i n t s (' n o t b e c o n s i d e r e d m e a n i n g f u l . ') ;
e n d l i n e O ; e n d l i n e O ;

t h e D e p e n d V a l u e := NONE;
>

RETURN t h e D e p e n d V a l u e ;

>;

236

/
/ /
/ / T h i s m e t h o d d e t e r m i n e s w h e t h e r o r n o t t h e g i v e n
/ / p r o p e r t y " m e t h " (p a s s e d a s a STRING) i s p r o p a g a t e d
/ / u p w a r d f r o m t h e g i v e n c l a s s " a C l a s s " t o t h e t a r g e t
/ / c l a s s .
/ /
/ /

p r o p e r t y U p P r o p a g a t e d (m e t h : STRING, a C l a s s : O I D) : BOOL READONLY;
{

VAR i : IN T;
VAR f o u n d : BOOL;

i : = 1;
f o u n d : = FALSE;

/ /
/ / S c a n t h r u t h e l i s t o f p a r t r e l s h p s u n t i l t h e
/ / c o r r e c t o n e i s f o u n d .
/ /

WHILE((NOT f o u n d) & (i <= n u m b e r O f P a r t R e l s h p s))
{

I F (a C l a s s == t h e P a r t R e l s h p s [i] . t h e M e r o n y m i c C l a s s)
f o u n d := TRUE;

ELSE
i : = i + 1;

>

I F (N O T f o u n d)
{

p r i n t s (' E r r o r i n m e t h o d " p r o p e r t y U p P r o p a g a t e d " : ') ;
e n d l i n e O ;

p r i n t s (' G i v e n c l a s s i s n o t a m e r o n y m i c c l a s s o f t h e ') ;
p r i n t s (' t a r g e t c l a s s . ') ; e n d l i n e O ;
p r i n t s (' M e t h o d r e t u r n e d a v a l u e o f F AL SE, b u t t h i s

s h o u l d ') ;
e n d l i n e O ;

p r i n t s (' n o t b e c o n s i d e r e d m e a n i n g f u l . ') ;
e n d l i n e O ; e n d l i n e O ;

237

RETURN FALSE;
>

RETURN m e t h I N t h e P a r t R e l s h p s [i] . u p S e t ;

>;

/
/ /
/ / T h i s m e t h o d d e t e r m i n e s w h e t h e r o r n o t t h e g i v e n
/ / p r o p e r t y " m e t h " (p a s s e d a s a STRING) i s p r o p a g a t e d
/ / d o w n w a r d t o t h e g i v e n c l a s s " a C l a s s " f r o m t h e t a r g e t
/ / c l a s s .
/ /
/ /

p r o p e r t y D o w n P r o p a g a t e d (m e t h : STRING, a C l a s s : O I D) : BOOL
READONLY;

{

VAR i : IN T;
VAR f o u n d : BOOL;

i : = 1;
f o u n d : = FALSE;

/ /
/ / S c a n t h r u t h e l i s t o f p a r t r e l s h p s u n t i l t h e
/ / c o r r e c t o n e i s f o u n d .
/ /

WHILE((NOT f o u n d) & (i <= n u m b e r O f P a r t R e l s h p s))
{

I F (a C l a s s = = t h e P a r t R e l s h p s [i] . t h e M e r o n y m i c C l a s s)
f o u n d := TRUE;

ELSE
i := i + 1;

}

I F (N O T f o u n d)

p r i n t s (' E r r o r i n m e t h o d " p r o p e r t y D o w n P r o p a g a t e d " : ') ;

238

e n d l i n e O ;
p r i n t s (' G i v e n c l a s s i s n o t a m e r o n y m i c c l a s s o f t h e 1) ;
p r i n t s O t a r g e t c l a s s . ') ; e n d l i n e O ;
p r i n t s (' M e t h o d r e t u r n e d a v a l u e o f F A L S E , b u t t h i s

s h o u l d ') ;
e n d l i n e O ;

p r i n t s (' n o t b e c o n s i d e r e d m e a n i n g f u l . ') ;
e n d l i n e O ; e n d l i n e O ;

RETURN FALSE;
>

RETURN m e t h I N t h e P a r t R e l s h p s [i] . d o w n S e t ;

>;

END;

/
/ /
/ / T h e H o l o n y m i c M e r o n y m i c m e t a c l a s s ' s i n s t l n s t T y p e .
/ /
I l U l l t i l

OBJECTTYPE H o l o n y m i c M e r o n y m i c . I n s t l n s t T y p e
SUBTYPEOF M e t a c l a s s . I n s t l n s t T y p e ;

INTERFACE
METHODS

i n i t M e r o n y m S e t () READONLY;
i n i t H o l o n y m S e t O READONLY;
g e t P a r t s O : { O I D } READONLY;
g e t W h o l e s () : { O I D } READONLY;
a d d P a r t (a P a r t : OID) : BOOL READONLY;
a d d W h o l e (a W h o l e : OID) READONLY;
r e m o v e P a r t (a P a r t : OID) : BOOL READONLY;
r e m o v e W h o l e (a W h o l e : OID) READONLY;
c h a n g e P a r t (o l d P a r t : O I D , n e w P a r t : O I D) : BOOL READONLY;
r e m o v e P a r t P r i v a t e (a P a r t : OID) READONLY;

IMPLEMENTATION
EXTERN p r i n t s (s : S T R I N G) ;
EXTERN e n d l i n e O ;

239

PROPERTIES
t h e P a r t s : { O I D } ; / / t h e p a r t ' s o f a n o b j e c t .

/ / T h i s a t t r i b u t e w i l l b e r e f e r r e d
/ / t o a s t h e m e r o n y m s e t , e v e n t h o u g h
/ / i t c o n t a i n s a l l t h e o b j e c t ' s p a r t s
/ / r e g a r d l e s s o f t h e i r c l a s s e s . T h i s
/ / n o m e n c l a t u r e d i f f e r s s l i g h t l y
/ / f r o m t h a t i n o u r p a p e r s i n t h a t t h e r e
/ / w e a l w a y s s p e a k o f a m e r o n y m s e t w i t h
/ / r e s p e c t t o a g i v e n p a r t r e l a t i o n s h i p .

t h e W h o l e s : { O I D } ; / / i t s w h o l e s .
/ / O n c e a g a i n , d e v i a t i n g s l i g h t l y f r o m
/ / o u r c o n v e n t i o n s , we w i l l c a l l t h i s
/ / a t t r i b u t e t h e h o l o n y m s e t .

METHODS

/ /

T h e f o l l o w i n g t w o m e t h o d s a r e u s e d t o g i v e t h e
m e r o n y m a n d h o l o n y m s e t s t h e i r i n i t i a l v a l u e s .
I n t h e c a s e o f t h e h o l o n y m s e t , i t s i n i t i a l v a l u e
i s a l w a y s t h e e m p t y s e t .

/ /

i n i t M e r o n y m S e t () READONLY;
{

t h e P a r t s : = { } ;
};

i n i t H o l o n y m S e t Q READONLY;
{

t h e W h o l e s := { } ;
};

240

/
/ /
/ / T h i s m e t h o d r e t u r n s t h e m e r o n y m s e t o f t h e o b j e c t .
/ /
/ /

g e t P a r t s O : { O I D } READONLY;
{

RETURN t h e P a r t s ;
>;

/
/ /
/ / T h i s m e t h o d r e t u r n s t h e h o l o n y m s e t o f t h e o b j e c t .
/ /
/ /

g e t W h o l e s () : { O I D } READONLY;
{

RETURN t h e W h o l e s ;
};

/
/ /
/ / T h e f o l l o w i n g m e t h o d a d d s a g i v e n p a r t t o t h e t a r g e t
/ / w h o l e .
/ /
/ /

a d d P a r t (a P a r t : OID) : BOOL READONLY;
{

VAR a P a r t s C l a s s : OID; / / t h e a r g u m e n t ' s c l a s s .
VAR a P a r t s H o l o n y m S e t : { O I D } ; / / i t s h o l o n y m s e t .
VAR m y C l a s s : OID; / / t a r g e t ' s c l a s s .
VAR t h e E x S h V a l u e : E x S h T y p e ; / / " c u r r e n t " p a r t r e l s h p ' s

/ / e x c l u s i v e / s h a r e d v a l u e .
VAR p : OID; VAR c o u n t : INT; VAR a W h o l e : OID;
VAR a W h o l e s C l a s s : OID;

a P a r t s C l a s s := a P a r t - > (0 I D) c l a s s () ;
m y C l a s s := S E L F - > (O I D) c l a s s () ;

241

C h e c k t h a t t h e p a r t ' s c l a s s i s a m o n g t h e m e r o n y m
c l a s s e s o f t h e t a r g e t o b j e c t ' s c l a s s .

IFC NOT a P a r t s C l a s s - > (B O O L) i s M e r o n y m i c C l a s s O f (m y C l a s s))
{

p r i n t s (' E r r o r i n m e t h o d " a d d P a r t " : ’) ; e n d l i n e O ;
p r i n t s (' T h e g i v e n o b j e c t i s n o t a n i n s t a n c e o f a n ') ;

e n d l i n e O ;
p r i n t s (' a p p r o p r i a t e c l a s s . ') ;

e n d l i n e O ; e n d l i n e O ;
RETURN FALSE;

>

C o u n t t h e n u m b e r o f p a r t s t h a t t h i s t a r g e t o b j e c t a l r e a d y
h a s f r o m t h e g i v e n p a r t ' s c l a s s . I f t h e a d d i t i o n o f t h e
n e w p a r t w o u l d v i o l a t e t h e p r e s c r i b e d m a x i m u m , t h e n
d i s a l l o w t h e c o n n e c t i o n .

c o u n t : = 0 ;

F0RALL(p I N t h e P a r t s)
{

I F (a P a r t s C l a s s == p - > (O I D) c l a s s ())
c o u n t : = c o u n t + 1;

>

C h e c k t h i s p a r t c o u n t a g a i n s t t h e m ax a l l o w e d f o r
t h i s r e l s h p .

I F (c o u n t == m y C l a s s - > (I N T) m a x C a r d (a P a r t s C l a s s))
{

p r i n t s (' E r r o r i n m e t h o d " a d d P a r t " : ') ; e n d l i n e O ;
p r i n t s (' T h e a d d i t i o n o f t h e g i v e n p a r t t o t h e w h o l e ') ;

e n d l i n e O ;

242

p r i n t s (' w o u l d v i o l a t e a p r e s c r i b e d c a r d i n a l i t y
c o n s t r a i n t . ') ;

e n d l in e O ;
p r i n t s (' T h e r e f o r e , t h e p a r t c o n n e c t i o n w a s n o t

e s t a b l i s h e d . ') ;
e n d l in e O ;

RETURN FALSE;
>

Now c h e c k t h a t t h e a d d i t i o n o f t h e p a r t t o t h e t a r g e t
o b j e c t d o e s n ' t v i o l a t e a n y o f t h e e x c l u s i v e / s h a r e d
c o n s t r a i n t s .

/ / I f t h e o b j e c t i s n o t a p a r t o f a n y h o l o n y m p r e s e n t l y ,
/ / t h e n t h e a t t a c h m e n t ma y p r o c e e d r e g a r d l e s s o f t h e
/ / t y p e o f p a r t r e l a t i o n s h i p . (O f c o u r s e , t h i s c o n d i t i o n
/ / i s a l s o t h e o n e w h i c h m u s t b e s a t i s f i e d i f t h e c u r r e n t
/ / p a r t r e l a t i o n s h i p i s GLOBAL_EXCL.)
/ /

a P a r t s H o l o n y m S e t : = a P a r t - > ({ O I D }) g e t W h o l e s () ;

I F (a P a r t s H o l o n y m S e t = = { })

/ /
/ / Go a h e a d a n d a t t a c h t h e p a r t .
/ / A l s o , m a k e t h e p a r t a w a r e t h a t i t i s
/ / no w a t t a c h e d t o t h i s w h o l e .
/ /

INSERT a P a r t INTO t h e P a r t s ;
a P a r t - > a d d W h o l e (S E L F) ;
RETURN TRUE;

}

/ /
/ / N o w , i f t h e c u r r e n t p a r t r e l s h p i s GLOBAL_EXCL, t h e n
/ / we m u s t r e f u s e t o a l l o w t h e c o n n e c t i o n b e c a u s e a
/ / g l o b a l l y e x c l u s i v e l y o w n e d p a r t , b y d e f i n i t i o n , ma y

243

/ / n o t b e l o n g t o a n y o t h e r h o l o n y m i n t h e d a t a b a s e .
/ /

t h e E x S h V a l u e := m y C l a s s - > (E x S h T y p e) e x s h (a P a r t s C l a s s) ;

I F (t h e E x S h V a l u e == GLOBAL.EXCL)

p r i n t s C ' E r r o r i n m e t h o d " a d d P a r t " : ') ; e n d l i n e () ;
p r i n t s (' G i v e n o b j e c t i s a l r e a d y a p a r t o f a n o t h e r

o b j e c t . ') ;
e n d l i n e O ;

p r i n t s (' I t c a n n o t b e m a d e a g l o b a l e x c l u s i v e p a r t
o f t h e ') ;

e n d l i n e O ;
p r i n t s (’ d e s i r e d h o l o n y m . 0 ;

e n d l i n e O ; e n d l i n e O ;
RETURN FALSE;

A t t h i s p o i n t we k n o w t h a t t h e p r e s e n t p a r t r e l a t i o n s h i p
(i . e . , t h e o n e b e t w e e n t h e t a r g e t o b j e c t ' s c l a s s a n d t h e
a r g u m e n t ' s c l a s s) i s e i t h e r CLASS_EXCL o r SHARED, a n d a l s o
t h a t t h e a r g u m e n t i s a l r e a d y a p a r t o f s o m e t h i n g e l s e . S o
w e n e e d t o s c a n t h e a r g u m e n t ' s w h o l e s t o s e e i f a n y h a s
a g l o b a l e x c l u s i v e h o l d o n i t . I f n o n e d o e s , t h e n we
h a v e t h e f o l l o w i n g t w o c a s e s t o c o n s i d e r :

1 . I f t h e c u r r e n t r e l a t i o n s h i p i s SHARED, t h e n we
i m m e d i a t e l y a t t a c h t h e p a r t .

2 . I f t h e c u r r e n t r e l a t i o n s h i p i s CLASS_EXCL, t h e n
w e h a v e t o m a k e c e r t a i n t h a t n o o t h e r o b j e c t
f r o m t h e t a r g e t o b j e c t ' s c l a s s (i . e . , n o n e
o f t h e t a r g e t s " s i b l i n g s ") h a s a h o l d o n t h e
p a r t a l r e a d y .

F0RALL(a W h o l e IN a P a r t s H o l o n y m S e t)

a W h o l e s C l a s s := a W h o l e - > (O I D) c l a s s () ;

244

/ /
/ / D o e s t h e c u r r e n t w h o l e h a v e a g l o b a l e x c l u s i v e h o l d o n
/ / t h e g i v e n p a r t .
/ /

I F (a W h o l e s C l a s s - > (E x S h T y p e) e x s h (a P a r t s C l a s s) ==
GLOBAL_EXCL)

{
/ /
/ / Y e s ; d e n y t h e c u r r e n t a t t a c h m e n t r e q u e s t .
/ /

p r i n t s (’ E r r o r i n m e t h o d " a d d P a r t " : ') ; e n d l i n e O ;
p r i n t s (' G i v e n o b j e c t i s a l r e a d y a p a r t o f

a n o t h e r o b j e c t ') ;
e n d l i n e O ;

p r i n t s (' w h i c h h a s a g l o b a l e x c l u s i v e h o l d
o n i t . ') ;

e n d l i n e O ; e n d l i n e O ;
RETURN FALSE;

}

/ /
/ / I f t h e c u r r e n t w h o l e i s a s i b l i n g o f t h e t a r g e t o b j e c t , a n d
/ / t h e r e l a t i o n s h i p i s CLASS_EXCL, t h e n we m u s t d e n y t h e r e q u e s t .
/ /

ELSE I F ((t h e E x S h V a l u e == CLASS_EXCL) &
(a W h o l e s C l a s s = = m y C l a s s))

{
p r i n t s (' E r r o r i n m e t h o d " a d d P a r t " : ') ; e n d l i n e O ;
p r i n t s (' G i v e n o b j e c t i s a l r e a d y a p a r t o f

a n o t h e r o b j e c t ') ;
e n d l i n e O ;

p r i n t s O in th e same c l a s s . ') ; e n d l i n e O ;
e n d l i n e O ;

RETURN FALSE;
>

}

245

/ /
/ / I f w e m a d e i t h e r e , t h e o t h e r p a r t - w h o l e r e l a t i o n s h i p s
/ / t h a t t h e a r g u m e n t p a r t i c i p a t e s i n a r e c o m p a t i b l e w i t h
/ / t h e c u r r e n t o n e . S o , m a k e t h e a t t a c h m e n t .
/ /

INSERT a P a r t INTO t h e P a r t s ;
a P a r t - > a d d W h o l e (S E L F) ;

RETURN TRUE;
>;

/
/ /
/ / a d d W h o l e i s u s e d t o a d d a r e f e r e n c e t o a w h o l e o b j e c t o f
/ / w h i c h t h e t a r g e t o b j e c t i s n o w a p a r t .
/ /
/

a d d W h o l e (a W h o l e : OID) READONLY;

INSERT a W h o l e INTO t h e W h o l e s ;
>;

/
/ /
/ / R e m o v e t h e g i v e n p a r t f r o m t h e w h o l e .
/ /
/ /

r e m o v e P a r t (a P a r t : OID) : BOOL READONLY;
{

VAR a P a r t s C l a s s : OID;
VAR m y C l a s s : O I D ;
VAR p : OID; VAR c o u n t : INT;

a P a r t s C l a s s := a P a r t - > (O I D) c l a s s () ;
m y C l a s s := S E L F - > (O I D) c l a s s () ;

246

/ /
/ / I f t h i s p a r t i s n ' t o n e o f my p a r t s , t h e n i t c a n n o t
/ / b e r e m o v e d .
/ /

I F (NOT (a P a r t IN t h e P a r t s))

p r i n t s C ' E r r o r i n m e t h o d " r e m o v e P a r t " : ') ; e n d l i n e O ;
p r i n t s (' G i v e n o b j e c t i s n o t a m e r o n y m o f t h e

t a r g e t . ') ;
e n d l i n e O ;

RETURN FALSE;
}

/ /
/ / c h e c k f o r a v i o l a t i o n o f t h e m i n c a r d i n a l i t y a l l o w e d
/ / f o r p a r t s o f t h i s c l a s s . F i r s t , c o u n t t h e n u m b e r o f
/ / p a r t s f r o m t h e g i v e n p a r t ' s c l a s s .
/ /

c o u n t := 0 ;

F0 RALL (p IN t h e P a r t s)
{

I F (a P a r t s C l a s s == p - > (0 I D) c l a s s ())
c o u n t : = c o u n t + 1;

>

/ /
/ / C h e c k t h i s p a r t c o u n t a g a i n s t t h e m i n a l l o w e d f o r
/ / t h i s r e l s h p .
/ /

I F (c o u n t = = m y C l a s s - > (I N T) m i n C a r d (a P a r t s C l a s s))
{

p r i n t s (' E r r o r i n m e t h o d " r e m o v e P a r t " : ') ; e n d l i n e O ;
p r i n t s (' T h e r e m o v a l o f t h e g i v e n p a r t f r o m t h e w h o l e ') ;

e n d l i n e O ;
p r i n t s (' w o u l d v i o l a t e a p r e s c r i b e d c a r d i n a l i t y

c o n s t r a i n t . ') ;
e n d l i n e O ;

p r i n t s (' T h e r e f o r e , t h e p a r t c o n n e c t i o n w a s n o t b r o k e n . ') ;

247

e n d l i n e O ;
RETURN FALSE;

>

/ /
/ / R e m o v e t h e g i v e n p a r t f r o m t h e l i s t o f p a r t s . A l s o , i n f o r m
/ / t h e p a r t t h a t i t s h o u l d d i s c a r d t h e r e f e r e n c e t o t h e w h o l e .
/ /

REMOVE a P a r t FROM t h e P a r t s ;
a P a r t - > r e m o v e W h o l e (S E L F) ;

RETURN TRUE;
>;

/
/ /
/ / T h e f o l l o w i n g r e m o v e s a p a r t o f t h e t a r g e t o b j e c t
/ / w / o c h e c k i n g f o r a n y c a r d i n a l i t y v i o l a t i o n s . I t i s
/ / i n c l u d e d f o r u s e b y t h e " d e s t r o y " f u n c t i o n o f t h e c l a s s .
/ / I t s h o u l d * n o t * b e u s e d a n y w h e r e e l s e .
/ /
/

r e m o v e P a r t P r i v a t e (a P a r t : O ID) READONLY;

REMOVE a P a r t FROM t h e P a r t s ;
>;

/
/ /
/ / R e m o v e t h e g i v e n w h o l e f r o m t h e p a r t .
/ /
/ /

r e m o v e W h o l e (a W h o l e : O ID) READONLY;
{

I F (a W h o l e IN t h e W h o l e s)
REMOVE a W h o l e FROM t h e W h o l e s ;

> ;

248

/ /

T h e f o l l o w i n g m e t h o d e x c h a n g e s o n e p a r t f o r a n o t h e r , t h a t
i s , i t r e m o v e s t h e p a r t w h i c h i s i t s f i r s t a r g u m e n t a n d
r e p l a c e s i t w i t h t h e p a r t t h a t i s i t s s e c o n d a r g u m e n t .

n u i i i u i i i n i i i i u i i i i i i i i u i i n i i u i i u i u m i i i i i n n i i i i i i

c h a n g e P a r t (o l d P a r t : O ID , n e w P a r t : O ID) : BOOL READONLY;
{

VAR n e w P a r t s C l a s s : O ID; / /
/ /
/ /

VAR n e w P a r t s H o l o n y m S e t : { O I D } ;
VAR m y C l a s s : OID;
VAR t h e E x S h V a l u e : E x S h T y p e ;

VAR a W h o l e : O ID;
VAR a W h o l e s C l a s s : OID;

n e w P a r t s C l a s s := n e w P a r t - > (O I D) c l a s s () ;
m y C l a s s := S E L F - > (O I D) c l a s s () ;

/ /
/ / F i r s t o f a l l , i f t h e t w o g i v e n p a r t s a r e o n e a n d t h e s a m e ,
/ / t h e n j u s t r e t u r n b e c a u s e t h e r e i s n o t h i n g t o d o .
/ /

I F (o l d P a r t == n e w P a r t)
RETURN FALSE;

/ /
/ / I f t h e p r o p o s e d n e w p a r t i s a l r e a d y a p a r t o f t h e
/ / g i v e n w h o l e , t h e n n o r e p l a c e m e n t w o u l d o c c u r ; t h e
/ / o p e r a t i o n w o u l d e f f e c t i v e l y b e a r e m o v a l o f t h e
/ / o l d p a r t o n l y . T h i s r e q u e s t m u s t b e d e n i e d .
/ /

I F (n e w P a r t IN t h e P a r t s)
{

p r i n t s (' E r r o r i n m e t h o d " c h a n g e P a r t " : ') ; e n d l i n e O ;

t h e 2 n d a r g u m e n t ' s c l a s s ;
m u s t b e t h e s a m e a s t h a t
o f t h e f i r s t .
/ / 2 n d a r g ' s h o l o n y m s e t .
/ / t a r g e t ' s c l a s s .
/ / " c u r r e n t " p a r t r e l s h p ' s
/ / e x c l u s i v e / s h a r e d v a l u e .

249

p r i n t s (' T h e o b j e c t g i v e n a s t h e r e p l a c e m e n t
p a r t i s ') ;

e n d l in e O ;
p r in t s O a lr ea d y p art o f th e g iv e n w h o l e . ') ;

e n d l in e O ;
p r i n t s (' T h e r e f o r e , t h e r e p l a c e m e n t w a s n o t

c a r r ie d o u t . ') ;
e n d l in e O ; e n d l in e O ;

RETURN FALSE;
}

/ /
/ / I f t h e n e w p a r t i s n o t t h e s a m e t y p e a s t h e o l d p a r t ,
/ / th en i s s u e am er r o r and re tu rn .
/ /

I F (o l d P a r t - > (O I D) c l a s s () != n e w P a r t - > (O I D) c l a s s ())
{

p r i n t s (' E r r o r i n m e t h o d " c h a n g e P a r t " : ') ; e n d l i n e O ;
p r i n t s (' T h e o b j e c t g i v e n a s t h e r e p l a c e m e n t

p art i s n o t ') ;
e n d l i n e O ;

p r in t s O th e same ty p e as th e one i t i s supposed t o ') ;
p r in t s O r e p l a c e . ') ; e n d l in e O ;
p r i n t s (' T h e r e f o r e , t h e r e p l a c e m e n t w a s n o t

c a r r i e d o u t . ') ;
e n d l in e O ; e n d l in e O ;

RETURN FALSE;
>

N o w , w e n e e d t o d e t e r m i n e i f t h e o b j e c t g i v e n a s t h e
r e p l a c e m e n t p a r t c a n l e g i t i m a t e l y b e m a d e a p a r t o f
t h e t a r g e t w h o l e . T h a t i s , w e m u s t d e t e r m i n e w h e t h e r
o r n o t s u c h a n a r r a n g e m e n t v i o l a t e s a n y o f t h e p r e s c r i b e d
e x c l u s i v e / s h a r e d c o n s t r a i n t s . I f t h e r e a r e n o v i o l a t i o n s ,
t h e n i t i s a d d e d , a n d t h e o l d p a r t i s r e m o v e d .
T h e f o l l o w i n g c o d e i s r e m i n i s c e n t o f t h a t i n " a d d P a r t "
a b o v e .

I f t h e n e w o b j e c t i s n o t a p a r t o f a n y h o l o n y m p r e s e n t l y ,
t h e n t h e a t t a c h m e n t may p r o c e e d r e g a r d l e s s o f t h e

250

/ / t y p e o f p a r t r e l a t i o n s h i p .
/ /

n e w P a r t s H o l o n y m S e t := n e w P a r t - > ({ O I D }) g e t W h o l e s () ;

I F (n e w P a r t s H o l o n y m S e t = = { })

/ /
/ / Go a h e a d a n d r e m o v e t h e o l d p a r t
/ / a n d a t t a c h t h e n e w o n e .
/ / A l s o , m a k e b o t h p a r t s a w a r e o f t h e
/ / n e w a r r a n g e m e n t .
/ /

REMOVE o l d P a r t FROM t h e P a r t s ;
o l d P a r t - > r e m o v e W h o l e (S E L F) ;

INSERT n e w P a r t INTO t h e P a r t s ;
n e w P a r t - > a d d W h o l e (S E L F) ;

RETURN TRUE;
>

/ /
/ / N o w , i f t h e c u r r e n t p a r t r e l s h p i s GL0BAL_EXCL, t h e n
/ / w e m u s t r e f u s e t o a l l o w t h e c o n n e c t i o n b e c a u s e a
/ / g l o b a l l y e x c l u s i v e l y o w n e d p a r t , b y d e f i n i t i o n , m ay
/ / n o t b e l o n g t o a n y o t h e r h o l o n y m i n t h e d a t a b a s e . A n d ,
/ / i n p a r t i c u l a r , i t m a d e n o t b e m a d e a p a r t o f t h e t a r g e t
/ / o b j e c t .
/ /

t h e E x S h V a l u e := m y C l a s s - > (E x S h T y p e)
e x s h (n e w P a r t s C l a s s) ;

I F (t h e E x S h V a l u e = = GLOBAL.EXCL)
{

p r i n t s (' E r r o r i n m e t h o d " c h a n g e P a r t " : ') ; e n d l i n e O ;
p r i n t s (' T h e g i v e n r e p l a c e m e n t o b j e c t i s

a l r e a d y a p a r t o f ') ;
p r i n t s (' a n o t h e r o b j e c t . ') ; e n d l i n e O ;
p r i n t s (' I t c a n n o t b e m a d e a g l o b a l e x c l u s i v e

part of t h e ')
p r i n t s (' d e s i r e d h o l o n y m . ') ; e n d l i n e O ;
p r i n t s 0 T h e r e f o r e , t h e r e p l a c e m e n t w a s n o t

c a r r i e d o u t . ') ;
e n d l i n e () ; e n d l i n e () ;

RETURN FALSE;
}

/ / A t t h i s p o i n t w e k n o w t h a t t h e p r e s e n t p a r t r e l a t i o n s h i p
/ / (i . e . , t h e o n e b e t w e e n t h e t a r g e t o b j e c t ' s c l a s s a n d t h e
/ / d e s i r e d n e w p a r t ' s c l a s s) i s e i t h e r CLASS_EXCL o r SHARED
/ / a n d a l s o t h a t t h e n e w p a r t a l r e a d y b e l o n g s t o a n o t h e r
/ / w h o l e . S o w e n e e d t o s e e m t h e n e w p a r t ' s w h o l e s t o s e e
/ / i f a n y h a s a g l o b a l e x c l u s i v e h o l d o n i t . I f n o n e d o e s ,
/ / t h e n w e h a v e t h e f o l l o w i n g t w o c a s e s t o c o n s i d e r :
/ /
/ / 1 . I f t h e c u r r e n t r e l a t i o n s h i p i s SHARED, t h e n w e
/ / c a n i m m e d i a t e l y r e m o v e t h e o l d p a r t a n d a t t a c h
/ / t h e n e w o n e .
/ /
/ / 2 . I f t h e c u r r e n t r e l a t i o n s h i p i s CLA SS_EXCL, t h e n
/ / w e h a v e t o m a k e c e r t a i n t h a t n o o t h e r o b j e c t
/ / f r o m t h e t a r g e t o b j e c t ' s c l a s s (i . e . , n o n e
/ / o f t h e t a r g e t ' s " s i b l i n g s ") h a s a h o l d o n t h e
/ / p a r t a l r e a d y .
/ /

F0R A L L (a W h o l e IN n e w P a r t s H o l o n y m S e t)
{

a W h o l e s C l a s s := a W h o l e - > (O I D) c l a s s () ;

/ /
/ / D o e s t h e c u r r e n t w h o l e h a v e a g l o b a l e x c l u s i v e h o l d o n
/ / t h e d e s i r e d n e w p a r t .
/ /

I F (a W h o l e s C l a s s - > (E x S h T y p e) e x s h (n e w P a r t s C l a s s) ==
GLOBAL_EXCL)

{

252

/ /
/ / Y e s ; d e n y t h e c u r r e n t a t t a c h m e n t r e q u e s t .
/ /

p r i n t s C ' E r r o r i n m e t h o d " c h a n g e P a r t " : ') ; e n d l i n e O ;
p r i n t s (' T h e d e s i r e d n e w p a r t i s a l r e a d y a p a r t o f J) ;
p r i n t s (' a n o t h e r o b j e c t ') ;

e n d l i n e O ;
p r i n t s (' w h i c h h a s a g l o b a l e x c l u s i v e h o l d o n i t . ') ;

e n d l i n e O ;
p r i n t s (' T h e r e f o r e , t h e r e p l a c e m e n t w a s n o t

c a r r i e d o u t . ') ;
e n d l i n e () ; e n d l i n e O ;

RETURN FALSE;
>

/
/ I f t h e c u r r e n t w h o l e i s a s i b l i n g o f t h e t a r g e t o b j e c t , a n d
/ t h e r e l a t i o n s h i p i s CLASS_EXCL, t h e n w e m u s t d e n y t h e
/ r e q u e s t .
/

ELSE I F ((t h e E x S h V a l u e == C L A SS.E X C L) &
(a W h o l e s C l a s s = = m y C l a s s))

{
p r i n t s (' E r r o r i n m e t h o d " c h a n g e P a r t " : ') ; e n d l i n e O ;
p r i n t s (' T h e d e s i r e d n e w p a r t i s a l r e a d y a

p a r t o f ’) ;
e n d l i n e O ;

p r i n t s (' a n o t h e r o b j e c t i n t h e s a m e c l a s s . ') ;
e n d l i n e O ;

p r i n t s (' T h e r e f o r e , t h e r e p l a c e m e n t w a s n o t
c a r r i e d o u t . ') ;

e n d l i n e O ; e n d l i n e O ;
RETURN FALSE;

>

} / / FORALL

253

/ /
/ / I f w e m a d e i t t h i s f a r , t h e n t h e o t h e r p a r t - w h o l e
/ / r e l a t i o n s h i p s t h a t t h e n e w p a r t p a r t i c i p a t e s i n a r e
/ / c o m p a t i b l e w i t h t h e c u r r e n t o n e . S o , r e m o v e t h e o l d
/ / p a r t a n d a t t a c h t h e n e w o n e .
/ /

REMOVE o l d P a r t FROM t h e P a r t s ;
o l d P a r t - > r e m o v e W h o l e (S E L F) ;

INSERT n e w P a r t INTO t h e P a r t s ;
n e w P a r t - > a d d W h o l e (S E L F) ;

RETURN TRUE;
>;

/ /

T h e f o l l o w i n g i s t h e NOMETHOD c l a u s e f o r c l a s s e s
w h i c h a r e i n a p a r t h i e r a r c h y . I t i s i n v o k e d
w h e n a p a r t i c u l a r m e r o n y m o r h o l o n y m d o e s n o t
h a s a m e t h o d (i . e . , a n a n s w e r) f o r s o m e m e s s a g e
w h i c h w a s p a s s e d t o i t . I n s u c h c a s e s , t h i s
NOMETHOD " r o u t i n e " f i r s t d e t e r m i n e s i f t h e m e s s a g e
c a n b e a n s w e r e d (h a n d l e d) b y o n e o f t h e o b j e c t s
w h o l e s . I f s o , t h e m e s s a g e i s d e l e g a t e d t h e r e .
I f n o t , t h e r o u t i n e l o o k s t o s e e i f t h e m e s s a g e
c a n b e h a n d l e d b y o n e o f t h e p a r t s . O n c e a g a i n ,
i f s o , t h e m e s s a g e i s p a s s e d o n w a r d . I f i t c a n n o t
b e , t h e r o u t i n e g i v e s u p a n d s i m p l y r e t u r n s .

/ /

NOMETHOD
{

VAR m y C l a s s : O ID;
VAR w: O ID; VAR w s C l a s s : OID;
VAR p : OID; VAR p s C l a s s : OID;

m y C l a s s := S E L F - > (O I D) c l a s s () ;

254

/ /
/ / F i r s t , c h e c k t h e w h o l e s .
/ /

F0R A LL(w IN t h e W h o l e s)
{

w s C l a s s := w - > (O I D) c l a s s () ;

I F (w s C l a s s - > (B O O L)
p r o p e r t y D o w n P r o p a g a t e d (c u r r e n t M e t h , m y C l a s s))

RETURN w - > c u r r e n t M e t h (a r g u m e n t s) ;

>

/ /
/ / I f n o t , t r y t h e p a r t s .
/ /

F0R A LL(p IN t h e P a r t s)
{

p s C l a s s := p - > (O I D) c l a s s () ;

I F (m y C l a s s - > (B 0 0 L)
p r o p e r t y U p P r o p a g a t e d (c u r r e n t M e t h , p s C l a s s))

RETURN p - > c u r r e n t M e t h (a r g u m e n t s) ;

>

>
END;

END.SCHEMA;

A P P E N D IX B

A SA M PL E V M L PA R T SC H E M A

In this appendix, we show a sample VML schema based on the schema diagram

of Figure 5.16. Note tha t the code only contains class declarations; object type

declarations have been om itted.

SCHEMA e d i t o r i a l s c h e m a

IMPORT H M M e t a C la s s FROM H M M e t a C la s s ;

CLASS N e w s p a p e r METACLASS H o l o n y m i c M e r o n y m i c C l a s s
INSTTYPE n e w s p a p e r T y p e

I N I T N e w s p a p e r - > d e f M e r o n y m i c R e l s h p s
({ [t h e M e r o n y m i c C l a s s : E d i t o r i a l P a g e ,

e s : GLOBAL_EXCL,
c a r d i n a l i t y : [m i n : 1 , m a x : 1] ,
d e p e n d e n c y : NONE,
u p S e t : { } ,
d o w n S e t : { ' d a t e ' }■]})

END;

CLASS E d i t o r i a l P a g e METACLASS H o l o n y m i c M e r o n y m i c C l a s s
INSTTYPE e d i t o r i a l P a g e T y p e

I N I T E d i t o r i a l P a g e - > d e f M e r o n y m i c R e l s h p s (
{ [t h e M e r o n y m i c C l a s s : M a s t h e a d ,

e s :S H A R E D ,
c a r d i n a l i t y : [m i n : 1 , m a x : 1] ,
d e p e n d e n c y : NONE,
u p S e t : ,
d o w n S e t : { }]

[t h e M e r o n y m i c C l a s s : E d i t o r i a l C o l u m n ,
es:G L O B A L _E X C L ,
c a r d i n a l i t y : [m i n : 1 , m a x : 1] ,
d e p e n d e n c y : NONE,
u p S e t : { } ,
d o w n S e t : { ' d a t e ’ }] ,

255

256

[t h e M e r o n y m i c C l a s s : L e t t e r s C o l u m n ,
es:G LO BA L_EXCL,
c a r d i n a l i t y : [m i n : 1 , m a x : 1] ,
d e p e n d e n c y : NONE,
u p S e t : { } ,
d o w n S e t : { }] })

E d i t o r i a l P a g e - > d e f H o l o n y m i c C l a s s e s ({ N e w s p a p e r })

END;

CLASS M a s t h e a d METACLASS H o l o n y m i c M e r o n y m i c C l a s s
IN STTY PE m a s t h e a d T y p e

I N I T M a s t h e a d - > d e f H o l o n y m i c C l a s s e s ({ E d i t o r i a l P a g e })

END;

CLASS E d i t o r i a l C o l u m n METACLASS H o l o n y m i c M e r o n y m i c C l a s s
IN STTY PE e d i t o r i a l C o l u m n T y p e

I N I T E d i t o r i a l C o l u m n - > d e f M e r o n y m i c H e l s h p s (
{ [t h e M e r o n y m i c C l a s s : E d i t o r i a l ,

es:G LOBA L_EXCL,
c a r d i n a l i t y : [m i n : 3 , m a x : 4] ,
d e p e n d e n c y : NONE,
u p S e t : { } ,
d o w n S e t : { ' d a t e J}] })

E d i t o r i a l C o l u m n - > d e f H o l o n y m i c C l a s s e s ({ E d i t o r i a l P a g e })

END;

CLASS L e t t e r s C o l u m n METACLASS H o l o n y m i c M e r o n y m i c C l a s s
INSTTYPE l e t t e r s C o l u m n T y p e

I N I T L e t t e r s C o l u m n - > d e f M e r o n y m i c R e l s h p s (
{ [t h e M e r o n y m i c C l a s s : B u s i n e s s M a s t h e a d ,

e s :S H A R E D ,
c a r d i n a l i t y : [m i n : 1 , m a x : 1] ,
d e p e n d e n c y : NONE,
u p S e t : { } ,
d o w n S e t : { }] ,

[t h e M e r o n y m i c C l a s s : L e t t e r ,
es:G L O B A L _E X C L ,

257

c a r d i n a l i t y : [m i n : 1 , m a x : I N F I N I T Y] ,
d e p e n d e n c y : NONE,
u p S e t : { } ,
d o w n S e t : { }]

[t h e M e r o n y m i c C l a s s : I l l u s t r a t i o n ,
e s :C L A S S _ E X C L ,
c a r d i n a l i t y : [m i n : 0 , m a x : 1] ,
d e p e n d e n c y : NONE,
u p S e t : { } ,
d o w n S e t : { }] })

L e t t e r s C o l u m n - > d e f H o l o n y m i c C l a s s e s ({ E d i t o r i a l P a g e })

END;

CLASS E d i t o r i a l METACLASS H o l o n y m i c M e r o n y m i c C l a s s
IN STTY PE e d i t o r i a l T y p e

I N I T E d i t o r i a l - > d e f M e r o n y m i c R e l s h p s (
{ [t h e M e r o n y m i c C l a s s : T e x t S e g m e n t ,

es:G L 0B A L _ E X C L ,
c a r d i n a l i t y : [m i n : 0 , m a x : 1] ,
d e p e n d e n c y : NONE,
u p S e t : { } ,
d o w n S e t : { }] })

E d i t o r i a l - > d e f H o l o n y m i c C l a s s e s ({ E d i t o r i a l C o l u m n })

END;

CLASS B u s i n e s s M a s t h e a d METACLASS H o l o n y m i c M e r o n y m i c C l a s s
IN STTY PE b u s i n e s s M a s t h e a d T y p e

I N I T B u s i n e s s M a s t h e a d - > d e f H o l o n y m i c C l a s s e s ({ L e t t e r s C o l u m n })

END;

CLASS L e t t e r METACLASS H o l o n y m i c M e r o n y m i c C l a s s
INSTTYPE l e t t e r T y p e

I N I T L e t t e r - > d e f M e r o n y m i c R e l s h p s (
{ [t h e M e r o n y m i c C l a s s : T e x t S e g m e n t ,

es:G L 0B A L _E X C L ,
c a r d i n a l i t y : [m i n : 0 , m a x : 1] ,

258

d e p e n d e n c y : NONE,
u p S e t : { } ,
d o w n S e t : { }] })

L e t t e r - > d e f H o l o n y m i c C l a s s e s ({ L e t t e r s C o l u m n })

END;

CLASS I l l u s t r a t i o n METACLASS H o l o n y m i c M e r o n y m i c C l a s s
IN STTY PE i l l u s t r a t i o n T y p e

I N I T I l l u s t r a t i o n - > d e f H o l o n y m i c C l a s s e s ({ L e t t e r s C o l u m n })

END;

CLASS T e x t S e g m e n t METACLASS H o l o n y m i c M e r o n y m i c C l a s s
IN STTY PE t e x t S e g m e n t T y p e

I N I T T e x t S e g m e n t - > d e f H o l o n y m i c C l a s s e s ({ E d i t o r i a l , L e t t e r })

END;

END.SCHEMA;

261

[29] R. G. G. Cattell and T. R. Rogers. Entity-Relationship database user inter
faces. In M. Stonebraker, editor, Readings in Database Systems, pages 359-368.
Morgan Kaufmann Publishers, Inc.. San Mateo, CA, 1988.

[30] N. Cercone. The ECO family. In [116], pages 95-131.

[31] R. Chaffin and D. J. Herrmann. Effects of relation sim ilarity on part-whole
decisions. The Journal o f General Psychology, 115(2): 131—139, 1988.

[32] R. Chaffin and D. J. Herrmann. Retrieval and comparison processes in part-
whole decisions. The Journal o f General Psychology, 116(4):393-406, 1989.

[33] E. E. Chang and R. H. Katz. Inheritance in computer-aided design databases:
semantics and implementation issues. Computer-Aided Design, 22(8):489-499,
Oct. 1990.

[34] H. Chao and V. P. Teli. Development of a university database using the Dual
Model of object-oriented knowledge bases. M aster’s thesis, N JIT , Newark. NJ,
1990.

[35] S. Chatterjee. Graphical image persistence and code generation for OOdini.
M aster’s thesis, NJIT, Newark, NJ. 1992.

[36] P. P.-S. Chen. The Entity-Relationship Model: Toward a unified view of data.
A C M Trans. Database Syst., 1(1):9—36, 1976.

[37] S. Christodoulakis, J. Vanderbrook, J. Li, S. Wan, Y. Wang, M. Papa, and
E. Bertino. Development of a multimedia information system for an office
environment. In Proc. VLDB ’84, pages 261-271, 1984.

[38] B. L. Clarke. A calculus of individuals based on ‘connection’. Notre Dame
Journal o f Formal Logic. 22(3):204-218, 1981.

[39] P. Coad and E. Yourdon. Object-Oriented Analysis. Yourdon Press Computing
Series. Prentice Hall. Englewood Cliffs, NJ, second edition, 1991.

[40] E. F. C'odd. A relational model of data for large shared data banks. Commun.
ACM. 13(6):377-387. 1970.

[41] E. F. C'odd. Extending the database relational model to capture more meaning.
A C M Trans. Database Syst.. l(4):397-434, 1979.

[42] J. Conklin. Hypertext: An introduction and survey. Computer , 20(9): 17—41,
Sept. 1987.

[43] G. Copeland and D. Maier. Making Smalltalk a database system. In Proc. 1984
A C M SIG M O D Int.'I Conference on the Management o f Data, pages 316-325,
Boston, MA. June 1984.

262

[44] D. A. Cruse. On the transitivity of the part-whole relation. Journal o f L in
guistics, 15(1) :29—38, 1979.

[451 J. A. Cuddon. A Dictionary o f Literary Terms. Doubleday & Company, Inc.,
Garden City, NY, 1977.

[46] C. J. Date. A n Introduction to Database System s , volume 1. Addison-Wesley
Publishing Co., Inc., Reading, MA, fourth edition, 1986.

[47] O. Deux et al. The story of O2 . IE E E Trans. Knowledge and Data Eng.,
2(1):91—108, 1990.

[48] O. Deux et al. The 0 2 system. Commun. A C M , 34(10):34-48, Oct. 1991.

[49] O. Diaz and P. M. Gray. Semantic-rich user-defined relationships as a main
constructor in object-oriented databases. In Proc. IF IP TC2 Conf. on Database
Semantics. North Holland, 1990.

[50] R. Elmasri and S. Navathe. Object integration in logical database design. In
Proc. I n t ’l Conference on Data Engineering, pages 426-433, Los Angeles, CA,
Apr. 1984.

[51] R. Elmasri and S. B. Navathe. Fundamentals o f Database Systems. The Ben
jam in/Cum m ings Publishing Co., Inc., New York, NY, 1989.

[52] R. Elmasri, J. Weeldreyer, and A. Hevner. The category concept: An extension
to the entity-relationship model. I n t i J. Data and Knowledge Eng., 1(1), May
1985.

[53] R. Elmasri and G. Wiederhold. Properties of relationships and their represen
tation. In Proc. Nat'l Comp. Conf., volume 49, pages 319-326. AFIPS, May
1980.

[54] S. E. Fahlmann. N E T L: .4 System fo r Representing and Using Real-World
Knowledge. MIT Press, Cambridge, MA, 1979.

[55] D. Fischer. Consistency rules and triggers for multilingual terminology. To
appear in Proc. TKE93, 3rd hit I Congr. Terminology and Knowledge Eng.,
1993.

[56] D. Fischer et al. VML - The Vodak Data Modeling Language. Technical report,
GMD-IPSI, Dec. 1989.

[57] D. H. Fishman et al. Overview of the Iris DBMS. In W. Kim and F. H.
Lochovsky, editors, Object-Oriented Concepts, Databases, and Applications,
pages 219-250. ACM Press, New York. NY, 1989.

263

[58] J. B. Fraleigh. A First Course in Abstract Algebra. Addison-Wesley Publishing
Co., Inc., Reading, MA, third edition, 1982.

[59] J. Geller. A Knowledge Representation Theory fo r Natural Language Graphics.
PhD thesis. SUNY Buffalo CS D epartm ent, 1988. Tech. Report 88-15.

[60] J. Geller. A graphics-based analysis of part-whole relations. Research Report
CIS-91-27, CIS Departm ent, NJIT, Nov. 1991.

[61] J. Geller. Propositional representation for graphical knowledge. Int. J. Man-
Machine Studies , 34(1):97—131, 1991.

[62] J. Geller. Upward-inductive inheritance and constant time downward inheri
tance in massively parallel knowledge representation. In IJ C A I Workshop on
Parallel Processing in A l, pages 63-68, Sydney, Australia, 1991.

[63] J. Geller and Y. Du. Parallel implementation of a class reasoner. Journal o f
Experimental and Theoretical Artificial Intelligence, 3:109-127, 1991.

[64] J. Geller. A. Mehta. Y. Perl, E. Neuhold, and A. Sheth. Algorithms for struc
tural schema integration. In Proc. Second I n t ’I Conf. on System s Integration,
pages 604-614, Morristown, NJ, June 1992.

[65] J. Geller, E. Neuhold, Y. Perl, and V. Turau. A theoretical underlying Dual
Model for knowledge-based systems. In Proc. First I n t ’l Conf. on System s
Integration, pages 96-103, Morristown. NJ, 1990.

[66] J. Geller. Y. Perl. P. Cannata. A. Sheth, and E. Neuhold. A case study of
structural integration. In Y. Yesha. editor, Proc. 1st I n t ’l Conference on In
form ation and Knowledge Management, pages 102-111, Baltimore. MD, Nov.
1992.

[67] J. Geller. Y. Perl. P. Cannata, A. Sheth, and E. Neuhold. Structural integra
tion: Concepts and case study. To appear in Journal o f System s Integration,
1993.

[68] J. Geller, Y. Perl, and E. Neuhold. S tructural schema integration in hetero
geneous multi-database systems using the Dual Model. In Proc. First I n t ’l
Workshop on Interoperability in Multidatabase System s , pages 200-203, Los
Alamitos, CA. 1991. IEEE Computer Society Press.

[69] J. Geller, Y. Perl, and E. Neuhold. Structure and semantics in OODB class
specifications. SIG M O D Record, 20(4):40—43, Dec. 1991.

[70] J. Geller. Y. Perl, E. Neuhold, and A. Sheth. S tructural schema integration
with full and partial correspondence using the Dual Model. In form ation Sys
tems. 17(6):443—464, Dec. 1992.

264

[71] J. Geller and S. Shapiro. Graphical deep knowledge for intelligent machine
drafting. In Tenth I n t ’l Joint Conference on Artificial Intelligence, San Mateo,
CA, 1987. Morgan Kaufmann Publishers. Inc.

[72

[73

[74

[75

[76

[77

[78

[79

[80

[81

[82

[83

M. Gemis, J. Paredaens, and I. Thyssens. A visual database management in
terface based on GOOD. In R. Cooper, editor, Interfaces to Database Systems,
pages 155-175. Springer-Verlag, London, 1993.

A. Goldberg and D. Robson. Smalltalk-80: The Language and its Implemen
tation. Addison-Wesley Publishing Co., Inc., Reading, MA. 1983.

J. Gomsi and M. DeSanti. Versant overview. In Proc. Exec. Briefing on Object-
Oriented Database Management, pages 107-109. San Francisco. CA, 1991.

N. Goodman. The Structure o f Appearance. Reidel, Dordrecht, third edition,
1977.

K. Gorman and J. C'hoobineh. The Object-Oriented Entity-Relationship Model
(OOERM). Journal o f Management Information Systems. 7(3):41—65, 1991.

A. C. Graesser, S. E. Gordon, and L. E. Brainerd. QUEST: A model of question
answering. In [116], pages 733-745.

N. Griffin. Relative Identity. Clarendon Press, Oxford, 1977.

R. G upta et al. The development of a framework for VLSI CAD. In [80], pages
237-260.

R. G upta and E. Horowitz, editors. Object-Oriented Databases with Applica
tions to CASE, Networks, and VLSI CAD. Prentice Hall. Englewood Cliffs,
NJ. 1991.

M. Gyssens. J. Paredaens. and D. van Gucht. A graph-oriented object database
model. In Proc. Ninth A C M Symposium on Principles o f Database System s ,
pages 24-33. Nashville. TN, Apr. 1990.

M. Gyssens. J. Paredaens. and D. van Gucht. A graph-oriented object model
for database end-user interfaces. In H. Garcia-Molina and H. V. Jagadesh,
editors. Proc. 1990 A C M S IC M OD Int'l Conference on Management o f Data,
pages 24-33, Atlantic City, NJ. May 1990. ACM.

M. Halper, J. Geller. and Y. Perl. An OODB “p art’1 relationship model. In
Y. Yesha, editor, Proc. 1st I n t ’l Conference on Information and Knowledge
M anagement, pages 602-611, Baltimore. MD, Nov. 1992.

265

[84] M. Halper, J. Geller, and Y. Perl. "‘P art” relations for object-oriented data
bases. In G. Pernul and A. Tjoa, editors, Proc. 1 1 th I n t ’l Conference on the
Entity-Relationship Approach, pages 406-422, Karlsruhe, Germany, Oct. 1992.

[85] M. Halper, J. Geller, and Y. Perl. On mereological modeling in object-oriented
databases. Subm itted for journal publication, 1993.

[86] M. Halper, J. Geller, and Y. Perl. Value propagation in OODB part hierar
chies. To appear in Proc. 2 nd I n t ’l Conference on Information and Knowledge
Management. 1993.

[87] M. Halper, J. Geller, Y. Perl, and E. J. Neuhold. A graphical schema rep
resentation for object-oriented databases. In R. Cooper, editor, Interfaces to
Database System s, pages 282-307. Springer-Verlag, London, 1993.

[88] M. Hammer and D. McLeod. Database description with SDM: A semantic
database model. A C M Trans. Database Syst., 6(3):351-386, 1981.

[89] D. J. Hartzband and F. Maryanski. Enhancing knowledge representation in
engineering databases. Computer, 18(9):39-48, Sept. 1985.

[90] G. E. Hinton. Representing part-whole hierarchies in connectionist networks.
In Proc. 1 0 th Cog. Sci. Soc. Conference, pages 48-54, 1988.

[91] VV. Horak. Office document architecture and office document interchange for
mats: Current status of international standardization. Computer, 18(10):50-
60. Oct. 1985.

[92] VV. Horak and G. Kronert. An object-oriented office document architecture
model for processing and interchange of documents. In Second A C M -SIG O A
Conf. on Office Information Systems, pages 152-160. Toronto, Canada, June
1984.

[93] M. N. Huhns and L. M. Stephens. Plausible inferencing using extended com
position. In Proc. IJCAI-89. pages 1420-1425, Detroit, MI, 1989.

[94] R. Hull and R. King. Semantic database modeling: Survey, applications, and
research issues. A C M Comput. Surv.. 19(3):201—260. Sept. 1987.

[95] IEEE Com puter Society. Proc. Second I n t ’l Conference on Data and Knowledge
terns jo r Manufacturing and Eng.. Gaithersburg. MD, Oct. 1989.

[96] M. A. Iris, B. E. Litowitz, and M. VV. Evens. Problems of the part-whole
relation. In M. W. Evens, editor. Memory and Learning-The Ebbinghaus Cen
tennial Conference. Cambridge Univ. Press. New York, NY, 1988.

266

[97] G. Kappel and M. Schrefl. Object/Behavior diagrams. In Proc. 7th I n t ’l
Conference on Data Eng., pages 530-539, Kobe, Japan, Apr. 1991.

[98] R. Katz, E. Chang, and R. Bhateja. Version modeling concepts for computer-
aided design databases. In Proc. 1986 A C M SIG M O D Conference on Manage
m ent o f Data, Washington, D.C., May 1986.

[99] R. H. Katz and E. Chang. Managing change in a computer-aided design da
tabase. In Proc. VLD B ’87, pages 455-462, 1987.

100] S. E. Keene. Object-Oriented Programming in Com m on Lisp. Addison-Wesley
Publishing Co., Inc., Reading, MA, 1989.

101] A. B. Kempe. A memoir on the theory of m athem atical form. Phil. Trans.
Royal Society London, 177:1-70, 1886.

102] A. B. Kempe. A correction and explanation. The Monist, 7:453-458, 1897.

103] W. Kent. Data and Reality. North-Holland, A m sterdam , 1978.

104] M. Kifer, W. Kim, and Y. Sagiv. Querying object-oriented databases. In Proc.
1992 A C M SIG M O D Conference on Management o f Data, San Diego, CA,
June 1992.

105] H.-J. Kim. Algorithmic and computational aspects of object-oriented database
schema design. In [80], pages 26-61.

106] W. Kim. A model of queries for object-oriented databases. In Proc. 15th
VLDB, pages 423-432, 1989.

107] W. Kim, E. Bertino, and J. F. Garza. Composite objects revisited. In Proc.
1989 A C M SIG M O D I n t ’l Conference on the Management o f Data, pages 337-
347, Portland. OR, June 1989.

108] W. Klas. .4 Metaclass System for Open Object-Oriented Data Models. PhD
thesis, Technical University of Vienna, January 1990.

109] W. Klas et al. Vodak design specification document. Technical report, GMD-
IPSI, Nov. 1992.

110] W. Klas, E. J. Neuhold, and M. Schrefl. On an object-oriented data model for
a knowledge base. In R. Speth, editor, Research into Networks and Distributed
Applications. E U T E C O 8 8 . North-Holland, 1988.

111] S. Kuncham. Graphical representation of object-oriented database. M aster’s
Project, NJIT. Newark, NJ, 1991.

267

112] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The ObjectStore database
system. Commun. ACM. 34(10):50-63, Oct. 1991.

113] L. Lamport. DTgX; A Document Preparation System. Addison-Wesley Pub
lishing Co., Inc., Reading, MA, 1986.

114] C. Lecluse, P. Richard, and F. Velez. O2 , an object-oriented da ta model. In
S. B. Zdonik and D. Maier, editors, Readings in Object-Oriented Database
S ystem s , pages 227-236. Morgan Kaufmann Publishers, Inc., San M ateo, CA,
1990.

115] F. Lehmann. Semantic networks. In [116], pages 1-50.

116] F. Lehmann, editor. Semantic Networks in Artificial Intelligence. Pergamon
Press, Tarrytown, NY, 1992.

117] D. B. Lenat and R. V. Guha. Building Large Knowledge-Based Systems: Rep
resentation and Inference in the Cyc Project. Addison-Wesley Publishing Co.,
Inc., Reading, MA, 1990.

118] D. B. Lenat, M. Prakash, and M. Shepherd. Cyc: Using common sense knowl
edge to overcome brittleness and knowledge acquisition bottlenecks. The A l
Magazine. 6(4):65-85. 1986.

119] H. S. Leonard and N. Goodman. The Calculus of Individuals and its uses.
J. Symbolic Logic, 5:45-55, 1940.

120] B. Lingan and M. Tulasiram. Implementation of an object-oriented university
database using VODAK/VML. M aster’s Project, NJIT, Newark, NJ, 1993.

121] L.-C. Liu and E. Horowitz. Object database support for CASE. In [80], pages
261-282.

122] G. M. Lohman. B. Lindsay, H. Pirahesh, and K. B. Schiefer. Extensions to
Starburst: Objects, types, functions, and rules. Commun. ACM, 34(10):94-
109, Oct. 1991.

123] G. F. Luger and W. A. Stubblefield. Artificial Intelligence and the Design o f
Expert Systems. The Benjamin/Cumm ings Publishing Co.. Inc., New York,
NY, 1989.

124] S. L. Lytinen. Conceptual Dependency and its descendants. In [116], pages
51-73.

125] B. MacKellar and F. Ozel. ArchObjects: Design codes as constraints in an
object-oriented KBMS. In J. Gero, editor, A l in Design '91. Butterworth-
Heinemann Ltd., 1991.

268

126] B. MacKellar and J. Peckham. Data modeling support for design databases.
M anuscript in preparation. 1991.

127] B. K. MacKellar and J. Peckham. Representing design objects in SORAC: A
data model with semantic objects, relationships and constraints. In Second
International Conference on Artificial Intelligence in Design, P ittsburgh, PA,
June 1992.

128] R. R. M adapati. User interface for schema operations for OOdini graphical
schema editor. M aster’s Project, NJIT, Newark, NJ, 1992.

129] Mark V Systems, Ltd., Encino, CA. ObjectM aker docum entation, 1993.

130] J. A. Markowitz, J. T. N utter, and M. W. Evens. Beyond IS-A and part-whole:
More semantic network links. In [116], pages 400-407.

131] G. McCalla, J. Greer, B. Barrie, and P. Pospisil. G ranularity hierarchies. In
[116], pages 363-375.

132] D. McLeod and J. M. Smith. Abstraction in databases. In M. L. Brodie
and S. N. Zilles, editors, Proc. Workshop on Data Abstraction, Databases and
Conceptual Modelling, pages 19-25, Pingree Park, CO, June 1980.

133] A. Mehta. Algorithms fo r Generation o f Path-Methods in Object-Oriented D a
tabases. PhD thesis, NJIT, May 1993.

134] A. M ehta, J. Geller, Y. Perl, and P. Fankhauser. Algorithms for access rel
evance to support path-method generation in OODBs. In Proc. Fourth I n t ’l
Hong Kong Comp. Soc. Database Workshop , pages 183-200, Shatin, Hong
Kong, Dec. 1992.

135] A. M ehta. J. Geller, Y. Perl, and P. Fankhauser. Computing access relevance
for path-m ethod generation and IM-OODB. Subm itted for journal publication,
1993.

136] A. M ehta. J. Geller, Y. Perl, and E. Neuhold. The OODB path-m ethod genera
tor (PM G) using access weights and precom puted access relevance. Subm itted
for journal publication, 1993.

137] E. Mendelson. Introduction to Mathematical Logic. W adsworth h Brooks/Cole
Advanced Books Software, Monterey, CA, third edition, 1987.

138] B. Meyer. Tools for the new culture: Lessons from the design of the Eiffel
libraries. Commun. A C M , 33(9):68—88, Sept. 1990.

139] H. Mili and R. Rada. A model of hierarchies based on graph homomorphisms.
In [116], pages 343-361.

269

140] B. A. Myers et al. Garnet, comprehensize support for graphical, highly inter
active user interfaces. Computer , 23(11):71—85, Nov. 1990.

141] J. Mylopoulos, P. A. Bernstein, and H. K. T. Wong. A language facility
for designing database-intensive applications. A C M Trans. Database Syst.,
5(2): 185—207, June 1980.

142] E. Neuhold, Y. Perl, J. Geller, and V. Turau. Separating structural and se
m antic elements in object-oriented knowledge bases. In Proc. o f the Advanced
Database System Symposium, pages 67-74, Kyoto, Japan, 1989.

143] E. Neuhold, Y. Perl, J. Geller, and V. Turau. The Dual Model for object-
oriented databases. Research Report CIS-91-30, N JIT , 1991.

144] E. J. Neuhold and M. Schrefl. Dynamic derivation of personalized views. In
Proc. 1 4 th I n t ’l Conference on Very Large Databases, Long Beach, CA, 1988.

145] G. T. Nguyen and D. Rieu. Representing design objects. In J. Gero, editor,
A l in Design ’91. Butterworth-Heinemann Ltd., 1991.

146] A. Nye. X Protocol Reference Manual. O ’Reilly & Associates, Inc., Sebastopol,
CA, 1989.

147] A. Nye. Xlib Programming Manual. O ’Reilly &: Associates, Inc., Sebastopol,
CA, 1989.

148] A. Nye and T. O’Reilly. A' Toolkit Intrinsics Programming Manual. O’Reilly
k Associates, Inc., Sebastopol. CA, 1989.

149] Ontologic, Inc., Burlington, MA. ONTOS 2.01 docum entation, 1991.

150] Open Software Foundation. O S F /M o tif Programmer's Guide. Prentice Hall,
Englewood Cliffs, NJ, 1990.

151] Open Software Foundation. O S F /M o tif Reference Manual. Prentice Hall,
Englewood Cliffs, NJ, 1990.

152] Open Software Foundation. O S F /M o tif Style Guide. Prentice Hall, Englewood
Cliffs, NJ, 1990.

153] T. O ’Reilly, editor. A Toolkit Intrinsics Reference Manual. O’Reilly k Asso
ciates, Inc., Sebastopol, C'A, 1989.

154] M. A. Papalaskaris and L. K. Schubert. Parts inference: Closed and semi-closed
partitioning graphs. In Proc. IJCAI-81, 1981.

155] J. Peckham and F. Maryanski. Semantic data models. A C M Comput. Surv.,
20(3): 153—189, Sept. 1988.

270

156] J. Peckham, F. Maryanski, G. Beshers, H. Chapm an, and S. Demurjian. Con
straint based analysis of database update propagation. In Proc. Tenth I n t ’l.
Conf. on Information System s , pages 9-18, 1989.

157] J. Peters, editor. The Bookm an’s Glossary. R. R. Bowker Company, New York,
NY, sixth edition, 1983.

158] C. S. Pierce. The New Elements o f Mathematics. M outon/H um anities Press,
A tlantic Highlands, NJ, 1976. In four volumes.

159] K. Radermacher. Abstraction techniques in semantic modelling. In H. Jaakkola
et al., editors, Information Modelling and Knowledge Bases IV. IOS Press,
Am sterdam , 1993.

160] K. Radermacher. An extensible graphical programming environment for se
m antic modelling. In R. Cooper, editor, Interfaces to Database Sys tem s , pages
353-373. Springer-Verlag, London, 1993.

161] D. A. Randell and A. G. Cohn. Exploiting lattices in a theory of space and
time. In [116], pages 459-476.

162] B. Raphael. Sir: Semantic information retrieval. In M. Minsky, editor, Sem an
tic Information Processing. MIT Press, Cambridge, MA, 1968.

163] N. Rescher. Axioms for the part relation. Philosophical Studies, 6:8-11, 1955.

164] E. Rich and I\. Knight. Artificial Intelligence. McGraw-Hill, Inc., New York,
NY, second edition, 1991.

165] D. D. Roberts. The existential graphs. In [116], pages 639-663.

166] E. Rosch. Principles of categorization. In E. Rosch and B. B. Lloyd, ed
itors, Cognition and Categorization, pages 27-48. Lawrence Erlbaum Asso
ciates, 1978.

167] R. J. Rost. A’ and M otif Quick Reference Guide. Digital Press, 1990.

168] L. A. Rowe. A shared object hierarchy. In Proc. I n t ’l Workshop on Object-
Oriented Database System s , pages 160-170, Asilomar, CA, 1986.

169] L. A. Rowe and M. Stonebraker. The POSTGRES da ta model. In Proc. 13th
I n t ’l Conference on Very Large Databases, pages 83-95, Brighton, England,
1988.

170] J. Rumbaugh. Relations as semantic constructs in an object-oriented language.
In Proc. OOPSLA-87, pages 466-481, Oct. 1987.

271

171

172

173

174

175

176

177

178

179

180

181

182

183

J. Rumbaugh, M. Blaha, VV. Premerlani. F. Eddy, and W. Lorensen. Object-
Oriented Modeling and Design. Prentice Hall, Englewood Cliffs, N J, 1991.

K. Sayers. A Smalltalk implementation of an OODB part model. M aster’s
Thesis, NJIT, Newark, NJ, 1993. In preparation.

R. Schank. Conceptual Dependency: A theory of natural language understand
ing. Cognitive Psychology, 3:552-631, 1972.

R. Schank. Conceptual Information Processing. North-Holland, Amsterdam,
1975.

R. W. Scheifler and J. Gettys. The X window system. A C M Trans. Gr.,
5(2):79-109, Apr. 1986.

R. W. Scheifler and J. Gettys. X Window System: The Complete Reference.
Digital Press, second edition, 1990.

P. Scheuermann, G. Scheffner, and H. Weber. Abstraction capabilities and
invariant properties modelling within the entity-relationship approach. In
P. Chen, editor, Entity-Relationship Approach to System s Analysis and De
sign , pages 121-140. North-Holland, Amsterdam, 1980.

U. Schiel. Abstractions in semantic networks: Axiom schem ata for generaliza
tion, aggregation, and grouping. S IG A R T Newsletter, (107):25-26, Jan. 1989.

M. Schrefl and E. J. Neuhold. A knowledge-based approach to overcome
structural differences in object-oriented database integration. In Proc. IF IP
Working Conference on the Role o f A I in Database and Inform ation Systems,
Guangzhou. China, 1988. North Holland.

M. Schrefl and E. J. Neuhold. Object class definition by generalization using
upward inheritance. In Proc. 4th I n t ’l Conference on Data Engineering , pages
4-13, Los Angeles, CA, Feb. 1988.

L. Schubert. M. Papalaskaris. and J. Taugher. Accelerating deductive infer
ence: Special methods for taxonomies, colors and times. In N. Cercone and
G. McCalla, editors, The Knowledge Frontier, pages 187-220. Springer Verlag,
New York. NY, 1987.

Servio Corp. Personal communication, 1993. Object Expo ’93.

S. Shah and G. Nadella. Graphical representation of object-oriented database.
M aster’s Project, NJIT. Newark, NJ, 1991.

[184] S. C. Shapiro and W. J. Rapaport. The SNePS family. In [116], pages 243-275.

272

185] A. P. Sheth and S. K. Gala. A ttribute relationships: An impediment in au
tom ating schema integration. In Workshop on Heterogeneous Database Sys
tems, Chicago, IL, 1989.

186] D. W. Shipman. The Functional Data Model and the data language DAPLEX.
A C M Trans. Database Syst., 6(1): 140—173, 1981.

187] P. Simons. Parts, A Study in Ontology. Clarendon Press, Oxford, 1987.

188] E. E. Sm ith and D. L. Medin. Categories and Concepts. Harvard University
Press, Cambridge, MA, 1981.

189] J. Smith and D. C. P. Smith. Database abstractions: Aggregation and gener
alization. A C M Trans. Database Syst., 2(2):105-133, 1977.

190] A. Snyder. Encapsulation and inheritance in object-oriented programming
languages. In Proc. OOPSLA-86 , pages 38-45, 1986.

191] V. Soloviev. An overview of three commercial object-oriented database m an
agement systems: ONTOS, ObjectStore, and O2 . SIG M O D Record, 21(1):93-
104, Mar. 1992.

192] J. F. Sowa. Conceptual graphs as a universal knowledge representation. In
[116], pages 75-93.

193] J. F. Sowa. Toward the expressive power of natural language. In [195], pages
157-189.

194] J. F. Sowa. Conceptual Structures, In form ation Processing in M ind and M a
chine. Addison-Wesley Publishing Co., Inc.. Reading, MA, 1984.

195] J. F. Sowa. Principles of Semantic Networks, Explorations in the Represen
tation o f Knowledge. Morgan Kaufmann Publishers, Inc., San Mateo, CA,
1991.

196] M. Stonebraker. M. Hearst, and S. Potamianos. A commentary on the POST-
GRES rules system. SIG M O D Record, 18(3):5—10, Sept. 1989.

197] M. Stonebraker, H. S tettner, N. Lynn, J. Kalash, and A. G uttm an. Document
processing in a relational database. A C M Trans. Office Inf. Syst., 1 (2): 143—158,
Apr. 1983.

198] M. Stonebraker, E. Wong, P. Kreps, and G. Held. Design and implementation
of INGRES. A C M Trans. Database Syst., 1(3): 189—222, 1976.

199] B. Stroustrup. The C++ Programming Language. Addison-Wesley Publishing
Co., Inc., Reading, MA, 1986.

273

[200] B. Stroustrup. An overview of C + + . S IG P L A N Notices, 21(10):7—18, Oct.
1986.

[201] I. Sun Microsystems. OPEN LOOK, Graphical User Interface Functional Spec
ification. Addison-Wesley Publishing Co., Inc., Reading, MA, 1989.

[202] A. Tarski. Logic, Semantics, Metamathematics. Clarendon Press, Oxford,
1956. trans. J. H. Woodger.

[203] J. E. Tiles. Things That Happen. Aberdeen University Press, Aberdeen, Scot
land, 1981.

[204] D. S. Touretzky. Implicit ordering of defaults in inheritance systems. In Proc.
IJC A I- 8 4 , pages 322-325, Austin, TX, 1984.

[205] J. D. Ullman. Principles o f Database Systems. Com puter Science Press,
Rockville, MD, second edition, 1982.

[206] P. Venkatesh. Representation of graphical deep knowledge in an object-oriented
database. M aster’s thesis, NJIT, Newark, NJ, 1991.

[207] J. Walters and N. R. Nielsen. Crafting Knowledge-Based Systems. John Wiley
& Sons, New York, NY, 1988.

[208] P. Wegner. An object-oriented classification paradigm. In Schiver and Weg-
ner, editors, Research Directions in Object-Oriented Programming. M IT Press,
1987.

[209] C. Wijaya and M. Ahmedi. Development of a university database (registration
and admission) using the Dual Model for object-oriented knowledge bases.
M aster’s thesis, N JIT, Newark, NJ. 1990.

[210] M. E. Winston, R. Chaffin, and D. J. Herrmann. A taxonomy of part-whole
relations. Cognitive Science , 11(4):417—444, 1987.

[211] D. Woelk, W. Kim, and W. Luther. An object-oriented approach to multimedia
databases. In Proc. A C M SIG M O D I n t ’l Conference on Management o f Data,
pages 311-325, Washington, D.C.. May 1986.

[212] N. Yankelovich, N. Meyrowitz, and A. van Dam. Reading and writing the
electronic book. Computer. 18(10): 15—30, Oct. 1985.

[213] D. A. Young. The X Window System, Programming and Applications with Xt.
Prentice Hall, Englewood Cliffs, NJ, OSF/M otif edition, 1990.

[214] S. B. Zdonik and D. Maier. Fundamentals of object-oriented databases. In S. B.
Zdonik and D. Maier, editors, Readings in Object-Oriented Database Systems,
pages 1-32. Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1990.

	Copyright Warning & Restrictions
	Personal Information Statement
	Title Page
	Copyright Page
	Approval Page
	Abstract (1 of 2)
	Abstract (2 of 2)

	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: A Graphical Schema Representation for OODBs
	Chapter 3: OOdini, an OODB Graphical Schema Editor
	Chapter 4: An OODB Part Relationship
	Chapter 5: Value Propagation and Derived Attributes in Object-Oriented Database Part Hierarchies
	Chapter 6: Implementing the Part Model Using Metaclasses in VML
	Chapter 7: Conclusions and Future Work
	Appendx A: VML Code for the HolonymicMeronymic Metaclass
	Appendix B: A Sample VML Part Schema

	List of Tables
	List of Figures (1 of 4)
	List of Figures (2 of 4)
	List of Figures (3 of 4)
	List of Figures (4 of 4)

