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ABSTRACT 

Integration of Pneumatic Fracturing to Enhance In Situ Bioremediatiors 

by 
Conan Dante Fitzgerald 

The purpose of this thesis was to study the anticipated benefits of 

integrating pneumatic fracturing with in situ bioremediation. Since pneumatic 

fracturing increases subsurface air flow in low permeability formations, it has 

the potential to overcome many of the major limiting factors of microbial growth 

and activity. A new innovation called pneumatic bio-injection can further 

enhance in situ bioremediation by efficiently dispersing biological solutions, 

including microorganisms, into a formation. 

Bench scale experiments were conducted to examine the ability of 

microorganisms to survive the pressures and stresses associated with pneumatic 

injection. Tests conducted at pressures ranging from 60 to 500 psi showed 

consistent survivability under varied conditions. In fact, many tests showed an 

increase in microbial growth following pressurization, which was found to be a 

result of the superior dispersion produced by the injection system. Full scale 

tests indicated that the prototype pneumatic bio-injection system will disperse a 

finely-textured mist into the fracture network at flow rates up to 4.5 GPM. 

A full field pilot demonstration was implemented for an industrial site 

underlain by petroleum contaminated clayey silt. The characterization and 

preparation phases are described including the initial pneumatic fracturing 

activities. Subsurface permeabilites increased 35 times as result of fracturing, 

and mass removal through vapor extraction for the target contaminants 

increased 50 to 75 times. 
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CHAPTER 1 
INTRODUCTION 

1.1 General Information 

It is estimated that there are over 10,000 sites in the United States which are 

contaminated with some kind or combination of hazardous wastes. To date, the 

Superfund National Priority List (NPL) already contains 1255 locations. Of these 

sites, most include contamination of the soil and almost all have produced some 

sort of groundwater pollution. The United States Government, as well as both 

state and local governments, have passed laws and developed programs during 

the 1970's and 1980's in order to deal with these problems. However, very few 

hazardous waste clean-ups have actually been completed. 

One of the major reasons for the sluggish rate of contaminated site 

remediation is a lack of technology. Soil pollution is a problem that is relatively 

new to our society, and cleaning contaminants out of the ground is both difficult 

and expensive. 

There are presently a number of treatment technologies available to 

remediation consultants when dealing with soil contamination problems. Of 

these, the least favored is removal and disposal, since it only displaces the 

problem and is usually the most costly alternative. Most government agencies 

favor some sort of permanent, in-situ treatment method, where the soil is treated 

on site and in place. 

Technologies in this realm include vapor extraction and bioremediation. 

Although these treatment methods have had their successes, they have been 

until recently limited to very permeable soils.' A new technology is now 

available that can extend these forms of remediation to all types of soils. 

1 
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1.2 Purpose and Scope 

The objective of this study is to show that pneumatic fracturing can enhance 

the current technology of bioremediation. Pneumatic fracturing has been 

demonstrated to increase soil permeability for vacuum extraction2  and it is 

theorized that the same process can increase permeability for bioremediation. 

Pneumatic fracturing injects air into the soil at high pressures in order to 

create horizontal cracks or "fractures" in the soil. This process has been 

demonstrated at both "clean" or uncontaminated sites, as well as at contaminated 

sites. At all locations where pneumatic fracturing has been applied, it has 

increased permeability of the geologic formation as measured by subsurface air 

flowrates. On contaminated sites, substantial increases in the removal rate of 

volatile contaminants have been measured after pneumatic fracturing.2  The 

types of geologic formations where pneumatic fracturing has been demonstrated 

include silts, clays, and sedimentary rock. 

Although bioremediation has been demonstrated as an effective way to 

destroy soil contaminants in-situ, it has generally been limited to very permeable 

soils. Pneumatic fracturing has the potential to expand the range of soil types 

which can be treated with in-situ biological treatment. 	The increased 

permeability provided by pneumatic fracturing can improve many of the key 

parameters for biological activity such as subsurface oxygen control. In 

addition, a modification to the pneumatic fracturing process known as 

pneumatic bio-injection can inject fluids containing nitrates or lime for p1-I 

control horizontally into a contaminated formation to more efficiently aid 

microbial activity. This same system can also inject microorganisms into the 

formation. 
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The study will begin with a general review of the status and methods of 

pneumatic fracturing and bioremediation as separate technologies. Next the 

advantages of integrating the technologies will be explained. The results of the 

interrelated studies of this technology integration will then be presented. 

The first is a bench-scale laboratory study which examines whether 

microorganisms can survive the pressures and stresses associated with 

pneumatic injection. The second study involves development, calibration, and 

testing of the prototype pneumatic bio-injection system. The final study is a 

field demonstration of pneumatic fracturing combined with in situ 

bioremediation at an actual contaminated site which is typical of those facing 

industry today. The thesis concludes with recommendations for further study. 



CHAPTER 2 

BACKGROUND INFORMATION 

2.1 Pneumatic Fracturing 

Engineers, contractors, and regulators involved with site remediation are faced 

with a new and difficult problem. With the number of identified hazardous 

waste sites consistently growing and the costs associated with cleaning up those 

sites escalating as well, cost effective solutions to these contamination problems 

must be found. Technologies which treat contamination in place or "in situ" are 

viewed as the most efficient method of cleaning sites, and therefore have the 

potential to reduce remediation costs. For this reason, methods of treatment 

which can be performed in situ are usually preferred if the site conditions will 

allow them to be used. 

A major limiting factor for in situ technologies is soil permeability. The 

efficiency and success of any of these treatment methods will be governed by the 

pore fluid (liquid or gas) exchange rate of the formation being treated. 

Pneumatic fracturing was conceived of as a method of artificially increasing the 

permeability of a formation with the minimum possible impact to the natural 

formation. 

2.1.1 Concept of Pneumatic Fracturing 

The original objective of pneumatic fracturing was to enhance the removal and 

treatment of volatile organic compounds (VOCs) from the vadose zone with 

vapor extraction. Figure 2.1 shows the concept of pneumatic fracturing as it is 

applied in clay and silt formations. Compressed air (or another gas) is injected 

into the formation at a pressure that exceeds the in situ stresses that are present. 

The burst of air cracks the formation and creates horizontal fracture planes 

4 
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Figure 2.1 Schematic diagram of pneumatic fracturing. 
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which extend out radially from the point of injection. Upon completion of the 

pneumatic fracturing process, both the permeability and the exposed surface 

area of the formation is greatly increased. This allows for greater access to 

contaminated locations, thereby accelerating removal and/or treatment of 

contaminants in situ. 

2.1.2 Mechanics of Fracture 

An understanding of the mechanics of fracture is essential in applying 

pneumatic fracturing to geologic formations. Since pneumatic fracturing is a 

new technology, specific information is not available in the literature to explain 

its mechanisms. The theory of pneumatic fracturing which is presently under 

development relies on a combination of soil mechanics, rock mechanics, and 

observations during early field tests. 

Compressed air, when injected into an isolated section of a borehole, will 

stress the geologic formation and will eventually cause failure when the 

"breakdown" pressure is reached. Upon failure, fractures will propagate 

perpendicular to the least principal stress in the formation. More simply, the 

fluid (air) will take the path of least resistance. Low permeability soils tend to be 

overconsolidated, which means that the least principal stress is in the vertical 

direction. Fractures in overconsolidated conditions would therefore tend to 

extend horizontally from the injection point. This correlates with field 

observations to date, which have shown that fractures are predominately 

horizontal. 

Pressure, however, is not the most important factor in determining the size 

of a fracture. Downhole pressure measurements have indicated that high 

initiation pressures are not required to initiate shallow fractures. Field 
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measurements show that fracture initiation pressures at depths less of than 20 

feet are less than 200 psi for rock and 100 psi for soil. 

More important than injection pressure is the injection flow rate. The 

greater the volume of air per unit time injected into the formation, the further the 

fracture will propagate, since the fracture initiation pressure is maintained over 

a greater area of soil. Therefore, a fracturing system must not only be capable of 

high pressures, but it must also be able to produce high flow rates. Field 

observations have supported this analysis in Schuring and Chan) To date, 

pneumatic fractures have attained radii in excess of 25 feet in radius. 

2.1.3 Pneumatic Fracturing to Enhance Vapor Extraction 

Vapor extraction was the first in situ technology that the pneumatic fracturing 

process was demonstrated to enhance. This technology consists of extracting 

volatile organic compounds (VOCs) from the subsurface using an air vacuum 

pump. For vapor extraction to be effective, it must move large volumes of air 

through the soil, which is only possible in a formation with substantial 

permeability. In geologic formations containing a significant amount of silt, 

clay, and/or shale, vapor extraction has been found to be ineffective without 

some type of enhancement. 

Originally, laboratory studies were performed in soil vats to determine the 

predicted effectiveness of integrating pneumatic fracturing and vapor extraction. 

These experiments consistently showed that pneumatically fractured soil 

provided faster contaminant removal rates than unfractured soil. Further 

discussion of these studies is available in Schuring and Chan) Based upon the 

success of the laboratory studies, a full-scale prototype pneumatic fracturing 

system was built and field demonstrations were begun. 
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In the field demonstrations, permeability increases in soil and rock 

formations were verified in the following manner. Before fracturing, a vacuum 

was applied to an extraction well as shown in Figure 2.2, using a vacuum blower 

pump. Flow readings, measured in volume per unit time (i.e. standard cubic 

feet per minute), were recorded at constant vacuum to establish the pre-fracture 

behavior of the formation. After pneumatically fracturing the formation, the 

flow readings were again measured at the same vacuum level and compared 

with the pre-fracture reading. This procedure permitted direct comparison of 

formation permeabilities before and after fracturing activities, which is the 

primary tool for evaluating the effects of pneumatic fracturing. 

Permeability test results from a recent field test conducted in the Brunswick 

Shale Formation in Newark, New Jersey, are presented in Figure 2.3. The figure 

is a subsurface flow profile conducted at two foot intervals in the test borehole. 

By comparing the white bar chart sections (pre-fracture flow), with the cross-

hatched sections (post-fracture flow), it is clear that pneumatic fracturing has 

substantially increased the formation permeability. Table 2.1 shows a summary 

of flow rate increases observed during recent demonstrations of pneumatic 

fracturing. 

A secondary measurement of formation permeability enhancement through 

pneumatic fracturing is radius of influence. By measuring the vacuum induced 

at monitoring wells located at various distances from a vapor extraction point, 

the radius of influence of the system can be determined. This radius of influence 

is directly proportional to the permeability of the formation. By increasing 

formation permeability, pneumatic fracturing has consistently demonstrated the 

ability to increase the effective radius of influence for vapor extraction systems. 

An example of this is shown in Figure 2.4. 



Figure 2.2 Typical extraction well. 

9 



10 

Figure 2.3 Air permeability log from ATC parking lot Newark, NJ. 



Table 2.1 Summary of permeability increases for pneumatic fracturing 
projects 

Site 	Geology Well/ Pre-fract.Post-fract.Vacuum Percent 
Location 	 Zone Flowrate Flowrate 	Inches Increase 

(SCFM) 	(SCFM) 	H20 
Frelinghysen, Clayey 
New Jersey Silt 

Well 0.12 
VW-1  

5 30 4067 

Frelinghysen, Clayey 
New Jersey Silt 

Well 
VW-4 

0.2 10 30 4900 

Newark, ATC Sand- 
New Jersey stone 

Zone 
9'-11' 

0.2 21 20 10400 

Newark, ATC Sand- 
New Jersey stone 

Zone 
15'-17' 

0.5 7 20 1300 

Richmond, 	Silty 
Virginia 	Clay 

Well 0.001 3.5 27 349900 

Somerville, 	Silt- 
New Jersey Stone 

Well 0.5 5 110 900 

Newark (CF) Clay, 
New Jersey Silt, Sand 

Well 
 

5 15 110 200 

Roseland, 	Silty 
New Jersey Sand 

RW-1 5 10+ 59 (24) 100+ 

11 
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Figure 2.4 Vacuum radius of influence increase from site in Somerville, NJ. Pre 
fracture vacuum radius of influence is shown in part a, while the post fracture 
vacuum radius of influence is shown in part b. Distance is measured in feet, and 
vacuum is measured in inches of water. 
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2.1.4 Fracture Endurance: The Effect of Moisture 

An important aspect of pneumatic fracturing is the endurance of the fractures in 

soil. That is, how long will the fractures remain viable, and will reinjections be 

necessary to re-open the formation? This aspect was studied at a demonstration 

site in Frelinghuysen, New Jersey over a six month period. 

The study involved two site visits during which the formation was 

fractured, and four intermittent visits for monitoring and data collection. 

During the tests, vacuum flow rates were correlated with soil moisture and 

water table readings. Moisture levels were also correlated with precipitation. 

The data from this study are summarized in Figures 2.5 to 2.7. 

As indicated in the figures, flow behaviors for the extraction wells VW-1 

and VW-4 varied inversely with the soil moisture content. During periods of 

high water table and elevated soil moisture, vacuum air flow rates were 

observed to decrease. The greatest air flow rates occurred when the soil was dry 

and the water table was below the fracture zones. In all cases, however, post-

fracture air flow rates were greater than pre-fracture levels. 

Three observations about the long term effects of soil moisture on 

pneumatic fracturing were made based on this data. First, despite the periods of 

heavy moisture and successive dry spells, the soil fractures remained open and 

viable, as evidenced by the flow rates measured at the end of the test. In all 

cases, the flow rate at the end of the study period was at least one order of 

magnitude higher than the pre-fracture condition. The greatest flow rate 

readings were observed during the driest periods. 

Second, soil can be effectively fractured despite heavy moisture as shown in 

the flow rate/time history of VW-1. The initial fracture occurred in wet soil and 

did not show the typical flow increase which had been observed elsewhere 
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Figure 2.5 Long term behavior of fractures, Frelinghuysen Township, NJ. The 
long term permeability of VW-1 is shown in part a, and part b shows the 
permeability over time of VW-4. 
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Figure 2.6 Water level and precipitation, Frelinghuysen Township, NJ. Part a 
shows the depth to the water table over time, and part b shows the 
corresponding weekly precipitation. 
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Figure 2.7 Soil resistance and temperature, Frelinghuysen Township, NJ. Soil 
moisture as measured through resistance is shown in part a, and the 
corresponding soil temperature is shown in part b. 
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in the formation. However, after the soil had dried over the course of 17 weeks, 

it was discovered that the flow rate had increased substantially. When 

compared to the low permeabilities of nearby sections of the formation which 

had not been fractured, it was concluded that the flow increase was a delayed 

reaction to the fracturing. 

Third, it can be concluded that soil moisture can have a retarding effect on 

air flow in a formation after it has been pneumatically fractured. However, a 

high vacuum, high flow rate vapor extraction system, will volatilize and extract 

the water from the formation. The retarding effects of soil moisture should 

therefore not be a major factor in sites under active remediation by vapor 

extraction. 

2.1.5 Status of Pneumatic Fracturing 

To date, pneumatic fracturing has successfully enhanced subsurface air flow at 

three clean sites and five contaminated sites. These demonstrations have 

included a USEPA SITE demonstration in Hillsborough, NJ. Transfer of the 

technology to commercial development partners for continued vapor extraction 

projects is currently underway. As the work with vapor extraction continues, 

research has also begun to integrate pneumatic fracturing with bioremediation. 

2.2 Bioremediation 

Bioremediation is a solution to many soil pollution problems. By stimulating 

subsurface activity of microorganisms, dangerous chemicals can be degraded 

into harmless minerals. Because it is a natural occurring process, bioremediation 

can be performed in situ if critical parameters can be controlled. Before 

discussing the ways in which pneumatic fracturing can enhance in situ 
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bioremediation, it is important to explain the manner in which chemicals are 

biologically degraded in soil. 

2.2.1 Concept of Bioremediation 

Most organic wastes found in contaminated soils will eventually naturally 

degrade biologically into harmless compounds. For example, benzene, which is 

a suspected carcinogen, will degrade as follows: 

2C6H6  + 1502  = 12CO2  + 6H20 	 (2.1) 

Thus the chemical is converted to basic carbon dioxide and water, and thereby 

rendered harmless. 

A process like the one shown above is called mineralization or ultimate 

degradation, which refers to a complete breakdown of a chemical to inorganic 

compounds.3  Besides water and carbon dioxide, ammonia, sulfate, nitrate, or 

chloride may be the end products of mineralization. Biodegradation rates which 

are reported in terms of BOD, COD, oxygen uptake, methane production, or loss 

of dissolved organic carbon refer to ultimate degradation.4  Less than complete 

mineralization of a chemical would indicate partial degradation. 

Primary degradation, is used to describe a biologically induced structural 

change in an organic chemical. For example, primary degradation of 

tetrachloromethane would indicate the replacement of one chlorine atom by a 

hydrogen atom, which would yield trichloromethane. Organic chemical 

biodegradation rates reported in terms of removal, disappearance, or loss of a 

particular chemical refer to primary degradation.4 
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2.2.2 Metabolic Considerations 

There are two major types of microorganisms involved with in situ 

bioremediation. Bacteria are the most numerous, although they are smaller. 

Fungi are larger and often account for the majority of the microbial mass present 

in the soil, although they usually would have the smallest population count.5  

Algae are also commonly present in the soil environment, but have very limited 

effects on in situ bioremediation. 

Bacteria can be defined as any of a group of diverse and ubiquitous single 

celled microorganisms.6  The variety of bacterial species that are commonly 

found in the soil reflects their diversity. Much of the work in bioremediation is 

believed to be accomplished by bacteria. 

Actinomycetes are a special group of gram-positive bacteria that are 

characterized by their formation of branching filaments. They tend to be more 

predominant in warm, dry soils.6  Importantly for bioremediation, they have 

shown the capability to degrade complex organic compounds, as they play an 

important role in building soil fertility. 

Fungi typically require oxygen and therefore stay within the first few layers 

of the surface. Their normal activity in the soil is to degrade the major 

constituents of plant tissue.6  Algae are photosynthetic organisms and therefore 

must stay on or close enough to the surface in order to receive sunlight. In fertile 

soils the activity of algae is dwarfed by that of the fungi and bacteria.6  They are 

more dominant in barren situations. 

Microorganisms require a carbon source and an energy source in order to 

survive and reproduce.3  Based on their means of satisfying these requirements, 

microorganisms are either classified as heterotrophs or autotrophs. 

Heterotrophs are organisms which utilize an organic compound as the carbon 

source and the oxidation of the organic compound as the energy source. 
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Autotrophs use carbon dioxide as the carbon source and obtain energy from the 

oxidation of inorganic compounds. For degradation of petroleum contaminated 

soils, heterotrophic microorganisms are more common.5  

Microorganisms also require a terminal electron acceptor for electrons 

which are transferred during energy reactions.3  Oxygen usually serves as the 

receptor for electrons. Without an adequate supply of molecular oxygen, an 

inorganic compound such as nitrate or sulfate may accept the electrons. 

The ability to grow in the presence or absence of oxygen is another method 

of classifying microorganisms. Those that require oxygen for growth and 

activity are aerobic. Microorganisms that survive only in an environment 

completely void of oxygen are anaerobic. Facultative anaerobes can survive 

under both aerobic and anaerobic conditions. This means that they can switch 

electron acceptors between oxygen and other compounds. 

Another important substrate required of soil microorganisms are inorganic 

nutrients.? Any substance that is required for growth is referred to as a nutrient. 

There are two categories for nutrients: Macronutrients and micronutrients. 

Some nutrients form the building blocks of the cell while others are only used 

for energy generation or in a certain enzyme.8  In some instances a particular 

nutrient may serve both roles. 

The two major macronutrients required by microorganisms are carbon and 

nitrogen. Carbon can be supplied by a variety of sources, and serves as the basic 

building block for the cell. After carbon, nitrogen is the most abundant nutrient 

found in cells. A typical bacterial cell will contain 12-15% nitrogen.8  Natural 

sources of nitrogen are ammonia (NH3) and nitrate (NO3-). In addition, certain 

microorganisms, through a process called nitrogen fixing, can use molecular 

nitrogen from the air (N2).6  Nitrogen is a major component of the various 



21 

proteins and nucleic acids found in the cell, as well as being an important 

constituent of the material that makes up the cell wall. 

The third most abundant macronutrient found in microorganisms is 

phosphorus, and the fourth is sulfur.8  Phosphorus is a prime constituent of 

many nucleic acids, as well as certain lipids. Sulfur is present in the cell as a part 

of certain key amino acids and many important vitamins. Other common 

macronutrients include potassium, magnesium, calcium, sodium, and iron.? 

Micronutrients, which are typically trace metals, are required only in small 

amounts. They are found in different amino acids, vitamins, or enzymes. 

Although only small amounts are necessary, a lack of trace metals can stop cell 

activity. Typical micronutrients include copper, cobalt, nickel, manganese, and 

tungsten.8  

The actual degradation of compounds by microorganisms is performed by 

enzymes. Enzymes, of course, are very specific in the reaction that they will 

catalyze. A compound that has a complicated degradation path may require a 

host of enzymes to complete the process. These enzymes may all come from a 

single microorganism or be produced by a group consisting of various species. 

Constitutive enzymes are the types of enzymes that are present inside of a 

microorganism during its normal metabolic processes. Inducible enzymes are 

produced in response to the presence of a certain substrate .s 

2.2.3 Reaction Rates 

Most of the available biodegradation rate equations are for aquatic environments 

and not for soil systems.5  Modeling the rates of degradation in a soil is difficult 

because of the numerous impurities that are encountered. Some general 

equations have been established, however. Valentine and Schnoor expressed the 

following first order equation based on contaminant removals 
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In (S/So) -=-k1 (2.2) 

where S is the substrate concentration at time t, So  is the initial substrate 

concentration, and k1  reaction rate constant. Substrate half life could then be 

measured using 

k1 =In(2)/t1/2= 0.693/t112 	(2.3) 

In cases where the maximum growth rate of the microorganisms, as well as 

the concentration are known, the following equation could be used to predict 

specific growth rates. 

V = Vmax  C/ (K + C) 	 (2.9) 

Where: 

V = 	Specific growth rate of microorganisms. 

Vmax = Maximum growth rate of microorganisms. 

C = 	Concentration of organic chemical. 

K = 	Organic chemical concentration supporting a growth rate which 

would equal one half of the maximum (V./ 2). 

This is known as the Monad Kinetics rate equation and is designed to 

illustrate the relationship of a single or mixed species population of 

microorganisms which are using a single organic chemical as a source of 

energy.4  

An empirical approach was taken by Bradford and Krishnamoorthy.3  

WDR = K2CwC0CpCN 	 (2.5) 
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In their equation, WDR is the aerobic waste destruction rate, while the C 

coefficients are the concentrations of the waste, oxygen, phosphorus, and, 

nitrogen, respectively. K2  is the reaction rate constant and is based on the 

following parameters. 

Type of Waste 

Toxicity of Waste 

Acclimation 

pH 

Temperature 

Moisture Content 

These are key parameters for bioremediation, and several will be discussed 

in the following sections. Under ideal conditions, in which an ample supply of 

oxygen and nutrients are available, this equation reduces to 

WDR = 

K2Cw 

 

Usually the rates for natural degradation are too slow to be considered as 

an effective remediation alternative. If, however, the important parameters for 

biological growth and activity are properly controlled, the rates of degradation 

can be greatly increased. In this manner, contaminants present in soil and 

groundwater can be efficiently, and cost effectively destroyed. The most crucial 

aspect of this in situ bioremediation is gaining control of the subsurface 

environment in which the degradation is to take place. All parameters must be 

considered. 
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2.3 Key Parameters of In Situ Bioremediatiors 

There are a host of factors involved in biological treatment of contaminated soils. 

Tables 2.2 and 2.3 lists the most important parameters for successful 

bioremediation. Attempts at in situ bioremediation which do not properly 

account for these parameters will fail, resulting in excavation of the soil for ex-

situ biological treatment7  or other soil treatment technology. As stated 

previously, in situ technologies are usually more favored, although they are also 

more challenging. The remainder of this thesis will focus on the use of in situ 

bioremediation to solve soil contamination problems by controlling the key 

parameters of the process. 

2.3.1 Soil Moisture 

All microorganisms require some degree of soil moisture for growth and 

activity. The optimum soil moisture content in the vadose zone is between 50% 

and 75% of the soil moisture holding capacity.5  In clean soils, the soil moisture is 

often the major limiting growth factor in the vadose zone .8 

Moisture content in the soil will affect degradation of contaminants in a 

variety of ways. An increase in soil water may allow more contaminant to be 

present in the aqueous phase or dilute the chemical concentration, both of which 

would tend to increase degradation rates. Decreasing the moisture content may 

allow for more of the contaminant to sorb onto soil particles and reduce 

accessibility to degradation.5  Too much water, however, can limit the amount of 

oxygen available by reducing the pore gas exchange rate in the soil. 

Many bioremediation efforts to date have used a saturated system in order 

to better control the other parameters that affect biological growth in the 



Table 2.2 Important Geologic Formation Characteristics for Successful In-
Situ Treatment 

Soil Properties 	Hydraulic Properties 	Geology and Climate 

Location /Topography Permeability (saturated) Subsurface geology 
Soil type and extent Permeability (unsaturated) Groundwater flow patterns 
Soil boundary and depth Water holding capacity Groundwater characteristics 
Structure/Stratification Infiltration rates Wind velocity/direction 
Clay content Depth to impermeable layer Temperature 
Clay type Depth to groundwater Precipitation 
Bulk density Flooding frequency 
Organic matter content Runoff potential 
Soil pH and Eh 
Aeration status 

Table 2.3 Major Parameters for Microbial Growth and Activity 

Environmental Factor 	 Optimum Level 	__ _ 

Oxygen Aerobic More than 0.2 mg/I dissolved oxygen 

or more than 10% of air space filled with air 
Anaerobic: Less than 1 % oxygen 

Moisture 25% to 85% of water holding capacity 

Nutrients Enough nutrients (nitrogen, phosphorus) 
To insure that they are not a limiting factor 

Soil pH Neutral, usually between 5.5 to 8.5 

Temperature Mesophilic range (15-45 degrees Celsius) 

Contaminant concentration Varies depending on the compounds present 

Microorganism acclimation Contamination present for over 12 months 

25 
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soil.10  These systems operate much like a standard pump and treat system with 

infiltration trenches or injection wells, combined with recovery wells. The water 

that is injected into the soil is augmented with oxygen, nutrients, and/or 

microorganisms in a variety of methods. A general schematic drawing of this 

type of system is shown in Figure 2.8. For this type of system to be effective, 

however, the formation must be very permeable. 

2.3.2 Available Oxygen 

Available oxygen in the soil matrix is often a major limiting factor for in situ 

bioremediation." The availability of oxygen in soil will determine whether 

aerobic processes or anaerobic processes are dominant. Aerobic processes are 

typically favored because an aerobic system will produce a great deal more 

energy than an anaerobic system.6  This will tend to accelerate the reaction rates 

of the degradation process, which is the objective of in situ bioremediation. For 

this reason, control of available oxygen is crucial to the success of a 

bioremediation system. 

Unfortunately, the intense microbial activity required by this technology 

will quickly deplete available oxygen before it can be replaced by natural soil 

diffusion. This makes the contaminated zone anaerobic, which will usually 

either slow or prevent biological degradation. As the contamination travels 

further below the surface, the problem is compounded because atmospheric air 

must diffuse deeper into the soil. Therefore, the deeper the contamination, the 

lesser the amount of oxygen that will be available for degradation. 

Methods for increasing available oxygen in the subsurface have included 

the addition of the following: 
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Figure 2.8 In situ bioremediation in a saturated syste 
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Air (Aeration) 	Hydrogen Peroxide 

Pure Oxygen 	Nitrate/Ozone 

Nitrate 

Aeration of the soil is by far the most economical of the alternatives. It is 

most efficient in bioventing systems operated in the vadose zone. Bioventing is 

an in situ process of stimulating microbial growth by aerating the soil, either 

through injection, extraction, or a combination of the two.11  A schematic 

diagram of a typical bioventing system is shown in Figure 2.9. It is a popular 

and relatively new technology for enhancing biodegradation, that is still in the 

demonstration phase. 

In bioremediation systems which involve a saturated condition, however, 

aeration only produces approximately an 8 mg/l oxygen level under typical 

groundwater conditions and is therefore not very effective. For systems which 

use a saturated condition the water may be saturated with pure oxygen rather 

than air which may allow slightly higher levels of oxygen.. 

To further improve the concentration of oxygen in the infiltration water, 

hydrogen peroxide has been used. Its instability allows for good oxygen release 

throughout a formation. For example, 200 ppm of H202  will produce a 

concentration of 94 mg/I of oxygen10: 

2H202  02  + 2H20 	 (2.7) 

The concentration of hydrogen peroxide, however, must be limited, as it 

can be toxic to microorganisms. To overcome this difficulty, hydrogen peroxide 

application should begin with small doses. Concentrations could then be 
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Figure 2.9 	Schematic of a bioventing system 
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increased as the microorganisms became acclimated to the chemical. Using this 

approach, it has been reported that peroxide can be applied in concentrations of 

up to 1000 mg/1.10 

Another disadvantage of hydrogen peroxide is that it sometimes degrades 

in the soil before reaching the zone where it is needed. The larger the infiltration 

distance, the more likely this will happen. Certain compounds, such as 

phosphate, can be added to improve the stability of hydrogen peroxide? 

Phosphate can also help microbial growth and activity in that it serves as a 

nu trient.10  

Under anaerobic conditions, nitrate can serve as the electron acceptor rather 

than oxygen. A system has also been developed in which ozone is used above 

ground to treat recirculating water by oxidizing the contaminants, while nitrates 

are returned to the soil to aid in degradation. Unfortunately, there are very few 

instances of successfully replacing oxygen with nitrate in a full scale in situ 

bioremediation system.10 

In the laboratory, methane and oxygen can be combined together in a 

process called co-metabolism. This type of reaction occurs when the degradation 

of the organic substance is done by a microorganism which cannot use the 

compound for growth and must rely on other compounds for carbon and 

energy.? The degradation, however, is done by an enzyme that the 

microorganism produces. 	An example of microorganisms which use 

cometabolism are methanotrophs. Methanotrophs use methane for their energy 

source. In an environment which contains methane and oxygen, these 

organisms will produce the enzyme monooxygenase, which is their first step in 

utilizing methane. This enzyme is also capable of degrading a host of 

hydrocarbons. For example, monooxygenase will bring about the conversion of 

an alkene to an epoxide: 
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CHC1=CHC1 + H20 CHC1OCHC1 + 2H+ + 2e- 	 (2.8) 

Epoxides are unstable in water and can be further degraded easily by 

heterotrophic microorganisms.10  The feasibility of extending cometabolism to 

the field are still under study. 

The major dissatisfaction with these methods of oxygen enhancement is 

that they are greatly inhibited by the soil permeability. Whether the method 

uses the liquid or the vapor phase to carry the oxygen throughout the formation, 

difficulties will arise in fine grained soils. 

2.3.3 Available Nutrients 

Nutrient requirements for in situ bioremediation projects are site specific, and in 

some cases, nutrient addition may not be necessary. Most situations will, 

however, require a certain amount of nutrient application, especially in locations 

with heavy organic contamination. The difficulty with nutrient control is similar 

to that of oxygen; microbial activity will use up these compounds faster than 

they can naturally be replaced. 

General techniques of nutrient application have been similar to common 

agricultural methods for spreading fertilizer. This has included the various 

tillers and applicators necessary to apply the nutrients.10  Nutrients have also 

been added to the formation through injection wells and infiltration galleries. 

Unfortunately the success of these methods will rely on the diffusion of these 

materials to the proper depth, which is governed by soil permeability. 
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2.3.4 Soil pH 

In general, the optimum growth rate for microorganisms in the soil will occur at 

a neutral pH. There are some instances where a certain species will excel under 

extremely acidic or alkaline conditions. In such situations it may be desirable to 

radically change the pH of the soil. Most bioremediation situations, however, 

will require the activity of a group of microorganisms. To satisfy the needs of 

the majority, a neutral pH is usually recommended. 

Most degradation processes will produce organic acids which lower the 

pH. Nitrogen from nutrient application will also tend to make the soil slightly 

acidic. To counter this, lime can be added with the fertilizer during nutrient 

application.10  

2.3.5 Temperature 

Growth and activity of microorganisms are directly associated with the 

temperature. Based on optimum growth rate temperatures, microorganisms are 

divided into three groups. Psychophiles exhibit maximum growth rates at 

temperatures of less than 20 degrees Celsius, and can grow under freezing 

conditions. Mesophiles grow best in the range of 25 to 40 degrees Celsius, while 

thermophiles grow best at temperatures above 45 degrees Celsius.6  Most 

microorganisms involved with situ bioremediation would be classified as 

mesophiles. 

Soil temperature is mainly influenced by either vegetation or applying a 

mulch. A well vegetated soil will retain temperatures better than a bare soil, 

both in summer and in winter. Unfortunately, accurate control of temperatures 

in soil is very difficult. The soil will absorb a great deal of energy before the 

temperature will rise significantly. 
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A bioventing field test underway at Eielson Air Force Base near Fairbanks, 

Alaska is using warm water to control subsurface temperatures. In this test, 

water at a temperature of 35 degrees Celsius is added to the formation through 

surface infiltration. Preliminary results show that the warm water can elevate 

the soil temperatures sufficiently to allow significant biodegradation.12  

2.3.6 Availability of the Contaminant 

Another important factor that must be considered for in situ bioremediation is 

the availability of the chemical to the microorganism. The chemical must be 

accessible, both on the macroscopic level and on the microscopic level, to be 

effectively degraded. Macroscopically, indigenous microorganisms may be 

spatially distributed in an irregular manner so that there are zones in which 

there is no population capable of degrading the compound. This can be 

remedied by moving microorganisms to the more sparsely populated locations. 

Problems on the microscopic level are more difficult to solve. 

At the microscopic level, situations often occur in which the chemical 

becomes sorbed onto the soil particles. Although there are cases in which the 

rates of degradation increased, this phenomenon usually results in repression of 

chemical degradations The reasons for this decrease are not fully understood, 

but there are three major theories given to explain this. 

1. Physical barriers of some sort may exist, once a chemical is sorbed onto 

a particle, that prevent an enzyme from attacking the chemical. 

2. The chemical may be sorbed onto the particle in such a manner that the 

microorganism can only get to it after some agitation. 

3. The chemical may be concentrated in an area where the 

microorganisms cannot grow. 
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A potential solution to this problem is to desorb the chemical by adding 

some sort of surfactant to the soil. Some preliminary work along these lines has 

been performed, but no field data are available to show its feasibility. 

2.3.7 Microorganism Augmentation 

Most cases of in situ bioremediation focus on using the indigenous 

microorganisms. Under certain circumstances, however, it is desirable to add a 

different culture of microorganisms. This may be necessary if the indigenous 

microorganisms are unable to degrade the compounds, or if natural limiting 

factors in the soil do not allow a critical microbial species to develop a large 

enough population that will degrade the compound. Microorganisms that are 

added to a soil basically fall into two categories: Acclimated or genetically 

engineered. 

Acclimated microorganisms are grown in a laboratory under conditions 

that require them to degrade certain compound in order to survive. In this 

manner they become accustomed to using that compound for growth, and when 

they are added to the soil, the microorganisms can more quickly degrade the 

contaminant. 	Often the source for acclimated microorganisms is the 

contaminated soil which is to be treated. 

Genetically engineered microorganisms have shown potential to degrade 

some of the most hazardous wastes.? These microorganisms are genetically 

altered to degrade certain compounds. Once created in the laboratory, these 

microorganisms are harvested and acclimated before being added to the soil. 

Addition of exogeneously grown microorganisms does have its potential 

drawbacks, however. There is no guarantee that these microorganisms will not 

be destroyed by a pathogen or eliminated by competition once in the soil 
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population. They also may be washed out of the soil by excessive moisture. In 

addition, particular microorganisms designed to attack one certain compound 

may unable to tolerate other chemicals that are present in the subsurface 

environment. 

Another difficulty of microorganism augmentation is permeability. 

Diffusion of a exogeneously grown microorganism population throughout a 

formation is inhibited by its permeability. Since such a population is usually 

added to the soil in a solution form, commonly called an inoculum, the solution 

must be able to permeate through the formation. In a overconsolidated soil 

formation, this process can be very difficult. 



CHAFFER 3 
ANTICIPATED BENEFITS OF PNEUMATIC FRACTURING 

INTEGRATED WITH BIOREMEDIATION 

3.1 Concept 

The success of in situ bioremediation depends on control of subsurface 

conditions to enhance microbial growth. Proper control is possible only if the 

zone of contamination is accessible. As a result , the feasibility of using in situ 

bioremediation is directly related to the permeability of the soil. In low 

permeability formations, bioremediation will be ineffective unless action is taken 

to enhance microbial growth. Pneumatic fracturing is a technology which has 

the potential to provide this enhancement. 

The major goal of integrating pneumatic fracturing to enhance in situ 

bioremediation is to attain better control over the parameters that affect 

biological growth in the soil. Some theoretical concepts and benefits of 

combining pneumatic fracturing with in situ bioremediation will now be 

described. 

3.2 Field Design Options 

The pneumatic fracturing process will provide three potential options for 

enhancing in situ bioremediation. These options may be used individually or 

they may be combined, according to whichever method will most effectively 

attack the problem. In full scale production situations, a combination of 

methods will likely be most effective. 

3.2.1 Bioventing 

The first option is to install a bioventing system, similar to the one displayed in 

Figure 2.9. This type of system circulates air from the atmosphere through inlet 
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wells, and into the formation to enhance levels of available oxygen. The 

problem of liquid nutrient addition would be overcome using a pneumatic bio-

injection system capable of injecting liquid solutions horizontally into the zone of 

contamination, thereby providing nutrients, microorganisms and anything else 

that is necessary. Bio-injection is easily accomplished by adding a liquid spray 

to the same high pressure air stream used to fracture the formation. A schematic 

diagram of the pneumatic bio-injection system is shown in Figure 3.1. 

Pneumatic injection of life supporting solutions directly into the biologic activity 

zone will accelerate degradation rates, and avoid the usual lengthy diffusion 

times associated with surface or borehole application of nutrients. 

3.2.2 Standard Pump and Treat 

Another option of in situ bioremediation enhancement by pneumatic fracturing 

could involve the standard pump and treat system typically found in 

bioremediation projects. Preliminary data indicates that water has the ability to 

move through the fractures created by the pneumatic fracturing process. This 

has been observed in siltstone and clayey silt formations. 

In accordance with current standard practice, the effluent water would be 

treated and then augmented with nutrients, hydrogen peroxide, or whatever else 

was necessary, before being reinjected into the subsurface. The increased 

permeability due to pneumatic fracturing would allow for greater fluid 

movement throughout the soil. 

The method of reapplying the treated water will depend on the results of 

the fracturing process. If the fractures reach the ground surface, then a surface 

application procedure could be used. In the event the fractures intersect 

monitoring wells, the liquid could be applied through the well screens. 
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Figure 3.1 Conceptual diagram of pneumatic bio-injection. 
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3.2.3 Vacuum Pump 

A third option would be to use an air vacuum pump rather than a water pump 

to remove water from the formation. By using a high vacuum, high flow rate 

vacuum pump, both water and air could be extracted simultaneously from a 

well. The effluent water would be treated and then reinjected, while oxygen 

would circulate throughout the formation via the vacuum extraction. Any 

effluent air would be treated by a method such as activated carbon. By 

circulating air and water simultaneously, the formation would remain aerobic, 

as well as moist. 

3.2.4 Combinations 

A full scale in situ bioremediation clean up utilizing pneumatic fracturing as an 

enhancement would most likely use a combination of the previously described 

methods. By supplementing the more common methods of surface application 

and well infiltration with pneumatic bio-injection of fluids, a given volume of 

soil could be more effectively treated. The increased formation permeability 

would allow for greater control of the important parameters crucial to 

subsurface microbial growth. The anticipated beneficial effects of these crucial 

parameters will now be described. 

3.3 Key Parameters 

3.3.1 Soil Moisture 

As stated in Section 2.2, moisture content can be a limiting factor for microbial 

growth in the vadose zone. The increase in formation permeability provided by 

pneumatic fracturing can aid in soil moisture control in a variety of ways. In 

fractured formations, it will be easier to add or remove water from the soil. 

Water can be added either at the surface or through infiltration wells and 



40 

trenches, depending on fracture patterns and orientations. Water removal 

would most likely be done through extraction wells. 

Another innovative method to exercise moisture control is the use of the 

pneumatic bio-injection system. This system permits injection of fluids directly 

into the zone where microbial activity is desired. In situations where it was 

necessary to remove water, the bio-injection system can be connected to a 

vacuum pump. Which can then remove water from a localized section of the 

formation. The bio-injection system will also be effective for controlling many of 

the other parameters of subsurface microbial growth. 

3.3.2 Oxygen 

Increased soil permeability will allow for superior air flow in the soil formation 

at greater distances from air flow wells. Oxygen could be efficiently circulated 

through the soil pores directly as a gas instead of being transported by water. 

Since atmospheric air is the most cost effective method of increasing available 

oxygen, this method of oxygen enrichment has great potential to reduce 

bioremediation costs. 

Available oxygen could also be enhanced through more standard methods, 

such as water augmented with low level concentrations of hydrogen peroxide. 

One of the difficulties in using hydrogen peroxide enriched water is the 

instability of the chemical. This results in the degradation of the hydrogen 

peroxide before it covers the entire area of contamination. Since pneumatic 

fracturing increases formation permeability, the travel time for the hydrogen 

peroxide to the zone of contamination would be reduced. Water enriched with 

hydrogen peroxide can also be injected with the bio-injection system, thereby 

dispersing the oxygen producing chemical more efficiently. 
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Another way that pneumatic fracturing may be used for oxygen control is 

to aid in the removal of oxygen. In cases where anaerobic conditions are desired 

for microbial activity, the formation could be injected with nitrogen or some 

other gas in order to purge the subsurface of oxygen. The increase in 

permeability could also allow the formation to be flooded with water which also 

would tend to make the system anaerobic. 

3.3.3 Available Nutrients 

As discussed in Section 2.2, nutrients can be a limiting factor for microbial 

growth in the subsurface. Influencing nutrient levels, especially deep in low 

permeability formations, is difficult with existing technology. Pneumatic 

fracturing has the potential to enhance nutrient application using both 

conventional methods and new, innovative techniques. 

Conventional technology for nutrient application, consists of adding 

granular fertilizer either on the surface or through monitoring wells. In some 

cases nutrients are contained in a liquid solution and are added to the subsurface 

in the same manner. The increased permeability of pneumatically fractured soil 

would make these methods more effective. Nutrients could move along the 

fractures, allowing for faster dispersion of the nutrients. Also, the increased 

surface area of the formation exposed after fracturing would also allow for a 

greater volume of soil to be effectively treated, resulting in more effective 

treatment. 

Nutrient addition can also be accomplished directly with the pneumatic 

bio-injection system, which was designed specifically to enhance nutrient 

application. As mentioned previously, the system can inject a liquid solution a 

considerable distance into the contaminated formation. Thus, the indigenous 

microorganisms can get the nutrients they require in a matter of seconds, rather 
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than waiting for these compounds to diffuse through the soil. For this reason, 

bio-injection becomes more important when the contamination is located deep in 

the formation. 

In actual field applications, a combination of nutrient application methods 

would most likely be used. To address contamination in the shallow zones of 

the formation, surface application could be coupled with bio-injection. This will 

require that the fractures reach or "daylight" the ground surface, so that the 

liquid will penetrate into the formation. For situations where the contamination 

is located deeper, nutrient solutions could be added both through wells and 

through bio-injection. Once again, in low permeability formations, fractures 

must intersect the wells in order for well injection to be worthwhile. Bio-

injection will be a valuable asset in both application scenarios, since it allows the 

nutrients to be added to the formation from two or more directions, which 

reduces the possibility that certain zones of the formation are "missed". 

3.3.4 Soil pH 

Soil pH is an important biological parameter related to in situ bioremediation. 

Improper pH can reduce or eliminate biological activity. For most remediation 

situations, a neutral pH is recommended, although in some cases a radical pH 

may be desired. The typical method for controlling this parameter is lime 

addition to the fertilizer during nutrient application. 

Adjustment of pH with pneumatic fracturing could be used in both 

regional and local applications. A buffer could be added to the nutrient solution 

in order to insure that a region of soil does not turn acidic during 

biodegradation. The nutrient solution would then be added as described in 

Section 3.3.3. In situations where the pH of a region of soil needed to be 

radically changed in order to encourage the growth of a certain microorganism, 
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the increased permeability provided by pneumatic fracturing would greatly 

improve the ability to do this. 

The second major application of soil pH control would occur in situations 

where a localized soil zone contained highly acidic or highly basic conditions, 

while the remainder of the formation was neutral. It would be inefficient to treat 

the entire subsurface for pH if only one section required the adjustment, and 

such treatment would risk upsetting the pH balance of the entire formation. 

Unfortunately, with current technology, this would be the only alternative. 

Utilization of the bio-injection system, however, will allow for pH control in a 

specific zones efficiently and safely with minimum impact in other areas. 

3.3.5 Temperature 

Temperature control of in situ biological systems is difficult since geologic 

formations are excellent heat sinks and will absorb a great deal of energy before 

the temperature changes significantly. However, the pathways created by 

pneumatic fracturing could potentially provide a corridor for warm air to 

permeate through the soil matrix. Theoretical calculations have shown that 

thermal injection with pneumatic fracturing is feasible, and field tests are 

underway to evaluate the concept. 

A better method of subsurface temperature may be to percolate warm 

water through the formation, as mentioned in Section 2.3.5. The heat transfer 

characteristics of water are much better than that of air. This thermal fluid 

advantage, combined with an increased formation permeability due to 

pneumatic fracturing, will result in higher formation temperatures and more 

microbial activity. 
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3.3.6 Availability of the Chemical 

In order for biodegradation of a chemical compound to occur, it must be 

accessible to the microorganisms. Very often a proportion of the chemical 

present in the formation will be sorbed to the soil particles and therefore become 

unavailable for biodegradation. A method of increasing the availability of the 

chemical to the microorganisms may be to add some sort of surfactant to the soil. 

Surfactants could help to break down the microscopic barriers to chemical 

degradation, making in situ bioremediation more thorough. Unfortunately, 

there have been no field demonstrations to show that viability of this technology. 

Pneumatic fracturing, may make the use of surfactants feasible. Using 

either standard surface application and well addition, or through bio-injection, a 

surfactant could be added to the soil in order to increase the availability of the 

chemical to biodegradation. 

3.3.7 Microorganism Augmentation 

Pneumatic fracturing can also be used for microorganism augmentation. 

Addition of exogeneously grown microorganisms to soil is usually a very 

difficult task, and can be greatly limited by low formation permeability. The 

increased permeability provided by pneumatic fracturing can make 

microorganism augmentation much more efficient. 

A pneumatically fractured formation will allow for better circulation of 

microorganism bearing innoculum. Therefore microorganisms, can permeate 

through the formation at a much faster rate than would be expected in an 

unfractured soil. 

Addition of microorganisms could be accomplished with standard methods 

(surface or well application), or they could also be injected through the 

pneumatic bio-injection system. Studies conducted by Graczyk (1991)13  and 
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continued by the author (see Section 4.1), have consistently demonstrated that 

microorganisms can survive the pressures and stresses associated with 

pneumatic injection and fracturing. By injecting an innoculum bearing solution, 

a population could be distributed throughout a fracture network in a matter of 

seconds. Thus, a large volume of soil could be treated from a single borehole. 



CHAPTER 4 
DESIGN OF EXPERIMENTAL STUDY 

The experimental study for this thesis focused on three major areas: (1) 

Microorganism survivability was explored in order to show that 

microorganisms could survive the pressures and stresses associated with 

pneumatic fracturing, and therefore could feasibly be injected into a 

formation; (2) A full scale bio-injection system was developed in order 

disperse biological solutions throughout the subsurface; and (3) A field 

demonstration of in situ bioremediation enhanced by pneumatic fracturing 

was implemented. The design of each of the these study areas will now be 

described. 

4.1 Study of Microorganism Survivability 

Pneumatic fracturing has the potential to inject microorganisms horizontally 

into a soil formation from a borehole. Before attempting to do this, however, 

it is important to determine whether the microorganisms can survive the 

stresses associated with high pressure injection. Since there were no existing 

studies on the feasibility of high pressure injection of microorganisms, a 

series of survivability tests were developed. 

The key parameters under consideration for this study were: (1) shear 

stresses on the cell walls that would occur during nozzle passage and 

atomization of the liquid solution, (2) impact stresses that would take place as 

the microorganisms contacted the formation, (3) and rapid pressure changes 

that would transpire during the injection process. To test these aspects of 

survivability, the "torture chamber" was created. 
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4.1.1 Equipment Description 

The torture chamber was constructed using a 4.5 inch ID, 3/8" plexiglass 

cylinder which was 20 inches in length. A drainage plate was placed inside 

of the cylinder, leaving just enough clearance for a collection beaker to be 

placed underneath. On one side of the cylinder an injection port was 

installed. Figure 4.1 shows a schematic diagram of the torture chamber, 

which was designed by James Chang, a former research assistant at NJIT. 

During the first series of tests, a siphon spray system was employed to 

atomize the liquid solution. Two different spray guns were used for these 

tests. One was capable of spraying 2.3 gallons per hour at an air pressure of 

60 psi and an air flow rate of 4.3 cfm. The second was rated for spraying 7.5 

gallons per hour at an air pressure of 80 psi and an air flow rate of 11 cfm. 

The experiment was then upgraded in the next series of tests to better 

simulate the pressures and flow rates expected to be used in the field. This 

series of tests employed an air powered liquid pump which is capable of 

pressures greater than 1000 psi and flow rates of 6 gallons per minute. More 

about this system will be discussed in Section 4.2. 

4.1.2 Experimental Procedure 

The experimental procedure for injecting and analyzing microorganisms was 

originated by Graczyk.13  Early in the design of this experiment, Escherichia 

coil (E. coil) was chosen as the microorganism for analysis. One reason for 

using E. coli was that it is structurally similar (gram-negative), to other 

species of bacteria found in petroleum contaminated soils. Additionally, use 

of E. coli was conservative, in that the cell walls of gram negative 

microorganisms are thinner and therefore more susceptible to rupture.13  A 

third reason for using E coli was that the testing and cultivation methods for 



48 

this species of bacteria are relatively safe and simple, and coliform selective 

Endo agar is commonly available. 

E. coli for these tests were grown in batch reactors (500 ml beakers) from 

nutrient agar slants at 37 degrees Celsius. Optical density was recorded 

during the first series of runs using a Baush & Lomb Spectronic 70 with the 

wavelength set at 560 rim. Readings for optical density were then correlated 

with Standard Plate Count measurements to get an understanding as to the 

length of time required to grow the E. coli. It was determined that 24 hours 

was sufficient to produce a biomass large enough for the experiment. 

Once a sufficient biomass had been produced, a sample of the solution 

was taken and set aside as a control. The remaining solution was then placed 

into the spraying device and injected in an atomized form into the torture 

chamber at a specified pressure. Once inside the torture chamber, the 

atomized fluid would condense and collect in a beaker at the bottom of the 

chamber. This residual liquid was then diluted to various concentrations and 

placed on petri dishes using a Les Endo agar as the growth medium. 

Simultaneously, the control liquid which had not been atomized, was diluted 

to the same concentrations and placed onto Les Endo agar petri dishes. 

The plates were then grown in an incubator at 37 degrees Celsius for 24 

hours. At the end of the growth period, the colonies were counted using 

standard plate count method. Count differences in colony forming units 

between the control and the atomized liquid were used to evaluate 

survivability. 

During the first: phase of the tests, dilutions and plate counts were 

performed according to EPA Standard Plate Count method. However, due to 

discrepancies found in the results which will be discussed in Section 5.1, 

glass beads were added to the dilution bottles during the latter series of 



Figure 4.2 The pneumatic bio-pump. 
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experiments. The purpose of the glass beads was to better disperse the 

microorganisms in the dilution bottles and reduce the number of clumps. To 

further help microorganism dispersion, the bottles were shaken more 

vigorously than in previous tests. Other than these changes, the testing 

methods remained the same throughout the series of survivability tests. 

The specific procedure for the torture chamber testing was as follows:13  

1) Preparation of E. coli microbial solution (volume varies depending on 

injection instrument). 

2) Incubation of solution for 24 hours. 

3) Preparation of torture chamber, including thorough cleansing of all 

components. 

4) Removal of a sample of the solution prior to injection for control purposes. 

5) Injection of the remaining liquid into torture chamber at selected pressure 

for 5 seconds or less. 

6) Simultaneous plate count preparation of both control and atomized 

samples. 

7) Incubation of plates for 24 hours. 

8) Simultaneous plate count determination of both control and atomized 

samples. 

9) Comparison of control and atomized plate counts to evaluate survivability. 

4.2 Development of Bin-Injection System 

Providing soil microorganisms with the substances that they need for 

contaminant degradation is a problem which plagues the field of in situ 

bioremediation. Standard technology has relied on percolation of nutrients 

and other substances to percolate down from the ground surface or outward 

from a borehole. These methods are severely limited by the permeability of 
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the soil. During the development of pneumatic fracturing, however, a new 

and more efficient method of liquid addition was envisioned. 

The pneumatic fracturing process injects a pressurized gas, (usually 

compressed air) into a formation to create horizontal fractures ranging up to 

one inch in thickness.' By adding an atomized liquid containing nutrients, 

microorganisms, and buffer solutions to the injection stream, the necessary 

substrates for biodegradation can be dispersed throughout the formation via 

the fractures. In this manner the liquid can reach areas in a matter of 

seconds, where it would normally require weeks or months to arrive through 

natural diffusion. 

4.2.1 Equipment Description 

The main piece of equipment selected for the task of injecting a liquid into 

the air stream was a Graco, President series 10 : 1 air powered pump which 

can generate liquid pressures of well over 1000 psi. A schematic diagram of 

this pump is shown in Figure 4.2. The designation 10 : 1 indicates that an 

incoming air pressure of 20 psi will theoretically produce an outgoing liquid 

pressure of 200 psi. To atomize the liquid, a spray nozzle was placed at the 

connection of the liquid hose and the pneumatic fracturing system. Various 

sizes of nozzles with design flow rates ranging up to 6 gallons per minute of 

liquid were obtained. 

The other major component of this system is a J.D. Gould model 131-11'-

3/8 in. solenoid valve which opens and closes the liquid injection line 

electronically. This was placed as close to the pneumatic fracturing injection 

piping as possible to minimize pressure drops across the hose during 

injection as is shown in Figure 4.3. 
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Figure 4.3 Full scale pneumatic bio-injection system. 
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4.2.2 Experimental Procedure 

The first series of tests with the pneumatic bio-injection system focused on 

optimization of the air powered bio-pump. Experiments consisted of using 

various air supply pressures and flowrates to collect data on liquid pressures 

and flowrates produced by the pump. These data were used to develop an 

air to liquid ratio which can predict the liquid effluent pressure based upon 

inlet air pressure. Although the pump is designed to have a air to liquid 

ratio of 0.1, actual measured values indicated that the ratio averaged about 

0.3. This disparity can be attributed to head losses in the system. 

System flow rates were then measured to find the pump configuration 

that allowed the greatest flowrate while still maintaining a large liquid 

pressure. Maximum liquid flowrates for this pump are listed at 3 gallons per 

minute for continuous duty, or 6 gallons per minute for intermittent duty. 

Based on the intended use of this pump, it was decided that a flow rate of 4.5 

GPM would be a safe target level. The results of these tests are presented 

and discussed in Section 5.2. 

The second part of this study involved combining the bio-pump with 

the pneumatic fracturing system. There were three major goals of this phase. 

The first objective was to determine the efficiency of the pneumatic bio-

injection system by measuring the percentage of the liquid leaving the 

injector in an atomized state. These tests were performed above ground 

which enabled direct visual observation of atomization efficiency. Above 

ground testing was accomplished by erecting a scaffolding and suspending 

the packer system (HQ injector) vertically as shown in Figure 4.3. 

Second, maximum pressure was measured at three points on the 

injection system in order to determine the liquid pressure that would be 

required during full scale injection. It is essential that the pressure of the 
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injected liquid be higher than that of the injected air to assure a thorough 

dispersion. The location of the pressure gauges with respect to the 

pneumatic fracturing system is shown in Figure 4.3. 

Third, the flow rate was measured in order to obtain a predictable rate 

of liquid injection into the formation. These flowrates of liquid injection in 

the pneumatic fracturing system were compared to previously obtained 

flowrates of liquid injection into open air from the bio-pump tests in the first 

phase. This comparison would determine whether the liquid flow would be 

constricted during a full scale pneumatic injection. 

Two sets of experiments were performed using this system 

configuration. During the first run the measured parameters were air 

injection pressure, air flow rate, and liquid pressure. 	A qualitative 

measurement of the efficiency of atomization was also recorded. Liquid flow 

rates could not be measured because the solenoid valve was not functioning 

properly. 

The second set of tests was performed with the solenoid valve 

operational. In these tests the liquid flow rates were measured, in addition to 

other parameters to check whether they were affected by back pressures from 

the pneumatic air stream. Results from these tests are presented and 

discussed in Section 5.2. 

4.3 Field Demonstration 

The final part of the experimental study involved a field demonstration 

of the integrated pneumatic fracturing / bio-injection system. This 

demonstration was performed under the U.S.E.P.A. Emerging Technology 

SITE Program in cooperation with BP America. This section will now 
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describe key aspects of the field project including site selection and 

characterization, project design, field procedure, and project status. 

4.3.1 Site Selection and Characterization 

The first step in the field demonstration was to select a site which was 

representative of typical industrial contamination problems, yet one which 

contained characteristics favorable to pneumatic fracturing. Listed below are 

the primary criteria used to select the demonstration site. These are based 

upon past laboratory and field studies, as well as the results of the bio-

injection tests described in the previous section. 

The primary selection criteria were: 

1. Low initial soil permeability (<10-4cm/sec). 

2. Sufficient contamination levels (between 10 and 1000 ppm of BTX). 

3. Moderate depth to the water table (>10 feet). 

4. Initial soil moisture levels near the plastic limit. 

5. Good security and access. 

6. At least 50 foot clearance from active structures and utilities. 

After receiving data from several potential sites, the decision was made 

to proceed with the field demonstration at a refinery located in Marcus Hook, 

PA. Site characterization work was begun in December 1991 to select the 

exact location for the demonstration within the refinery facility. Exploratory 

soil borings and a soil gas survey were conducted over a four month period 

to further characterize the geology and extent of contamination. 

A typical boring log from the exploratory program is shown in Figure 

4.4, and additional logs are contained in Appendix A. The major subsurface 

strata encountered at the site are summarized as follows: 
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Fill - A surficial layer of fill overlies the site ranging in thickness from 

one to four feet. The fill is derived predominantly from the clayey silts which 

occur naturally at the site, mixed with varying amounts of imported sand 

and gravel. Abandoned concrete foundations are dispersed throughout the 

site, but do not appear to extend deeper than four feet. 

Clayey Silt - The fill is underlain by a layer of orange-tan clayey silt 

which extends to a depth of nine to ten feet below the ground surface. 

Occasional sandy zones were noted in this stratum. Based on blow counts 

recorded during soil sampling, the consistency of the clayey-silt ranges from 

medium stiff to stiff, which indicates a high degree of overconsolidation. The 

upper few feet of the clayey silt stratum are stained dark brown to black from 

infiltration of petroleum residues. 

Silty Sand - The clayey silt stratum grades into a gray silty sand at a 

depth of approximately nine to ten feet below the ground surface. Varying 

amounts of clay were observed, and increasing moisture contents were 

noted. The water table is located in this stratum, at a depth ranging from 

twelve to fifteen feet below the ground surface. Although all site borings 

terminated in the silty sand, reconnaissance geologic data indicates that mica 

schist bedrock is present at depths of less than 50 feet. 

The phraetic groundwater surface is encountered twelve to fifteen feet 

below grade. It occurs in a granular silty sand unit and may be classified as 

an unconfined aquifer. Local groundwater gradients are southward towards 

the Delaware River. 



57 

Figure 4.4 Typical boring log from demonstration site. 
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The field data obtained during the borings indicated a favorable 

location for pneumatic fracturing. The overconsolidated clayey silts were 

similar to other formations which have been previously fractured. 

Laboratory tests also showed that the clayey silt was below the plastic limit, 

which was also a favorable indicator for fracturing. 

Although the geology of the site was satisfactory, the size of the 

available test area exceeded two acres. Within that area contamination 

varied greatly from section to section. A soil gas survey was therefore 

conducted to determine the extent and location of petroleum in the region. 

Vapor probes were placed on roughly a 50 ft by 50 ft grid. The vapor from 

these probes was analyzed with both a field portable photoionization 

detector (PID)and a laboratory gas chromatograph. Based on the results from 

the soil gas survey, a 40 ft by 40 ft section of the region was selected for the 

demonstration. Results for the soil gas survey are presented in Appendix B. 

Following the selection of the actual location for the demonstration, the 

level of contamination in this section had to be characterized. Since the major 

source of contamination in the selected area was gasoline, the major 

compounds of interest were benzene, toluene, and the xylenes (BTX). Soils 

containing up to 1000 ppm of BTX were desired in order to demonstrate the 

effectiveness of this technology in highly contaminated zones. Concentration 

of BTX above 1500 ppm were considered excessive, as the microorganisms 

would not be able to flourish in such an environment. Contamination of less 

than 10 ppm was considered too small to reliably demonstrate destruction of 

contaminants through biodegradation. 

In order to define the levels of BTX in the soil at the selected location, 

five borings were performed. Continuous split spoon samples were obtained 

from 1 to 10 feet. Detailed results of soil contamination are presented in 
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Section 5. Field observations with a field MD, which were later confirmed by 

chemical analysis of the soil, indicated that most of the contamination 

occurred in the top 5 feet of the formation. Some petroleum was also 

detected below a depth of nine feet, which was attributed to contamination in 

the groundwater. 

From the chemical analysis of BTX concentrations in the soil, it was 

concluded that the site met the required criteria. Although the contamination 

was concentrated shallower than originally anticipated, the demonstration 

was altered to accommodate this finding. 

4.3.2 Design of Field Demonstration 

The goal of the field demonstration is to remove a substantial amount of BTX 

from the formation and thereby prove the effectiveness of combining 

pneumatic fracturing and in situ bioremediation. As previously discussed in 

Section 2.3, key subsurface parameters must be controlled for in situ 

bioremediation to be effective. This section describes the general plan for 

controlling those parameters. A site plan of the demonstration showing the 

actual field set up is presented in Figure 4.5. 

Microbial tests conducted on the soil indicated the presence of a number 

of indigenous, benzene degrading, facultative, bacterial species. These tests 

indicated that while these microorganisms were capable of surviving under 

anaerobic conditions, they were most productive at benzene destruction in 

the presence of oxygen. The tests also indicated that nitrogen concentrations 

were insufficient to support microbial growth. Therefore, the primary 

objective of the treatment plan was to provide the indigenous 

microorganisms with both oxygen and nitrates. 
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Figure 4.5 Site plan from Marcus Hook, PA. 
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Aeration is the most efficient method to provide oxygen to microbial 

populations. Since the BTX was concentrated in the top five feet of the 

formation, it was decided to create a system of shallow pneumatic fractures 

to enhance subsurface air flow. To accomplish this, it was envisioned that 

fracturing should proceed at two levels. The first injection would be made 

below the highly contaminated zone at a depth of 5 to 7 feet, to establish air 

communication between the four vapor wells (VWs) and the extraction well 

(EW). Subsequent fractures would be executed above five feet to open the 

contaminated zone to greater subsurface control. It was intended that the 

shallower fractures "daylight" the ground surface to provide direct aeration 

from the atmosphere. The actual fracture patterns deviated somewhat from 

this original plan, and the actual results are discussed in Section 5.3. 

It was decided to stimulate aeration of the formation with a low level 

vapor extraction system. A slight vacuum was maintained on the extraction 

well to produce a slow but constant air flow through the treatment area. Air 

entered the contaminated zone through both the vapor wells, as well as 

through the surface cracks. 

Nitrate addition was the other major objective of the treatment plan. 

Because the permeability of the formation was low and it was not known 

whether water could enter the formation through surface fractures, 

pneumatic bio-injection was intended to be the primary method of nitrate 

addition. Bio-injection of nitrates would be accomplished after initial 

fracturing at the same depth intervals. The concentration of the added 

nitrates would be large enough to encourage biodegradation, yet small 

enough to avoid groundwater contamination or microbial inhibition. 
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4.3.3 Field Demonstration Procedure 

The field demonstration procedure involved four distinct phases. These 

phases are listed below, and each is discussed in the text that follows. 

1. Continued site characterization and establishment of baseline 

conditions. 

2. Pneumatic fracturing and post fracture monitoring. 

3. Biological injection. 

4. Continued monitoring/biological re-injection as required. 

Complete and thorough characterization of the site was important to 

properly assess the baseline conditions. Characterization of the geologic and 

chemical contamination properties of the formation was conducted through 

split spoon soil sampling. Detailed methods for sampling and chemical 

analysis of the soil, as performed by Rutgers University, are contained in 

Appendix C. 

Soil samples were analyzed for standard physical properties such as 

plastic limit and grain size, as well as contamination levels of organic 

compounds. The permeability of the formation was measured through vapor 

extraction tests. Baseline VOC levels in the soil vapor were obtained from 

each VW and the EW via periodic vapor sampling. Detailed methods for 

sampling and chemical analysis of the vapor, as performed by Rutgers 

University, are contained in Appendix C. 

The second phase of the project involved the actual pneumatic 

fracturing of the formation. A major component of the field data collected 

during this phase was the formation permeability, which was measured 

before and after fracturing in the manner described in Section 2.1. 
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Permeability was recorded at the extraction well as well as the four vapor 

wells which included both flow rate measurements and radius of influence 

measurements. 

Secondary measurements made during the fracture injections included 

ground surface heave, injection pressures measured at the vapor wells, and 

fracture initiation pressure at the point of injection. Surface heave was used 

to determine the radius of fracture and to estimate the fracture aperture. 

Vapor well injection pressures indicated the extent to which the fractures 

intersect the vapor wells. By combining these two parameters, the extent and 

orientation of the fracture network can be determined. The fracture initiation 

pressures were measured since they are useful for analytical studies. These 

measurements will be presented in Section 5. 

The third phase of the project involved the addition of the necessary 

biological substrates to enhance biological activity. Originally it was 

intended to use pneumatic bio-injection as the primary method of adding 

substrates to the subsurface. 

Following initial biologic treatment of the site, a period of long term 

maintenance will be required to monitor the critical parameters for biological 

growth as well as the success of the biological treatment. Vapor samples will 

be obtained and checked for oxygen, carbon dioxide, and methane levels as 

an indication of biological activity. Organic vapor samples will also be 

measured to demonstrate contaminant reduction in the soil as the project 

progresses. Reinjection and reapplication of biological fluids will occur as 

necessary. 



CHAPTER 5 
RESULTS OF EXPERIMENTAL STUDY 

5.1 Survivability Results 

The microorganism survivability tests were conducted in two phases. Phase I 

utilized a siphon spray system, while Phase II used the pneumatic bio-injection 

pump. The second phase was further subdivided into part A, which used 

standard agitation, and part B, which used unproved agitation with glass beads. 

Results for the survivability tests are summarized in Figures 5.1, 5.2, and 

5.3. The control colony forming units (CFU's), as previously described in Section 

4.1, represent the number of colonies found in the unsprayed portion of the 

liquid medium, while the pressurized CFU's characterize colonies counted after 

spraying. Percent change in growth is calculated to show the increase or 

decrease in colony counts after pressurized spraying. 

5.1.1 Observed Trends 

Colony counts for the siphon spray system typically displayed a large increase in 

CFU's over the control. As indicated in Figure 5.1, the spray count ranged from 

2 to 1438 percent greater than the control. This is attributed to the high 

dispersion potential of this spray system, which had a volumetric liquid to air 

ratio of 0.0015. The greater dispersion produced by this system resulted in a 

better distribution of colonies throughout the liquid. Conversely, the control, 

which had been subjected to pressurized dispersion, was likely plagued by 

clumping of the microorganisms. For example, ten individual microorganisms 

together in a clump will appear as a single colony on a petri dish. Therefore, a 

better dispersed sample will break up any clumping and produce a more 

accurate representation of the number of microorganisms present. 
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Survivability results for the system utilizing the pneumatic bio-injection 

pump also showed an increase in colony counts, although the differences were 

less dramatic. As shown in Figure 5.2 the pressurized counts ranged from 35 to 

135 percent greater than the control. It is noted that the bio-injection pump 

injects an atomized liquid rather than a mix of air and liquid, so it has a higher 

liquid to air ratio. Hence, the microorganisms are not dispersed as efficiently as 

with the siphon spray system. 

In order to further investigate the reason for the increased colony counts, a 

second series of experiments were conducted with the bio-pump. Specifically, 

the dilution procedure was modified to include agitation with glass beads. stage. 

The results of these experiments are shown in Figure 5.3, which showed much 

greater consistency than previous results. Two of the tests actually showed a 

decrease in CFU's. This confirmed that the reason for the increase in colony 

counts measured during the initial parts of this study were largely due to the 

dispersion provided by the injection system. Other possible factors such as 

aeration and microorganism fatality were considered to be insignificant 

compared with the dispersion effects. 

5.1.2 Survivability Conclusions 

The most important result of the survivability test is that microorganisms can 

endure the pressures and stresses associated with pneumatic fracturing. In 

almost every trial, an increase of CFU's was measured, which indicates that the 

microorganisms not only can survive pneumatic biological injection, they also 

can benefit from the dispersion it provides. 

The increase in colony counts observed throughout most of the 

survivability studies can be attributed to the superior dispersion that occurs 

during the atomization process. Since the goal of pneumatic biological injection 



Figure 5.1 Survivability tests, phase I - siphon system. 



Figure 5.2 Survivability tests, phase II part A - bio-pump system. 



Figure 5.3 Survivability tests, phase II part B, bio-pump system with improved method. 
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is to disperse microorganisms more efficiently throughout the formation, these 

tests indicate that this process will achieve its aim. 

Comparison of the results between the two phases indicate that the field 

prototype model will produce less dispersion than the original siphon spray 

system. It is important to note, however, that the siphon spray system may have 

more effectively simulated the volumetric liquid to air ratio that will be observed 

when the full system is used in the field. Bench scale tests of the full scale 

system, which will be further discussed in Section 5.2, showed a volumetric 

liquid to air ratio of 0.0005-0.0007, which is the same order of magnitude as the 

siphon system. Therefore, a similar rate of dispersion should be expected with 

the full scale bio-injection system. 

5.2 Results of Bio-Injection System Tests 

The results of the first series of bio-injection tests, which examined the 

optimization of the bio-pump, are shown in Figures 5.4 and 5.5. These figures 

show the air to liquid pressure ratio and the liquid flow rates measured during 

the tests. The results of a second series of tests are displayed in Table 5.1 and 

Figure 5.6. This part of the study examined the efficiency of operating the full 

bio-injection system. 

5.2.1 Observed Trends of Bio-Pump Tests 

During the initial trials, neither the air to liquid pressure ratio nor the liquid 

flowrate were satisfactory. The air to liquid pressure ratio was not consistent 

enough to accurately predict liquid effluent pressures, while the effluent 

flowrates were too small. It was determined that the inlet air flow rate was not 

large enough for the pump to reach maximum efficiency. To remedy 



Figure 5.4 Air pressure setting/actual liquid ratio of pneumatic bio-pump. 
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Figure 5.5 Effluent flowrate of pneumatic bio-pump. 



Table 5.1 System pressures for the pneumatic bio-injection tests 

Trial # Injection Gauge 1 Gauge 2 Gauge 3 

Pressure 
(psi) 	(psi) 	(psi) 	(psi) 

Liquid 
Flowrate 

(GPM) 

Volumetric 
Air to Liquid 

Ratio 

1 150 66 64 30 No data No data 

2 150 74 72 29 No data No data 

3 150 66 64 24 No data No data 

4 150 63 61 22 No data No data 

5 120 50 44 0 No data No data 

6 120 44 38 0 3.2 0.00050 

7 120 38 32 0 3.2 0.00066 

Figure 5.6 Pressure measurements during injection. 
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the problem, the inlet air piping was enlarged. Following this adjustment, the 

air to liquid ratio became controllable, which allowed accurate prediction of 

effluent pressures. Liquid flowrates also increased following these adjustments, 

to a maximum of 3.5 gallons per minute. 

A short series of tests were also performed using a larger size nozzle (trials 

16 to 18). During these tests a flowrate of 4.5 gallons per minute was achieved. 

The increased flow was accompanied by a larger pressure drop, however, as 

indicated by the sudden change of air to liquid pressure ratios. This indicates 

that the pump must be set to a higher initial inlet pressure in order to maintain 

the desired effluent pressure. A series of further bench scale tests using this 

nozzle should allow accurate prediction of the liquid pressures. 

5.2.2 Conclusions of Bio-Pump Tests 

As a result of these tests, the capabilities of the bio-pump are fully understood. 

It can attain a flow rate of 3.5 gallons per minute with the current spray nozzle. 

The optimum air to liquid ratio for the pump with the current nozzle is 0.25, 

which means that in order to obtain an effluent liquid pressure of 200 psi, the 

initial air pressure must be set to one quarter of that pressure or 50 psi. Higher 

liquid flow rates are possible with the largest size nozzle, but a pressure drop 

should be expected. Therefore before using this nozzle some additional tests 

should be performed to obtain an air to liquid pressure ratio for that nozzle. 

Otherwise it will difficult to select an initial air pressure to operate the pump. 

5.2.3 Observed Trends of Full Scale Bio-Injection Tests 

The measurement of the efficiency of the liquid injection system was done by 

visual inspection. Initial fears that only a portion of the liquid would be 

atomized were allayed as 100 percent of the liquid leaving the system was 
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observed in an atomized state. This indicates that the pneumatic bio-injection 

system can very efficiently disperse a liquid into a formation during fracture. 

Pressure measurements collected at the three locations of the full scale bio-

injection system are shown in Table 5.1. Since the system is open to the 

atmosphere and does not build up any back pressure, the measured values are 

much lower than the injection pressure. Pressure measured during an actual 

fracture injection below ground are slightly higher, although they remain 

substantially less than the injection pressure. 

During the final two runs with the full scale system the liquid flow rate was 

measured. The results are also shown in Table 5.1. These flowrates correlate 

well with the bio-pump tests, which indicate that injecting the liquid into a high 

pressure, high flow air stream does not adversely affect the liquid flowrate. 

Therefore, liquid can be added to the pneumatic fracturing air stream at the bio-

pump's maximum flowrate. 

5.2.4 Conclusion of Full Scale Bio-Injection Tests 

Visual observations indicate that the bio-injection system will be effective in 

dispersing a biological fluid into a formation. Pressure measurements on the 

system indicate that the actual pressures during a fracture injection are much 

lower than the initial injection pressure of the source supply. This means that 

the atomized fluid injection may also be lower than the initial air injection 

pressure, as it must only be greater than the air injection pressure at the mix 

point. As a rule of thumb, however, it is suggested to set the liquid system at the 

same pressure as the source injection pressure. Finally, it was observed that the 

flow rate of the bio-pump was not restricted when combined with the pneumatic 

fracturing system. 
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5.3 Field Demonstration Results 

At the time of the presentation of this thesis, only the first two stages of the 

pneumatic fracturing/bioremediation demonstration had been completed. The 

following section will present the results of the characterization and the 

pneumatic fracturing stages, and discuss their implications. 

5.3.1 Site Characterization 

Standard physical analyses of the soil obtained from the site showed that the 

formation was favorable to pneumatic fracturing. Grain size analysis classified 

the soil as a clayey silt as shown in Figure 5.7. Clayey silts have been 

successfully fractured at previous site demonstrations.11  Atterberg limits testing 

indicated that the plastic limit of the formation was 20 % and the water content 

was 18.5 %. This indicated that the soil would behave in a brittle manner, and 

would therefore respond to fracturing. From a soil characteristic standpoint, the 

site was highly favorable towards pneumatic fracturing. 

Air flow permeability tests were performed on the formation as described 

in Section 2.1. These tests are summarized in Table 5.2. The initial permeability 

of the site showed a maximum air flow rate of 4 scfh at a vacuum level of 20 

inches of water. The radius of influence from the extraction well was checked at 

the vapor wells, but no influence could be detected. Due to the exceptionally 

low pre-fracture permeability of the formation, any in situ treatment method 

would be ineffective without some form of enhancement. 

Vapor samples were obtained from the extraction well and the four vapor 

wells for chemical analysis prior to fracturing. Results for these tests are shown 

in Appendix D. Analysis with a gas chromatograph was also performed on 

samples taken during the vacuum extraction tests. The results of this analysis 
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Figure 5.7 Grain size analysis of soil from demonstration site. 



Table 5.2 Summary of flow data, Marcus Hook, PA 
Baseline 

Date Well Depth Vacuum 
Pressure 

Condition Time VOCs Flowrate 
Min. ppm 	SCFM 

Mass Flow* 
gm/day 

10/20/92 EW-1 	Total 20" H20 Plugged 0 180 0.067 0.59 
10/20/92 EW-1 	Total 20" H20 Plugged 5 180 0 0 
10/20/92 EW-1 	Total 20" H20 Plugged 10 180 0 0 
10/20/92 EW-1 	Total 20" H20 Plugged 15 180 0 0 
10/20/92 EW-1 	Total 20" H20 Open 0 180 0 0 
10/20/92 EW-1 	Total 20" H20 Open 5 180 0 0 
10/20/92 EW-1 	Total 20" H20 Open 10 180 0 0 
10/20/92 EW-1 	Total 20" H20 Open 15 180 

After first fracture 
Date Well Depth Vacuum Condition Time VOCs Flowrate Mass Flow" 

10/22/92 EW-1 	Total 20" H20 Plugged 0 330 2.2.5 36.73 
10/22/92 EW-1 	Total 20" H20 Plugged 5 330 25 40.81 
10/22/92 EW-1 	Total 20" 1-120 Plugged 10 330 2.5 40.81 
10/22/92 EW-1 	Total 20" H20 Plugged 15 330 2.5 40.81 
10/22/92 EW-1 	Total 20" 1-120 Open 0 370 2.3 42.09 
10/22/92 EW-1 	Total 20" 1-120 Open 5 375 25 46.38 
10/22/92 EW-1 	Total 20' H20 Open 10 375 2 37.1 
10/22/92 EW-1 	Total 20" 1-120 Open 15 375 2.75 51.01 

After fourth fracture 
Date Well 	Depth Vacuum 	Condition Time VOCs Flowrate Mass Flow" 

10/22/92 EW-1 	Total 20" 1-120 Plugged 0 550 1.25 34 
10/22/92 EW-1 	Total 20" H20 Plugged 5 550 15 40.81 
10/22/92 EW-1 	Total 20" H20 Plugged 10 550 1.5 40.81 
10/22/92 EW-1 	Total 20" 1-120 Plugged 15 550 15 40.81 
10/22/92 EW-1 	Total 20" 1-120 Open 0 - 15 --- 
10/22/92 EW-1 	Total 20" H20 Open 5 - 15 -- 
10/22/92 EW-1 	Total 20" H20 Open 10 ---- 15 -- 
10/22/92 EW-1 	Total 20" H20 Open 15 1.5 ---- 

Date Well Depth Vacuum 	Condition Time VOCs Flowrate Mass Flow" 
10/27/92 EWA Total 20" H20 Plugged 0 450 1.5 33.39 
10/27/92 EW-1 	Total 20" 1-120 Plugged 5 450 15 33.39 
10/27/92 EW-1 	Total 20"H20 Plugged 10 450 1.75 38.96 
10/27/92 EW-1 	Total 20" 1-120 Plugged 15 450 1.75 38.96 
10/27/92 EW-1 	Total 20" 1-120 Open 0 750 1.8 66.78 
10/27/92 EWA Total 20" 1-120 Open 5 750 1.8 66.70 
10/27/92 EW-1 Total 20" H20 Open 10 750 1.8 66.78 
10/27/92 EW-1 	Total 20" H20 Open 15 750 1.8 66.78 

* Mass flowrate for this table calculated from field PID measurements 
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for benzene are shown in Table 5.4 for the date 10/20/92. As indicated, the 

concentration of benzene in the well was about 500 ppm before any fracturing 

took place. Inspection of the mass removal rate listed in Figure 5.6 for the same 

date shows that despite the high concentration of benzene, very little mass was 

being extracted due to the low formation permeability. 

5.3.2 Pneumatic Fracturing - Fracture Information 

A total of four fracture injections were made at the site during the period of 

October 21-22, 1992 as summarized in Table 5.3. The average heave radius for 

the fractures was about 15 feet. This is based both upon heave data obtained 

through tiltmeters and visual observations of fracture surface cracking. Figure 

5.8 is a heave diagram based on visual surface heave measurements for the first 

fracture. Subsurface profiles of the formation displaying the estimated paths of 

the fractures are shown in Figure 5.9 and 5.10. Fracture pathways were 

estimated through tiltmeter data, pressures measured at the wells during 

fracture, and locations where the fractures daylighted the surface. 

The fractures in this formation were not as horizontal as has been observed 

at previous sites. Rather than traveling along a horizontal plane, they inclined 

upwardly at angles of 20 to 30 degrees from the horizontal in most directions. 

This behavior is attributed to the following factors. 

1. Footings, dispersed throughout the site to a depth of 4 feet and covered 

with fill, may have created a significant non-homogeneity in the 

formation. The injected air therefore tended to travel upwards through 

the weakly consolidated fill, rather than horizontally through the 

overconsolidated formation. 

2. The clay in this area is ancient and highly overconsolidated. It is 

possible that horizontal stratification, which provide natural planes of 



Table 5.4 GC concentrations for benzene from vapor 
extraction analysis 

Date 10/20/92 10/22/92 10/27/92 11/4/92 
Well Conc (ppm) Conc (ppm) Conc (ppm) Conc (ppm) 

EW-1-A 224.5 613.6 676 392.1 

EW-1-B 491.6 1129 891.5 56.09 

EW-1-C 550 1076 604.9 21.46 

EW-1-D 591.6 784.7 859.8 12.97 

EW-1-E 577.1 345.1 864.8 17.37 

EW-1-F No data 914.9 665.4 16.09 

Average 486.96 810.55 760.4 86.01 

Flowrate (SCFM) 0.07 2.50 1.75 0.07 

Mass Removal gm/day 1.62 100.31 65.87 0.29 

Table 5.5 GC average concentrations for BTX from vapor 
extraction analysis 

Date 10/20/92 10/22/92 10/27/92 11/4/92 
Well Conc (ppm) Conc (ppm) Conc (ppm) Conc (ppm) 

Benzene 486.96 810.55 760.4 86.01 

Toluene 56.11 252.04 266.82 41.3 

p-Xylene 11.59 66.39 68.13 17.12 

Table 5.6 GC mass removal rate during vapor extraction 

Date 10/20/92 10/22/92 10/27/92 11/4/92 
Well gm/day gm/day gm/day gm/day 

Benzene 1.62 100.31 65.87 0.29 

Toluene 0.19 31.19 23.11 0.14 

p-Xylene 0.04 8.22 5.9 0.06 

Total 1.85 139.72 94.88 0.49 
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Table 5.3 Pneumatic fracturing data from Marcus Hook, PA 
Date Injection 

Number 
Depth Injection Injection Time of Breakdown 

	

Pressure Flowrate Injection 	Pressure 
(psi) 	(scfm) 	(seconds) 	(psi) 

Comments 

10/21/92 1 5'-7' 150 1200 20 72 Initial formation fracture 

10/22/92 2 

5'-7' 

150 No data 5 38 Aborted refracture 

10/22/92 3 

5'-7' 

 150 1276 20 25 Refracture 

10/22/92 4 

5'-7' 

150 1400 20 25 Directional nozzle 

10/22/92 5 3'-7' 150 No data 20 No data Initial fracture in shallow zone  



Figure 5.8 Heave diagram, fracture I, Marcus Hook, PA. 8 



Figure 5.9 Subsurface fracture profile, section East-West. 



Figure 5.10 Subsurface fracture profile, section North- South.. 



83 

weakness, was not as distinct as that found in younger sedimentary 

formations. 

3. The depth of the fracture injections was shallower than many previous 

sites. As a result, the compressed air only had to travel a relatively short 

distance through the soil to reach the surface. 

5.3.3 Post-Fracture Permeability 

Following the second fracture injection, the vacuum air flow permeability of the 

formation was measured. As shown in Table 5.1, an 37 fold increase in flowrate 

was observed, which demonstrated that the formation was successfully fractured 

and the permeability had been enhanced. Vacuum influence at outlying vapor 

wells during extraction from EW-1 was only detected at VW-4 and VW-5, 

however. Further evidence of low communication between the wells was the 

minor change in flowrate observed between the open well (passive air) and 

sealed well conditions. 

The results of permeability vacuum tests following the fourth fracture 

injection were similar to those after the second injection. Flowrates, however, 

decreased to 1.8 scfm from 2.5 scfm, at a vacuum of 21 inches of water. This was 

probably due to the fact that the fourth fracture injection was shallower and may 

have caused some closure of the lower fractures. It is important to note that the 

flowrate measured after the fourth fracture far exceeded the values obtained 

during the pre-fracture baseline. 

The post-fracture vacuum extraction tests proved that the formation 

permeability was substantially improved with pneumatic fracturing. They also 

further verified the approximate fracture pathways, since only certain wells 

exhibited air communication. Fracturing a borehole progressively deep to 
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shallow will tend to close previous fractures. In the future, the sequence of 

fracture injections must be adjusted to site conditions. 

5.3.4 Post-Fracture Chemical Analysis 

Tables 5.4-5.6 compare the average concentrations of benzene, toluene, and p-

xylene in the effluent before and after fracturing. A substantial increase in 

concentration was found after fracturing for all three compounds. Even more 

dramatic is the increase found in the mass removal rate during the extraction 

test. The data shows that the total BTX removal rate increased over 50 times as a 

result of fracturing. It is interesting to note the decrease in concentration 

measured during the last test date. This decrease in both flowrate and 

concentration is due to saturation of the fractures with rain water, which greatly 

reduced the formation air flow. More detailed information on this aspect of the 

demonstration is presented in the next section. 

• 

5.3.5 Water Data 

Water level measurements made during the first six months prior to fracturing 

consistently showed no standing water in the monitoring wells (EW and the 

VW's). Water levels remained at zero immediately after fracturing and for one 

week after the fracture events. During the second week following fracturing, 

the site was subjected to heavy rain. When the wells were tested for water after 

this period, EW-1, VW-5, and FP-3, were filled with water to a level of three feet 

from the surface. The other wells remained dry. 

It is noted that the water filled wells were the same ones that had good 

intercommunication after fracturing. Water had apparently infiltrated into the 

formation through the apertures produced during pneumatic fracturing. 

Although this proved to be a short term difficulty since rain water infiltration 
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must be controlled during this demonstration for quality assurance and quality 

control purposes, it should prove to be a long term benefit. This condition will 

allow more flexibility in the nutrient application which will be discussed further 

in Section 5.4.2. 

5.4 Remediation Strategy Adaptations 

Based on the results of the pneumatic fracture injections made in October, certain 

changes were made in the remediation strategy for the site. These adaptations 

were necessary to best take advantage of the fracturing patterns observed in the 

formation. The change in strategy underscores the importance of using pilot 

studies to predict effectiveness and properly plan production applications of 

pneumatic fracturing at a given site. Adaptations in the form of site 

improvements were made in basically two areas: well location and subsurface 

water control. Each of these areas will now be discussed. 

5.4.1 Site Improvements 

After fracturing, the extraction well was demonstrated to have good 

communication with only one of the four vapor wells. This occurred because the 

fractures intersected the grouted portion of the well instead of the screened 

portion (see Figures 5.9 and 5.10). To remedy this problem, new wells called 

vapor probes (VP's) were installed. The location of these new wells in 

relationship to the old ones is shown in Figure 5.11. 

In order to control rain water infiltration, a waterproof cover was 

constructed over the site. First, gravel was placed over the demonstration area 

and graded to create sufficient pitch for water runoff. Within the gravel, 

perforated pipe was laid to provide a pathway for the formation to connect with 



Figure 5.11 Plan view of Marcus Hook, PA site with vapor probes. 

86 



87 

the atmosphere. Soaker hoses were laid on top of the gravel to provide a 

method of adding liquid to the site through surface infiltration. 

The gravel was then capped with 6 mil black plastic sheeting to form a 

waterproof cover. Well penetrations were sealed with duct tape, and a drainage 

trench was dug around the perimeter of the plastic to divert water away from 

the demonstration. The plastic was secured by wood timbers, which were 

placed both around the edges and across its length. 

5.4.2 Remediation strategy 

The results of the water data discussed in Section 5.3.5 demonstrate that fluid 

can enter this formation from the surface after fracturing. Water communication 

between the wells demonstrates that fluid can also travel through fractures 

between wells. These revelations will allow more flexibility in the future 

remediation of the site. 

Three methods of adding fluid to the subsurface will be recommended: 

1. Pneumatic bio-injection is still the best way to guarantee an even 

distribution of nutrients in the deepest areas of the demonstration. 

2. Surface application through the soaker hoses underneath the plastic can 

also be used. This is the best way to insure that the top layers of the soil, 

which show the greatest amount of contamination, are treated with an 

adequate nutrient supply. 

3. Well infiltration can be used to treat the lower portions of the formation 

which are on the outskirts of the fracture zones. 

A combination of all three methods should be used to one degree or 

another. Care should be taken, however, to prevent saturation of the formation 

for long periods of time, which would hinder the circulation of oxygen. 



CHAPTER 6 
CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

The following conclusions were drawn from the study. 

1. Pneumatic fracturing can be successfully integrated with in situ 

bioremediation. It has the potential to overcome many of the limiting factors 

inherent with in situ bioremediation including available oxygen, nutrient supply 

and moisture level. It is believed that the combination of pneumatic fracturing 

and bioventing will greatly accelerate the rate at which the biodegradation can 

occur. In addition, pneumatic fracturing will permit the extension of in situ 

bioremediation into low permeability formations which cannot be effectively 

treated with standard bioremediation methods. 

2. Bench scale studies have shown that microorganisms will survive the 

pressures and stresses associated with pneumatic injection. 	Experiments 

performed with a pneumatic bio-pump demonstrated that microbial populations 

in a liquid solution were not significantly affected by pneumatic injection. In 

fact, most of the tests showed an increase in microbial growth following the 

pressurization, which was demonstrated to be a result of superior dispersion 

produced by the injection systems. This result indicates that the microorganisms 

can benefit from pneumatic injection, while being dispersed more evenly 

throughout the formation. 

3. A pneumatic bio-pump has been designed and fabricated which attaches to 

the current pneumatic fracturing system. It is capable of injecting biological 
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fluids into the pneumatic air stream up to 4.5 gallons per minute. The system 

successfully atomizes the biological liquids into a fine mist which can then 

follow the air into the formation. 

4. Visual observations made during aboveground injection with the bio-

injection system confirmed that the liquid mist has a fine texture and is 

uniformly distributed in a radial pattern. It is expected that fluids injected with 

this system will receive superior aeration and distribution, which should 

enhance microbial growth. The estimated volumetric liquid to air ratio of the 

system range from 0.0005 to 0.0007 

5. It is anticipated that pneumatic bio-injection will deliver biological fluids 

more efficiently and over a larger area than standard application methods such 

as surface application and well infiltration. Fluid will be injected after the 

fracture network has been established to attain maximum distribution. 

Pneumatic bio-injection may also be combined with these other methods of fluid 

delivery to guarantee thorough treatment of the formation. 

6. A full field pilot demonstration of the integrated pneumatic fracturing with 

the in situ bioremediation system has been designed and implemented for a 

contaminated site. The project, which is being performed under the EPA 

Emerging Technology SITE Program, was begun in December of 1991. The 

target formation for this demonstration is a combination of fill and clayey silt 

which is contaminated with petroleum hydrocarbons. 

7. As part of the site preparation activities, four fracture injections were 

performed at depths ranging from 3 to 7 feet below the ground surface. Ground 



surface observations indicated that the fractures extended up to 16 feet from the 

injection point. Subsurface air flows increased from 0.067 SCFM to 2.5 SCFM at 

a vacuum pressure of 20 inches of water. Increases in mass removal of BTX were 

measured from 1.6 gm/day to 100 gm/day. Following the fracturing, water 

seeped into the formation through fractures which had reached the surface. 

8. 	As of this writing all site preparation work is complete, and the bio-

injection is scheduled for early 1993. 

6.2 Recommendations for further study 

The following are recommendations for future study. 

1. Development of the pneumatic bio-pump should continue. Consideration 

should be given to upgrade the system to produce higher liquid flowrates at the 

same pressures. An analytical procedure should be developed to predict the 

radius of influence of the pneumatic bio-injection system, and field tests should 

be conducted to verify the results. 

2. Further studies are recommended to test survivability of microorganisms 

through the full pneumatic bio-injection system. Ideally, both above ground and 

below ground tests should be conducted. 

3. Field demonstrations for this technology integration should be continued. 

Full scale demonstrations can be planned for using pneumatic fracturing to 

enhance bioventing projects involving simple compounds, such as those found 

in gasoline. Small scale studies can be performed using pneumatic fracturing to 
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enhance in situ bioremediation with more persistent compounds such as 

polyaromatic hydrocarbons (PAHs), polychlorinated bi-phenlys, (PCBs), and 

trichloroethylene (TCE). These types of compounds are currently difficult to 

degrade, but as bioremediation technology improves, pneumatic fracturing can 

help new innovations move into the field faster. 

4. More study is needed to understand the effects of pneumatic fracturing in 

various types of soils under highly moist and/or saturated conditions. Field 

observations indicate that pneumatic fracturing can also increase the flow rate of 

water through a formation besides increasing its pore gas exchange rate. If the 

permeability increase is as great in the saturated zone as it is in the vadose zone 

is as large, pneumatic fracturing could have a profound influence on 

bioremediation of ground water. 

5. Pneumatic injection of a dry nutrient should be developed. Once this 

system is constructed, analytical testing should be performed to determine the 

effective radius of the nutrient, as well as the size and gradation nutrient leaving 

the HQ nozzle. Analysis should be conducted both above and below ground. 



APPENDIX A 

WELL LOGS FROM MARCUS HOOK, PA 
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Table A.1 Summary of boring well logs 
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Boring # Well # Depth Grout Bentonite Sand Screen 

B-1 EW-1 10' 0-2' 2-4' 4-10' 4.5-10' 

B-2 VW-2 10 0-2' 2-4' 4-10' 4.5-10' 

B-3 VW-3 10' 0-2' 2-4' 4-10' 4.5-10' 

B-4 VW-4 10' 0-2' 2-4' 4-10' 4.5-10' 

B-5 VW-5 10' 0-2' 2-4' 4-10' 4.5-10' 
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Figure A.1 Well log for EW-1. 



Figure A.2 Well log for VW-2. 
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Figure A.3 Well log for VW-3. 



Figure A.4 Well log for VW-4. 
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Figure A.5 Well log for VW-5. 



APPENDIX B 

SOIL GAS SURVEY PROCEDURE 

B.1 Procedure 

A soil gas survey was performed at the Marcus Hook, PA site to 

determine a suitable area for the demonstration. The survey consisted of 

installing vapor probes on a 50 ft by 50 ft grid over two acres of the site. Before 

installation of the probes, it was necessary to jack-hammer through the surface 

gravel. Once the gravel had been cleared away, the vapor probes were installed 

by hammering 1/2" stainless steel rods into the soil to a depth of about 8 ft. The 

rods were then removed leaving a one half inch diameter well. In order to 

prevent water infiltration, the wells were cased with 3/8" PVC pipe to a depth of 

three feet and sealed with bentonite. Tygon tubing was attached at the top of the 

well. This tubing was then sealed shut with a binder clip. 

Vapor samples were taken from the vapor probes and analyzed following 

the same procedure as described in Appendix C, Section C.2. 	Field 

photoionization detector measurements were made on each of the wells 

following the sampling. The results for this test are shown in Table B.1. Figure 

B.1 shows the location of the vapor probes on the actual site. 
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Table B.1 Soil vapor gas survey, Marcus Hook PA 
Well Blows Blows 

1'-5 	5'-8' 
Casing 
Depth 

Time 
of Day 

Purge 	Extraction PID peak 
Time(sec) 	Time(sec) 

PHD avg 

B 20 68 3 feet 12:20 5 low 28 high 24.5 15 

A 15 35 3 feet 12:40 4 low 60 high 72 6.5 

C 8 70 3 feet 1258 5 mid 60 low 7 5 

4 11 19 3 feet 1:08 3 low 165 high* 50 2 

6 42 85 3 feet 12:27 4 low 240 high 30 0 

7 32 59 3 feet 1252 3 low 40 low 10 4.5 

8 19 9 3 feet 1:29 3 low 90 high* 7.5 1 

11 51 57 3 feet 1:45 3 high 75 2.5 0 

12 23 8 3 feet 20 0 

17 23 53 3 feet 12:00 5 high 55 high 11.5 7 

18 9 42 3 feet 12:15 4 low 120 high 40 0 (-2) 

21 13 127 3 feet 1:51 5 low 15 high 11.4 5 

22 10 41 3 feet 1:57 3 low 110* 45 1 

23 17 70 3 feet 2:15 4 low 60 high 282 6 

24 5 34 3 feet 2:22 3 low 34 high 80 10 
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Figure B.1 Site plan of soil gas survey, Marcus Hook, PA. 



APPENDIX C 

SOIL AND VAPOR CHEMICAL ANALYSIS PROCEDURE 

C.1 Soil Analysis 

C.1.1 Soil Sampling 

Soil samples were taken during the construction of the vent wells (VWs) 

and the extraction wells (EW). Samples were obtained continuously from a 

depth of one to ten feet using a split spoon auger. Spoonscan and headspace 

analysis were performed in the field using a photoionization detector to 

determine relative concentrations of contamination. The samples were then 

transported under refrigeration to the Rutgers chemical engineering laboratory 

for analysis. 

C.1.2 Soil Analysis Procedure 

Approximately ten grams of the soil sample is mixed with 5 ml of water 

in a 25 ml vial to disperse the soil sample and enhance the soil-solvent 

interaction. The remainder of the vial is filled with methylene chloride and the 

vials are weighed before and after each addition. Two replicates for each soil 

sample are prepared, sealed with Teflon septa, and crimped. After six days of 

shaking at room temperature the samples are analyzed for benzene, toluene, and 

the xylenes (BTX). Two controls are prepared with the exclusion of soil 

addition. One contains only water and solvent while the other is spiked with 

165 mg of each BTX/Kg solvent. An HP5890 GC packed column is used for 

analysis. 
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C.2 Vapor Analysis 

C.2.1 Vapor Sampling 

Vapor samples are obtained from monitoring wells using a small vacuum 

pump. The samples are collected in stainless steel cylinders which are sealed 

and transported to the Rutgers chemical engineering laboratory under 

refrigeration. Sampling can only be done after adequate time is allowed for the 

vapor in the wells to reach equilibrium. Two sets of controls are used to monitor 

vapor losses during the handling and transportation. A site blank (surrounding 

air) and a standard vapor sample (50 ppm BTX from Scott Specialty Gases) are 

collected on site and transported with the samples to the laboratory. 

C.2.2 Vapor Analysis Procedure 

Samples are removed from the stainless steel containers using syringes 

and then injected into art HP5890 GC column. Peak areas and retention times 

corresponding to each target compound are recorded for each sample. These 

values are compared to the values obtained from analysis of the standard to 

determine an accurate concentration level for each compound. The analysis is 

done in triplicate to obtain a definite initial baseline for the contaminant values. 



APPENDIX D 

VAPOR SAMPLING DATA-MARCUS HOOK, PA 
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Table D.1 Va Ror sampling data fro montoring  ells: Benzene 
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Well # 
9/30/92 	10/14/92 	10/19/92 	10/21/92 

Conc (ppm) 	Conc (ppm) 	Conc (ppm) 	Conc (ppm) 
EW-1 332 84 0 399 
VW-2 249 0 192 222 
VW-3 61 26 31 37 
VW-4 336 62 363 910 
VW-5 536 37 0 721 

Table D.2 Vapor sampling data from montoring wells: Toluene 

Well # 
9/30/92 	10/14/92 	10/19/92 	10/21/92 

Conc (ppm) 	Cone (ppm) 	Conc (ppm) 	Conc (ppm) 
EW-1 19 0 0 31 
VW-2 31 40 32 28 
VW-3 3 67 51 34 
VW-4 0 0 21 0 
VW-5 45 0 177 83 

Table D.3 Vapor sampling data from montoring wells: p-Xylene 

Well # 
9/30/92 	10/14/92 	10/19/92 	10/21/92 

Conc (ppm) 	Cone (ppm) 	Conc (ppm) 	Conc (ppm) 
EW-1 4 9 0 11 
VW-2 4 9 18 16 
VW-3 0 5 4 8 
VW-4 3 0 10 16 
VW-5 5 0 11 38 

Table D.4 Vapor sampling data from montoring wells: m-Xylene 

Well # 
9/30/92 	10/14/92 	10/19/92 	10/21/92 

Conc (ppm) 	Conc (ppm) 	Conc (ppm) 	Cone (ppm) 
EW-1 2 10 0 0 
VW-2 3 17 8 0 
VW-3 0 0 0 0 
VW-4 5 0 9 16 
VW-5 3 0 0 23 



Table D.5 Vapor sampling data from montoring wells: o-Xylene 
9/30/92 	10/14/92 	10/19/92 	10/21/92 

Well # 	Conc (ppm) Conc (ppm) Conc (ppm) Conc (ppm)  
EW-1 	 0 	 0 	 0 	 26 
VW-2 	 8 	 0 	 27 	 31 
VW-3 	 4 	 7 	 14 	 22 
VW-4 	 0 	 0 	 9 	 28 
VW-5 	 5 	 0 	 0 	 34 

Table D.6 Vapor sampling data from montoring wells: Total BTX 

	

9/30/92 	10/14/92 	10/19/92 	10/21/92 
Well # 	Conc (ppm) Conc (ppm) Conc (ppm) Conc (ppm)  
EW-1 	 357 	103 	 0 	467 
VW-2 	 295 	 66 	277 	297 
VW-3 	 68 	105 	100 	101 
VW-4 	 344 	 62 	412 	970 
VW-5 	 594 	 37 	188 	899 
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