

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

AN ENHANCEMENT AND IMPROVEMENT
OF A PROTOTYPE DISTRIBUTED SYSTEM BASED ON

ELEMENTS OF AN INTEGRATION ARCHITECTURE

by
Kunal R. Shah

A Thesis
Submitted to the Faculty of

New jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science

Department of Computer and Information Sciences

January, 1993

APPROVAL PAGE

An Enhancement and Improvement
of a Prototype Distributed System Based on

Elements of an Integration Architecture

by

Kunal R. Shah

Dr. Wilhelm Rossak
Assistant Professor Software Engineering, NJIT

Dr.peter. 	Ng
Chairperson
Department of Computer and Information Sciences, NJIT

BIOGRAPHICAL SKETCH

Author: Kunal R. Shah

Degree: Master of Science in Computer Science

Undergraduate and Graduate Education:

- Master of Science in Computer Science),
New Jersey Institute of Technology, Newark, NJ, 1993

- Bachelor of Engineering in Computer Engineering,
The University of Bombay, Bombay, India, 1989

Major: Computer Science

ABSTRACT

An Enhancement and Improvement
of a Prototype Distributed System Based on

Elements of an Integration Architecture

by
Kunal R. Shah

The concepts and results presented in this thesis are related to Integrated

System Development. It provides introduction to Generic System Integration

Framework (GenSIF). And hence its three principal components, Domain

Analysis, Integration Architectures and Enabling Technology. It addresses

certain issues of distributed processing relating to systems integration.

The primary objective of this thesis is to develop/improve a prototype by

applying concepts and ideas presented in GenSIF, with an example channel

based building block integration architecture as an example. This prototype was

developed with the objective of studying the effect of system intregration

framework in mind while working on an application. It would help in

comparing the traditional software life cycle with the life cycle of software

development under the effect of the framework.

Sun RPC implementation of Remote Procedure Calling technique has

beenused to realize the integration of physically distributed prototypes of a

system/subsystem(s). Advantages and disadvantages of using RPCs have also

been presented. This work also looks into another communication fabric, viz.

ANSA, to analyze its feasibility for use in systems integration.

This thesis is dedicated to
my parents

ACKNOWLEDGEMENT

The author wishes to express his sincere gratitude to his advisor, Dr.

Wilhelm Rossak, for his guidance, friendship, and moral support throughout this

work.

Special thanks to all the members of Sytems Integration research group for
their valuable suggestions and criticism.

The author is grateful to Saraswathy Devi for her expert advice on
ANSAware.

And finally, a thank you to all the members of my family, who provided
inspiration and support in difficult phases of this thesis.

vi

TABLE OF CONTENTS
Chapter 	 Page

1 INTRODUCTION TO SYSTEMS INTEGRATION

2 GENERIC SYSTEMS INTEGRATION FRAMEWORK 	 5

3 FUNCTIONAL OVERVIEW OF THE CS DEPARTMENT INFORMATION
SYSTEM 	 25

4 THE ROLE OF RPC IN THE IMPLEMENTATION 	 33

5 THE ROLE OF ANSAware IN THE IMPLEMENTATION 	44

6 REALIZATION AND/OR EVALUATION OF SUGGESTED
IMPROVEMENTS 	 50

7 COMPARISON OF THE TWO IMPLEMENTATIONS 	

APPENDIX 	 69

REFERENCES 	 147

vii

LIST OF FIGURES

Figure 	 Page

2.1 The Components of the GenSIF Framework 	 7

2.2 Meta-Model for System Develpment 	 7

4.1 Remote Procedure Call (RPC) Model 	 34

4.2 Files Involved in Generating Sun RPC Program 	 37

4.3 Inter Building Block Coomunication 	 39

6.1 Entity Relationship Diagram for EIS 	 51

6.2 Level 1: Data Flow Diagram 	 52

6.3 Level 2: Data Flow Diagram Explosion of FDLBB 	 53

6.4 Level 2: Data Flow Diagram Explosion of PLBB 	 54

viii

CHAPTER 1

INTRODUCTION TO SYSTEMS INTEGRATION

1.1 Information Management in an organization.

Information is recognized as an organization's most valuable asset. In many

forms, information is spread throughout an organization and kept within

divisions, branches, departments, work groups and individual user's files. The

primary goal of every organization, department or a group is to build, operate on

and maintain the huge amount of information. Each organization or a group may

maintain different kinds of information. It can be an organization's employees

payroll information, or an organization's client-account and their business

transactions information. It can also be some graphical form of information for

statistical representation or in a form of a report/chart.

In order to make this task of information management easier, they are

automated into their respective softwares. This realization of unautomated

systems into the automated systems, is what we refer to as a SYSTEM or a

PROJ ECT.

In today's automated world, information is usually stored and processed

on a wide variety of computer systems. The software systems/projects to

manage/maintain this information could have been built by more than one

contractors/groups at different times as a relatively independent projects. But

they still need to work together in a globally integrated fashion. This issue is

discussed in detail in the next section.

CHAPTER 1

INTRODUCTION TO SYSTEMS INTEGRATION

1.1 Information Management in an organization.

Information is recognized as an organization's most valuable asset. In many

forms, information is spread throughout an organization and kept within

divisions, branches, departments, work groups and individual user's files. The

primary goal of every organization, department or a group is to build, operate on

and maintain the huge amount of information. Each organization or a group may

maintain different kinds of information. It can be an organization's employees

payroll information, or an organization's client-account and their business

transactions information. It can also be some graphical form of information for

statistical representation or in a form of a report/chart.

In order to make this task of information management easier, they are

automated into their respective softwares. This realization of unautomated

systems into the automated systems, is what we refer to as a SYSTEM or a

PROJ ECT.

In today's automated world, information is usually stored and processed

on a wide variety of computer systems. The software systems/projects to

manage/maintain this information could have been built by more than one

contractors/groups at different times as a relatively independent projects. But

they still need to work together in a globally integrated fashion. This issue is

discussed in detail in the next section.

1

1.2 Need for Systems Integration Framework.

Integration is a term commonly used by system planners. Although it always

conveys some aspect of unity, integration can refer to many things. Integration in

its technical context can mean physical integration (of functions into one device)

or a functional integration. It also can mean the sharing of information between

applications that provide related services. The ability to move, and therefore,

share information in intelligent forms between users of the same system is

another form of integration. Integration, more importantly, also can be used in a

system sense, that is, for communication between systems and system

applications that share common communication protocols. This is in turn allows

users to broaden their community to include users and information sources on

other systems. Integration also can include the establishment of a consistent user

interface across several applications in a class having some common nature.

Thus over the past years system development has become increasingly

demanding. Due to generic requirements of various software products and to the

popularity of distributed systems, software engineers and designers have started

to think about integrating variou.s, independent software systems, such that they

would work in a globally integrated fashion. This may involve heterogeneous

environments of computer systems. And due to this varying degrees of

reliability, accessibility and availability between software products and their

computing environments, need was fell: for the design of a heterogeneous

software/hardware environment to cooperate as a whole in a LOOSELY

COUPLED 'DISTRIBUTED configuration. We have to recognize the fact that

current methodologies and development strategies are unable to deal with very

large distributed systems.

1.2 Need for Systems Integration Framework.

Integration is a term commonly used by system planners. Although it always

conveys some aspect of unity, integration can refer to many things. Integration in

its technical context can mean physical integration (of functions into one device)

or a functional integration. It also can mean the sharing of information between

applications that provide related services. The ability to move, and therefore,

share information in intelligent forms between users of the same system is

another form of integration. Integration, more importantly, also can be used in a

system sense, that is, for communication between systems and system

applications that share common communication protocols. This is in turn allows

users to broaden their community to include users and information sources on

other systems. Integration also can include the establishment of a consistent user

interface across several applications in a class having some common nature.

Thus over the past years system development has become increasingly

demanding. Due to generic requirements of various software products and to the

popularity of distributed systems, software engineers and designers have started

to think about integrating various, independent software systems, such that they

would work in a globally integrated fashion. This may involve heterogeneous

environments of computer systems. And due to this varying degrees of

reliability, accessibility and availability between software products and their

computing environments, need was fell: for the design of a heterogeneous

software/hardware environment to cooperate as a whole in a LOOSELY

COUPLED 'DISTRIBUTED configuration. We have to recognize the fact that

current methodologies and development strategies are unable to deal with very

large distributed systems.

2

Following are some of the critical factors, as described by Dr. Wilhelm

Rossak in [1], which can focus more on the urge for a systems integration

framework.

Software engineers have realized that,

A. Development support goes beyond software support.

The development process of a complex system should support not only

software but also hardware and organization. We need to shift our focus

from the single aspect of a system, since we need well-disciplined control

and communication between groups and projects, and interaction

between problem (application) domain and solution.

B. More than a single client is involved.

The client for our product is neither a single person nor a homogeneous

group of people. We will have to live with the fact that fairly clear

requirements can be specified only for limited projects, and that it is

infeasible to freeze and to document in advance the needs for a set of

interrelated projects which cover a full application domain.

C. More than single producer is involved.

All the above mentioned factors become critical if the system is developed

by multiple groups or by multiple companies and contractors. Different

groups working on projects which are parts of an integrated system

require extra need for communication and control and must be guided by

a framework which underlies long-term goals and strategies for

developing the system.

D. More than a single project is involved.

Different projects can be run by applying different methodologies and in

different time frames. In a dynamic environment we will even have to

Following are some of the critical factors, as described by Dr. Wilhelm

Rossak in [1], which can focus more on the urge for a systems integration

framework.

Software engineers have realized that,

A. Development support goes beyond software support.

The development process of a complex system should support not only

software but also hardware and organization. We need to shift our focus

from the single aspect of a system, since we need well-disciplined control

and communication between groups and projects, and interaction

between problem (application) domain and solution.

B. More than a single client is involved.

The client for our product is neither a single person nor a homogeneous

group of people. We will have to live with the fact that fairly clear

requirements can be specified only for limited projects, and that it is

infeasible to freeze and to document in advance the needs for a set of

interrelated projects which cover a full application domain.

C. More than single producer is involved.

All the above mentioned factors become critical if the system is developed

by multiple groups or by multiple companies and contractors. Different

groups working on projects which are parts of an integrated system

require extra need for communication and control and must be guided by

a framework which underlies long-term goals and strategies for

developing the system.

D. More than a single project is involved.

Different projects can be run by applying different methodologies and in

different time frames. In a dynamic environment we will even have to

3

expect that some projects are specified after other projects are nearly

completed, or in the execution and maintenance phase.

Thus, there is no chance to organize a huge and centralized effort in the

very beginning of system development to coordinate all possible projects.

The above mentioned problems can be solved by applying an approach of

meta-level control. The next chapter describes in more detail the generic

framework for integrated systems development (3).

1.3 What is meant by Mega-systems?

Today software systems are used in nearly every application domain and their

size and complexity keeps growing. While the variety of application domain has

made it necessary to adapt our methodologies to more and more environments,

if we were able to do so, growth has scaled up the difficulties in system

development and has changed the characteristics of the development process.

The traditional strategies focus mainly on development of one system for

a specific problem, instead of providing means to develop an integrated group of

systems which provides a coordinated domain wide solution. Mega-systems

cover the needs of a full application domain in a structured way. An application

domain is considered to be a comprehensive, internally coherent, relatively self-

contained area or business enterprise supported by software systems (4).

Mega-systems cover at least one of the characteristics of being constructed

from more than one system, by more than one developer group and for more

than one consumer. They include huge systems, package systems, and systems of

systems.

All the views expressed here on Mega-systems and system of systems, are

from the research papers by Tamar Zemel and Dr. Wilhelm Rossak,(3) and (4).

expect that some projects are specified after other projects are nearly

completed, or in the execution and maintenance phase.

Thus, there is no chance to organize a huge and centralized effort in the

very beginning of system development to coordinate all possible projects.

The above mentioned problems can be solved by applying an approach of

meta-level control. The next chapter describes in more detail the generic

framework for integrated systems development (3).

1.3 What is meant by Mega-systems?

Today software systems are used in nearly every application domain and their

size and complexity keeps growing. While the variety of application domain has

made it necessary to adapt our methodologies to more and more environments,

if we were able to do so, growth has scaled up the difficulties in system

development and has changed the characteristics of the development process.

The traditional strategies focus mainly on development of one system for

a specific problem, instead of providing means to develop an integrated group of

systems which provides a coordinated domain wide solution. Mega-systems

cover the needs of a full application domain in a structured way. An application

domain is considered to be a comprehensive, internally coherent, relatively self-

contained area or business enterprise supported by software systems (4).

Mega-systems cover at least one of the characteristics of being constructed

from more than one system, by more than one developer group and for more

than one consumer. They include huge systems, package systems, and systems of

systems.

All the views expressed here on Mega-systems and system of systems, are

from the research papers by Tamar Zemel and Dr. Wilhelm Rossak,(3) and (4).

4

CHAPTER 2

GENERIC SYSTEMS INTEGRATION FRAMEWORK.

2.1 Meta-Level of Control.

In a dynamic systems integration environment we will have to expect that some

projects are specified after others are nearly completed, or are in execution, or in

maintenance phase. If we use traditional systems development approach in such

a situation, there is no chance to organize a huge and centralized, productive

effort in the very beginning of system development and to coordinate all possible

projects.

Therefore to guarantee the integration, optimization, and consistent user

semantics of the ultimate product, management control over the autonomously

running projects is suggested. The basic concept is to introduce a meta-level of

control and management as a complement for the project-Ievel.

This concept of meta-level control brings us to the aspect of analysis and

specification of an application domain, which encompasses the application

environment of an integrated system and to derive/decide on suitable

integration architecture. It also motivates us to consider the various enabling

technologies and decide on the best possible alternative for achieving

interoperability over the application domain. Thus this chapter will mainly talk

about the Generic Systems Integration Framework and the introduction to a

channel based integration architecture, which is the basis of implementation for

the Distributed System that was developed.

CHAPTER 2

GENERIC SYSTEMS INTEGRATION FRAMEWORK.

2.1 Meta-Level of Control.

In a dynamic systems integration environment we will have to expect that some

projects are specified after others are nearly completed, or are in execution, or in

maintenance phase. If we use traditional systems development approach in such

a situation, there is no chance to organize a huge and centralized, productive

effort in the very beginning of system development and to coordinate all possible

projects.

Therefore to guarantee the integration, optimization, and consistent user

semantics of the ultimate product, management control over the autonomously

running projects is suggested. The basic concept is to introduce a meta-level of

control and management as a complement for the project-Ievel.

This concept of meta-level control brings us to the aspect of analysis and

specification of an application domain, which encompasses the application

environment of an integrated system and to derive/decide on suitable

integration architecture. It also motivates us to consider the various enabling

technologies and decide on the best possible alternative for achieving

interoperability over the application domain. Thus this chapter will mainly talk

about the Generic Systems Integration Framework and the introduction to a

channel based integration architecture, which is the basis of implementation for

the Distributed System that was developed.

2.2 GenSIF and its components.

Mega-systems and especially systems of systems, need integration support as a

built in feature of their development support environment to enable a planned

and structural approach to managing independent developer and customer

groups to finally come up with a solution of not only interdependent but

interoperable systems. GenSIF, a generic systems integration framework, is such

an approach oriented towards a solution for a specific application domain (1),

(2), (3), (4).

As we all know, systems development is project oriented. GenSIF, strives

to leave the project teams as much freedom as possible but provides domain

wide integration measures for co-ordination of projects. Each project can

organize its own strategies and development efforts, but it should also comply to

the integration framework in order to guarantee the interoperability of

developed systems.

This framework does not ask for prior knowledge of all the (future) parts

of the mega-system nor all requirements of the domain. The goal here is to be

concept driven rather than welcoming various problems due to an

uncoordinated technology driven approach.

A system planner, following GenSIF, certainly makes use of the

technology and its tools, but it is based on a firm set of domain wide conceptual

models and hence explicitly spelled out prerequisites and decisions.

Figure 2.1 and 2.2 illustrates various components of GenSIF and their

relationships to the systems development phases at the project level. These three

components as seen in figure 2.1 reflect different levels of abstraction and

address different goals and needs during an integrated development process.

2.2 GenSIF and its components.

Mega-systems and especially systems of systems, need integration support as a

built in feature of their development support environment to enable a planned

and structural approach to managing independent developer and customer

groups to finally come up with a solution of not only interdependent but

interoperable systems. GenSIF, a generic systems integration framework, is such

an approach oriented towards a solution for a specific application domain (1),

(2), (3), (4).

As we all know, systems development is project oriented. GenSIF, strives

to leave the project teams as much freedom as possible but provides domain

wide integration measures for co-ordination of projects. Each project can

organize its own strategies and development efforts, but it should also comply to

the integration framework in order to guarantee the interoperability of

developed systems.

This framework does not ask for prior knowledge of all the (future) parts

of the mega-system nor all requirements of the domain. The goal here is to be

concept driven rather than welcoming various problems due to an

uncoordinated technology driven approach.

A system planner, following GenSIF, certainly makes use of the

technology and its tools, but it is based on a firm set of domain wide conceptual

models and hence explicitly spelled out prerequisites and decisions.

Figure 2.1 and 2.2 illustrates various components of GenSIF and their

relationships to the systems development phases at the project level. These three

components as seen in figure 2.1 reflect different levels of abstraction and

address different goals and needs during an integrated development process.

6

DOMAIN
MODEL

INTEGRATION

ARCHITECTURE

ENABLING

TECHNOLOGIES

8., 	 J

GLOBAL (Domain) INTEGRATION

INTEGRATION ARCHITECTURE

ENABLING TECHNOLOGIES

Figure 2.1 The Components of GenSIF Framework

(CONTROL &
EXPERIENCE)
META-LEVEL

PROJECT(S)
LEVEL

Figure 2.2 Meta-Model for Systems Development

DOMAIN
MODEL

INTEGRATION

ARCHITECTURE

ENABLING

TECHNOLOGIES

....."

GLOBAL (Domain) INTEGRATION

INTEGRATION ARCHITECTURE

ENABLING TECHNOLOGIES

Figure 2.1 The Components of GenSIF Framework

(CONTROL &
EXPERIENCE)
META-LEVEL

PROJECT(S)
LEVEL

7

Figure 2.2 Meta-Model for Systems Development

Figure 2.2 illustrates the relationship of integrated system development to a

traditioanl project driven approach. It is basically a meta-model for integrated

system development process.

El) Global (Domain) Integration.

- specifies the conceptual basis for the integration architecture. It deals

with the concepts and semantics of an application domain and with the

mapping of these concepts into the installed applications. This involves

integration of information in a meta-data system and the specification of a

generalized process model. These global activities relate to semantic

integration and involve all analysis of the application domain in order to

define a common model of the environment the system is going to serve.

Domain analysis not only provides a basis for systems integration, but it

also is the main decisive factor in choosing/designing an integration

architecture.

[2] Integration Architecture.

- is the core of GenSIF. It is a conceptual/structural model that bridges the

gap between the outcome of domain analysis and the technological tool-

level. It also is an infrastructure which provides the necessary utilities and

components for the implementation of an application system on the basis

of the conceptual model. It must fit the needs of an application domain.

131 Enabling Technologies.

are given by the tools and products that are required by the

infrastructure of a generalized integration architecture, in order to

develop and implement applications that will fill the abstract architecture

with functionality and data.

Figure 2.2 illustrates the relationship of integrated system development to a

traditioanl project driven approach. It is basically a meta-model for integrated

system development process. [1]

 Global (Domain) Integration.

- specifies the conceptual basis for the integration architecture. It deals

with the concepts and semantics of an application domain and with the

mapping of these concepts into the installed applications. This involves

integration of information in a meta-data system and the specification of a

generalized process model. These global activities relate to semantic

integration and involve all analysis of the application domain in order to

define a common model of the environment the system is going to serve.

Domain analysis not only provides a basis for systems integration, but it

also is the main decisive factor in choosing/designing an integration

architecture.

[2] Integration Architecture.

- is the core of GenSIF. It is a conceptual/structural model that bridges the

gap between the outcome of domain analysis and the technological tool-

level. It also is an infrastructure which provides the necessary utilities and

components for the implementation of an application system on the basis

of the conceptual model. It must fit the needs of an application domain.

131 Enabling Technologies.

- are given by the tools and products that are required by the

infrastructure of a generalized integration architecture, in order to

develop and implement applications that will fill the abstract architecture

with functionality and data.

8

This level apart from being concerned with state-of-the-art, should also

provide views and suggestions for standards and developments in this

area.

Domain analysis is the most important factor in determining the

integration architecture and in addressing the other issues of global integration.

Furthermore, it influences (via the integration architecture) the technological

basis that is used to implement computer-based services in the application

domain. Decisions made on the level of domain analysis and integration

architecture affect not only existing applications and the currently planned

global system structure, but pre-structure the environment for future software

and hardware development.

The integration and control efforts on a meta-level above the development

efforts for single projects constitute the components of GenSIF. They provide

models and processes to handle strategic decisions and technical integration

issues. From this meta-level of systems engineering, the components of GenSIF

affect and guide the development of all system parts. A system part is an

application system which provides a specific functionality in the application

domain.

Therefore, the next section focuses on the various types of integration

architectures and then explains in detail the channel based integration

architecture. The concepts of this architecture form a basis for the design of the

prototype Computer Science Department information system and its operations.

The tool used here is the Sun RPC tool, for Remote Procedure Call, to

communicate between the building blocks (to be explained in section 2.4) to

achieve interoperability.

This level apart from being concerned with state-of-the-art, should also

provide views and suggestions for standards and developments in this

area.

Domain analysis is the most important factor in determining the

integration architecture and in addressing the other issues of global integration.

Furthermore, it influences (via the integration architecture) the technological

basis that is used to implement computer-based services in the application

domain. Decisions made on the level of domain analysis and integration

architecture affect not only existing applications and the currently planned

global system structure, but pre-structure the environment for future software

and hardware development.

The integration and control efforts on a meta-level above the development

efforts for single projects constitute the components of GenSIF. They provide

models and processes to handle strategic decisions and technical integration

issues. From this meta-level of systems engineering, the components of GenSIF

affect and guide the development of all system parts. A system part is an

application system which provides a specific functionality in the application

domain.

Therefore, the next section focuses on the various types of integration

architectures and then explains in detail the channel based integration

architecture. The concepts of this architecture form a basis for the design of the

prototype Computer Science Department information system and its operations.

The tool used here is the Sun RPC tool, for Remote Procedure Call, to

communicate between the building blocks (to be explained in section 2.4) to

achieve interoperability.

9

2.3 Types and Features of Integration Architectures.

An integration architecture is neither the description of a traditional

development cycle nor an analysis and design method for traditional project

oriented development. It is a conceptual model and a tool-box, describing the

meta-level of control, design constraints, and the support for all development

projects in a given application domain.

The domain analysis, feedback from enabling technologies, and some

actions of global integration that are applied before the existence of an

architectural framework - all influence the design/choice of an integration

architecture. But once it is specified, it becomes a bulletin board which lists the

rules and concepts for all the decision processes related to system development

in a given domain. It provides a common understanding of the systems main

structural attributes.

Since an integration architecture plays a major role in coordinating

domain analysis and enabling technologies, it is a central element of decision

making on a meta-level above the single project. Here are some of the types of

integration architectures for large systems:

- Channel Based Systems,

- Systems with central data repository,

- Generic Systems and

- Object Oriented Systems.

The discussions on these types is beyond the scope of this document, but

the next section describes an integration architecture, which we believe is a

channel-based architecture.

However, all types of integration architectures can be decomposed into

two main aspects:

o Conceptual/structural architectural model and

10

2.3 Types and Features of Integration Architectures.

An integration architecture is neither the description of a traditional

development cycle nor an analysis and design method for traditional project

oriented development. It is a conceptual model and a tool-box, describing the

meta-level of control, design constraints, and the support for all development

projects in a given application domain.

The domain analysis, feedback from enabling technologies, and some

actions of global integration that are applied before the existence of an

architectural framework - all influence the design/choice of an integration

architecture. But once it is specified, it becomes a bulletin board which lists the

rules and concepts for all the decision processes related to system development

in a given domain. It provides a common understanding of the systems main

structural attributes.

Since an integration architecture plays a major role in coordinating

domain analysis and enabling technologies, it is a central element of decision

making on a meta-level above the single project. Here are some of the types of

integration architectures for large systems:

- Channel Based Systems,

- Systems with central data repository,

- Generic Systems and

- Object Oriented Systems.

The discussions on these types is beyond the scope of this document, but

the next section describes an integration architecture, which we believe is a

channel-based architecture.

However, all types of integration architectures can be decomposed into

two main aspects:

o Conceptual/structural architectural model and

10

o the technical infra-structure.

2.4 Channel Based Building Block Architecture

A channel based building block architecture presented in this chapter is based on

the OSCATM architecture as published by Bellcore. However, the building block

architecture is our own interpretation of OSCA architecture elements and

represents in no way an authorized Bellcore document. OSCA is a trademark of

Bellcore - Bell Communications Research. For an official publication see (6).

A channel based architecture is the one which provides guidelines for the

communication of heterogeneous, distributed systems with goal of promoting

interoperability and operability of software products. This is an implementation

independent system design framework. The idea here is to provide a common

software bus concept for promoting interoperability of software components

which typically consists of large numbers of a programs, transactions, and data

repositories. Interoperability here means the ability to intercommunicate

heterogeneous software systems of a selected domain, irrespective of their

suppliers, to provide access to data repositories and functionality of each of the

systems to an authorized user. Operability is the ability to efficiently and cost

effectively control and manage installation, administration, execution and user

access of this loosely coupled collection of softwares to meet the performance,

reliability, consistency, availability and security issues of the domain of these

systems.

Our example architecture mainly relies on separation of concerns

principles to achieve the goals described above. The following sections will

describe in detail these principles.

11

o the technical infra-structure.

2.4 Channel Based Building Block Architecture

A channel based building block architecture presented in this chapter is based on

the OSCATM architecture as published by Bellcore. However, the building block

architecture is our own interpretation of OSCA architecture elements and

represents in no way an authorized Bellcore document. OSCA is a trademark of

Bellcore - Bell Communications Research. For an official publication see (6).

A channel based architecture is the one which provides guidelines for the

communication of heterogeneous, distributed systems with goal of promoting

interoperability and operability of software products. This is an implementation

independent system design framework. The idea here is to provide a common

software bus concept for promoting interoperability of software components

which typically consists of large numbers of a programs, transactions, and data

repositories. Interoperability here means the ability to intercommunicate

heterogeneous software systems of a selected domain, irrespective of their

suppliers, to provide access to data repositories and functionality of each of the

systems to an authorized user. Operability is the ability to efficiently and cost

effectively control and manage installation, administration, execution and user

access of this loosely coupled collection of softwares to meet the performance,

reliability, consistency, availability and security issues of the domain of these

systems.

Our example architecture mainly relies on separation of concerns

principles to achieve the goals described above. The following sections will

describe in detail these principles.

11

2.4.1 Separation of Concerns Principle.

At the highest level of abstraction, a software system that conforms to this

channel based architecture is seen as separated into three logical layers: Data

Layer, Processing Layer (business operations), and a Human User Layer. As as is

very obvious, this division is done based on functionality.

[1] Data Layer Functionality.

This layer has to provide the functionality to manage the semantic integrity,

consistency and access of the data repositories.

[2] User Layer functionality.

The goals and tasks of a human user are translated by the user layer to

appropriate processes and functionality in data, processing and user layers.

[3] Processing Layer Functionality.

This layer provides functionality for prescribed business operations and

management processes of the domain.

2.4.2 Building Blocks.

Each of the logical layers is made up of one or more well-defined deployable,

interoperable units containing the necessary functionality, called building blocks.

The building blocks have a interface specification document. that every

requesting building block has to follow to have access to the deployable building

blocks. These interface specification are well documented and are made available

to the depl.oyers and implementors. Any building block can communicate with

any other building block that provides a function it requires.

A building block consists of a cohesive set of functions solely contained in

one layer. Each of the building blocks should have following characteristics:

(a) installable and deployable together as a whole,

12

2.4.1 Separation of Concerns Principle.

At the highest level of abstraction, a software system that conforms to this

channel based architecture is seen as separated into three logical layers: Data

Layer, Processing Layer (business operations), and a Human User Layer. As as is

very obvious, this division is done based on functionality.

[1] Data Layer Functionality.

This layer has to provide the functionality to manage the semantic integrity,

consistency and access of the data repositories.

[2] User Layer functionality.

The goals and tasks of a human user are translated by the user layer to

appropriate processes and functionality in data, processing and user layers.

[3] Processing Layer Functionality.

This layer provides functionality for prescribed business operations and

management processes of the domain.

2.4.2 Building Blocks.

Each of the logical layers is made up of one or more well-defined deployable,

interoperable units containing the necessary functionality, called building blocks.

The building blocks have a interface specification document. that every

requesting building block has to follow to have access to the deployable building

blocks. These interface specification are well documented and are made available

to the deployers and implementors. Any building block can communicate with

any other building block that provides a function it requires.

A building block consists of a cohesive set of functions solely contained in

one layer. Each of the building blocks should have following characteristics:

(a) installable and deployable together as a whole,

12

(b) should be able to interact with functions in other building blocks in a

lossely coupled manner,

(c) should be collectively releasable, independently of functions in other

building blocks.

The example architecture used here for the implementation of a Enhanced

Information system for systems integration utilizes a building block approach to

software product delivery in which each logical layer of the architecture is

composed of many building blocks working together. Each building block is a set

of computer programs, data schemas, and other related software which

possesses well defined, coherent, functionality and interfaces. A description of a

building block's interfaces unambiguously defines the functions it provides to

other building blocks. A building blocks needs no knowledge of the internal

structure of other building blocks. Thus, if the interface specifications are kept

the same while updating the internal implementation of a building block, the

deployer will not know about this change at all.

The architecture allows a building block to be both compatible with other

building blocks and functionally substitutable. The building block should be able

to intemperate with any other building block irrespective of its supplier. Also, its

functionality, and the expression and use of that functionality

(syntax,semantics,pragmatics) should be well-defined. For a building block to act

as a substitute of another building block, it need not offer the exact same set of

functionality, as the original building block.

To do its work, a building block utilizes hardware and software functions

from the infrastructure provided by the operating systems, the communications

network, database management systems, and other resources. This functionality

may be shared among building blocks so long as such sharing does not result in

any violation of building block principles. Many instances of a building block

13

(b) should be able to interact with functions in other building blocks in a

lossely coupled manner,

(c) should be collectively releasable, independently of functions in other

building blocks.

The example architecture used here for the implementation of a Enhanced

Information system for systems integration utilizes a building block approach to

software product delivery in which each logical layer of the architecture is

composed of many building blocks working together. Each building block is a set

of computer programs, data schemas, and other related software which

possesses well defined, coherent, functionality and interfaces. A description of a

building block's interfaces unambiguously defines the functions it provides to

other building blocks. A building blocks needs no knowledge of the internal

structure of other building blocks. Thus, if the interface specifications are kept

the same while updating the internal implementation of a building block, the

deployer will not know about this change at all.

The architecture allows a building block to be both compatible with other

building blocks and functionally substitutable. The building block should be able

to intemperate with any other building block irrespective of its supplier. Also, its

functionality, and the expression and use of that functionality

(syntax,semantics,pragmatics) should be well-defined. For a building block to act

as a substitute of another building block, it need not offer the exact same set of

functionality, as the original building block.

To do its work, a building block utilizes hardware and software functions

from the infrastructure provided by the operating systems, the communications

network, database management systems, and other resources. This functionality

may be shared among building blocks so long as such sharing does not result in

any violation of building block principles. Many instances of a building block

13

may exist, possibly on different computer systems. They exist for purposes such

as load sharing, partitioning, reliability and availability.

2.4.3 Role of Infrastructure.

We can define an infrastructure as a platform, or a set of tools to enable

execution, interoperability, operability of building blocks. Thus it is a backplane

that allows building blocks to execute, operate individually and interoperate

collectively. A uniform infrastructure is very critical for a uniform Integration

Architecture. A uniform infrastructure is one that can operate as a cohesive

whole, be provided by multiple vendors, and on which building blocks can be

deployed so that they may fulfill their respective architectural requirements in

an efficient, unified, and uniform manner.

2.5 Design of Building Blocks of an Application.

Here we will look into certain aspects of the architecture which are necessary to

understand before actually separating the functionality of the system(s) into

various layers and its building blocks.

2.5.1 Guideline-1.

It is desirable that a building block have low functional coupling with other

building blocks and high functional cohesion within itself. These are the two

main characteristics behind building block requirements.

Let me define what is meant by coupling and cohesion, so as to make

things clear before moving on. Coupling is a degree of interdependence between

two building blocks. Cohesion is the degree to which the functions within a

building block are related to each other. Thus, coupling defines the inter-

building block relationships unlike cohesion, which defines the intra-building

14

may exist, possibly on different computer systems. They exist for purposes such

as load sharing, partitioning, reliability and availability.

2.4.3 Role of Infrastructure.

We can define an infrastructure as a platform, or a set of tools to enable

execution, interoperability, operability of building blocks. Thus it is a backplane

that allows building blocks to execute, operate individually and interoperate

collectively. A uniform infrastructure is very critical for a uniform Integration

Architecture. A uniform infrastructure is one that can operate as a cohesive

whole, be provided by multiple vendors, and on which building blocks can be

deployed so that they may fulfill their respective architectural requirements in

an efficient, unified, and uniform manner.

2.5 Design of Building Blocks of an Application.

Here we will look into certain aspects of the architecture which are necessary to

understand before actually separating the functionality of the system(s) into

various layers and its building blocks.

2.5.1 Guideline-1.

It is desirable that a building block have low functional coupling with other

building blocks and high functional cohesion within itself. These are the two

main characteristics behind building block requirements.

Let me define what is meant by coupling and cohesion, so as to make

things clear before moving on. Coupling is a degree of interdependence between

two building blocks. Cohesion is the degree to which the functions within a

building block are related to each other. Thus, coupling defines the inter-

building block relationships unlike cohesion, which defines the intra-building

14

block relationships. Thus from a building block architecture point of view what

is desirable a balanced cohesion within a building block and a minimum of

coupling between building blocks.

Minimizing the cohesion among the functions in different building blocks

minimizes the coupling between the building blocks. Balancing the cohesion

within a building block with the decoupling among building blocks leads to

optimized building block definitions.

A set of functions are candidates to be in the same building block, if and

only if :

a) they are in the same logical layer of the threearchitectural layers,

b) they are cohesive as a set, but decoupled from functions not in the set,

c) they will always be deployed together in the same recoverable domain,

d) collectively they can be released independently from functions not in the

set.

Thus, as can be inferred from the points a) and b), they constrain the

maximum size of a building block by limiting what categories of functions that

can go together. And c) and d) above constrain the minimum size by including in

the grouping all those functions that are deployable, releasable, and addressable

together.

2.5.2 Guideline-2.

 such as human characteristics, tasks, requirements, and

participation (Authority/Priviledge) are central to improve the quality of

building blocks. Even though the Processing and data layer building blocks are

not directly concerned with the user interface, they are nonetheless concerned

with supporting the human user's work processes. They must deliver the

appropriate information, in the appropriate granularity, with appropriate

15

block relationships. Thus from a building block architecture point of view what

is desirable a balanced cohesion within a building block and a minimum of

coupling between building blocks.

Minimizing the cohesion among the functions in different building blocks

minimizes the coupling between the building blocks. Balancing the cohesion

within a building block with the decoupling among building blocks leads to

optimized building block definitions.

A set of functions are candidates to be in the same building block, if and

only if :

a) they are in the same logical layer of the threearchitectural layers,

b) they are cohesive as a set, but decoupled from functions not in the set,

c) they will always be deployed together in the same recoverable domain,

d) collectively they can be released independently from functions not in the

set.

Thus, as can be inferred from the points a) and b), they constrain the

maximum size of a building block by limiting what categories of functions that

can go together. And c) and d) above constrain the minimum size by including in

the grouping all those functions that are deployable, releasable, and addressable

together.

2.5.2 Guideline-2.

Considerations such as human characteristics, tasks, requirements, and

participation (Authority/Priviledge) are central to improve the quality of

building blocks. Even though the Processing and data layer building blocks are

not directly concerned with the user interface, they are nonetheless concerned

with supporting the human user's work processes. They must deliver the

appropriate information, in the appropriate granularity, with appropriate

15

response time,to ensure that those tasks can support the user's business

activities.

2.5.3 Guideline-3.

It is desirable that any function that is not the infrastructure be examined

whether it can be made generically available to multiple building blocks. If so,

then it can be implemented as part of the infrastructure. This promotes more re-

use of functions and decreases the complexity of building blocks.

2.6 Building Block Principles.

Before we go into detail explanation of these principles, lets make it clear that

these principles do not apply among programs or transactions within a single

building block. These principles apply among building blocks. For example,

although two building blocks must be release independent, the programs within

a single building block can be release dependent.

2.6.1 Release Independence.

To maximize deployment flexibility of building blocks, each instance of a

building block must be able to be installed, upgraded, changed, activated

without concurrently installing, upgrading, changing, or activating other

instances of itself or other building blocks.

Release independence implies that:

1. the old functionality must be available throughout the upgrading period

of time.

2. If a software application consists of multiple building blocks, it is up to the

supplier to furnish documentation to the customer that details what

configuration will yield the required functionality.

16

response time, to ensure that those tasks can support the user's business

activities.

2.5.3 Guideline-3.

It is desirable that any function that is not the infrastructure be examined

whether it can be made generically available to multiple building blocks. If so,

then it can be implemented as part of the infrastructure. This promotes more re-

use of functions and decreases the complexity of building blocks.

2.6 Building Block Principles.

Before we go into detail explanation of these principles, lets make it clear that

these principles do not apply among programs or transactions within a single

building block. These principles apply among building blocks. For example,

although two building blocks must be release independent, the programs within

a single building block can be release dependent.

2.6.1 Release Independence.

To maximize deployment flexibility of building blocks, each instance of a

building block must be able to be installed, upgraded, changed, activated

without concurrently installing, upgrading, changing, or activating other

instances of itself or other building blocks.

Release independence implies that:

1. the old functionality must be available throughout the upgrading period

of time.

2. If a software application consists of multiple building blocks, it is up to the

supplier to furnish documentation to the customer that details what

configuration will yield the required functionality.

16

3. Agreed upon sets of consistent rules to provide nonconcurrent release

installation across all building blocks is needed. These rules provide

agreement by contracts on how release independence will be supported.

4. A upgraded building block may be required to continue to support

previous functionality.

2.6.2 Infrastructure and Resource Independence.

Infrastructure and the underlying resources can be shared among building

blocks so long as no building block is forced to violate any principles of the

architecture. Typical resources such as files, DBMSs, icons, and display devices,

are the physical or semi-physical objects that are made available and

manipulated via the infrastructure functions.

Some implications of these are:

a. The communication network must not violate any principles of the

architecture.

b. When a DBMS or a file system is used by more than one building block, it

must allow support of the architecture.

c. If a resource, such as the operating system or a DBMS is shared, and it

fails or otherwise becomes unavailable, it will impact all sharing building

blocks.

2,6.3 No accessibility assumptions between building blocks.

To sustain an operable environment, an instance of a building block

communicating with another building block instance must be able to respond to

the unavailability of the target building block instance in a manner which

preserves its own availability. A building block instance may be unavailable due

to a variety of situations, including failure of the communications network,

17

3. Agreed upon sets of consistent rules to provide nonconcurrent release

installation across all building blocks is needed. These rules provide

agreement by contracts on how release independence will be supported.

4. A upgraded building block may be required to continue to support

previous functionality.

2.6.2 Infrastructure and Resource Independence.

Infrastructure and the underlying resources can be shared among building

blocks so long as no building block is forced to violate any principles of the

architecture. Typical resources such as files, DBMSs, icons, and display devices,

are the physical or semi-physical objects that are made available and

manipulated via the infrastructure functions.

Some implications of these are:

a. The communication network must not violate any principles of the

architecture.

b. When a DBMS or a file system is used by more than one building block, it

must allow support of the architecture.

c. If a resource, such as the operating system or a DBMS is shared, and it

fails or otherwise becomes unavailable, it will impact all sharing building

blocks.

2,6.3 No accessibility assumptions between building blocks.

To sustain an operable environment, an instance of a building block

communicating with another building block instance must be able to respond to

the unavailability of the target building block instance in a manner which

preserves its own availability. A building block instance may be unavailable due

to a variety of situations, including failure of the communications network,

17

operational failure of the instance, incorrect building block version for an

instance, or intentional compromise of the integrity of the system. A building

block instance may respond to the absence of the target instance in wide range of

ways from announcing tots invoker it cannot complete a task to seeking

alternate building block instances providing required functionality to deferring

the work to be done until that needed building block becomes available.

Some implications of this principle are:

a) Because any instance of a building block or the communication

network to it may fail, mandatory building blocks cannot be assumed to

be available.

b) Also, the building blocks communicate in such a way that effects of a

delayed or non-existent response to one request is localized to that request

and thus will not impact the processing of other autonomous requests.

c) In case of an interactive building block interface, a mechanism is

required to detect the failure of either of the participants and take

appropriate action.

d) The inaccessibility of a building block may be the result or symptom of

an intentional compromise of the building block or infrastructure.

Appropriate security measures must be provided by a building block and

associated infrastructure.

2.6.4 Execution in only one recoverable domain

To sustain, preserve and restore the operability of function and data in case cif

failure of interoperating building blocks, a building block is deployed in one and

only one recoverable domain. A building block cannot span recoverable

domains.

18

operational failure of the instance, incorrect building block version for an

instance, or intentional compromise of the integrity of the system. A building

block instance may respond to the absence of the target instance in wide range of

ways from announcing to its invoker it cannot complete a task to seeking

alternate building block instances providing required functionality to deferring

the work to be done until that needed building block becomes available.

Some implications of this principle are:

a) Because any instance of a building block or the communication

network to it may fail, mandatory building blocks cannot be assumed to

be available.

b) Also, the building blocks communicate in such a way that effects of a

delayed or non-existent response to one request is localized to that: request

and thus will not impact the processing of other autonomous requests.

c) In case of an interactive building block interface, a mechanism is

required to detect the failure of either of the participants and take

appropriate action.

d) The inaccessibility of a building block may be the result or symptom of

an intentional compromise of the building block or infrastructure.

Appropriate security measures must be provided by a building block and

associated infrastructure.

2.6.4 Execution in only one recoverable domain

To sustain, preserve and restore the operability of function and data in case of

failure of interoperating building blocks, a building block is deployed in one and

only one recoverable domain. A building block cannot span recoverable

domains.

18

A recoverable domain is the span of control for a single logical unit of

work within a system. In the case where the logical unit of work is a transaction,

a recoverable domain is the span of control of a single transaction manager

within a system.

The distributed processing environment is the set of systems where each

system in the set is reachable by any other system in the set either directly or

indirectly via another system and the set of those services and. functions for the

interconnection of these systems.

Recoverability requirements:

A failure that results in inconsistent data or inaccessible functions or data is a

Catastrophic failure and every building block must have a strategy to recover,

such that it does not adversely affect the capability of the building block. The

recovery must be limited to involved building blocks and should not require

recovery of the building blocks that are not involved in the interactions that

failed. Rollbacks resulting from transaction aborts or failures are not

catastrophic. If a building block is installed more than once at a corporation, each

instance must be treated as an independent building block.

2.6.5 Location Independence

A building block is installed in a recoverable domain independent of what other

building blocks are installed in that domain. Thus an instance of a building block

cannot assume that another building block resides at a specific network location.

Thus no instance of any building block may be required to be installed in the

same recoverable domain as any other building block or any other instance of

itself. Moreover, it cannot be restricted form being installed in the same

recoverable domain as another building block or instance of itself. All the

addressable and identified units of the example architecture, such as building

19

A recoverable domain is the span of control for a single logical unit of

work within a system. In the case where the logical unit of work is a transaction,

a recoverable domain is the span of control of a single transaction manager

within a system.

The distributed processing environment is the set of systems where each

system in the set is reachable by any other system in the set either directly or

indirectly via another system and the set of those services and. functions for the

interconnection of these systems.

Recoverability requirements:

A failure that results in inconsistent data or inaccessible functions or data is a

Catastrophic failure and every building block must have a strategy to recover,

such that it does not adversely affect the capability of the building block. The

recovery must be limited to involved building blocks and should not require

recovery of the building blocks that are not involved in the interactions that

failed. Rollbacks resulting from transaction aborts or failures are not

catastrophic. If a building block is installed more than once at a corporation, each

instance must be treated as an independent building block.

2.6.5 Location Independence

A building block is installed in a recoverable domain independent of what other

building blocks are installed in that domain. Thus an instance of a building block

cannot assume that another building block resides at a specific network location.

Thus no instance of any building block may be required to be installed in the

same recoverable domain as any other building block or any other instance of

itself. Moreover, it cannot be restricted form being installed in the same

recoverable domain as another building block or instance of itself. All the

addressable and identified units of the example architecture, such as building

19

blocks, human users, contract providers, and units of infrastructure, are

identified by logical addresses that are network location independent.

2.6.6 Contracts among Building Blocks.

Definition: A contract is the definition both of the set of functionality and of the

interface to that functionality, and a commitment by the building block to offer

both set of functionality and that interface to all other building blocks, in a way

which adheres to the contract principles.

Contracts are the means of attaining interoperability among building

blocks. Therefore,

building blocks should offer general contracts as against contracts

tailored specifically for use by a particular interfacing building block.

the syntax encoding must be widely used and have general industry

acceptance, utilizing appropriate international and national standards

where available.

relevant infrastructure functions must adhere to a set of standards

agreed upon among the suppliers and deployers of a building block,

- the agreed upon standards should be targeted towards industry and the

emerging national and international standards,

implementation of a building block must be transparent to the invoker

of the building block's contract providers, and

the definition of contracts must be precise and explicit:, and made

available to all deployers and implementors of a building blocks.

These criteria are satisfied when the interactions among building blocks

adhere to the principles for contracts stated as follows:

A. Use of Standards,

B. Restricted Set of Syntax Encodings,

20

blocks, human users, contract providers, and units of infrastructure, are

identified by logical addresses that are network location independent.

2.6.6 Contracts among Building Blocks.

Definition: A contract is the definition both of the set of functionality and of the

interface to that functionality, and a commitment by the building block to offer

both set of functionality and that interface to all other building blocks, in a way

which adheres to the contract principles.

Contracts are the means of attaining interoperability among building

blocks. Therefore,

- building blocks should offer general contracts as against contracts

tailored specifically for use by a particular interfacing building block.

- the syntax encoding must be widely used and have general industry

acceptance, utilizing appropriate international and national standards

where available.

- relevant infrastructure functions must adhere to a set of standards

agreed upon among the suppliers and deployers of a building block,

- the agreed upon standards should be targeted towards industry and the

emerging national and international standards,

- implementation of a building block must be transparent to the invoker

of the building block's contract providers, and

- the definition of contracts must be precise and explicit:, and made

available to all deployers and implementors of a building blocks.

These criteria are satisfied when the interactions among building blocks

adhere to the principles for contracts stated as follows:

A. Use of Standards,

B. Restricted Set of Syntax Encodings,

20

C. Isolation from Building Block Internals,

D. Release Independence,

E. Equality of Invocation,

F. Well Defined Interfaces,

G. Location Independence,

H. No Contract Accessibility Assumptions,

I. Recognition of Authorized Humans and Building Blocks,

J. Minimum Trust of Invoker,

K. Maintain Identity of Invoking Human and Building Block,

L. Security Audits.

We will not go into a detailed discussion of these principles.

2.6.7 Secure Environment.

A building block must provide a secure environment, provide for the recognition

of authorized humans and building blocks, and audit security relevant events

according to following guidelines:

There must be no entry points to building block functions other than

those defined in the offered contracts, or in the case of user layer building

blocks, those provided for authorized secure human access.

- Sensitive information must be protected appropriately. These protective

mechanism should be provided by the infrastructure.

The identity of the invoking human and building block must be

maintained and passed through to any other building block.

- Depending on their security requirements, building blocks may need to

re-authenticate the identity of invoking humans and/or building blocks.

- Any access to functions and data within a building block must be limited

to authorized invokers. This may be provided by the infrastructure.

21

C. Isolation from Building Block Internals,

D. Release Independence,

E. Equality of Invocation,

F. Well Defined Interfaces,

G. Location Independence,

H. No Contract Accessibility Assumptions,

I. Recognition of Authorized Humans and Building Blocks,

J. Minimum Trust of Invoker,

K. Maintain Identity of Invoking Human and Building Block,

L. Security Audits.

We will not go into a detailed discussion of these principles.

2.6.7 Secure Environment.

A building block must provide a secure environment, provide for the recognition

of authorized humans and building blocks, and audit security relevant events

according to following guidelines:

- There must be no entry points to building block functions other than

those defined in the offered contracts, or in the case of user layer building

blocks, those provided for authorized secure human access.

- Sensitive information must be protected appropriately. These protective

mechanism should be provided by the infrastructure.

- The identity of the invoking human and building block must be

maintained and passed through to any other building block.

- Depending on their security requirements, building blocks may need to

re-authenticate the identity of invoking humans and/or building blocks.

- Any access to functions and data within a building block must be limited

to authorized invokers. This may be provided by the infrastructure.

21

- All building blocks must have a capability to provide audit information

at a level coinciding with the security requirements.

2.7 Data Layer.

Fundamental to our integration architecture is the separation of data, which is in

the data layer, from the operations and functions in the processing layer and the

user interaction functions in the user layer. The data layer contains functionality

to support the description of a particular domain's information objects.

Each Data Layer Building Block must adhere to all of the general building

block principles. The separation of data management functions from specific

processing functions provides a framework whereby future technology advances

in data base management and heterogeneous distributed data base management

systems can be utilized without major changes into building blocks other than

the affected data layer building block. The data layer is not merely a data access

layer, but it contains functionality to provide invokers with update operations

that will preserve the semantic integrity of the totality of the data, including

security measures to insure only authorized building blocks on behalf of

authorized users to invoke relevant contracts. Thus in summary we can say that

the data layer includes as a whole the create, update, delete; ad-hoc and pre-

defined retrieval; semantic consistency of data; support of redundancy

management.

2.8 User Layer.

This is the layer which provides the means for human users to accomplish the

automated portions of their job. The user layer serves as an agent for carrying

out the user's tasks by providing functionality and accessing functionality of

other building blocks, which may provide data, processing, or other intelligence

22

- All building blocks must have a capability to provide audit information

at a level coinciding with the security requirements.

2.7 Data Layer.

Fundamental to our integration architecture is the separation of data, which is in

the data layer, from the operations and functions in the processing layer and the

user interaction functions in the user layer. The data layer contains functionality

to support the description of a particular domain's information objects.

Each Data Layer Building Block must adhere to all of the general building

block principles. The separation of data management functions from specific

processing functions provides a framework whereby future technology advances

in data base management and heterogeneous distributed data base management

systems can be utilized without major changes into building blocks other than

the affected data layer building block. The data layer is not merely a data access

layer, but it contains functionality to provide invokers with update operations

that will preserve the semantic integrity of the totality of the data, including

security measures to insure only authorized building blocks on behalf of

authorized users to invoke relevant contracts. Thus in summary we can say that

the data layer includes as a whole the create, update, delete; ad-hoc and pre-

defined retrieval; semantic consistency of data; support of redundancy

management.

2.8 User Layer.

This is the layer which provides the means for human users to accomplish the

automated portions of their job. The user layer serves as an agent for carrying

out the user's tasks by providing functionality and accessing functionality of

other building blocks, which may provide data, processing, or other intelligence

22

required to meet the user's business needs. The user layer may access other

building blocks through contract invocations with those building blocks. One of

the purposes of this is to hide the complexity of computer and communications

so that users may focus directly on to their task. The other fundamental purpose

of the user layer is to provide means by which humans can make of use of the

functionality provided within the user, processing, and data layers to meet their

business needs.

The user layer building block is a deployable unit that contains

functionality that supports direct interaction with a human. Any function that is

related to the concerned domain and interacts with a human belongs and resides

only in a user layer building block. The complexity of these functions range from

displaying data to interpreting a voice activated signal. The key idea is direct

interaction with a human.

2.9 Processing Layer.

The processing layer provides a functional abstraction that does not presume

interaction with a human. Functionality in the processing layer is the

functionality that can be shared among various work tasks, or operate in the

background or batch, or is long running. Processing layer building blocks among

other functions crunch numbers, construct report contents (but: not the format of

the report) and complex retrievals, control process flows, coordinate multiple

tasks and manage relationships and behavior between individual user tasks

encapsulated in different user layer building blocks, and provide coordination of

human interactions, activity control, and access to shared objects encapsulated

among different user layer building blocks.

Processing layer building blocks do not own data, but they use and

produce data. They can obtain data from and send data to the data layer. To do

23

required to meet the user's business needs. The user layer may access other

building blocks through contract invocations with those building blocks. One of

the purposes of this is to hide the complexity of computer and communications

so that users may focus directly on to their task. The other fundamental purpose

of the user layer is to provide means by which humans can make of use of the

functionality provided within the user, processing, and data layers to meet their

business needs.

The user layer building block is a deployable unit that contains

functionality that supports direct interaction with a human. Any function that is

related to the concerned domain and interacts with a human belongs and resides

only in a user layer building block. The complexity of these functions range from

displaying data to interpreting a voice activated signal. The key idea is direct

interaction with a human.

2.9 Processing Layer.

The processing layer provides a functional abstraction that does not presume

interaction with a human. Functionality in the processing layer is the

functionality that can be shared among various work tasks, or operate in the

background or batch, or is long running. Processing layer building blocks among

other functions crunch numbers, construct report contents (but: not the format of

the report) and complex retrievals, control process flows, coordinate multiple

tasks and manage relationships and behavior between individual user tasks

encapsulated in different user layer building blocks, and provide coordination of

human interactions, activity control, and access to shared objects encapsulated

among different user layer building blocks.

Processing layer building blocks do not own data, but they use and

produce data. They can obtain data from and send data to the data layer. To do

23

this they issue a request to a appropriate data layer building block. That DLBB is

now responsible for accessing the data and returning the desired values.

Based on the discussion of the last few section of this chapter, we will now

discuss the example prototype that was developed to conform to the concepts of

the architecture described above. First we will go into the details of the

requirements of the unautomated system. Then we will focus on the previous

attempt to develop the prototype Computer Science Department Information

System based on the channel based building block architecture. These are the

main points of discussion of Chapter-3.

The chapters following the third one go into the

enhancement/improvements and detailed design issues of this Enhanced

Information System for CS Department.

24

this they issue a request to a appropriate data layer building block. That DLBB is

now responsible for accessing the data and returning the desired values.

Based on the discussion of the last few section of this chapter, we will now

discuss the example prototype that was developed to conform to the concepts of

the architecture described above. First we will go into the details of the

requirements of the unautomated system. Then we will focus on the previous

attempt to develop the prototype Computer Science Department Information

System based on the channel based building block architecture. These are the

main points of discussion of Chapter-3.

The chapters following the third one go into the

enhancement/improvements and detailed design issues of this Enhanced

Information System for CS Department.

24

CHAPTER 3

FUNCTIONAL OVERVIEW OF THE CS DEPARTMENT

INFORMATION SYSTEM

3.1 Operations and Requirements of CS Information System

First of all we look into the requirements of the Computer Science Department

and its related operations, based on which we have developed a distributed

information system conforming to the principles of systems integration. As with

any department in a University, the CS department is organized into various

entities, such as Faculty/Staff members, students studying in that department,

courses being taught/studied by faculty/students respectively. And there are

various activities associated with these entities, such as, student registration

which requires information on which faculty is teaching which subject, when,

where and whether any prerequisite courses are needed for that particular

course or not. Thus it involves other departments such as registrar's department,

admissions office, finance department, international student's office and

Graduate/Undergraduate studies office; which are interested in the departments

information relating to the faculty members and the students. These departments

may be located in different buildings. If all of these operations were not

automated it would be very tedious job to keep the records of students and

faculty members up to date across all of the above mentioned departments, due

to variety of reasons, including time delays, human inefficiency, inaccuracy etc.

The major operations relating to the CS department are the student admission,

registration, and certain other basic data management functions for each of the

entities and some queries and specialized reports for the use by students and/or

administrative officials and faculty members.

25

CHAPTER 3

FUNCTIONAL OVERVIEW OF THE CS DEPARTMENT

INFORMATION SYSTEM

3.1 Operations and Requirements of CS Information System

First of all we look into the requirements of the Computer Science Department

and its related operations, based on which we have developed a distributed

information system conforming to the principles of systems integration. As with

any department in a University, the CS department is organized into various

entities, such as Faculty/Staff members, students studying in that department,

courses being taught/studied by faculty/students respectively. And there are

various activities associated with these entities, such as, student registration

which requires information on which faculty is teaching which subject, when,

where and whether any prerequisite courses are needed for that particular

course or not. Thus it involves other departments such as registrar's department,

admissions office, finance department, international student's office and

Graduate/Undergraduate studies office; which are interested in the departments

information relating to the faculty members and the students. These departments

may be located in different buildings. If all of these operations were not

automated it would be very tedious job to keep the records of students and

faculty members up to date across all of the above mentioned departments, due

to variety of reasons, including time delays, human inefficiency, inaccuracy etc.

The major operations relating to the CS department are the student admission,

registration, and certain other basic data management functions for each of the

entities and some queries and specialized reports for the use by students and/or

administrative officials and faculty members.

25

Thus the system will have basic add, delete, list all, view a specific

information, certain specialized query options such as, Courses taught by a

particular faculty, courses registered by a student and number of students in a

particular course etc. The system is very simple in its range of operations, but it

serves the underlying design issues.

Thus, we strive to have a application for CS department that can be

accessed from various locations, from various computer systems, with minimum

of information redundancy, no duplication of code and high accuracy and

efficiency of the desired tasks. A prototype DIS application has been developed

previously that conforms to the Generic Integration Framework principles briefly

explained in the first chapter. One of the goals of this thesis is to improve this

DIS system in its design so that it conforms more closely to the framework and

the underlying integration architecture. The other fundamental objectives of this

work are to compare the traditional system development life cycle with one in

the integrated system development efforts. The improved version of the DIS

system has been developed separately using two different communication tools,

with the purpose of comparing their infrastructural facilities as against the needs

of the systems integration development. Since the basic nature of the prototype is

distributed the next section tries to focus on the differences between centralized

systems and the distributed integrated systems.

3.2 Distribution Transparency in an integrated System

The data (information) and the software that constitute an application system

reside on a single hardware machine, with associated secondary storage devices

such as disks for on-line data storage and tapes for backup. Such a system is

called Centralized Application System, since all system components reside at a

single computer or site.

26

Thus the system will have basic add, delete, list all, view a specific

information, certain specialized query options such as, Courses taught by a

particular faculty, courses registered by a student and number of students in a

particular course etc. The system is very simple in its range of operations, but it

serves the underlying design issues.

Thus, we strive to have a application for CS department that can be

accessed from various locations, from various computer systems, with minimum

of information redundancy, no duplication of code and high accuracy and

efficiency of the desired tasks. A prototype DIS application has been developed

previously that conforms to the Generic Integration Framework principles briefly

explained in the first chapter. One of the goals of this thesis is to improve this

DIS system in its design so that it conforms more closely to the framework and

the underlying integration architecture. The other fundamental objectives of this

work are to compare the traditional system development life cycle with one in

the integrated system development efforts. The improved version of the DIS

system has been developed separately using two different communication tools,

with the purpose of comparing their infrastructural facilities as against the needs

of the systems integration development. Since the basic nature of the prototype is

distributed the next section tries to focus on the differences between centralized

systems and the distributed integrated systems.

3.2 Distribution Transparency in an integrated System

The data (information) and the software that constitute an application system

reside on a single hardware machine, with associated secondary storage devices

such as disks for on-line data storage and tapes for backup. Such a system is

called Centralized Application System, since all system components reside at a

single computer or site.

26

In recent years, there has been a rapid trend towards the distribution of

computer systems over multiple sites and the interoperability among various

systems, which are spread over a heterogeneous computing environment(s). In a

good distributed system the distribution of functionality and information is

hidden from the user, as if the user were operating on a centralized system.

Distribution transparency is thus a combination of localization and access

transparency. As described in earlier chapters this is achieved by having a meta-

level controller framework and its underlying architecture, which influence the

design as well as the development of the system with the help of certain

infrastructural communication tools. The generic functionality provided by this

tools acts as a software bus/channel.

This concept of sharing of functionality of different independently

running systems in order to achieve interoperability, reusability and consistency

and integrity of data, addresses the need to study the security, consistency and

validity issues in an Integrated System environment:. Those are precisely the

issues that have been looked into while developing the new prototype. But

before we go into the details of the newer implementation of the prototype let us

first understand the implementation and the problems related to the DIS system.

Then we will look into some desired improvements and how much has been

achieved in the improved version, the EJS.

3.3 Overview of the DIS system Implementation

The DIS (7) was built based on the concepts of the integration architecture

described in chapter 2. It was the first attempt in NJIT to develop a distributed

system based on systems integration principles, and hence provides a basis to

the objective of this thesis. Thus it is very important to understand it and put

some light on the concepts of fully transparent communication between the

27

In recent years, there has been a rapid trend towards the distribution of

computer systems over multiple sites and the interoperability among various

systems, which are spread over a heterogeneous computing environment(s). In a

good distributed system the distribution of functionality and information is

hidden from the user, as if the user were operating on a centralized system.

Distribution transparency is thus a combination of localization and access

transparency. As described in earlier chapters this is achieved by having a meta-

level controller framework and its underlying architecture, which influence the

design as well as the development of the system with the help of certain

infrastructural communication tools. The generic functionality provided by this

tools acts as a software bus/channel.

This concept of sharing of functionality of different independently

running systems in order to achieve interoperability, reusability and consistency

and integrity of data, addresses the need to study the security, consistency and

validity issues in an Integrated System environment:. Those are precisely the

issues that have been looked into while developing the new prototype. But

before we go into the details of the newer implementation of the prototype let us

first understand the implementation and the problems related to the DIS system.

Then we will look into some desired improvements and how much has been

achieved in the improved version, the EIS.

3.3 Overview of the DIS system Implementation

The DIS (7) was built based on the concepts of the integration architecture

described in chapter 2. It was the first attempt in NJIT to develop a distributed

system based on systems integration principles, and hence provides a basis to

the objective of this thesis. Thus it is very important to understand it and put

some light on the concepts of fully transparent communication between the

27

building blocks of a system through a software bus mechanism. We also discuss

the possible improvements that can be made to the DIS, so as to fine tune the

rough edges of it as well as adding new properties and characteristics to it. The

ultimate goal is to have a system that conforms more and more closely to the

systems integration framework and also addresses information consistency and

security issues. Another p[oint is to evaluate a more sophisticated approach to

the software bus concept.

Let us begin by looking into what kind of functionality is provided by DIS

(7). The user of the DIS can typically be divided into following categories, a

student, a member of faculty, CS department administrative staff, staff of

registrar's office, and the Chairperson of the department, faculty advisors, and

staff of the other offices related to student and faculty information. Users from

each of these categories are interested in different functionality of the system

and hence can have different views of the system. The DIS has the detailed

information on each of the students registered under CS department and also the

information on the faculty members of the department, and the courses offered

by the department. It provides functionality to Add, Delete, Update, View, and

List these information so as to assist the user in completing his/her tasks at hand

easily and efficiently. It also provides certain specialized queries for the purpose

of report generation and statistical information retrieval. The user is asked to

input certain information, such as Student Identification Number, or Faculty

Social security Number, etc. in order to process user's request. The system has

functionality, that interacts with the human user directly, and some relate only to

the raw data in the data repositories, while some depend on this data to produce

some other form of data, or change the existing data after doing some processing

and/or computations, formatting, reorganizing, etc (7).

28

building blocks of a system through a software bus mechanism. We also discuss

the possible improvements that can be made to the DIS, so as to fine tune the

rough edges of it as well as adding new properties and characteristics to it. The

ultimate goal is to have a system that conforms more and more closely to the

systems integration framework and also addresses information consistency and

security issues. Another p[oint is to evaluate a more sophisticated approach to

the software bus concept.

Let us begin by looking into what kind of functionality is provided by DIS

(7). The user of the DIS can typically be divided into following categories, a

student, a member of faculty, CS department administrative staff, staff of

registrar's office, and the Chairperson of the department, faculty advisors, and

staff of the other offices related to student and faculty information. Users from

each of these categories are interested in different functionality of the system

and hence can have different views of the system. The DIS has the detailed

information on each of the students registered under CS department and also the

information on the faculty members of the department, and the courses offered

by the department. It provides functionality to Add, Delete, Update, View, and

List these information so as to assist the user in completing his/her tasks at hand

easily and efficiently. It also provides certain specialized queries for the purpose

of report generation and statistical information retrieval. The user is asked to

input certain information, such as Student Identification Number, or Faculty

Social security Number, etc. in order to process user's request. The system has

functionality, that interacts with the human user directly, and some relate only to

the raw data in the data repositories, while some depend on this data to produce

some other form of data, or change the existing data after doing some processing

and/or computations, formatting, reorganizing, etc (7).

28

If we compare this to our example architecture, this application can be

easily divided into three layers of functionality based on the separation of

concerns principle, viz. User Layer, Data Layer and Processing layer. The tool

used by the DIS system developer is the Sun's Remote Procedure Calls to achieve

distributed nature of the application.

The systems has four building blocks (executables) communicating with it

each other depending on user request. These are frdbs (Faculty Building Block),

rrdbs (Register BB), srdbs (Student BB), crdbs (Course BB); located on two

different machines. Any of these four building blocks can be put on any of the

machines. The user layer building block is in this case a client program through

which the user has access to the above mentioned building blocks. This will

result in multiple copies of the user layer building block on various machines

from which the user wants to access it. Thus it involves duplication of code, and

certain incompatibility issues as regards to the compilers and display devices

used by those machines.

There are certain other drawbacks into the DIS system, such as improper

implementation of data and the processing layer building blocks. It does not look

into the issues of building block failure and security of data repositories. Thus

the following section lists some improvements that can be made to DIS system.

3.4 List of Possible Improvements

1. Having a server building block for User-Interface.

The DIS system has a drawback, among others, of duplicating the user interface

programs on each of the machines from which the building blocks of the

application are to be accessed. Thus this approach duplicates the functionality

related to the Menu-Handling and Data Entry routines, and the other routines

that require direct involvement of a human being. I disagree with this approach

29

If we compare this to our example architecture, this application can be

easily divided into three layers of functionality based on the separation of

concerns principle, viz. User Layer, Data Layer and Processing layer. The tool

used by the DIS system developer is the Sun's Remote Procedure Calls to achieve

distributed nature of the application.

The systems has four building blocks (executables) communicating with it

each other depending on user request. These are frdbs (Faculty Building Block),

rrdbs (Register BB), srdbs (Student BB), crdbs (Course BB); located on two

different machines. Any of these four building blocks can be put on any of the

machines. The user layer building block is in this case a client program through

which the user has access to the above mentioned building blocks. This will

result in multiple copies of the user layer building block on various machines

from which the user wants to access it. Thus it involves duplication of code, and

certain incompatibility issues as regards to the compilers and display devices

used by those machines.

There are certain other drawbacks into the DIS system, such as improper

implementation of data and the processing layer building blocks. It does not look

into the issues of building block failure and security of data repositories. Thus

the following section lists some improvements that can be made to DIS system.

3.4 List of Possible Improvements

1. Having a server building block for User-Interface.

The DIS system has a drawback, among others, of duplicating the user interface

programs on each of the machines from which the building blocks of the

application are to be accessed. Thus this approach duplicates the functionality

related to the Menu-Handling and Data Entry routines, and the other routines

that require direct involvement of a human being. I disagree with this approach

29

as it is not efficient and is a waste of efforts and storage space. It also puts certain

limitations on the portability / remote accessibility issues of the system due to

incompatibility of the utility softwares / tools on various machines. Therefore

the better alternative is to have one server machine which has the user-interface

building block(s), which provide functionality that require direct involvement of

a human being. Now the application which wants to access these functionality

can build contracts with the necessary and sufficient building blocks.

This will enable the programmers to provide view for the different

categories of the users of a particular system. This approach will also eliminate

the hassles of installing the user interface programs on each of the required

machines/systems from which the application is supposed to be accessed.

2. Better Building Block Implementation

From my observations while using the DIS system, and studying its

design, I have found that it does not conform to our example integration

architecture. In my view it was designed with a different kind of interpretation of

the principle of building blocks and hence the building blocks have misgrouped

functionality and also the application as a whole has not been divided into three

logical layers based on the type of functionality. This thus defeats the separation

of concerns principle which we are looking for. Though he DIS system claims to

conform to the architecture and its building block principles, it contradicts itself

in the explanation of the design.

In my view a building block from a programmers point of view is a

runnable entity, an executable, or a software system that conforms to the contract

rules of the architecture and provides clear and detailed specification for

accessing its functionality. The functionality it provides should conform to the

principle of three kinds of functionality layers and should provide functionality

relating only to one of the three layers.

30

as it is not efficient and is a waste of efforts and storage space. It also puts certain

limitations on the portability / remote accessibility issues of the system due to

incompatibility of the utility softwares / tools on various machines. Therefore

the better alternative is to have one server machine which has the user-interface

building block(s), which provide functionality that require direct involvement of

a human being. Now the application which wants to access these functionality

can build contracts with the necessary and sufficient building blocks.

This will enable the programmers to provide view for the different

categories of the users of a particular system. This approach will also eliminate

the hassles of installing the user interface programs on each of the required

machines/systems from which the application is supposed to be accessed.

2. Better Building Block Implementation

From my observations while using the DIS system, and studying its

design, I have found that it does not conform to our example integration

architecture. In my view it was designed with a different kind of interpretation of

the principle of building blocks and hence the building blocks have misgrouped

functionality and also the application as a whole has not been divided into three

logical layers based on the type of functionality. This thus defeats the separation

of concerns principle which we are looking for. Though tile DIS system claims to

conform to the architecture and its building block principles, it contradicts itself

in the explanation of the design.

In my view a building block from a programmers point of view is a

runnable entily, an executable, or a software system that conforms to the contract

rules of the architecture and provides clear and detailed specification for

accessing its functionality. The functionality it provides should conform to the

principle of three kinds of functionality layers and should provide functionality

relating only to one of the three layers.

30

3. Consistency and Security issues of building blocks

The DIS system does not look into the consistency and security issues of

the information maintained and managed by the application. Thus as one of the

improvements to it the enhanced version of the application will also focus on the

failure of building blocks and its consequences, a primitive commit protocol

implementation.

This can be best explained when we discuss the implementation of the

enhanced version (EIS, Enhanced Information System) in detail.

4. Improvement to the Trader

As it stands now the DIS system, since it has been developed using Sun

RPC tool, has some restrictions in message passing and also requires prior

knowledge of the target building blocks. Thus we need to look into these two

issues relating to the trader, which serves as a software bus for all the message

passing mechanisms among the building blocks.

5. Physically distributed Data

We have looked into the aspect of physically distributed data repositories,

but realized soon enough that by distributing data on different machines we

would first of all complicate the data management algorithms and also give rise

to a few more consistency and security issues. And on top of everything the idea

of distributing a data repository of a particular entity does not conform to our

architectural requirements. This is because of the data layer principles discussed

in chapter 2.

6. Evaluation of Features of another Tool

The last, but very important change from the DIS system is use of another

communication tool called ANSAWARE, that is based on ANSA architecture's

principles. Here we will keep the design same as in the RPC-version of the

31

3. Consistency and Security issues of building blocks

The DIS system does not look into the consistency and security issues of

the information maintained and managed by the application. Thus as one of the

improvements to it the enhanced version of the application will also focus on the

failure of building blocks and its consequences, a primitive commit protocol

implementation.

This can be best explained when we discuss the implementation of the

enhanced version (EIS, Enhanced Information System) in detail.

4. Improvement to the Trader

As it stands now the DIS system, since it has been developed using Sun

RPC tool, has some restrictions in message passing and also requires prior

knowledge of the target building blocks. Thus we need to look into these two

issues relating to the trader, which serves as a software bus for all the message

passing mechanisms among the building blocks.

5. Physically distributed Data

We have looked into the aspect of physically distributed data repositories,

but realized soon enough that by distributing data on different machines we

would first of all complicate the data management algorithms and also give rise

to a few more consistency and security issues. And on top of everything the idea

of distributing a data repository of a particular entity does not conform to our

architectural requirements. This is because of the data layer principles discussed

in chapter 2.

6. Evaluation of Features of another Tool

The last, but very important change from the DIS system is use of another

communication tool called ANSAWARE, that is based on ANSA architecture's

principles. Here we will keep the design same as in the RPC-version of the

31

enhanced system, and look into the issues discussed above and then compare

and evaluate it usage with the corresponding features in RPC implementation.

32

enhanced system, and look into the issues discussed above and then compare

and evaluate it usage with the corresponding features in RPC implementation.

32

CHAPTER 4

THE ROLE OF RPC IN THE IMPLEMENTATION

Remote procedure call (RPC)s are a method of interprocess communication over

a network. The benefits of RPCs is that they allow a programmer to program at a

higher level of abstraction than most network interprocess communication

mechanisms. This abstraction means that the programmer need not learn a new

syntax to create a distributed application or network service. RPC uses XDR

routines to marshall data on a network. The process of making a remote

procedure call is very much like that of making any procedure call. The reason

we even call this a "procedure call" is because the intent: is to make it appear to

the programmer that a normal procedure call is taking place. We call the caller, a

client, and the callee the server. We use the term request to refer to the client

calling the remote procedure, and the term response to describe the remote

procedure returning its results to the client.

4.1 How Does RPC Work?

Figure 4.1 shows the steps that normally take place in a remote procedure call.

The numbered steps in Figure 4.1 are executed in order.

Step 1..

The client calls a local procedure, called the client stub. It appears to the

client that the client stub is the actual server procedure that it wants to

call. The purpose of the stub is to package up the arguments to the remote

procedure, possibly put them into some standard format and then build

one or more network messages. The packaging of the client's arguments

into a network message is termed marshalling.

33

CHAPTER 4

THE ROLE OF RPC IN THE IMPLEMENTATION

Remote procedure call (RPC)s are a method of interprocess communication over

a network. The benefits of RPCs is that they allow a programmer to program at a

higher level of abstraction than most network interprocess communication

mechanisms. This abstraction means that the programmer need not learn a new

syntax to create a distributed application or network service. RPC uses XDR

routines to marshall data on a network. The process of making a remote

procedure call is very much like that of making any procedure call. The reason

we even call this a "procedure call" is because the intent: is to make it appear to

the programmer that a normal procedure call is taking place. We call the caller, a

client, and the callee the server. We use the term request to refer to the client

calling the remote procedure, and the term response to describe the remote

procedure returning its results to the client.

4.1 How Does RPC Work?

Figure 4.1 shows the steps that normally take place in a remote procedure call.

The numbered steps in Figure 4.1 are executed in order.

Step 1..

The client calls a local procedure, called the client stub. It appears to the

client that the client stub is the actual server procedure that it wants to

call. The purpose of the stub is to package up the arguments to the remote

procedure, possibly put them into some standard format and then build

one or more network messages. The packaging of the client's arguments

into a network message is termed marshalling.

33

CLIENT PROCESS

CLIENT

ROUTINES

SERVER PROCESS

SERVER

ROUTINES

(1) (5) (10)

LOCAL

PROCEII)URE

CALL

()

SERVER
CLIENT

STUB
STUB

(2)

SYSTEM

CAL4.,

(9)

(9)

(7)
	

(4)

NETWORK

ROUTINES

LOCAL KERNEL

(3)

NETWORK

COMMUNICATIONS
i

ROUTINES

REMOTE KERNEL

NETWORK

Figure 4.1 Remote Procedure Call (RPC) Model

CLIENT PROCESS

CLIENT

ROUTINES

SERVER PROCESS

SERVER

ROUTINES

(1) (5) (10)

LOCAL

PROCEDURE

CALL

(6)

SERVER
CLIENT

STUB
STUB

(2)

SYSTEIM

CAL

(9)

(8)

(7) I 	I (4)

NETWORK NETWORK

ROUTINES

LOCAL KERNEL

(3)

NETWORK

COMMUNICATIONS.

ROUTINES

REMOTE KERNEL

34

Figure 4.1 Remote Procedure Call (RPC) Model

Step 2.

These network messages are sent to the remote system by the client stub,

by a system call into the local kernel.

Step 3.

The network messages are transferred to the remote system. Either a

connection-oriented or connectionless protocol is used.

Step 4.

A server stub procedure is waiting on the remote system for the client's

request. It unmarshals the arguments from the network messages and

possibly converts them.

Step 5.

The server stub executes a local procedure call to invoke the actual server

function, passing it the arguments that it received in the network

messages from the client stub.

Step 6.

When the server procedure is finished, it returns to the server stub,

returning whatever its return values are.

Step 7.

The server stub converts the return values, if necessary, and marshals

them into one or more network messages to send back to the client stub.

Step 8.

The messages get transferred back across the network to the client stub.

Step 9.

The client stub reads the messages from the local kernel.

35

Step 2.

These network messages are sent to the remote system by the client stub,

by a system call into the local kernel.

Step 3.

The network messages are transferred to the remote system. Either a

connection-oriented or connectionless protocol is used.

Step 4.

A server stub procedure is waiting on the remote system for the client's

request. It unmarshals the arguments from the network messages and

possibly converts them.

Step 5.

The server stub executes a local procedure call to invoke the actual server

function, passing it the arguments that it received in the network

messages from the client stub.

Step 6.

When the server procedure is finished, it returns to the server stub,

returning whatever its return values are.

Step 7.

The server stub converts the return values, if necessary, and marshals

them into one or more network messages to send back to the client stub.

Step 8.

The messages get transferred back across the network to the client stub.

Step 9.

The client stub reads the messages from the local kernel.

35

Step 10.

After possibly converting the return values, the client stub finally returns

to the client function. This appears to be a normal procedure return to the

client.

What the concept of RPC provides is the hiding of all the network

programming into the stub routines. This prevents the application programs

from having to worry about details such as sockets, network byte order, and the

like. There are many different implementations of RPC, such as, Sun

Microsystems' Open Network Computing(ONO/RPC, Xerox Courier/RPC,

Apollo's Network Computing Architecture (NCA)/RPC. We have used the

ONC/RPC implementation, so we will go into its detail where we explain its

usage with reference to building block definition and inter building block

communications.

4.2 How a Building Block is Defined

Since we have used. Sun RPC implementation, let us go into some detail about its

parts:

- rpcgen, a compiler that takes the definition of a remote procedure

interface, and generate the client stubs and the server stubs.

- XDR (eXternal Data Representation), a standard way of encoding data in

a portable fashion between different systems.

- A run-time library to handle all the details.

Please refer to Figure 4.2 to understand the files that are involved in

generating a Sun RPC program. The Figure is self-explanatory. In order to look

into the process of defining a building block let us consider a simple example of a

remote date and time service. Let's look at the specification file that is the input

for the rpcgen compiler.

36

Step 10.

After possibly converting the return values, the client stub finally returns

to the client function. This appears to be a normal procedure return to the

client.

What the concept of RPC provides is the hiding of all the network

programming into the stub routines. This prevents the application programs

from having to worry about details such as sockets, network byte order, and the

like. There are many different implementations of RPC, such as, Sun

Microsystems' Open Network Computing(ONC/RPC, Xerox Courier/RPC,

Apollo's Network Computing Architecture (NCA)/RPC. We have used the

ONC/RPC implementation, so we will go into its detail where we explain its

usage with reference to building block definition and inter building block

communications.

4.2 How a Building Block is Defined

Since we have used. Sun RPC implementation, let us go into some detail about its

parts:

- rpcgen, a compiler that takes the definition of a remote procedure

interface, and generate the client stubs and the server stubs.

- XDR (eXternal Data Representation), a standard way of encoding data in

a portable fashion between different systems.

- A run-time library to handle all the details.

Please refer to Figure 4.2 to understand the files that are involved in

generating a Sun RPC program. The Figure is self-explanatory. In order to look

into the process of defining a building block let us consider a simple example of a

remote date and time service. Let's look at the specification file that is the input

for the rpcgen compiler.

36

client main function

client stub

server program server procedure

rdate.c
CC

client program

CC

date nroc.c
server stub

date svc.c

RPC specification file

RPC

runtime

library

date_svc.c

Figure 4.2 Files Involved in Generating Sun RPC Pro

RPC specification file

server procedure

client main function

date nroc.c

rdate.c

server stub

date svc.c

client stub

CC

CC

RPC
runtime

library

server program

client program

date svc.c

Figure 4.2 Files Involved in Generating Sun RPC Program

AZAMET 	 thftede raw',

We declare both the procedures and specify the argument and return

value for each. We also assign a procedure number to each function (1 and 2),

along with program number (0x31234567) and a version number (1).

date.x - Specification of Remote Date and Time service.

Operations: bin_date_10 :binary date/time

str_date_10 takes a binary time and returns a string.

program DATE_PROG (/* Program Name */

version DATE_VERS {

long BIN_DATE(void) = 1; /*procedure # = 1 */

string STR_DATE(long) = 2; /*procedure # = 2 */

= 1; 	 /*version # = 1 */

= 0x31234567; 	 /*program # = 	0x31234567

This specification file. (date.x), from our building block point of view is a

specification of name of building block, its version number, definition of its

functionality (input arguments and output results). The key point to note here is

that the client building block that wants to request this date/time remote

functionality has to use the client stub and the XDR routines generated by the

rpcgen program with itself, while linking. Similarly the actual building block

program that provides this functionality has to use the server stub and the XDR

routines with itself.

A specification file in Sun RPC, which is a protocol definition file, defines

a building block for us. Thus, it is very important to decide which functions to

put in a protocol definition file. We still have to use our concepts about the

integration architecture while designing/deciding what functions can be

grouped into one specification file.

38

We declare both the procedures and specify the argument and return

value for each. We also assign a procedure number to each function (1 and 2),

along with program number (0x31234567) and a version number (1).

/* 	date.x - Specification of Remote Date and Time service.

Operations: bin_date_1() :binary date/time

str_date_1() takes a binary time and returns a string.

program DATE_PROG (/* Program Name */

version DATE_VERS {

long BIN_DATE(void) = 1; /*procedure # = 1 */

string STR_DATE(long) = 2; /*procedure # = 2 */

= 1; 	 /*version # = 1 */

} = 0x31234567; 	 /*program # = 0x31234567

This specification file. (date.x), from our building block point of view is a

specification of name of building block, its version number, definition of its

functionality (input arguments and output results). The key point to note here is

that the client building block that wants to request this date/time remote

functionality has to use the client stub and the XDR routines generated by the

rpcgen program with itself, while linking. Similarly the actual building block

program that provides this functionality has to use the server stub and the XDR

routines with itself.

A specification file in Sun RPC, which is a protocol definition file, defines

a building block for us. Thus, it is very important to decide which functions to

put in a protocol definition file. We still have to use our concepts about the

integration architecture while designing/deciding what functions can be

grouped into one specification file.

38

remote system

(-) tell

portmapper

(2)
(4)

local

system

Figure 43 Inter Building Block communication

Yti ira."7"4&&—lr' 	 AEx 1.4(.4.0102WErr,

remote system

system

local

(2)
(4)

Figure 43 Inter Building Block communication

tr.:Lb "Ersr..0.&—lr eyr.t.-reitZ 	i.EGrrnintints•

Thus from our integration architectural point of view and from the

programmer's point of view this protocol definition/specification file is a very

important, since it can serve as a building block specification document.

Now let us look at how these building blocks can communicate with each

other.

4.3 Inter Building Block Communication

Pictorially we have the processes shown in Figure 4.3. The steps shown in Figure

4.3 are executed in the following order:

Step 1.

When we start the server program on the remote system it creates a UDP

socket and binds any local port to the socket. It then calls a function in

RFC library, svc_register, to register its program number and version. This

function contacts the port mapper process to register itself. The port

mapper keeps track of the program number, version number, and the port

number.

Our building block then waits for a request from any other building block

or a client application program. All these actions are taken by the server

stub generated by the rpcgen compiler.

Step 2.

We start our application program (or through it another building block)

that then calls the cint_erente function. This call specifies the name of the

remote system, the program number, version number, and the protocol.

This function contacts the portrnapper on the remote system to find out

the UDP port of the server.

40

Thus from our integration architectural point of view and from the

programmer's point of view this protocol definition/specification file is a very

important, since it can serve as a building block specification document.

Now let us look at how these building blocks can communicate with each

other.

4.3 Inter Building Block Communication

Pictorially we have the processes shown in Figure 4.3. The steps shown in Figure

4.3 are executed in the following order:

Step 1.

When we start the server program on the remote system it creates a UDP

socket and binds any local port to the socket. It then calls a function in

RPC library, svc_register, to register its program number and version. This

function contacts the port mapper process to register itself. The port

mapper keeps track of the program number, version number, and the port

number.

Our building block then waits for a request from any other building block

or a client application program. All these actions are taken by the server

stub generated by the rpcgen compiler.

Step 2.

We start our application program (or through it another building block)

that then calls the clnt_crente function. This call specifies the name of the

remote system, the program number, version number, and the protocol.

This function contacts the portmapper on the remote system to find out

the UDP port of the server.

40

Step 3.

The client building block calls one of the operations from the date-

building block. This operation is defined in the client stub. This function

in the client stub sends a datagram to the server, using the UDP port

number from the previous step. It then waits for a response,

retransmitting the request a fixed number of times if a response isn't

received. The datagram is received on the remote system by the server

stub associated with our building block program. This stub determines

and calls the required procedure. When that particular function of the

building block returns to the server stub, the stub takes the return value,

converts it into the XDR standard format, and packages it into a datagram

for transmission back to the requester. When the response is received, the

client stub takes the value from the datagram, converts it as required, and

returns it to our client building block program.

4.4 RPC - Pros and Cons and Trade-Offs.

As is evident, taking something as simple as a procedure call and transforming it

into system calls, data conversions, and network communications, leads to a

greater chance of something going wrong. The goal is to make the use of RPC

transparent to the application, compared to calling a local procedure, but issues

of parameter/message passing, binding. transport protocol, exception handling,

call semantics, are important of be considered.

Parameter Passing

A single argument and a single result are allowed. Multiple arguments or

multiple results must be packaged into a structure. In other words it has

to send/receive in one-message format. This is a kind of restriction that

41

Step 3.

The client building block calls one of the operations from the date-

building block. This operation is defined in the client stub. This function

in the client stub sends a datagram to the server, using the UDP port

number from the previous step. It then waits for a response,

retransmitting the request a fixed number of times if a response isn't

received. The datagram is received on the remote system by the server

stub associated with our building block program. This stub determines

and calls the required procedure. When that particular function of the

building block returns to the server stub, the stub takes the return value,

converts it into the XDR standard format, and packages it into a datagram

for transmission back to the requester. When the response is received, the

client stub takes the value from the datagram, converts it as required, and

returns it to our client building block program.

4.4 RPC - Pros and Cons and Trade-Offs.

As is evident, taking something as simple as a procedure call and transforming it

into system calls, data conversions, and network communications, leads to a

greater chance of something going wrong. The goal is to make the use of RPC

transparent to the application, compared to calling a local procedure, but issues

of parameter/message passing, binding. transport protocol, exception handling,

call semantics, are important of be considered.

Parameter Passing

A single argument and a single result are allowed. Multiple arguments or

multiple results must be packaged into a structure. In other words it has

to send/receive in one-message format. This is a kind of restriction that

41

complicates things and takes away some flexibility of programming. This

requires packaging and unpacking of information, which will not be

necessary if had it allowed multiple arguments/results to be passed.

Binding

The port mapper daemon on the desired remote system is contacted to

locate a specific program and version. The requester building block has to

explicitly specify the name of the remote system and the transport

protocol. Thus the program has to know the location of the target building

block, which is not a perfect way of inter building block communication.

One of our goals is to hide the knowledge of building block location from

the programmer. Thus this requirement of explicit knowledge of the

location of a building block does not conform to full distribution

transparency property as we desire.

Transport Protocol

Sun RPC currently supports either UDP or TCP. There are some

differences in the call semantics for each one that we discuss below, which

are of special interest to us.

When a stream-oriented protocol such as TCP is used, there has to

be some way to delimit the records in the byte stream. Sun RPC uses a 32-

bit integer at the beginning of every record to specify the number of bytes

in the record.

When using UDP, the total size of the arguments must not generate

a UDP packet that exceeds 8192 bytes in length. Similarly the total size of

return values must. also be less than 8192 bytes. There is no such limit

when using TCP. This is one of the reasons why EIS uses the TCP

protocol.

42

complicates things and takes away some flexibility of programming. This

requires packaging and unpacking of information, which will not be

necessary if had it allowed multiple arguments/results to be passed.

Binding

The port mapper daemon on the desired remote system is contacted to

locate a specific program and version. The requester building block has to

explicitly specify the name of the remote system and the transport

protocol. Thus the program has to know the location of the target building

block, which is not a perfect way of inter building block communication.

One of our goals is to hide the knowledge of building block location from

the programmer. Thus this requirement of explicit knowledge of the

location of a building block does not conform to full distribution

transparency property as we desire.

Transport Protocol

Sun RPC currently supports either UDP or TCP. There are some

differences in the call semantics for each one that we discuss below, which

are of special interest to us.

When a stream-oriented protocol such as TCP is used, there has to

be some way to delimit the records in the byte stream. Sun RPC uses a 32-

bit integer at the beginning of every record to specify the number of bytes

in the record.

When using UDP, the total size of the arguments must not generate

a UDP packet that exceeds 8192 bytes in length. Similarly the total size of

return values must. also be less than 8192 bytes. There is no such limit

when using TCP. This is one of the reasons why EIS uses the TCP

protocol.

42

Exception Handling

When UDP protocol is used, it automatically times out and retransmits a

request for a functionality from a remote building block, if necessary. It

terminates and returns an error to the caller after a fixed number of

unsuccessful tries. If TCP is used, an error is also returned to the caller if

the connection is terminated by the server building block. There is no way

for a building block to send an interrupt to any other building block.

Call Semantics

Sun RPC protocol provides for every requester building block a unique

transaction ID, 32-bit integer termed arid. This ID is initialized to some

random number when a client (requester) handle is created. This is then

changed every time a new RPC request is made. Before returning the

results this ID is checked internally for a match. This is to ensure that the

response is from the request that the requester (client) made. This is one

reason why EIS fails to provide a primitive commit/rollback protocol.

If this is the case with the transaction IDs then how is it possible to

for UDP protocol to retransmit the request? The reason is that the U[)P

server functions have an option that causes the UDP server to remember

the requests that it receives. This is useful only in returning the saved

previous response. This approach, however, assumes that the previous

response must have been lost or damaged. Thus it is not useful in

implementing a primitive commit/rollback protocol.

We want to provide this commit/rollback feature for inter building

block transaction with the aim of providing security and consistency to

the data/information managed by the application, by the collection and

communication of various building blocks.

43

Exception Handling

• When UDP protocol is used, it automatically times out and retransmits a

request for a functionality from a remote building block, if necessary. It

terminates and returns an error to the caller after a fixed number of

unsuccessful tries. If TCP is used, an error is also returned to the caller if

the connection is terminated by the server building block. There is no way

for a building block to send an interrupt to any other building block.

Call Semantics

Sun RPC protocol provides for every requester building block a unique

transaction ID, 32-bit integer termed arid. This ID is initialized to some

random number when a client (requester) handle is created. This is then

changed every time a new RPC request is made. Before returning the

results this ID is checked internally for a match. This is to ensure that the

response is from the request that the requester (client) made. This is one

reason why EIS fails to provide a primitive commit/rollback protocol.

If this is the case with the transaction IDs then how is it possible to

for UDP protocol to retransmit the request? The reason is that the UDP

server functions have an option that causes the UDP server to remember

the requests that it receives. This is useful only in returning the saved

previous response. This approach, however, assumes that the previous

response must have been lost or damaged. Thus it is not useful in

implementing a primitive commit/rollback protocol.

We want to provide this commit/rollback feature for inter building

block transaction with the aim of providing security and consistency to

the data/information managed by the application, by the collection and

communication of various building blocks.

43

CHAPTER 5

THE ROLE OF ANSAWARE IN THE IMPLEMENTATION

ANSA is an architecture for Open Distributed Processing. ANSAWARE is an

example implementation of that architecture. ANSA supports the design and

construction of flexible distributed applications. It is not constrained by network

structure and size , or mixes of differing hardware and operating systems - and

goes beyond distributed operating systems, databases, networking.

5.1 ANSAware.

ANSAware is a suite of software for building Open Distributed Processing

systems, providing a basic platform and software development support in the

form of program generators and system management applications. ANSAware

provides a uniform view of a multi-vendor world, allowing system builders to

link together distributed components into network wide applications.

5.1.1 Objects and Interfaces

ANSAware allows applications to be written in an object-based style, using the

client/server model of interaction. An ANSAware object is an encapsulation of an

application and its data. An object provides services via Interfaces. Several named

operations may be provided in each interface which may be used either locally or

remotely by client objects. The object based approach allows the physical

separation of distributed program components to be managed effectively, and

allows the containment of system failure. To reduce complexity, transparency

mechanisms are available to hide the mechanics of distributing objects.

ANSAware cuts out the networking overheads.

44

CHAPTER 5

THE ROLE OF ANSAWARE IN THE IMPLEMENTATION

ANSA is an architecture for Open Distributed Processing. ANSAWARE is an

example implementation of that architecture. ANSA supports the design and

construction of flexible distributed applications. It is not constrained by network

structure and size , or mixes of differing hardware and operating systems - and

goes beyond distributed operating systems, databases, networking.

5.1 ANSAware.

ANSAware is a suite of software for building Open Distributed Processing

systems, providing a basic platform and software development support in the

form of program generators and system management applications. ANSAware

provides a uniform view of a multi-vendor world, allowing system builders to

link together distributed components into network wide applications.

5.1.1 Objects and Interfaces

ANSAware allows applications to be written in an object-based style, using the

client/server model of interaction. An ANSAware object is an encapsulation of an

application and its data. An object provides services via Interfaces. Several named

operations may be provided in each interface which may be used either locally or

remotely by client objects. The object based approach allows the physical

separation of distributed program components to be managed effectively, and

allows the containment of system failure. To reduce complexity, transparency

mechanisms are available to hide the mechanics of distributing objects.

ANSAware cuts out the networking overheads.

44

5.1.2 System Management

A suite of system management application extends the functions of the basic

platform. These management applications are themselves built using

ANSAware.

Trading

Traders give access to information about available servers. Trading

matches offers and requests for particular services, using service names,

interface types and service properties in combination as selection criteria.

In this way, the separate parts of a distributed application can find each

other on demand.

Also there are factories and node management facilities available.

5.1.3 TOOLS

Interface Definition Language (IDL) - specifies the operations available in an

interface. All interactions between ANSAware objects are via interface

specifications written in IDL, preventing errors and misuse.

STUBC - is the utility which complies an interface specification written in

IDL into stub routines and header files in C for inclusion in programs which will

provide and use that interface.

PREPC - is the preprocessor which extracts control commands from C

programs and translates them into calls to the stub procedures prepared by

STUBC. Control commands exist for declaring interfaces, performing trading

functions and calling operations in local or remote interfaces.

5.2 How Building Blocks are defined

Building blocks are defined as interfaces, using IDL specifications. We will

consider the same example as in the RPC explanation.

45

5.1.2 System Management

A suite of system management application extends the functions of the basic

platform. These management applications are themselves built using

ANSAware.

Trading

Traders give access to information about available servers. Trading

matches offers and requests for particular services, using service names,

interface types and service properties in combination as selection criteria.

In this way, the separate parts of a distributed application can find each

other on demand.

Also there are factories and node management facilities available.

5.1.3 TOOLS

Interface Definition Language (IDL) - specifies the operations available in an

interface. All interactions between ANSAware objects are via interface

specifications written in IDL, preventing errors and misuse.

STUBC - is the utility which complies an interface specification written in

IDL into stub routines and header files in C for inclusion in programs which will

provide and use that interface.

PREPC - is the preprocessor which extracts control commands from C

programs and translates them into calls to the stub procedures prepared by

STUBC. Control commands exist for declaring interfaces, performing trading

functions and calling operations in local or remote interfaces.

5.2 How Building Blocks are defined

Building blocks are defined as interfaces, using IDL specifications. We will

consider the same example as in the RPC explanation.

45

INTERFACE Definitions for Remote Date and Time Service

Define Operation bin_date that requires no arguments

and returns an INTEGER as a result

Define another operation str_date, that requires an

INTEGER

argument and returns a STRING as a result.

/* 	INTERFACE NAME */

date_time_service : INTERFACE

BEGIN

bin_date : OPERATION p RETURNS [result : INTEGER];

str_date : OPERATION [var : INTEGER] RETURNS [result2 STRING •

END.

This way we can define our building blocks using IDL. Please refer to

APPENDIX B for definitions of data layer building blocks of our EIS application.

EIS, ANSAware version, is a system similar to that developed using RPC. This

specification when compiled by stubc and when used with a service function,

will act as a service interface providing those functions to the other

interfaces/clients in the distributed environment.

46

** 	INTERFACE Definitions for Remote Date and Time Service

** 	Define Operation bin_date that requires no arguments

** 	and returns an INTEGER as a result

**

** 	Define another operation str_date, that requires an

** 	INTEGER

** 	argument and returns a STRING as a result.

*1

/* 	INTERFACE NAME */

date_time_service : INTERFACE

BEGIN

bin_date : OPERATION p RETURNS [result : INTEGER];

str_date : OPERATION [var : INTEGER] RETURNS [result2 STRING];

END.

This way we can define our building blocks using IDL. Please refer to

APPENDIX B for definitions of data layer building blocks of our EIS application.

EIS, ANSAware version, is a system similar to that developed using RPC. This

specification when compiled by stubc and when used with a service function,

will act as a service interface providing those functions to the other

interfaces/clients in the distributed environment.

46

5.3 Inter Building Block Communications

Step

When we start up the server program (i.e. the building block), it registers

itself with the trading function of ASNAware. Hence it is available to any

of the clients through the trading function. The trader keeps track of

various interface types (i.e. the various building blocks) that have

registered. Any client program or a building block that wishes to access a

building block has to import the services of that building block before

actually using its operations. This is done through the trader. The

servicing building block has to export its services to the world and should

also specify the maximum number of requests that it can handle

simultaneously.

Step - 2

We start our application program (or through it another building block)

that then imports the service of another building block by specifying its

name. It can then access any operation provided by the building block by

specifying its name and the operation to execute, along with required

arguments. Unlike RPC we can send multiple arguments and also receive

multiple results from the serving building block.

Step - 3

Since ANSAware also uses concepts of stubs, its mechanism of client

request and execution of operation and hence the response is pretty much

the same as RPC. But ANSAware being a more sophisticated tool, has

better features for distributed computing and hence is a value-added

package as compared to pure RPC: In case of delayed response or no

response from the server, the client building block will either time-out or

will try to look for relocation of the server building block onto some other

47

5.3 Inter Building Block Communications

Step - 1.

When we start up the server program (i.e. the building block), it registers

itself with the trading function of ASNAware. Hence it is available to any

of the clients through the trading function. The trader keeps track of

various interface types (i.e. the various building blocks) that have

registered. Any client program or a building block that wishes to access a

building block has to import the services of that building block before

actually using its operations. This is done through the trader. The

servicing building block has to export its services to the world and should

also specify the maximum number of requests that it can handle

simultaneously.

Step - 2

We start our application program (or through it another building block)

that then imports the service of another building block by specifying its

name. It can then access any operation provided by the building block by

specifying its name and the operation to execute, along with required

arguments. Unlike RPC we can send multiple arguments and also receive

multiple results from the serving building block.

Step - 3

Since ANSAware also uses concepts of stubs, its mechanism of client

request and execution of operation and hence the response is pretty much

the same as RPC. But ANSAware being a more sophisticated tool, has

better features for distributed computing and hence is a value-added

package as compared to pure RPC: In case of delayed response or no

response from the server, the client building block will either time-out or

will try to look for relocation of the server building block onto some other

47

location on the network; if not, then the request fails within a predefined

time limit. Also there is a facility for providing programmer's own

exception handling functions, instead of timing out the request.

5.4 Transparency Issues while working with ANSAware

Parameter Passing

Multiple arguments and multiple results are allowed. This is taken care of

very neatly in ANSAware. This adds to the flexibility of programming

and also reduces lot of effort which would otherwise be required to

marshal' and unmarshall the data.

Binding

First of all a building block service is asked from a local trader, upon

failure of which a master trader is consulted that finds out the actual

location of the service and hence will build a contract (IMPORT of

building block services) with the required block. Here we do not know the

location of the target building block at- any point of time. As a matter of

fact ANSAware will also look for a possible relocation of a building block

in the case of failed/delayed response from the server.

Exception Handling

The PREPC precompiter used by ANSAware provides some exception

handling. While coding a operation invocation statement in the client

program, if we use the "exception" clause, then we can code an exception

handler routine by ourselves using the status codes returned by an

operation. Regardless of whether an operation succeeds or fails, or times-

out, it will return some status-value, and depending on which of the given

status-lists the actual status-value appears in , one of these actions will be

taken: Continue, Abort, Signal. In the third case the programmer has to

48

location on the network; if not, then the request fails within a predefined

time limit. Also there is a facility for providing programmer's OW11

exception handling functions, instead of timing out the request.

5.4 Transparency Issues while working with ANSAware

Parameter Passing

Multiple arguments and multiple results are allowed. This is taken care of

very neatly in ANSAware. This adds to the flexibility of programming

and also reduces lot of effort which would otherwise be required to

marshal' and unmarshall the data.

Binding

First of all a building block service is asked from a local trader, upon

failure of which a master trader is consulted that finds out the actual

location of the service and hence will build a contract (IMPORT of

building block services) with the required block. Here we do not know the

location of the target building block at any point of time. As a matter of

fact ANSAware will also look for a possible relocation of a building block

in the case of failed/delayed response from the server.

Exception Handling

The PREPC precompiler used by ANSAware provides some exception

handling. While coding a operation invocation statement in the client

program, if we use the "exception" clause, then we can code an exception

handler routine by ourselves using the status codes returned by an

operation. Regardless of whether an operation succeeds or fails, or times-

out, it will return some status-value, and depending on which of the given

status-lists the actual status-value appears in , one of these actions will be

taken: Continue, Abort, Signal. In the third case the programmer has to

48

provide the exception handling routine. The return value of this

exception-handler determines the final action taken by the program.

Call Semantics

Since ANSAware uses the concept of Interface Refrences/Instances, and

each of these instances have a ID associated with it, every time a new

instance is created, its ID is changed from the previous one. Thus each of

the requests to a same building block service will also have multiple

instances having different IDs. In order to realize proper operation of an

ANSAware application the programmer has to discard the instances or

interface references once he/she is done with it. Thus it is not easy to keep

the history of transactions or operations, so that when the need arises we

can rollback them back or commit them together as a atomic unit.

However, we have not used ANSAware to its fullest capability

provides transaction mechanisms (THREADS) and certain other system

management tools as well as other utilities that can help realize a

transaction mechanism in future versions of EIS application.

Now we move on to the description of functionality and its

implementation using two different tools. Depending on our discussion here

and in the following chapter, we will be presenting conclusions in the Seventh

Chapter, which will focus further on the comparison of the two tools used.

49

provide the exception handling routine. The return value of this

exception-handler determines the final action taken by the program.

Call Semantics

Since ANSAware uses the concept of Interface Refrences/Instances, and

each of these instances have a ID associated with it, every time a new

instance is created, its ID is changed from the previous one. Thus each of

the requests to a same building block service will also have multiple

instances having different IDs. In order to realize proper operation of an

ANSAware application the programmer has to discard the instances or

interface references once he/she is done with it. Thus it is not easy to keep

the history of transactions or operations, so that when the need arises we

can rollback them back or commit them together as a atomic unit.

However, we have not used ANSAware to its fullest capability - it

provides transaction mechanisms (THREADS) and certain other system

management tools as well as other utilities that can help realize a

transaction mechanism in future versions of EIS application.

Now we move on to the description of functionality and its

implementation using two different tools. Depending on our discussion here

and in the following chapter, we will be presenting conclusions in the Seventh

Chapter, which will focus further on the comparison of the two tools used.

49

CHAPTER 6

REALIZATION AND/OR EVALUATION OF SUGGESTED

IMPROVEMENTS

6.1 Detailed Design of EIS.

EIS, Enhanced Information System, is a improved enhanced version of DIS. The

source code is completely new, but much of the functionality of DIS has been

regrouped and some of it has not been retained , since it did not give us any

useful, new results to help us on our goal of studying the systems integration

framework.

6.1.1 Entity Relationship Diagram

Figure 6.1, shows the various entities involved in the application and also their

relationships with each other. The figure is quite self-explanatory and hence is

not explained further.

6.1.2 Data Flow Diagram

Figures 6.2 - 6.6, shows the data flow diagrams at different levels and hence

shows in more detail the flow from one building block to the other building

block of the application.

6.1.3 Data Dictionary

Here, the abbreviations used in the ER Diagram and the Data flow diagrams

have been expanded to make their meanings clear to the reader.

50

CHAPTER 6

REALIZATION AND/OR EVALUATION OF SUGGESTED

IMPROVEMENTS

6.1 Detailed Design of EIS.

EIS, Enhanced Information System, is a improved enhanced version of DIS. The

source code is completely new, but much of the functionality of DIS has been

regrouped and some of it has not been retained , since it did not give us any

useful, new results to help us on our goal of studying the systems integration

framework.

6.1.1 Entity Relationship Diagram

Figure 6.1, shows the various entities involved in the application and also their

relationships with each other. The figure is quite self-explanatory and hence is

not explained further.

6.1.2 Data Flow Diagram

Figures 6.2 - 6.6, shows the data flow diagrams at different levels and hence

shows in more detail the flow from one building block to the other building

block of the application.

6.1.3 Data Dictionary

Here, the abbreviations used in the ER Diagram and the Data flow diagrams

have been expanded to make their meanings clear to the reader.

50

!AJOR

• MENOR

PA

Figure 6.1 aiby Relation Diagram for EIS Figure 6.1 Entily Relation Diagram far EIS

Screen

Display
Handler

user

request

handier

Registration Data

Figure 6.2 Level I : Dam Flow Diagram

U

S

E

R

uselect

rec data

frqst

user
request

handier

Faculty Data

FDLBB

le fdatacomm

fopret

crqst

fdatarqst

Course Data

disp_rcist

sresp 	rrqst

CDLBB

smenurqst

cdatacomatacomm

cdata
rqst

SDLBB

Student Data

sdatacomm

RDLBB

Registration Data

rdatacomm

Screen
Display
Handler

out_display

Figure 6.2 Level I : Data Flow Diagram

fview opretn

frqst

fupd opretn

Figure 63 Level 2: Data Flow Dimorarn Explosion of FDLBB

fview opretn

FVIEW—OP

fviewrqst

flist_opretn fopretn
frqst

fadd_opretn

FADD_OP fdel_opretn

FDEL_OP

fupd opretn

Figure 63 Level 2: Data Flow Diagram Explosion of FDLBB

rresp
fresp 	 fdabircist

PLBEI

RQST

HANDLER

precist

sr csp

Figure &4 Level 2: Data Flow Diagram Explosion of PLBB

preqst
PLBB

RQST

HANDLER

Fresp 	 fdatarqst

sresp

rresp

Figure &4 Level 2: Data Flow Diagram Explosion of PLBB

DATA DICTIONARY

1) SSN - Social Security Number of a Student

2) FN 	- First Name of Student

3) MIDDLE - Middle name or Initial of a Student

4) LNAME - Last Name of a Student

5) GPA - Grade Point Average

6) NROLL - Indicating if Enrolled or not

7) FSSN - Faculty Social Security number

8) NAME1 - First Name of Faculty

9) NAME2 - Middle Name of a Faculty

10) NAME3 - Last Name of Faculty

11) LOCN - Location of the Office of the Faculty

12) CRS[it] - Indiactes a Course, # = 1,2,3

'13) SECT[#] - Indicates Section # for a Course, #.1,2,

14) CRS-SECT - Course Section

15) CRS-ID - Course Identification Number

16) DESCRIPT - Description of a Course

17) PREREQS - Prerequisites of a Course

18) uselect - User Select Key for a Menu Option

19) rec_data - Data Entered by the User for a Data Entry

20) urqst - User Layer Building Blcok REquest

21) frqst - Faculty Data Layer Request

22) srqst - Student Data Layer Request

23) rrqst - Register Data Layer Request

24) crqs - Course Data Layer Request

25) disp_rqst - Display Request for a Menu or Data entry, or

Output

55

DATA DICTIONARY

1) SSN - Social Security Number of a Student

2) FNAME - First Name of Student

3) MIDDLE - Middle name or Initial of a Student.

4) LNAME - Last Name of a Student

5) GPA - Grade Point Average

6) NROLL - Indicating if Enrolled or not

7) FSSN - Faculty Social Security number

8) NAME1 - First Name of Faculty

9) NAME2 - Middle Name of a Faculty

10) NAME3 - Last Name of Faculty

11) LOCN - Location of the Office of the Faculty

12) CRS[#] - Indiactes a Course, # = 1,2,3

'13) SECT[#] - Indicates Section # for a Course, #=1,2,3

14) CRS-SECT - Course Section

15) CRS-ID - Course Identification Number

16) DESCRIPT - Description of a Course

17) PREREQS - Prerequisites of a Course

18) uselect - User Select Key for a Menu Option

19) rec_data - Data Entered by the User for a Data Entry

20) urqst - User Layer Building Blcok REquest

21) frqst - Faculty Data Layer Request

22) srqst - Student Data Layer Request

23) rrqst - Register Data Layer Request

24) crqst - Course Data Layer Request

25) disp_rqst - Display Request for a Menu or Data entry, or

Output

55

6.2 Implementation of ULBB

Here I will explain the improvements made to the user layer building blocks and

the logic behind the improvement. We will then discuss two individual

implementations using RPC and ANSAWARE respectively. The logic remains

the same for both the implementations.

6.2.1 Explanation of the Improvement

As we have discussed before, DIS had a program copied onto two different

machines, using it to access the various building blocks of the application. The

improvement that we have made here is to have a User Layer Building Block

(ULBB) lying on a single server machine, and the client of the application will

access it through its own program that will make a request for ULBB via the

trader function. This client program will also access all the other building blocks

by making a request through the trader. Thus we do not have to duplicate the

entire source code onto different machines for being able to access it from

different places. Now we can still access it from different machines, with the

difference that the user layer building block is installed on only one machine, we

call it a server for ULBB.

Thus the programmer wishing to access the functionality provided by the

building blocks of the three layers have to write only a small bootstrap program

of his/her own that simplifies the access to the numerous building blocks,

functionalities which altogether make up a system. Of course, these

functionalities should be interrelated in some way and should conform to our

integration architecture rules.

56

6.2 Implementation of ULBB

Here I will explain the improvements made to the user layer building blocks and

the logic behind the improvement. We will then discuss two individual

implementations using RPC and ANSAWARE respectively. The logic remains

the same for both the implementations.

6.2.1 Explanation of the Improvement

As we have discussed before, DIS had a program copied onto two different

machines, using it to access the various building blocks of the application. The

improvement that we have made here is to have a User Layer Building Block

(ULBB) lying on a single server machine, and the client of the application will

access it through its own program that will make a request for ULBB via the

trader function. This client program will also access all the other building blocks

by making a request through the trader. Thus we do not have to duplicate the

entire source code onto different machines for being able to access it from

different places. Now we can still access it from different machines, with the

difference that the user layer building block is installed on only one machine, we

call it a server for ULBB.

Thus the programmer wishing to access the functionality provided by the

building blocks of the three layers have to write only a small bootstrap program

of his/her own that simplifies the access to the numerous building blocks,

functionalities which altogether make up a system. Of course, these

functionalities should be interrelated in some way and should conform to our

integration architecture rules.

56

6.2.2 Implementation Using RPC

As explained in earlier chapters, we define a building block using Sun RPC's

protocol definition file. We therefore define the user layer building block by a

similar file as shown in the APPENDIX A. It defines two operations, one is the

submenu generator operation and the other is a menu for the processing layer

query operations. The client program, through which the user accesses this

building block, asks for the submenu or a processing layer menu depending on

user request and the ULBB returns the screen information to the client program,

which collects it and then properly displays it. It then asks for user selection,

from this new menu. And hence depending on user selection takes further

actions which may include building contracts with other building blocks.

Having built one ULBB, it makes us think about whether or not to have

multiple user layer building blocks. If we have multiple building blocks, we can

then have multiple views of the application and hence depending on the access

rights of the user, the application intelligently makes contact with only one of

those building blocks. This in my view is a very good way of providing views of

a particular system and hence also adds to the security features of a particular

application. This has been implemented as an experiment.

All these requests and responses come and go through the software bus

called the trading function or a trader. The only undesired feature here is that the

programmer has to know in advance the location of the user layer building

block. Thus in case if its location is changed, a change should be made in the

program and hence it has to be recompiled. This is a very important point for

comparison with ANSAWARE implementation of the ULBB.

57

6.2.2 Implementation Using RPC

As explained in earlier chapters, we define a building block using Sun RPC's

protocol definition file. We therefore define the user layer building block by a

similar file as shown in the APPENDIX A. It defines two operations, one is the

submenu generator operation and the other is a menu for the processing layer

query operations. The client program, through which the user accesses this

building block, asks for the submenu or a processing layer menu depending on

user request and the ULBB returns the screen information to the client program,

which collects it and then properly displays it. It then asks for user selection,

from this new menu. And hence depending on user selection takes further

actions which may include building contracts with other building blocks.

Having built one ULBB, it makes us think about whether or not to have

multiple user layer building blocks. If we have multiple building blocks, we can

then have multiple views of the application and hence depending on the access

rights of the user, the application intelligently makes contact with only one of

those building blocks. This in my view is a very good way of providing views of

a particular system and hence also adds to the security features of a particular

application. This has been implemented as an experiment.

All these requests and responses come and go through the software bus

called the trading function or a trader. The only undesired feature here is that the

programmer has to know in advance the location of the user layer building

block. Thus in case if its location is changed, a change should be made in the

program and hence it has to be recompiled. This is a very important point for

comparison with ANSAWARE implementation of the ULBB.

57

6.2.3 Implementation Using ANSAware

As explained in chapter 5, ANSAware uses the concept of SERVICE-INTERFACE

for distributed application development. We make use of this approach to define

our building blocks. An example was shown in chapter 5. We have used the IDL

to define the building blocks in our system. Please refer to APPENDIX B and

look for "ulbb.idl" - that defines the operations, arguments to these operations,

and results of these operations of our ULBB.

Except for certain programming syntax and the use of ANSAware's trader

mechanism, the logic for ULBB implementation remains the same. A very

important point to note here is that the programmer does not have to know the

physical whereabouts of the ULBB, it can be found by the local ANSAWARE

trader, if the remote machine having the ULBB also has a ANSAware trader

installed properly. This approach gives complete distribution transparency and

hence is a major difference from our RPC implementation of ULBB. The same is

true for any other building block. The programs for ULBB implementation are

submenu.c (RPC) and ulbb.dpl (ANSAWARE).

6.3 Data Layer and Processing Layer Building Block

The building blocks in DIS do not conform to the principle of three conceptual

layers. The processing layer is not clearly distinguished from the data layer. Also

it has misinterpreted the concept of building blocks. It considers the small

functions or routines that provide individual functionality such as add, delete,

list, view etc. as building blocks, rather than a runnable process that as a whole

will provide all of these functionality when asked for it via inter process

communication mechanisms, and also communication over a network. Thus, EIS

has a proper grouping of functionality and a building block is a process that runs

by itself. Requesting program or a building blocks have to make communication

58

6.2.3 Implementation Using ANSAware

As explained in chapter 5, ANSAware uses the concept of SERVICE-INTERFACE

for distributed application development. We make use of this approach to define

our building blocks. An example was shown in chapter 5. We have used the IDL

to define the building blocks in our system. Please refer to APPENDIX B and

look for "ulbb.idl" - that defines the operations, arguments to these operations,

and results of these operations of our ULBB.

Except for certain programming syntax and the use of ANSAware's trader

mechanism, the logic for ULBB implementation remains the same. A very

important point to note here is that the programmer does not have to know the

physical whereabouts of the ULBB, it can be found by the local ANSAWARE

trader, if the remote machine having the ULBB also has a ANSAware trader

installed properly. This approach gives complete distribution transparency and

hence is a major difference from our RPC implementation of ULBB. The same is

true for any other building block. The programs for ULBB implementation are

submenu.c (RPC) and ulbb.dpl (ANSAWARE).

6.3 Data Layer and Processing Layer Building Block

The building blocks in DIS do not conform to the principle of three conceptual

layers. The processing layer is not clearly distinguished from the data layer. Also

it has misinterpreted the concept of building blocks. It considers the small

functions or routines that provide individual functionality such as add, delete,

list, view etc. as building blocks, rather than a runnable process that as a whole

will provide all of these functionality when asked for it via inter process

communication mechanisms, and also communication over a network. Thus, EIS

has a proper grouping of functionality and a building block is a process that runs

by itself. Requesting program or a building blocks have to make communication

58

59

with it and asks for a particular function. The building block definitions for the

data layer building blocks are given in APPENDICES A and B, for RPC and

ANSAWARE implementations respectively. The data layer definitions are in

fdatalyr.x, cdatalyr.x, sdatalyr.x, rdatalyr.x for RPC; and fldbb.idl, cdlbb.idl,

sdlbb.idl, rdlbb.idl for ANSAware implementation respectively.

Processing layer functionality refers to the functionality that requires

access to operations from two or more individual data layer building blocks.

Thus we have functionality like -

i) List of Courses Taught by a Faculty Member

This is a query which in database terms basically requires to join two

relations. Thus this kind of query can be put in the processing layer. We

just have one example here, but we could have many more queries for a

full-fledged application.

We first ask the user for a Social Security Number of the Faculty

member, with the help of which we can find out whether that faculty SSN

is valid or not, by looking into the faculty database (functionality of

Faculty Data Layer) and then try to match this SSN with the Faculty SSN

of the course database records (functionality of Course Data Layer).

ii) Student Delete Operation

This is because the student delete operation requires a delete from student

information as well as his/her registration information. And hence the

correct way to delete a student is to delete his/her records from both the

data collections at one time. This is the reason we have to keep it in the

processing layer. This way it adds to the consistency features of the

application.

59

with it and asks for a particular function. The building block definitions for the

data layer building blocks are given in APPENDICES A and B, for RPC and

ANSAWARE implementations respectively. The data layer definitions are in

fdatalyr.x, cdatalyr.x, sdatalyr.x, rdatalyr.x for RPC; and fldbb.idl, cdlbb.idl,

sdlbb.idl, rdlbb.idl for ANSAware implementation respectively.

Processing layer functionality refers to the functionality that requires

access to operations from two or more individual data layer building blocks.

Thus we have functionality like -

i) List of Courses Taught by a Faculty Member

This is a query which in database terms basically requires to join two

relations. Thus this kind of query can be put in the processing layer. We

just have one example here, but we could have many more queries for a

full-fledged application.

We first ask the user for a Social Security Number of the Faculty

member, with the help of which we can find out whether that faculty SSN

is valid or not, by looking into the faculty database (functionality of

Faculty Data Layer) and then try to match this SSN with the Faculty SSN

of the course database records (functionality of Course Data Layer).

ii) Student Delete Operation

This is because the student delete operation requires a delete from student

information as well as his/her registration information. And hence the

correct way to delete a student is to delete his/her records from both the

data collections at one time. This is the reason we have to keep it in the

processing layer. This way it adds to the consistency features of the

application.

The processing layer building block (PLBB) definitions can be found in

APPENDICES A and B, in sproclyr.x (RPC) and proclyr.idl (ANSAWARE),

respectively. The programs are sproclyr.c (RPC) and proclyr.dpl (ANSAWARE).

6.4 Experiments with Partial Results

Here I present some of the experiments that I tried to implement in the EIS, but

were done only partially due to lack of time. Although these are partial results,

they have provided us with further insight.

6.4.1 A Primitive Commit Protocol

One of our goals for providing consistency of data was to develop something like

a transaction, so that in case of any failure or crash we can rollback the

transaction. This would have provided recovery from a failure and hence a

consistent data collection.

Let us consider the request going from the user layer building block to a

data layer building block. And if there are many frequent requests made to the

same building block (a DLBB), we want to differentiate them and also want to

treat their operations as individual transactions. Meaning we want to preserve

the states of operations done by these different request to the DLBB and in case

of a failure or a catastrophe we want to reverse their effect and hence recover the

original state of the data collection. But as was discussed in Chapter 4, Sun MIL'

implementation fails to preserve the results of the previous request to a Dl...13B

and hence we can not accumulate these intermediate results. It is true that RPC

fails to preserve the results of a RPC call over subsequent calls, and hence

prevents us from implementing a primitive commit protocol, but this could be

because of the way in which we define our operations. Say for example, that if

we define our operations as individual transactions itself, then whenever a

6

The processing layer building block (PLBB) definitions can be found in

APPENDICES A and B, in sproclyr.x (RPC) and proclyr.idl (ANSAWARE),

respectively. The programs are sproclyr.c (RPC) and proclyr.dpl (ANSAWARE).

6.4 Experiments with Partial Results

Here I present some of the experiments that I tried to implement in the EIS, but

were done only partially due to lack of time. Although these are partial results,

they have provided us with further insight.

6.4.1 A Primitive Commit Protocol

One of our goals for providing consistency of data was to develop something like

a transaction, so that in case of any failure or crash we can rollback the

transaction. This would have provided recovery from a failure and hence a

consistent data collection.

Let us consider the request going from the user layer building block to a

data layer building block. And if there are many frequent requests made to the

same building block (a DLBB), we want to differentiate them and also want to

treat their operations as individual transactions. Meaning we want to preserve

the states of operations done by these different request to the DLBB and in case

of a failure or a catastrophe we want to reverse their effect and hence recover the

original state of the data collection. But as was discussed in Chapter 4, Sun RPC

implementation fails to preserve the results of the previous request to a DLBB

and hence we can not accumulate these intermediate results. It is true that RPC

fails to preserve the results of a RPC call over subsequent calls, and hence

prevents us from implementing a primitive commit protocol, but this could be

because of the way in which we define our operations. Say for example, that if

we define our operations as individual transactions itself, then whenever a

60

building block failure occurs or a crash happens we can take care of these

transactions individually. Thus each RPC call that defines a particular operation

is atomic by itself and hence we have to design our operations of the application

more intelligently and take proper advantage of the characteristic of an RPC call.

6.4.2 Separating the Trader from the ULBB

The trading function as is implemented in DIS is associated with the User Layer

Building Block and to the client application program in the EIS (RPC Version).

As we know EIS has a differentiation between the client application program and

the User Layer Building Block.

Therefore an attempt was made to separate the trader from this level (RPC

Implementation) to its a separately running process/service of its own. Due to

limitation of Sun RPC's implementation, we are able to pass and receive only

single argument. We will have to take care of the packaging of message to be

passed into one entity (a structure in C) and then unmarshall (unpack) it at the

receiving end. This is doable and if done will be closer to the ideas of systems

integration framework and the integration architecture discussed in this work.

What I have experimented with is the marshalling and the sending of a

message to the required building block. This was an interesting experiment to do

and can be considered as further improvements to the system. However it is

important to note that ANSAware provides its own sophisticated trading

function, with the help of which we can add, delete, list the building blocks

running under that trader and also communicate to the other building blocks

through that trader. Thus, this is the functionality that is anyway generically

made available to building blocks implemented using ANSAware.

61

building block failure occurs or a crash happens we can take care of these

transactions individually. Thus each RPC call that defines a particular operation

is atomic by itself and hence we have to design our operations of the application

more intelligently and take proper advantage of the characteristic of an RPC call.

6.4.2 Separating the Trader from the ULBB

The trading function as is implemented in DIS is associated with the User Layer

Building Block and to the client application program in the EIS (RPC Version).

As we know EIS has a differentiation between the client application program and

the User Layer Building Block.

Therefore an attempt was made to separate the trader from this level (RPC

Implementation) to its a separately running process/service of its own. Due to

limitation of Sun RPC's implementation, we are able to pass and receive only

single argument. We will have to take care of the packaging of message to be

passed into one entity (a structure in C) and then unmarshall (unpack) it at the

receiving end. This is doable and if done will be closer to the ideas of systems

integration framework and the integration architecture discussed in this work.

What I have experimented with is the marshalling and the sending of a

message to the required building block. This was an interesting experiment to do

and can be considered as further improvements to the system. However it is

important to note that ANSAware provides its own sophisticated rading

function, with the help of which we can add, delete, list the building blocks

running under that trader and also communicate to the other building blocks

through that trader. Thus, this is the functionality that is anyway generically

made available to building blocks implemented using ANSAware.

61

6.5 Installation and Configuration of the EIS system

As was decided in the design phase of the system, the user of the application

should be able to access it from any of the three computer systems, viz., Newark,

Pluto and Irss. It was decided that the system should have a server for the ULBB

and the administrator of the system should be able change the configuration by

changing the locations of the building blocks. This can be done by changing the

internal directory information on the building blocks and recompile the source

code before anybody can use it from its new location. This holds for the RPC

implementation of the EIS. The implementation using ANSAware is on a single

machine for now, but in the future it can be done on different machines once all

the participating systems have ANSAware installed on them. Furthermore,

ANSAware is more flexible with regard to relacation of resources and building

blocks.

Location of the Building Blocks

The User Layer Building Block is running on the Newark machine.

Various Data Layer Building Blocks are running on different locations. The

Register Data Layer Building Block is running on Newark. The Course, Faculty

and Student Data Layer Building Blocks are running on Pluto. And the

bootstrap program for being able to access all building blocks has to be run from

IRSS, as per its current configuration. But this can be changed, so that the

program can run from any machine and access the functionality of the HIS

system. The the EIS system has its building blocks organized in such a way that

the user, depending on his/her needs, would have to have a client program that

accesses only the required building blocks. Thus, in this way we can provide

different views of the system. The processing layer building block is running on

Newark, and as explained previously, it accesses the data layer building blocks

via the RPC-implementation of the trader.

62

6.5 Installation and Configuration of the EIS system

As was decided in the design phase of the system, the user of the application

should be able to access it from any of the three computer systems, viz., Newark,

Pluto and Irss. It was decided that the system should have a server for the ULBB

and the administrator of the system should be able change the configuration by

changing the locations of the building blocks. This can be done by changing the

internal directory information on the building blocks and recompile the source

code before anybody can use it from its new location. This holds for the RPC

implementation of the EIS. The implementation using ANSAware is on a single

machine for now, but in the future it can be done on different machines once all

the participating systems have ANSAware installed on them. Furthermore,

ANSAware is more flexible with regard to relacation of resources and building

blocks.

Location of the Building Blocks

The User Layer Building Block is running on the Newark machine.

Various Data Layer Building Blocks are running on different locations. The

Register Data Layer Building Block is running on Newark. The Course, Faculty

and Student Data Layer Building Blocks are running on Pluto. And the

bootstrap program for being able to access all building blocks has to be run from

IRSS, as per its current configuration. But this can be changed, so that the

program can run from any machine and access the functionality of the HIS

system. The the EIS system has its building blocks organized in such a way that

the user, depending on his/her needs, would have to have a client program that

accesses only the required building blocks. Thus, in this way we can provide

different views of the system. The processing layer building block is running on

Newark, and as explained previously, it accesses the data layer building blocks

via the RPC-implementation of the trader.

62

CHAPTER 7

COMPARISON OF THE TWO IMPLEMENTATIONS

Let us put some light on certain similarities and differences between RPC and

ANSAware. This discussion is based on the discussion of Chapters 4 and 5, so

the reader is advised to read those two chapters first before reading this chapter.

7.1 Handling of Client-Requests

As we have seen RPC follows a mechanism similar to local procedure call and

ANSAware follows a Import-Export concept for handling request from client

programs and/or from building blocks. The Import-Export aspect of ANSAware

is built on the underlying instantiation mechanism of the provider building block

interface. Thus, we may have more than one instances of a building block

running at one time, which is not possible to have using RPC directly.

7.2 Message Passing

The Sun RPC implementation used here for EIS limits the sending and receiving

message to a single argument/single result mechanism. Multiple arguments

and/or results have to be packaged together into a single message. Whereas in

ANSAware the building blocks can send or receive multiple arguments/resulis

freely. This takes off lot of marshalling/unmarshalling work from the

programmer, which he/she would have done if using RPC.

7.3 Location Transparency of the Building Blocks

While using RPC to develop the a distributed application the programmer has to

know the explicit location of the server/provider building block and has to use

63

CHAPTER 7

COMPARISON OF THE TWO IMPLEMENTATIONS

Let us put some light on certain similarities and differences between RPC and

ANSAware. This discussion is based on the discussion of Chapters 4 and 5, so

the reader is advised to read those two chapters first before reading this chapter.

7.1 Handling of Client-Requests

As we have seen RPC follows a mechanism similar to local procedure call and

ANSAware follows a Import-Export concept for handling request from client

programs and/or from building blocks. The Import-Export aspect of ANSAware

is built on the underlying instantiation mechanism of the provider building block

interface. Thus, we may have more than one instances of a building block

running at one time, which is not possible to have using RPC directly.

7.2 Message Passing

The Sun RPC implementation used here for EIS 	the sending and receiving

message to a single argument/single result mechanism. Multiple arguments

and/or results have to be packaged together into a single message. Whereas in

ANSAware the building blocks can send or receive multiple arguments/results

freely. This takes off lot of marshalling/unmarshalling work from the

programmer, which he/she would have done if using RPC.

7.3 Location Transparency of the Building Blocks

While using RPC to develop the a distributed application the programmer has to

know the explicit location of the server/provider building block and has to use

b3

the programmer does not have to worry about the physical location of a building

block as long as it is registered with the ANSAware trader. If it is on a remote

machine, the trader on the client/local machine has to communicate to the trader

on the remote machine to find the provider building block. This is a significant

feature in terms of location transparency of building blocks, even to the

programmer, so that he/she can concentrate more on programming rather than

networking.

Now let us consider what happens in certain exceptional conditions

during the communication of these building blocks that we have been talking

about. Here I address a few of them, both, for the RPC and the ANSAware

implementation.

7.4 Non-Existence of a Building Block

Let us assume that a building block on one layer is requesting a operation from a

building block on the same/different layer. This request as we know has to go

through the trading function, which will in turn try to find if the requested

building block operation is available or not. Suppose that the provider building

block has not registered itself with the trader, then the trader should detect this

and let the requester building block know about its non-existence. Now let. us

see what happens in the two implementations that we have.

A Remote Procedure Call implementation, tries to ping the service

provider before actually asking for an operation to be performed. Pinging the

server means, checking to see if it really exist or not:. Thus if this pinging fails, ii

can be carried forward to the requester in the form of a message which says that

the binding to the server building block has failed.

An ANSAware implementation, tries to import the interface of the

provider building block, which is similar to binding to a building block as in

64

the programmer does not have to worry about the physical location of a building

block as long as it is registered with the ANSAware trader. If it is on a remote

machine, the trader on the client/local machine has to communicate to the trader

on the remote machine to find the provider building block. This is a significant

feature in terms of location transparency of building blocks, even to the

programmer, so that he/she can concentrate more on programming rather than

networking.

Now let us consider what happens in certain exceptional conditions

during the communication of these building blocks that we have been talking

about. Here I address a few of them, both, for the RPC and the ANSAware

implementation.

7.4 Non-Existence of a Building Block

Let us assume that a building block on one layer is requesting a operation from a

building block on the same/different layer. This request as we know has to go

through the trading function, which will in turn try to find if the requested

building block operation is available or not. Suppose that the provider building

block has not registered itself with the trader, then the trader should detect this

and let the requester building block know about its non-existence. Now let us

see what happens in the two implementations that we have.

A Remote Procedure Call implementation, tries to ping the service

provider before actually asking for an operation to be performed. Pinging the

server means, checking to see if it really exist: or not. Thus if this pinging fails, ii

can be carried forward to the requester in the form of a message which says that

the binding to the server building block has failed.

An ANSAware implementation, tries to import the interface of the

provider building block, which is similar to binding to a building block as in

64

RPC. But in this case it tries to find the server and if not found does more than

just informing about its non-existence. What it does more is that it tries to look

for a possible dynamic, active or passive relocation of the server building block.

If the relocation is detected and the building block is found at some other place,

the import is successful; otherwise, a Bind Failure is sent to the requester. One

important point to note here is that the ANSAware trader tries to find the server

till a specific period of time has passed. This means that the trader looks for the

service provider only for a specific time period and then, if not successful, time-

out occurs, resulting in an unsuccessful request.

7.5 Delayed Response or No Response

Sometimes, even after binding to a provider building block interface, the

requester does not receive a response, before a time out occurs. There can be two

situations here. One is that the service operation is taking too long to complete.

Another situation could be that due to some malfunctioning of the server or the

remote system, the response gets lost. The issue here is that the requester can not

wait for a Response eternally, and hence again a time-out approach is adapted by

both RPC and ANSAware implementations.

ANSAware has an option similar to exception conditions. It allows for

exception handling to be defined in its Distributed Processing Language,

compiled using the PREPC compiler. Thus the programmer can define his/her

exceptional handling actions while defining the building block interfaces, using

DL.

65

RPC. But in this case it tries to find the server and if not found does more than

just informing about its non-existence. What it does more is that it tries to look

for a possible dynamic, active or passive relocation of the server building block.

If the relocation is detected and the building block is found at some other place,

the import is successful; otherwise, a Bind Failure is sent to the requester. One

important point to note here is that the ANSAware trader tries to find the server

till a specific period of time has passed. This means that the trader looks for the

service provider only for a specific time period and then, if not successful, time-

out occurs, resulting in an unsuccessful request.

7.5 Delayed Response or No Response

Sometimes, even after binding to a provider building block interface, the

requester does not receive a response, before a time out occurs. There can be two

situations here. One is that the service operation is taking too long to complete.

Another situation could be that due to some malfunctioning of the server or the

remote system, the response gets lost. The issue here is that the requester can not

wait for a Response eternally, and hence again a time-out approach is adapted by

both RPC and ANSAware implementations.

ANSAware has an option similar to exception conditions. It allows for

exception handling to be defined in its Distributed Processing Language,

compiled using the PREPC compiler. Thus the programmer can define his/her

exceptional handling actions while defining the building block interfaces, using

DL.

65

7.6 Failure of a Client or a Server

Here we will consider the implications of the failure/crash of either a client

building block or a server building block while in the middle of an operation that

directly changes the state of the data repositories.

Client Failure

If a client building block fails or dies for whatsoever reason while in the middle

of a critical operation that directly changes the state of the data being operated

upon, then due to distributed nature of the environment, failure of a client

building block is not obvious to the server building block. Hence, the failure of

client building block, does not affect the execution of the server building block

and thus in turn the data repositories. The implication of this failure is just that

the client is unable to look at the response from the server and hence the user

would not know the result of the operation. But more important thing is that the

state of the data remains valid and consistent.

Server Failure

If a server building block fails in the middle of a critical operation, then the

consequences are very important to discuss. In this case if the operation was

completed and then while sending the results back the building block failed, the

data is not affected in any way. But if the operation fails in such way that it has

changed the state of the data partially then it makes the information stored

inconsistent an hence needs to be checked. In order to avoid this kind of situation

a transaction manager kind of tool has to be used to restore the original valid

state of the information. But none of our implementations have seen any success

in that direction. If ANSAware is used to its fullest capacity with factory and

thread-of-transaction mechanism, a future implementation of EIS can see these

transaction management features.

66

7.6 Failure of a Client or a Server

Here we will consider the implications of the failure/crash of either a client

building block or a server building block while in the middle of an operation that

directly changes the state of the data repositories.

Client Failure

If a client building block fails or dies for whatsoever reason while in the middle

of a critical operation that directly changes the state of the data being operated

upon, then due to distributed nature of the environment, failure of a client

building block is not obvious to the server building block. Hence, the failure of

client building block, does not affect the execution of the server building block

and thus in turn the data repositories. The implication of this failure is just that

the client is unable to look at the response from the server and hence the user

would not know the result of the operation. But more important thing is that the

state of the data remains valid and consistent.

Server Failure

If a server building block fails in the middle of a critical operation, then the

consequences are very important to discuss. In this case if the operation was

completed and then while sending the results back the building block failed, the

data is not affected in any way. But if the operation fails in such way that it has

changed the state of the data partially then it makes the information stored

inconsistent an hence needs to be checked. In order to avoid this kind of situation

a transaction manager kind of tool has to be used to restore the original valid

state of the information. But none of our implementations have seen any success

in that direction. If ANSAware is used to its fullest capacity with factory and

thread-of-transaction mechanism, a future implementation of EIS can see these

transaction management features.

66

7.7 Conclusions

Implementing EIS, though being very simple in functionality, using both RPC

and ANSAware has been very interesting and it has been a quite a project to

study the various issues that we have discussed. And fun part was in really

implementing them to see what really happens and how this reciprocates to the

concepts behind the design, framework and the conceptual architecture.

1. Effect of GenSIF and the integration architecture

As was mentioned earlier, one of the goals of this work was to study the effect of

the Generic Systems Integration Framework and the example building block

architecture on the development process of a distributed application. When I

began working on this project, I started designing the system in a standard way

around its required operations, grouping the functionality according to the

category of operations rather than entities. But once I started to change my

preliminary design to incorporate the concepts of the integration architecture I

began grouping functionality according to the entities involved and according to

the separation of concerns principle that we have discussed earlier. Thus the key

factor of the design was in deciding on a building block.

2. Limitations of RPC and its effects

Due to the certain limitations of Sun's RPC, such as single argument message

passing, explicit: knowledge of the location of the server, and using different IDs

for each RPC call we were restricted in implementing very important issues

concerning the operations of the building block and also the consistency of the

data therein. Thus I feel that Sun's RPC though is a very nice tool to use is not

suitable enough for a complete of a system being developed in the given

framework under architectural constraints/rules.

67

7.7 Conclusions

Implementing EIS, though being very simple in functionality, using both RPC

and ANSAware has been very interesting and it has been a quite a project to

study the various issues that we have discussed. And fun part was in really

implementing them to see what really happens and how this reciprocates to the

concepts behind the design, framework and the conceptual architecture.

1. Effect of GenSIF and the integration architecture

As was mentioned earlier, one of the goals of this work was to study the effect of

the Generic Systems Integration Framework and the example building block

architecture on the development process of a distributed application. When I

began working on this project, I started designing the system in a standard way

around its required operations, grouping the functionality according to the

category of operations rather than entities. But once I started to change my

preliminary design to incorporate the concepts of the integration architecture I

began grouping functionality according to the entities involved and according to

the separation of concerns principle that we have discussed earlier. Thus the key

factor of the design was in deciding on a building block.

2. Limitations of RPC and its effects

Due to the certain limitations of Sun's RPC, such as single argument message

passing, explicit: knowledge of the location of the server, and using different IDs

for each RPC call we were restricted in implementing very important issues

concerning the operations of the building block and also the consistency of the

data therein. Thus I feel that Sun's RPC though is a very nice tool to use is not

suitable enough for a complete of a system being developed in the given

framework under architectural constraints/rules.

67

3. Sophistication of ANSAware

Although the implementation of EIS using ANSAware is as simple as in RPC, it

puts light on some very important features of ANSAware that are of very good

interest to the research going on in Systems Integration. These features are :

being able to relocate the server building block before actually timing out the

request for a remote operation, threads used by ANSAware that make

transaction processing doable in such an environment, its ability to instantiate

the building block interfaces, and encapsulation of operations and objects. The

most important feature of all is the trading function that it provides to

add/remove/move building blocks to/from the application, and communicate

to any available service without actually knowing its location.

68

3. Sophistication of ANSAware

Although the implementation of EIS using ANSAware is as simple as in RPC, it

puts light on some very important features of ANSAware that are of very good

interest to the research going on in Systems Integration. These features are :

being able to relocate the server building block before actually timing out the

request for a remote operation, threads used by ANSAware that make

transaction processing doable in such an environment, its ability to instantiate

the building block interfaces, and encapsulation of operations and objects. The

most important feature of all is the trading function that it provides to

add/remove/move building blocks to/from the application, and communicate

to any available service without actually knowing its location.

68

APPENDIX A

Here we present some of the important source code listings for better

understanding of the implementation of EIS. Some listings have been ommited

since they are not really necessary to understand the concepts behind the

implementation.

APPENDIX A

/* cdatalyr.x : protocol definition for course DLBB*/

%#define CDATABASE "course.data" /*'701)asses definition*/

const CMAX_STR = 256; 	/ 4. through to header file */

/* <MAX_STR> defines the maximum possible length */

/* No enumerations needed for structure definition */

/********* 	Record Structure for course.data *******/

struct crsrec

string crsid<6>;

string crssection<3>;

string crssemester<6>;

string crsdescr<30>;

string location<10>;

string crsfssn<11>;

int crscredits;

string prereqs<40>;

struct crsrec *next;

struct crsrec *prey;

;

/* No union or typdef needed for program definition */

69

APPENDIX A

Here we present some of the important source code listings for better

understanding of the implementation of EIS. Some listings have been ommited

since they are not really necessary to understand the concepts behind the

implementation.

APPENDIX A

/* cdatalyr.x : protocol definition for course DLBB*/

%#define CDATABASE "course.data" /*'%'Passes definition*/

const CMAX_STR = 256; 	/ 4. through to header file */

/* <MAX_STR> defines the maximum possible length */

/* No enumerations needed for structure definition */

/********* 	Record Structure for course.data *******/

struct crsrec

string crsid<6>;

string crssection<3>;

string crssemester<6>;

string crsdescr<30>;

string location<10>;

string crsfssn<11>;

int crscredits;

string prereqs<40>;

struct crsrec *next;

struct crsrec *prey;

/* No union or typdef needed for program definition */

69

program CDATALYRPROG { /* Can manage multiple servers */

version CDATALYRVERS {

string CLIST_RECORD(void)

string CVIEW_RECORD(string) 	= 2;

int 	CADD_RECORD(crsrec) 	= 3;

int 	CDEL_RECORD(string) 	= 4;

} = 1;

= 0x30000006; /*Program # ranges established by ONC '/

/*fdatalyr.x : protocol definition for FDLBB*/

%#define FDATABASE "faculty.data" /*'%'Passes definition */

const MAX_STR = 256; 	/* through to header file */

/* <MAX_STR> defines the maximum possible length */

/* No enumerations needed for structure definition */

/*********
	

Record Structure for Faculty.data *******/

struct record (

string ssn<MAX_STR>;

string firstName<MAX_STR>;

string middleIni tial<MAX_STR>;

string IastName<MAX_STR>;

string phone<12>;

string location<MAX_STR>;

struct record *next;

struct record *prey;

70

/* No union or typdef needed for program definition */

program CDATALYRPROG /* Can manage multiple servers */

version CDATALYRVERS {

string CLIST_RECORD(void)

string CVIEW_RECORD(string) 	= 9- 2;

int 	CADD_RECORD(crsrec) 	= 3;

int 	CDEL_RECORD(string) 	= 4;

} = 1;

= 0x30000006; /*Program # ranges established by ONC

/*fdatalyr.x : protocol definition for FDLBB*/

%#define FDATABASE "faculty.data" /*'%'Passes definition */

const MAX_STR = 256; 	/* through to header file */

/* <MAX_STR> defines the maximum possible length */

/* No enumerations needed for structure definition */

/********* 	Record Structure for Faculty.data *******/

struct record {

string ssn<MAX_STR>;

string firstName<MAX_STR>;

string middleInitial<MAX_STR>;

string IastName<MAX_STR>;

string phone<12>;

string location<MAX_STR>;

struct record *next;

struct record *prey;

;

/* No union or typdef needed for program definition */

70

program FDATALYRPROG { /* Can manage multiple servers V

version FDATALYRVERS

string LIST_RECORD(void) 	= 1;

string VIEW_RECORD(string) 	= 2;

int 	ADD RECORD(record) 	= 3;

t DEL_RECORD(string) =

= 1;

= 0x20000006; /*Program # ranges established by ONC

I* sdatalyr.x : protocol definition for Student DLBB*/

%#define SDATABASE "student.data" 	/* '%' Passes definition */

const SMAX_STR = 256; 	/* through to header file */

/* <SMAX_STR> defines the maximum possible length */

/* No enumerations needed for structure definition */

/ *********
	

Record Structure for student.data *******/

struct stdrec

string stdssn<11>;

string stdfname<30>;

string stdmname<30>;

string stdlname<30>;

string stdphone<12>;

string stdbdate<8>;

string stdlevel<1>;

string stdmajor<30>;

string stdminor<30>;

71

program FDATALYRPROG { /* Can manage multiple servers V

version FDATALYRVERS

string LIST_RECORD(void) 	= 1;

string VIEW_RECORD(string) 	= 2;

int 	ADD RECORD(record) 	= 3;

int 	DEL_RECORD(string) 	= 4;

= 1;

= 0x20000006; /*Program # ranges established by ONC */

I* sdatalyr.x : protocol definition for Student DLBB*/

%#define SDATABASE "student.data" 	/* '% Passes definition */

const SMAX_STR = 256; 	/* through to header file */

/* <SMAX_STR> defines the maximum possible length */

/* No enumerations needed for structure definition */

/********* 	Record Structure for student.data *******/

struct stdrec

string stdssn<11>;

string stdfname<30>;

string stdmname<30>;

string stdlname<30>;

string stdphone<12>;

string stdbdate<8>;

string stdlevel<1>;

string stdmajor<30>;

string stdminor<30>;

71

string stdgpa<5>;

string stdenrolled<1>;

struct stdrec *next;

struct stdrec *prey;

;

/* No union or typdef needed for program definition V

program SDATALYRPROG { /* Can manage multiple servers */

version SDATALYRVERS

string SLIST_RIECORD(void)

string SVIEW_RECORD(string)
	

= 2;

int SADD_RECORD(stdrec)

int SDEL_RECORD(string)

= 1;

= 0x34000006; /*Program # ranges established by ONC */

/* rdatalyr.x protocol definition for Registration DLBB*/

%#define RDATABASE "register.data"

/*'`Ye' Passes definition */

const RMAX_STR = 256; /* through to header file */

/* <RMAX_STR> defines the maximum possible length */

/* No enumerations needed for structure definition */

Record Structure for student.data *******/

struct rrec

string tssn<11>;

string tcrsl<6>;

string tsecl<3>;

string tcrs2<6>;

72

string stdgpa<5>;

string stdenrolled<1>;

struct stdrec *next;

struct stdrec *prey;

;

/* No union or typdef needed for program definition V

program SDATALYRPROG { /* Can manage multiple servers */

version SDATALYRVERS

string SLIST_RIECORD(void) 	= 1;

string SVIEW_RECORD(string) 	— —

int 	SADD_RECORD(stdrec) 	= 3;

int 	SDEL_RECORD(string) 	= 4;

= 1;

= 0x34000006; /*Program # ranges established by ONC */

/* rdatalyr.x protocol definition for Registration DLBB*/

%#define RDATABASE "register.data"

/*'`Ye' Passes definition */

coast RMAX_STR = 256; /* through to header file */

/* <RMAX_STR> defines the maximum possible length */

/* No enumerations needed for structure definition */

/**""*** 	Record Structure for s tuden t.d a ta *******/

struct rrec I

string tssn<11>;

string tcrsl<6>;

string tsecl<3>;

string tcrs2<6>;

72

string tsec2<3>;

string tcrs3<6>;

string tsec3<3>;

struct rrec *next;

struct rrec *prey;

/* No union or typdef needed for program definition */

program RDATALYRPROG (/* Can manage multiple servers */

version RDATALYRVERS (

string RLIST_RECORD(void)

string RVIEW_RECORD(string)

int RADD_RECORD(rrec)

int RDEL RECORD(string)

= 1;

= 0x37000006; /*Program # ranges established by ONC */

/*submenu.x RPCL protocol definition for a remote ULBB*/

program ULYRPROG { /* Can manage multiple servers */

version ULYRVERS

string AMENU(void)

string PMENU(void)

= 1;

0x39000006; /*Program # ranges established by ONC */

73

**CISMENU.0

string tsec2<3>;

string tcrs3<6>;

string tsec3<3>;

struct rrec *next;

struct rrec *prey;

/* No union or typdef needed for program definition */

program RDATALYRPROG (/* Can manage multiple servers */

version RDATALYRVERS (

string RLIST_RECORD(void) 	= 1;

string RVIEW_RECORD(string) 	= 2;

int 	RADD_RECORD(rrec) = 3;

int 	RDEL_RECORD(string) 	= 4;

) = 1;

= 0x37000006; /*Program # ranges established by ONC */

/*submenu.x : RPCL protocol definition for a remote ULBB*/

program ULYRPROG { /* Can manage multiple servers */

version ULYRVERS

string AMENU(void) 	= 1;

string PMENU(void) 	= 4;

}

 = 1;

) = 0x39000006; /*Program # ranges established by ONC */

/*

**CISMENU.C

73

**CALLS SERVICE MENUS and depending on response calls the

proper activity service building blocks.

#include "d s.h"

extern void trader();

main()

char

int stat

mstart

initscr();

printf("\n\n\t\t 	\n");

printf("\t\t\t\tCIS DEPT. INFO. SYSTEM\n'

printf("\t\t 	-\n\n'

printf("\t\t\t<F/f> Faculty Info. System\n\n"

printf("\t\t\t<:C/c> Course Info. System\n\n");

printf("\t\t\t<S/s> Student Info. System\n\n);

printf("\t\t\t<R/r-› Registration Info. system\n\n");

printf("\t\t\t<P/p> specialized Queries\n\n");

printf("\t\t\t<E/e> Exit this menu\n\n");

printf("\n\t\t\t Enter Selection 	");

ch = tolower(getresponse());

if (ch 	'f' II ch 	 ch 	 ch

.)

menu(ch);

else if (ch

74

**CALLS SERVICE MENUS and depending on response calls the

proper activity service building blocks.

*/

#include "dis.h"

extern void trader();

main()

{

char ch;

int scat = 0;

mstart :

initscr();

printf("\n\n\t\t 	\n");

printf("\t\t\t\tCIS DEPT. INFO. SYSTEM\n");

printf("\t\t 	\n\n");

printf("\t\t\t<F/f> Faculty Info. System\n\n");

printf("\t\t\t<:C/c> Course Info. System\n\n");

printf("\t\t\t<S/s> Student Info. System\n\n");

printf("\t\t\t<R/r-› Registration Info. system\n\n");

printf("\t\t\t<P/p> specialized Queries\n\n");

printf("\t\t\t<E/e> Exit this menu\n\n");

printf("\n\t\t\t Enter Selection : ");

ch = tolower(getresponse());

if (ch == 'f' II ch == 'c' I l ch == 's' I I ch == r' II

ch == 'p')

menu(ch);

else if (ch == 'e')

74

75

initscr();

printf("\t\tCIS MENU 	Exiting.. n

exit(-1);

else

error(, Invalid Selection, Select Again\n

goto mstart;

** 	 menu.c

**
	

SUB MENU PROGRAM.

fiinclude "dis

void menu(ch)

char ch;

int iriit, code;

static int u 	uhndl 	 phndl

char title[35], c, **kmenu;

switch(tolower(ch))

case

init = FSTART;

strcpy(title,"Faculty Operations Menu'

break;

initscr();

printf("\t\tCIS MENU : Exiting...\n");

exit(-1);

}

else

error('e',"Invalid Selection, Select Again\n");

goto mstart;

}

/*

** 	menu.c

** 	SUB MENU PROGRAM.

*/

#include "dis.h"

void menu(ch)

char ch;

int init, code;

static int u = 0, uhndl = 0, p = 0, phndl = 0;

char title[35], c, **kmenu;

switch(tolower(ch))

case 'f' :

init = FSTART;

strcpy(title,"Faculty Operations Menu");

break;

75

case

init = RSTART;

strcpy(title,"Registration Operations Menu'

break;

case

init = SSTART;

strcpy(title,"Student Operations Menu

break;

case

init = CSTART;

strcpy(title,"Course Operations Menu"

break;

switch(ch) *

mstart

initscr();

if (tolower(ch)

logo(title);

if (!u)

if((uhndl = ulyr_handle()))

if (uhndl)

kmenu = amenu_1(NULL,ulyr_clnt

if (!strcmp(*kmenu, "))

case 'r' :

init = RSTART;

strcpy(title,"Registration Operations Menu");

break;

case 's' :

init = SSTART;

strcpy(title,"Student Operations Menu");

break;

case 'c' :

init = CSTART;

strcpy(title,"Course Operations Menu");

break;

) /* switch(ch) */

mstart

initscr();

if (tolower(ch) != 'p')

logo(title);

if (!u)

{

if((uhndl = ulyr_handle()))

u =

if (uhndl)

{

kmenu = amenu_1(NULL,ulyr_clnt);

if (!strcmp(*kmenu,""))

6

77

error(,"Not Found");

sleep(5);

else

printf("%s\n", *kmenu

printf("\t\tEnter Selection

tolower(getresponse());

printf("\n");

switch(c)

case

code = init 	ADD;

break;

case 'd'

code = init + DEL;

break;

case '1'

code = init 	LIST;

break;

case

case

code = init.: 	VIEW;

break;

code = init 	UPD;

break;

error('e',"Not Found");

sleep(5);

else

printf("%s\n", *kmenu);

printf("\t\tEnter Selection : ");

c = tolower(getresponse());

printf("\n");

switch(c)

case 'a' :

code = init + ADD;

break;

case 'd' :

code = init + DEL;

break;

case '1'

code = init + LIST;

break;

case 	:

code = 	+ VIEW;

break;

case 'u' :

code = init + UPD;

break;

77

case 'e':

return;

default

error(,"Invalid Selection, Select

78

Again

ch

goto mstart;

} 	switch()

else if (ch 	'p')

logo("Specialized Queries"

if (!u)

if((uhndl = ulyr_handle()))

if (uhndl)

kmenu = pmenu_1(NULL,ulyr_clnt

if (!strcmp(*kmenu, "))

erroWe',"Not Found");

sleep();

else

printf("%s\n
	menu

78

case 'e':

return;

default :

error('e',"Invalid Selection, Select

Again");

ch = 'K';

goto mstart;

} /* switch() */

else if (ch == 'p')

logo("Specialized Queries");

if (!u)

{

if((uhndl = ulyr_handle()))

u = 1;

if (uhndl)

kmenu = pmenu_1(NULL,ulyr_clnt);

if (!strcmp(*kmenu,""))

error ('e',"Not Found");

sieep(5);

else

printf("%s\n", *kmenu);

printf("\t\t nter Selection

tolower(getresponse());

printf("\n");

if (

code = MISC_FC;

else if (c

return;

trader(code);

goto mstart;

*
	

TRADER.0

itinclude "dis.h"

extern FNODE make_fnode();

extern RNODE make_cnode();

extern SNODE make_cnode();

extern CNODE make_cnode();

void trader(code)

int code;

FNODE rec, new;

CNODE crec, cnew;

SNODE srec, snew;

RNODE trec, rnew;

79

printf("\t\tEnter Selection : ");

c = tolower(getresponse());

printf("\n");

if (c == 'm')

code = MISC_FC;

else if (c == 'e')

return;

trader(code);

goto mstart;

/*
** 	TRADER.0

*/

include "dis.h"

extern FNODE make_fnode();

extern RNODE make_rnode();

extern SNODE make_snode();

extern CNODE make_cnode();

void trader(code)

int code;

FNODE rec, new;

CNODE crec, cnew;

SNODE srec, snew;

RNODE trec, rnew;

79

static int fdl 	hndl
	

chndl 	sdl

shndl = 0;

static int spl

static int mpl

int *stat;

sphndl

mphndl

1 	rhndl

*sec;

char *lstr, *cstr, *sstr, *mstr, *ssn, *cisid,

if (code == MISC_FC)

printf("Enter the SSN for Faculty

ssn = (char *) malloc(15);

gets(ssn);

if (!mpl)

if((mphndl = sproclyr_handle()))

mpl

if (mphndl)

mstr = misc_fac_1(&ssn, sproclyr_clnt);

if (!stremp(*mstr, "))

error("Not Found");

sleep(5);

else

printf("%s\n", *mstr

static int fdl = 0, hndl = 0, cdl = 0, chndl = 0, sdl =

0, shndl = 0;

static int spl = 0, sphndl = 0, rdl = 0, rhndl = 0;

static int mpl = 0, mphndl = 0;

int *stat;

char **lstr, **cstr, **sstr, **mstr, *ssn, *crsid,

*sec;

if (code == MISC_FC)

printf("Enter the SSN for Faculty : ");

ssn = (char *) malloc(15);

gets(ssn);

if (!mpl)

{

if((mphndl = sproclyr_handle()))

mpl = 1;

if (mphndl)

mstr = misc_fac_1 (&ssn, sproclyr_clnt);

if (!strcmp(*mstr,""))

error('e',"Not Found");

sleep(5);

else

printf("%s\n", *mstr);

MISC_FC()

Faculty Information 	data Lalyer Bldg. Block

Functionality.

if (code >= FADD && code <= FUPD)

	

if((rec = (FNODE) malloc(sizeof(fdata))) 	NULL)

error(Mem. Fault\n"

return;

if (!fdl)

{

if((hndl = fdatalyr_handle()))

fdl

if (hndl)

switch(code)

case FADD

rec = make_fnode(new);

stat = add_record_1(rec, datalyr_clnt);

if (*stat == 0)

error('e "FADD_ERROR::1");

81

 /* MISC_FC() */

Faculty Information - data Lalyer Bldg. Block

Functionality. */

if (code >= FADD && code <= FUPD)

if((rec = (FNODE) malloc(sizeof(fdata))) == NULL)

error('e',"Mem. Fault\n");

return;

if((hndl = fdatalyr_handle()))

fdl = 1;

}

if (hndl)

switch(code)

case FADD :

rec = make_fnode(new);

stat = add_record_1(rec, fdatalyr_clnt);

if (*stat == 0)

error('e',"FADD_ERROR::1"); /*

81

}

**

break,

case FLIST

lstr.list_record_1(NULL,fdatalyr_clnt

if (!strcmp(*lstr ""))

error("No Match Found");

else

system("clear'

printf("%s\n", 	Er

break,

case FVIEW

printf("Enter SSN: of the Faculty to

82

View

ssn = (char 	malloc(20);

ssn = gets();

1str.view_record_1(&ssn, datdlyr_cInt);

if (*lstr 	.)

error('e',"No Match Found");

else

system("clear"

printf("%s\n", *1st':

free(ssn

break;

case FDEL

break;

case FLIST :

lstr=list_record_1(NULL,fdatalyr_clnt);

if (!strcmp(*lstr,""))

error('e',"No Match Found");

else

system("clear");

printf("%s\n", *Istr);

}

break;

case FVIEW :

printf("Enter SSN: of the Faculty to

82

View : ");

ssn = (char *) malloc(20);

ssn = gets();

1str=view_record_1(&ssn,fdatdlyr_cInt);

if (*lstr == "")

error('e',"No Match Found");

else

(

system("clear");

printf("%s\n", *lstr);

free(ssn);

break;

case FDEL :

Delete:

83

printf("Enter SSN: 	t e Faculty to

ssn = (char 	malloc(20);

ssn = gets();

ssn[11) 	'\0';

printf("SSNAs\ 	ssn);

stat = del_record_1(&ssn,fdatalyr_clnt)

printf("stat = %d\n 	*stat);

if (*stat == 0)

error("FDEL_ERROR: 	Does not

Exist");

else

printf("SUCCESSFULL DELETION\n"

free(ssn);

break;

case FUPD

printf("Enter SSN 	(999-99-9999)

ssn = (char *) malloc(20);

ssn = gets();

ssn[11].'\0';

sstr = view_record_1(&ssn, fdat:aiyr_clnt)

if (*sstr

printf("SSN 	UPD 	does nor

exist\n"

else

system("clear'

printf("Enter SSN: of the Faculty to

83

Delete: ");

ssn = (char *) malloc(20);

ssn = gets();

ssn[11) 	'\0';

printf("SSN:%s\n", ssn);

stat = del_record_1(&ssn,fdatalyr_cInt);

printf("stat = %d\n", *stat);

if (*stat == 0)

error('e',"FDEL_ERROR::1, Does not

Exist");

else

printf("SUCCESSFULL DELETION\n");

free(ssn);

break;

case FUPD :

printf("Enter SSN : (999-99-9999) :");

ssn = (char *) malloc(20);

ssn = gets();

ssn[11]-='\0';

sstr = view_record_1(&ssn, fdaLalyr_clnt);

if (*sstr=="")

printf("SSN 	UPD :: does nor

exist\n");

else

{

system("clear");

printf("%s\n", *sstr);

printf("\n\nNow Enter the Data Again for SSN

%s\n 	ssn);

sleep(2);

stat = del_record_1(&ssn, fdatalyr_clnt);

if (*stat == 0)

printf("FDL::Unsuccessful Update, Please Check

it\n

rec = make_fnode(new);

stat = add_record_1(rec, fdacalyr_clnt

if (*stat == 0)

printf("FAD::Unsuccessful Update, Please Check

it\n"

free(s..,n);

break;

default

error('e',"Invalid Service

Code,Unrecognized");

Brea

* switch()

sleep(2);

) /* if..._handle() */

/* code 	&& code 	*/

if (code==SADD II code==SVIEW II code==SLIST II

code==SUPD)

84

printf("%s\n", *sstr);

printf("\n\nNow Enter the Data Again for SSN :

%s\n", ssn);

sleep(2);

stat = del_record_1(&ssn, fdatalyr_clnt);

if (*stat == 0)

printf("FDL::Unsuccessful Update, Please Check

it\n");

rec = make_fnode(new);

stat = add_record_1(rec, fdacalyr_clnt);

if (*stat == 0)

printf("FAD::Unsuccessful Update, Please Check

it\n");

free(ssn);

break;

default :

error('e',"Invalid Service

Code,Unrecognized");

break;

/* switch() */

sleep(2);

) /* if __handle() */

/* code >= 	&& code <= 	*/

/* 	if (code==SADD II code==SVIEW II code==SLIST II

code==SUPD)

{

84

/*We are ommitting the portion for Student datalayer

85

Requests, as
	

is similar to the faculty data layer

operatrions.*

}

else if (code == SDEL)

{

Here is a Student Delete operation that is

accessed through the processing layer BB.*/

if (!spl)

if((sphndl = sproclyr_handle()))

1

if (sphndl)

printf("Enter SSN (999-99-9999):

ssn = (char *) malloc(20);

ssn = gets();

ssn[1l] 	'\0';

printf("ssn = %s\n", ssn);

stat.psdel_record_1(&ssn,sproclyr_cInc);

if (*stat == 0)

error(' ,"SDEL_ERROR: 	Does not Exist

/*Course/Registration data Lalyer Bldg. Block Functionality.

85

/*We are ommitting the portion for Student datalayer

Requests, as it is similar to the faculty data layer

operatrions.*/

}

else if (code == SDEL)

{

/* Here is a Student Delete operation that is

accessed through the processing layer BB.*/

if (!spl)

{

if((sphndl = sproclyr_handle()))

spl = 1;

if (sphndl)

printf("Enter SSN (999-99-9999): ");

ssn = (char *) malloc(20);

ssn = gets();

ssn[11] = '\0';

printf("ssn = %s\n", ssn);

stat=psdel_record_1(&ssn,sproclyr_cInc);

if (*stat == 0)

error('e',"SDEL_ERROR::1, Does not Exist");

)

/*Course/Registration data Lalyer Bldg. Block Functionality.

are similart to FDLBB operations, so they are not listed

here./

return;

) /* trader() */

Input.c is another which is used by trader() function. It

is a program for Data Entry routines, make_fnode, make_fnode

etc. This is program is merely getting input from the

user,so it is not listed here.*/

** 	Fdatalyr.c

* 	Remote Database Service Procedures

x. 	Only The Add_record service is completely detailed;

Please Note that only the Fdatalyr.c is listed here. Other

programs such as sdatalyr.c, cdatalyr.c, rdatalyr.c are the

same

*/

Vinclude 	cntl.h>

fl include <string.h>

#include udis.h"

t *add_record_1(newl)

record *newl;

static int star

char ssn[256);

char *newrec, *irec;

int fd, rqst, found

86

are similart to FDLBB operations, so they are not listed

here.*/

return;

) /* trader() */

/* Input.c is another which is used by trader() function. It

is a program for Data Entry routines, make_fnode, make_rnode

etc. This is program is merely getting input from the

user,so it is not listed here.*/

/*

** 	Fdatalyr.c

** 	Remote Database Service Procedures

Only The Add_record service is completely detailed;

Please Note that only the Fdatalyr.c is listed here. Other

programs such as sdatalyr.c, cdatalyr.c, rdatalyr.c are the

same

*/

#include <fcntl.h>

fl include <string.h>

#include "dis.h"

int *add_record_1(newl)

record *new1;

{

static int star_ = 0;

char ssn[256);

char *newrec, *irec;

int fd, rqst, found = 0;

86

sprintf(ssn, -11s 	newl -ssn);

if ((fd = open(FDATABASE,O_RDWR,0700)) 	-1)

error(' 	HCan not Open \n");

if ((fd=creat(FDATABASE,0700)) 	-1)

error(Can not Create'

exit(-1);

else

irec = (char 	malloc(30);

lseek(fd,OL,0);

while (read(fd, irec, 11))

irec[11)

if (!(star = strcmp(irec, ssn)))

error("Duplicate Record

Detected\n"

return(ELstat);

) /* if */

lseek(fd,155L,1);

) /* while */

else

sprintf(ssn,"%-lls", newl->ssn);

if ((fd = open(FDATABASE,O_RDWR,0700)) == -1)

{

error('e',"Can not Open \n");

if ((fd=creat(FDATABASE,0700)) == -1)

{

error('e',"Can not Create");

exit(-1);

}

else

{

irec = (char *) malloc(30);

lseek(fd,OL,0);

while (read(fd, irec, 11))

irec[ll) 	'\0';

if (!(star = strcmp(irec, ssn)))

{

error('e',"Duplicate Record

Detected\n");

return(&stat);

1 /* if */

lseek(fd,155L,1);

) /* while */

) /* else */

87

sleep(5);

newrec = (char 	malloc(256*6);

sprintf(newrec,"%-11s1%-30s1%-30s1%-30s1%-30s1%-30s",

newl->ssn, new >firstName, newl->middleInitial, newl-

›lastName,

newl->phone, newl->location),

rqst = strlen(newrec)

lseek(fd, OL, 2);

if ((write(fd, newrec, r st) 	rqst))

printf("\00074);

stat

errorPe',"Can not write the requested number

else

stat

write(fd, "\n",

free(newrec);

if (TORF) printf ("ADD done, RETURN THE SUCCESS/FAILURE

CODE\n);

close(fd);

returnMstat ;

88

sleep(5);

newrec = (char *) malloc(256*6);

sprintf(newrec,"%-11s1%-30s1%-30s1%-30s1%-30s1%-30s",

newl->ssn, newl->firstName, newl->middleInitial, newl-

>lastName,

newl->phone, newl->location);

rqst = strlen(newrec) - 1;

lseek(fd, OL, 2);

if ((write(fd, newrec, rqst) != rqst))

printf("\0007");

scat = 0;

error('e',"Can not write the requested number");

else

star = 1;

write(fd, "\n", 1);

free(newrec);

if (TORF) printf ("ADD done, RETURN THE SUCCESS/FAILURE

CODE\n");

close(fd);

return(&stat);

88

char *list_record_1()

char lstbuf[256];

static char *outrec = NULL;

FILE *fp;

if ((outrec = (char 	malloc(3700)) 	NULL)

error(,"Mem.Fault");

return(NULL);

strcpy(outrec,

if ((fp = fopen(FDATABASE, ")) 	NULL)

error("Nothing to List");

strcpy(outrec,"Nothing To List"

return(&outrec);

}

while(fgets(lstbuf,256,fp))

lstbuf[strlen(lstbuf)) 	0';

if (!strcmp(lstbuf,"\n"))

break;

89

char **list_record_1()

char lstbuf[256];

static char *outrec = NULL;

FILE *fp;

if ((outrec = (char *) malloc(3700)) == NULL)

{

error('e',"Mem.Fault");

return(NULL);

}

strcpy(outrec,"");

if ((fp = fopen(FDATABASE,"r")) == NULL)

{

error('e',"Nothing to List");

strcpy(outrec,"Nothing To List");

return(&outrec);

while(fgets(lstbuf,256,fp))

lstbuf[strlen(lstbuf)-1) = '\0';

if (!strcmp(lstbuf,"\n"))

break;

89

strcat(lstbuf,"\n");

strcat(outrec,lstbuf);

fclose(fp);

if (!strcmp(outrec, "))

strcpy(outrec,

return(&outrec

else

returnMoutrec

char *view_record_1(ssn)

char **ssn;

int scat

static char *retstr;

char irec, rssn[15], *flds[256];

FILE f_p;

sprintf(rssn, " o-lls", *ssn);

if ((fp = fopen(FDATABASE,"r")) 	NULL)

error(' 	,"Can not. Open

strcpy(retstr,

return(&retstr

else

strcat(lstbuf,"\n");

strcat(outrec,lstbuf);

fclose(fp);

if (!strcmp(outrec,""))

strcpy(outrec,"");

return(&outrec);

else

return(&outrec);

char **view_record_1(ssn)

char **ssn;

int scat = 1, i = 0;

static char *retstr;

char *irec, rssn[15], *flds[256];

FILE *fp;

sprintf(rssn,"%-11s", *ssn);

if ((fp = fopen(FDATABASE,"r")) == NULL)

error(le',"Can not Open \n");

strcpy(retstr,"");

return(&retstr);

else

retstr = (char *) malloc(356);

while ((stat) && (fgets(retstr,256,fp)))

irec = (char *) malloc(356);

strcpy(irec, retstr);

for(i=0 i 6;i++)

if((flds[]=strtok(irec, 	 NULL)

irec = NULL;

stat = strcmp(rssn, flds[0]);

} /* while */

else /

if(!stat)

fclose(fp);

return(&retstr

else

fclose(fp);

strcpy(retstr,

return(&retstr);

int *del_record_1(ssn)

char **ssn;

91

{

91

retstr = (char *) malloc(356);

while ((stat) && (fgets(retstr,256,fp)))

{

irec = (char *) malloc(356);

strcpy(irec, retstr);

for(i=0;1<6;i++)

if((flds[i]=strtok(irec,"1"))

irec = NULL;

stat = strcmp(rssn, flds[0]);

/* while */

/* else */

if(!stat)

{

fclose(fP);

return(&retstr);

else

fclose(fp);

strcpy(retstr,"");

return(&retstr);

int *del_record_1(ssn)

char **ssn;

!= NULL)

static int ret

FILE *fp, ofp;

int stat

char dssn[15], *flds[256], *drec, s[256];

if ((fp=fopen(FDATABASE, ')) 	NULL)

error('e 	Can not Open"

ret

return(Ecret);

if ((ofp.fopen("tempfac.data
	

NULL)

errorl'e "Can not Open'

ret

return(&ret);

printf("DSSN.As\n", dssn);

sprintf(dssn, -11s", *ssn);

drec = (char *) malloc(256);

while(fgets(drec,2 6,fp))

printf("DREC.As\n",drec),

strcpy(s,drec);

for(i=0;i<MAX;ii-1-)

if((flds[].strtok(drec, 	 NULL)

drec = NULL;

else

92

static int ret = 1;

FILE *fp, *ofp;

int scat = 0, i;

char dssn[15], *flds[256], *drec, s[256];

if ((fp=fopen(FDATABASE,"r")) == NULL)

error('e',"Can not Open");

ret = 0;

return(&ret);

if ((ofp=fopen("tempfac.data","a+")) == NULL)

{

error('e',"Can not Open");

ret = 0;

return(&ret);

)

printf("DSSN=%s\n", dssn);

sprintf(dssn,"%-lls", *ssn);

drec = (char *) malloc(256);

while(fgets(drec,256,fp))

printf ("DREC=%s\n", drec);

strcpy(s,drec);

for(i=0;i<MAX;i++)

if((flds[i]=strtok(drec,"I")) != NULL)

drec = NULL;

else

92

break,

if Mstat.strcmp(dssn,flds[0])))

continue;

fputs(s,ofp);

drec = (char 	malloc(256);

} while() /

if (stat 	0)

ret

fclose(fp);

fclose(ofp);

remove(FDATABASE);

rename("tempfac.data" FDATABASE);

return(&ret);

** 	Sproclyr.c

k* 	Remote Database Service Procedures This Illustrates

the Processing layer fuynctionality

((include <fcntl.h>

((include <string.h>

((include "clis.h"

* * 	This is a Function (Service) to Delete a Student.

int psdel_record_1(ssn)

char *ssn;

93 93

break;

if (! (stat=strcmp(dssn,flds[0])))

continue;

fputs(s,ofp);

drec = (char *) malloc(256);

} /* while() */

if (scat != 0)

ret = 0;

fclose(fp);

fclose(ofp);

remove(FDATABASE);

rename("tempfac.data",FDATABASE);

• return(&ret);

/*

** 	Sproclyr.c

** Remote Database Service Procedures This Illustrates

the Processing layer fuynctionality

*/

((include <fcntl.h>

((include <string.h>

#include "dis.h"

/*

* * 	This is a Function (Service) to Delete a Student.

*/

int *psdel_record_1(ssn)

char **ssn;

static i t stat

char *tssn;

tssn = (char *) malloc(20);

strcpy(tssn, *ssn);

if (sdatalyr_handle())

stat = *sdel_record_1(&tssn, sdatalyr_clnt);

if (!stat)

return(&stat);

if(rdatalyr_handle())

stat = *rdel_record_1(&tssn, rdatalyr_clnt);

if (Istat)

return(&stat);

char **miscfac1(ssn)

char **ssn;

int 	 j

static char *outrec;

char **cstr, *cistr[256];

char *fssn, *clist, *crec 656}, *flds[256 	*crecptr;

char **Mew;

if((outrec = (char 	malloc(5000)) 	NULL)

strcpy(outrec,

return(&outrec

94

static int stat = 0;

char *tssn;

tssn = (char *) malloc(20);

strcpy(tssn, *ssn);

if (sdatalyr_handle())

stat = *sdel_record_1(&tssn, sdatalyr_clnt);

if (!stat)

return(&stat);

if(rdatalyr_handle())

stat = *rdel_record_1(&tssn, rdatalyr_clnt);

if (!stat)

return(&stac);

char **misc_fac_1(ssn)

char **ssn;

int i =0, k = 0, j = 0;

static char *outrec;

char **cstr, *cistr[256];

char *fssn, *clist, *crec[656], *flds[256], *crecptr;

char **Mew;

if((outrec = (char *) malloc(5000)) == NULL)

{

strcpy(outrec,"");

return(&outrec);

94

95

clist = (char 	malloc(5000);

crecptr = (char *) malloc(300);

fssn = (char *) malloc(20);

strcpy(outrec, ");

strcpy(fssn, *ssn);

if (fdatalyr_handle())

fview = view_record_1(&fssn, fdatalyr_clnt);

if (!strcmp(*Eview,""))

strcpy(oucrec,"Invalid Faculty SSN

return(&outrec);

}

strcpy(outrec,"Information on Requested Faculty i

\n

strcat(outrec, *fview);

scrcat(outrec, "\nNow Displaying The Into. on

his/her Courses\n");

1

it (cdatalyr_handle())

Faculty");

cstr = cli t_record_1(NULL, cdatalyr_cInt);

if(!strcmWc tr,))

strcat(outrec,"\nNo Course Taken by Requested

returnMoutrec

95

clist = (char *) malloc(5000);

crecptr = (char *) malloc(300);

fssn = (char *) malloc(20);

strcpy(outrec,"");

strcpy(fssn, *ssn);

if (fdatalyr_handle())

{

fview = view_record_1(&fssn, fdatalyr_clnt);

if (!strcmp(*fview,""))

strcpy(outrec,"Invalid Faculty SSN 	");

return(&outrec);

}

strcpy(outrec,"Information on Requested Faculty is

\n");

strcat(outrec, *fview);

scrcat(outrec,"\nNow Displaying The Into. on

his/her Courses\nu);

}

it (cdatalyr_handle())

cstr = clist_record_1 (NULL, cdatalyr_cInt);

if(!strcmp(*cstr,""))

(

strcat(outrec,"\nNo Course Taken by Requested

Faculty");

return(&outrec);

strcpy(clist, *cstr);

for (i=0 i<MAX;i++)

if((crec[]=strtok(clist, 	")) 	NULL)

clist = NULL;

else

brea

for (k

96

NULL)

strcpy(crecptr,crec[k));

for (j-0;j<MAX 	+)

if((flds[j).strtok(crecptr,"I"))

crecptr = NULL;

else

break,

if(!strcmp(flds[), fssn))

strcat(outrec,"\-1);

strcat(outrec,crec[k]);

crecptr = (char 	malloc(300);

strcpy(clist, *cstr);

for (i=0;i<MAX;i++)

{

if((crec[i]=strtok(clist,"\n")) != NULL)

clist = NULL;

else

break;

}

for(k=i-l;k-,=0;k--)

strcpy(crecptr,crec[k]);

for(j=0;j<MAX;j++)

96

NULL)

if((flds[j]=strtok(crecptr,"1")) !.

crecptr = NULL;

else

break;

if(!strcmp(flds[5], fssn))

strcat(outrec,"\n");

strcat(outrec,crec[k]);

crecptr = (char *) malloc(300);

) 1* () */

97

} 	cdat.._ an.

recurn(&outrec);

misc_fac() */

* * 	submenu.c

Remote Database Service Procedures

#include <string.h>

#include ulyr.h"

char **amenu_1()

static char *mnu;

mnu = (char *) malloc(400);

strcpy(mnu, ");

strcat(mnu,"\n\t\t\t\t<A/a> Add Information\n");

strcat(mn "\n\t\t\t\t<D/d., Delete Information\n"

strcat(mnu u\n\t\t\t\t‹L/1> List Information\n");

strcat(mnu "\n\t\t\t\t<V/v> View Information\n");

strcat(mnu "\n\t\C\C\t<U/u-> Update Information\n"

strcat(mnu, \n\t\t\t\t<E/e., Exit This Menu\n");

return(&mnu);

char 	menu_1()

static char
	u;

mnu = (char
	malloc(400);

 /* cdat.._han..() */

recurn(&outrec);

}

 /* misc_fac() */

/*

** 	submenu.c

Remote Database Service Procedures

*/

#include <string.h>

#include "ulyr.h"

char **amenu_1()

{

static char *mnu;

mnu = (char *) malloc(400);

strcpy(mnu,"");

strcat(mnu,"\n\t\t\t\t<A/a> Add Information\n");

strcat(mnu,"\n\t\t\t\t<D/d> Delete Information\n");

strcat(mnu,"\n\t\t\t\t<L/1> List Information\n");

strcat(mnu,"\n\t\t\t\t<V/v> View Information\n");

strcat(mnu,"\n\t\t\t\t<U/u> Update Information\n");

strcat(mnu,"\n\t\t\t\t<E/e> Exit This Menu\n");

return(&mnu);

char **pmenu_1()

{

static char *mnu;

mnu = (char *) malloc(400);

97

}

strcpy(mnu,);

strcat(mn "\n\t\t\t\t M/m> Faculty Course List\n

strcat(mnu,"\n\t\t\t\t-E/e> Exit This Menu\n");

return(&mnu);

Now We List the Makefiles

/*Faculty Building Block Makefile */

FDLSERVOBJS = fdatalyr.o fdatalyr_svc.c fdatalyr_xdr.o

error.o init.o input.c

HEADERFILES = dis.h fdatalyr.h

FDATALYRGEN = fdatalyr_clnt.c fdatalyr_svc.c fdatalyr_xd.c

fdatalyr.h

fdatalyrbb 	$(FDLSERVOBJS) $(HEADERFILES)

cc -g -o fdatalyrbb $(FDLSERVOBJS)

fdatalyr.o 	fdatalyr.c

cc -g 	fdatalyr.o fdatalyr.c

fdatalyr_svc.o 	fdatalyr_svc.c

cc -g 	fdatalyr_svc.o fdatalyr_svc.

input.o 	input.c

cc -g 	-o input.o input.c

fdatalyr x r.o 	fdatalyr_xdr.c

cc -g 	-o fdatalyr_x r.o fdatalyr_xdr.c

error.o 	error.c

cc 	-o error.o error.c

init.o 	init.c

cc -g 	-o init.o init.c

$(FDATALYRGEN) 	fdatalyr.x

strcpy(mnu,"");

strcat(mnu,"\n\t\t\t\t<M/m> Faculty Course List\n");

strcat(mnu,"\n\t\t\t\t<E/e> Exit This Menu\n");

return(&mnu);

/* Now We List the Makefiles */

/*Faculty Building Block Makefile */

FDLSERVOBJS = fdatalyr.o fdatalyr_svc.c fdatalyr_xdr.o

error.o init.o input.c

HEADERFILES = dis.h fdatalyr.h

FDATALYRGEN = fdatalyr_clnt.c fdatalyr_svc.c fdatalyr_xdr.c

fdatalyr.h

fdatalyrbb : $(FDLSERVOBJS) $(HEADERFILES)

cc -g -o fdatalyrbb $(FDLSERVOBJS)

fdatalyr.o : fdatalyr.c

cc -g -c -o fdatalyr.o fdatalyr.c

fdatalyr_svc.o : fdatalyr_svc.c

cc -g -c -o fdatalyr_svc.o fdatalyr_svc.c

input.o : input.c

cc -g -c -o input.o input.c

fdatalyr_xdr.o : fdatalyr_xdr.c

cc -g -c -o fdatalyr_xdr.o fdatalyr_xdr.c

error.o : error.c

cc -g -c -o error.o error.c

init.o : init.c

cc -g -c -o init.o init.c

$(FDATALYRGEN) : fdatalyr.x

rpcgen fdatalyr.x

ocessing Layer BB makefile*/

SPROCSERVOBJS = sproclyr.o sproclyr_svc.o sproclyr_x I.o

error.o init.o prochandle.o sdatalyr_clnt.o rdatalyr_clnt.o

sdatalyr_xdr.o rdatalyr_xdr.o cdatalyr_clnt.o

cdatalyr_x r.o fdatalyr_clnt.o fdatalyr xdr.o

HEADERFILES = dis.h sproclyr.h sdatalyr.h rdatalyr.h

cdatalyr.h

SPROCLYRGEN = sproclyr_clnt.c sproclyr_svc.c sproclyr_xdr.c

sproclyr.h

SDATALYRGEN = sdatalyr_clnt.c sdatalyrsvc.c sdaralyr xdr.c

sdatalyr.h

RDATALYRGEN = rdatalyr_clnt.c rdatalyr_svc.c rdatalyr x r.r

rdatalyr.h

CDATALYRGEN = cdatalyr_clnt.c cdatalyr_svc.c cdaralyr_xdr.o

cdatalyr .

FDATALYRGEN = Edatalyr_cint 	fdatalyr_svc.c fdatalyr_xdr

fdatalyr.h

sproclyrbb 	$(SPROCSERVOBJS) $(HEADERFILES)

cc -g -o sproclyrbb $(SPROCSERVOBJS)

sproclyr.o 	sproclyr.c

cc -g 	-o sproclyr.o sproclyr.c

sproclyr_svc.o : sproclyr_svc.c

cc -g 	-o sproclyr_svc.o sproclyr_svc.c

sproclyr_xdr.o 	sproclyr_xdr.c

99

rpcgen fdatalyr.x

/* Processing Layer BB makefile*/

SPROCSERVOBJS = sproclyr.o sproclyr_svc.o sproclyr_xdr.o

error.o init.o prochandle.o sdatalyr_clnt.o rdatalyr_clnt.o

sdatalyr_xdr.o rdatalyr_xdr.o cdatalyr_clnt.o

cdatalyr_xdr.o fdatalyr_clnt.o fdatalyr_xdr.o

HEADERFILES = dis.h sproclyr.h sdatalyr.h rdatalyr.h

cdatalyr.h

SPROCLYRGEN = sproclyr_clnt.c sproclyr_svc.c sproclyr_xdr.c

sproclyr.h

SDATALYRGEN = sdatalyr_clnt.c sdatalyrsvc.c sdaralyr_xdr.c

sdatalyr.h

RDATALYRGEN = rdatalyr_clnt.c rdatalyr_svc.c rdatalyr_xdr.c

rdatalyr.h

CDATALYRGEN = cdatalyr_clnt.c cdatalyr_svc.c cdatalyr_xdr.c

cdatalyr.h

FDATALYRGEN = Edatalyr_clnt.c fdatalyr_svc.c fdatalyr_xdr.c

fdatalyr.h

sproclyrbb : $(SPROCSERVOBJS) $(HEADERFILES)

cc -g -o sproclyrbb $(SPROCSERVOBJS)

sproclyr.o : sproclyr.c

cc -g -c -o sproclyr.o sproclyr.c

sproclyr_svc.o : sproclyr_svc.c

cc -g -c -o sproclyr_svc.o sproclyr_svc.c

sproclyr_xdr.o : sproclyr_xdr.c

99

100

cc -g 	-o sproclyr_x r.o sproclyr_x r.c

sdatalyr_clnt.o 	sdatalyr_clnt.c

cc -g 	-o sdatalyr_clnt.o sdatalyr_clnt.c

rdacalyr_clnt.o 	rdatalyr_clnt.c

cc -g 	rdatalyr_clnt.o rdatalyr_clnt.c

sdatalyr_x 	sdatalyr_xdr.c

cc -g 	-o sdatalyr_x r.o sdatalyr_xdr.c

rdatalyr_x r.o 	rdatalyr_xdr.c

cc -g -c -o rdatalyr_x r.o rdatalyr_xdr.c

cdatalyr_clnt.o 	cdatalyr_clnt.c

cc -g 	-o cdacalyr_clnc.o cdatalyr_clnt.c

cdatalyr_x r 	cdatalyr_xdr.c

cc -g 	-o cdatalyr_x r.o cdatalyr_xdr.c

fdatalyr_clnt.o 	fdatalyr_clnt.c

cc 	 fdatalyr_clnt.o fdatalyr_clnc.c

fdatalyr x r.o 	fdatalyr_xdr.c

CC
	 fdatalyr x 1.o fdatalyr_xdr.c

error.o 	error.c

c c 	-c -o error.o error.c

init.° 	init.c

cc -g 	-o init.o init.c

prochandle.o 	prochandle.c

cc -g 	o prochandie.o prochandle.c

$(SPROCLYRGEN) 	sproclyr.x

rpcgen sproclyr.x

$(RDATALYRGEN) 	rdatalyr.x

rpcgen rdatalyr.x

cc -g -c -o sproclyr_xdr.o sproclyr_xdr.c

sdatalyr_clnt.o : sdatalyr_clnt.c

cc -g -c -o sdatalyr_clnt.o sdatalyr_clnt.c

rdacalyr_clnt.o : rdatalyr_clnt.c

cc -g -c -o rdatalyr_clnt.o rdatalyr_clnt.c

sdatalyr_xdr.o : sdatalyr_xdr.c

cc -g -c -o sdatalyr_xdr.o sdatalyr_xdr.c

rdatalyr_xdr.o : rdatalyr_xdr.c

cc -g -c -o rdatalyr_xdr.o rdatalyr_xdr.c

cdatalyr_clnt.o : cdatalyr_clnt.c

cc -g -c -o cdacalyr_clnc.o cdatalyr_clnt.c

cdataiyr_xdr.o : cdatalyr_xdr.c

cc -g -c -o cdatalyr_xdr.o cdatalyr_xdr.c

fdatalyr_clnt.o : fdatalyr_clnt.c

cc -g -c -o fdatalyr_clnt.o fdatalyr_clnt.c

fdataiyr_xdr.o : fdatalyr_xdr.c

cc -g -c -o fdatalyr_xdr.o fdatalyr_xdr.c

error.o : error.c

cc -g -c -o error.o error.c

init.o 	init.c

cc -g -c -o init.o init.c

prochandie.o : prochandle.c

cc -g -c -o prochandie.o prochandle.c

$(SPROCLYRGEN) : sproclyr.x

rpcgen sproclyr.x

$(RDATALYRGEN) : rdatalyr.x

rpcgen rdatalyr.x

100

101

$(SDATALYRGEN) 	sdatalyr.x

rpcgen sdatalyr.x

$(CDATALYRGEN) 	cdatalyr.x

rpcgen cdatalyr.x

$(FDATALYRGEN) 	fdatalyr.x

rpcgen fdatalyr.x

/* The User Layer BB Makefile*/

NEWMENUOBJS = submenu.o ulyr_svc.c error.o init.o

HEADERFILES = ulyr.h

ULYRGEN = ulyr_clnt.c ulyr_svc.c ulyr.h

newsbb $(NEWMENUOBJS) $(HEADERFILES)

cc -g -o newsbb $(NEWMENUOBJS)

submenu.o 	submenu.c

cc -g 	-o submenu.o submenu.c

ulyr_svc.o 	ulyr_svc.c

cc -g 	-o ulyr_svc.o ulyr_svc.c

error.o 	error.c

cc g 	-o error.o error.c

init.° 	init.c

cc -g 	-o init.o init.c

$(ULYRGEN) 	ulyr.x

rpcgen ulyr.x

The Header File for EIS is DIS.H, which as follows

#include <stdio.h›

#include <string.h>

101

$(SDATALYRGEN) : sdatalyr.x

rpcgen sdatalyr.x

$(CDATALYRGEN) : cdatalyr.x

rpcgen cdatalyr.x

$(FDATALYRGEN) : fdatalyr.x

rpcgen fdatalyr.x

/* The User Layer BB Makefile*/

NEWMENUOBJS = submenu.o ulyr_svc.c error.o init.o

HEADERFILES = ulyr.h

ULYRGEN = ulyr_clnt.c ulyr_svc.c ulyr.h

newsbb : $(NEWMENUOBJS) $(HEADERFILES)

cc -g -o newsbb $(NEWMENUOBJS)

submenu.o : submenu.c

cc -g -c -o submenu.o submenu.c

ulyr_svc.o : ulyr_svc.c

cc -g -c -o ulyr_svc.o ulyr_svc.c

error.o 	error.c

cc -g -c -o error.o error.c

init.o : init.c

cc -g -c -o init.o init.c

$(ULYRGEN) : ulyr.x

rpcgen ulyr.x

/* The Header File for EIS is DIS.H, which as follows */

#include <stdio.h›

#include <string.h>

4include <ctype.h>

#include <rpc/rpc.h>

#include "fdatalyr.h" 	on newark remove this

fidefine TORF 	1

define COMMIT

fidefine MAX 	256

#define MAXFLDS 20

#define 	SEEK SET

define 	SEEK CUR

#define 	SEEK END

fidefine 	FSTART

fidefine CSTART 4

#define SSTART 8

#define RSTART 12

fidefine ADD

define DEL

fidefine 	VIEW 3

fidefine 	LIST 4

define 	FADD 1

fidefine 	FDEL 2

fidefine 	FVIEW

fidefine 	FLIST

fidefine 	CADD

fldefine 	CDEL 6

#define CVIEW 7

#define 	CLIST

#define 	SADD 9

102 102

#include <ctype.h>

#include <rpc/rpc.h>

#include "fdatalyr.h" /* on newark remove this */

#define TORF 	1

define COMMIT 	1

#define MAX 	256

#define MAXFLDS 20

#define 	SEEK SET 0

define 	SEEK CUR 1

#define 	SEEK END 2

#define FSTART 0

#define CSTART 4

#define SSTART 8

#define RSTART 12

#define ADD 	1

define DEL 	2

#define 	VIEW 3

#define 	LIST 4

define 	FADD 1

#define 	FDEL 2

#define 	FVIEW 	3

#define 	FLIST 	4

#define 	CADD 5

#define 	CDEL 6

#define CVIEW 7

#define 	CLIST 	8

#define 	SADD 9

103

#define 	SDEL 10

#define 	SVIEW 	11

#define 	SLIST 	12

#define 	RADD 13

#define 	RDEL 14

#define 	RVIEW 	15

#define 	RLIST 	16

#define 	MISCFC 17

#define 	EXIT 21

#define FDATALYRSERV "pluto" pluto

CLIENT *fdatalyr_clnt; 	remove on NEWARK, only on PLUTO

struct record fdata;

typedef struct record *FNODE;

/* This is all for the RPc Version of EIS*

The next Appendix illustrates the application developed by

using ANSAware*/

APPENDIX B

Now, here we illustrate the ANSAware Implementation o. the

EIS system. Here we list the source codes of the Int:ertac'e

Definition Languagefiles for each of the building bbloc:•k:;

and the Distributed Processing Language routines tor each 01

them.

/* Faculty Data Layer BB, "fdlbb.idl and "fabb.dpl*./

fdlbb INTERFACE

BEGIN

FRECORD TYPE = RECORD

103

#define 	SDEL 10

#define 	SVIEW 	11

#define 	SLIST 	12

#define 	RADD 13

#define 	RDEL 14

#define 	RVIEW 	15

#define 	RLIST 	16

#define 	MISCFC 17

#define 	EXIT 21

#define 	FDATALYRSERV 	"pluto" /* pluto */

CLIENT *fdatalyr_clnt; /* remove on NEWARK, only on PLUTO */

struct record fdata;

typedef struct record *FNODE;

/* This is all for the RPc Version of EIS*

The next Appendix illustrates the application developed by

using ANSAware*/

APPENDIX B

Now, here we illustrate the ANSAware Implementation of the

EIS system. Here we list the source codes of the Intertace

Definition Languagefiles for each of the building bblock:;

and the Distributed Processing Language routines tor each 01

them.

/* Faculty Data Layer BB, "fdlbb.idl and "fdlbb.dpl*./

fdlbb : INTERFACE

BEGIN

FRECORD : TYPE = RECORD [

FSSN 	STRING,

FNAME STRING,

MN ME STRING,

LNAME STRING,

PHONE 	STRING,

LOCATION STRING

fadd OPERATION [fnew FRECORD RETURNS fstat

INTEGER];

fdel 	OPERATION [fssn 	STRING 	RETURNS 	fstat

INTEGER];

fview 	OPERATION [fssn 	STRING) RETURNS (fstat

STRING 1;

flist 	OPERATION 	RETURNS [flist 	STRING

END.

/* Faculty Data Layer
	Operations Implementation

fdlbb.dp1.*/

/*

.41 Generated by ‘stubc Revision: 1.15

from 'fdlbb.idll

on 'Sun Nov 8 13:56:24 :1992'

fiinclude "ansa.h"

#include "dis.h"

#include <string.h>

#define TORF 1

FSSN : STRING,

FNAME : STRING,

MN ME : STRING,

LNAME : STRING,

PHONE : STRING,

LOCATION : STRING

];

fadd : OPERATION [fnew : FRECORD] RETURNS [fstat

INTEGER];

fdel : OPERATION [fssn : STRING 	RETURNS [fstat

INTEGER];

fview : OPERATION [fssn 	STRING] RETURNS (fstat

STRING);

flist : OPERATION [] RETURNS [flist : STRING];

END.

/* Faculty Data Layer]3B, Operations Implementation

fdlbb.dpl.*/

/*

* Generated by 'stubc $Revision: 1.15 $'

* from 'fdlbb.idl'

* on 'Sun Nov 8 13:56:24 1992'

*/

#include "ansa.h"

#include "dis.h"

#include <string.h>

#define TORF 1

105

#define PROPSIZE 1024

char propbuf[PROPSIZE];

USE fdlbb

USE Trader

DECLARE { fir } 	fdlbb SERVER

void body(argc, argv, envp)

int argc;

char *argv[];

char *envp[];

ansa_InterfaceRef fir;

{fir} 	fdlbb$Create(10)

(void) system_init_properties(propbuf, PROPSIZE, argc,

argv);

[} 	traderRef$Export("fdlbbu 	propbuf, tir)

Inc

}
	

fdlbb_fadd(_attr, fnew, fstat)

ansa_InterfaceAttr *_attr;

FRECORD fnew;

ansa_Integer *fstat;

char ssn[256];

char *newrec, *irec, *buf;

int rcist, found 	stat

FILE *fp;

sprintf(ssn, 	11s , fnew.FSSN);

ropen:

105

#define PROPSIZE 1024

char propbuf[PROPSIZE];

! USE fdlbb

! USE Trader

! DECLARE { fir } : fdlbb SERVER

void body(argc, argv, envp)

int argc;

char *argv[];

char *envp[];

ansa_InterfaceRef fir;

{fir) :: fdlbb$Create(10)

(void) system_init_properties(propbuf, PROPSIZE, argc,

argv);

{} <- traderRef$Export("fdlbb", "/", propbuf, tir)

Inc

}

fdlbb_fadd(_attr, fnew, fstat)

ansa_InterfaceAttr *_attr;

FRECORD fnew;

ansa_Integer *fstat;

char ssn[256];

char *newrec, *irec, *buf;

int rgst, found = 0, scat = 1;

FILE *fp;

sprintf(ssn,"%-11s", fnew.FSSN);

ropen:

106

if ((p = fopen(FDATABASE, 	')) 	NULL)

error(
	

Can not Open \n"

if ((fp = fopen(FDATABASE,"a")) 	NULL)

error(
	

n Not Create\n

sleep(2);

*fstat=0;

return(1);

else

fclose(fp);

goto ropen;

else

irec = (char *) malloc(11);

buf = (char *) malloc(256);

while (fgets(buf,256,fp))

{

buf[11] 	0';

sprintf(irec,"%-11 	,buf);

if (!strcmp(irec, ssn))

printf("DUPLICATE RECORD\n"

if ((fp = fopen(FDATABASE,"r+")) == NULL)

{

error('e',"Can not Open \n");

if ((fp = fopen(FDATABASE,"a")) == NULL)

{

error('e',"Can Not Create\n");

sleep(2);

*fstat=0;

return(1);

else

{

fclose(fp);

goto ropen;

else

irec = (char *) malloc(I1);

buf = (char *) malloc(256);

while (fgets(buf,256,fp))

buf[11] = '\0';

sprintf(irec,"%-lls",buf);

if (!strcmp(irec, ssn))

106

printf("DUPLICATE RECORD\n");

stat

free(buf);

free(irec);

return(1);

} 1* if */

} /* while

} 	else */

newrec = (char 	malloc(256*6);

sprintf(newrec "%-11s1%sl%sl%sl%sl%s\n",

fnew.FSSN, fnew.FNAME, fnew.MNAME, fnew.LNAME,

fnew.PHONE, fnew.LOCATION);

if (fprintf(fp, 	,newrec))

*fstat

else

printf("\0007");

*fstat

error("Can not ADD the requested

Information");

fclose(fp);

free(newrec

free(buf);

free(irec);

return(1);

107

int fdlbb_fdel(_attr, fssn, fstat

*fstat = 0;

free(buf);

free(irec);

return(1);

} /* if */

} /* while */

} /* else */

newrec = (char *) malloc(256*6);

sprintf(newrec,"%-11s1%sl%sl%sl%sl%s\n",

fnew.FSSN, fnew.FNAME, fnew.MNAME, fnew.LNAME,

fnew.PHONE, fnew.LOCATION);

if (fprintf(fp,"%s",newrec))

*fstat = 1;

else

printf("\0007");

*fstat = 0;

error('e',"Can not ADD the requested

Information");

fclose(fp);

free(newrec);

free(buf);

free(irec);

return(1);

int fdlbb_fdel(_attr, fssn, fstat)

107

ansa_InterfaceAttr _att

ansa_String fssn;

ansa_Integer *fstat;

FILE
	

P;

int stat 	 found

char dssn[15], 	flds[256], *drec, s[256];

if ((fp=fopen(FDATABASE, ")) 	NULL)

error(,"Can not Open"

*fstat

return(1);

if ((ofp=fopen("tempfac.data",)) 	NULL)

error('e',"Can not Open

*fstat

return(1);

sprintf(dssn, 	lls 	fssn);

drec = (char *) malloc(256);

while(fget (drec,2 6,fp))

stropy(s,drec);

for(0;i X;i++)

if((flds[i]=strtok(drec, 	 NULL)

drec = NULL;

108

ansa_InterfaceAttr *_attr;

ansa_String fssn;

ansa_Integer *fstat;

FILE *fp, *ofp;

int scat. = 0, i, found = 0;

char dssn[15], *flds[256], *drec, s[256];

if ((fp=fopen(FDATABASE,"r")) == NULL)

error('e',"Can not Open");

*fstat = 0;

return(1);

if ((ofp=fopen("tempfac.data","w")) == NULL)

error('e',"Can not Open");

*fstat = 0;

return(1);

sprintf(dssn,"%-11s", fssn);

drec = (char *) malloc(256);

while(fgets(drec,256,fp))

strcpy(s,drec) ;

for(i=0;i<MAX;i++)

if((flds[i]=strtok(drec,"I"))

drec = NULL;

!

 = NULL)

108

else

break,

drec = (char *) malloc(256);

if (!strcmp(dssn,flds[0]))

found

continue;

fprintf(ofp, 	s",

} /* while() */

if (!found)

*fstat

else

*fstat =

fclose(fp);

fclose(ofp);

remove(FDATABASE);

rename("tempfac.data",FDATABASE);

return(1);

int. fdlbb_fyiew(_attr, Essn, fstat

ansa_InterfaceAttr _attr;

an a_String fssn;

ansa_St:ring *fstat;

int stat = 1,

char *retstr;

109

else

break;

drec = (char *) malloc(256);

if (!strcmp(dssn,flds[0]))

{

found = 1;

continue;

fprintf(ofp,"%s", s);

} /* while() */

if (!found)

*fstat = 0;

else

*fstat = 1;

fclose(fp);

fclose(ofp);

remove(FDATABASE);

rename("tempfac.data",FDATABASE);

return(l);

int fdlbb_fview(_attr, fssn, fstat

ansa_InterfaceAttr *_attr;

ansa_String fssn;

ansa_St:ring *fstat;

{

int stat = 1, i = 0;

char *retstr;

109

char irec, rssn[15], *flds[256];

FILE

sprintf(rssn, -11s", fssn

if ((fp = fopen(FDATABASE,)) 	NULL)

strcpy(*fstat,"Faculty Database Empty, Nothing to

View\n"

return(1);

else

retstr = (char *) malloc(356);

while ((stat) && (fgets(retstr,256,fp)))

irec = (char *) malloc(356);

strcpy(irec, retstr);

for(i=0;i<6;i++)

if((flds[]=strtok(irec, 	 NULL)

irec = NULL;

stat = strcmp(rssn, flds[0]);

if (stat == 0)

*fstat = retstr;

) /x while

else */

if (stat 	0)

*fstat = "Not Found";

fclose(fp);

110

char *irec, rssn[15], *flds{256];

FILE *fp;

sprintf(rssn,"%-11s", fssn);

if ((fp = fopen(FDATABASE,"r")) == NULL)

{

strcpy(*fstat,"Faculty Database Empty, Nothing to

View\n");

return(1);

else

retstr = (char *) malloc(356);

while ((stat) && (fgets(retstr,256,fp)))

irec = (char *) ma11oc(356);

strcpy(irec, retstr);

for(i=0;i<6;i++)

if((flds[i]=strtok(irec,"I")) != NULL)

irec = NULL;

stat = strcmp(rssn, flds[0]);

if (stat == 0)

*fstat = retstr;

} /* while */

] /* else */

if (stat != 0)

*fstat = "Not Found";

fclose(fp);

110

return(1);

fdlbb_flist(_attr, flist

ansa_InterfaceAttr 	attr;

ansa_String *flist;

char lstbuf[256];

char *outrec = NULL;

FILE *fp;

if ((fp = fopen(FDATABASE, 	1)) 	NULL)

strcpy(flist "Faculty Database Is Empty, Nothing

To List\n

return(1);

if ((outrec = (char 	malloc(3700)) 	NULL)

strcpy(*flist,"Memory Fault::FLIST\n"

return(I);

strcpy(outrec,);

while(fgets(lstbuf,2 6,t0)

lstbuf[strlen(lstbuf)-1]
	

0';

if (!strcmp(lstbuf,"\n"))

break;

strcat(lstbu

111

return(1);

int fdlbb_flist(_attr, flist)

ansa_InterfaceAttr *_attr;

ansa_String *flist;

{

char lstbuf[256];

char *outrec = NULL;

FILE *fp;

if ((fp = fopen(FDATABASE,"r")) 	NULL)

{

strcpy(*flist,"Faculty Database Is Empty, Nothing

To List\n");

return(1);

if ((outrec = (char *) malloc(3700)) 	NULL)

strcpy(*flist,"Memory Fault::FLIST\n");

return(1);

strcpy(outrec,"");

while(fgets(lstbuf,256,fp))

lstbuf[strlen(lstbuf)-1] 	'\0';

if (!strcmp(lstbuf,"\n"))

break;

strcat(lstbuf,"\n");

111

strcat(outrec,lstbuf);

fclose(fp);

if (!strcmp(outrec,""))

*flist = "DataBase FACULTY 	EMPTY";

else

*flist = outrec;

return(1);

Course Data Layer Building bloc

ulbb INTERFACE

BEGIN

submenu OPERATION [opcode 	INTEGER RETURNS smeuu

STRING];

procmenu OPERATION 	RETURNS [pmenu 	STRING

END.

((include "ansa.h"

((include "tulbb.)

((include "dis.h"

((define PROPSIZE 1024

char propbuf[PROPSIZE];

USE ulbb

USE Trader

DECLARE { 	ulbb SERVER

112

strcat(outrec,lstbuf);

fclose(fp);

if (!strcmp(outrec,""))

*flist = "DataBase FACULTY :: EMPTY";

else

*flist = outrec;

return(1);

/* Course Data Layer Building block */

ulbb : INTERFACE =

BEGIN

submenu : OPERATION [opcode : INTEGER 	RETURNS [smenu

: STRING];

procmenu : OPERATION [] RETURNS [pmenu : STRING];

END.

#include "ansa.h"

((include "tulbb.h"

#include "dis.h"

((define PROPSIZE 1024

char propbuf[PROPSIZE];

! USE ulbb

! USE Trader

! DECLARE { it) : ulbb SERVER

112

void body(argc, argv, envp)

int argc;

char argv[];

char *envp[];

{

ansa_InterfaceRef r;

) 	ulbb$Create(10)

(void) system_init_properties(propbuf, PROPSIZE, argc,

argv);

{) 	traderRef$Export(uulbb", 	propbuf, ir)

int ulbb_submenu(_attr, opcode, smenu

ansa_InterfaceAttr _attr;

ansa_Integer opcode;

ansa_String *smenu;

char *rqmnu;

char title[40];

rqmnu = (char 	malloc(400);

switch(opcode)

113

void body(argc, argv, envp)

int argc;

char *argv[];

char *envp[];

{

ansa_InterfaceRef ir;

(ir) 	ulbb$Create(10)

(void) system_init_properties(propbuf, PROPSIZE, arge,

argv);

{) <- traderRef$Export("ulbb", "/", propbuf, ir)

int ulbb_submenu(_attr, opcode, smenu)

ansa_InterfaceAttr *_attr;

ansa_Integer opcode;

ansa_String *smenu;

{

char *rqmnu;

char title[40];

rqmnu = (char *) malloc(400);

switch(opcode)

113

case FSTART :

strcpy(titl "\t\t\t\tFACULTY OPERATIONS

MENU");

break;

case CSTRT :

scrcPY(title,"\t\t\t\tCOURSE OPERATIONS

MENU");

brea •

case SSTART

strcPY(title,"\t\t\t\tSTUDENT OPERATIONS

MENU"

break;

case RSTART

strcpy(tit1e, \t\t\t\tREGISTRATION MENU"

break;

if (opcode
	FSTART II opcode == CSTRT I I opcode

SSTART II opcode
	

RSTART)

strcpy(rqmnu, ");

strcat(rqmnu,"\n\t\t 	

	 \n");

strcat(rqmnu, title);

114

case FSTART :

strcpy(title,"\t\t\t\tFACULTY OPERATIONS

MENU");

break;

case CSTRT :

scrcPY(title,"\t\t\t\tCOURSE OPERATIONS

MENU");

break;

case SSTART :

strcPY(title,"\t\t\t\tSTUDENT OPERATIONS

MENU");

break;

case RSTART

strcpy(title,"\t\t\t\tREGISTRATION MENU");

break;

}

if (opcode == FSTART II opcode == CSTRT II

SSTART II opcode == RSTART)

opcode

strcpy(rqmnu,"");

strcat(rqmnu,"\n\t\t

	 \n");

strcat(rqmnu, title);

114

strcat(rqmnu,"\n\t\t

II)

strcat(rqmn "\n\n\t\t\t\tsA/a› Add Information\n")

strcat(rqmnu,"\n\t\t\t\t<D/d> Delete Information\n

strcat(rqmn "\n\t\t\t\t<U/u> Update Information\n"

strcat(rqmn "\n\t\t\t\t<L/1> List Information\n");

strcat(rqmnu,"\n\t\t\t\t<v/w, View Information\n");

strcat(rqmn "\n\t\t\t\t<E/e> Exit This Menu\n");

'smenu = rq nu;

recurn(1);

}

else

{

strcatlrqmnu,"INVALID SELECTION\n"

*smenu

return

int ulnprocmenu(_attr, pmenu

ansa_InterfaceAttr *_attr;

ansa_String *pmenu;

char *rqmnu;

char title[40];

115

(char 	malloc(400);

strcat(rqmnu,"\n\t\t

");

strcat(rqmnu,"\n\n\t\t\t\t<A/a> Add Information\n");

strcat(rqmnu,"\n\t\t\t\t<D/d> Delete Information\n");

strcat(rqmnu,"\n\t\t\t\t<U/u> Update Information\n");

strcat(rqmnu,"\n\t\t\t\t<L/l> List Information\n");

strcat(rqmnu,"\n\t\t\t\t<V/v, View Information\n");

strcat(rqmnu,"\n\t\t\t\t<E/e> Exit This Menu\n");

'smenu = rqmnu;

recurn(1);

}

else

{

strcat(rqmnu,"INVALID SELECTION\n");

*smenu = rqmnu;

return 1;

int ulbb_procmenu(_attr, pmenu)

ansa_InterfaceAttr *_attr;

ansa_String *pmenu;

{

char *rqmnu;

char.title[40];

rqmnu = (char *) malloc(400);

115

116

strcpy(rqmnu,);

strcpy(rqmnu,"\n\n

strcat(rqmn "\t\t

	 \n");

strcat(rqmnu,"\t\t\t Processing Layer Functions\n"

strcat(rqmnu,"\t\t 	

	 ");

sErcat(rqmnu, \n\n\t\t\t<l> List of Courses Taught By

a Faculty\n"

strcat(rqmnu,"\n\t\t\t‹2> Student/Regtr. Delte of

Student info.\n");

strcat(rqmnu,"\n\t\t\t<E/e-,. Exit This Menu\n

*pmenu = rqmnu;

return(1);

Student Data Layer Building BBlock

sdlbb INTERFACE

BEGIN

SRECORD TYPE = RECORD

SSSN 	STRING,

FNAME STRING,

MNAME : STRING,

LNAME STRING,

SPHONE 	STRING,

SBDATE STRING,

strcpy(rqmnu,"");

strcpy(rqmnu,"\n\n");

strcat(rqmnu,"\t\t---

\n");

strcat(rqmnu,"\t\t\t Processing Layer Functions\n");

strcat(rqmnu,"\t\t

	 ");

strcat(rqmnu,"\n\n\t\t\t<i> List of Courses Taught By

a Faculcy\n");

strcat(rqmnu,"\n\t\t\t‹2> Student/Regtr. Delte of

Student info.\n");

strcat(rqmnu,"\n\t\t\t<E/e> Exit This Menu\n");

*pmenu = rqmnu;

return(1);

}

/* Student Data Layer Building BBlock */

sdlbb : INTERFACE =

BEGIN

SRECORD : TYPE = RECORD [

SSSN : STRING,

FNAME : STRING,

MNAME : STRING,

LNAME : STRING,

SPHONE : STRING,

SBDATE : STRING,

116

117

SLEVEL 	STRING,

SMAJOR STRING,

SMINOR 	STRING,

SGPA 	STRING,

SENROLL :STRING

sadd 	OPERATION [snew 	SRECORD 	RETURNS sstat

INTEGER 1;

sdel 	OPERATION [sssn 	STRING 	RETURNS 	sstat

INTEGER];

sview 	OPERATION [sssn 	STRING] RETURNS [sstat

STRING];

slist 	OPERATION 	RETURNS [slist 	STRING

END.

/*

Generated by 'stubc $Revision: 1.15

from 'sdlbb.idl'

on 'Sun Nov 8 14:28:4,. 1992'

tinclude udis.h"

tinclude <string.h>

tinclude "ansa.hu

#define PROPSIZE 1024

char propbuf[PROPSIZE];

117

SLEVEL : STRING,

SMAJOR : STRING,

SMINOR : STRING,

SGPA : STRING,

SENROLL :STRING

];

sadd : OPERATION [snew : SRECORD] RETURNS [sstat :

INTEGER];

sdel : OPERATION [sssn : STRING] RETURNS [sstat :

INTEGER];

sview : OPERATION [sssn : STRING] RETURNS [sstat :

STRING];

slist : OPERATION [] RETURNS [slist : STRING];

END.

/*

* Generated by 'stubc $Revision: 1.15 $'

* from 'sdlbb.idl'

* on 'Sun Nov 8 14:28:42 1992'

*/

#include "dis.h"

#include <string.h>

#include "ansa.hu

#define PROPSIZE 1024

char propbuf[PROPSIZE];

!USE sdlbb

!USE Trader

!DECLARE (sir} 	sdlbb SERVER

void body(argc, argv, envp)

int argc;

char *argv[];

char *envp[];

ansa_InterfaceRef sir;

(sir) 	sdlbb$Create(10)

(void) system_init_properties(propbuf, PROPSIZE, argc,

argv);

{} 	traderRef$Export(usdIbb" 	propbuf, sir)

int sdibb_sadd (_attr, snew, sst.ar

ansa_InterfaceAttr 	attr;

SRECORD snew;

ansa_Integer *sstat;

i.nt stat

char ssn[256];

char *newrec, *irec, *bu

int fd, rqst, found

118

!USE sdlbb

!USE Trader

!DECLARE (sir) : sdlbb SERVER

void body(argc, argv, envp)

int argc;

char *argv[];

char *envp[];

ansa_InterfaceRef sir;

{sir) 	sdlbb$Create(10)

(void) system_init_properties(propbuf, PROPSIZE, argc,

argv);

{) <- traderRef$Export("sdIbb", "/", propbuf, sir)

)

int sdibb_sadd (_attr, snew, sstat)

ansa_InterfaceAttr *_attr;

SRECORD snew;

ansa_Integer *sstat;

int star = 1;

char ssn[256];

char *newrec, *irec, *buf;

int fd, rqst, found = 0;

118

FILE

printf("The Student SSN is %s\n",snew.SSSN);

sprintf(ssn,"%-lls", snew.SSSN);

sopen:

if ((fp = fopen(SDATABASE, 	 NULL)

error(,"Cannot open \n'

if ((fp = fopen(SDATABASE,)) 	NULL)

error('e "Cannot create\n'

*sstat=0;

return(1);

else

fclose(fp);

goto sopen;

else

irec = (char 	malloc(11);

but= (char *) malloc(256);

while (fgets(buf,256,fp))

buf[11) 	0';

119

FILE *fp;

printf("The Student SSN is %s\n",snew.SSSN);

sprintf(ssn,"%-11s", snew.SSSN);

sopen:

if ((fp = fopen(SDATABASE,"r+")) == NULL)

{

error('e',"Cannot open \n");

if ((fp = fopen(SDATABASE,"a")) == NULL)

error('e',"Cannot create\n");

*sstat=0;

return(1);

else

{

fclose(fp);

goto sopen;

}

else

{

irec = (char *) malloc(11);

buf= (char *) malloc(256);

while (fgets(buf,256,fp))

{

buf[11] = '\0';

119

120

sprintf(irec,"%-11 	,buf);

if(!strcmp(irec,ssn))

printf("DUPLICATE RECORD\n"

*sstat = 0;

free(buf);

free(irec);

return(1);

} /*

while

)/ 	lse*/

newrec= (char *) malloc(256*11);

sprintf(newrec, -11s1 sl%sl%sl%sl%sl%sl%sl%sl%sl%s\n",

snew.SSSN,snew.FNAME,snew.MNAME,snew.LNAME,snew.SPHONE,

snew.SBDATE,snew.SLEVEL,snew.SMAJOR,snew.SMINOR,snew.

PA,

snew.SENROLL);

if (fprintf(fp,

*sstat

else

,newrec))

printf("\0007");

-sstat = 0;

error(an not ADD the requested

Information");

fclose(fp);

sprintf(irec,"%-lls",buf);

if(!strcmp(irec,ssn))

{

printf("DUPLICATE RECORD\n");

*sstat = 0;

free(buf);

free(irec);

return(1);

} /* if */

/* while */

)/*else*/

newrec= (char *) malloc(256*11);

sprintf(newrec,"%-llsl%sl%sl%sl%sl%sl%sl%sl%sl%sl%s\n",

snew.SSSN,snew.FNAME,snew.MNAME,snew.LNAME,snew.SPHONE,

snew.SBDATE,snew.SLEVEL,snew.SMAJOR,snew.SMINOR,snew.S(

PA,

snew.SENROLL);

if (fprintf(fp,"%s",newrec))

*sstat = l;

else

printf("\0007");

*sstat = 0;

error(`e',"Can not ADD the requested

Information");

fclose(fp);

120

free(newrec

free(buf);

free(irec);

return(1);

int sdlbb_sdel(_attr, sssn, sstat

ansa_InterfaceAttr 	attr;

ansa_String sssn;

ansa_Integer *sstat;

FILE
	

P;

int star 	 found

char ssn[15], *flds[256], *drec, s[256];

if ((fp=fopen(SDATABASE,)) 	NULL)

error("Can not Open"

*sstat

return(1);

if ((ofp=fopen("tempstd.data", "w")) 	NULL)

.error('e`, "Can not Open"

*sstat = 0;

return(1);

121

free(newrec);

free(buf);

free(irec);

return(l);

int sdlbb_sdel(_attr, sssn, sstat)

ansa_InterfaceAttr *_attr;

ansa_String sssn;

ansa_Integer *sstat;

FILE *fp, *ofp;

int star = 0, i, found = 0;

char ssn[15], *flds[256], *drec, s[256];

if ((fp=fopen(SDATABASE,"r")) == NULL)

{

error('e',"Can not Open");

*sstat = 0;

return(1);

if ((ofp=fopen("tempstd.data","w")) 	NULL)

(

.error('e',"Can not Open");

*sstat = 0;

return(1);

121

122

sprintf(ssn,"%-11 	sssn);

drec = (char 	malloc(256);

while(fgets(drec,256,fp))

strcpy(drec);

for(i=0;i 	x i++)

if((flds[].strtok(drec, 	 NULL)

drec = NULL;

else

break;

drec = (char *) malloc(256);

if (!(stat=strcmp(ssn,flds[0])))

found

continue;

fprintf (of

while() */

if (!found)

*sstat

else

*sstat

fclose(fp);

fclose(ofp);

remove(SDATABASE);

sprintf(ssn,"%-11s", sssn);

drec = (char *) malloc(256);

while(fgets(drec,256,fp))

[

strcpy(s,drec);

for(i=0;i<MAX;i++)

if((fids[i]=strtok(drec,"I")) != NULL)

drec = NULL;

else

break;

drec = (char *) malloc(256);

if (!(stat=strcmp(ssn,flds[0])))

{

found = l;

continue;

fprintf(ofp,"%s",s);

) /* while() */

if (!found)

*sstat = 0;

else

*sstat = l;

fclose(fp);

fclose(ofp);

remove(SDATABASE);

122

rename("tempstd.data",SDATABASE);

return(1);

int sdlbb_sview(_attr, sssn, sstat

ansa_InterfaceAttr _attr;

ansa_String sssn;

ansa_String *sstat;

int stat = 1,

char *retstr;

char *irec, rssn[1], *flds[256];

FILE

sprintf(rssn "%-lls" sssn);

if ((fp = fopen(SDATABASE, 	')) 	NULL)

error(,"Student Database Empty \n

return(1);

else

retstr = (char *) malloc(356);

while ((stat) && (fgets(retstr,256,fp)))

irec = (char 	malloc(356);

strcpy(irec, retstr);

123

rename("tempstd.data",SDATABASE);

return(1);

int sdlbb_sview(_attr, sssn, sstat)

ansa_InterfaceAttr *_attr;

ansa_String sssn;

ansa_String *sstat;

{

int stat = 1, i = 0;

char *retstr;

char *irec, rssn[15], *flds[256];

FILE *fp;

sprintf(rssn,"%-11s",sssn);

if ((fp = fopen(SDATABASE,"r")) == NULL)

error('e',"Student Database Empty \n");

return(1);

else

{

retstr = (char *) malloc(356);

while ((stat) && (fgets(retstr,256,fp)))

irec = (char *) malloc(356);

strcpy(irec, retstr);

123

124

for(i 	i<11;i++)

if((flds[]=strtok(irec, 	 NULL)

irec = NULL;

stat = strcmp(rssn, flds[0]);

} / while

else */

fclose(fp);

if(!stat)

*sstat=retstr;

return(1);

else

*sstat 'Not Found, Does not Exist";

return(1);

int. sdibb_slist (_attr, slist

ansa_InterfaceAttr _attr;

ansa_String *sllst;

char lstbuf[256];

char *outrec = NULL;

FILE *fp;

for(i=0;i<11;i++)

if((flds[i]=strtok(irec,"I")) != NULL)

irec = NULL;

stat = strcmp(rssn, flds[0]);

} /* while */

} /* else */

fclose(fp);

if(!stat)

{

*sstat=retstr;

return(1);

else

*sstat="Not Found, Does not Exist";

return(1);

int sdlbb_slist (_attr, slist)

ansa_InterfaceAttr. *_attr;

ansa_String *slist;

char lstbuf[256];

char *outrec = NULL;

FILE *fp;

124

125

if ((rp = fopen(SDATABASE, 	')) 	NULL)

strcpy(*slist, Student Database Empty\n"

return(1);

}

if ((outrec = (char 	malloc(3700)) 	NULL)

{

strcpy(*slist,"Memory ault:SLIST\n"

return(1);

strcpy(outrec, 	this is for each new invocation

of slist_record() */

while(fgets(lstbuf 	6,fp))

lstbuf[strlen(lstbuf)-1]. 0';

if (Istrcmp(lstbuf,"\n"))

break;

strcat(lstbuf,"\n");

strcat(outrec, 1 tbuf);

fclose(fp);

if (!strcmp(outrec,))

*slist="Database STUDENT :EMPTY";

else

slist=outrec;

return(1);

if ((fp = fopen(SDATABASE,"r")) == NULL)

strcpy(*slist," Student Database Empty\n");

return(1);

}

if ((outrec = (char *) malloc(3700)) == NULL)

{

strcpy(*slist,"Memory fault:SLIST\n");

return(1);

strcpy(outrec,""); /* this is for each new invocation

of slist_record() */

while(fgets(1stbuf,256,f0)

lstbuf[strlen(lstbuf)-1]='\0';

if (!strcmp(lstbuf,"\n"))

break;

strcat(lstbuf,"\n");

strcat(outrec, lstbuf);

fclose(fp);

if (!strcmp(outrec,""))

*slist="Database STUDENT :EMPTY";

else

*slist=outrec;

return(1);

125

Registration Data Layer Building Block*/

rdlbb INTERFACE

BEGIN

RRECORD TYPE = RECORD[

SSN 	STRING,

CRS1 	STRING,

SECT 	STRING,

CRS2 	STRING,

SEC2 	STRING,

CRS3 	STRING,

SEC3 	STRING

radd 	OPERATION [rnew 	RRECORD RETURNS rstat

INTEGER];

rdel 	OPERATION [rssn 	STRING 	RETURNS 	rstat

INTEGER 1;

rview OPERATION [rssn 	STRING] RETURNS rstat

STRING];

rlist 	OPERATION 	RETURNS [rlist 	STRING

END.

#include "ansa.

#include "dis.h"

#include <string.

126

}

/* Registration Data Layer Building Block*/

rdlbb : INTERFACE =

BEGIN

RRECORD : TYPE = RECORD[

SSN 	: STRING,

CRS1 : STRING,

SEC1 : STRING,

CRS2 : STRING,

SEC2 : STRING,

CRS3 : STRING,

SEC3 : STRING

radd : OPERATION [rnew : RRECORD 	RETURNS [rstat :

INTEGER];

rdel : OPERATION [rssn : STRING] RETURNS [rstat :

INTEGER 1;

rview : OPERATION [rssn : STRING] RETURNS [rstat. :

STRING];

rlist : OPERATION [] RETURNS [rlist : STRING];

END.

#include "ansa.h"

#include "dis.h"

#include ,string.h>

126

define TORF 1

#define PROPSIZE 1024

char propbuf[PROPSIZE);

USE rdlbb

USE Trader

DECLARE { rir 	rdlbb SERVER

void body(argc, argv, envp)

int argc;

char *argv[);

char *envp();

ansa_InterfaceRef rir;

(rir) 	rdlbb$Create(10)

(void) sy tem_init_properties(propbuf, PROPSIZE, eiugc

argv);

{) 	traderRef$Export(urd1bb",n upropbuf, rir)

int rdlbb_radd(_attr, rnew, rstat

ansa_InterfaceAttr _attr;

RRECORD rnew;

ansa_Integer *rstat;

127

define TORF 1

#define PROPS= 1024

char propbuf[PROPSIZE];

! USE rdlbb

! USE Trader

! DECLARE (rir) : rdlbb SERVER

void body(argc, argv, envp)

int argc;

char *argv[];

char *envp[];

ansa_InterfaceRef rir;

(rir) 	rdlbb$Create(10)

(void) system_init_properties(propbuf, PROPSIZE, arge,

argv);

() <- traderRef$Export("rdlbb", "/", propbuf, rir)

int rdlbb_radd(_attr, rnew, rstat)

ansa_InterfaceAttr *_attr;

RRECORD rnew;

ansa_Integer *rstat;

127

char ssn[60);

char *newrec, *irec, *bu

int rqst, found

FILE*fp;

sprintf(s n '%-lls 	rnew.SSN);

printf(uSSN = %s\n",ssn);

ropen:

	

((fp = fopen(RDATABASE, "r+")) 	NULL)

error('e 	Can not Open \n"

if ((fp = fopen(RDATABASE,)) 	NULL)

error(,uCan Not Create\n

sleep(2);

*rstat

return(I);

else

fclose(fp);

goto ropen;

128

else

char ssn[60];

char *newrec, *irec, *buf;

int rqst, found = 0;

FILE *fp;

sprintf(ssn,"%-11s", rnew.SSN);

printf("SSN = %s\n",ssn);

ropen:

if ((fp = fopen(RDATABASE,"r+")) == NULL)

{

error('e',"Can not Open \n");

if ((fp = fopen(RDATABASE,"a")) == NULL)

{

error('e',"Can Not Create\n");

sleep(2);

*rstat=0;

return(1);

else

{

fclose(fp);

goto ropen;

else

{

128

irec = (char *) malloc(11);

buf = (char *) malloc(256);

while(fgets(buf,2 6,fp))

buf[111 	1 \

printf("BUF = %s\n", buf);

sprintf(irec, %-11s",buf);

printf("IREC = %s\n", irec

if (!strcmp(irec,ssn))

printf("DUPLICATE RECORD\n

*rstat

free(buf);

free(irec);

return(1);

) /*while*/

} /*else7

newrec = (char 	malloc(256*7);

sprintf(newrec,"%sl%sl%sl%si 	1%51%s\n",

rnew.SSN, rnew.CRS1, rnew.SEC1, rnew.CRS2, rnew.SEC2,

rnew.CRS3, rnew.SEC3);

(fprintf(fp, 	,newrec))

*rstat

129

else

irec = (char *) malloc(11);

buf = (char *) malloc(256);

while(fgets(buf,256,fp))

buf[11] 	'\0';

printf("BUF = %s\n", buf);

sprintf(irec,"%-lls",buf);

printf("IREC = %s\n", irec);

if (!strcmp(irec,ssn))

{

printf("DUPLICATE RECORD\n");

*rstat = 0;

free(buf);

free(irec);

return(1);

) /*while*/

/*else*/

newrec = (char *) malloc(256*7);

sprintf(newrec,"%sl%sl%sl%si%sl%sl%s\n",

rnew.SSN, rnew.CRS1, rnew.SEC1, rnew.CRS2, rnew.SEC2,

rnew.CRS3, rnew.SEC3);

if (fprintf(fp,"%s",newrec))

*rstat = 1;

else

129

printf("\0007");

*rstat = 0;

error(
	

an not Add the requested

Information");

fclose(fp);

free(newrec

free(buf);

free(irec);

return(1);

int rdlbb_rdel(_attr, rssn, rstat)

ansa_InterfaceAttr 	atti;

ansa_String rssn;

ansa_Integer *rstat;

FILE 	, *ofp;

int scat = 0, i, found

char ssn[15], *flds[2 6 , *drec, s[256

if ((fp=fopen(RDATABASE,)) 	NULL)

error(an not Open"

return(1);

130

printf("\0007");

*rstat = 0;

error('e',"Can not Add the requested

Information");

fclose(fp);

free(newrec);

free(buf);

free(irec);

return(1);

}

int rdibb_rdel(_attr, rssn, rstat)

ansa_InterfaceAttr *_attr;

ansa_String rssn;

ansa_Integer *rstat;

FILE *fp, *ofp;

int scat. = 0, i, found = 0;

char ssn[15], *flds[256], *drec, s[256];

if ((fp=fopen(RDATABASE,"r")) == NULL)

{

error('e',"Can not Open");

return(1);

130

131

if ((ofp=fopen("temprgstr.data")) 	NULL)

error('e' 	an not Open"

return(1);

sprintf(ssn,"%-lls", rssn);

drec = (char *) malloc(256);

while(fgets(drec,256,fp))

{

strcpy(s,drec),

for(i=0;i<MAX;i++)

if((flds[]=strtok(drec, 	 NULL.)

drec = NULL;

else

break,

drec = (char *) malloc(256);

if (!(stat=strcmp(ssn,flds[0])))

found

continue;

fprintf(ofp, %

) /" while() */

if (!found)

*rstat

else

if ((ofp=fopen("temprgstr.data","w")) == NULL)

{

error('e',"Can not Open");

return(1);

sprintf(ssn,"%-lls", rssn);

drec = (char *) malloc(256];

while(fgets(drec,256,fp))

{

strcpy(s,drec);

for(i=0;i<MAX;i++)

if((flds[i]=strtok(drec,"I")) != NULL.)

drec = NULL;

else

break;

drec = (char *) malloc(256);

if (!(stat=strcmp(ssn,flds[0])))

found = 1;

continue;

fprintf(ofp,"%s",$);

) /* while() */

if (!found)

*rstat = 0;

else

131

*rstat

fclose(fp);

fclose(ofp);

remove(RDATABASE);

rename("cemprgstr.data",RDATABASE);

return(1);

int rdlbb_rview(_attr, rssn, rstat

ansa_InterfaceAttr*_attr;

ansa_String rssn;

ansa_String *rstat;

int stac = 1,

char *retstr;

char *irec, regssn[I1], *flds[2.36);

FILE *

sprintf (regssn, 	-].Is", rssn);

if ((f, = fopen(RDATABASE, 	')) 	NULL)

strcpy(*rstat,"Data Base 	REGISTER
	

EMPTY\n

return(1);

132

else

*rstat = l;

fclose(fp);

fclose(ofp);

remove(RDATABASE);

rename("cemprgstr.data",RDATABASE);

return(1);

}

int rdlbb_rview(_attr, rssn, rstat)

ansa_InterfaceAttr *_attr;

ansa_String rssn;

ansa_String *rstat;

{

int stat = 1, i = 0;

char *retstr;

char *irec, regssn[11], *flds[256];

FILE *fp;

sprintf(regssn,"%-11s", rssn);

if ((fp = fopen(RDATABASE,"r")) == NULL)

strcpy(*rstat,"Data Base :: REGISTER :: EMPTY\n");

return(1);

else

132

retstr = (char *) malloc(356);

while ((stat) && (fgets(retstr, 6,fp)))

else

irec = (char *) malloc(356);

strcpy(irec, retstr);

for(i=0;i<MAX;i++)

if((flds[i].strtok(irec, 	 NULL)

irec = NULL;

stat = strcmp(regssn, flds[0]);

printf("retstr = %s\n" retstr);

if (stat == 0)

*rstat = retstr;

while

*1

if (stat 	0)

*rstat = "Not Found, dos Not

Exist::REGISTER::DATABASE";

fclose(fp);

return(1);

int rdlbb_riist(_attr, rlist

ansa_InterfaceAttr _attr;

ansa._String *rlist;

char lstbuf[256];

133

retstr = (char *) malloc(356);

while ((stat) && (fgets(retstr,256,fp)))

irec = (char *) malloc(356);

strcpy(irec, retstr);

for(i=0;i<MAX;i++)

if((flds[i]=strtok(irec,"I")) != NULL)

irec = NULL;

stat = strcmp(regssn, flds[0]);

printf("retstr = %s\n", retstr);

if (stat == 0)

*rstat = retstr;

) /* while */

} /* else */

if (stat != 0)

*rstat = "Not Found, dos Not

Exist::REGISTER::DATABASE";

fclose(fp);

return(1);

int rdlbb_rlist(_attr, rlist)

ansa_InterfaceAttr *_attr;

ansa_String *rlist;

char lstbuf[256];

133

char *outrec = NULL;

FILE *fp;

if ((fp = fopen(RDATABASE, ")) 	NULL)

strcpy(*rlist,"Register Database Is Empty, Nothing

To List\n");

return(1);

if ((outrec = (char 	malloc(3700)) 	NULL)

strcpy(*rlist,"Memory Fault::RLIST\n"

return(1);

strcpy(outrec,);

while(fgets(lscbuf,2 6,fp))

lstbuf[strlen(lstbuf)-1]

if (!strcmp(lstbuf,

break;

strcat(lstbuf,"\n);

strcat(outrec,lstbuf);

fc1ose(fp);

if (!strcmp(outrec, '))

rlist = "DATABASE REGISTER 	EMPTY";

134

char *outrec = NULL;

FILE *fp;

if ((fp = fopen(RDATABASE,"r")) == NULL)

{

strcpy(*rlist,"Register Database Is Empty, Nothing

To List\n");

return(1);

}

if ((outrec = (char *) malloc(3700)) == NULL)

{

strcpy(*rlist,"Memory Fault::RLIST\n");

return(1);

}

strcpy(outrec,"");

while(fgets(lscbuf,256,fp))

lstbuf[strlen(lstbuf)-1] = '\0';

if (!strcmp(lstbuf,"\n"))

break;

strcat(lstbuf,"\n");

strcat(outrec,lstbuf);

fclose(fp);

if (!strcmp(outrec,""))

*rlist = "DATABASE REGISTER :: EMPTY";

134

else

rlist = outrec;

return(1);

Processing Layer BB

proclyr:INTERFACE

NEEDS fdlbb;

NEEDS cdlbb;

NEEDS sdlbb;

NEEDS rdlbb;

BEGIN

stdelete: OPERATION 	opcode 	STRING] RETURNS

result: INTEGER];

listfac OPERATION opcode 	STRING] RETURNS

result :STRING];

END.

Generated by 'stubc $Revision: 1.15 $

from s proclyr.idl'

on 'Mon Nov 23 12:43:57 1992'

#include "ansa.

#include "d s.h"

else

*rlist = outrec;

return(1);

}

/* Processing Layer BB */

proclyr:INTERFACE =

NEEDS fdlbb;

NEEDS cdlbb;

NEEDS sdlbb;

NEEDS rdlbb;

BEGIN

stdelete: OPERATION [opcode : STRING] RETURNS

result: INTEGER];

listfac : OPERATION [opcode : STRING] RETURNS

result :STRING];

END.

/*

* Generated by 'stubc $Revision: 1.15 $'

* from 'proclyr.idl'

* on 'Mon Nov 23 12:43:57 1992'

*/

#include "ansa.h"

#include "dis.h"

#define PROPSIZE 1024

char propbuf[PROPSIZ);

USE fdlbb

DECLARE {facir} 	fdlbb CLIENT

USE sdlbb

DECLARE {stir} 	sdlbb CLIENT

USE rdlbb

DECLARE {regir} 	rdlbb CLIENT

USE cdlbb

DECLARE {coir} 	cdlbb CLIENT

USE proclyr

DECLARE (pir) 	proclyr SERVER

USE Trader

ansa_InterfaceRefstir;

ansa_InterfaceRef regir;

ansa_InterfaceRef coir;

ansa_InterfaceRef facir;

136

void body(argc, argv, envp)

#define PROPSIZE 1024

char propbuf[PROPSIZE];

USE fdlbb

DECLARE (facir) : fdlbb CLIENT

USE sdlbb

DECLARE {stir} : sdlbb CLIENT

USE rdlbb

DECLARE {regir} : rdlbb CLIENT

USE cdlbb

DECLARE {coir} 	cdlbb CLIENT

USE proclyr

DECLARE (pir) : proclyr SERVER

. USE Trader

ansa_InterfaceRef stir;

ansa_InterfaceRef regir;

ansa_InterfaceRef coir;

ansa_InterfaceRef facir;

136

void body(argc, argv, envp)

int argc;

char *argv[];

char *envp[];

ansa_InterfaceRef

(pit) 	proclyr$Create(10)

(void) system_init_properties(propbuf, PROPSIZE, argc,

argv);

traderRef$Export(liproclyru, 	propbuf, pir)

int proclyr_stdelete(_attr, opcode, result

ansa_InterfaceAttr _attr;

ansa_String opcode;

ansa_Integer *result;

static int star

char *tssn;

long int sdelete
	rdelete

tssn = (char *) malloc(20);

strcpy(tssn, opcode);

137

int argc;

char *argv[];

char *envp[];

ansa_InterfaceRef pir;

(pir) 	proclyr$Create(10)

(void) system_init_properties(propbuf, PROPSIZE, argc,

argv);

{} <- traderRef$Export("proclyr", "/", propbuf, pir)

int proclyr_stdelete(_attr, opcode, result)

ansa_InterfaceAttr *_attr;

ansa_String opcode;

ansa_Integer *result;

{

static int stat = 0;

char *tssn;

long int sdelete = 0, rdelete = 0;

tssn = (char *) malloc(20);

strcpy(tssn, opcode);

137

138

{stir} 	traderRef$Import("sdlbb","/")

{sdelete} 	stir$sdel(tssn)

if (!sdelete)

*result = sdelete;

stir$Discard

return(1);

{regir} 	traderRef$Import("rdIbb"

(rdelete) 	regir$rdel(tssn

if (!rdelete)

*result = rdelete;

regir$Discard

return(1);

stir$Di Scard

regir$Discard

return(1);

{stir} <- traderRef$Import("sdlbb","/","")

{sdelete} <- stir$sdel(tssn)

if (!sdelete)

*result = sdelete;

stir$Discard

return(1);

}

{regir} 	traderRef$Import("rdIbb","/","")

(rdelete) <- regir$rdel(tssn)

if (!rdelete)

*result = rdelete;

regir$Discard

return(1);

}

stir$Discard

regir$Discard

return(1);

138

int proclyr_listfac(_attr, opcode, result

ansa_InterfaceAttr 	attr;

ansa_String opcode;

ansa_String *result;

int stat

int

char *outrec;

char *cstr, *cistr[256];

char *fssn, *list, *crec[656], *flds[256], *crecptr;

char *view;

if((outrec = (char 	malloc(5000)) 	NULL)

*result = "PROC::LISTFAC::Cannot Allocate output

Buffer";

return(1);

list = (char 	malloc(5000);

view = (char *) malloc(5000);

fssn = (char 	malloc(20);

strcpy(outrec,

*result

sprintf(fssn, 	lls",opcode);

139

int proclyr_listfac(_attr, opcode, result)

ansa_InterfaceAttr *_attr;

ansa_String opcode;

ansa_String *result;

int stat = 1;

int i = 0, k = 0, j = 0;

char *outrec;

char *cstr, *cistr[256];

char *fssn, *list, *crec[656], *flds[256], *crecptr;

char *view;

if((outrec = (char *) malloc(5000)) == NULL)

{

*result = "PROC::LISTFAC::Cannot Allocate output

Buffer";

return(1);

}

list = (char *) malloc(5000);

view = (char *) malloc(5000);

fssn = (char *) malloc(20);

strcpy(outrec,"");

*result = "";

sprintf(fssn,"%-11s",opcode);

139

{facir} <- traderRef$Import("fdlbb"

{view} 	facir$fview(fssn)

if(!(stat=strcmp(view,"Not Found")))

*result = 	FACULTY DOES NOT EXIST 	INVALID SSN";

return(1);

strcpy(outrec,"Faculty Detail

strcat(outrec, view);

cstr = (char 	malloc(800);

{coir} 	traderRef$Import("cd1bb"

{cstr} 	coir$clist()

if(!(stat.strcmp(cstr,)))

strcat(outrec,"\nNo Courses Taken By the Requested

Faculty\n);

*result = outrec;

return(1);

strcat(outrec,"\nThe Courses Taken By The Faculty

Are");

strcpy(list, cstr);

for (i=0;i<MAX i++)

140

(facir) <- traderRef$Import("fdlbb","/","")

{view} <- facir$fview(fssn)

if(!(stat=strcmp(view,"Not Found")))

*result = " FACULTY DOES NOT EXIST : INVALID SSN";

return(1);

}

strcpy(outrec,"Faculty Detail is : \n");

strcat(outrec, view);

cstr = (char *) malloc(800);

{coir} <- traderRef$Import("cdlbb","/","")

{cstr} <- coir$clist()

if(!(stat=strcmp(cstr,"")))

strcat(outrec,"\nNo Courses Taken By the Requested

Faculty\n");

*result = outrec;

return(1);

}

strcat(outrec,"\nThe Courses Taken By The Faculty

Are");

strcpy(list, cstr);

for (i=0;i<MAX;i++)

140

141

if((crec[]=strtok(list, 	")) 	NULL)

list = NULL;

else

break;

for(k= 	-k-

crecptr = (char *) malloc(300);

strcpy(crecptr,crec[k]);

for(j=0;j<MAX;j++)

if((flds[j]=strtok(crecptr, 	 NULL)

crecptr = NULL;

else

brea

if(!(strcmp(flds[ssn)))

strcat(outrec,"\n");

strcat(outrec,crec[k]);

*result: = outrec;

coir$Discard

facir$Discard

return(1);

if((crec[i]=strtok(list,"\n")) != NULL)

list = NULL;

else

break;

}

for(k=i-1;k>=0;k--)

crecptr = (char *) malloc(300);

strcpy(crecptr,crec[k]);

for(j=0;j<MAX;j++)

if((flds[j]=strtok(crecptr,"l")) != NULL)

crecptr = NULL;

else

break;

if(!(strcmp(flds[5], fssn]))

{

strcat(outrec,*\n*);

strcat(outrec,crec[k]);

*result: = outrec;

coir$Discard

facir$Discard

return(1);

141

/* User Laver Building Bloc

ulbb INTERFACE

BEGIN

submenu OPERATION [opcode 	INTEGER RETURNS [smenu

STRING);

procmenu OPERATION 	RETURNS [pmenu STRING

END.

Generated by ‘stubc $Revision: 1.15

from 'ulbb.idl'

on 'Sat Nov 7 14:13:38 1992'

fiinclude "ansa 1"

fiinclude "tulbb.

fiinclude "d3s.h"

fidefine PROPSIZE 1024

char propbuf[PROPSIZE];

USE ulbb

USE Trader

DECLARE { 	 ulbb SERVER

142

void body(argc, argv, envp)

/* User Layer Building Block */

ulbb : INTERFACE

BEGIN

submenu : OPERATION [opcode : INTEGER] RETURNS [smenu

: STRING];

procmenu : OPERATION [] RETURNS [pmenu : STRING];

END.

/*

* Generated by 'stubc $Revision: 1.15 $'

* from 'ulbb.idl'

* on 'Sat Nov 7 14:13:38 1992'

-/

#include "ansa.h"

#include "tulbb.h"

#include "dis.h"

#define PROPSIZE 1024

char propbuf[PROPSIZE];

! USE ulbb

! USE Trader

! DECLARE 	it) : ulbb SERVER

142

void body(argc, argv, envp)

143

int argc;

char *argv[];

char envp();

ansa_InterfaceRef ir;

{ir} 	ulbb$Create(10)

(void) system_init_properties(propbu 	PROPSIZE, argc,

argv);

{}
	

traderRef$Export(nulbb", 	propbuf, ir)

int ulbb_submenu(_attr, opcode, smenu

ansa_InterfaceAttr _attr;

ansa_Integer opcode;

ansa_String *smenu;

char *rqmnu;

char titl-[40];

rqmnu = (char 	malloc(400);

switch(opcode)

case FSTART

int argc;

char *argv[];

char *envp(];

{

ansa_InterfaceRef ir;

{ir} 	ulbb$Create(10)

(void) system_init_properties(propbuf, PROPSIZE, argc,

argv);

{} <- traderRef$Export("ulbb", "/", propbuf, ir)

}

int ulbb_submenu(_attr, opcode, smenu)

ansa_InterfaceAttr *_attr;

ansa_Integer opcode;

ansa_String *smenu;

{

char *rqmnu;

char title[40];

rqmnu = (char *) malloc(400);

switch(opcode)

143

case FSTART :

strcIDY(title,"\t\t\t\tFACULTY OPERATIONS

MENU");

break,

case CSTRT :

strcpy(ticl "\t\c\t\tCOURSE OPERATIONS

MENU");

brea •

case SSTART :

strcpy(title,"\t\t\t\tSTUDENT OPERATIONS

MENU");

brea •

case RSTART

strcpy(titl "\t\t\t\tREGISTRATION MENU"

break;

i (opcode
	

FSTART II opcode == CSTRT II opcode

SSTART II opcode
	

RSTART)

strcpy(rqmnu, u)

strcat(rqmn "\n\t\t. 	

-\n");

strcat(rqmnu, title);

strcat(rqmn "\n\t\t 	

	 "),

144

strcPY(title,"\t\t\t\tFACULTY OPERATIONS

MENU");

break;

case CSTRT :

strcpy(title,"\t\t\t\tCOURSE OPERATIONS

MENU");

break;

case SSTART :

strcpy(title,"\t\t\t\tSTUDENT OPERATIONS

MENU");

break;

case RSTART :

strcpy(title,"\t\t\t\tREGISTRATION MENU");

break;

if (opcode == FSTART II opcode == CSTRT II opcode ==

SSTART II opcode == RSTART)

{

strcpy(rqmnu,"");

strcat(rqmnu,"\n\t\t-

-\n");

strcat(rqmnu, title);

strcat(rqmnu,"\n\t\t-

144

"\n\n\t\t\t\t<A/a> Add Information\n"); strcat(rqmnu

strcat(rqmnu, "\n\t\t\t\t<D/d'>

strcat(rqmn "\n\t\t\t\t<U/u>

strcat(rqmn "\n\t\t\t\tL/1>

strcat(rqmnu,"\n\t\t\t\t<V/v>

strcat(rqmn "\n\t\t\t\t‹E/e›

*smenu

return(1);

else

{

strcat(rqmnu,"INVALID SELECTION\n'

*smenu

return

int ulbbprocmenu(_attr, pmenu

ansa_InterfaceAttr _attr;

ansa_String 	menu;

char *rqmnu;

char title[40];

(char 	malloc(400);

strcpy(rqmnu,

145

Delete Information\n"

Update Information\n");

List Information\n");

View Information\n"

Exit This Menu\n");

strcat(rqmnu,"\n\n\t\t\t\t<A/a> Add Information\n");

strcat(rqmnu,"\n\t\t\t\t<D/d'> Delete Information\n");

strcat(rqmnu,"\n\t\t\t\t<U/u> Update Information\n");

strcat(rqmnu,"\n\t\t\t\tL/l> List Information\n");

strcat(rqmnu,"\n\t\t\t\t<V/v> View Information\n");

strcat(rqmnu,"\n\t\t\t\t<E/e> Exit This Menu\n");

*smenu = rqmnu;

return(1);

else

strcat(rqmnu,"INVALID SELECTION\n");

*smenu = rqmnu;

return 1;

int ulbbprocmenu(_attr, pmenu)

ansa_InterfaceAttr *_attr;

ansa_String *pmenu;

char *rqmnu;

char title[40];

rqmnu = (char *) malloc(400);

strcpy(rqmnu,"");

145

strcpy(rqmn "\n\n

strcat(rqmn "\t\t

	 \n");

strcat(rqmnu,"\t\t\t Processing Layer Functions\n"

strcat(rqmn "\t\t

strcat(rgmnu,"\n\n\t\t\t<l> List of Courses Taught By

a Faculty\n");

strcat(rqmnu,"\n\t\t\t- 	Student/Regtr. Deice o:

Student info.\n");

strcat(rgmnu,"\n\t\t\t<E/e> Exit This Menu\n");

*pmenu = rgmnu;

return(1);

Thus, this is the 1DL and DPL files for the building block :;

that make up the EIS. Now finally, we list the Imakefile

that is used to define the dependencies among all the

files.

146

strcpy(rqmnu,"\n\n");

strcat(rqmnu,"\t\t 	

	 \n");

strcat(rqmnu,"\t\t\t Processing Layer Functions\n");

strcat(rqmnu,"\t\t 	

	 .);

strcat(rqmnu,"\n\n\t\t\t<l> List of Courses Taught By

a Faculty\n");

strcat(rqmnu,"\n\t\t\t<2> Student/Regtr. Delte of

Student info.\n");

strcat(rqmnu,"\n\t\t\t<E/e> Exit This Menu\n");

*pmenu = rqmnu;

return(1);

Thus, this is the IDL and DPL files for the building blocks

that make up the EIS. Now finally, we list the Imakefile

that is used to define the dependencies among all the

files.

146

REFERENCES

1. Rossak, W. "Integration Architectures, A Concept and a Tool to Support
Integrated Systems Development." (1992): 6-10.

2. Rossak, W., and P. Ng. "System Development with Integration Architectures."
Proceedings of The Second International Conference on Systems
Integration. (1992): 1-8.

3. Wilhelm, R., and T. Zemel. "A Two-Level Process Model for Integrated
System Development." (1992): 1-20

4. Zemel, T. "A Mega-System Development Framework." A Ph.D. Thesis,
Department of Computer and information Sciences, New Jersey Institute
of Techonology, Systems Integration Laboratory,in work. (1993).

5. Mills, J. "An OSCA Architecture Characeterization of Network Functionalit
and Data." (1991): 1-19.

6. Technical Reference. The Bellcore OSCATM Architecture. Issue 1, (1992): 1-80.

7. Masand, B. "Development of Prototype Distributed Information System.".
Master's Thesis, Department of Computer and Information Sciences, New
Jersey Institute of Technology, Systems Integration. (1992): 10-90.

8. Bloomer, J. "Ticket to Ride, Remote Procedure calls in a Network
Environment." An article in SunWorld. (1991): 39-55.

9. ANSAware Application Programmer's Manual.

147

REFERENCES

1. Rossak, W. "Integration Architectures, A Concept and a Tool to Support
Integrated Systems Development." (1992): 6-10.

2. Rossak, W., and P. Ng. "System Development with Integration Architectures."
Proceedings of The Second International Conference on Systems
Integration. (1992): 1-8.

3. Wilhelm, R., and T. Zemel. "A Two-Level Process Model for Integrated
System Development." (1992): 1-20

4. Zemel, T. "A Mega-System Development Framework." A Ph.D. Thesis,
Department of Computer and information Sciences, New Jersey Institute
of Techonology, Systems Integration Laboratory,in work. (1993).

5. Mills, J. "An OSCA Architecture Characeterization of Network Functionality
and Data." (1991): 1-19.

6. Technical Reference. The Bellcore OSCATM Architecture. Issue 1, (1992): 1-80.

7. Masand, B. "Development of Prototype Distributed Information System.".
Master's Thesis, Department of Computer and Information Sciences, New
Jersey Institute of Technology, Systems Integration. (1992): 10-90.

8. Bloomer, J. "Ticket to Ride, Remote Procedure calls in a Network
Environment." An article in SunWorld. (1991): 39-55.

9. ANSAware Application Programmer's Manual.

147

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Tital Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents
	Chapter 1: Introduction to Systems Integration
	Chapter 2: Generic Systems Integration Framework
	Chapter 3: Functional Overview of the CS Department
	Chapter 4: The Role of RPC in the Implementation
	Chapter 5: The Role of Ansaware in the Implementation
	Chapter 6: Realization and/or Evaluation of Suggested Improvements
	Chapter 7: Comparison of the Two Implementations
	Appendix A: Protocol definition for course DLBB
	Appendix B: Faculty Data Layer BB
	Refrences

	List of Figures

