

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of
the personal information and all signatures from
the approval page and biographical sketches of
theses and dissertations in order to protect the
identity of NJIT graduates and faculty.

METHODOLOGY FOR MODELING HIGH PERFORMANCE
DISTRIBUTED AND PARALLEL SYSTEMS

by
Rakesh Kushwaha

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

Department of Computer and Information Science

October 1993

Copyright ® 1993 by Rakesh Kushwaha

ALL RIGHTS RESERVED

APPROVAL PAGE

Methodology for Modeling High-Performance

Distributed and Parallel Systems

Rakesh Kushwaha

Dr. Erol Gelenbe, Dissertation Advisor 	 (Date)
Professor of Electrical Engineering and Computer Science, Duke University

Dr. Peter A. Ng Committee Member

						

(Date)
Chairperson and Professor of Computer and Information Science, NET

Dr. C.N. Manikopoulos, Committee Member 	 (Date)
Associate Professor of Electrical and Computer Engineering, MVP

Dr. David Nassimi, Committee Member 	 (Date)
Associate Professor of Computer and Information Science, NJIT

Dr. Bruce Parker, Committee Member 	 (Date)
Assistant Professor of Computer and Information Science, NJIT

BIOGRAPHICAL SKETCH

Author: Rakesh Kushwaha

Degree: Doctor of Philosophy in Computer Science

Date: October 1993

Date of Birth:

Place of Birth:

Undergraduate and Graduate Education:

• Doctor of Philosophy in Computer Science,
New Jersey Institute of Technology, Newark, NJ, 1993

• Master of Science in Computer Science,
New Jersey Institute of Technology, Newark, NJ, 1989

• Bachelor of Engineering in Mechanical Engineering,
Delhi University, New Delhi, India, 1986

Major: Computer Science

Presentations and Publications:

R. Kushwaha, "Methodology for predicting Performance of Distributed and Parallel
systems," Performance Evaluation, vol. 18, 1993.

E. Gelenbe and R. Kushwaha, "Incremental Dynamic Load Balancing in Distributed
Systems," To appear in International Conference on. Modeling, Analysis and
Simulation of Computer and Telecommunication Systems, MASCOTS'94, Jan
1994.

R. Kushwaha, "Optimal file placement and Performance Analysis of a Multicom-
puter System," Tech. Rep. CIS-93-07, Department of Computer and Informa-
tion Sciences, NJIT, July 1993.

R. Kushwaha, Design and Development of Distributed File System in 4.3 BSD UNIX,
Masters thesis, NJIT, May 1989.

dedicated to
my Mother

Prabha Kushwaha
source Of inspiratiOn

ACKNOWLEDGMENT

I am grateful to many individuals for their valuable contribution that made this

dissertation possible. First on my list is my thesis advisor, Professor Erol Gelenbe.

Erol has broadened my perception of not only research in Computer Science, but of

life in general through his amazing incisiveness, knowledge and boundless enthusiasm

for intellectual pursuit. His advice and criticism have always helped me not to lose

sight of real objectives. He taught rue what research and writing papers was all about.

Secondly I would like to thank Professor Peter A. Ng, committee member and

my supervisor, who provided the initial incentive to pursue the journey towards Ph.D.

and thereafter, constantly supported and funded this research. Thanks to Professors

David Nassimi, Bruce Parker and Dino Manikopoulos for serving as members of

the committee. I am in particular indebted to Bruce for providing pointers to the

abundance of literature in the area of Distributed Systems. Special thanks to David

for his support, encouragement and guidance throughout this dissertation.

I am grateful to the faculty, staff and students of the Computer and Informa-

tion Science Department of New Jersey Institute of Technology. Thanks to Michael.

Tress, Fadi Deck and Leon Jololia.n for their moral support; Felicia and Brian for

technical support; special thanks to Carol, Barbara, Rosemarie and Michelle for their

friendship and for making my stay in the department so much fun.

I relied on the help and friendship of many individuals to support my studies.

In particular, I thank Samir Chopra for reading different versions of the manuscript,

helpful discussions and numerous late-night philosophizing sessions; James Whitescarver

of CCCC for thought-provoking discussions and providing invaluable suggestions and

insights concerning an object-oriented model; Sal Johar for always beaming me with

positive thoughts and Eileen Mich.ie for reading the final version of the manuscript.

I am grateful to many friends that have made my stay in New Jersey memo-

rable. Among them are Pamela Cham, Christine Hubert, Fortune Mhlanga, Michail

Papamichail, Xiowen Mang, Hans-Peter Meske, Alex Stoyenko, Lonnie Welch, Wil-

helm Rossak, Vassilka Kirova, Voikan Malay, Myriam Mukhtari, Michael Halper,

Ajaz Rana, Steve Chiang, Daven.dra Vamathevan, Jenlong Moh and all the visitors

at 432 Maple Ave., Linden.

I wish to express my appreciation to the faculty and staff of the Electrical

Engineering Department at the Duke University. In particular 1 thank Professor

Kishore Trevedi and Ms. M.argrid Krueger for allowing unrestricted access to their

laboratory and making my stay at the Duke University comfortable.

I would also like to thank the entire Johar family, whose love, concern and

continuous encouragement supported me during the strenuous period of my Ph.D.

I cannot omit admiration and thanks to my mother, brother, and my relatives, in

particular Dr. Usha Sharma, for all the things they did for me during my academic

endeavours.

TABLE OF CONTENTS

Chapter 	 Page

1 INTRODUCTION .. 1

	1.1 Overview of Distributed and Parallel Systems 2

1.2 Importance of Performance Prediction and Modeling 	 6

1.3 Motivation for a New Model 	 8

1.4 Contents of the Thesis 	 11

2 CURRENT MODELS AND PREDICTION METHODOLOGIES 	 14

2.1 Design Issues 	 14

2.2 Performance Models for Distributed and Parallel Systems 	 16

2.2.1 Data-Allocation Models 	

2.2.2 Task-Allocation Parallel Processing Models 	 19

2.2.3 Transaction processing System MOdels with Load Balancing 	 99

2.3 Current Prediction Methods 	 25

2.3.1 Simulation Methods 	 25

2.3.2 Analytical Methods 	 28

2.3.2.1 Queueing Methods 	 29

2.3.2.2 Graphical Methods 	 32

2.3.2.3 Other Methods 	 34

3 THE PERFORMANCE OF A FILE-SERVER MODEL 	 37

3.1 Introduction 	 37

3,2 The System Model 	 39

Chapter	 Page

	

3,2.1 System Description 39

	

3.2.2 The Queueing Network Model 44

	

3.3 Analysis 46

3.4 Results and Validation 	 52

3.4.1 Numerical Example 	 52

	

3.4.2 Validation . 54

	

3.5 Approximate Model For Cache-Size Analysis 58

	

3.6 Bottleneck Identification 65

3.7 Conclusion 	 .	 71

4 OPTIMAL FILE PLACEMENT STRATEGY 	 72

	4.1 Introduction 72

	

4.2 The Extended Model 74

4.3 Average Node Response Time Based File Allocation Algorithm 	 76

4.3.1 Single Chain Case 	 77

4.3.1.1 File AllocatiOn as a Routing Problem 	 79

4.3.1.2 Objective Function 	 81

4.3.2 Extension to Multiple Chain 	 82

4.3.2.1 Algorithm 	 84

4.3.3 Algorithm Convergence and Complexity 	 86

4.4 Performance Analysis 	 87

4.5 Numerical Examples 	 89

Chapter 	 Page

	

4.5.1 Example 1 . 90'

4.5.2 Example 2 	 90

4.6 Measurements and Validation 	 95

4.7 Conclusion 	 ... 98

5 ON-LINE ADAPTIVE ALGORITHM FOR PROCESS MIGRATION 	 101.

	5.1 Introduction 101

5.2 Overview of Adaptive Algorithms 	 102

5.3 The Distributed System Environment 	 104

5.3.1 Assumptions concerning system operation 	 105

5.4 Simple and effective load-balancing policies 	 106

5,5 Adaptive Algorithm Design 	 108

5.5.1 Algorithm design 	 110

5.6 Performance metrics and experimental cOmparison of policies 	 114

5.6.1 Experimental results 	 115

5.6.2 Response-Time Comparisons with Different Load Values 	 122

	5.7 Conclusions 126

6 SUMMARY AND CONCLUSION 	 128

6.1 Summary of the Methodology 	 128

6.2 Application Considerations 	 130

6.3 Comparisons with Other Methods 	 132

6.4 Suggestions for Future Research 	 134

	

6.4.1 Distributed Object-Oriented Model 134

6.4.2 Other Issues 	 136

Chapter 	 Page

	

APPENDIX A 138

	

APPENDIX B 140

APPENDIX C 	 142

REFERENCES 	 145

LIST OF TABLES

Table Page

1 Comparison of analytical and simulation values 	 58

2 Marginal probabilities for network compared with simulation
results 59

3 Initial file-allocation pattern # 1 of Example 1 	 91

4 Initial file-allocation pattern # 2 of Example 1 	 91

5 Initial file-allocation pattern # 3 of Example 1 	 91

6 Optimal file-allocation pattern of Example 1 	 92

7 Node utilization compared with measurements from simulation . 98

8 Comparison of average node response time and utilization 	 99

9 Comparative efficiency and performance for four load balancing
policies 	 117

10 Comparative efficiency and performance measures. 	 119

LIST OF FIGURES

Figure

1

Page

Generic distributed and parallel system architecture	 6

2 Flow of information in the distributed systems 	 44

3 The queueing network model 	 45

4 Network and server utilization increases as user think time decreases . 53

5 Average node-response tune of server and network node 	 55

6 The average system-respOnse time as a function Of think time 	 . 	 55

7 Comparison of analytical and simulation values 	 59

8 Marginal Probabilities for network compared with simulation results 	 60

9 Approximate model; each client is modeled as M/G/1 queue 	 61

10 Effect of cache size on probabilities 	 64

11 Effect of cache size on performance 	 65

12 Effect of cache size on the average system response time 	 66

13 Multi-client multi-server model 	 67

14 Asymptotic behavior of multiple resource system 	 69

15 Performance of multiple resource system 	 70

16 Average node utilization as a function of think time . 93

17 Average node response time as a function of think time 	 94

18 Average throughput of a node as a function of think time 	 94

19 Average utilization of a node due to different job classes 	 95

20 Comparison of the instantaneous lOad for the AD-TWO and NP 	 . . 120

21 ComparisOn of the instantaneous load for the AD-TWO and RD 	 . . 120

22 Average process-response time as a function of execution time 	 .	 . 121

23 Average process-response time as a function of execution time 	 123

Figure	 Page

24 Overhead as a function of process execution time 	 124

25 Average process-response time as a function of process-creation rate 	 125

26	 Overhead as a function of the process-creation rate at each node . . . 126

ABSTRACT

Methodology for Modeling High Performance
Distributed and Parallel Systems

by

Rakesh Kushwaha

Performance modeling of distributed and parallel systems is of considerable

importance to the high performance computing community. To achieve high perfor-

mance, proper task or process assignment and data or file allocation among processing

sites is essential. This dissertation describes an elegant approach to model distributed

and parallel systems, which combines the optimal static solutions for data allocation

with dynamic policies for task assignment. A performance-efficient system model is

developed using analytical tools and techniques.

The system model is accomplished in three steps. First, the basic client-server

model which allows only data transfer is evaluated. A prediction and evaluation

method is developed to examine the system behavior and estimate performance mea-

sures. The method is based on known product form queueing networks. The next

step extends the model so that each site of the system behaves as both client and

server. A data-allocation strategy is designed at this stage which optimally assigns

the data to the processing sites. The strategy is based on flow deviation technique

in queueing models. The third stage considers process-migration policies. A novel

on-line adaptive load-balancing algorithm is proposed which dynamically migrates

processes and transfers data among different sites to minimize the job execution cost.

The gradient-descent rule is used to optimize the cost function, which expresses the

cost of process execution at different processing sites.

The accuracy of the prediction method and the effectiveness of the analytical

techniques is established by the simulations. The modeling procedure described here

is general and applicable to any message-passing distributed and parallel system. The

proposed techniques and tOols can be easily utilized in other related areas such as

networking and operating systems. This work contributes significantly towards the

design of distributed and parallel systems where performance is critical.

CHAPTER 1

INTRODUCTION

Computer science is one of the fastest growing scientific fields. At present, it is on

the verge of a paradigm shift, from traditional von-Neumann architectures which

allow only sequential processing, to parallel and distributed architectures, where non-

sequential and parallel processing is also possible. Researchers have given particular

consideration to system architectures with multiple parallel processing units (PUs).

These units are capable of concurrent and asynchronous operations, which can be

centrally controlled or the control itself can be distributed. Such architectures man-

ifest the recent advances in hardware technology and the development of effective

communication networks. Their range varies from a few processing units to thou-

sands of PU's placed in one small portable box on one side, and the same number

of PU's geographically separated and interconnected by a wide area network on the

Other. There are virtually limitless possibilities fOr connecting such PU's. Software

developers and system designers are faced with the challenge of exploiting the poten-

tial benefits provided by these architectures. One of the concerns for such software

applications and system designs is to improve performance. The size and design com-

plexity makes the development of such systems time consuming and expensive. We

need mechanisms to model these systems and analyze their behavior at the design.

stage.

2

This thesis describes a systematic approach to model distributed and parallel

systems. Analytical tools are developed to aid the modeling process and techniques

are proposed for improving the performance of these systems,

This introductory chapter provides a description of distributed and parallel

systems and illustrates the importance of modeling and performance prediction. We

discuss different approaches for designing distributed system models and suggest what

improvements we plan to achieve with our modeling philosophy. The last section

presents the organizatiOn of this thesis.

1.1 Overview of Distributed and Parallel Systems

The term distributed and parallel systems is a very general term. Just using the

term 'parallel system' does not reveal what kind of system we are dealing with and

what exactly is performed in parallel. Other terms such as multiprocessors, mul-

ticomputer, multiprocessing systems, distributed processing systems or distributed

computing system are cOmmonly used. Kleinrock [1: and Enslow [2], in their studies,

cleared some of the ambiguity caused by these terms. They identified four physical

components of the system that can be distributed: hardware, data, processes, and

control. Since distribution leads to concurrency, the term 'parallel' also finds its place

in describing such systems. Some authors [3, 4] consider a system that has any one

of the above components distributed to be a distributed system. The concept of dis-

tributing these components can be applied tO almost any level of the computer system

hierarchy — from the design of a circuit in a VLSI chip all the way to the design of

an intercontinental computer network.

Distributed and parallel systems can be homogeneous or heterogeneous. All

processing units in terms of data storage and CPU functionality are similar in ho-

mogeneous systems. Design and development of such systems is simpler because

of non-discrepancies among processing units. Heterogeneous systems, on the other

hand, consist of processing units which need not be similar. Dissimilarities might be

in processing speed, data management, job-arrival rate or hardware. Such system

design and implementation requires an extra effort. The control can be centralized

or distributed in either of the two classes.

Flynn [5] classified distributed and parallel systems from the perspective of

control. These are classified as SIMD (single instruction and multiple data) and

MIMD (multiple instructions and multiple data) systems [6, 7]. In a SIMD system, a

number of processors simultaneously execute the same instruction. A single control

unit (CU) fetches and decodes the instructions. The instruction is executed either

in the CU itself (e.g., a jump or any non-parallel instruction) or it is broadcast

to processing elements (PE's). These PE's operate synchronously but their local

memories have different contents. There exists a bidirectional bus interconnection

between the main memory (usually subdivided into a number of memory modules)

and the local memories. A system of this type is also called an 'Array Processor'

because of the array of processors formed by the PE's. Examples of SIMD systems

include MASPAR [8] and CM-2 [9]. In a MIMD system, a set of processors can

simultaneously execute different instruction sequences on different data sets. Some

examples are the nCube [10], Intel's iPSC [11], and the Alliant FX/8 [12]. Recently,

Thinking Machine Corporation released CM-5, which provides capabilities of bOth

SIMD and MIMD systems.

Geographical location and interconnections among the processing units form

the basis for classifying distributed systems as loosely or tightly coupled. In a tightly

coupled system the processing units are interconnected by high speed buses. The

communication delays are very small and less significant. Processors can be easily

synchronized and may or may not use a single global clock. MASPAR and nCube

are two tightly coupled commercial systems. Loosely coupled systems cOnsist of geo-

graphically separated processing units interconnected by a wide area network (WAN)

or a lOcal area network (LAN). Wide area networks have been available for several

years. To date, most wide area computer networks use packet switching technology.

LAN's, intended tO provide wide bandwidth over a limited distance, have developed

rapidly in recent years. Such networks make use Of relatively cheap methods of inter-

connection such as co-axial cable or twisted pairs. Unfortunately there is no common

international standard for LAN's and no single technology yet dominates the market.

Another possible alternative for non Von Neumann architecture which aims at

high speed computing is data-flow architecture [13, 14, 15]. A typical data flow com-

puter consists of a number of processing units, interconnected by data buses or cross

5

bar switches, where the focus is on the flow of data rather than on the instructions

which process the data. In such models, the data is active and flows asynchronously

through the program, activating each instruction when all the required input data has

arrived. This is in direct contrast to the Von Neumann model in which data passively

resides in storage while instructions are executed one at a time according to a defined

sequence. The data-flow systems are usually programmed using a data-flow language

[16], which is a subset of the class of functional languages. Such systems have a large

overhead involved in explicitly specifying all instruction sequencing.

In this dissertation, more general distributed and parallel system architectures

are considered. Such systems are composed of a set of autonomous (and possibly

heterogeneous) processors, each of which is fully functional in a stand-alone fash-

ion. Figure 1 depicts a conceptual distributed and parallel system architecture under

consideration. The system consists of J nodes which are interconnected through a

communication network. Each node consists of a processor(s) and a storage unit. The

size and sophistication of each individual processor can range frOm those of a DMA

controller tO those of a general-purpose mainframe computer. The storage units can

also vary considerably in terms of capacity and technology used.

Our objective is to distribute all four physical components - hardware, data,

process, and cOntrol - to achieve high performance. Such systems may be loOsely or

tightly coupled. Any number of processes can concurrently execute different programs

using different or the same sets Of data. In general, no particular operation selection.

constraints are attached. Data, control, and process distribution is transparent to the

user. These kinds of systems are typically used for transaction-oriented processing

such as accessing and updating distributed data bases. One of the major advantage

of applying distributed design concepts at this level is the resource-sharing capability,

which results in reducing both cost, by not having to replicate the complete function-

ality of a system at each site, and system response time, by having idle processors

'assist' overloaded ones.

Figure 1: Generic distributed and parallel system architecture

1.2 Importance of Performance Prediction and Modeling

From the brief discussion presented above, we can infer that there are several design.

alternatives for developing distributed and parallel systems. Some of the important

7

design considerations are: configuration, size, and technology of the interconnection

network; distribution of system functionality among its processing units; allocation

of parallel entities to processors; synchronization of execution of tasks; and storage of

various data sets. The designer of a distributed system is presented with the dilemma

of properly resolving these issues to meet certain objectives. These objective may

include performance, reliability, availability, user transparency or fault tolerance. It is

usually not until the final stages of system development that it is possible to determine

whether the original objectives have been met. Thus, an incorrect choice in deciding

on any one of the numerous issues can result in a very costly and time consuming

redesign and redevelopment effort.

Given the above considerations, the importance of being able to predict the

eventual performance of a system during primary stages of development so that any

design flaws can be detected and corrected without great expense is apparent. With

proper modeling and performance prediction tools, a designer should be able to grad-

ually 'pilot' the design into meeting all of the required objectives.

Over the years, the field of perfOrmance modeling and analysis has made valu-

able contributions towards system and application design [17], operating systems [18]

and networks 119]. Several mOdeling and prediction methodologies, tools, and tech-

niques [20] have been prOposed by various modelers and analysts. The experience

and maturity of the field has much tO offer towards the efficient design of complex

distributed and parallel systems.

8

1.3 Motivation for a New Distributed and Parallel System Model

Various performance models for distributed and parallel systems have been proposed

and have made a significant contribution to the design and implementation of dis-

tributed and parallel systems. Scheduling algorithms and load balancing strategies

designed fOr these models are particularly attractive to the development community.

The future will see more implementations of performance models since the predic-

tions and approximations made from the models are now increasingly accurate. In

addition, the demand to achieve high performance from distributed architectures is

steadily increasing.

This section discusses the evolution of distributed and parallel system models.

Systems developed on the basis of these models, distributed operating systems in

particular, are included for reference. In Chapter 2 we categorize the existing models

and explain them in detail.

The client-server model [21] is one of the earliest models of a distributed

system. In the client-server model, the server manages recoverable data objects and

defines operations that are exported to clients. Clients invoke these operations to

manipulate the data managed by servers. Operations are invoked by using a remote

procedure call (RPC) [22] interface. Argus [23], Helix [24] and conventional databases

with multiple accessing sites are implemented based on this model. The contrOl for

such systems usually resides in the central server. Extended client -server models

include cache and increased processing capability at the client to increase availability

9

and performance. The data is distributed among the server and the clients. The

clients and the server can work independently and also collectively to share resources.

The control of the complete system can also be distributed among different processing

units. SUN NFS [25j exemplifies the efficacy of such a model.

Other variations to the client-server model where data and control is dis-

tributed have also been proposed. Data may or may not be replicated in these

models. Locus [26] and Sallow, [27] for example, are based on a mOdel which al-

lows data replication. Dunix [28] and Alpine [29] are systems based on the notion Of

non-replication. Such models generally use some resource sharing strategy to improve

their performance.

The advent of efficient process migration techniques led the pioneers of mod-

eling to design system models that dealt with process migration and task allocation.

DEMOS/MP [30], Charlotte [31 and Mach [32] are a few examples of systems based

on process migration mOdels. The models developed to date which allow process

migration fall into two major categories [33]: process-oriented mOdels - based on the

concept of a process, and object oriented models - based on the concept of an object.

There is no logical difference between these models. Processes in the former model

can be mapped into objects in the latter. Moreover, these twO models use similar

structuring and synchronization mechanisms and similar operations. However, these

models differ at the level of mechanism. Thus, these categories of systems are defined

based on the mechanisms by which they implement the notions of functional entity

10

and synchronization. A comprehensive survey which categorizes all the distributed

systems according to the model on which they are based is presented in [34].

The task allocation models use probabilistic Or deterministic strategies to as-

sign tasks among distributed hardware, so that the total time to process all tasks is

minimized [35, 36]. Models which allow task migration from heavily loaded sites to

lightly loaded sites also exist [37]. Lately, models which consider adaptive process

distributing strategies have been published [38]. These models assume that all the

processes (tasks) are entirely computational or data and process are one functional

unit that can be migrated (allocated) tO any site. Process migratiOn or task allo-

cation to any arbitrary processing unit is possible if exact data is replicated on all

sites. However, data replication on very large distributed systems is not performance

efficient, since the algorithms to keep the data cOnsistent are computationally expen-

sive. We need models where both processes and data move independently among the

processing units to get the job done. Such models should efficiently distribute control,

data, processes, and processing logic to exploit maximum parallelism.

To achieve high performance, system modeling shOuld be performance ori-

ented. MOS (Multicomputer Operating Systems) [39] is one of the few systems that

attempt to integrate load balancing philosophies into a distributed system for per-

formance purposes. The system is a distributed implementation of UNIX providing

suboptimal load balancing by means of process migration. The primary objective of

the system design is to provide site autonomy, decentralized control, and location and

11

access transparency; while performance is the secondary objective. To design high

performance systems, we need models where performance is the key issue. Moreover,

these models should also allow designers to incorporate other objectives easily.

In this thesis, we analyze and discuss the development of a performance ori-

ented model for distributed and parallel architectures. Efficient strategies are designed

to optimally utilize available resources. Load balancing algorithms are integrated to

judiciously distribute both processes and data. A performance prediction methodol-

ogy is propOsed to estimate performance and predict system behavior for such models.

We use computer simulations to validate our assertions.

1.4 Contents of the Thesis

In this first chapter, we have presented a general overview of distributed and parallel

systems, demonstrated the need for performance prediction and motivated the devel-

opment of a new performance model. Chapter 2 will elaborate on the different design

issues that are relevant to distributed and parallel system design. We also describe

current performance models in detail and discuss existing prediction methods.

In Chapter 3 we will present our basic client-server model and outline our

performance prediction methodology. The system model is constructed and mapped

to a probabilistic queueing network model which is used to predict its behavior. The

methodology is applied to identify bottlenecks and to establish proper balance be-

tween clients and servers. The model distributes data and provides the frame work

12

to construct the model where process and control can also be distributed. The pro-

posed performance prediction methodology is general and is applicable to all message

passing systems with distributed memory.

Chapter 4 extends the basic client-server model such that each processing site

behaves as both a client and a server. The control is distributed along with data

among processing sites. To improve performance we propose a load balancing algo-

rithm which optimally allocates data among processing sites. The model is analyzed

using the methodology proposed in Chapter 3 and is simulated on the nCube. We

compare the analytical results with the measurements obtained from the nCube sim-

ulations and discuss their implications.

Chapter 5 completes the model by incorporating techniques to distribute pro-

cesses in addition to data and control. A novel adaptive load balancing algorithm is

designed to migrate jobs and transfer data. It attempts to minimize the cost of job

execution. It is distributed, operates on each site, and uses gradient descent on a cost

function to make decisions. Under the same operating conditions several strategies

which use the adaptive algorithm are compared with the ones which do not make

use of the algorithm. The performance and efficiency measures are obtained from

simulations on the nCube. Results show that the algorithm is effective and has low

overhead.

The final chapter concludes the thesis by reviewing the whole modeling ap-

proach, identifying its main research contributions, discussing how to effectively ap-

13

ply performance predicting method and solution procedures for system modeling, and

providing guidelines for conducting further research.

CHAPTER 2

CURRENT MODELS AND PREDICTION METHODOLOGIES

Before describing our modeling methodology and prediction method, we identify the

design issues relevant to the performance modeling of distributed and parallel sys-

tems. We categorize the existing performance oriented distributed and parallel system

models and discuss their modeling approach. After introducing the models, we will

review current performance prediction methodologies and emphasize their advantages

and shortcomings.

2.1 Design Issues

It is clear from the discussion in the previOus chapter that designing a distributed

system is a complex job. In order to make proper design choices, a system architect

must identify those issues which are important for achieving the specified objectives

(having the system meet certain requirements). In the following section, we will briefly

discuss some of the design issues critical for achieving high system performance.

Perhaps the most important performance-oriented design issue is the com-

munications mechanism used for interchanging data and control information among

processing elements and storage units of a system. Each individual property of such

a communicatiOn mechanism must be carefully selected to maximize the system com-

ponent utilizations and to minimize the communication delays. These properties

14

15

include the physical transport medium, the topology of processing elements and data

storage modules, data interchange protocols, addressing and routing mechanisms,

message sizes, etc. The selection of the aforementioned properties is usually con-

strained by the desired speed and size of the system, the geographical distribution

of its components, fault-tolerance and system availability requirements, and bounds

on the development and maintenance costs. In most cases, it is not possible for a

given choice of the communications mechanism to be optimal in meeting high and

balanced system utilization and maintaining fast response time. Thus, a designer

has to make a cOmpromise between effectively using available system resources and

providing prompt service to the user community.

The proper selection of the file servicing policy and the synchronization mech-

anism are also very important for achieving high performance. in architectures which

are geared toward specialized applications, wherein the nature of user demands for

data is known in advance, it is usually advantageous to design static policies that

strategically allocate data or files in the storage. For the programs that can be rep-

resented as parallel computations or tasks, efficient task distribution, algorithms are

desired. A centralized synchronization mechanism can be used for special purpose

system as it eases the design and implementation of the system. A general purpose

system in an environment Of dynamically changing and unpredictable user demands

would be better off using decentralized control, Adaptive and heuristic policies for

data and prOcess allocation are best suited -for such dynamic systems.

16

Hybrid policies which combine optimal static strategies with the heuristic dy-

namic policies can also be designed to optimize resource utilization and improve

response time. This is what we will demonstrate and test in this dissertation. We

first design a simple static strategy for file allocation and later incOrporate dynamic

policies for process migration and data transfer.

The cache plays a significant role in designing high performance distributed

systems. Caches at individual processing nodes have been known to significantly

improve job execution time, especially in systems having high communication and

synchronization Overhead [40, 41, 42, 43, 441. Efficient policies for updating caches

have been proposed [45]. It has been shown that caching improves performance while

still tolerating failures and prOvides the same level of coherence, availability, and

reliability that the file service would have without caching [46]. Caching also allows

overlapping of computation tO reduce process-idle time [47].

We consider caching in our client server model and provide cache size analysis

in chapter 3.

2.2 Performance Models for Distributed and Parallel Systems

From the perspective of our modeling methodology, we categorize existing models of

distributed and parallel system in three categories as listed below:

1. Data (file) allocation models;

2. Task (process) allocation parallel processing models; and

17

3. Transaction processing system models with load balancing.

The major reason for placing models in three categories above is to empha-

size the impOrtance of our design methodology which focuses on optimal data (file)

allocation and on load balancing for task (process) allocation. In other words, our

objective is to design and model systems to achieve high performance by efficiently

distributing both data and processes. Thus our modeling framework reference to all

the mOdels in the above three categories.

2.2.1 Data Allocation Models

The earliest attempts to improve performance in distributed systems were made

through efficient data (file) allocation. The problem of allocating -files at different

storage sites was first treated intuitively or by trial and error. Later, Ramamoorty

and Chandy :4:8] and Arora and Gallo :4:9] proposed analytical solutions to the prob-

lem. They concluded that the optimal file allocation strategy was to allocate the

more frequently used files to faster devices to the extent possible, However, their

model ignored the waiting time in the request queues. Chen [50, 51] performed a

more realistic analysis by considering queueing delays and analyzed three types of

file allocation problems. The first was to allocate files minimizing the mean overall

system response time without cOnsidering the storage cost. The second minimized the

total storage cost and satisfied one mean overall system respOnse time requirement,

The third minimized the total storage cost and satisfied the individual response time

18

requirements for each file. The first two problems are discussed in [50] and the last

in [51].

Dowdy and Foster [52] compared and analyzed several distributed system mod-

els for the file assignment problem. They reviewed different models in a uniform man-

ner. They concluded that different performance objectives such as cost, throughput,

response time, and access time govern the modeling.

With the advancement in the networking area, wherein multiple machines can

be connected by high speed networks, came the design of distributed file systems.

Various file system models have been proposed, each providing a different level of

functionality and service. File access mechanisms, locality and naming are the issues

of interest. Models in the area of extended file systems, which expand across multiple

machines, are broadly classified in two categories: remote file systems and distributed

file systems. Both models have several similarities. For instance, both allow files

tO be placed anywhere in the community, and allow for files to be accessed trans-

parently. The major difference between the two modeling methodologies is in their

naming approaches. Distributed file systems provide a single global naming space,

whereas remote file access provides a collection of several individual name spaces

and a mechanism to connect them together in an arbitrary fashion. The remote file

systems are best exemplified by the Newcastle Connection system [53] developed at

the University of Newcastle. LOCUS 126] is an example that belongs to the second

category. A comprehensive study of all the distributed file systems exists in [341

19

Siegel in [54] studied different file systems in the context of performance. The

tradeoffs between performance and safety are emphasized. The study concluded that

file systems which provide users with various options such as the number of replicated

files or disk write modes yield dramatic performance gains.

Apart from distributed file systems and file allocation models, the problem of

allocating files is also investigated in distributed computer communication networks.

Levin proposed several models for allocating programs and data files in a computer

network 55, 56]. Mahamoud studied the problem by simultaneously considering the

allocation of files to netwOrk nodes and channel capacities to network links [57]. Lan-

ning and Leonard [58] proposed an adaptive algorithm for file placement in computer

cOmmunications networks, where file storage and file availability are optimized with

the possibility of duplicating files for a known maximum number of file copies.

2.2.2 Task Allocation Parallel Processing Models

In recent years we have witnessed a growing interest in the development of multipro-

cessing computing systems [59• These systems are composed of multiple prOcessors

interconnected to each other and sharing the use of memory, input-output peripher-

als and other resources. To exploit the parallelism in such systems, various parallel

applications have been designed. These applications are represented as concurrent

parallel tasks, which co-operate to achieve the desired goal. The tasks are assigned to

multiple processors so that the total time required to process the application is min-

20

imized. Such parallel processing systems are usually tightly coupled and processing

units co-operate to achieve one objective. A Large number of parallel applications

are also modeled as fork-join jobs. In such models, all the tasks of a program arrive

simultaneously to the system, they are optimally allocated to PUs and the job is

assumed to be finished when the last task completes.

All possible task allocation models can be separated into two general cate-

gories: dynamic Or static. For models with the dynamic task allocation policy, each

currently enabled task (i.e. task which is ready to be executed) competes, on an equal

basis, with the other enabled tasks for the processing and communication resources

of a distributed system. The required system resources are dynamically assigned to a.

task (by task scheduling and resource management cOmponents of the architecture) at

the time when it becomes ready for execution. The assignments of resources to tasks

can be made purely probabilistically, without considering the distribution of work-

load currently present in the system [36, 60], or purely adaptively, as a deterministic

function of the current system state [61].

In static models, each task of a given program is a priori allocated to a pre-

specified subset of system's resources [62, 35, 63]. The allocation of resources is per-

formed before commencing the execution of a program. The main objective of most

static task allocation, strategies is tO balance, as much as possible, the expected work-

load represented by a program among different system components, while explOiting

all the potential parallelism available in the program. Upon becoming enabled, each

21

task of a program utilizes only those resources that are statically assigned to it ac-

cording to the particular policy adopted by the system in question. An optimal

static probabilistic task assignment technique is proposed in [64]. Other static task

allocation models include [65, 66, 67, 68].

Towesly et. al. [36] developed models for a shared memory multiprocessor

that execute fork-join parallel programs. They analyzed models for two processor

sharing policies, called task-scheduling processor sharing and job-scheduling processor

sharing. The first policy schedules tasks independently of each other and allows

parallel execution of an individual program, whereas the second policy schedules each

job as a unit and thereby does not allow parallel execution of an individual program.

They concluded that the task-scheduling policy exhibits better performance than

the job scheduling policy for most system parameter values. The processors can be

dynamically allocated to different tasks.

Setia et. al. [69] modeled a system as a. distributed fork-join queueing system

to evaluate the tradeoff between maximizing parallel executiOn and minimizing syn-

chronization and communication overheads. They considered a small class of policies

that represent typical aspects of processor allocation problem and approximated the

expected job response time. Their results show that the solution to the allocation

prOblem is an adaptive policy that spreads the tasks of a job across all processors

when the load is light and continuously restricts the degree of parallel execution with

increasing load. They demOnstrated how quickly the benefits of parallel processing

22

are negated by its associated overheads across diverse multiprocessor environments.

Nelson et at. [70] modeled a centralized parallel processing system with job

splitting, using a bulk arrival queueing system. In their mOdel, jobs wait in a central

queue, which is accessible by all the processors, and are split into independent tasks

that can be executed on separate processors. They studied the effects of parallelism.

and overheads due to job splitting.

2.2.3 Transaction Processing System Models with Load balancing

Task assignment in a parallel or distributed system uses information available when

a job is to be executed, so as to judiciously distribute the tasks among processing

units in order to maximize performance. Optimal task assignment is well known

to be computationally intractable, i.e., it is NP-hard, so that it cannot be solved.

exactly when the number of PUs and the number of tasks is large. Therefore it must

be implemented by the use of relatively fast heuristics. It is of greatest use when

full informatiOn abOut the execution characteristics of parallel or distributed jobs is

available before execution, and can Only be carried out using sub-optimal strategies.

On the other hand, load balancing is the static or dynamic allocation of tasks

(or processes) and data (or files) to processing units (PUs) so that work is equally

shared and performance improved. The role of dynamic load balancing is comple-

mentary to that of task assignment since it uses on-line information which becomes

available at process creation time. It can also be an alternative to task assignment if

23

relevant information about jobs, such as the number or nature of their parallel tasks

or processes, becomes available only during execution..

System architectures which incorporate load balancing strategies are more

general. Any tightly or loosely coupled processing units in a homogeneous or het-

erogeneous environment, interconnected by high speed networks, crossbar switches or

any other devices, can be modeled. The models are flexible and are capable of mod-

eling a wide range of distributed and parallel systems. The aim is to distribute load

and improve performance. Both static and adaptive load balancing algorithms have

been proposed for such distributed system models. If the decision of transferring a,

process or data is based on the current state of the system the algorithm is dynamic,

otherwise it is static. Systems with static cOntrol [71, 72, 64, 73, 74] are easier to

analyze and model than dynamic ones [75, 76, 77, 78, 79, 80, 81]. It may be argued

that the usefulness of static control is limited, however, they are very effective for

system sizing, i.e., resource allocation, bottleneck identification and sensitivity stud-

ies. Static models are known best to optimize loads according to long-term traffic

trends, while dynamic models are designed to react to sudden traffic changes. Load

balancing in distributed systems, especially dynamic load balancing, needs informa-

tion exchange which leads to communication overheads. The objective is to minimize

the overhead and maximize the system throughput.

Silva and Gerla in [37] proposed distributed system models to evaluate static

load balancing policies, where jobs are migrated from heavily loaded sites to lightly

24.

loaded sites. More detailed distributed system models are considered in [72, 64]. In

[82] it is said that in a network of nodes, there is a very high probability that at

least one node is idle while jobs are queued at some other nodes," which motivates

the interest in the design of adaptive models for job allocation. Several adaptive load

sharing strategies for job allocation have been proposed. Comparative and compre-

hensive studies include [83] and [77], which point to the potential benefits of adaptive

load sharing and compare different policies, concluding that very simple adaptive load

sharing policies which collect a small amount of system state information and use this

information in simple ways, can yield dramatic performance improvement.

Mirchandaney et. al. [79] studied the performance characteristics of simple

load sharing algorithms for a heterogeneOus distributed system model, They assume

that non-negligible delays are encountered in transferring jobs from one nOde to the

another and in gathering remote state information. They analyzed the effects of

these delays on the performance of two algorithms called forward and reverse and

formulated models for each of the algorithms operating in heterogeneous systems.

They conducted many interesting tests on the models, e.g., the effects of varying

thresholds, the impact of changing probe limits, and determining the optimal response

times over a large range of loads and delays.

In general, load balancing in transaction processing systems is fOrmulated as a

mathematical programming [64] or network flow problem [37], and solved by optimiz-

ing some performance index such as overall response time [84] or overall delay [85].

25

The direct numerical methods are best applicable to systems where jobs belong to

one class and the local network can be modeled by a single queue. Load balancing in

more general distributed systems with multiple classes, site constraints and a general

interconnecting netwOrk is formulated as a nonlinear, multicOmmodity flow routing

problem.

Load balancing in distributed systems has also been analyzed by modeling

the system as a set of N parallel queues which represent the resources and a central

dispatcher which distributes load among queues [77, 86, 87, SS, 84]. These studies

include the analysis of static and dynamic policies. In a central server model [89] the

processing sites itself can be mOdeled as a network of queues.

2.3 Current Prediction Methods

Currently available performance prediction methods for distributed systems fall into

two general categories. Methods of the first category employ simulation tools to con-

struct and run a system model. The secOnd categOry consists of approximate analytic

techniques, These methods employ either standard queueing techniques or graphical.

methods for behavior analysis and estimating various performance measures.

2.3.1 Simulation Methods

Simulation models are often preferred over analytical ones because of their flexibility

and ability to express fine details. Analytical techniques are generally applicable to a

26

narrow range of system architectures and specific types of program structures. Sim-

ulations, on the other hand, are capable of handling complex architectures and all

program structures. Model enhancement is simple and new features such as commu-

nication patterns and load balancing policies can be easily incorporated. Simulations

also provide an environment to analyze the transition system behavior.

General-purpose simulation packages, such as IBM's RESQ [90] or UCLA's

SARA [91] which have built in facilities for gathering and analyzing performance

statistics are now available. Different packages can vary considerably in their model-

ing primitives, model definition languages, and performance measurements facilities.

Thus, a model usually has to be re-designed and re-implemented in order to run in

a different simulation environment. It is up to the modeler to determine what level

of detail to implement in a model and how to properly abstract the pertinent char-

acteristics of the actual system being evaluated. In deciding on the latter issues, one

must consider what performance measures are being sought and what accuracy level

is required.

In some cases, general-purpose packages may be intolerably slow in simulating

very detailed models or may not be equipped to provide all of the desired performance

measures. For these reasons several research groups have developed their own special-

purpose hardware and sOftware simulators to model specific distributed systems I92].

A given special-purpose simulator can usually represent only a particular system

architecture, although some are parameterized to allow the modeling of different

configurations of the same basic design.

Trace driven simulators are popular in studying system dynamics. Zhou [93]

conducted a trace-driven simulation study of homogeneous distributed systems. Seven

load balancing algorithms were simulated and their performance was compared. Job

traces from an actual machine were used instead of probability distributions to de-

scribe the arrival times and resource demands of the jobs. Darema-Rogers Z94] gen-

erated execution traces of a prototype parallel program in a centralized environment,

which were used to derive estimates of its performance in a true parallel environment.

A method was proposed to scale up the results for larger programs.

On-line comparison of different policies and system functionalities is also pos-

sible with simulatiOns. Depending on the system characteristics and applicatiOn be-

havior, novel efficiency and performance metrics can be easily designed. Wong and

Morris [83] simulated distributed systems and defined a performance metric called the

Q-factor which summarizes both overall efficiency and fairness of an algorithm. The

computed factor allows algorithms to be ranked by performance. Recently, Kremien

and Kramer [38] also compared adaptive algorithms in distributed system using sim-

ulations. They considered the delay characteristics in the distributed environment

and estimated various performance and efficiency measures.

Simulations are extensively used to validate the results obtained from ana-

lytical methods. It is common to make assumptions when modeling systems using

analytical methods. The accuracy of the results and validity of assumptions are

28

usually established via simulations. One example is the common assumption of ex-

ponential service demand in queueing network models; realistically these times are

not exponentially distributed as assumed. To demOnstrate the efficacy of the math-

ematical model, systems are simulated without the exponential assumption and the

results are compared against the analytical ones.

2.3.2 Analytical Methods

Simulations suffer from being expensive, time consuming and slow. Simulations in-

volve not only a significant cost of developing a model, but also a large amount of

expensive CPU time for every run of the simulation. Also, even if a single param-

eter is changed in a model, a complete, new set of simulation runs is required to

determine the new performance statistics. Furthermore, the type of computing en-

vironment necessary to support most general-purpose simulation packages is usually

very sophisticated and expensive. Special-purpose simulators are generally more effi-

cient, but their development is very costly and each is able to model Only a specific

system architecture,

Considering the above properties of simulation, one can appreciate the im-

portance of analytical methods. They are cOncise, efficient and expressed through a

language (mathematics) which is precise and well comprehended. We categorize an-

alytical prediction methods as queueing and graphical methods. Queueing methods

include queueing networks and Markov decision theoretic techniques. Petrinets and

29

graph models fall in the second category. Prediction methodologies which combine

modeling techniques from the two categories to estimate various performance mea

sures also exists. We also discuss a few methods which do not fall in either of the two

classes.

2.3.2.1 Queueing Methods

Of all the analytical methods, queueing methods are the most common performance

prediction methods because of their simple applicability and ease of computation.

Queueing theoretic techniques are suitable to model message passing distributed sys-

tems and packet switching networks because the jobs or packets can be easily rep-

resented as customers in queueing environments. The mathematical foundations of

queueing mOdels allow easy computation of various measures.

Researchers have used closed, open or mixed queueing networks [17, 95] with

one or several job classes for modeling, analysis and synthesis of distributed systems.

Gelenbe and Mitrani [17] used closed-form analytical solutions and approximate meth-

ods to model multiprogrammed computers. Gerla and Silva [72] considered multiple

class mixed queueing network models to represent distributed systems. In their model,

interactive jobs run on local sites and the batch jobs can run on any site. The decision

of running a job on a site is independent of the state of the distributed system. Jobs

in their model follow a particular chain; the interactive jobs follow open chains and

batch jobs follow closed ones. The response time (delay) of each chain is calculated

30

using nominal throughput. The normalization constant is computed for mixed chains.

Akyildiz [96] modeled the synchronization of processes in distributed systems

using product form queueing networks [97]. Processes communicate with each other

via buffers using SEND and WAIT operations. A process which cannot execute a syn-

chronization operation successfully goes into the blocking state. The analysis of the

distributed system is conducted hierarchically using two models - a global model and

a process communication model. The distributed system is modeled (global model)

as a closed queueing network with finite station capacities. The blocking probabilities

and the blocking times of processes are computed from the process communication

model and are used as input parameters for the global model which can then be solved

by apprOpriate existing product form network methods. The method provides exact

results for twO station cases and approximate results for multiple station cases.

Mirchandaney et al. [79] formulated queueing theoretic models for hetero-

geneous systems under the assumption that the job arrival process at each node is

Poisson and the service times and job transfer times are exponentially distributed.

The models are solved using the Matrix-Geometric solution technique. The results

of the models are compared with the M/M/l, random assignment and the M/M/K

models. Nelson et al. [70] developed a performance model for a parallel processing

system. In their model, jobs wait in a central queue and are split into independent

jobs with exponential execution times which synchronize at the end. Whenever a

processor becomes idle, it executes the next waiting task from the queue. The job

31

response time consists of three components: queueing delay, service time, and syn-

chronization delay. An expression for the mean job response time is obtained for this

centralized parallel processing system. Centralized and distributed parallel processing

systems (with and without job splitting) are considered and their performances are

compared. Their methodology is useful for comparing different system models.

Heidelberger and Trivedi [98, 99 used analytic queueing models to predict

performance for programs with internal concurrency. An approximate method to

model the programs is developed in which a parent spawns off two or more statistically

identical asynchronous children tasks. They also considered the case in which the

parent task, after spawning off the children tasks, waits for their completion before

continuing.

Gelenbe [100] used a queueing network model to analyze the performance of

the Connection Machine. Special emphasis on estimating the effect of its interproces-

sor communication is made. A model of network architecture, including the NEWS

and ROUTER networks, is used to compute the slow-down induced by message ex-

change between processors. Locality Of the message exchanges is modeled by sending

probabilities, which depend on whether a message is sent by a processor to another

processor placed on the same NEWS network, on the same ROUTER, or at a re-

mote location which is only accessible via the ROUTER network. The performance

degradation of the Connection Machine as a function of the communication and ar-

chitecture parameters is derived.

32

Markov and semi-markov theories have also been used to estimate the per-

formance of distributed systems. Such methods are less attractive then queueing

networks because the analysis becomes complex for large systems. Shin et al. [101]

formulated the problem of controlling resources in a distributed system using Markov

decision theory. The control variables considered were general and were related to

system configuration, repair, diagnostics, files, and data. A reward function is opti-

mized in search for optimal control strategy. Two algorithms for resource control in

distributed systems are derived for time-invariant and periodic environments.

2.3.2.2 Graphical Methods

Graphical methods are very popular in modeling the inter-dependencies and commu-

nications among different processing units of distributed system. Parallel programs

for multiprocessing systems, as discussed in section 2.2.2, can be represented as a set

of tasks which can be optimally allocated to processing units. The interdependencies

among the tasks are represented through graph models. Graph models in conjunc-

tion with queueing models have been used to predict the performance of parallel

programs in distributed systems. For representing program. behavior, graph-based

techniques are used, while queueing networks are utilized for modeling system archi-

tectures. The solutions of both techniques are combined to estimate the performance

of a distributed system in executing some selected applicatiOns.

Mak and Lundstrom [35] describe a method for predicting performance of a

33

class of parallel computations running on distributed systems. A parallel computation

is modeled as a task system with precedence relationships expressed as a series-parallel

directed acyclic graph. Resources in the concurrent system are modeled as service

centers in a queueing network model. Using these two models as inputs, the method

outputs predictions of expected execution time of the parallel computation and the

concurrent system utilization.

A hybrid methodology proposed by Mohan [1021 combines analytical models

with Monte Carlo simulations. Parallel programs are adequately represented by task

graphs (also known as precedence graphs). Task execution time is obtained through.

the resolution of a queueing network which considers contention for shared resources

by the tasks which execute concurrently. The performance results of the execution

of several tasks is integrated through Monte Carlo simulation which considers the

precedence relationships described in the task graph.

Menasce and Barroso [63] presented a methodology to obtain the execution

time of a parallel program composed of several concurrent tasks. The precedence re-

lationship between the tasks is described by a task graph. The execution time of each

task is shown to be given by the sum of two terms: a fixed one and a nOndeterministic

term which is a functiOn of the contention fOr shared memory. The execution time of

a task depends on the shared memory access delay, that is in turn dependent on the

pattern of memory access delay, which depends on the pattern of memory requests,

the network contention, and on memory modules contention. An algorithm is pre-

34

sented to show how to deal with these dependencies in order to obtain the execution

time of a given parallel application.

Thomasian and Bay [62] propose a two-level analytic model to obtain the

execution time of systems cOmpOsed of parallel tasks. The first level model is based on

the resolution of a Markov chain whose states are the feasible combinations, according

to task dependencies, of concurrent tasks. The transition rates are obtained by solving

queueing network models for each system state. Kapelnikov et al. [103] proposed a

methodology for estimating the execution time of programs running on distributed

multicomputer systems. Their approach is also based on the use of queueing network

models, Markov processes, and graph models of computation.

Petrinets have also emerged as an important performance prediction method

for a wide range of applications and computer systems wherever the mathematical

modeling of dynamic systems is essential [104]. Sheih et al r 105] addressed some

fault tolerant issues pertaining to hierarchical distributed systems. They investigated

centralized and distributed fault-tOlerant schemes, using Stochastic Petrinet (SPN),

by considering the individual levels in a hierarchical system independently. Cases

were pointed out where one strategy performed better than the other. They also

studied the effect of integration on the fault-tolerant strategies of various levels of a

hierarchy.

2.3.2.3 Other Methods

35

Methods other than queueing and graphical methods have also been used to model

and estimate performance of distributed systems. One of the distributed memory

models based on integer programming was developed by Chen and Akoka 11061 for

the optimization of distributed information systems. They considered issues such as

the distribution of processing power, the allocation of programs and databases, and

the assignment of communication line capacities. Their model considers the return

flow of informatiOn, as well as the dependencies between programs and databases. An

algOrithm based on the bounded branch and bound integer programming technique,

was developed to obtain the optimal solution model. The model focused more on dis-

tribution and allocation of work among resources rather than predicting performance.

Norton and Pifister [107] proposed a methodology for the prediction of the

performance of IBM RP3 type multiprocessors. This methodology takes into consid-

eration some characteristics of the application code and does not explicitly consider

either the mapping of concurrent tasks into the processors or any kind of synchro-

nization delay. Their mOdel is based on an iterative algorithm which computes the

delays clue to access to shared memOry for a given processing rate. This memory

access delay is used to compute a new value for the processing rate. The iterations

continue until these two values converge for a given tolerance.

Gilio [108] proposed a virtual processor model for parallel programming on

distributed systems. The notions of featherweight processes and featherweight com-

munication are introduced. The programming model is a higher level of abstraction tO

36

make parallel systems programmable and convenient to use. The level of abstraction

was proposed to allow application programs to be written independently of the actual

size of the system, not through virtual shared memory but by virtualized processors.

The implications of the implementation of the virtual processor model on the system

architecture, the operating system, and the compilers are discussed.

CHAPTER 3

THE PERFORMANCE OF A FILE-SERVER MODEL

3.1 Introduction

It is challenging to distribute all physical components, data, process, hardware and

control in a distributed computing environment. Our modeling methodology aims

at distributing all of them to improve the performance and we advocate step-by-step

development of system models. As a first step, queueing network elements are used to

model the operation of physical components of a distributed system. The next step

considers designing static policies to optimize loads according to long-term traffic

trends. As the last step we design and evaluate dynamic algorithms for sudden traffic

changes and temporary perturbations.

The model, at this preliminary stage, considers distributing only data (files)

among different storage units and operates on a simple principle to execute jobs. The

model provides a underlying architecture and frame-wOrk for designing the target

system, where data, processes and control could be efficiently distributed . We also

describe an efficient and accurate performance prediction method in this chapter, and

use it to evaluate the performance of the model.

We represent a distributed and parallel system by the interactions amOng the

fOllowing entities: clients, servers, network and information units. Clients are any

processing units in the system which invoke operations and request access to the

37

38

information units. Servers are the nodes which service the requests made by the

clients and manipulate the information units. information units could be any data

unit: file, messages, user-requests, or executing processes.

To predict the performance the information units are mathematically repre-

sented as customers Of different classes in a queueing network model while servers,

clients and the network are modeled as service centers. Performance measures such as

the the average utilization of the service centers, their throughput, and the average

response time of the system are estimated using the probabilistic queueing model.

The average response time is defined as the time interval which starts when a client

requests some information and ends when the request is serviced. It is the average

time a request spends in the system. Short response time is a characteristic of good

performance. The response time of a system not only depends on the transmission

properties of the interprocess communication primitives, their implementation, and

supporting protocol, but also on the manner in which the information units are lo-

cated, managed and accessed. Cache size and client-server ratio also affect the average

response time of the system.

The system we refer to operates as follows: when a user at a client makes a

request, the request 'enters' the system and proceeds to receive service at different

service centers. During this time the user waits fOr a response. After some time

interval, when the request is satisfied, the user enters a 'think time' and then generates

a new request.

39

We begin, in next section, with a detailed model description. A complete

analysis of the system is given in Section 3.3, illustrating how the prediction method

may be used to evaluate the performance of a. distributed and parallel system. A

numerical example is considered in Section 3.4, in which the results obtained from

the analytical solution are validated against the simulated ones. In Section 3.5 we

develop an approximate method to compute optimal cache size, and in Section 3.6 we

describe a method tO identify and isolate the bottleneck node. Section 3.7 summerizes

this chapter.

3.2 The System Model

3.2.1 System Description

We consider a distributed system with c processors, which we call clients (c i , 1 < i <

c), and m servers (sj, 1 ≤ j ≤ m), connected via a netwOrk (t). The clients request

access and usage to a set of files; these files reside at a set of servers. The file is the

information unit distributed in the system. Any task or process is generated at some

client and require data (one Or more files) for execution. Each file resides normally

in some server storage; the node where a file resides is referred to as its 'host node'.

File copies can be transferred to clients on demand. A file is in one of twO states: free

or busy. A file is busy if a copy of it has been transferred to some client; otherwise it

is free.

40

A server receives a file request from a client, processes the request, and trans-

fers a file copy to the client, if the file is free. This action marks the file as busy.

Each client has a temporary local memory, the cache, which holds the file-copies ob-

tained by the client. A file in the client's cache is in one of two states: active or

non-active. A file is active if it is currently used by a process executing at the client

and is non-active if it still resides in that cache without being used.

Servers and clients communicate via messages. Messages can be of the fol-

lowing three types: file-request-message, file-active-message and confirm-message, we

denote them by M1 , M2 and M3 respectively. The messages circulate among dif-

ferent nodes depending upon the availability of the requested file. Formally, any

infOrmation unit in the system at any instant of time can be defined as: 7-,,(x =

M1 , M9, M3 F; y, z = ci ,s j ,t). Here, the subscript x denotes the class of the infOrma-

tion unit (file (F) or any message type), y is the source (service center) from which.

the information unit is corning from, and z is the destination node (service center).

When a file is requested by some process at a client, then

1. For a cache miss (i.e. when the file-copy is not lOcated in the client's memory),

the client (ci) sends a file-request-message (rM1,ci,t) to the network (t). The

network (t) in response forwards the file-request-message (rM1,t,sj) to the ap-

propriate server (s ;). If the file is free, the server (sj) sends a copy of the file to

the client, (rF,sj,t, rF,t,cj). After receiving a copy of the file, the client sends the

confirm-message (rM3,ci,t), to the network which passes the message (rM 3,t,s j)

41

to the host server. The sequence of message can be expressed as the following

subchain:

rM1,ci,t —> rM1,t,sj—> rFsj,t—>rF,t,ci —> rM3,ci,t —> rM3,t,sj

2. If the requested file is busy at the server (sj), then the copy of the file re-

sides at some other client (ck , k 	 i). The server sends a file-request-message

(rM1,sj,t, rM1,t,ck) to that client (c k). If the requested file is in a non-active

state at the client ck , the client transfers the copy of the file to the host server

(rF,ck ,t, rF,t)• The server (s i) updates the file and then transfers the copy of

the file to the client (c i). Upon receiving the file the latter responds to the server

with confirm-message (rM3,cj,t and rM3,t,sj). The sequence of messages can be

described by the following sub-chain:

rM1,cj,t —> rM1,t1,sj —>

rM1,st,t —>r M1,t,ck

—

> rF,t,sj

—

> rF,sj,t—>

rF,t,ci —> rM3,ci,t —> rM3,t,sj

3. If the file is active at the client (ck), the client issues a file-active-message

(rM2,ck,t) for the server who in turn passes the message to the client who initially

requested the file, The sub-chain of messages is:

rM1,ci,t —> rM1,t,sj —> rM1,sj,t —> rM1,t,ck —> rM2,ck,t —> rM2,sj,t —>

rM2,t,ci

The client in the last case does not have to reply back with a confirm-message

since the host server is aware of the file being active.

42

The cache at each client is local memory implemented as a Least Recently

Used (LRU) stack. The least recently used file is at the bottom of the stack, and

the most recently used is at the top. If the local memory is full, space for the new

incoming file-copy is made by removing one or more fides from the memory. The least

recently used files are transferred to the respective host servers. If the client sends one

or more files (rF,cj,t), the following sub-chain should be added to the two sub-chains

in case 1 and 2,

rF,ci,t

—

> rF,t,sj

All nodes of the system - servers, clients and the network - handle files (r F)

and messages (rM)1. A server handles the file-request-message (rM1) on FCFS basis

for the different files and in the time-stamp (TS) order for the same file. When a

file is busy at a server, the server forwards the file-request to the client which holds

the file-copy. Any subsequent requests for the same file must wait at the host node

until the file copy reaches the requesting node. In the meantime, the node services

the other requests in FCFS order.

For every file, either no file-copy exists, or one exists and the host node has

the address of the client who has it. We avoid having mOre than one extra copy of a

file. This is a pragmatic choice which is close to what would be expected in practical

systems.

File placement and movement are transparent to the users. At this stage of

'TM denotes messages in general, without class distinction and without particular sOurce and
destination node.

43

modeling we do not allow dynamic creation and deletion of the files. All the processes

and tasks are executed locally on clients. To locate a file in the system a simple but

efficient approach of static maps [109} is used. In static mapping, part of the file

name is used to identify the server. The simplest approach is to have a number as a

suffix (or a prefix) for each file name. The number maps to a particular server and is

stored in a table on the client's local memory.

A file request may follow any one of the subchains described above. The chance

of a request following a particular subchain depends on three conditions:

1. The state of the file at the server (free or busy);

2. The state of the file copy at the client (active or non-active); and

3. The availability of memory space at the client.

Let p be the probability that a file is in busy state at the server, T be the

probability that a file is in non-active state and 7 be the probability that the cache

is full. The flow Of the information units in the system can be represented as shown

in Figure 2.

44

Figure 2: FlOw of information in the distributed systems

3.2,2 The Queueing Network Model

The distributed system as described above is modeled as a network of queues formed

by a collection of servers, clients and network. (Figure 3).

The physical nodes are represented as service centers in the queueing netwOrk

model. Each information unit (user-requests, files, messages, etc.) is modeled as

a customer of a particular class. Customers entering the system change classes as

they circulate among service centers and follow one of the chains shown in Figure 2.

The level of modeling is analogous to the multi-programming and multi-processing

description Of computer systems as proposed by Gelenbe and Mitrani j17], in which

computer resources are modeled as service centers and computing jobs are modeled as

customers. Modeling of distributed and parallel systems at this level is appropriate

45

Figure 3: The queueing network model.

because performance issues can be studied without worrying too much about the

details of the system.

Based on the queueing discipline and the service demands the network, clients

and servers are represented by different types of service centers in the queueing model

[171:

1. Network: Single processor-shared server

For the network, custOmers of all classes (messages and files) cOnstitute an arbi-

trary number of packets. All packets are served On FCFS basis. Al! customers

are served in parallel and share the one common processor.

2. Servers: Multiple-server Center

46

All servers are modeled as one service center, where jobs wait in a common

queue to be served. If no more than k jobs request service from a k-server

service center, all jobs will receive service immediately without queueing. If

there are more than k jobs, k of them can be serviced at one time, and others

have to wait in the queue.

3. Clients: Infinite-server

This service center models the group of clients, where the number of clients is

always greater than or equal to the number of jobs. Thus, no job visiting this

service center will have any queueing delay.

The queueing netwOrk as described above satisfy product -form requirements

[97, 95, 110]. The numerical values for the specific measures of system performance,

such as node utilizations, throughputs, average response times, etc., can be extracted

from the solution for the stationary distribution state of the network queueing model

[111, 112]. We discuss the computation of performance measures in the next section.

3.3 ANALYSIS

Let S be the state of the system and N be the total number of customers in the system.

If N = (n1 + n 2 + n3), where n 1 , n 2 and n3 are the number of customers at servers, the

network and clients respectively, then the steady state distribution can be obtained

by summing p(S) over all states S which yields n. Let 1/[4, be the average service

time of class r customer at the network and client node, and 1//.4,,, be the mean

47

service time of the exponential distribution at the server node, when n i customers

are present. Assuming the system is closed with respect to all customer classes, and

the server, the client and the network nodes are service centers as described in the

queueing model, the equilibrium probabilities at steady state are given by [110]:

In this equation marginal probabilities pi (ni) are defined as follows:

for the server node

for the network node

for the client node

The service time distributions are arbitrary Coxian for the client and the

network nodes, and assumed to be exponential for the server node. The quantity e ir

is proportional to the total arrival rate of class r jobs into node i and is interpreted

as the relative arrival rate of class r customers to the service center i [17].

The existence of the steady state distribution for a closed network depends on

48

the solution of the following set of flow equations:

(1/G) in the equation (1) is a normalizing constant which must be calculated over all

possible states [113, 114]:

The flow equations (5) are easily obtained from Figure 3 as follows:

One solution can be obtained by setting ec ,rM1 = 1, which gives

49

Now the marginal probabilities of network, server and client nodes can be computed

from the above flow equation as follows:

1. For network node, from (2), p1(n1) = (Σet,rm/μa + Σet,rF/μb) n1 where

1/μais the average time to transmit one message (1 packet), and1/μbis the

average time to transmit one file (multiple packets). Al] jobs, messages (r 4)

and files (rF) are treated as packets. The number of packets depends on the

file-size in the case of a file (VF). Summations Σet,rm and Σet,rF are the relative

arrival rates of messages and files respectively at the network and are computed

from the flow equations.

2. For clients, from (3), p 2 (n 2) = 1/n2 (1/α + Σec,rm/γ + Σec,rF/β1)n2 where

1/α is the average think time, and 1/β 1 is the average time to send or receive

50

a file. 1/-y is the average time taken to service a message (T M) by both a client

and a server. These times includes the network access time. FrOm the flow

equations:

3. For server node, from (4), p 3 (n3) =(Σ es,rm + Σes,rF)n3 1/μn3 where

1 / 	 is the average time needed to service a customer and depends on the

number of customers (n 3). From the flow equations:

The normalizing constant is given by:

since N = ii i + n 2 + n 3 (closed system)

The throughputs, utilization factors and average response times at node i are

51

calculated in terms of G and eir [17].

Kr are the number of clients of class r (in a heavily loaded system, when the clients

are busy all the time, jobs can be identified with clients) [17]. The response time Wir ,

for a class r job is defined as the interval between the job leaving its terminal (the

user presses "carriage return") and returning to it (the keyboard unlocks).

All the servers are considered identical in their behavior, with equal probability

to service a request. Thus, if q is the probability of locating a file at any server and

there are three servers, the probability of finding a file at one server is q/3. Moreover,

if T is the number of total files in the system, there are T/3 number of files assigned

to each server.

To calculate steady state probabilities p, 7T, and r, we assume that only one

file is active at each client. For c clients, each one of them having F number of files

in its cache, the probabilities can be approximated as follows:

1. The probability that a file is busy at a server: p = (c*F)/T

where the average number Of files at a client's cache:

F = cache-size / average-file-size.

52

2. The probability that the cache is full: π = 1 - Σc*F-1 k=c*F-f(T/c)pk (1-p)T-k

3. The probability that a file is not active at a client:

= 1 - probability file active at client = 1 -

3.4 Results and Validation

3.4.1 Numerical Example

The prediction method described above is general and can be used to estimate per-

formance of a system with any number of servers, clients and files. To demonstrate

the efficacy of the method we compute numeric values of the performance measures of

a distributed system with three clients and three servers. We consider a total of 600

files in the system, 200 assigned to each server. A small number of files are chosen to

introduce more conflict among different file requests. The average file size is assumed

to be 3000 bytes. The network transmits packets of 1000 octets (bytes) at a rate of

10 Mbps. The disk transfer rate at a server and the cache transfer rate at a client are

1 Mb/s and 40 Mb/s respectively.

We are interested in the behavior of the system under heavy loads. The per-

formance of the servers, of the network and of the complete system is measured by

increasing the rate at which the user submits file requests, i.e., decreasing think time.

As the clients are loaded more heavily by the user's file requests, the utilization

of a server and that of the network increases at a constant rate, as shown in Figure 4.

53

Figure 4: Network and server utilization increases as user think time decreases

From the curves we make specific, although apprOximate, predictions abOut the net-

work and server performance. In Figure 5 we show the affect of think time on the

average node response time, which is the average over all requests made to a node.

With a think time of 2 milli-seconds, we have network utilization of about

15%. Decreasing users' think time by 60% raises the network utilization to 55%. In

other words, 60% more file requests will raise the throughput by nearly 200%, with

only 20% degradation in the average node response time (Figure 5).

However, decreasing think time by a further 60% increases the network utiliza-

tiOn to 80%, thus raisin .g the throughput by Only another 45%, but the average nOde

response time increases by nearly 83%. Hence, for three servers and three clients, to

achieve good performance the network utilization should be restricted to 60%. As

54

the client or server population increases so does the utilization and response time for

the network.

Further observation from Figures 4 and 5 shows that even though the network

is much faster than an individual server (the response time of network is much less

than that of an individual server), the utilization of the two is almost the same. This

is due to inherent parallelism in serving the file requests by the servers.

The average system respOnse time, which is defined as the interval between

the file request arriving at a client and returning back to it, increases as the rate of

file requests arriving at the client increases. The results of the model with two and

three servers are shown in Figure 6. Decreasing the user think time by 60% for the

model with two servers increases the response time by 2.5%. A further 60% reduction

in think time results in 46% degradation in the system average response time. Any

further decrease in think time will increase the response time asymptotically.

Increasing the number of servers improves the response time of the system. The

system performance increases by nearly 14% when the number of servers increases

from two to three. Each additional server speeds up the request processing. However,

the network capacity limits the speed-up achieved by adding more servers.

3.4.2 Validation

The performance prediction method described in the last section has been used to

estimate the behavior of a distributed system. This section presents the results of

Figure 5: Average node response time of server and network node as a function of

think time

55

Figure 6: The average system response time as a function of think time

56

the evaluation of the prediction method in terms of accuracy of its prediction. The

accuracy of the method is established by comparing the estimates of the prediction

method to the statistics collected from detailed simulations.

During each simulation run, queue-lengths, marginal probabilities (probability

that n customers are at a node), utilizations and throughputs of system nodes are

collected. The queueing network model and the simulation model differ in following

respect:

1. In the queueing network model, the service time distributions at the server node

to service a file request are assumed to be exponential; realistically, however,

the service times depend on the file size. For simulation purposes, the service

times are uniformly distributed between 2000 to 4000 bytes, average file size

being 3000 bytes.

2. The queueing discipline at the server node is considered to be FCFS for the

file requests. In simulations, some modifications have to be made in order to

make the system work correctly. Whenever a requested file is busy at the server,

the server forwards the request message to some client. Any other requests for

the same file must wait at the server until the file copy reaches the requesting

client. In the meantime, the server services all the other file requests on FCFS

basis. Hence, server deviates from FCFS discipline for file requests requesting

the same file.

3. To obtain the numerical values for marginal probabilities in the analytical

57

model, steady state probabilities (p, 71 and T) have to be approximated as

discussed in Section 3.3. However, simulations do not use steady state prob-

abilities to direct the flow of customers, Initially all the files are free at their

respective "host" servers, and client memories are empty. As the simulation

proceeds, clients request files from the server, and the server services the re-

quests depending on whether the file is busy or free. The simulation statistics

were obtained from 6000 file requests from each client.

4. In the queueing network model, routing information is not required. In sim-

ulation, routing information is required in order to simulate the transition of

customers from one node to another.

The marginal prObabilities of messages (rM) and files (rF) fOr each node are considered.

fOr comparing the results of the simulations with the analytical model. Analytically

the marginal probabilities are calculated using equation (2), (3) and (4). Queue-

length statistics yield these probabilities fOr simulations. The degree of fit between'

the mathematical results and simulatiOn model output is the key for validating the

results.

1. For Server Node: In both models, simulation and analytical, all the servers

are identical in terms of operating speed, number of files allocated and Other

operating behavior. Table 1 shows the analytical and simulation marginal prob-

abilities, P(n), where n is the number of customers at the server.

58

Table 1: Comparison of analytical and simulation values of marginal probabilities for

each server.

n Analytical Simulation
Server I Server 2 Server 3

0 0.507 0.507 0.503 0.506

1 0.194 0.202 0.191 0.200

2 0.109 0.108 0.099 0.101

3 0.050 0.054 0.052 0.053

4 0.027 0.031 0.029 0.033

5 0.011 0.012 0.010 0.009
n is the number of customers at the server node.

Figure 7 depicts the degree of fit among the numerical values.

2. For Network node: The network treats each file and message as multiple packets.

If packets are considered as customers in the simulation model instead of as

files and messages, the network resembles, in its behavior, a node of an open-

network system [110] as opposed to a closed one. The marginal probabilities

from the simulation model are compared against the ones from the analytical

open-model. Table 2 presents the marginal probabilities, P(n), for the network,

where n corresponds to the number of packets.

The Figure 8 shows the degree of fit between numerical values.

3.5 Approximate Model For Cache Size Analysis

Due to the interdependence of the queues at the network and servers, it is difficult to

obtain an exact solution to cOmpute optimum cache size at clients. An approximate

59

Figure 7: COmparison of analytical and simulation values of marginal prObabilities
fOr each server.

Table 2: Marginal probabilities for network compared with simulation results.

n' Analytical Simulation
0 0.089 0.080
1 0.019 0.019
2 0.007 0.004
3 0.002 0.001
4 0.001 0.000
5 0.000 0.000

n' is the number of customers at the network node.

60

Figure 8: Marginal probabilities for network compared with simulation results.

method is used fOr estimating Optimal cache size and its effect on the performance of

the system.

First we analyze how cache size affects the performance. Each client of the

'client node' generates a file request which enters the system and moves around from

station to statiOn (clients are service stations alsO) according tO transition probabili-

ties, changes classes and eventually returns tO the client as a file. The group of clients

is no longer modeled as 'server-per-job' node in an approximated model, but instead

each client is treated as a single server with an 114/G/1 queue, as shown in Figure 9.

Decreasing the think time, hence increasing the number of user-requests per unit time,

will NOT assign a separate client (server-per-job strategy), but a user-request will

queue up at a client instead. The total time taken to service a file request (response

61

Figure 9: Approximate model; each client is modeled as MICR queue.

time) is approximately equal the total service provided by the network, server and

other clients, when the job circulates among different nodes. However, the number

of visits to each node and the path taken by the request depends on the steady state

probabilities, p and 7r.

Let A s be the average time to transfer a file from a server to a requesting

client, Δ be the average time to transfer a file from some client to the requesting

client, and A b be the average time to transfer a file from a client hack to a server.

The average service time to serve a file request, assuming there is no wait at network

and server, is

where

62

To see why the above equatiOns are correct, cOnsider a client requesting fileA,

which is located at a server, and fileB, which resides at some other client. In the first

case, the network passes the message in 1/ μa time to the host server and the server

transfers the file in 1/β1 time to the network. The network takes 1/μb time to pass

the file to the requesting client. The total time taken is represented by the equation

Δs = 1/μa + 1/β1 + 1/μ b.

In the second case, the file request is directed to the host server (1/μa). Since

the file is located at some Other client, the server passes the message to that client

(1/γ + 1/μa). The client transfers the file (1/β2) to the host server (1/μb), and the

server transfers it to the requesting client (1/ β1 + 1/μb). Hence the total time, Δc =

2/μc + 1/γ + 1/βs + 2/μb + 1/ β1 .

Since all the waiting in the approximate model is at a client, it is -fair to

represent each client by a single server (M/G/1). Without considering the customer

class distinction, performance of this mOdel can be measured in terms of average

number of customers in the queue at the client. Assuming the scheduling discipline

for jobs of all classes as FIFO, the average number of jobs waiting at the client can

be approximated by the Pollaczek-Khintchine's formula [115]:

63

where

0 (throughput of each client) = (throughput of the client node) / number of clients,

throughput for the client node is calculated in terms of 0 and e c , Section 3.3,

p (the utilization factor) = θE[S], and

E[S 2] is the second moment of the average service time from Equation 15.

Our performance measure depends on the average service time E[S], which is

calculated in terms of p and 7 (Equation 15). These steady state probabilities are

obtained in terms of cache size (Section 3.3). Thus keeping all the other parameters

the same, varying cache sizes affects the queue length.

The effect of cache sizes was determined by varying cache size from 3000 bytes

(representing an average of one file in cache) tO 1,000,000 bytes (representing a large

number of files). A cache is typically used to reduce the average access time for data

storage and retrieval. Besides increasing the cache-hit probability (hit-ratio), cache

size affects steady state system probabilities. Simulation results in Figure 10 show

that as the size of each cache increases, so does the probability (p) of finding the file

busy at the server. This is because, at the steady state, if cache sizes are large more

files are located at clients' cache and are marked as busy at the server. If the cache

sizes are considerably large, clients behave like servers (data location changes from

servers to clients), and servers turn out to be merely communicating nodes of the

system. This increases communication delays and hence deteriorates performance.

The analytical measure, queue length, validates this assertion. The queue length.

64

Figure 10: Effect Of cache size on prObabilities

increases as the cache size increases. Figure 11 shows both analytical results, from

Equation (16), and simulation results.

The queue length does not increase indefinitely. For a particular cache-size

the curve -flattens (Figure 10). This is because the probability 7 that a cache is full

approaches zero (Figure 10).

As the caches are never full, no service is performed to remove the data from

the cache, which compensates for extra work done in getting the data from other

clients. Figure 12 shows the effect Of the cache size on the average system response-

time.

Next, from our simulation results we obtain optimum cache size for the given

system parameters. The cache of approximately 100,000 bytes is optimum (Figure

65

Figure 11: Effect of cache size on performance

12), as smaller cache sizes than 100,000 provide a high response time and larger

cache-sizes do not improve the performance.

3.6 Bottleneck Identification

Our approach is to study the system from the terminal's point of view, as shown in the

Figure 13. We have a multiple server system serving M terminals (clients). We have

a total. of K = M customers, each of which generates a job from the terminal at a rate

of λ jobs/sec. Each such generated job enters the 'rest of the multiple service station.

network' (the terminals are service stations also), and moves around from station to

station according to the transition probabilities, eventually returning to the terminal

at which time the user generates a new job. Each service center (resOurce) has an

66

Figure 12: Effect of cache size on the average system response time

arbitrary service time distribution.

Let T be the average response time to pass through the rest of the network

ad 1/λ be the average time in the terminal node. The average cycle time is then T

+ 1/λ and the system throughput is λ ' = M/(T + 1/λ) customers/sec.

I,et N = E[number of jobs in the rest of the system

aId M = E[number of jobs in the terminal node]

By Little's result T = N/ λ '

since M = N + M; therefore, T = M/λ' - M/λ'

For Client node (terminals), for one customer M / λ' = 1/ λ,

67

Figure 13: Multi-client multi-server model

Let s be the bottleneck or saturated server in the rest of the network. Then e s

e„, the relative number of visits of all job classes at the s th node, is maximum in

the system. If for the client (terminal) node, e c = Σr ecr , then the average number

of times the bottleneck is visited for each visit to the terminal node is es/ec .

Assuming for M >> M* (M* is the number of clients or terminals which

saturates the server s), when the server node is beyond saturatiOn, the Output rate

of server s is approximately A s . Thus the output rate of jobs from the rest Of the

network can be represented as μ s /(e s/e,), i.e.,

68

Substituting the value of λ ' in 17, we get

%is is asymptotic behavior for T when M >> M*. It is linear with M at a slope

To find the number M*, we argue that it must be equal to the maximum

number of perfectly scheduled jobs that cause no mutual interference. If all service

tmes are assumed to be deterministic, then the maximum number of jobs at the

bottleneck node equals the total service required by a job in a cycle/service time

Spent by a job in the saturated node per cycle.

The total service required by a job per cycle is Σ ei(1/μi)/ec. The service time.

spent by a job in the saturated node per cycle is es(1/μs)/ec. Thus:

'or M = 1, total service time required by a job in a cycle = T + 1/ λ , from (20)

69

Figure 14: Asymptotic behavior of multiple resource system. Average response time
(T) as a function of number of clients (M)

From (19) and (23) the asymptotic behavior of the multi-client system can

be predicted as shOwn in Figure 14. If we remove the bottleneck by increasing the

service rate of the servers or by adding another server to the system, some other

node, denoted by s', will become the new bottleneck, and the asymptotic behavior

will again be similar to that in (19) and (23) with a new slope es1/ μs1ecand new saturation

number M*) . In fact, if we continue this procedure of removing bottlenecks, we will

always expose a new one with slope ei1/μi1ec as sketched in Figure 14, where M*must be

recalculated with the new rates.

For numerical results. we considered a distributed system with 50 clients and

70

Figure 15: Performance Of multiple resource system

20 servers. There were total of 10000 files, distributed equally at each server. Average

file size was 2000 bytes and the cache size of 100,000 bytes was considered for each

client. The disk transfer rate of 10 1\414s was assumed for each server.

The performance of the system, for think time Of 1 milli-sec, is shown in Figure

15. The response time decreases considerably when the number of servers increases

from 5 to 10. However, for the given system parameters, results suggest that it is not

worth to invest in more than 15 servers, because any increase in the number Of servers

from 15 to 20 does not show significant improvement in performance. The behavior

shown in the Figures 14 and 15 is very important for distributed and parallel system

design since we can predict the number of servers required, for a particular number

of clients and for a desired response time. Analysis also predicts the improvement in

system performance if we decide to invest in more powerful resources:

3.7 Conclusion

Ii this chapter, we proposed a simple distributed system model. The model

distributes files (data) among clients and servers. The servers controls the system oper-

ations, manipulates and provides data (files) to the processes executing at the clients.

We developed a performance prediction method to estimate various measures.

message passing distributed system. The method is based on known product form

queueing networks. We used simulations and the analytical method to evaluate the

Performance of the system model.

The main advantage of the modeling methodology described here is its

applicability tO very general models. Using this approach, distributed and parallel systems

with multiple classes, multi-tasking and job spawning can easily be modeled and

their performance can be predicted. We also studied approximate analytical models

to study the cache behavior and to identify bottleneck server.

To achieve high performance from any distributed system it is important to

efficiently utilize all the resources by distributing data and processes. In the next

chapter, we will show how performance can be improved by optimally distributing

data among processing sites.

71

CHAPTER 4

OPTIMAL FILE PLACEMENT STRATEGY

4.1 Introduction

After presenting the basic distributed system model and our performance prediction

method, we are now ready to proceed towards our goal to achieve high performance.

In this chapter we extend our model such that all the nodes are homogeneous in terms

of processing and storage. Each node request and service file requests; behaves as

both client and server. Such interconnected sites are also called peer-to-peer networks.

To achieve higher system throughput and better response time we design a.

file placement strategy, such that all the resources are Optimally utilized. We then

use our prediction method to estimate performance measures and study the system

behavior.

The file placement problem in the model is formulated as a routing problem

in multiple chain closed queueing networks. The objective is to judiciously place files

among nodes such that file requests are optimally routed in the system. Solutions

to the file allocation problem in the past have optimized several performance mea-

sures like overall response time [HI, or storage cost [58]. We optimize Average node

response time, which is the average over all requests made tO a node. To do so, first,

the relative throughput at each node is established as a function of file placement.

Then we compute the derivative of the average response time with respect to relative

73

throughput at each node and show that it can be easily obtained from the MVA al-

gorithm [116]. The steepest descent direction is obtained by summing the derivatives

over all closed chains intersecting at a node. A closed network version of the PD al-

gorithm [95] is then introduced to find the optimum file allocation in a multiple chain.

queueing network. The solution methodology is similar to the one used by Gella in

[85, 37], however the problem formulation and optimization criteria are related to

file placement in message passing distributed systems. The algorithm leads to local

minimas, since the convexity of the solution cannot be established in multiple chains

[85]. Finally, numerical results are presented to demonstrate the correctness of the

algorithm.

For estimating performance measures, we use the method described in the

previous chapter. Each node is represented as a single server service center [17]. For

validation, the model is simulated on an nCube, a commercial MIMD architecture.

In the nCube, each node can be prOgrammed separately and nodes communicate

via send and receive calls for message passing. It provides an ideal environment tO

simulate distributed memory systems.

The remainder of this chapter is organized as follows: In Section 4,2 we describe

the extented model of the distributed system. In Section 4.3 we discuss and design.

the file allocation algorithm. In Section 4.4, we carry out the analysis of the system

and estimate different performance measures. Numerical examples are presented in

Section 4.5. In Section 4.6 we discuss the simulation model on the nCube and validate

74

the analytical results against the measurements obtained from the simulation. Section

4.7 concludes the chapter.

4.2 The Extended Model.

The target distributed system we consider is a family of processing units, which

we interchangeably call "sites" Or "nodes", each of which is able to store files, and

execute processes. These sites are completely interconnected using a network, which

may either be a local area network, or a fast switch or similar device.

The distributed system considered consists of J interconnected processing

units, each composed of a processor and stOrage. Since each site has a storage facility,

we do not consider cache memories at the processing sites. Any task or process is

generated at some PU, and requires a file for execution, Each file resides normally

in some PU's storage; as before, we refer tO this node as "host node". Files can be

transferred to other PU's on demand. Any file is either free or busy. It is busy if

a. copy has been transferred to some other PU; otherwise it is free, A file-copy at a

PU is in one of two states: active or non - active. It is active if it is currently used by

a task executing at the node and is non-active if it still resides in that PUs storage

without being used.

When. a file is requested by some task at a PU, the request is directed to its

host node. Then:

• If the file is free, a file-copy is transferred to the requesting node. This action

marks the file as "busy".

• If the file is busy but not active, the file-copy is transferred back to the host

node from the node which currently holds it. The host node updates the file

status, then sends it to the node requesting it.

• If the file is busy and the file-copy is active, a "file-busy" message is sent to

the host node; the corresponding process or task must then wait for the file to

become available.

If all the messages, files, user-requests are considered as customers of different

classes; the behavior Of a file-request can be represented as a closed chain. The four

alternatives discussed above are different paths (subchains) which the file request

could follow. The probability of following a particular subchain depends on the

following conditions:

I.. The state of the file (free or busy).

2. The state of the file-copy (active or non-active).

3. The availability of a file at the local node (chance Of hit).

Let L be the probability that a file is available on a requesting node, I be the prob-

ability that a file is in busy state and Z be the probability that a file-copy is in non

active state. These probabilities depends On the file placement. When all the nodes

simultaneously submit jobs, file-request from each node follow a similar chain with

76

four paths. The number of closed chains in the model are exactly equal to the number

of nodes in the system. Different chains intersect at nodes. The queueing discipline

and the service demands are assumed such that the system satisfies product form

requirements. Computations of performance measures pertaining to our model are

discussed in Section 4.4.

All processes are executed locally at the node where the user submits them

whereas file copies move among the nodes on demand. On job completion, the user

enters a "think time" and then submits a new job.

During the executiOn of processes in the system, new files can be created and

old ones could be deleted. Initially, a file is always allocated at the site where it

is created and other nodes are informed about its creation. After some fixed time

interval tD, the load balancing algorithm we propose is executed which optimally

reallocates the files. Only one site at a particular time is in charge of executing the

algorithm, and this site is selected by a token passing algorithm.

To locate a file in the system, each node stores an address table which keeps

track of the host node for all the files in the system. A request for a file originating at

a node is always directed tO the host node. The address table is updated if files are

distributed and change location. It also provides locatiOn transparency to the user.

4.3 Average Node Response Time Based File Allocation Algorithm

BefOre we gO into the details of the algorithm, we formulate the file allocation problem

77

as a routing problem in closed queueing network. We first present the problem and

results for the single-chain case. Then we extend the results to the multiple chain

case.

4.3.1 Single Chain Case

The distributed system, where only one site requests file service can be modeled as a

"single chain" closed queueing network. We define the following system parameters

for each node j (j = 0,1, .. . , J).

N

		

: number Of customers in closed chain,

yj	 	: relative throughput,

μj 	 	 : service rate,

λj(N)	: throughput,

Lj (N)

	

: mean queue length,

Tj(N)	 : mean queueing time (including service time).

In a closed queueing network the relative throughputs satisfy following set of flow

conservation equations:

where p i.; is the transition probability from node i to j. The relative throughput does

not have a unique solution, however assuming relative throughput at the source node

equal to 1, the solution to the Equation (24) becomes unique. The relative throughput

y; can be interpreted as the function of traffic that goes through node j. Let λ (N) be

78

tile actual throughput of the chain. Then the throughput at node j is given by:

under the assumptions, the model satisfies the well known product form solution, the

equilibrium prObability of the state (n 0 , n i , ...,n j) is given by [97]:

There nj is the number of customers at node j, and for N = n0 + n1 + ... + nj,

The throughput, mean queue length and mean response time at node are

conveniently expressed using the above constant -_17, 89]:

There pj = yj /μ j

79

From the above equations we note that performance measures for node j are

obtained from the normalization constants G(N) and G(N-i), 1 ≤ i ≤ N. Alterna-

tively, these quantities can be computed more efficiently by using the MVA algorithm

[116]. MVA is based on the following recursive relations of the equilibrium quantities

for node j (j = 0,1, .. . J):

4.3.1.1 File Allocation as a Routing Problem

Our aim is to distribute the files among nodes to minimize the average node response

time at each node. The files should be allocated at the nodes such that file requests

are routed to nodes to balance the system load and improve performance.

Let T be the total number of files in the system and XI be a binary variable,

which is equal to 1 when file f is assigned to node j, 0 otherwise. The following nota-

tions refer to each node j:

	

F1 = ΣTf Xfj : number of files allocated to node j,

Pj = Fj/T	 : probability that any arbitrary file is present at local node j.

Assuming all files have the same access probability, the location of a file in the

80

system dictates the flow of file requests among different subchains. Thus the relative

throughput at a node j is a function of the file placement in the system. We

approximate the relative throughput yjin terms of the file placement at node j as follows:

slow, the file placement problem in a closed queueing network can be defined as

allows:

Given : Service rates {μj}, chain population {N}, total number of files {T), number

) -f nodes {J}.

Minimize: the mean response time E[rj],

With respect to: relative throughput yj .

Subject to following constraints:

• yj ≥ 0 ej,

•Σ jEIN(s)yj = Σ jEOUT(s)yjVs= 0, ... , J,

where

J = number Of nodes in the network,

IN(s) = set of subchains incoming into node s,

OUT(s) = set of subchains outgoing; from node s.

81

4.3.1.2 Objective Function

To compute the objective function we take the derivative of the mean response time

E[rj] at node j with respect to the relative throughput yj, from Equation (30):

To compute the derivative of the terms of the numerator we argue as follows:

The gradient of the normalization function G(N) with respect to yj is given as [85]:

Using the result of Equation (36) and under the "independence assumption", that is,

that the service time at each node is assumed to be independent of the interarrival

time [95], it can be proved that:

The proof is included in the appendix for completeness.

82

Substituting (37) in (35) and from Equations (28) and (29):

This derivative is very convenient to compute since every quantity on the right hand

side can be evaluated from the MVA algorithm.

4.3.2 Extension to Multiple Chain

The distributed system where every node may request for a file is modeled as multiple

chain closed queueing network. The number of chains in the model is equal to the

number of nodes. For multiple chains we define:

K	 : number of closed chains or number of nodes,

Nk 	 : population of chain k, k = 1, . . , K,

N = ΣK k=1 Nk 	 : total population size,

y(k,j) 	 : chain k relative throughput at node j,

μj 	 : service rate at node j,

λ(k,j)(N) 	 : chain k throughput at node j,

L(k,j)(N)	 : chain k mean queue length at node j,

T(k,j)(N)	 : mean queueing time (including service time),

where N is the population size vector such that N	 (N1 , N2 , . , Alk). Using the

83

normalization constant G(N), the chain throughput of chain k is given by [17]:

where ek is a vector with the kth element equal to one and all others equal to zero.

The chain k throughput, mean queue length and mean response time at node j can

be computed as follows [17]:

Similar to the single-chain, the derivative of the normalization function G(N) is given

by:

Using this we take the derivative of Equation (42) as follows:

84

Using Equations (39), (41), (42), (43) , (37),we obtain ;

The last equation has the same properties as the single chain Equation (38).

Next, we assign a weight w (k ,j) at node j due to chain k as follows:

The total weight due to all chains at node j is given by:

These weights are easily determined by the MVA computation.

The relative throughput of chain k at node j, y(k ,j), is computed from the file placement

as follows:

4.3.2.1 Algorithm

Now we propose the file allocation algorithm for closed queueing networks which is a

combination of the FD algorithm for open networks and the MVA method developed

85

for closed networks. We assume that we have a initial file assignment FM. This FM

can be easily obtained by choosing an arbitrary node and assigning all the files to it.

We use here a description similar to the one used for the FD algorithm in [95].

Step 1 : Let n	 0, let FM be the initial file assignment,

Step 2 : Compute weights, wj = Σ k w(k,j), for each node, using the MVA method,

Step 3 : Identify the nodes with maximum and minimum weights, jmax and jmin,

respectively. Let F* be the vector obtained by assigning one file from 	 tO

imin,

Step 4 : Compute the b(n) and b* for vector F (n) and F* respectively as follows;

Step 5 : If |b(n) - b*| < E, where c > 0 is properly chosen tolerance, then STOP, else

go to Step 6.

Step 6 : Assign u number of files from the node with maximum weight (jmax) to the

node with minimum weight (jmin). The objective function (45) is evaluated

(using MVA). If the objective increases, half number of files (0) is tried and

so on, until the objective decreases.

Step 7 : Let n = n + 1 and go to Step 2.

86

4.3.3 Algorithm Convergence and Complexity

The convergence of the algorithm is guaranteed by the fact that the iterations always

reduce the objective function. It is evident from Equations (48) and (33) that during

each iteration when some x number of files are moved frOm node j to some other

node, the relative throughput and mean queue length at node j decreases. As queue

length decreases so does the objective function and mean response time at node j (see

Equations (31) and (38)). In Section 4.5 we experimentally establish this fact.

The choice of u (the number of files to be assigned from the node with max-

imum weight to the node with minimum weight) in Step 6 is a major factor. If u is

small, the algOrithm will be slow as it will distribute the files in small grOups. How-

ever, if u is large, algorithm may lead to oscillations around a local minima or around.

several minimas.

For the single chain case, each iteration of the algorithm performs O(JN)

computations for computing weights in Step 2 and O(JN) for computing the the

MVA values. For multiple chains, the MVA calculations in each iteration perform

O(JNK) computations, where the total number of customers N = n 0 + n 1 ... + n k.

Since, the number of chains is equal to the number of nodes, i.e., K = J . Hence

the algorithm in each iteration performs maximum of O(J2N) computations. The

most time consuming Step of the algorithm is step 6, where the MVA calculations

are repeated several times to find the optimal number of files to be reallocated.

87

4.4 Performance Analysis

To estimate performance measures and predict system behavior we take a similar

approach as described in Chapter 3. Let S denote the state of the multiple chain

queueing network:

where n j = (nj1, nj2..., njR), njr is the number of class r customers at node j. Let

1/μjr be the average time to service class r customer at node j and 1/μ j be the mean

service time of node j. If all the nodes are assumed to be of type 1 service centers, the

equilibrium state probability of such closed queueing network with multiple classes

has the following product form [17]:

where N n0 + n1+ ... + nj,

and 1/λ is the think time. Al! service time distributiOns are assumed to be exponen-

tial. The quantity e jr is proportional to the total arrival rate of class r at node j and

is interpreted as the relative arrival rate of class r customers tO the service center j.

The existence of the steady state distribution, for a closed network, depends on the

88

solution of the following set of flow equations:

G(N) is a normalizing constant which must be calculated over all possible states using

multi-variate convolutions [111, 112, 113]. If there are k chains and N customers in

tilt closed network, the normalization constant is given by:

Mere Y, denotes the variable for chain k and

Tie flow equations (52) can he easily obtained from the model description in Section.

4.'y. The quantity gj (n) can be cOmputed from flow equations, which yields the the

normalization constant. The mean service time of node j: 1/μ j = Σr1/μjr.

The performance measures for any job class at any node can be obtained from

the calculations for normalization constant. The average throughput θjr of class r job

i n chain Yk. through node j in a closed network is given by [FT]:

89

where v, is the vector where rth element is equal to one and all others equal zero.

The average utilization due to ,class r job at node j is given by [17]:

the average node utilization and the average node throughput is given by [11:

For J nodes the steady state probabilities (L, I, Z) can be approximated as follows:

1. the probability that a file is available locally : L = Fj/T

2. the probability that a file is in busy state : I = 1/J

3. the probability that a file copy is in non-active state is assumed to be 0.9 i.e.

Z = 0.9

4.5 Numerical Examples

In this section we show numerical results for the file allocation algorithm and per-

formance measures estimated. from the prediction method. For bOth examples, we

consider five node distributed system. Each node is assumed to be identical and to

have same service times. All time measurements are carried out in "ticks" where one

tick is 128 micro-secs.

90

4.5.1 Example 1

To show that the file allocation algorithm works for any arbitrary distribution of files,

we start from three different initial file allOcations, as shown in Tables 3, 4 and 5. A

total of 1500 files are considered for distribution. The chain population is assumed

to be 5, i.e., N. = 5, and the file transfer times are exponentially distributed with

a mean of 300 ticks. Each message transfer from one node to another takes 2 ticks.

Think time is assumed to be close to zero, therefore, all the time there are 5 customers

in a chain. The number of files (u) to be reallocated for each iteration at step 6 was

chosen to be 10.

The same final file assignment pattern was reached from all three initial allo-

cations. The numerical values Of average node response time and average throughput

clearly show that as a consequence Of file allocation all the nodes are balanced and

and the perfOrmance improved.

4.5.2 Example 2

For estimating performance measures the steady state probabilities (L, I and Z) have

to be approximated as discussed in section 4.4. For five nodes, the probability that a

file is available on a local node is 0.2, which means that most of the file-requests travels

through the network. The number of files, message and file transfer times are the

same as in the previous example. Each user creates one prOcess, and will create a new

one as soon as it is informed that the previous one it created has finished execution.

Table 3: Initial file-allocation pattern # 1 Of Example 1

j wj # of files Av. Node Response Time Av. Throughput
1 2.536618 0 136.000000 0.01858
2 2.536618 0 136.000000 0.01858
3 2.536618 0 136.000000 0.01858
4 2.536618 0 136.000000 0.01858
5 5.605441 1500 301.389404 0.09292

Table 4: Initial file-allocation pattern # 2 of Example 1

j wj # of files T. Node Response Time Av. Throughput
1 1.596591 500 186.323120 0.03867
2 1.055574 0 136.000000 0.02841
3 1.596591 500 186.323120 0.03867
4 1.055574 0 136.000000 0.028-41
5 1.137262 500 186.323242 0.03867

Table 5: Initial file-allocation pattern # 3 of Example 1

j wj # of files Av. Node Response Time Av. Throughput
1 1.415123 750 221.448975 0.05657
2 0.958248 250 158.703003 0.03185
3 0.928247 200 153.954102 0.03101
4 0.900157 150 148.953003 0.03024
5 0.839783 150 148.952881 0.03024

91

92

Table 6: Optimal file-allocation pattern of Example 1

j wj # of files Av. Node Response Time Av. Throughput
1 1.247308 300 163.025635 0.03687
2 1.247274 300 163.001221 0.03687
3 1.247274 300 163.001221 0.03687
4 1.247274 300 163.000732 0.03687
5 1.248510 300 163.977783 0.03687

The time to execute a process is considered to be negligible and is executed as soon

as the requested file is available. Furthermore, we assume that each node creates and

deletes 20 files every 2,500,000 ticks such that the number of files remains the same

for the steady state analysis. Later, from our simulation results we show that the

estimated measures are robust to the rate at which files are created and deleted. The

load balancing algorithm is executed every 3,500,000 ticks to reallocate the files. The

performance measures are obtained by decreasing the user think time.

As the nodes are loaded mOre heavily by the user's file requests, the average

utilization, response time and throughput of a node increases and then remains con-

stant, as shown in Figures 16, 17 and 18. This is because the maximum number of

active jobs among chains is fixed. The effectiveness Of the file allocation (load balanc-

ing) algorithm is apparent from Figure 17, where we show the average node response

time of all the nodes is the same all the time. The results also show that increas-

ing the number of nodes does not have a considerable effect on an individual node's

behavior. This is due tO the fact that each node is both a request generating site

93

Figure 16: Average node utilization as a function of think time.

add request processing site. However, increasing the number of sites in a distributed

system definitely increases the total system throughput.

Figure 16 shows that when the think time at each node is very small, close to

3ticks, the utilization of nodes is approximately 65%, which means that file-requests

from all the nodes takes a maximum of 65% of the CPU time. The remaining 35% of

the CPU time could be used for local prOcessing such as running window programs

ad other local processes. With a think time close to 64 ticks, the average case, the

node utilization is about 20%. This suggests that an average 80% of the CPU time

isavailable for computing and 20% is used for resource sharing.

The performance measures for each customer class are obtained using Equa-

tions (55) and (56). Figure 19 shows the utilization Of a node due to different customer

94

Figure 17: Average node response time as a function of think time for all the -five
nodes. As a consequence of load balancing algorithm, all nodes exhibit same behavior.

Figure 18: Average throughput of a node as a function of think time.

95,

1/(think time (in ticks))

Figure 19: Average utilization of a node due to different jOb classes. Maximum node
u tilization is due to file-copy transfers, followed by other customer classes. Utilization
d e to load balancing overhead is considerably low.

classes. It is important to know which customer class utilizes the node most, so that

measures like installing a co-processor or increasing the processor speed can be taken.

File creation, deletion and load balancing also cause message exchanges and

file transfers. These messages and files are also modeled as customers which follow

closed chains. Figure 19 shows the nOde utilization due to these file transfers and

message exchanges. For the given parameters, the overhead due to load balancing is

less than 4%; however, overhead depends on the rate at which files are created and

di e ted as well as the number of times the load balancing algorithm is executed.

4.6 Measurements and Validation

96

The accuracy of the prediction method described in the last section is established

by comparing the estimated analytical values with the measurements obtained from

simulations on the nCube.

Each nCube processing node represents a computing site of the distributed

system. Following initial file allocation pattern was considered:

Node # of files

1 100

100

3 600

4 400

5 300

A small number Of files was chosen to introduce more conflict amOng different

file requests. On average 20 files were created at each nOde every 2,500,000 ticks,

Same average number of files were removed from the system every 3,000,000 ticks.

All times and parameters are the same as in the queueing model (Example 2). The

system was made to run for a extended period of time and measurements for node

utilization, throughput and response time for different think times were made. The

queueing network model differs from the simulated model in the following respects:

1. For simulation purposes, the service time is unifOrmly distributed between 200

and 400 ticks. In the queueing network model, the service time distributions to

service a file are assumed to be exponential.

97

2. In the queueing network, we assumed that the number of files in the system

remains constant, however in our simulation the number of files actually vary

and the files are dynamically created and deleted. Sender-initiative strategies

[33] are used for both creation and deletion of files.

3. The queueing discipline at a node is considered to be FCFS for file requests.

In simulations, some modifications have to be made to make the system work

correctly. Whenever a requested file is busy at a node, the node forwards the

request as a forward message tO some other node. Any Other requests for the

same file must wait at the host node until the file copy is non-active. In the

meantime, the node services all the other file requests on an FCFS basis. Hence,

the node deviates from the FCFS discipline for file requests requesting the same

file.

4. To obtain the numerical values for marginal probabilities in the analytical

model, steady state probabilities (L, I and Z) have to be approximated as

discussed in Section 4.4, However, our simulations do not use steady state

probabilities to direct the flow of customers. Initially all the files are free at

their respective host nodes. As the simulation proceeds, nodes request files and

requests are serviced depending on whether the file is busy or free.

The measurements taken for nOde utilization and node response time are con-

sidered for validating the analytical results. Analytically the utilizations are calcu-

lated using Equations (56) and (57) and mean node response time is obtained from

98

Table 7: Node utilization compared with measurements from simulation

Average Utilization of node j due tO two job classes
1/(think time) file-request files-Copies

Analytical Simulation Analytical Simulation

0.00200 0.015786 0.016089 0.064504 0.063456
0.00300 0.023531 0.023982 0.095651 0.093645
0.00400 0.030894 0.031245 0.124427 0.120023
0.00500 0.037590 0.039873 0.149498 0.145671
0.00600 0.043415 0.045734 0.170121 0.169351
0.00700 0.048299 0.049879 0.186277 0.184567
0.00800 0.052291 0.054389 0.198461 0.197819
0.00900 0.055505 0.056015 0.207392 0.206999
0.01000 0.058075 0.059023 0.213796 0.213123
0.02000 0.067824 0.067682 0.225959 0.224989
0.03000 0.069867 0.069812 0.222062 0.222011

(42). Both analytical results and measurements obtained from the nCube are cOm-

pared in Tables 7 and 8.

4.7 Conclusion

In this chapter, we presented a file allocation algorithm for distributed system ar-

chitectures composed of an arbitrary number Of processing sites, interconnected by a

high-speed network. We use multiple chain closed queueing networks to design and

evaluate the algorithm. We also analyze the distributed system and estimate various

performance measures.

The file placement algorithm attempts to balance the load among different

nodes by minimizing mean response time of each node. It is invoked periodically

99

Table 8: Comparison of average node response time and utilization

1/(think time) Average Response time Average Utilization
Analytical Simulation Analytical Simulation

0.00200 8.053 8.4066 0.203878 0.200897
0.00300 11.521 10.421 0.253603 0.267610
0.00400 15.603 15.918 0.308903 0.325671
0.00500 22.630 20.508 0.356481 0.387689
0.00600 31.456 29.292 0.423960 0.446718
0.00700 53.988 41.195 0.480543 0.496712
0.00800 62.717 52.148 0.526786 0.521348
0.00900 69.283 69.982 0.564015 0.571231
0.01000 83.789 86.689 0.593794 0.599993
0.02000 161.43 160.74 0.636730 0.622496
0.03000 172.80 175.15 0.650403 0.623611

and optimally allocates the files. A least busy node is chosen using the MVA al-

gorithm, taking into account service costs, throughput and mean queue lengths at

nodes. Files are moved from the most busy node to the chosen node using a downhill,

flow deviation technique.

The algorithm can also be activated when one or more nodes has to be repaired

or shut down for maintenance. All the files of the node can be optimally distributed.

among other nodes. The algorithm's efficacy is illustrated via numerical examples.

Even though the algorithm presented here is for file allocation, the same technique

can be easily applied to distribute other static objects in a distributed system.

The performance analysis presented here is also very beneficial. The use of

multiple classes suggests that we can analyze behaviOr of a particular information

unit on different nodes. This provides vital informatiOn about the nature and type of

100

resources required for the system. The performance prediction methodology described

here shows the impact of users' load on the node response time and node utilization.

These results provide a set of guidelines to compare different system models and their

resources allocation policies.

'The complete system was simulated on an nCube multiprocessor. The

measurements not only validates the analytical results but also shows that the perfor-

mance of the distributed system can be predicted without worrying about the net-

work design. Furthermore, they suggest that in a distributed system where every node

generates and serves requests, increasing the number of nodes does not considerably

affect node performance. However, it does increase the overall system throughput.

In short, this chapter describes an efficient technique to distribute data and

control l among sites to improve the performance. To further enhance the system

performance and utilize available resources it is important to distribute processing.

In the next chapter, we design dynamic policies to move processes and data in the

system:-

CHAPTER 5

ON-LINE ADAPTIVE ALGORITHM FOR PROCESS MIGRATION

5.1 Introduction

In this chapter, we design and evaluate Adaptive Load Balancing algorithms for both

processes or tasks, and data or files. We introduce a the gradient descent paradigm

to compute on-line load balancing decisions. The purpose is to substantially improve

system performance. We have implemented and tested this paradigm on the nCube

target architecture, and compared it with the case where no load balancing is carried

out, as well as with "random" load balancing. We demonstrate via extensive mea-

surements that simple adaptive load balancing algorithms can substantially improve

distributed system performance, over that of systems with no load balancing. The

order Of magnitude improvement obtained is a reduction of 50% in the average process

response time. We also show that simple algorithms can achieve better performance

than more sophisticated algorithms, and that they result in less overhead. Numerous

measurement results on an nCube are presented, using performance metrics which

have already been discussed.

Full load balancing, i.e. one which dynamically and optimally reallocates all

tasks and files as new jobs or tasks arrive, is NP-hard. HOwever incremental load

balancing, which makes decisions concerning newly created tasks, Or which makes

adjustments to task or file assignments as a function of current information, can

101

102

be carried out efficiently, with algorithms of low complexity. This is what we will

demonstrate and test here. We design simple algorithms for dynamic load-balancing

of both tasks and files. The load balancing policies we propose are based on gradient

descent of a function which expresses the cost of task executiOn at different sites.

We compare these algorithms with cases where no load balancing is carried

out, and test them in an nCube distributed processing environment.

The results indicate that simple load balancing policies can be very beneficial

to system and user performance.

5,2 Overview of Adaptive Algorithms

There is an abundant and substantial literature on adaptive load sharing and balanc-

ing policies for distributed systems, sOme of which is given in the bibliography. Much.

of this work uses simulation to evaluate dynamic load balancing policies..

Several adaptive load sharing strategies for process migration and data place-

ment in distributed systems [78, 77, 79, 81, 76] have been proposed. Comparative

and comprehensive studies include [83], and 177], which point to the potential ben.-

efits of adaptive load sharing and compare different policies, concluding that very

simple adaptive load sharing policies which collect a small amount of system state

information and use this information in simple ways, can yield dramatic performance

improvement.

Load balancing has also been investigated in other distributed resource envi-

103

ronments. In computer networks, routing can be examined as an instance of load

balancing [117, 118, 119, 75]. The goal is to find the optimum paths for packet flow

so that some performance measure (delay or response time) is optimized. In [120] a

central controlling site or network management center, is used to monitor loads and

traffic patterns, to periodically compute optimal load distribution, and provide load

balancing information to nodes. The load monitoring and load distribution compu-

tations can also be carried out in a distributed fashion [121]. These policies are static

in nature and are exploited for dynamic load balancing. In distributed programming

environments, where a program can be represented as parallel tasks or modules, the

optimum module to processor assignment problem is a version of dynamic load bal-

ancing [122, 123, 124]. In distributed databases, transaction response time is the

measure of interest; it is optimized by efficient data allocation and appropriate trans-

action routing [125].

More recently in [38], a general method for quantitative and qualitative analy-

sis of adaptive load sharing algorithms in distributed systems is discussed, suggesting

that remote executiOn should be relatively restricted, and that more than 90% of the

decisions made by the adaptive algorithm should be correct. Most of the adaptive

algorithms [77, 38] considered deal only with task or process movement; they assume

that jobs and data are one information unit and can migrate to any site.

Our approach will cover both process and file movement, and distribution

among processing units. The load balancing policies are adaptive and they utilize

104

current system state to make decisions. The control is distributed; and each node

makes independent decision to balance the load.

5.3 The Distributed System Environment

Our message passing, distributed memory, distributed system allows both processes

and data (files) to move among various sites. When a user submits a task or job at

a site, it requests for a file. Files are placed at their "host nodes". We will call the

processing units (PI]) where a task or jOb is created the "local node"; all other PUs

are "foreign nodes" for the requested file and the task. When a task is created the

following Four Alternatives can occur:

1. The local node is the same as the host node for the requested file; the task

is simply executed at the local node. The only extra cost (other than job

execution) would be in case the requested file is busy, and the file-copy has to

be transferred from a foreign node to the host node. This overhead cOst will be

denoted file-busy-overhead.

2. In this and the other twO cases below, the lOcal and host nodes for the file

requested are not the same. The local node requests a file-copy from the host

node and executes the job locally. Overhead in this case includes the file-copy

transfer cost from the host to the local node plus the file-busy-overhead.

3. The job migrates to the host node for execution. Overhead includes process

migration cost and file-busy-overhead.

105

4. The job migrates to some foreign node and the foreign node requests the file-

copy from the host node to compute the job. Extra expense includes process

migration cost, file-copy transfer cost and file-busy-overhead.

Case 1 requires the least overhead, while Case 4 is the most costly in terms

of overhead. The choice among these alternatives must be made so that the job

completion time - including overhead - is minimum and load is equally distributed

among all PUs.

5.3.1 Assumptions concerning system operation

We assume the single request acceptance policy [93], with no rejection allowed i.e.

migrated tasks arriving at a node cannot be refused and will be executed there.

During the executiOn of processes in the system, new files can be created and

old ones could be deleted. Initially, a file is always created at the local node and

other nodes are informed about its creation. After a -fixed time interval tD, if files

are not distributed equitably, the file allocation algorithm, discussed in chapter 4, is

executed which redistributes files so that each node has roughly the same occupied

space. Files can also be deleted to make sure that the file-system is not full. File

deletion is carried out only when 1) a delete process is invoked at a host node whose

file system is full, and 2) the file is free. Both file deletion and redistribution use the

send-acknowledge policy [33].

The service discipline at all PUs is FCFS fOr all messages, files, new job re-

106

quests etc. except for file requests and migrated jobs. Any job generated at some PU,

can migrate to any site and request a file for execution. File requests for the same file

are served in Time-Stamp order by the host node. When a file is busy at a node, the

node forwards the file request to some foreign node which holds the file-copy. Any

subsequent requests for the same file must wait at the host node until the file copy

reaches the requesting node. In the meantime, the node services the other requests

in FCFS order.

File placement and job execution are transparent to the users. A user submits

a task at the node where it is logged (local node), but the task receives service at some

arbitrary node determined by the load balancing algorithm. Each node periodically

updates and broadcasts its current load information. A load vector at each node

maintains load status information of all the nodes.

In the experiments described here, we use the nCube, to experiment the al-

gorithms and obtain measurements for different strategies, where each PU of the

nCube represents a site of the distributed system. We will compare our proposed dy-

namic gradient descent based policies with the case when no load balancing is carried

Out, and with random load balancing, using the efficiency and performance measures

discussed in [38].

5.4 Simple and effective load balancing policies

Before we enter into the specific algorithms we will study in the sequel, let us consider

107

four simple strategies to migrate processes and transfer files-copies.

For the ease of comparison, in all four strategies we initially allocate an equal

number of files at each node; as files are created and deleted, the file allocation

algorithm reallocates files in such a manner that an equal number of files are kept at

all nodes. Only one node at a particular time is in-charge of executing the algorithm,

and this node is selected by a token passing algorithm. When the quantum for file

redistribution t R is reached at a node, it holds the token and redistributes the files.

When redistribution is complete or if the node has not reached its time quantum, it

passes the token over to the next node.

The four process allocation policies we compare are:

• NO-PROCESS-MIGRATION (NP): In this strategy only file-copies are allOwed

to move and all processes are executed at the local nOde. This strategy does

not use the adaptive algorithm, and every file request is forwarded to the host

node. It incurs no overhead since load status information is not collected, nor

exchanged between nodes.

• ADAPTIVE-ALL-NODES (AD-ALL): This strategy uses adaptive load sharing

to choose between executing the job at the local node or migrating it to any

other node. A. process can execute at the local, host or foreign node. Load

information is maintained and exchanged, resulting in overhead.

• ADAPTIVE-TWO-NODES (AD-TWO): Instead of choosing among all nodes,

the algorithm only considers the local and the host node for process execution.

108

This strategy is interesting because if a process is allocated to some foreign

node, the host node still has to send (and receive) the file-copy to (and from)

the foreign node, resulting in additional delay. Moreover in AD-TWO the adap-

tive algorithm is limited to a choice between two rather than between N sites,

resulting in a much lower computational overhead.

• RANDOM-TWO (RD-TWO): Here a random selection, with equal probability,

is made for process execution between the host node and the local node. Just

as with the NP policy, here we do not have system overhead related to the

collection of a load information and its transmission to (or reception from)

other sites.

To illustrate the effect of the file allocation algorithm we have described above,

we also test a NO-FILE-PLACEMENT (NO-Fl) strategy, which operates in cOnjunc-

tion with the best of the above four policies, but without file redistribution.

5.5 Adaptive Algorithm Design

Adaptive algorithms for load sharing, comprise two main activities - information

dissemination and decision making (control) [38_. In order to maintain a complete and

consistent view of the entire system, lOad information about all nodes is maintained

and periodically updated at each site.

Load indices considered here are based on total load information and will use

the number of processes assigned to the node and their average service time. In

109

addition, the load index will also include all other information units such as messages

and file-copies. Let L denote this instantaneous load index for some arbitrary node.

Periodically each t B time units, the node broadcasts its load to all other nodes,

and each node maintains a load vector which is updated whenever information arrives

from other nodes. It updates the load of other sites when it receives them, which

depends on tB, and refreshes its own when a new customer starts service. Overhead

due to broadcast can be controlled by varying the t B , and a balance should struck

between overhead and performance improvement.

The algorithms we consider make all decisions locally, and are activated upon

the creation of a tasks. The transfer policy (which job should be migrated) will depend

not only on the load vector but also on the task's characteristics and other system

parameters. These characteristics include process execution time and requested file

size; relevant system parameters are the process migration and file transfer delays.

We summarize below the main properties of the algorithms we consider:

Algorithm Characteristics

Decision making invocation event driven (process creation, file redistribution)
Transfer policy	 global load information, process characteristics,

system parameters
Location policy	 any node which provides minimum cost
Acceptance policy	 single request - no rejection allowed

lnformation policy 	 periodic load dissemination

n

5.5.1 Algorithm design

Consider a fully connected J node system, where each site maintains a load vector as

well as a file-table which indicates the host node for each file.

For any process created at a node, let us introduce the following notation:

• tE is the "pure" execution or run time of the process.

• tFT is the time it takes to transfer a particular file from the host to the local

node, including the file-busy overhead. This quantity depends on the size of the

file.

• tMis the time it takes to move a process to a remote site.

• L1 is the current total load at the local node, expressed as the estimated execu-

tion time of all waiting processes, messages, etc..

• L 1 is the total load at the remote node, expressed as the estimated execution

time of all waiting processes, messages, etc..

• ç is the probability of deciding that the process will be executed at the local

node, where it was created.

Notice that ç is the decision variable; it will be computed by the algorithms we

design. In practice, if 0.5 ≥ ζ, the decision will be not to move the process. However

in certain cases a decision threshold larger than 0.5 may be used.

The algorithms we consider will compute using an update rule of the form:

111

where h is the index of the update step we are considering, and H is an

appropriate cost function obtained from the quantities defined above, and evaluated

at each update step. Note that this is a gradient descent rule which is guaranteed to

reduce the cost at each step. 71 is the speed of gradient descent, and the algorithm

must be stopped whenever two successive values of the cost function are less than

some "level of diminishing returns" c.

Notice that we will not invoke the algorithm if the local node is same as host

node (Alternative 1 of section 5.3). In the other cases (Alternatives 2,3 & 4 of Section

5.3), the cost H of executing the job on every node is computed using a cOst function

and the decision is taken using the above iterative prOcedure for computing ζh.

We will now indicate how a meaningful cost H is chosen. The cost of executing

the process locally W , or of executing it remotely WT , are computed at the local nOde

from the load information and job characteristics:

112

The net cost H is then the average value of the total execution time of the

process;, under the policy ζ:

The last two terms in the above equation represent the effect of the decision C. on the

workload of the nodes. These work increments can be computed from:

This yiields:

Similarly we have:

113

Substituting (64) and (65) in (62) we get:

The algorithm can now be summarized as follows:

• Whenever a decision must be taken, i.e. when a new process is created, first set

(0 and H0 to the most recently stored values of ζ (or threshold value initially)

and of the cost function at the host node, respectively.

• The gradient descent is initiated and at any hth step of the algorithm, ζh is

computed, using Equations (58) and (66). Then the cost H h is computed based

on (h .

• This is repeated until the point of diminishing returns, i.e. until |Hh - Hh-1| ≤ E.

• The resulting value of ζ is used for the decision. Clearly if ζ is less than 0.5 the

process is moved. Otherwise the process is executed locally.

Obviously this dOes nOt apply to the NP (no process migration), or the RD

(random two) policies, which are both static in that they do not use on-line load

information to make decisions.

For the AD-TWO policy, where we choose between the local and host nodes,

the simple computation of ζ suffices to determine the chOice of a site to execute the

process.

114

However for the AD-ALL policy, where a choice must be made among all

nodes, this gradient iteration will compute the alternative between a local node and

every other node; thus the computation is J - 1 times more time consuming than

the AD-TWO policy. Let denote the probability that the local node is chosen over

some other node j. Then the node j* with the smallest value of ζj will be chosen

for remote execution if the corresponding probability is less than 0.5; otherwise the

executiOn will be local.

5.6 Performance metrics and experimental comparison of policies

The four policies discussed in Section 5.4 are cOmpared in this Section with respect

to the following set Of pragmatic performance criteria [32].

• Hit ratio: This is the ratio of correct decisions to the total number of decisiOns,

in the sense that the effective response time of the execution is smallest with

the decision taken.

• Overhead: This is the fraction of CPU time consumed by the load balancing

algorithm's execution time only.

• Quality: This metric measures the distance of some particular load balanc-

ing policy X from the NP (no-process-migration) strategy; it is defined by

Quality(X) = W(NP) - W(X)/W(NP),

where W(.) is total process response time. A positive Quality(X) indicates that

115

policy X is worth being pursued, and the larger it is the more useful X will

be. However if Quality(X) is negative, policy X will be detrimental to system

performance and should not be considered.

• Percentage Remote Execution: This measures the percentage of processes exe-

cuted on remote (foreign and host) nodes.

Earlier studies [77, 93, 38] have supported the view that for an adaptive load

balancing algorithm to be of practical interest, the percentage of remote execution

should be limited, say of the order of 10%, and the hit ratio should be high, say

greater than 90%. Since these studies considered systems which allowed only process

migration and not data transfer, we can argue for a higher percentage of remote

executions in our case.

Other, more conventional, performance measures which can easily be obtained

on the nCube environment will also be considered here. They include:

• Average node response Rn; this is the response time obtained by any request

or service at a node (including processes and messages),

• Average process response time Rp; this is just the response time, including

process migration, experienced by processes.

Experimental results

The 'Cube provides an ideal test environment for implementing such adaptive load

116

balancing algorithms. We have therefore tested all policies on a. 5 node nCube with an

artificially generated workload. The time measurements were carried out in "ticks"

where one tick is 128 micro-secs. The delay for sending a message from one node to

another is of less than one tick..

The AD-TWO and AD-ALL results are based on the simplest possible form.

of the load-balancing algorithm since only one step of the gradient descent is used,

requiring the executiOn of 8 instructions only. A very simple decision rule is used,

based 0nly on deciding to use the remote node if ç is reduced by one step of the

iteration.

In this section we present a first set of experimental results for the following

workload:

• Each task or process's execution time is uniformly distributed between 9,000

and 12,000 ticks. This corresponds to an average execution time of 1.34 seconds

of CPU time. Process transfer takes 6,000 ticks. Each message transfer from

one node to another will take up 4 ticks (0.512 milliseconds).

• Each node creates one process, and will create a new process as soon as it is

informed that the previous one it created has finished execution.

• File sizes are uniformly distributed between 1K and 4K bytes so that file transfer

times are uniformly distributed between 1000 and 4000 ticks. This results in an

average file transfer time of 0.32 seconds.

117

Table 9: Comparative efficiency and performance for four load balancing policies. All
times are given in ticks. AD-TWO is the best, followed by AD-ALL. RD is the third
and NP the worst.

Strategy % Remote Exec. Overhead Rn Quality
NP not relevant not relevant 3,838 not relevant 19,355

AD-ALL 34% 0.00082 1,977 0.48 18,568
AD-TWO 30% 0.00079 1,923 0.50 18,082

RD 42% not relevant 3,352 0.13 19,037

• The load indices are computed as indicated in Section 5.5. They are broadcast

every tB = 50,000 ticks or 6.4 secs.

• Initially, 500 files are allocated to each site; then on an average 20 files are

created at each node every 2,500,000 ticks and are deleted at the same rate.

Vlore detailed experimental evaluations are presented in the next sections.

Table 9 summarizes measurements which were collected for a total of 1500 process

creations at each node.

The Average Node Response Time, R, is an average over ail requests made

to a node. Quality expresses the improvement over the NP policy. These are the

primary measures of interest. We see that the .Average Process Response Time, Rp

is less sensitive to the policy; this is simply because process migration time is an

important component in the AD-ALL and AD-TWO policies. Clearly, load balancing

is always beneficial. Note that the overhead presented only includes the algorithm's

computations, and is therefore very limited.

118

The ADAPTIVE-TWO-NODES strategy compares favorably with the ADAPTIVE-

ALL-NODES strategy, since the results it yields are slightly better but the overhead

is also much less. This supports our claim that simple load balancing policies are

better than sophisticated ones, and much better than not having load balancing at

all.

For the ADAPTIVE-ALL-NODES policy, we noticed that only a very small

fraction (1%) of the processes were transferred to foreign nodes. Thus, the effort

overhead of the AD-ALL policy only benefits these 1% of the processes.

This observation validates the assertions made earlier [77], and encourage us

to consider restricted load balancing policies. However, the results concerning AD-

TWO and its comparison with NP alsO indicate that load balancing can be effectively

used in order to improve user and system performance.

The results of Table 10 illustrate the advantage of file redistribution which we

used in all policies. To do so, we modify the AD-TWO strategy so that the system

does not redistribute the files; initially all the nodes have an equal number of files

and as time proceeds files at all the nodes are created and destroyed such that nodes

have different numbers of files, without redistribution. We call this the

NO-FILE-REDISTRIBUTION (NO-FI-RE). The measurements shown below concerning this

policy are taken at the nOdes having the minimum and the maximum number of files,

and the two values are shown. We clearly see the superiority of policies which do

redistribute files, over one which does not adjust file distribution.

119

Table 10: Comparative efficiency and performance with and without file redistribu-
tion.

Strategy % Remote Exec. Hit Ratio Overhead .R.7, Quality

AD-TWO
NO-Fl-RE

30%
40%-29%

0.97
1.0 0-0.97

0.00070
0.00070

1,923
2,100

0.50
0.33

On Figures 20 and 21 we present measures over time (in milliseconds) Of the

total load at a node. On Figure 20 we compare the system running under AD-TWO

with the system running under the NP policy. On Figure 21 we compare the system

running with the AD-TWO policy, and the system running with the RD policy. The

parameters are the same as those for the experiments described above. Very clearly,

the AD-TWO policy is very effective in reducing total load at each node.

The results of Figures 20 and 21 are not altogether intuitive. Indeed, Figure

20 indicates that the AD-TWO policy results in lower load on nodes than no load

balancing (NP). Yet One would expect that load balancing would not affect average

node, and only reduce differences between heavily loaded and lightly loaded nodes.

What is being observed however is an overall improvement of performance, under the

effect of load balancing. The same can be said about Figure 21.

On Figure 22 we compare the four policies considered when the average exe-

cution time C of a process is varied. PrOcess execution time is uniformly distributed

as follows: it is between [C-200, CH-200] if 200 < C; for smaller values of C it is

uniformly distributed between 0 and 2C.

120

Figure 20: Comparison of the instantaneous load on a node for the AD-TWO and NP
policies over a long period of time. The AD-TWO policy provides uniformly better
performance.

Figure 21: Comparison of the instantaneous load on a node for the AD-TWO and
RD policies over a long period of time. The sporadic effect of the RD policy, and the
improvement obtained with AD-TWO are clearly apparent.

12 1

Figure 22: Average process response time as a function of average process execution
time C for the four policies. For medium to high average process execution times,
AD-TWO provides superior performance.

The workload is being changed by varying the average run time of each pro-

cess, and each point on the curve corresponds to the average process response time

measured for 1500 process executiOns. The measurements are taken under the follow-

ing load conditions: each PU generates a new process as soon as the previous process

it has created has completed execution, and the PU has received information about

this. Thus there is exactly one active process running for each PU in the system.

We see that when the average process execution time is small, the four policies are

relatively equivalent, though AD-TWO still remains the best. However when the

average process execution time is large, there is a great benefit in choosing the best

load balancing policy.

122

5.6.2 Response Time Comparisons with Different Load Values

In the experiments described above, recall that each site is allowed to have a single

active process, and a new process is created only when the previous one is completed.

This workload does not allow us to vary the load on the system, except by modifying

the average execution time of processes.

In this section we present results of experiments which we have conducted by

increasing the number of processes generated at each node. To do so, each node is

allowed to generate synthetic processes, on the average each X milli-seconds or at a

rate of φ = 1/X processes per unit time. A process will execute on the average for C

time units, and we will also present measurements obtained by varying C. Of cOurse,

all these times are specified at the system level in "ticks". All other parameters are

the same as those indicated in the previous subsection.

In all cases reported here, for each value of (IS , response time and overhead

measurements are collected for 1000 process executions.

Measurements are collected for the process response time Rp for all four policies

considered: NP, AD-TWO, AD-ALL and RD. Some results are repOrted on Figure

23. Here the process generatiOn rate is 55 processes/sec, or 7.04 processes per 1000

ticks, at each node. For small values of C under 200 ticks (which is of the order of 25

milli-seconds) AD-ALL, AD-TWO and RD seem tO provide equivalent performance.

For larger values of C, AD-TWO provides superior perfOrmance.

We have measured the overhead for AD-TWO and AD-ALL and report it

123

Figure 23, : Average prOcess response time as a function of average process executiOn
time C 1: ()r the four policies. Were the process generation rate is 55 processes/sec,
or 7.04 Processes per 1000 ticks, at each node. For low C, AD-ALL, AD-TWO and
RD seem to provide equivalent performance. But for medium to high C, AD-TWO
provides superior performance.

194

Figure 24: Overhead as a function of average process execution time C for two AD-
TWO and AD-ALL. The process generatiOn rate is 55 processes/sec, or 7.04 processes
per 1000 ticks, at each node. Overhead decreases as C increases. As expected AD-
ALL has systematically higher overhead than AD-TWO. Overhead is under 5% (0.05)
in all cases.

on Figure 24. This is the fraction of node processing time devoted to the control

policy including load data collection and broadcasting, and carrying out the gradient

algorithm. We see that overhead remains acceptably low, at less than 5%.

On Figure 25 we report measurements where we keep C constant at 1050 ticks

or 0.1344 secOnds, with uniform distribution between 900 and 1200 ticks. We vary 0,

the process creation rate. The average process response time as a function of average

process creation rate is plotted for the four policies. For very low 0, AD-ALL, AD-

TWO and RD provide equivalent performance. For medium to high AD-TWO is

the best, very closely followed by AD-ALL. Both are much better than RD and NP.

Finally on. Figure 26 we present measurements of the fraction of node overhead

125

Figure 25: Average process response time as a function of average process creation
rate for the four policies. The average process execution time C is constant at 1050
ticks or 0.1344 seconds. For varying process creation rates, AD-ALL, AD-TWO and
RD provide equivalent performance. For medium tO high rates, AD-TWO is the best,
and is closely followed by AD-ALL. Both are much better than RD and NP.

126

Figure 26: Overhead as a function of the process creation rate at each node, for the two
policies adaptive policies AD-TWO and AD-ALL. The average process execution time
C is constant at 1050 ticks or 0.1344 seconds. As expected AD-ALL has systematically
higher overhead than AD-TWO. Overhead is under 5% (0.05) in all cases.

as a function of load, in number of processes created per unit time at the nodes. This

comparison is restricted to the two adaptive policies, even though the random RD

policy would also generate some overhead. Clearly AD-TWO results in less overhead,

but for bOth AD-TWO and AD-ALL overhead is relatively low (below 5%) even at

relatively high loads.

5.7 Conclusions

In this chapter we have presented a dynamic load balancing principle based on on-line

gradient descent for distributed system architectures. The purpose is to substantially

improve system performance using adaptive decisions concerning the choice of pro-

127

cessing units where processes are executed.

We have implemented and tested two gradient-based load balancing algorithms

on an nCube target architecture, and compared them with the case where no load

balancing is carried out, as well as with random load balancing. We demonstrate

via extensive measurements that simple adaptive load balancing can substantially

improve distributed system performance, over that of systems with no load balancing.

A 50% reduction in average process response time is observed compared to no load

balancing.

We also indicate experimentally that a simple algorithm can achieve better

performance than more sophisticated algorithms, and that it obviously results in less

overhead.

CHAPTER 6

SUMMARY AND CONCLUSION

In this chapter, we summarize the general principles and major features of our

methodology, discuss its applicability to performance modeling and design evalua-

tion of distributed systems, assess its merits with respect to computational efficiency

and generality, compare it with other currently available methods and finally, provide

suggestions for further research in this area.

6.1 Summary of the Methodology

We have drawn upon the concepts of queueing network techniques and load balanc-

ing policies and have combined them in an original way to produce a foundation for

an effective modeling methodology. Execution environment, system behavior, allo-

cation of static cOmponents and dynamic task assignment are considered separately.

Queueing network elements are used to model the operation of physical components

Of a distributed system. Customers of different classes are used to represent the user

requests, tasks, files, and messages. We have utilized the principles of the BCMP

theorem to design an efficient performance prediction method. This is done by ap-

proximatiOn of each site of the distributed system by a. properly chosen service center

having an exponential service time distribution. The customers change classes as they

circulate among service centers and follow a particular chain. The behavior of each

128

129

customer class is predicted and various performance measures are estimated. The

method described is general and can be used for estimating behavior of any message

passing distributed memory system.

To improve the performance we used a static load balancing strategy which

optimally allocates files at different nodes. The file allocation algorithm is designed

using closed queueing networks. The file allocation problem is formulated as a routing

problem in multiple chain networks. We optimize Average node response time, which

is the average over all requests made to a node. The relative throughput at each

node is established as a function Of file placement. We then compute the derivative

of the average response time with respect to relative throughput at each node and

show that it can be easily obtained from MVA algorithm. The steepest descent direc-

tion is obtained by summing the derivatives over all closed chains intersecting at a

node. A closed network version of flow deviation algorithm is then introduced to find

the optimum file allocation in multiple chain queueing network. The performance

measures are Obtained by constructing and sOlving a multiple class multiple chain

closed queueing network. The complete model, along with file allocation algorithm is

simulated on nCube. Each processor of nCube is programmed to behave as a node of

the distributed system. The analytical results are validated against the one measured

from nCube.

Novel adaptive load balancing policies are designed and evaluated for process

and data migration. We introduced a gradient descent paradigm to compute on

130

line load balancing decisions. We implemented and tested these algorithms on the

nCube architecture, and compared it with the case where no load balancing is carried

out, as well as with random load balancing. We proved that simple adaptive load.

balancing algorithms can substantially improve distributed system performance over

that of systems with no load balancing. We also showed that simple algorithms can

achieve better performance than more sophisticated algorithms, and that they result

in less overhead. Numerous measurement results on an nCube are presented using

performance metrics which have already been discussed in the literature.

In short, to achieve high performance in distributed systems we have pro-

posed a modeling methodology which combines the static and dynamic policies for

distributing data, processes and contrOl on distributed hardware.

6,2 Application Considerations

Our methodology can be applied to design virtually any message passing distributed

system. The applicability is limited to neither specific system architecture nor to

system functionality. The same general principles can be utilized for each individual

case. When representing the system architecture of a particular execution environ-

ment, a modeler does not have to be concerned about performance at the preliminary

stage. All that needs to be known are the number of nodes, their interconnections,

the infOrmation units and how they interact. Next, either existing or newly designed

load balancing policies can be used to optimally distribute various information units

131

for performance improvement. The policies could be either static or dynamic or a,

combination of both. We infer that hybrid policies which combine optimal static

methods with dynamic solutions are especially beneficial.

By properly using the set of tools provided by our methodology, designers

and system planners can evaluate the performance of a proposed system with several

benchmark applications in a cost-effective way, enabling them to 'pilot' their design to

meet specific objectives. Analysts can use the same methods for experimenting with

various parameters within a system (without disturbing the standard configuration

and/or operation of the system itself) to optimally adjust resource utilizations and

response times or to determine system bottlenecks. With dynamically reconfigurable

architectures, optimal (or nearly optimal) configuratiOns for specific applications can

be quickly determined. In case of a static and dynamic pOlicy being employed by a

system, one can "test" a number of potential algorithms and adopt the one yielding

the best performance.

It is important to emphasize that the solutions obtained by applying the ana-

lytic techniques presented in this thesis are estimates of the actual values and should

be treated as such. The quality of approximation will vary with each particular case

and in general cannot be determined a priori. However, we do believe that in most

cases the results yielded by our methodology will provide a reasonable indication of

the relative performance Of the system being considered with respect to competing

architectures or different parameter selections. Thus, we feel that this methodolOgy is

132

best suited for the kind of systems where relative merits of alternate design proposals

and different system configurations are being compared.

6.3 Comparisons with Other Methods

Compared to general-purpose simulation packages, our methodology requires substan-

tially less processing time in both the model development and solution phases. In

virtually all cases, the design and implementation of a model using a general-purpose

simulation language would be significantly more time-consuming than the construc-

tion of queueing network model. Even simulation on an nCube is less time consuming,

because of the efficient message passing libraries for designing communication mech-

anism. Moreover, for homogeneous systems one program can be replicated on all the

other nodes in an nCube programming environment.

It should be noted, however, that our analytic results are only estimates of

the 'actual' values and that no guarantee of achieving a specific accuracy level can

be made. Thus, our analytical methodology is no substitute for detailed simulatiOn

in cases where high accuracy is of utmost importance. However, as evident from our

measurements on the nCube, the available empirical data indicates that its overall

level of accuracy is sufficient. As far as performance evaluation of distributed systems

is concerned, the potential range of applications of our analytic techniques is compa-

rable with that of most general-purpose simulation tools. On an nCube practically

any distributed system can be simulated.

133

The considerations of computational efficiency and accuracy discussed above

are also applicable to special-purpose simulators. The high development cost of such

simulators is also an important factor. Furthermore, the generality of application of

our analytic and simulation methods far exceeds that of an individual special-purpose

simulator. These simulators, though able to produce highly accurate performance

statistics, are particularly effective only when the same system is frequently evaluated

with different programs or when intricate architectural Or operating system details

are to be included in the model.

We will now consider other currently available analytic methods. Graph meth-

ods are usually applicable to modeling only very simple precedence relationships, eg.,

fork-join constructs, and cannot capture the behavior of complex distributed systems.

As far as graph-based methods go, there are two basic categories. Those in the first

category assume either an infinite capacity of each system resource or some other

overly simplified architecture. Such methods, although usually reasonably accurate,

are very limited in their scope of practical application since they are not capable of

modeling (much more complex) features of realistic systems — which are easily han-

dled by our methodology. In the second category, all architectural details included

in a model are represented by nodes and arcs in a graph, intermixed together with

the representation of a program's precedence relationships. Such techniques, e .g.,

Stochastic Petri nets, are prone to rapid state space explosion as the number of sys-

tern components increase. (In our methodology, the complexity of computing also

134

increases with system size, but not nearly as fast!). Also, a minor architecture change

may require that a completely new graph be constructed and solved.

6.4 Suggestions for Future Research.

From the material presented in the previous chapters, we can see that research already

accomplished has resulted in the development of an original and viable methodology

for performance modeling of distributed and parallel systems. The modeling method-

ology is general and can be applied to any class of distributed systems. One such

class of systems are distributed object oriented systems. We will briefly describe our

approach to develop and design a performance model in this paradigm.

Furthermore, there are still number of interesting and important issues left to

be resolved, worthy of further investigation. We will identify the more important of

these issues and discuss possible research approaches.

6.4.1 Distributed Object-Oriented Model

Object oriented analysis endeavors to model a situation in terms of a collection of

interacting entities, each of which provides a well-defined set of behaviors and at-

tributes. If a system is described in words, the nouns correspond to objects, the

message interface is determined from the verbs, and the logical properties are derived

from adjectives [126]. An object encapsulates data, processing logic, and commu-

nicates via messages. We propose to efficiently distribute the objects to processing

135

sites, such that communication overhead is reduced and performance improved.

The system we refer to operates as follows: whenever an object receives a

message it updates or changes state and then replies back with a message, if necessary.

Depending on the message class an object invokes a particular method. The method

can request information from one or more other objects. These objects may or may

not reside at the same site. Such objects in turn again send messages to other objects.

The object behavior is completely independent and encapsulated. We introduce the

notion of depth in an object-oriented system which is the number of objects involved

in processing a user request (user is an object also).

If objects are placed on different sites and sites are modeled as service centers

of a queueing network model, the behavior of a user request can be represented as a

chain as described in Chapter 3. The queueing discipline and the service demands

can be assumed such that the system satisfies product form requirements. Various

performance measures can be extracted using the prediction methodology described

in the thesis.

We simulated a simple object model on the nCube, where one object was

assigned per node. The user on each node requests some service, and the user request

(message) is sent to an appropriate object. The object processes the message, may

or may not request service from other objects, and returns a message to the user

(object). The performance measures such as thrOughput and response time were

measured as a function of think time and depth. The results obtained validates the

136

analysis obtained from the prediction method.

The performance modeling of object oriented system suggests number of in-

teresting research issues. For further research in this area we would like to address

following:

• Object classification and their relationship identification;

• Since objects can be dynamically created and destroyed, techniques to efficiently

distribute them are needed for performance improvement;

• To balance the load, static, dynamic or hybrid policies are required for different

classes of objects; and

• Since the object model is very general, it is important to design techniques

which can map any (nearly all) applications to the object model. This can lead

to the development of software engineering environment, where all distributed

applications specified in one common language, could be mapped to a general

distributed object model.

6.4.2 Other Issues

This thesis provides evidence that optimal static solutions are consistent with adaptive

solutions in the case of distributed systems. However, additiOnal, more systematic

experimentation in this direction is required to corroborate the claim. The literature

has seen an abundance of static and adaptive solutions for various distributed system

137

models; it may be worthwhile to attempt to develop computationally feasible methods

which combine the two types of solutions for performance improvements.

If the physical model consists of many service centers with deterministic service

times, then the BCMP theorem may not always yield sufficiently accurate results. In

light of this observation, it is desirable to investigate other ways of modeling the

distributed systems which considers general service time distribution and/or different

queueing disciplines. In Chapter 4 and 5 we used approximate methods to compute

the steady state probabilities for the solution procedures. It would be beneficial to

identify other accurate constructs to determine these steady state probabilities.

We have also not yet been able to develop a general procedure for theoreti-

cally determining the accuracy level Of the results yielded by our methodology. It

is important to investigate whether it is possible to place theoretical error bounds

on Our analytic estimates, as a function of architecture of the system being modeled.

Using such bounds, a modeler can determine the range of application spectrum where

the accuracy of our methodology is sufficient, the range where it is marginal and the

range (if any) where it is unacceptable.

APPENDIX A

To prove: In a product form closed queueing network model with single server fixed

capacity (SSFR) center:

NOTE: Assuming a single closed chain network for simplicity, the same approach

can be used for multiple chain networks.

where ρ = yj/ μj 	 and from Equation (36) δG(N)/δyj = G(N)L(N)/yj ay;	
G(N)L(N)

138

from Equation (31)

Substituting Equation (30) in (73)

1 3 9

From (29)

APPENDIX B

Comparison with other Methodologies

The modeling methodology described in the thesis contributes significantly towards

the design of high performance distributed and parallel systems. The ability to predict

and optimize performance; and the usage of hybrid policies for performance improve-

ment are the most significant.

Since development of large distributed systems is time consuming and expen-

sive, the mechanism to model such systems and analyze their behavior at the design

stage is certainly beneficial. Dissertation also provides evidence to claim that hy-

brid policies, which combines static load balancing solutions with dynamic policies

do improve the performance in distributed system.

Ni and Hwang [84] also proposed a static load balancing scheme to enhance

the performance in a multiple processor system. They formulated load balancing as

a nonlinear programming problem with linear constraints. An optimal probabilistic

algorithm is proposed to solve this nonlinear programming prOblem. In contrast, we

use queueing network models to design the file allocation algorithm and performance

prediction method. Among all the analytical methods, queueing methods are known

to be more attractive (see chapter 2) because of their simple applicability and ease

of computation. The mathematical foundations of queueing models also allow easy

calculation of various performance measures,

140

14 1

The performance of the multiple processing system, as proposed by Ni and

Hwang, has been analyzed by modeling the distributed system as a set of N parallel

queues which represent processing units and a central dispatcher which distributes

load among these queues. Such systems are less reliable and dispatcher node is the

bottleneck to the incoming jobs. The control of such a system is non-distributed. Our

approach is to model the systems where the control is distributed among processing

sites.

Singh and Krouse [73] designed a distributed load balancing algorithm for

distributed system to improve performance. The static algorithm proposed distributes

jobs among various processing sites, using queueing techniques. They assume that

either the jobs are entirely computational and do not need data for execution; or

process and data are one unit which can be migrated to any site. Since the jobs

are not entirely computational, they need data to work on and if this data can not

be replicated on all the nodes, we need strategies which could move data and/or

processes among sites to get work done efficiently. We consider processes and data as

separate components; and develop load balancing algorithms to optimally distribute

both.

APPENDIX C

Comparison of AD-TWO Policy with Other Adaptive Algorithms

The efficacy of the AD-TWO adaptive policy, described in chapter 5, is established

here by comparing it to the well known and widely referenced adaptive algorithms.

These algorithms include early works of Stankovic [127], Eager [77] and more re-

cent ones by Zhou :93]. Stankovic's work was one of the first studies of adaptive

load-sharing algorithms, offering new insights into the problem and suggesting novel

solutions. Later, Zhou's extensive experimentation established that adaptive algo-

rithms improve performance in distributed systems.

Recently in [38], a general method for quantitative and qualitative analysis of

adaptive load sharing algorithms is discussed. Study suggests that activities related

to remote execution should be bounded and restricted to a small proportion of the

activity in the system. They propose following efficiency measures for comparing

different adaptive algorithms:

% Remote execution The percentage of job executed
on the remote nodes

Hit Ratio	 Ratio of correct decisions to the
total number of decisions made

Overhead	 The fraction of CPU time consumed by
the load balancing algorithm's execution

142

The properties of the different algorithms we consider are summerized below.

AD-TWO.

143

Decision baking invocation
Transfer policy

Location Poli cy
Acceptance po li cy

Information policy

event driven (process creation)
global load information, process characteristics,
system parameters,
least loaded among local and host node
single request - no rejection allowed
periodic load dissemination

Stankovic

Decision making invocation

Transfer cypo

Location policy
Acceptance policy
Information policy

basic method, periodic and also event driven
(application completion)
local and indirect nonlocal information
on a comparitive basis
least loaded node
single request - no rejection allowed
periodic state dissemination

Zhou

Decision making invocation
Transfer policy
Location policy
Acceptance policy

Information
policy

event driven (application arrival)
local information only (threshOld)

least loaded node
single request - no rejection allowed
periodic state dissemination

Eager

144

Decision making invocation
Transfer policy
Location policy
Acceptance policy
Information policy

event driven (application arrival)
local information only (threshold)

Random
Request-reply to allow rejection (threshold)
probing (request-reply) upon application arrival

The following table compares the efficiency measures for the four algorithms:

Comparison of Efficiency Measures

% Remote Exe. Hit Ratio Overhead

AD-TWO 30 0.95 0.005

Stankovic 37 0.77 0.028

Zhou 22 0.77 0.006
Eager 16 0.60 0.063

Clearly, gradient descent rule for AD-TWO adaptive policy provides high hit

ratio and less overhead. The % remote execution is better than algorithms by Zhou

and Eager; and comparable to Stankovic's algorithm. This is because all of the above

algorithms, except AD-TWO, deal only with task or prOcess movement; they assume

that jobs and data are one information unit and can migrate to any site.

References

L. Kleinrock, "Distributed systems," Communications of the ACM, vol. 28,
pp. 1200-1213, November 1985.

[2 P. Enslow, "What is a distributed data processing system ?," IEEE Computer,

pp. 13-21, January 1978.

[3] G. LeLann, "Motivation, objectives and characterization of distributed sys-
tems," in Distributed Systems - Architecture and Implementation (B. Lampson,
M. Paul, and H. Siegert, eds.), Springer-Verlag, 1983.

[4] S. Mullender, Distributed Systems. Addison Wesley, 1989.

[5] M. Flynn, "Some computer organizations and their effectiveness," IEEE Trans-

action on Computers, vol. C-21, pp. 948-960, September 1972.

[6] M. Flynn, "Very high-speed computing systems," Proc. IEEE, vol. 54, pp. 1901-
1909, 1966.

[7] K. Hwang and F. Briggs, Computer Architecture and Parallel Processing. New-
York: McGraw-Hill, 1984.

[8] MasPar System Overview, March 1991. Document Order No. 9300-0100 A3.

[9 Connection Machine Programming in C*, Nov 1990. Version 6.0.

[10] nCUBE Processor Manual, Dec 1990. Part No. 101636.

[11]iPSC/2 1988. Document Order No. 280110-001.

[12] Alliant FX/Series Product Summary, Dec 1988.

[13] J. Dennis and D. Misunas, "A preliminary architecture for a basic data flow pro-
cessors," in Proceedings of IEEE Symposium on Computer Architecture, p. 291,
May 1975.

[14] Arvind and V. Kathail, "A multiple processor dataflow machine that supports.
generalized procedures," in Proceeding of 8th ACM Symposium on Computer
Architecture, pp. 291, May 1981.

[15] M. Amamiya et al., "A dataflow processor array system for solving partial
differential equations," in Proceedings of International Symposium on Applied
Mathematics and Information Science, (Kyoto University), March 1982.

[16] W. Ackerman, "Data flow languages," Computer, vol. 15, pp. 15-25, February
1982.

145

146

[17] E. Gelenbe and I. Mitrani, Analysis and Synthesis of C0mputer System. Aca-
demic Press, 1980.

[18] A. Tanenbaum, Modern Operating Systems. Prentice Hall, 1992.

19] A. Tanenbaum, Computer Networks. Prentice Hall, 1988.

[20] A. Kapelnikov, Analytic Modeling Methodology for Evaluating the Performance
of Distributed, Multiple-Computer Systems. PhD thesis, UCLA, 1986.

[21] R. Watson, "Distributed system architecture model," in Distributed Systems -
Architecture and Implementation (B. Lampson, M. Paul, and H. Siegert, eds.),
Springer-Verlag, 1983.

[22] A. Birch and B. Nelson, "Implementing remote procedure calls," ACM Trans-
action on Computer Systems, vol. 2, pp. 39-59, February 1984.

[23] B. Liskov et al., "Implementation of Argus," Proc. of 11th Symposium on Op-
erating systems Principle, vol. 21, pp. 111-122, Nov 1987.

[24] M. Fridrich and W. Older, "The FELIX File Server," in Proc. of 8th Symposium
on Operating System Principles, (Pacific Grove, CA), pp. 37-44, December
1981.

[25] B. Lyon et al., "Overview of the SUN Network File System," in Proceeding Unix
Conference, (Dallas), pp. 1-8, January 1985.

[26] G. Popek and B. Walker, The LOCUS Distributed System Architecture. MA:
The MIT press, 1985.

[27] D. Reed and L. Svobodova, "SWALLOW : A distributed data storage system
for a local network," in L0cal networks for computer communications (A. West
and P. Janson, eds.), pp. 355-373, North-Holland Publishing Company, 1981.

[28] A. Litman, "Dunix - a distributed UNIX system," Operating Systems Review,
vol. 22, pp. 42-50, January 1984.

[29] M. Brown, K. Kolling, and E. Taft, "The Alpine File System," ACM Transac-
tions on Computer Systems, vol. 3, pp. 261-293, November 1985.

[30] M. Powell and B. Miller, "Process migration in DEMOS/MP," in Proc. of 9th
Sypo.sium on Operating Systems Principles, (Bretton Woods, N.H.), pp. 110—
119, October 1983.

[31] R. Finkel et al., "The Charlotte distributed operating system," Tech. Rep. 502,
Univ, of Wisconsin-Madison Computer Sciences, 1983.

147

[32' D. Black, "Scheduling support for concurrency and parallelism in the Mach
operating system," IEEE Computer, vol. 23, pp, 35-43, May 1990.

331 A. Goscinski, Distributed Operating Systems, Logical Design. Addison Wesley,
1991.

[34] U. Borghoff and K. Nast-kolb, "Distributed systems: a comprehensive survey,"
Tech. Rep. TUM-I8909, Techn. Univ. Munchen, Munich, Germany, 1989.

[35] V. Mak and S. Lundstrom, "Predicting performance of parallel computation,"
IEEE Transactions on Parallel and Distributed Systems, vol. 1, pp. 257- 7 70,
July 1990.

[36] D. Towsley, C. Rommel, and J. Stankovic, "Analysis of fork-join program
response time on multiprocessors," IEEE Transactions on Parallel and Dis-

tributed Systems, vol. 1, pp. 286-302, July 1990.

[371 E. Silva and M. Gerla, "Queueing network models for load balancing in dis-
tributed systems," Journal of Parallel and Distributed Computing, vol. 12,
pp. 24-38, 1991.

[38] 0. Kremin and J. Kramer, "Methodical analysis of adaptive load sharing algo-
rithms," IEEE Trans. on Parallel and Distributed Systems, vol. 3, pp. 747-760,
November 1993.

[39] A. Barak and 0. Paradise, "Mos - a load-balancing UNIX," in Proc. MK;
Autumn '88, pp. 273-280, September 1986.

[40] D. Gifford, R. Needham, and lvi. Schroeder, "The Cedar file system," Commu-
nications of the ACM, vol. 31, pp. 288-298, March 1988,

[41] M. Satyanarayanan, "The ITC distributed file system: principles and design,"
in Proceedings of the Ninth ACM Syposium of Operating Systems Priciples,
pp. 35-47, 1983.

[42] J. Ousterhout et al., "The Sprite network Operating system," IEEE Computer,
vol. 21, 1988.

43] M. Nelson, B. Welch, and J. Ousterhout, "Caching in the Sprite network file
system," ACM Transactions on Computer Systems, vol. 6, 1988.

[441 J. Howard et al., "Scale and performance in a distributed file system," ACM
Transactions on Computer Systems, vol. 6, pp. 55-81, 1988.

[45] S. Carson and S. Setia, "Analysis of the periodic write policy for disk cache,"
IEEE Transactions on Software Engineering, vol. 18, Jan 1992.

148

[46] C. G. Gary, Perf0rmnace and fault-tolerance in a cache for distributed file ser-

vice. PhD thesis, Stanford University, December 1990.

47] A. Agarwal, "Performance tradeOffs in multithreaded processors," IEEE Trans-

actions on Parallel and Distributed Systems, vol. 3, 1992.

[48] C. Ramamoorthy and K. Chandy, "Optimization of memory hierarchies in mul-
tiprogrammed systems," JA CM, July 1970.

[49] S. Arora and A. Gallo, "Optimal sizing loading and re-loading in a multi-level
memory hierarchy system," in AFIPS Proceedings, pp. 337-344, 1971.

[50] P. Chen, "Optimal file allocation in multi-level storage systems," Proc. AFIPS

National Computer Conference, vol. 42, pp. 277-282, 1973.

[Si] P. Chen and G. Mealy, "Optimal allocation of files with individual response
time requirements," in Proceedings of the 7th Annual Princeton Conference on
Information Sciences and Systems, (Princeton University), March 1973.

[52] L. Dowdy and D. Foster, "Comparative models of the file assignment problem,"
ACM Computing servey, vol. 14, pp. 287-313, June 1982.

-53] D. Brownbridge, L. Marshall, and B. Randell, "The Newcastle connection of
Unixes of the world unite," Software Practice and Experience, vol. 12, pp. 1147-

1162, Dec 1982.

[54 A. Siegal, Performance in Flexible Distributed File Systems. PhD thesis, Cornell
University, February 1992.

[55] K. Levin, Organizing Distributed Data Bases in Computer Networks. PhD the-

sis, University of Pennslyvania, Sept 1974.

[56] H. Morgan and K. Levin, "Optimal program and data locations in computer
netwroks," CACM, vol. 20, pp. 315-322, May 1977.

[57 1 S. Mahmoud, "Resource allocation and file access control in distributed infor-
mation networks," Tech. Rep., Dep. Syst. Eng., Carleton University, Canada,
Jan 1975.

[58] L. Laning and M. Leonard, "File allocation in a distributed cOmputer and com-
munication network," IEEE Trans. Computers, vol. C-32, pp. 232-244, 1983.

[59] D. Tabak, Multiprocessors. Englewood Cliffs, NJ: Prentice Hall, 1990.

[60] S. Majumdar, D. Eager, and R. Bunt, "Scheduling in multiprogrammed paral-
lel systems," in in Proceedings 1988 ACM SIGMETRICS Conf, Measurement
Modeling Comput. Syst., pp, 10-4-113, 1988.

149

[61] E. Gelenbe and R. Kushwaha., "Incremental dynamic load balancing in dis-
tributed systems." Submitted for publication in MASCOTS' 94.

[62] A. Thomasian and P. Bay, "Analytical queueing network models for paral-
lel processing of task systems," IEEE Transactions on Computers, vol. C-35,
pp. 1045-1056, Dec 1986.

[63] D. Menasce and L. Barroso, "A methodology for performance evaluation of
parallel applications on multiprocessors," J0urnal 0f Parallel and Distributed

Computing, vol. 14, pp. 1-14, 1992.

[64] A. Tantawi and D. Towsley, "Optimal static load balancing in distributed com-
puter systems," Journal ACM, vol. 32, pp. 445-465, April 1985.

[65] F. Baccelli and A. Makowski, "Simple computable bounds for the fork-join
queue," in Proc. Conf. Inform. Sci. Syst., 1985.

[66] F. Baccelli, W. Massey, and D. Towsley, "Acyclic fork-join queueong networks,"
IA CM, July 1989.

[67] C. Kim and A. Agrawala, "Analysis of a fork-join queue," IEEE Trans. Com-
put., vol. 38, pp. 250-255, Feb 1989.

168' R. Nelson and A. Tantawi, "Approximate analysis Of fork-join synchronization
in parallel queues," IEEE Trans. Comput., vol. 14, pp. 532-540, April 1988.

[69] S. Setia, M. Squillante, and S. Tripathi, "Analysis of processor allocation in
multiprogrammed parallel processing systems," Tech. Rep. CS-TR-2840, Uni-
versity of Maryland, College Park, Feb 1992.

[7 0] R. Nelson., D. Towsley, and A. Tantawi, "Performance anlysis of parallel process-
ing systems," _IEEE Transactions on Software Engineering, vol. 14, pp. 533-540,
April 1988.

[71] A. Tantawi and D. Towsley, "A general model for optimal static load balancing
in star network configurations," in Proc. Performance'84, (Paris, Dec 19-2-1),
(New York), pp. 277-291, North-Holland, 1984.

[72] E. Silva and M. Gerla, "Load balancing in. distributed systems with multiple
classes and site constraints," in Proc. Performance '8., pp. 17-33, 1984.

73] J. F. Kurose and S, Singh, "A Distributed algorithm for optimum static load
balancing in distributed computer systems," in Proc. IEEE INFOCOM'86,
pp. 458-467, 1986.

150

[74] H.-C. Lin, J. R. Yee, and C. Raghavendra, "Optimal joint load balancing and
routing in message switched computer networks," in IEEE INFOCOM'88 Con-
ference, pp. 3C.2.1-3C.2.8, March 1988.

[75] L. Ni, "A distributed load balancing algorithm for point-to-point computer
networks," in Proc. of IEEE COMPCON, pp. 116-123, 1982.

[76] L. Ni, C. Xu, and T. Gendreau, "A distributed drafting algorithm for load
balancing," IEEE Transaction Software Engineering, vol. SE-11, pp. 1153-1161,
October 1985.

[77] D. Eager, E, Lazowska, and J. Zahorjan, "Adaptive load sharing in homoge-
neous distributed systems," IEEE Transaction on Software Engineering, vol. 12,
pp. 662-676, 1986.

78] T. Liu, "Dynamic load balancing algorithm in homOgeneous distributed sys-
tems," in Proc. of the Sixth Int. Conf. on Distributed Computing Systems,
pp. 216-222, May 1986.

[79] R. Mirchandaney, D. Towsley, and J. Stankovic, "Adaptive load sharing in
hetrogeneous systems," in Proc. of the Ninth International Conference on Dis-
tributed Computing Systems, (Newport Beach, California), pp. 298-306, June
1989.

[80] R. Mirchandaney, D. Towsley, and J. Stankovic, "Analysis of the effects of
delays on load sharing," IEEE Transaction Computers, vol. 38, Nov 1989.

[81] H.-C. Lin, G.-M. Chiu, and C. Raghavendra, "Performance study of dynamic
load balancing policies for distributed systems with service interruptions," in
IEEE INFOCOM'91 Proceedings, pp. 797-805, 1991.

[82] M. Livny and M. Melman, "Load balancing in hOmOgeneous broadcast dis-
tributed systems," in Proc, ACM Comput. Network Performance Symp., pp. 47-
55, 1982.

[83] Y. Wang and R, Morris, "Load sharing in distributed systems," IEEE Trans-
actions on Computers, vol. C-34, pp. 204-217, March 1985.

[84] L. Ni and K. Hwang, "Optimal load balancing in a multiple processor system
with many job classes," IEEE Transaction on Software Engineering, vol. 11,
pp. 491-496, 1985.

[85] H. Kobayashi and M. Gerla, "Optimal routing in closed queuing networks,"
ACM Transactions on Computer Systems, vol. 1, pp. 294-310, NOv 1983.

151

[86] C. Gao, J. Liu, and M. Railey, "Load balancing algorithms in homogeneous
distributed systems," in Proc. 198.4 International C0nference on Parallel Pro-
cessing, (Silver Spring, MD), pp. 302-306, IEEE Computer Society, 1984.

[87] K. Lee and D. Towsley, "A comparison of priority-based decentralized load
balancing policies," in Proc. Performance '86 and 1986 .4CM SIGMETRICS
Conf, pp. 70-77, 1986.

[88] T. Yaun and H. Lin, "Adaptive load balancing for parallel queues," in Proc
IEEE International Conf. on Communications, (Amsterdam), 1984.

[89] S. Lavenberg, ed., Computer Performance Modeling Handbook,. San Deigo, CA:
Academic Press, 1983.

[90 C. Sauer and K. Chandy, "Computer/communication system modeling with the
research queueing package, version 2," Tech. Rep., IBM, T.J. Watson Research
Center, Yorktown Heights, New-York, 1981.

[91] M. Vernon, Performance Oriented Design of Distributed Systems. PhD thesis,
UCLA, Dec 1982.

[92] R. Thomas, A Data flow Architecture with Improved .Asymptotic Performance.
PhD thesis, UCI, 1981.

93] S. Zhou, "A trace-driven simulations study of dynamic load balancing," IEEE
Transactions on Software Engineering, vol. 14, No. 9, pp. 1327-1341, Sept 1988.

[94 F. Darema-Rogers, "Parallel appilcations performance methodology," Tech.
Rep. RC 14320, IBM, Yorktown Heights, May 1988.

[95] L. Kleinrock, Queueing Systems, Vol II. New York: John Wiley, 1976.

[96] I. Akyildiz, "Performance analysis of a multiprocessor system model with pro-
cess communication," Computer Journal, vol. 35, pp. 52-61, 1992.

[97] F. Baskett, K. Chandy, R.R.Muntz, and F. Palacios, "Open, closed and mixed
networks of queues with different classes of customers," Journal of the Associ-
ation for Computing Machinery, vol. 22, pp. 248-260, April 1975.

[98] P. Heidelberger and K. Trivedi, "Queueing network models for parallel pro-
cessing with asynchronous tasks," IEEE Transaction Computers, vol. C-31,
pp. 1099-1109, Nov 1982.

[99] P. Heidelberger and K. Trivedi, "Analytical queueing models for program with
internal concurrency," IEEE Transaction Computers, vol. C-32, pp. 73-82, Jan
1983.

152

[100] E. Gelenbe, "Performance analysis of the Connection Machine," in Proc. A
CM-SIGMETRICS Symposium on System Performance Evaluation, pp. 183-191,

May 1989.

[101] K. Shin, C. Krishna, and Y. Lee, "Optimal dynamic control of resources in a
distributed system," IEEE transactions on software Engineering, vol. 15, Oct
1989.

[102] J. Mohan, Performance of Parallel Programs: Model and Analysis. PhD thesis,
Carnegie-Mellon University, July 1984.

[103] A. Kapelnikov, R. Muntz, and M. Ercegovac, "A modeling methOdology for
the analysis of concurrent systems and computations," Journal of Parallel and

Distributed Computing, vol. 6, pp. 568-597,1989.

[104] J. Peterson, Petri Net Theory and the Modeling of Systems. Englewood Cliffs,
NJ: Prentice Hall, 1981.

[105] Y. Shieh, D. Ghosal, S. Tripathi, and P. Chintamani, "Modeling of hierarchi-
cal distributed systems with fault-tolerance," IEEE Transactions on Software
Engineering, vol. 16, pp. 444-457, April 1990.

106] P. Chen and I Akoka, "Optimal design of distributed information systems,"
IEEE Transactions on Computers, vol. C-29, pp. 1068-1080, Dec 1980.

[107] V. Norton and G. Pfister, "A methodology for predicting multiprocessor perfor-
mance," in Proc. 1985 International Conference on Parallel Processing, pp. 772-
781, Aug 1985,

[108] W. Gilio and W. Schroeder-Preikschat, "A new programming model for mas-
sively parallel systems." Submitted for Publication.

[109] B. Welch and J. Ousterhout, "Prefix tables: A simple mechanism for locating
files in a distributed system," in Proc of sixth conf. on Distributed Computing
System, pp. 184-189, May 1986.

[110] E. Gelenbe and G. Pujolle, Introduction, to Queueing Networks. John Wiley &
sons, 1987.

[111] J. Wong, Queueing Network Models for Computer Systems. PhD thesis, UCLA,
1975.

[112] M. Reiser and H. Kobayashi, "Queuing networks with multiple closed chains:
theory and computational algorithms," IBM Journal Research and Develop-
ment, vol. 19, pp. 283-294, May 1975.

153

[113] M. Reiser, "Numerical methods in separable queueing networks," Tech. Rep.
RC 4145, IBM, IBM Thomas J. Watson Research Center, Yorktown heights,
1976.

[114] R. Wong and J. Wong, "Efficient computational procedures for closed queue-
ing networks model," in Proc. of Seventh Hawaii International Conference on

System Science, (Honolulu, Hawaii), pp. 33-36, Jan 1974.

[115] L. Kleinrock, Queueing Systems, Vol I. New York: John Wiley, 1975.

[116] M. Reiser and S. Lavenberg, "Mean value analysis of closed multi-chain queue-
ing networks," J. ACM, vol. 27, pp. 313-322, April 1980.

[117] A. Agrawala, S. Tripathi, and G. Ricart, "Adaptive routing using a virtual
waiting time technique," IEEE Trans. Software Eng., vol. SE-8, pp. 76-81,
1982.

[118] C. Brown and M. Schwartz, "Adaptive routing in central computer communi-
cation networks," in Pore. IEEE Int. Comp. Commum., pp. 12-16, June 1979.

[119] Y. Chow and W. Kohler, "Models for dynamic load balancing in a heterogeneous
multiple processor system," IEEE Transaction Computers, vol. 28, pp. 354-361,
1979.

[120] A. Avritzer et al., "The advantage of dynamic tuning in distributed asymmetric
systems," in Proc. Infocom '90, 1990.

[121] R. Gallager, "A minimum delay routing algorithm using distribted computa-
tion," IEEE Transaction on Comm, vol. COM-25, pp. 73-85, 1977.

[122] T. Chou and J. Abraham, "Load balancing in distributed systems," IEEE
Transactions on Software Engineering, vol. SE-8, July 1982.

[123] G. Rao, H. Stone, and T. Hu, "Assignment of tasks in a distributed processor.
system with limited memory," IEEE Trans. Comput., vol. C-28, pp. 291-298,
April 1979.

[124] H. Stone, "Multiprocessor scheduling with the aid of network flow algorithms,"
IEEE Trans. Software Eng., vol. SE-3, pp. 85-94, Jan 1977.

[125 A. Leff and P. Yu, "An adaptive startegy for load sharing in distributed database
environments with information lags," Journal of Parallel and Distributed Com-
puting, vol. 13, pp. 91-103, 1991.

[126] K. Rubin and A. Goldberg, "Object behavior analysis," Communications of the
ACM, vol. 35(9), pp. 48-62, September 1992.

154

[127] J. Stankovic, 'Simulations of three adaptive, decentralized controlled, job
scheduling algorithms," Computer Networks, vol. 8, pp. 199-217, August 1984.

	Copyright Warning & Restrictions
	Personal Information Statement
	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgement (1 of 2)
	Acknowledgement (2 of 2)

	Table of Contents (1 of 4)
	Table of Contents (2 of 4)
	Table of Contents (3 of 4)
	Table of Contents (4 of 4)
	Chapter 1: Introduction
	Chapter 2: Current Models and Prediction Methodologies
	Chapter 3: The Performance of a File-Server Model
	Chapter 4: Optimal File Placement Strategy
	Chapter 5: On-line Adaptive Algorithm for Process Migration
	Chapter 6: Summary and Conclusion
	Appendix A
	Appendix B: Comparison with Other Methodologies
	Appendix C: Comparison of AD-TWO Policy with Other Adaptive Algorithms
	References

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

	Abstract (1 of 2)
	Abstract (2 of 2)

