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ABSTRACT

On Orthogonal Collocation Solutions
of Partial Differential Equations

by
Herli Surjanhata

In contrast to the A-version most frequently used, a p-version of the
Orthogonal Collocation Method as applied to differential equations in two-
dimensional domains is examined. For superior accuracy and convergence, the
collocation points are chosen to be the zeros of a Legendre polynomial plus the
two endpoints. Hence the method is called the Legendre Collocation Method. The
approximate solution in an element 1s written as a Lagrange interpolation
polynomial. This form of the approximate solution makes it possible to fully
automate the method on a personal computer using conventional memory.

The Legendre Collocation Method provides a formula for the derivatives in
terms of the values of the function in matrix form. The governing differential
equation and boundary conditions are satisfied by matrix equations at the
collocation points. The resulting set of simultaneous equations is then solved for
the values of the solution function using LU decomposition and back substitution.

The Legendre Collocation Method is applied further to the problems
containing singularities. To obtain an accurate approximation in a neighborhood of
the singularity, an eigenfunction solution is specifically formulated to the given
problem, and its coefficients are determined by [east-squares or minimax
approximation techniques utilizing the results previously obtained by the Legendre
Collocation Method. This combined method gives accurate results for the values

of the solution function and its derivatives in a neighborhood of the singularity.



All results of a selected number of example problems are compared with
the available solutions. Numerical experiments confirm the superior accuracy in

the computed values of the solution function at the collocation points.
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CHAPTER 1

INTRODUCTION

The problems of mathematical physics, such as electrostatics, quantum mechanics,
elasticity theory, hydrodynamics etc. generally lead to partial differential equations
or to ordinary differential equations. These equations have to be integrated subject
to the initial and/or boundary conditions of each specific problem. The necessity
of solving these problems as accurately as possible in cases in which an analytical
solution is unobtainable has lead to the development of numerical solution
techniques such as the Fintte Difference Method, the Finite Element Method and
the Boundary Element Method. Among the simplest methods to apply are the
Orthogonal Collocation Methods.

The formulation and improvement ot various Orthogonal Collocation
Methods have attracted the interest of many mvestigators over the past quarter
century. There have been many publications providing surveys or accounts of
these studies, for example, the book by Villadsen and Michelsen [1]. A brief
account of the methods appeared n the books by Finlayson [2], and Prenter [3].
Most of the earlier developments of the Orthogonal Collocation Method were
applied to one-dimensional problems, and when applied to two-dimensional
problems they were limited to the use of lower degree polynomials in constructing
the approximate solution, €.g. cubic Lagrangian polynomial, cubic splines, cubic
Hermite polynomials [1.4].

In the Orthogonal Collocation Method, the zeros of an orthogonal
polynomial are chosen to be the collocation points. The method was apparently
first applied to differential equations by Frazer, Jones and Skan [5] and

independently by Lanczos [6.7], and was developed further for solving ordinary
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ditferential equations using Chebyshev series by Clenshaw and Norton [8], Norton
[9]. and Wright [10]. These applications were primarily for initial-value problems.
Horvay and Spiess [I1] utihized polynomials which were orthogonal on the
boundary. Major contributions to the method were made by Villadsen and Stewart
[12] when they developed orthogonal collocation for boundary-value problems.
They chose the trial functions to be sets of orthogonal polynomials which satistied
the boundary conditions, and  called the method an [Interior Collocation
technmque. They also treated problems with trial solutions consisting of sets of
orthogonal polynomials which satisfied the differential equations with collocation
on the boundary. This was called Boundary Collocation. The zeros of an
orthogonal polynomial were used as the boundary collocation points. They also
solved for the values of the solution function at the collocation points rather than
using arbitrary function coefficients in the expansion of the approximate solution.
This simplitied the procedure for obtamning the solution. It is important to note
here that most of the problems solved using the Orthogonal Collocation Method by
previous investigators were chemical engineering problems.

Collocation methods have been used to solve integral equations for more
than sixty years. More recently, the so-called A#-. p- and hp-versions ot the
standard Finite Element Method have attracted the interests of many investigators
in this fields [13,14,15]. The accuracy of the h-version s achieved by refining the
mesh size; and the p-version mmproves its accuracy by increasing the polynomual
degree. The hp-version balances a combination of mesh refinement and an
increase of the polynomial degree of the shape functions. The h-, p- and Ap-
version techniques using the Finite Element Method have been applied to the
Boundary Integral Element Method {16,17,18].

A major purpose of this study 1s to develop the p-version ot the Orthogonal

Collocation Method as applied to differential equations, so that it can be easily
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automated for the computer. The Orthogonal Collocation Method formulated here
differs from the procedures presented by previous investigators in that we confine
ourselves to the use of the zeros of one orthogonal set, namely the Legendre
polynomials as the interior collocation points as well as boundary collocation
points. In a series of numerical experiments, we found that the use of the Legendre
polynomials yielded the best accuracy. Furthermore, we require the approximate
solution, which 1s constructed using Lagrange interpolation functions, to satisty
the governing differential equations and boundary conditions only at the
collocation points. Thus, a mixed collocation technique 1s adopted; it generalizes
and simplifies the procedure in solving the problem using a computer, and the
convergence of the solution 1s achieved by simply increasing the degree of the
polynomial used in the approximate solution. The method developed in this study
provides the derivatives, in terms of the values of the tunction in matrix form by
performing matrix multiplication. Here we follow Villadsen and Michelsen [1,19]
who used a repeated differentiation of the approximate solution, and evaluated 1t at
the collocation points. We extend further the use of the so-called Legendre
Collocation Method to problems containing boundary singularities. The goal 15 to
develop a solution method, capable of finding the approximate solutions as well as
the approximate partial derivatives of a given problem, especially in a
neighborhood of the singularity without using a fine mesh. The resulting combined
method 1s described in Chapters 2 and 3.

Chapter 2 discusses the development and formulation of the p-version finite
element technique of the Legendre Collocation Method. The automated p-version
technique 15 made possible by the use of the Lagrange interpolation functions to
construct an approximate solution, with the zeros of a Legendre polynomial as the
intertor and boundary collocation points. The recurrence formulas for obtaining

the first derivative at the collocation points are presented in detail, and as a result,



this derivative can be expressed in terms of the values of the solution at the
collocation points in matrix form. Matrix operations of the discretization matrix
for the first derivative will generate the matrices for higher order derivatives which
will be substituted into the differential equation. In the same manner, the boundary
conditions are satisfied, and the whole problem 1is then reduced to a set of matrix
equations which are easily generated and solved on a computer.

Like all polynomial approximations, the Legendre Collocation Method 1s
unsatisfactory in a small neighborhood of a singularity. Thus, a special treatment 1s
required. Chapter 3 gives a systematic treatment in the form ot eigentunction
solutions in a neighborhood of the singularity which are specitically formulated
for these problems. The coefticients are determined by least-squares or mintmax
approximation techniques utilizing the results given by the Legendre Collocation
Method. This combined method gives the solution and its dertvatives which are
important in the sample problems treated, because they represent the stresses in a
neighborhood ot a singularity.

In Chapter 4, we report and discuss the numerical results on several
examples. The techniques of Chapters 2 and 3 are applied to the problems. and
the results are compared with the available solutions obtamed by previous
investigators. The numerical solution at the collocation points or at intermediate
interpolation points might be interesting in itself, but the intention of this chapter
is to give numerical evidence of the effectiveness of the method developed in this
study: also, to show how well all the techniques of the previous chapters work
together. In Chapter 5. we present our concluding remarks on this study.

Finally, the two general solutions of an angular region as representative of
boundary singularity are shown in the appendix. The formulation for obtaining the
weights of a Gauss-Legendre quadrature is presented as well as a table of the

Legendre collocation points.



CHAPTER 2

LEGENDRE COLLOCATION METHOD

2.1 Introduction

This chapter deals with the Legendre Collocation Method for two-dimensional
problems. The term Legendre Collocation Method 1s used here to signify that the
solution of a P.D E. for a two-dimensional region is obtained by using the zeros of
a Legendre polynomial as the interior and boundary collocation pomts, which are
also the Gauss-points in numerical integration. Since the results obtained by this
method are the function values at the zeros of a Legendre polynomial, the
numerical integration formula can be immediately applied to a problem that
requires integration over the domain, such as torsion problems. This is one of the
advantages of collocating at the roots of a Legendre polynomial

For simplicity, the formulation in this chapter will be confined to elliptic
equations applied to rectangular domains or regions that can be divided into
several rectangles such as torsion of a bar of L-shaped cross section. In addition,
the p-version rather than the /A-version or Ap-version technique [13,14,15.17,18] is
emphasized. Thus, the domain is broken up into a fixed number of (relatively)
large subdomains or elements, and high-order basis functions are used to construct
a trial solution within each element. In this approach, convergence is achieved by
increasing N, the number of collocation points within the elements, while keeping
the number of elements fixed. Clearly, the logical choice for polynomials passing
through the collocation points in this case will be Lagrange interpolation functions
that can be easily constructed and increased to any desired degree N of the

polynomial as will be shown later in this chapter.



As mentioned above, the emphasis in this study 1s on a higher-degree
approximation or p-version technique. Finlayson [2] stated that in higher
approximations the choice of collocation points is not crucial, but a choice in a
certain way 1is possible and will make the calculations both convenient and
accurate. Furthermore, Stewart and Villadsen [12,20] have poimnted out, that a
positioning of the collocation abscissas at the zeros of orthogonal polynomials
leads to a rapidly convergent interpolation scheme, even for the functions that are
poorly represented by polynomials. Therefore it appears to be a natural choice to
use the zeros of a Legendre polynomial as the collocation points [4,20].

The application of the Legendre Collocation Method can be outlined as
follows:

1. By giving as the only input N, the degree of the Legendre polynomial in
computer program, the zeros of the Legendre polynomial are calculated
and chosen as the interior collocation points. In addition, the two end
points of the interval [-1,1] are added as additional collocation points.
This inclusion will enable us to ensure the continuity ot both the function
and the normal first derivative values across element boundaries, also to
provide us with collocation points on the regional boundaries where the
boundary conditions for the problem should be imposed. Thus, the total

number of collocation points on the interval will be (N + 2) points.

2. A one-dimensional trial solution in the form ot a Lagrange interpolation
polynomial is taken, and matrices A and B representing the first and
second derivatives, respectively, are established. These derivatives are
expressed in terms of the values of the function at the collocation points.
The coefficients of matrix A are obtained by differentiation of the

Lagrange interpolation polynomial and then evaluated at the collocation
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points. The coefficients for the matrix B are computed by simply
squaring A. Thus, the discretization matrices A and B are both
(N+2)x{(N+2). When the /M row of A is multiplied by the values ot
the function at the collocation points on the interval under consideration,
one obtains the first derivative at a point which corresponds to row

number /.

. The Legendre Collocation Method proceeds by breaking up the

computational domain into rectangular macro-elements forming the
region. The trial solution in a two-dimensional domain 1s just the product
of Lagrange polynomials in each of the dimensions. Therefore the
derivatives at the chosen collocation points can be replaced by
summations of particular rows obtained by operating with products of
the matrix A applied in the x and y directions multiplied by the known or
unknown function values at the collocation points in the appropriate row.
When the method is applied to the chosen domain, each macro-element
is mapped from the physical (x,y) space into a local (& 1) coordinate
system, and a set of simultaneous equations is generated as a result of
satistying the following conditions:

o The discrete approximation of the governing differential
equation is satisfied at each interior collocation point of each
element.

+ The values of the function and normal derivative are required to
be continuous at collocation points located at inter-element
boundaries. Since a global numbering scheme is adopted for the
entire domain, continuity of the function values i1s automatically

ensured.
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« Boundary conditions are satisfied at the collocation points on
the boundaries.

o At all corners of the domain, the boundary conditions are
satisfied. In such cases where both the normal derivative and
function values are prescribed at a corner, only the function
value 1s chosen to be satisfied. If, the normal denvatives in both
the x and y directions are prescribed at a corner, both dertvatives

are normalized so that satisfaction in both directions 1s possible.

4. The sets of hnear equations occurring in the illustrative problems have
been solved using LU decomposition together with forward and
backward substitution to give the solution at the collocation points. The
solutions at any other points can be easily computed by employing the
two-dimensional  Lagrange interpolation  polynomials  previously
constructed. For problems with no singularities, the first derivatives at
collocation points representing stresses or fluxes can be calculated by
simply multiplying the solution function vectors by A. For problems with
singularities, a special treatment is necessary and has been developed for
an accurate approximation in a neighborhood of a singularity.

[n this study, the trial solutions chosen satisfy the governing differential

equation and boundary conditions at the collocation points. Thus, the Legendre
Collocation Method employed here is considered as a mixed collocation technique

as defined in References [12,21].
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2.2 One-dimensional Lagrangian Trial Solution

In many practical problems, it 1s impossible to determine the exact solution to the
governing differential equations. The exact solution defined in this context is an
explicit expression for the solution, in terms of known functions, which exactly
satisfies the governing differential equations and boundary conditions.

As an alternative, the Legendre Collocation Method formulated in this
study, seeks approximate solutions. These are explicit expressions in terms of
known functions, but they only satisfy the governing equations and boundary
conditions at the collocation points.

The construction of an approximate or a trial solution consists of
constructing expressions for each trial function in terms of specific, known
functions. The Legendre Collocation Method makes use of the classical method of
Lagrange in approximating a function with given values at a discrete number of
points by a finite sum of polynomials. The Lagrange interpolation polynomials are
algebraically sumple, and easy to work with. They provide a systematic procedure
for constructing trial functions and for evaluating their derivatives at collocation
points. Most important, the procedure can be easily implemented and automated
for computers. For the same reason, the Lagrange formulation 1s widely used in the
Finite Element Method [22,23].

An approximate solution will be denoted by a letter with a hat over it. Thus,
21 will denote an approximate solution for u.

In the one-dimensional case, the (N —1)t-degree Lagrange interpolation
polynomial formula for a trial solution in the arbitrary interval [x,x,] can be

defined as

€)=Y (2.1)
i=1
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where NV is the total number of interpolation points, u. is the value of solution at
the ith point, and ¢,(&) are Lagrange interpolating functions which have the
property

I fori=j

2.2
0 for i=j (2.2)

{/‘x(é:;) = 5{,* = {
and 0, is the Kronecker delta as defined above. It is important to note here that the

interpolation points or nodes, are also collocation points. Thus, N i1s also the
number of collocation points. Here the interior points within interval are chosen to
be the zeros of a (N —2)th-degree Legendre polynomial, and the two end-points

are purposely included as collocation points, for reasons previously discussed.

Approximation function # ————

= Exact function
u /
Ay
| NS -~

e

RAN

3 o N

ey

Figure 2.1 (N-1)h-degree approximate function.



The Lagrange interpolation function is defined by [24]

(£=¢6)(6=& )(E~¢u) (g~

fA(E)=— . - — S

()= TE T E) (& —ENE—En)(E-¢
M —&) (2.3)
l(‘fi—cfj)

JH#i

Another formulation of # can be written as [1,19]

r(g)= (oo (2.4)

where

i
i ::1-
—_
Sy
|
f\r
o
n

is a node polynomial of NM-degree with the leading coefficient equal to one, and

PL(&) 1s the first derivative of £, (&) defined as

Pi(S) =

()] H(c — &) for E=¢ (2.6)

and evaluated at point & which is the i collocation point. In this study. the
interior collocation points are the zeros of a (N-2)-degree Legendre polynomial.
An approximate solution expressed as a Lagrange interpolation polynomial,
as in Equation (2.1), is a variable-order polynomial, and it can be easily automated
to be constructed to any degree desired on a computer. As in the computer
program written for this study, one needs only to input any desired integer (N —2)

as the order of the Legendre polynomial, two end-points are automatically added,
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geometric coordinates of the domain are supplied, and then the problem is solved.
These are the only inputs needed to solve the problem using the Legendre
Collocation Method. From the standpoint of a p-version Legendre Collocation
Method, this automation is highly desirable since increased accuracy is achieved
by increasing N. Another important attraction of these polynomials is that the
undetermined coefficients #, in Equation (2.1) are also the solutions at the
collocation points once the problem is solved. Solution values at any other
locations in the domain can be computed by mnterpolation from the polynomials

previously constructed.

2.3 Differentiation of a Lagrange Interpolation Polynomial

To apply the Legendre Collocation Method directly to differential equations, the
derivatives at the collocation points are expressed in terms of the values of the
solution function at collocation points. These derivatives at the collocation points
are obtained by matrix operations on the column vector of the solution function.
The solution function vector must include the boundary conditions. The column
vector tor the derivatives must include the boundary conditions on the derivatives.
The resultant matrices are substituted into the differential equation(s). In order to
obtain the coefficient matrices for first and second derivatives. Equation (2.1) has
to be differentiated. Thus,

di

dél

o—

[
_Z[Mdg L m (2.7)

s, f=1 §=4,



As shown in the right-hand side of the above equation, it becomes tmportant to
find the expression for the derivatives of the Lagrange interpolation function

().

If Equation (2.4) 1s re-written as

Py ($) (E— &) (&

——== ==& )0 (¢ (2.8
P8 c—&)0(E) )

and then 1s differentiated, we obtain
PUEY (o avminn s s ,
S - ENU(E)V+ L (& 2.9

1;,( ) (‘3 ér) /(V)+ 1(,) ( )
l)[\,.’!(g) ol A ol

— =\E=&E )07 20 2.10
TR IAELAC (2.10)
P (E) N o
N '""‘"—:f'_'“ — f__ ’/' Jf'(}\) + k {',(k-“l) C:: 2 l 1
[),\t,(‘fl) (; é‘) { (5,) i (,) ( )

where & in Equation (2.11) denotes the &h-derivative.
Normally only /(&) is of interest as we shall see. For &= ¢ | Equation

(2.10) becomes

()rl(}:) Al_ﬁil?/_), f

' :4 ‘]2)
)= 5 ey e (

Using Equation (2.9), for £= ¢, # £ and noting that ¢ (£, ) =0, one obtains

o 1 G «
% for £=¢ # & 2.13
(&)= ( f) P’ (5 ) §=¢,#¢ ( )

As shown in Equation (2.12) and (2.13), it is necessary to compute the first

and second derivatives of P, (&) at collocation points. The recurrence relation for
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Py (&), which 1s very suitable for computer programming will be used as a basis
for finding recurrence expressions for the derivatives. The node polynomial in

Equation (2.5) can be generated by the recurrence formulas [1,19]:

Li(g)=1

PAEY = (E= )P (&) for j=1.2,....N (2.14)
We differentiate Equation (2.14) twice to yield

PIE)= (&= &P (E)+ P (S) (2.15)

P& =(&= ) PL{S)+2P,(8) (2.16)
In general, for kth differentiation, one has

PNEY= (&= &) PEE) +h PEI(E) (2.17)

and the values of Py(< ) and Py(&) are obtained by inserting & for & in
Equations (2.15) and (2.16).

Equation (2.14) 1s started with A(&)=1, as a result #/(£)=0, and
Equation (2.15) with j =1 will be

P(E)=(E-ENH(E)+ R(S)=1

Whence,

P(E)=(E- &) RNE) + A(S), where H(E)=({-&)

=(£-5)+(5-4)

P(S)= (=& B(E)+ £(E), where £(8) =(S-§)(E- &)
= (‘f_ ‘53)(‘5*52)4'(%&“53)(&“51)nggl)(’;“ éz)

Pi(S)=(E= S )P (&) + Py (€)
Similarly, for Equation (2.16), the first iteration gives

R(&)=(S=ED (&) +21(S)
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where FJ(&) = By'(£) = 0; therefore
RI(¢)=0
P(E)=(E= )R (E)+2P(E) =2
B(E) =S~ &P (E)+2P0(8)

PUE) = (S= )P (8) +2P L (E)
Clearly, the values of previously calculated P7,(£) and £/ (&) are used to
obtain 7(&) and P/(&). Hence, the recurrence formulas presented above should

be easy to implement on a computer.

2.4 Coefficient Matrices for First and Second Derivatives

It follows from Equation (2.7), that the values of the derivatives at collocation
points can be expressed in terms of the values of the function, also at those points.
Equation (2.7) as the first derivative of an approximate solution # at the /th

point is repeated here in another form

N

i = Z (&, (2.18)

I=1
and for i = 1,2,.... N, the vector of the first derivative of an approximate solution

can then be expressed in matrix form as

i NG (E) o () "“L
7 _ (&) (&) - (&) ‘“.2 (2.19)

iy, (&) 8y o (Ey) L’/N
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Note that the diagonal elements of the coefficient matrix are computed by
Equation (2.12), and the oft-diagonal coefficients are calculated by Equation
(2.13). Equation (2.19) can also be written in compact form as

ﬁ’=—g§ﬁ:Au (2.20)
ds

where A, = (" (&) are the coefficients of the N x N matrix A. Examination of
Equations (2.19) and (2.20) reveals that the first derivative operator L;i is
represented by the coefficient matrix A. This matrix A now becomes a basis for
obtaining the higher derivatives expressed in terms of the values of the function at
the collocation points.

Similarly to the expression in Equation (2.20), the second derivative can be

written as

Noting that £ can be replaced by A, we have

' 0(g)  5(E) - (6 ui )
iy __‘('“1(51) (&) - (&) ”’5{

L?&’: Csy) (Ey) - Ou(8y) HR:J

Replacing (i}, 4,....i1}; ) with Equation (2.19), one has

1y’ (&) (&5 - US| (&) a(E) - u(E) ||
f’é' — fll(fz) f’z(éﬁz) ﬁ’N(gyz) (4)/1(4:2) /'2(‘:!):2) {f"/\r(\éz‘) e

) L0(ey) () o OGO LG ((E) o () L"(N

or
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d* .
U =A"u (2.22
dé&- ' )
If we let B= A? then
J2
4 G =Bu (2.23)
d&s

N
where B, = Z e8NS,
J=1

Alternatively, as in Reterence [1,19], the coefficient matrix B can also be obtained
by differentiating of Equation (2.8) three times, so that

[{q(/t ) - e\ g " -

SeEs = (g )0 (E) k(&)

[;\" ( S, )

and for &= ¢, the above equation yields

rrf i 1 [%y(‘fi)
61 (é; ) = t:"yi;_Twé—f
D 1:\/ (‘7/)
as the coefficients located in the diagonal of the matrix B. The off-diagonal

elements can be computed by inserting &= ¢, # & into Equation (2.10) so that

\ l PIE,)
)=z { vis

= 2008
Fme) L) !
It is clear that, Equation (2.22) as the proposed computation for matrix B is the
simplest procedure. Furthermore, the coefficient matrix for any higher order

dertvative can be easily obtained.

In general, the &0 derivative of 77 can be determined by

(](k) l
2 G=AY 2 2:
450 u=A"u (2.24)

where A* is the k" power of matrix A. Thus, any desired order of derivative

expressed in terms of the values of the function at collocation points can be
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obtained by simply raising A to the k" power. This can be performed easily on a
computer, and it makes the Legendre Collocation Method very attractive.

It 1s important to note here that the order of the approximate solution «
should be higher than or at least equal to k. Otherwise. a square matrix A" will be
zero and the higher order derivatives in the differential equation will not be taken

into account.

2.5 Zeros of Legendre Polynomials

We present an automated method of calculating the zeros of  Legendre
polynomials. As previously stated, these points are used as interior collocation
points. They are also the Gauss points i numerical integration. We start with the
recurrence relation from the theory of Legendre polynomials in the interval

-1<&E<1[25]:

f‘f)(f‘)‘:l

o ‘ ] o (2.25)
(+DLL(E) =i+ )RS =i b (&) '

for i=0,1.2,....n Then by letting

J=i+l, for i=0L2 ... norj=12...N

Equation (2.25) can be written as
B 2/-DEP_(EY—(J-DP (& o
f?(‘i):( J=DEP (& )7 (J=DP (&) (2.26)

J
Expressed as in Equation (2.26), the recurrence relation becomes easy to program.
The dervative of a polvnomial is calculated using the following recursion
formula {25]
(E3=DPUE) = jEP(E) = P L(E) (2.27a)

or
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J[ErE)-r8))

£

Using the available values calculated by Equations (2.26) and (2.27b), the roots of

a polynomial are found by the iteration formula

Pe(&)
f= & - a2t 2.28)
= g (&) ( '

which is the well-known Newton's method.

Knowing that the zeros are symmetric in the mterval from x = —1 to x = +1,
one needs only to find half of the zeros, and the other half are obtained by
reflecting about the origin by changing sign. To jump directly to the neighborhood
of the desired root, where it converges by Newton's method, we will use the

following initial 'guess' to approximate the & root [20]:

4k -1
£ = cos(ﬂ‘; - zrj (2.29)

The above approximation is based on an asymptotic formula used to define the
Legendre polynomial P, (&) in terms of & where &= cosf, and ¢ is computed
using

4k ~1 I dk=1
—E'+27[-%8N2 CO[4N+2/T+O(/\/ )y fork=12,....N (2.30)

Notice that Equation (2.29) uses only the first term of Equation (2.30). The
refinement for the location of the zero is done by Newton's method as mentioned
above.

As mentioned earlier, the Legendre Collocation Method provides the
solution at the collocation points. The interior points within the interval are the
zeros of a Legendre polynomial. Thus, for a problem that requires numerical
mntegration, as in the St. Venant torsion problem, it is necessary to calculate the

weights associated with the zeros of the Legendre polynomial that were previously



obtained by Newton's iteration formula in Equation (2.28). These weights, used in
Y , g

Gauss-Legendre quadrature can be computed from

W, = _7;2 — (C.10)
(1= ED[Pi(E)]

as derived in Appendix C. Notice that the formula for computing 1, also consists

of terms needed for finding the zeros of the Legendre polynomial in (2.28). Thus,
thts computation is a simple matter once the zeros of the Legendre polynonual are

calculated.

2.6 Legendre Collocation Method Applied to Differential
Equations in Two-Dimensional Domain

The Legendre Collocation Method is based on the Octhogonal Collocation
Method introduced by Villadsen and his co-workers [1.12,19,20,27], which
consists of satistying the differential equation(s) and/or boundary conditions at the
zeros of a selected Jacobi Polynomial of a selected degree. Increasing the degree
of the polynomial and. correspondingly the number of zeros, increases accuracy,
but also the number of unknowns. In the Legendre Collocation Method, we use
Legendre Polynomials exclusively, because it simplifies the treatment, and we
found by numerical expertmentation that this yields the best accuracy.

To lustrate the method. consider the Poisson equation

. du dtu L .
V*u:—73r2 + ?Vr_;:_f (v, v) (2.31)

in the domain Q as depicted in Figure 2.2, and subjected to essential, or Dirichlet,
boundary conditions
w=1u onl, (2.32)

and natural or Neumann boundary conditions



cu

=¢q onl, (2.3

Q9]
I
(O8]

on
where the total boundary I' = I', + [,. Note that 7 and § are prescribed values of

the function and the normal derivative on the boundaries I', and T, respectively.

w=u onf,

X

——=q on [
n

»VL’

Figure 2.2 Domain and boundary conditions for Poisson equation.

Let /i be the approximate solution in terms of a sertes ot known functions
with arbitrary coetficients. This trial solution satisfies none ot the given Equations

(2.

8]

1), (2.32) and (2.33) everywhere so that the so-called miixed collocation
technique is employed [12.21]. The mixed collocation method s a general
technique that can be applied to any differential equations and boundary
conditions. In contrast, the interior collocation technique uses a trial solution «

-

that satisfies the boundary conditions in Equations (2.32) and (2.34) identically.



and the undetermined coefticients in the trial solution are found by satustying the
governing differential equation (2.31) at # poiuts in the domain Q. Boundary
collocation requires an approximate solution 7 that satsfies the difterential
equation (2.31) identically, and the coefficients are adjusted to satisty the

boundary conditions in Equations (2.32) and (2.34) at n pointson [ =1, +[,.

2.7 Linear Transformation of Two-dimensional Domains

As mentioned in the preceding sections, the interior collocation points are chosen
at the zeros of a Legendre polynomial defined m the interval from £=-1 to
E=+1. In addition to the # zeros of the Legendre polvnomial, for cach dimension,
two end points are added as extra interpolation points in the trial solution.
Therefore the total number of points in one dimension will be (#+2) points, and
the trial solutions will be (n+ 1) - degree polynomials in the x- and y-directions.

In a procedure used by several investigators in this field [4,12.19,
28,29.30,3 11, the zeros of orthogonal polynomials are taken as the collocation
points, and the domain is broken up into several pieces as in the Finite Element
Method. This method i1s sometimes called Orthogonal Collocation on Finite
Element [4]. By adding the two endpoints of each interval to the zeros of the
Legendre polynonnal in each direction, and using a global numbering scheme for
the entire domain, the mapping of the boundary nodes of the so-called parent

element (&=+1,7=+1) onto the boundary nodes of the real element n the
rectangular domain v (x,,x,), v €(y,, ) (see Figure 2.3). will automatically
ensure the continuity of the function values at the collocation points on inter-

element boundaries. Furthermore, there are enough undetermined parameters to
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enforce continuity ot normal derivatives at the inter-element boundary collocation

points.
¥

i [

| l

! i

‘( 1 “-‘_“—‘_‘}'_-_F‘_—‘_J

Real clement
u _—— po—

l
I
!

Figure 2.3 Linear mapping of real element anto parent element

Stnce the final solution is obtained as the funcuon values at the zeros ot a
Legendre polynonual, we have "ready to use” tunction values for numerical
miegration. For example, in the problem of a rectangular bar under torsion. the

torque 1s calculated by

M, ZJ‘J‘Hd\z{'I’
AV ARV '

?.(',L‘ZZ Z W ul_\'( S, ))
=l =l

It

I



where u 1s the Prandtl stress function, NL.X and NLY are the number of collocation

points, w, and w, are the weights corresponding to the zeros of the Legendre
polynomial, and ¢, and ¢, are constants due to linear transformations in the x and v
directions, respectively.

The transformation of rectangular shapes is straightforward so that

X . +FX, X —X, e
¥ = 7 ‘%.? # + ' \‘7 t if (2:’5}
and
Vs+t + Vs Vi =¥y 2
f= B 2.36)
) 5 5 (2.36)
Hence, ¢, and ¢, are given by
()
X o= X. Ax JR
Cl — r—|17 ro— 2 (\237)
and
y +1 y A):‘(t) /
¢, = = L= (2.38)

3

where Ax and A " are element sizes in the x and y directions.

2.8 The Legendre Collocation Element Formulation
in Two-dimensional Domains

As in the Finite Element Method, a tnal solution is constructed in the parent
element &£— 17 coordinate system. Thus, in each element, using a one-dimensional
trial solution Equation (2.1) as a basis, the trial solution for a two-dimensional
problem is defined by the tensor-product of the & and 7 spaces, so that

NEX NPY

AE ) = Z Z LAE (), (2.39)

i=1 =1
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where NPX and NPY are the number of points in the & and 5 directions,
respectively. This interpolation Equation (2.39) is not actually used in the solution
process since the problem is solved in terms of the value of u, at the collocation
points. The collocation points are chosen at (&, 17,) where & and 7, are the same
collocation points defined in one dimension.

In order to replace the Laplacian operator in Equation (2.31) and the
normal derivative in the Neumann boundary conditions in Equation (2.33) with the
derivatives expressed in terms of function values at the collocation points,
Equation (2.39) has to be differentiated. The first partial derivative of Equation

(2.39) with respect to £ will be

NP NPY

0 ﬁﬁ ] 0 ) -
== 2D O 240

=1 =l
At a collocation point #(&,, 77,,), all terms of ¢ (7,) except that for ; — m will
drop-out
/,’j( 7,) =1
Therefore, for each element, the first derivative with respect to ¢ at the

collocation points can be written as

NPPY
s e o O VLN sy
an (‘:71; > )7»;),) - é)g[u(‘vkv ,71)1):{ - Z] £ l(gic ) i (24 l )
for k=12.... NPX andm=12,... NPY
or in matrix form
ﬁi(fl’r?m) 4 (S)) (&) e O (8) Uy h
"«13(52’ M) _ (&) (&) o Uy (&) Uy, (2.42)

ﬁ,é' ( ‘5 wex s M ) [ 4 f (5 NPY ) ('z (f NPX ) e pvos ( ‘:f NPY ) L’ NEY o J



for m=12,...,NPY. Examining the coefficient matrix in Equation (2.42), it is
clear that this is the matrix A m Equation (2.20). Thus, A which used for
calculating the first derivative at the collocation points is not only applicable for
the ome-dimensional problem, but i1s also valid for the two-dimensional case.
Matrix A now serves as a basis for computing the higher derivatives at the
collocation points. Consequently, B in Equation (2.23) can also be used to obtain
the expression for the second partial derivative at the collocation points along the
& and 7 directions. In concise form, Equation (2.42) will be

u=AXu (2.43)
Similarly, the first derivatives with respect to 7 can be written as

NPY

. NI \ ., : .
U, 7] (gkﬂ 77»1) = —gf};[l’[(;ka ,7»;))} = Z f ‘/‘(]7»1)111'{/ (244)

J=1
where & and m have the same meaning as above. In matrix form, Equation (2.44)

can be written as

ﬁyn(ffk«,'h) ) () o e () | sy |
ﬁ,;;(f/m'?z) () (50 o () Uy

l:':rf( Eier ey )[ E ey ) ey ) o Oy (lepy ) {8 ey J

Again, in a concise form, Equations (2.44) and (2.45) will be
u,=AYu
Note that for NPX'= NPY, AXis the same as AY. Similar conditions apply for B in
x and y directions.
Denoting the approximate solution at the &t collocation point in & and the

mth collocation point in 7 as



ﬁl;m = lﬂl(é/x 2 77//;)
and replacing B by BX or BY as required, the second derivative with respect to &

at the collocation point (&, , 77,) can be written as

where B\, are the coefficients of BX in the A" row. The second derivative with
respect to 7 will be

NPY

Uy, (2.47)

o
mj

Jon i=1

[n the collocation method, the governing differential equation (2.31). and

the boundary conditions in Equations (2.32) and (2.33) can be written as

V2 )= f{F,)=0 inthe domain (2.48)
a(Fy—1 =0 onboundary I, (2.49)
A(F) . -
—————¢ =0 on boundary I, (2.50)

on

where 7 are the collocation points in the domain and on the boundaries. n the
Legendre Collocation Method, Equation (2.48) will be evaluated at the interior
collocation points, which are the zeros ot a Legendre polynomial. Equations (2.49)

and (2.50) are satisfied at the collocation points on the boundaries.
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Figure 2.4 A typical interior collocation point where the governing
equation is evaluated.

Equation (2.48) is applied at the kmtt interior collocation point (see
Figure 2.4), and mapping from the physical (x,y) coordinate into a local (&, 7))

coordinate as shown in Figure 2.3, the resulting equation will be

g 7 <2 NPY . 9 2 SRy
" BX 1y, +| ——— ZHY = (3,0, 251
[‘XM-] - xr ) Z ! (}"m "‘_,V;; ] =1 oo f e ) ( )

7 i=]
where in the above equation, the constants due to the transtormation have been
taken into account. Equation (2.51) has to be repeated for each interior collocation
point inside the domain, such that £k =2.3,..., NPX —1 and m=23,... NPV — 1.
Furthermore, the problem is solved based on a global numbering scheme, where

the local double indices km should be converted to a single index in the global
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0

scheme. Thus, continuity of the solution at the inter-element boundary points is

automatically satisfied (see Figure 2.5).

Element (p) Element (q)

e #I o

™~

[nterelement boundary
i= NPX forelement (p)
i= 1 forelement (q)

Figure 2.5 Inter-element boundary point IBC at which the continuity
of the function and normal derivative is imposed.

As mentioned earlier, for a particular point [BC at an inter-element
boundary point as shown in Figure 2.5, the continuity of the normal derivative can

be imposed by requiring that

2 NP 5 NPY
A .X( ») E A‘X NP i U, = Z{vx‘(qﬂ)‘ § AX 1 unn (25 2)
i=1 (=1

where Ax'” and Ax? are the element sizes of element (p) and element (q),
respectively in the x direction. Equation (2.52) will be applied at all collocation
points on the boundaries between elements. Similar equations can be obtained for

satisfying the continuity of the normal derivative in the y direction.



¢ - Boundary collocation point

J=NPY
4

Atyp

~= Interior collocation point
(i=k j=m)

Figure 2.6 Boundary points located at left-side vertical and top-side
horizontal boundaries

If the Neumann boundary condition in Equation (2.50) is prescribed on the
left-side vertical boundary as shown in Figure 2.6, then for each boundary

collocation point, the resulting equation is
NPy

2 AN -

— P ([

2 1r |
Ax' Z
1=}

where Ax' is the size of element in x direction, and g, is the prescribed normal

,q
o
tn
L3

S—r

derivative. As depicted in Figure 2.6, Equation {2.53) is applied at the mh

collocation point in the 77 direction.
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Figure 2.7 Boundary points located at right-side vertical and bottom-side
horizontal boundaries

In case Equation (2.50) 1s prescribed on the top-side horizontal boundary
(Figure 2.6), we will have

NPY

2 _
573 ; AY ypy 4y, =

(2.54)
for the Ah boundary collocation point in & (see Figure 2.6).

Applying Equation (2.50) at the boundary collocation point on the right-

side vertical boundary (Figure 2.7), where ¢, is prescribed, we have

NPV

A \,(e) z AJXN[’J\'.{ Uy, = 673 (255)
: i=1
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Stmilarly, for the boundary point located on the bottom-side of the horizontal
boundary (Figure 2.7), the equation will be
NPY

Z AY, 1y =7, (2.56)

i=l

Ay(e)

Equations (2.53), (2.54), (2.55) and (2.56) are repeated at all collocation
points on the boundary where Neumann conditions such as specified in Equation
(2.50) are prescribed. The corners of the domain require special treatment, as will
be described in the next section.

It is a simple task to satisfy the Dirichlet boundary conditions expressed in
Equation (2.49). The resulting set of simultaneous equations, globally assembled
to satisfy the governing equations at the interior collocation points, Dirichlet and
Neumann boundary conditions at boundary collocation points, and also conditions
at all corner points can be written in matrix form as

Ku=F (2.57)
where K, the global coefficient matrix, may be called the stiffiess matrix as in the
conventional Finite Element Method, u and F are the solution and load vectors,
respectively. A single index is used in the global numbering scheme for the entire
computational domain. The subscripts of u are based on this single-index
numbering scheme, so as to ensure the continuity of the solution at inter-element
boundary collocation points, and to satisty the Dirichlet conditions. This is done

by setting the coefficients

and the loads

where i is the global number of the collocation point on the boundary, and # is the

prescribed function value.
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2.9 Treatment of Corners

As mentioned earlier, the Legendre Collocation Method is very well suited for
rectangular domains or L-shaped regions that can be broken up into three
rectangular elements. Thus, a computational domain will present a series of
corners which require special attention as the boundary conditions on both sides
forming the corner may not be the same. For mixed boundary-value problems, two
situations may occur at a corner point as depicted in Figures 2.8 and 2.9. In the
first case, as m Figure 2.8, for a smooth function, the solution at the node located
at a corner-point is unique; there will be only one solution at that corner.
Therefore, a known value of the function is enforced as a boundary condition.
While corners with difterent values of derivative at the two sides exist in many
practical problems (see Figure 2.9), the Legendre Collocation technique provides

an easy (reatment as will be outlined below.

a4 ~—- Corner point
Su Fuo : :

o= S prescribed

an oy

us preseribed

Figure 2.8 A corner with known values of the function and normal derivative.



—— 1s preseribed ~ Corner point

.l :
— 1s prescribed
ZRN

Figure 2.9 A corner with known values of normal derivative.

For example, the situation at the corner as shown m Figure 2.10 has two
normal derivatives 5 and %°  as prescribed values. Furthermore, in this
particular example, the total number of collocation points in both x and y
directions is taken to be the same, NPX = NPY = 5. For the given node numbering
scheme and reference axes as shown, Equation (2.55) gives the first derivative in

the x direction for that corner (point 65) that can be written as

i) '

au . , ) L - o
o = oy CAsttgy + Asytigy + Asyiigy + Asyitg, + Assitgs) = o, (2.58)
cx o Ax®

where As,,..., Ass are the coefficients located in the last (NPX = 5) row of matrix A

in Equation (2.19) or (2.20). While u,,,...,1; are the function values associated



with the point numbers in Figure 2.10. Similarly, from Equation (2.54), the

derivative in the y direction is

ou| 2 , . ,
v = Ao (Asitiyg + Asgttg + Asyttgy + Asytisg + Assttes) = 4, (2.59)

" point 65

Equations (2.58) and (2.59) are normalized to yield

2 )
A o (As i) + Asprigy + Asytigy + Asuig, + Asqirgs) =1 (2.60)
: B
Iy . | o
E—;;)TT-(AS,HN + Asyityg + Agytty + Asytisg + Asstts) = 1 (2.61)
1y

Now both equations can be equated to give

<

Ap© 7 (Asytryy + Asgttsg + Ayt + Asytisg) =
o Ly

(2.62)
=0

2

P

Ax g,

X

, 4 , , 2 A 2 Ass |
(Agytg) + Asptisy + Asyigy + Asytigy) + AV G NE 7 u
/ K - Tx

65

Equation (2.62) is the equation for point number 65, and therefore will be
positioned in the row number 65 in the matrix equations for the complete problem,
and the location of the coefficients in the column of the matrix corresponds to the
point number of the unknown u. Thus, the boundary conditions at a corner are

taken 1nto account.



Figure 2.10 Definition at a corner for a 5«3 mesh for each element.

In general, Equation (2.62) can be written in the form

NPY NPV

(b) E 14} NPY . j 1’!\‘[[)'\1 4 - (t " E A‘«)i NEX “‘l NPY T D (263)
V C{\ ,_ \ C[\

j=1
as the enforcement of conditions on the normal derivatives in the x and y directions
at upper right corner point of the region. Slight modifications in Equation (2.63)

are necessary for different locations of the corner point.



CHAPTER 3

TREATMENT OF BOUNDARY SINGULARITIES

3.1 Introduction

[n many problems of practical importance, singularities either inside the domain or
on the boundaries are encountered. In the design process, the quantities involving
dertvatives such as stresses, bending moments, shear forces etc. are particularly
important. One type of singularity 1s, for example, a re-entrant corner in the
torsion problem that causes high stress concentration at this corner [32]. Therefore
it 1s 1mportant to obtain an accurate knowledge of the behavior of the derivatives
in a neighborhood of the singular point.

It is generally impossible to obtain an accurate approximation in a
neighborhood of a singular point, using a single standard numerical method such
as finite difference, finite element or boundary element. The most common method
in dealing with singular points using available computer software 1s to refine the
mesh around the location where the singularity occurs. This procedure, if it
converges, will produce slow convergence in the entire domain and especially near
a singularity [33,34].

In this study, the Legendre Collocation Method applied to this type of
problem also shows the same slow convergence in the neighborhood of singularity.
The advantage of this method over other methods is that using a higher
approximation collocated at the zeros of a high degree Legendre polynomial, will
automatically provide a finer mesh near sharp re-entrant corners as depicted in

Figure 3.1. Such sharp re-entrant corners give rise to singularities of various types.

98}
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Moreover, it is easy to increase the degree of the polynomial when using a
computer program. However, evaluation of the accuracy of a solution obtained

using such a procedure should be considered with extreme care.

LT
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S
A \ |
i
A Pt
Ai; H— & & _d 4
—k © g
\\, &
4
\N
O —  fnlerwr collocation ponts
- 4

Figure 3.1 Legendre collocation points in the neighborhood of a singularity.

Hence. special treatiment for problems involving singularitics 1s hghly
desirable. A major purpose of this study is to further extend the use of the
Legendre Collocation Method by a modification that can produce accurate results
near the singularity. We begin by getting satisfactory accuracy everywhere except
in a neighborhood of singularity. Once the solution at any desired point in the
domain sufficiently far from the singularity can be computed satisfactorily, then
these results are used in a modified procedure for obtaining a solution in a
neighborhood of the singularity. The resulting solution will also be capable of

giving approximate partial derivatives in a neighborhood of the singularity.



The treatment discussed below will be confined to problems involving
boundary singularities, which occur frequently in practical engineering. Such
singularities occur when there 1s a sudden change of direction of the boundary,
producing a re-entrant corner or a change in boundary conditions at some point on
the boundary that is not a corner.

A comprehensive review of methods for treating  problems with
sigularities 1s given by Lefeber [33]. Even though the book is dedicated to the
Boundary Element Methad, Lefeber provides citations of numerous references on
the treatiment of singularities.

As a typical example of the proposed treatment in this study, we consider
the problem of a bar with an L-shaped cross-section under torsion. The procedure
can be outlined as follows:

[. The domain is divided into three rectangular elements torming the L-shaped
region, and the solution at the collocation points for the entire domain i1s

obtained by the Legendre Collocation Method.

2. In a neighborhood of the singularity, a circular sector with fixed radius and
angle ¢ from O to 1.5 1s established. In this sector, the defining equations
are re-written in polar coordinates, and the solution is obtained in terms of

an infinite series of eigenfunctions for the circular sector. This solution

satisfies the governing differential equation and the boundary conditions at

the edges of the domain forming the re-entrant corner. Note that the

solution need not satisfied the boundary condition along the circular arc.

(F¥)

A selected number of points are taken along the circular arc, and solution
function values are calculated at those points by interpolating the results

obtained by the Legendre Collocation Method. A finite number of terms of
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the homogeneous series solution in the circular sector 1s taken. The
coefficients of the terms in this truncated series are determined by a discrete
least-squares procedure to approximate the previously computed values at
the selected points along the sector arc. Thus, the boundary condition at the
discrete points along the sector arc is satisfied 'as accurately as possible' by
the solution in the circular sector. By using the least-squares approach, the
effect of the oscillation of the trigonometric functions comprising the
solution along the arc 1s minimized. The complexity of finding the
coefficients can also be avoided by selecting the points along the arc in
such a way that the eigenfunctions are mutually orthogonal with respect to

summation of the truncated set.

4. Once the coefficients become known, the approximate solution and its
partial derivatives can be found.

As previously stated, in the above treatment of the singularity, the
undetermined coefficients in the finite series solution for the circular sector are
determined by the least-squares approach. The derived series solution satisties the
governing differential equation and also the boundary conditions along the two
adjacent sides of the singularity. The task is now to make the values computed by
the series solution agree with the previously computed values of the function along
the sector arc. This becomes the boundary condition for the solution in the sector.
There 1s another attractive approach in matching the series solution along the
sector arc. This is a minimax approximation, or minimizing the maximum error
[35], and it is done by simply taking the matching points along the arc at the zeros
of a Chebyshev polynomial that have been transformed to coincide with the
interval representing the length of the arc. As a result, a set of sumultaneous linear

equations has to be solved for determining the unknown coefficients in the series
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solution. Thus, it is not required to find the orthogonality conditions for
summation of the eigenfunctions that make up the truncated series solution. The
details of reasoning about this minimax approach will also be presented in this
chapter.

The combination of Legendre collocation and discrete least-squares or
minimax formulation in obtaining the solution near a singularity 1s attractive
because no numerical integration is required.

A problem previously done by Whiteman and Papamichael [36], Symm
[37.38], and Lefeber [33], termed "The Problem of Motz" [39], will next be
formulated for the purpose of comparison. This problem consists of finding a
numerical solution of Laplace's equation in the finite rectangular domain, with a
set of mixed boundary conditions, one of which produces a singularity. Whiteman
and Papamichael used a Conformal Transformation Method considered very
efficient in solving singular problems in rectangular domains [33]. Symm treated
the problem of Motz by a boundary integral method. In this chapter, similar
procedures applied to the torsional problem will be applied to the problem of

Motz.

3.2 Eigenfunctions Solution for Torsion of an L-shaped Bar

As mentioned above, the circular sector is defined in the neighborhood of a
singularity, as depicted in Figure 3.2. A Fourier series solution 1s obtained such
that it satisfies the boundary conditions along the two boundaries forming the re-
entrant corner, but the boundary condition along the arc is left undetermined.
Substitution of this solution into the governing ditferential equation yields a

complementary and particular solution. This final form of the infimte series
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solution, containing the undetermined coefficients of the complementary solution,
is truncated and the undetermined coefticients are determined by a discrete least-
squares procedure, using the orthogonality condition with respect to summation of
the truncated set of eigenfunctions.

In polar coordinates, Poisson equation in a two-dimensional region is given

by [40]

| 1 ; o
Gy 1 ¢, + 3 Poo ==1"(r.0) (3.1

Consider a circular sector as shown in Figure 3.2. Note that the angle & varies
from O to <7, and the radius » from 0 to R. Differential equation (3.1) is subject to

the following boundary conditions

¢=20 along 6=0 (3.2)
¢p="0 along é):fgf (3.3)
¢=f(6) along r=R (3.4)

It 1s important to note here, based on the membrane analogy introduced by L.
Prandtl [32]. that the solution ¢ of the torsion problem behaves like the deflection
of a homogeneous membrane supported at the edges. with the same outline as that
of the L-shaped cross section of the twisted bar subjected to a uniform lateral
pressure. Thus, ¢ has to be finite at the origin (See Figure 3.2).

As discussed in Appendix A., using the method of separation of variables,
the general form of the solution in terms of eigenfunctions for the homogeneous
part of equation (3.1) satisfying the homogeneous Dirichlet boundary conditions at

the edges forming the angular sector is found to be

b(r.60) = Z R,,(r)si,,nﬁg 0 (A.18)

n=1



p(R. = f{8)

Figure 3.2 Circular sector for Poisson equation in polar
coordinates.

Now, replacing £, (r) with b,(r) and taking a = as shown in Figure 3.2, the

solution ¢(r, &) can be written in the form

i N . 2n o
P(r.0) = Zbﬂ(r)su’l ~~3--(9 (3.5)
n=1

Solution (3.5) satisfies the boundary conditions along #=0 and =% The

coefficients b, (r) can be determined using the following formula, taking into
account orthogonality and normalization

3

B 4 = 0 2n o
b,(r)= s $(r,60)sin ?d() (3.6)

0
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Orthogonality conditions and normalization factors related to Equations (3.5) and

(3.6) are given by

J smw—Hsmil—?ch/O 0, for n#m (3.7)
¢}

3

and

3:/; v, -
J sin’ -”—-’lmmsz (3.8)
4}

To solve the inhomogeneous differential equation (3.1), /'(r.6) in the

right-hand side of Equation (3.1) is expanded in terms of the eigenfunctions

sin< @ in the form,

. 2n A
F(r.0) = Z B,(r)sin 2 (3.9)

n=i

where

Y4

By(r) = - J/ (r,8) ain:il 8do 3.10)
0

By substituting Equations (3.3), (3.9) and (3.10) into Equation (3.1). we obtain the
ordinary differential equations whose solutions yield the b, (r).
In case of the torsional problem,
F(r,6)=2 (3.11)

and therefore the coefficients are given by
! J'vs 02 06 (3.12)

3

B,(r) ==

or

B (r)= —;-iz[( 1) - 1} 3.13)
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Next, differentiating ¢(r, d) with respect to » and &, we obtain,

b, = Zh“(/)sm—wé’ (3.14)
b, = Zb”(i)smwg (3.15)

n=|

¢(;‘() - Z hn(f )( " ) Qil] vz—ﬂ () (3 . 16)

n=1
and then Equations (3.9), (3.14), (3.15) and (3.16) are substituted into Equation

(3.1) to get

2
Zb I)Sln“—”f} Z(b”(l)]' -2”5/ X(JIJ (/)mn—i’léF ZH,,(I":)st'x:;H

n=]

(3‘17)

(3.17), we obtain the following differential equations which are only functions of »
b+ 2 [3”) b,(r) = =B, (r) (3.18)
r 3r
Each of these 1s a standard nonhomogeneous differential equation with solution
comprised of a complementary and particular part.
To find the complementary function, it is necessary to solve the
homogeneous part of Equation (3.18). Thus, the solution of equation

b,,;:( )+ m(,) {%_?kam(r):O (3]9)
35

has to be found. Try a solution in the form
b, (r)=r" (3.20)

By substituting 6. (r), b).(r) and b,.(r) into Equation (3.19), we have

ne'
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.
(k=172 4 2 —[:ﬂj P =0,

(Us}

and upon simplification

Thus

k= +gf_7_
J

and the complementary solution to Equation (3.19) 1s given by

n

h,=cr¥+e, ™ (3.20)

ne

To find a particular solution b, ,(»)of Equation (3.18), one needs to replace
B, () with Equation (3.13), so that

.

h“)(l) 2’/’*2 4 o R

[n this case, try
b, (r)=Kr?

and substitute again b/ (r). b, (1) and b

np ap

r) nto Equation (3.21) getting
q )e

) 2
2K 42K - (:ﬁ) K= i[(_;)” 1]
a2 nit
or

C
S N ) B
mr(9vn )
K is unbounded when # = 3 and the particular solution is given by
9r?
b,,(ry=—————(-D)"=1], n#3 (3.22
() m(()_”z)ﬁ ) 1] (3.22)
Combining Equations (3.20) and (3.22), we obtain the general solution of

Equation (3.18) with /(r, ) =2 as given by
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9p?
nr(9—n)

b () =c,r +¢, 0 +

(0" =1]. n=3

However, it is required that b, () be finite when » = 0. Hence, ¢, =0, and

3
)
(5]
—

b, (r)=c, Pt ,,___u__ﬁ_.__[(_.l)'? - ‘1] , N#3 (-
T

Finally, the solution for the Poisson equation (3.1) for the circular sector

depicted in Figure 3.1 can be written as

- 2 91‘2 - . 2n . .

Pr.0) = Ic,, R ;_._[(,1)” - l}lsmw-: & (3.24)
- 1 nr(9-n) J

The solution in the form of Equation (3.24) satisfies the differential equation in the

domain and also the boundary conditions at both lines that form the re-entrant

corner of the region. Obviously, this solution of Equation (3.24) still needs to

satisfy the boundary condition at the circular arc where r = R.

3.3 Discrete Least-Squares Approximation
for Torsion of L-shaped Bar

The Legendre Collocation Method that is used to solve numerically the torsional
problem in the L-shaped region gives only the solution function at the collocation
points. If an arc is drawn using the singular point as the origin and a radius equal
to K¢, then the function values along the arc can be calculated by means of the
interpolating Lagrange polynomial used previously. Thus, we can have the
function values at any points along the circular arc. Now, using these values as
boundary conditions along the arc, one can determine the coefficients ¢, In

Equation (3.24).
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The discrete least squares approach will be used for determining
coefficients ¢,, so that the error involved as measured by the sum of the squares of
the differences between the values of the approximating function and the given
values at chosen discrete points is minimized. The selected points along the arc are
chosen to msure orthogonality with respect to summation of the truncated set of
eigenfunctions. Then the coefticients ¢, can be easily computed using the formula,
expressed as a summation. This eliminates the need to solve a system of linear
equations, as is generally required for this approach.

For the purpose outlined above, Equation (3.24) will be re-arranged as

follows

U

= G2 Ty ‘ 2 2
#(r.0)~ Zw—)' -1y~ 1]sin 2 o= Z ¢ r¥sinl o (3.25)
nr(9—n-)’ 3 3

n=] n=
n#l

Fixing r = R for the circular boundary, and using a finite number of terms A and

N respectively in place of the infinite series in Equation (3.25), we have

v

A .

4 z f; Ju . 2 1 . B

$(R,60)~ E 2 [y -1]sinZ o~ E ¢, Risin=" 0 (3.20)
P nr(9—-n-) 3

=1
n#3

Note that » should not be equal to three because this would make the left-hand
side of Equation (3.26) nfinte. In addition, 1t 1s independent of ¢, theretore the
upper limit of summation can be different from the right-hand side of the equation.

To calculate ¢, in Equation (3.26) using a least-squares approach. the same
finite number of points &,, k=1,2,..., N will be chosen on the circular arc r = K.
The different subscript £ is used because Equation (3.26) that contains the
summation should be evaluated at each point &,. Therefore Equation (3.206) can be

written as
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Y
iN

Al
. 9R*? . 2n Juo . 2R
P(R, 0, )— E v——a—-‘—[(-l)" - l]sm{lb’k = E ¢, ]R7sin -’-’ G,
o nmr(9—n*) 3 - 37 (3.27)

n=3

where @(R, 6,) are chosen points on the arc. The summation in the right-hand side
of Equation (3.27) is valid only for odd numbers, and the total number of terms M
in the summation is taken so that if the summation is evaluated the difference 1n
the values with (M —1) and A terms is small enough to indicate convergence.
This is done in the computer program.

For simphcity of formulation, let us define

AL
o . : 9R? . 2, \
RO = $(R.6,)~ Ty —t]sin 2 j, 3.28
RO =GR0) = [0 = sin =l (3.28)
o
and
N ' 5
Pu(R.6,) = Z ¢ R¥ sin2 g, (3.29)
D
n=1
The error at a discrete point &, is given by
e(8)=f(R.6,)—p. (K 0O.) (3.30)

The discrete least squares approximation requires that, for finding ¢, in Equation
(3.29), we minimize the quantity

N

S = zez(ﬁ,{y

h=1

which is the summation over N points of Equation (3.30), squared. In other words,



S0

N N 2
S = J(R.6,.)~— ¢, R- sin—-0, | = minimum 3.2
k=1 n=| .

or in expanded form

~ 5

X . w oL 2n ) U . v 2n
5= _[(R,HI)—Zc',, R¥sinZlo | + ‘f(fe,az)—za,, 1 sin 0,

r=l n=1

[

N
, W 2R -
oo f(RO) - E ¢, R4 sim=——60, | = muunum
J

n=|

and if Equation (3.31) 15 considered to be a function of ¢, . for the minmum to

occur. 1t 18 necessary for the ¢,,. n=12...., N 1o satisty
(;AS‘ ol 2
—_ = O, H= l,2 . N () )2)
e,
Consequently,
S O 2 - w2y 20, _
— = E [ (R 6 )sin— 0, — E ¢, R sin—= 6, sin— ¢, (=0
e, ’ B J 3
A=l 1=t
or in expanded form
S JAVI ‘\-V
oS . 2N : . 2 . 2n o4 2n,
— = E f(R,6,)sin—6, — E ¢ R¥sin= O, sin—- 6, + ¢, sin- 6, sin— 0,
o, ) 3 R 2 - J J
k=1 K=l
oL, 2}) . oY 2]\%’ . 2” 3 A . R
oot RSN =G 4+ R sinT— G, sin— 6, (=0 (3.33)
3 J D

Thus, we have N simultancous equations. On the other hand, we can easily
calculate the coefticients ¢, if there exist orthogonality conditions with respect to

summation such that
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AT
N

E sinfg, smme, =0 for f#nm= integers (3.34)
k=1
where
@, =% 6, (3.35)
3

In the trigonometric identity [4]
COS@+¢€083¢+ o85S+ +Ccos(2k — )+ +cos(2N — D) = 3sin2Npcsc @

or

N

ans(;?/c —p=1sin2Ngcsc g, (3.30)

k=1

the right-hand side vanishes if

sm2Ne =0,
ANp=Q2k =D, fork=12.....N

PRI

or
(k- n S
=T S k=1,2,... N (3.37)
Furthermore, the left hand side of Equation (3.34) can be written as
A 1'— A N
Z sin /g, sinm @, = 5 Z cos(! —n)p, — Zces(’ [+ n ), (3.38)
k=1 S fre=1

To prove the orthogonality condition in Equation {3.34), it 1s necessary to show
that each summation term of Equation (3.38) is equal to zero for ¢ # . Using the
identity Equation (3.36) together with Equation (3.37), the first summation term

can be written as



N
2

\ \

A | | , (
Zcos(f — )@, = Zcos@/‘ ~1) (-T’\/TIQ—;

k=1 k=1 (3.39)

! (—mmxy [((—munx
= 551]1(2]\/#}\}“5}65&(“:&7 —2)

Clearly. the right hand side of the above equation vanishes tor any integer (¢ — ).

Sumilarly, the second term

Z cos(f+myp, =0,  for/#m

k=1
since (/7 +m) will be an integer.

[t follows that,

E smig.smme, =0, forf =m

Jo=1

At this point, we still have to take into account the case / =m # 0, so that the right

hand side ot Equation (3.34) becomes

E SIN"Mm e,

k=1
Using the identity

sin‘me, = i—[l —cos2m@, ] (3.40)

we obtain



f\v‘

l- N N 7
E sinm e, == E - E cos2me,
- L A=l k=1

k=1
N

fo=1

Note again,

A
I

k=l

i
o

for m = any integer, and

N
z =N
k=1

Hence, we have

5t

. 9 N
sin“me, =

k=1

as the normalization factor when ¢ =m # 0 in Equation (3.34).

where

In conclusion, by noting Equation (3.35) we have,

N 0. if ¢ #nr
.2t . 2n ’ ’
sinT- Osin 0, =N
3 3 lf)-«,lf f=m=#0

k=1

-

1 = 2m
IS Y sk -2 2
3 Z cos(2k —1) N 2

Zmoa 1. 2m o 2m
E cos(2k — UTJ;M?_ = ;Sm?,f\/ -/~V~~-,~)- CSCW—\7——-5
/ 2 Z i ! i

(4}
(d

3.41)

_
(U8
I
()

R

(3.44)

Now, substituting from Equation (3.43) into Equation (3.33) we have
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2
Z/(R o, )sm;”—{? Zc R sin? -:,{1(9;\, =0
D

1= n=1

ZNR (ﬁ)smwé’ — RY +—~:O,

n=1|

and finally, the coetficient ¢, is given by

~~~~~ 6., forn=12_.. N (3.45)

H

N/\ -
where 6, 1s defined as in Equation (3.44).
We conclude that in the neighborhood of a re-entrant corner, the series

solution for an L-shaped bar under torsion given in Equation (3.24) is

N N

2 2 2 5 |
PO = ¢, sinToey L[l = 1sin o (346)
e = e ”/T(C)—H“) 3
ER)

where the ¢, are defined by Equation (3.45). As mentioned earlier, we are
particularly interested in derivatives that represent the shearing stresses. These
derivatives can easily be obtained by differentiating ¢(#,d) with respect to » and

6. Therefore, the radial derivative can be defined by

o O 2n we . 2n 187 . 2n,

— = ¢, Ftosin=- Lo+ E --------------------- (=D —1|sim—4¢ 3.47

or < 3 3 nr(9—n’ )[ ) ] 3 (3-47)
nM

j\"
¢ V27w 2 9r? 2 .
(fb _ 217 r T cos 2n O+ l,.g_l_,__..-[( D" — ]cos-;ﬂ ¢ (3.48)
a8 3 3 3 nr(9—n?) 3

n=1 n=1
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N

By inspecting the equation for the radial derivative, it is clear that a singularity
occurs when » =0 and »# =1.

Thus, the "best fit" mean squares approach employed above tor the finite
series expansion (3.45) corresponds conceptually to the orthogonal Fourter series
expanston for the infinite series.

Using the above derivations as a basis, it 1s easy to obtain the eigensolution
and its derivatives for the problems governed by Laplace's equation in an L-shaped

domain. One needs only to eliminate the term

N

9 ‘ . 2, .
z =y —t]sin e (3.49)
e nr(9—n")+ 3

neld

-~

in the eigensolution Equation (3.25). Note that this term resulted from the right

side of the Poisson equation

F(r,0)=2 (3.50)
in Equation (3.1). Thus, for Laplace's equation the coefficients ¢, are given by
¢ -—~~—Zf (R, 6, )Sm yk, for n=12,. .. N (G51)
NR
where
J(R,0,)=¢(R.0;) (3.52)
Hence, the eigensolution for the isolated sector near the singular point 1s defined
by
A
o 2hn e
P(r.0) = ch rosin—— ¢ (3.53)
J

=l

and its derivatives can be computed using the following formula:



' 2H e L 2R
»;ip- =Y —¢,r ' sin—4
or 3 3
=l (3.54)

N
Vel 2n 20,
= E —c,r cos—0
oo J 3
=1

3.4 Minimax Fit at Chebyshev Zeros

As discussed earlier, the boundary condition at the sector arc depicted in Figure
3.2 and 3.3 are sausfied "as well as possible” using a discrete least-squares
procedure. The merit of this way of obtaming the undetermined coeflictents ¢,
Equation (3.26) s that there is no need to solve a system of linear equations for ¢,.

However, Kopal [41] has pointed out that for a system of orthogonal
functions, the error of an approximation obtained by minimizing the average error
will oscillate corresponding to the number of collocaton points used in finding the
undetermined coefficients ¢, . [n addition, the least-squares fit gives the greatest
errors at the extreme ends of the range, and smaller errors in the middle of the
range [7,42.43]. Therefore, we will now examine a procedure that can miimize
the maximum error within some specified range. In this study. the range will be
along the sector arc shown in Figures 3.2 and 3.3. Since the determination of the
unknown coefficients ¢, in Equation (3.25) will be carmed out on a certain interval
of variable & with a fixed radius » = R, and there is complete freedom ot choice in
the selection of the values 6, along the sector arc wheve the interpolated function

values will be obtained, there are advantages in choosing ¢,

A

i a certain way.
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It is well known that if the zeros of the Chebyshev polynomal 7 "W_l(@‘) are
used to construct an interpolation polynomial £, (#) of degree at most N, then for
¢ in [—1,1] the maximum error will have the smallest possible value [41}].

The interval of the approximation is a sector arc which varies from f=a to
@=>bh. In most cases, « = 0. and b is equal to some multiple of 7. The
transformation

pg=bta b-as (3.55)
2 2

is used to convert the variable @ from the interval [¢,h] to [-1.1]. The zeros of

T\, (0) are at

. Dk+1Y 7
) — e b - 9 /
A 005{\(‘ Nl j( Z)J k=0,1,2,....N

and the corresponding interpolation points in [, b] are then at

b+a bhb—a-
= — -4~ .

b,

The value of the maximum deviation from zero in the interval [, b] [44] 15

~ ~

O 0,

A
bh—a
e max
2 -lgis] .

k=0

N
max l I ’9— 0‘ =
as<h § !
=0

Nl
h — a1

(N+l) ey . ‘
Ru(6) = [(0)— P (6)=L—t2) H"’” 0,

is finite, and equal to (', then we have ensured that

AN+

b—a
2

Ry (6)] < e

: ‘ 3.57
2V(N +1)! (3.57)
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m the interval [« b).

For convenience, Equation (3.26) with fixed » = R s repeated here:

A 5 N
Qo2 2 . 2h, 4 :
(,5(16,0)—2 _ o =07 = 1]sin =" o= E o RYsinl e (3.20)
- nr(9-—n7) 3 . 3
mtj =

As discussed above, by computing the value of @¢(R. €.). k=1.2,....N 1n the

interval [a, ] at

|
|
I
{
i
I
—
oJ
n
oo
—

O, = 5=+ 5 C0s

_bh+a b-u ('(2/{~1’) .
where

((2k-D)Y 7 , .
cos ((L—S/——l)( én k=12..N
are the zeros of the Chebyshev polynomial ’!}_‘.('(‘4)) wm the interval [-1.1]. the
interpolation ervor s minimized in the minimax (minunam - maximum error)
sense. Thus, substituting Equation (3.58) into Equation (3.26), leads to a
simultaneous system of linear equations for determination of the ¢, The resulting
system can be solved using any standard methods, for example, 1.U decomposition
and back substitution.

It is important to note here. the zeros of '/;\,(jb), and consequently the
locations of &, expressed in Equation (3.58), tend to be packed more densely near
the ends of the interval than at the center as shown n Table 3.1, While the least-
squares method gives equidistant interpolation points throughout the range except
the one equidistant from the end points, use of the Chebyshev zeros as
interpolation points will crowd the data points closer to both end points than in the

least-squares method (see Table 3.1).
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Table 3.1 Interpolation points &, along the sector arc from =0 to 0= 15x

Point no. Least-squares sense* 6, Minimax sense** &,
1 0.000000 0.000000
2 0.471239 0.115320
3 1.413717 0.971258
4 2356194 2.356194
5 3.298672 3741131
0 4.241150 4.597069
7 4712389 4712389

The node points, for k=2, ..., 6, are calculated by:

k)

* - Equation (3.44)
** . Equation (3.58)

Thus, as stated by Lanczos [7], the non cquidistant distribution of the data points
which are strongly increased around the two ends ot the range will prevent the
error oscillations from becoming damaging. Note that the biggest errors usually
occur in the neighborhoods of the two end points of the range. Moreover, by using
the transformed Chebyshev zeros as the chosen points, the error now oscillates
with the same order of magnitude, and absolutely smallest maximum error

throughout the interval.

3.5 Series Solution for the Problem of Motz

The problem of Motz mentioned earlier is a problem with mixed boundary

conditions satistying Laplace's equation in a rectangular domain. This problem can
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be considered as a standard example for treatment of a singularity of this type. At
one side of the rectangular domain, a change in boundary conditions occurs. This
leads to a singularity which is not located at an angular point, but it will be viewed
as a corner with &= x. The singularity treatment will further be formulated by
taking the point where the change of boundary conditions occurs as the center of
semi-circular region with radius » = R Figure 3.3 shows the geometric definition
of the problem.

Consider the semi-circular region in Figure 3.3 governed by Laplace's
equation:

Vig=0 (3.59)

with boundary conditions

ngb = 5?— =4 along 6=0 (3.60)

on ol

¢= B along O=1 (3.61)
and

¢= f(R,0) on the circular arc (3.62)

Recall that boundary conditions along the arc are satisfied at discrete points, and
the function values at these points are given by interpolation of the solutions
obtained previously through the Legendre Collocation Method. The boundary-
matching will be done by the least-squares method.

Reasoning as in the previously discussed problem, and using the resulting
Equation (B.14) in Appendix B, the series solution satistying the mixed boundary
conditions on the straight line except on the sector arc specified in Equations
(3.60) and (3.61), and Laplace's Equation (3.59) is found to be:

o

wi 2
$(r.0) =B+ A(0-a)+ Z ¢, r'* cos

n=1




Ol

(K. 60)= [ (IR 0)

=~ o4_of_
on oo

Figure 3.3 Mixed boundary conditions on a line.

The first two functions satisty the non-homogencous boundary conditions, while

the summation term satisfies the homogeneous boundary conditions as formulated

in Appendix B. Applying Equation (3.63) along the sector arc where r = K. for

a = 7 (See Figure 3.3), and taking a finite number of terms for the summation, we

have

N
2yl 2n—1

H(R.O)~ B+ A6~ 1) +Zc,, R% cos 0 o

n=|\

Re-arrange Equation (3.64) to yield

(3.64)
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A

SOV = B A(0- ) “Z" R cos ™o (3.65)

P

n=1
To calculate the coefticients ¢, by the discrete least-squares approximation

method, we denote

f(R,0,)=$(R.O)~B~AO, - ) (3.66)
and
v
v 2t 2n~—1
Py (R.6,)= Zc R cos=——0; (3.67)

n=1

where 6, . k=12..... N are selected points along the arc necessary for determining
¢,. Expression for the errors similar to those in Equation (3.30) are obtained at
these points, and as a result, by using a least-squares method, the quantity that

should be minimized is given by

J’\\" \ : “

. oo L 2o Zn—1 .. . .
S = Z SR E)~ Zc,, R C()SJ%»-—— ¢, | = minimum (3.68)

k=1 n=1
Again Equation (3.32) is the necessary condition for Equation (3.68) to be a
minimum. Upon minimizing Equation (3.68), we have

A7
,

2n— - | 2n - 201
Zf R, 6, Los——~»~() Z ¢ E cos > 6)A COS—=— UL +cw/\ COS = B, cos ==

P - - -

2u=l 2}7‘“1 aAl ]\ 1 2un—1 A .
+o-+c, R * cos’ —5 G+ o 2 cos~~~-5—~ o, COS——— 0, J:: 0

(3.69)
and by observing Equation (3.69), ¢, can be easily computed if there exists an

orthogonality condition with respect to summation such that



N
2m-—1 2n—1 .
E cos 5 6, cos 5 6, =0, for m#n

L

=1

and
- 2m—1
, 2m— .
E cos” 3 6, =constant, for m=n
L=1 -
If we let
3
/Jf - 2

the requirement in Equation (3.70) now becomes

N

Zcos(’im -, cos(2n—De, =0, for m=#n

k=1
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Equation (3.73) can be further transformed using the trigonometric identity in

Equation (3.74)

N SN
Zcos(.’lmm D, cos(Zn-1ep, = %Z[C(}SZ(I’H* W)@, +cos2(m+in— .E)(/),\.]

=1 i=1

[n the previous section, it has been shown that

N

Zcos(2k ~Dep=1sin2Npcsc

k=1
will vanish 1f
_Rk-Dr
P = TN 3
(see Equations (3.36) and (3.37)).

, for k=1,2,....N

(3.74)

3.75)

(3.76)

Substituting ¢, in Equation (3.37) into the first term of the right-hand side

of Equation (3.74) yields
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ZC.osz(m —n)p, = ZCOS(ZA (m f\f])z
k=1 fe=1 ‘
= Lsinay W= mz G ;’i’f 3.77)
=0
and into the second term yields
N N O
Zcos?(_m—r—n ~De, = 2 cos(2k — )(n: T%_’)_—_
k=1 k=| !
— Lsin2N (m+j</ l)fr (m—l— X/-— 1yz 3.78)
={

Note that m and » are any integers. In conclusion, the orthogonality condition
expressed in Equation (3.70) can be satisfied.
To find the constant, again Equation (3.70) 1s transformed using the

trigonometric identity

N

N N
Zc.osl(zfv g, = %—{Z 1 +Z cos2(2n 1) q),l (3.79)
T k=1

k=1

and substituting the value of ¢, yields

Zces 21— Do, _{ZHZ cos(2k ~1)(——”-:11”} (3.80)
1

The first term of the right-hand side of Equation (3.80) 1s equal to & and the

second term is

N

— P (Vg o
Zcos(’?k Q’_’_,_UE Slll7N( Zn EV)HCSC(MH ,l)ﬂ:()
N N N

r=1

therefore Equation (3.80) or (3.71) can be defined by



N

z:cos2 2n-e, = i,\; (3.81)

P
Having proved the orthogonality condition in Equation (3.70), and applying

it to Equation (3.69). we have

N
— Nl L (28~ ) -
E F(R G, )cos&———w b, — E ¢, It - cos’ Q%D 6. =0 (3.82)
k=1 -

Notice that ¢, and K are independent of £, and using Equation (3.81) the

coefficients ¢, becomes

¢, —»~~‘Z/‘(/\ o, cos—M»wH (3.83)
NI

where

(3.84)

Finally, the series solution obtained for Laplace's equation for the region

depicted in Figure 3.3 15

N
- . : ) ._/] - l -~ =
G O) =B+ A(O— 1)+ Zc " eos™ 700 (3 85)
n=1 -
The radial partial derivative i1s given by
Cp N 2m-1 w21, o
«;-5/— = T 1t oS b (3.80)
ar 2 7 2 ’

n=1
From the above equation, singularity occurs when » -~ 0 and # = 1. The tangential

derivative is
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(3.87)

! 24—

R .
& 2u—=1  w .

= A= E ————, P sin——— 0.
c 2 2

n=|

Similar to the torsional problem of the L-shaped bar discussed i Section

. the coeflicients ¢, in Equation (3.85), can also be determined using the

AN
3D

minimax approach described tn Section 3 4. This 1s a sunple matter of fixing r = R,
and replacing & with &, Equation (3.85); we then have

ST
cos =Ly (3.88)

(/5(/(‘9/‘)»—]3*’4((%\ _w”)zzc.nlkj,’:l ;5

PEM
N i the mterval {0.7] for the semi-

w Ay ey

circular arc (see Figure 3.3) 1s computed at
T ‘

_ - — OS] e ) 7 RC
b, =+ 5 gos( N5 (3.89)

and

This leads to a sunultancous system of lincar equations for determination ot the

cocflicients ¢, The resulting system can be solved using LU decomposition and

back substitution.



CHAPTER 4

APPLICATIONS

4.1 Introduction

The presented formulations and solution procedures of the Legendre Collocation
Method combined with an eigensolution series will now be tested on the following
list of examples:

« A square bar under torsion

+ The problem of Motz

« A Laplace equation for an L-shaped region

The above problems demonstrate the versatility and accuracy of the
method. For a torsional problem of a square bar where there is no singularity
involved, the Legendre Collocation Method developed in this study will be applied
to a standard kind of two-dimensional problem most likely to be encountered in
order to demonstrate its effectiveness. Not only the torsion function and its
derivatives representing the shearing stress, but also the necessary torque are
accurately and easily computed. The results are compared with the series solution
by Timoshenko [32]. For this problem, only the Legendre Collocation Method
described in Chapter 2 is applied.

In the second problem, termed the problem of Motz, the solution and its
derivatives are obtained by means of procedures outlined i Chapters 2 and 3.
Note that in this problem, Laplace's equation is the governing equation and the
boundary conditions are mixed. The domain is rectangular and a boundary
singularity occurs due to mixed boundary conditions on one side of the rectangle.

This type of problem is less likely to be encountered in practical engineering

67
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applications. The combined method developed in this study consists of the
Legendre Collocation Method in combination with a series solution with its
coefficients determined by least-squares or minimax approximation, for
calculating the solution and its derivatives in the neighborhood of singularity. The
results are compared with the available solutions obtained by previous
investigators [33,36,37]. Good agreement is obtained. Furthermore, the
procedures developed in this study are found easier to program, and simpler in the
sense that there are no complicated mathematical formulations involved in
comparison with the previous studies. The method used in the analysis of the L-
shaped region is similar to that for the immediately preceding problem. This
problem contains a singularity at the re-entrant corner, and is formulated in such a
way that the form of the exact solution at the re-entrant corner is known. Thus, a
more reliable comparison of the numerical results can be expected. Through the
use of the Legendre Collocation Method alone, we find that relatively high errors
occur in the neighborhood of the singularity, near the re-entrant corner. This
demonstrates the need for the special treatment of the singularity. The approximate
solution and its derivatives in the neighborhood of singularity are then compared
with the exact solution and derivatives. Again, very good agreement 1s obtained.
This last example has been used by several authors [16,17] in their study of the
Boundary Integral Method or Boundary Element Method. Unfortunately, in them
papers there are no numerical values of either the solution or its derivatives

available. Thus, comparisons are not possible.

4.2 Torsion of A Square Bar

Consider a square bar under torsion as shown in Figure 4.1. We will examine the

accuracy and rate of convergence of the solution, its first derivatives related to
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stress or flux, and the numerical integration of the solution at the collocation
points to find the torque, using the Legendre Collocation Method. This classical
problem satisties the following Poisson equation [45]

VW = -2 in a square domain (4.1)
where W is the Prandt] stress function. The boundary conditions on all sides of the
square cross-section are ‘¥ =0. Consequently, the values of the stress function at
the boundary collocation points, including the four corner points are zero. Once
the problem 1is solved, the solution ¥ at the nterior collocation points becomes

known, and the shearing stress components 7., and r,. are computed using the

following formulas

2
r.o=< (4.2)
oy
and
\J/
r., = ""L“Q:LL (4.3)
: N

The application of the Legendre Collocation Method to this problem
generates a (NPX —2) x (NPY —-2) system of linear equations. Since ¥ =0 on the
boundary and the problem is solved for ¥, we need only to determine W at the

interior collocation points. Thus, a modified Equation (2.51)

« 2 2 NP1 7 2 NPY-1
E BX, W, +| — E BY, VY, =-2 (4.4)
Ax Ay o
B s [y, 4

that satisties the governing equation (4.1) is applied to each interior point (x.,y,,)

for k=2,.... NPX =1 and m=2,..., NPY —1 to yield a system of equations.
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Figure 4.1 9 x9 mesh for a square bar under torsion. Global
numbering scheme is shown with NPX = NPY = 9.

Note that in the computer program, the double indices km for ¥ are replaced by
single indices, and a global numbering scheme 1s adopted (see Figure 4.1). Also,
the same number of points is taken in both the x and y directions. Hence, NPX =
NPY, the coefficient matrix AX is the same as AY, and BX 1s also equal to BY.
Finally, the x component of shearing stress is defined by
NPY

)
T (¥, ,) = 11)7 Z AW, for m=1... NPY (4.5)

=1
as an approximation to Equation (4.2). In order to obtain the stresses for the entire
domain, Equation (4.5) will be repeated for & =1,..., NFX". Smnilarly, the shearing

stress in the y direction in Equation (4.3) is computed by
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2 Z .
T:)’ (“\‘k a,Vm) = ~—A:; 44[{[ LP“” fOE‘ k = _L eng ! })X (46)
R

and will also be evaluated for m=1,... NPY.

In the computation, the length of side « is taken as unity. therefore
Ax=Ayv=a=1_ As shown in Figure 4.1, the interior collocation points are not
equally spaced. This is due to the fact that those points are the zeros of a Legendre
polynomial. The figure shown 1s for a 9 x 9 mesh; therefore the interior points are
the zeros of the 7t-degree Legendre polynomial.

Convergence 1s studied at two selected points (see Figure 4.1):

o The middle point of the cross section (Point 41) where the maximum stress s
located;

o The mid-point of a side of the square (Point 5, 37, 45 and 77) where the
maximum shearing stress occurs.

In order to study the convergence of the solution function and the maximum

shearing stress, these two points should be kept in the same place independently of

the mesh, therefore an odd number of meshes had been sclected. For example,

3x 3, 5x5 etc.

Table 4.1 below gives the results of maximum value of the stress function

W which converges very rapidly as indicated by percentage error.

Table 4.1 Maximum Stress Function ¥ - Torsion of Square Bar

Mesh Size
3x3 5x5 7Tx7 9x9 11 x11
LCM 0.125 0.148148 | 0.147362 | 0.147343 | 0.147343
Exact { 0.147343 | 0.147343 | 0.147343 | 0.147343 | 0.147343
Yo-Error 15.16 0.55 0.01 0 0

* Exact - Infinite Series Solution by Timoshenko [32].
* LCM - Results obtained using Legendre Collocation Method.



For 9 x 9mesh size, there are 49 interior points at which the Poisson equation that
governs the torsional problem, is satisfied, and the function values around the
boundaries are equal to zeros. Therefore the total number of algebraic equations
solved for ¥ 1s also 49. As indicated in Tables 4.1, various mesh si.zeé are used n
the computation, and their corresponding numbers of equations are:

o 3 x 3 mesh size and one equation to be solved;

e 5x5 mesh size and nine equations to be solved, etc.
Therefore for N x N mesh size, there will be (N =2)x (N —2) equations to be
solved, and the number of system equations would be different for different types
of boundary conditions. Note that with only one equation and one unknown, the
error is 15.16%. The error drops to 0.55% when 5x 5 mesh size is used. From an
engineering standpoint, this is a quite negligible error.

In many problems in mechanics, we are particularly interested in the first
derivative of the approximate solution which represents the stress. As expected, a
comparison between Table 4.1 and Table 4.2 shows the maximum shearing stress
converges more slowly than the maximum stress function V. [t 1s understandable,
since the maximum stress 1s calculated by Equation (4.5) or (4.6) which is another
approximation of the approximate solution V. The convergence of the stress is

also quite rapid as depicted in a graphical plot in Figure 4.2.

Table 4.2 £ - value for Maximum Shearing Stress - Torsion of Square Bar

Mesh Size
3x3 5x5 7Tx7 9x9 11 x11
LCM -0.5 -0.685185 | -0.674157 | -0.6756 -0.675221
Exact | -0.675186 | -0.675186 | -0.675186 | -0.675186 | -0.675186
Y-Error 25.95 1.48 0.15 0.06 0.01

* Maximum Shearing Stress is given by [32]:
Tous = K Ba

X



As has been mentioned in Chapter 2, one of the advantages of taking the
zeros of a Legendre polynomial as collocation points is the availability of function
values needed for numerical integration employing Gauss-Legendre quadrature
(see Equation (2.40)). The torque for the torsion of a square bar is obtained by
summing the product of the solution ¥ at the collocation points with the
associated weights, computed using Equation (C.16) in Appendix C. Table 4.3

shows again the rapid convergence of the torque.

Table 4.3 k, - value for Torque - Torsion of Square Bar.

Mesh Size
3x3 5x5 7x7 9x9 11x11
LCM 0.25 0.141975 0.1406 0.140579 | 0.140577
Exact 0.140577 | 0.140577 | 0.140577 | 0.140577 | 0.140577
Y%-Error 77.84 0.55 0.01 0 0

* Torque 1s given by [32]:
M, = k,GOa®

Table 4.4 shows a comparison between Timoshenko's solution [32] and the
approximate solution of the torsion function ¥ using a 9 x9 mesh. Note that
Timoshenko's solution which is a series solution is computed up to 107 in
accuracy, with the summation ranging from 119 to 500 terms. Thercfore it can be
considered as the exact solution. As can be expected, due to sharp corner points,
the highest relative errors of 1.23% occur at the four points nearest to the corner
points. In Figure 4.1, these points are numbers 11, 17, 65 and 71. The errors at
other points in the domain are extremely low, ranging from 0.00058% to 0.079%.

In Figure 4.3, we have a 3-D view of the torsion function ¥, while Figure 4.4
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shows its contour plot. Both figures are based on the 9 x 9mesh solution of the

Legendre Collocation Method.

Convergence of Constant k of
Max. Shearing Stress

i:é .-+ jL
R
02+
0.1
0 4 } ]
3Ixn3 Sx Tx7 9x9 [Ixtt
Mesh Size
i,, e S |
i ——{—— Timoshenko ==={=== | CM |
.

Figure 4.2 Convergence study of maximum shearing stress of square bar
under torsion.



Figure 4.3 View of torsion or stress function ¥ plotted based
on 9x9 mesh solution.
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Figure 4.4 Contour plot of torsion function ‘¥
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Figure 4.5 Three-dimensional plot of the shearing stress ¢, obtained

using 9 x 9 mesh size.

Also of interest is a comparison between shearing stresses 7., obtained by
Timoshenko [32] and the Legendre Collocation Method utilizing Equation (4.6).
Again, this comparison is performed at the collocation points (see Table 4.5 ). The
higher relative errors occur at the collocation points nearest to the top and bottom
sides of the square domain shown in Figure 4.1. Thus, on the line where point
numbers 10 to 18 are located, the errors range from 2.08% to 4.19% for 9 x 9
mesh solution. The same magnitude of errors occurs at point numbers 64 to 72.
Errors at other points are negligible, ranging from 0.007% to 0.25%. It is important
to note here, that the locations of the maximum shearing stress components are
correctly located by this method. As indicated in Table 4.2 and can be calculated
from results in Table 4.5, the error of the maximum shearing stress 1s 0.06% - a
negligible number. Figure 4.5 shows a 3-D plot of the shearing stress 7. Figure

4.6 shows another 3-D plot of the magnitude of the resultant shearing stress where
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one can immediately find the location of the maximum shearing stress. A contour
plot of the magnitude of the resultant shearing stress is given in Figure 4.7.

The above torsion problem illustrates the general applicability and accuracy
of the Legendre Collocation Method when applied to the most common types of
problems. Further illustrations, typical ot real situations containing singularities

are included in the next sections.

i
N R
OO \\ w"ll 0'0 N
‘t“\ S N
0“‘ ““; }é@l@'l" 0

Figure 4.6 Three dimensional plot of the magnitude of resultant shearing stress.
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Figure 4.7 Contour plot of the magnitude of resultant of shearing stress.



Table 4.4 Comparison of torsion function W at the collocation points ( see Figure 4.1 )

The numbers 1n the table have the following significance:
15t value - Legendre Collocation Method result (9 x 9)
20d yalye - Timoshenko's result [32]

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.002856 0.009556 0.0147086 0.016551 0.0147086 0.009556 0.002856
0.000000 0.002821 0.009548 0.014712 0.016548 0.016546 0.009548 0.002821
0.000000 0.009556 0.038210 0.062810 0.071762 0.062810 0.038210 0.009556
0.000000 0.009549 0.038210 0.062812 0.071760 0.062812 0.038210 0.009549
0.000000 0.014706 0.062810 0.108646 0.126135 0.108646 0.062810 0.014706
0.006000 0.014712 0.062812 0.108645 0.126136 0.108645 0.062812 0.014712
0.000000 0.016551 0.071762 0.126135 0.147343 0.126135 0.071762 0.016551
0.000000 0.016546 0.071760 0.126136 0.147343 0.126136 0.071760 0.016546
0.000000 0.014708 0.062810 0.108646 0.126135 0.108646 0.062810 0.0147086
0.000000 0.014712 0.062812 0.108645 0.126136 0.108645 0.062812 0.014712
0.000000 0.009556 0.038210 0.062810 0.071762 0.062810 0.038210 0.008556
0.000000 0.008548 0.038210 0.062812 0.071780 0.062812 0.038210 0.009549
0.000000 0.002856 0.009556 0 014708 0.016551 0.014706 0.009556 0.002856
0.000000 0.002821 0.009548 0.014712 0.016546 0.014712 0.006548 0.002821
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

6L



Table 4.5 Shearing stress ., at the collocation points:

The number in the table have the following significance:
1t value - Legendre Collocation Method result {9 x9 )
2td value - Timoshenko's result [32]

0.000000 0.000000 0.000000 0 000000 0000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0000000 0.000000 0.000000 0000000
-0.128484 -0.097819 0.044136 20.019729 0.000000 0.019729 0.044136 0097819
-0.131211 -0.094685 -0.046066 -0.018986 0 000000 0.018986 0.046066 0 094685
-0 400485 -0.351858 20.213433 20092273 0.000000 0.092273 0213433 0 351858
-0.399502 -0.351932 -0 213416 -0 092260 0000000 0.092260 0213416 0.351832
0.602778 -0 553529 -0.380708 0178391 0 000000 0.178351 0380708 0.553529
-0.603005 -0.553699 -0 380594 0178426 0.000000 0 178426 0.380594 0 553699
20675600 -0 625620 0 444132 20215113 0000000 0215113 0444137 0 625620
0675186 -0.625523 -0.444197 -0 215098 0 000000 0.215008 0444187 0 625523
06027768 -0.653529 0380708 0178391 0.000000 0178391 0380708 0553528
-0 803005 -0.553699 -0.380504 01784726 0.000000 0.178426 0 380564 0553690
0.400485 0351858 0213433 0092273 0 000000 0.092273 0213433 0351858
-0.396502 0351932 02123416 -0 092260 0.000000 0.092260 0213416 351932
-0 128484 -0.09781S 0044136 20018729 0.000000 0019726 0044136 0097818
0131211 -0.094685 -0 046066 -0 018986 0 000000 0.018086 0046066 0.094685
0.000000 0 000000 0 000000 0 000000 0 000000 0.000000 0000000 0 000000
0 000000 0.000000 {0 000000 0.000000 0 0000600 0.000000 0 000000 0 000000

0.000000
0.000000

0.128484
0.131211

0.400485
0.399602

0.602778
0.603005

0.675600
0875186

0602778
0.803005

0.400485
0.399502

0.128484
0131211

¢.000000
0.000000

08
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4.3 The Problem of Motz

The problem of Motz [33,39] is a problem that satisfies Laplace's equation

Vi =0 (4.7)
and is subject to mixed-boundary conditions as depicted in Figure 4.8, where
ABCD is a rectangle with the dimensions AO = OB = BC. This problem has been
solved by several other investigators using difterent approximation techniques
[33,36,37,46]. The most accurate results were obtained by Whiteman and
Papamichael [36] using a Conformal Transformation Method; Symm [37] treated
the problem using an Integral Equation Method, Lefeber [33] obtained exactly the
same values as those of Whiteman and Papamichael by using a Boundary Element
Method specifically formulated for this problem. The mathematical complexity of
these previous works makes the procedure proposed below, a combination of the
Legendre Collocation Method and an Eigenfunctions solution in the neighborhood
of the singular point, very attractive.

Observation of Figure 4.8 reveals that this problem contains a boundary
singularity at point O. Note that along boundary AO, w = 0.5 is prescribed, and
the normal derivative on boundary OB is zero. Thus at point O there is a change
in the boundary condition, and that gives rise to a singularity. Two major steps
will be implemented. First, the formulation described in Chapter 2 will be used to
obtain the solution « at the collocation points in the entire computational domain;
then the special treatment outlined in Chapter 3 will be applied. so that an accurate
solution of u, including its derivatives in a neighborhood of singularity, are

obtained.
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Figure 4.8 Geometric definitions for the problem of Motz

For convenience i comparison with the results obtamed by the other
authors [33,36,37], the dimensions of the rectangle domain depicted in Figure 4.8
are taken to be 14 x7. The use of the p-version of the Legendre Collocation
Method requires that the computational domain be broken up into two fixed
elements: AOED and OBCE, both are square elements 7= 7 in size. The accuracy
of the solution « 1s achieved by increasing the number of collocation points, which
are determined by the degree of Legendre polynomial used in the x and v
directions.

As shown in Figure 4.9, a global numbering scheme using a single index is
adopted for the entire domain. Thus, in computation, the continuity of the value of
the function at the collocation points located at the junction between the two
elements 1s automatically ensured. The most obvious example of these points are

the interelement boundary points along line OE. But, for convenience in writing



the formulas, the double subscript numbering scheme is used in Chapter 2, and

will be used here.

o — Interior collocation points where D2 13 satistied.

P o o o
. 0O — Dirichlet's conditions are satisiied.
@ — Neumann's conditions are satisfied.
©— Normal derivatives are continuous at interelement
boundary.
i, @ -— Normal derivatives in x and y directions are satistied.
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Figure 4.9 The domain is divided into two elements, and 7x7 - Legendre
collocation grids for each element are shown.

In this example, the same number of collocation points in the x and y
directions, NPX = NPY is taken. Thus, the coefficient matrices for the first
derivative is AX = AY, and for the second derivative is BX = BY. Figure 4.9
shows the domain with two macro elements, and for each element NPX = NPV = 7.
Hence, the interior collocation points are the zeros of the 51 - degree Legendre
polynomial, and there will be a total of 91 nodes for the entire domain as shown.

These are the nodes where the solution « has either to be determined or prescribed.
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As mentioned earlier, the first step in handling this problem containing a
boundary singularity is to determine the solution w at the collocation points in the
entire domain. As a result of the application of the Legendre Collocation Method,
a set of simultaneous equations has to be solved. This set of algebraic hnear
equations is generated by the following requirements:

(a) The interior collocation equations from the differential equation, namely

NPY

2 NPY
«J Z"“““““ ( ““““ j Zf“m/ 0, = (48)

have to be satistied at each of the interior nodes of each element (See

Figure 4.9). Note that Equation (4.8) is a modification of Equation (2.51)
to suit this problem. The superscript in parentheses denotes the element

number, here ¢ = 1,2.

(b) The boundary collocation equations stem from satistying:
» Dirichlet conditions along lines AO and BC. Thus,

NPX

"'=0.5 along line AO (4.9)

and

NPY

Z‘u‘ ver.; = 1.0 along line BC (4.10)

J=1
Since a single index is used in the computer program, in the
assembled matrix Equation (2.57), the elements of the matrix K
that correspond to the node number » of the global numbering
scheme will be equal to unity, i.e. K,, =1, and the corresponding

load vector F has components equal to either 0.5 or 1.0,



85

depending on which boundary line (OA or BC) is considered.
Note that this satisfaction of the function values on the boundaries
AQO and BC not only includes the corner points A, B, and C, but
also the inter-element boundary point O.

Neumann condittons along OB, CD, and DA boundaries. For
boundary lines OB and CD, it is only necessary to satisfy the
prescribed normal derivative, 1.e. %‘: 0 at the interior boundary
collocation points. At points O, B, and C, the function values are

to be satisfied. Thus. on line OB

: YRS

2
( - )ZA} w =0 for i=2...  NPX I 411
A1

1=l

Similarly, at the interior nodes on line EC, one has

(~—~ ----- )ZA o i, =0 for =2 NPX =1 (4.12)

For line DE

NPY
[ W“JZ (Yoy, u, =0 for i=2. NPX =1 (413)
Ayt

at point E, the enforcement can be done by either one of the

following equations

NPY

(A ‘,(1))214) g U,y = 0 (4.14a)

or
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5 A
[; i IZ A¥ ey ;0, =0 (4.14b)
o ‘=

The satisfaction of prescribed normal derivative, i.e. = =0, at the

mterior nodes on hine AD gives

NPV
(—*M}Z AX v, =0 forj=2,. NPY-I (4.15)

Note that the resulting Equations (4.11), (4.12), (4.13). (4.14a),
and (4.14b) are based on Equations (2.54) and (2.56). while

Equation (4.15) stems from Equation (2.53).

(¢} The normal derivative continuity equations at interior nodes along line

OE, the mterelement boundary are given by

NPy

IR I
JZ AX oy, Uy ~[ T\?T JZ AN, =0 (4.16)

=1

tor j=2,... NPY -1

\

as i Equation (2.52).

(d) The corner equation at comer point D in Figure 4.9 Both normal
derivatives in the x and v directions are zero. The equation similar to

Equation (2.63) applied to corner D is given by

N NPV

NPY 9
[A yo ]Z AY v My T (X;(—GJZ AX gy =0 (4.17)

=1
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Solving a set of algebraic equations resulting from the Legendre Collocation
technique outlined above gives the solution « at the collocation points. The
solution is remarkably accurate except in a neighborhood of singular point. Thus, a
special treatment as described in Chapter 3 will be applied as follows:

a. Once a half circle sector for isolating the singular pomt O has been
established (see Figure 4.10), Equation (3.88) derived in Chapter 3 is
applied along the sector arc of this isolated region. Thus, the resulting
equation can be written as

2n—1

HR.O)-05= Z o, R cos =0 (4.18)
i

e

H=

where 4 and B in Equation (3.88) have been replaced with the known
values of 4 =0, B = 0.5, and R 1s a fixed radius (see also Figure 3.3).
Furthermore, Equation (4.18) not only satisfies the Laplace equation

(4.7), but also both the Neumann conditions on line OB and Dirichlet

conditions on line AQ.

] . “‘T\ ©ee e enelusing the isolated sector
b i with g singular poiat ol the orign.
i
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Figure 4.10 An half circle sector isolated for a special treatment
in the neighborhood of a singular point O
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[f Equation (4.18) is made equal to the solution function that was
obtained by the Legendre Collocation Method along the arc, then the
coefficients ¢, can be determined. Note that Equation (4.18) is expressed
in polar coordinates (r,8) with the origin at point O. The function »
obtained by the Legendre Collocation Method is now replaced by ¢ in the
half sector domain. To ensure accurate results of solution, the radius R of
the half sector must be taken sufficiently large so that, outside the sector,
the solution u obtained by the Legendre Collocation Method 1s virtually
unatfected by the singular point O. Thus, as a general rule, to be on a safe
side, the fixed radius K will be half the length of the longer side of the
rectangular element.

[n this study, the determination of the coefficients ¢, in Egquation (4.18)
can be performed by the following two alternative methods:

« A discrete least-square approximation.
As outhined in Chapter 3, Equation (3.83) 1s used to determine ¢,

such that

(IH =

R IR O i o
N E J(R. 6, )cos———0, (4.19)
NR =l -

where X = 3.5

2k -UO)rm
g ==  k=12,....N
k N !

and n 1s the number of selected discrete points on the arc. Note

that the solution ¢(R,8,) 1s the value of the function on the arc,

computed by interpolating the solution « previously obtained



through the Legendre Collocation Method. It is clear that before

the interpolation can be done, the polar coordinates (#, #) have to

be transtormed tnto cartesian coordinates (x. v).

« Minimax approximation at Chebyshev zeros.
[n this alternate procedure, in order to determine ¢, it is
necessary (o solve a set of simultaneous equations generated by
Equation (4.18) such that

N

z R cosP T o= (R 0105 (4.20)

P

n=1

where # = 3.5, and

1)
+ COSLMZJ, k=12....,N.

0, =

SIR
S

N2

Note that ¢, are the zeros of a Chebyshev polynonual that have
been mapped onto the real interval [0, 7] (see Figure 4.10}. The
function values ¢(2,6,) in Equation (4.20) have the same
meaning as ¢(X, 6,) in the discrete least-squares approximation

described above.

c. Once the constant coefficients ¢, i Equation (4.18) are determined
through either one of the methods described above, Equation (3.50) now
takes the form

A

- 2 e . .
Plr.0)=05+ Z o F: : -:05.*—’?;)“1 & (4.21)

n=]
and will satisfy Laplace's equation (4.7). In addition to that, Equation

{4.21) identically sausties the boundary conditions along the straight line
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AB containing the singularity at point O, and approximately satisfies the
values of the function along the sector arc. Thus. Equation (4.21) not only
gives the approximate solution in this isolated sector, but also can be used

to calculate the derivative with respect to the radius

N
c 2n—1 Pl 2n—1 .
T(‘é =y e s Ly (4.22)
cr L 2 2
and the denvative with respect to &

72 ~ 2 1 v 2n—1

== Y e F S 4.23

Vele Z 2" 2 (4.23)

From Equation (4.22), it is obvious that %’/ — oo, when n = 1 and r = 0.
This establishes the existence of the singularity at point O in Figures 4.8,
4.9 and 4.10.

The convergence of the approximate solution u obtained through the
Legendre Collocation Method is shown in Table 4.6, Table 4.7 shows the
comparison with previous results obtained by Lefeber [33], Symm [37], and
Whiteman and Papamichael [36]. It is important to note here that the Legendre
Collocation Method produces the solution at the collocation points which are the
corresponding zeros of the Legendre polynomial plus the two endpoints of the
interval. The solutions at a unit mesh point in Table 4.7 are obtained by two-
dimensional interpolation of the Legendre Collocation Method results on each
element. Thus, a certain degree of accuracy may be lost during the interpolation
process. But, as indicated in Table 4.7, all data appear to be in good agreement.
The conclusion can be drawn that the Legendre Collocation Method gives a very

accurate result at the collocation points. A smooth three-dimensional plot of the
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approximate solution 17 using 9 x 9 mesh size for the entire domain is displayed in
Figure 4.12.

As mentioned previously, the neighborhood of the singularity 1s treated as
an isolated circular sector, and the series solution for this sector is then formulated.
Table 4.8 shows the rapid convergence of the coefficient ¢, obtained by both
methods. namely the least-squares and minimax approximation applied on the arc
in computing the coefficients. Thus, by taking five points along the sector arc, ¢;
has been reduced to the order of 1077, The results presented in the study are based
on five coefficients in the series solution Equations (4.21), (4.22), and (4.23).
Furthermore, by inspecting the coefficients in Table 4.8 for both approximation
methods, one sees that there 1s not much ditference in convergence for the series
solutions. Either one of the methods can be used for accurate results. To ensure the
vahdity of the least-squares and minimax approximation methods, the solution u
along the arc 1s calculated at eleven equally spaced points, and as shown in Table
4.9 and Figure 4,11, the results are in good agreement. Note that the notation used
for the solution in cartestan coordinates is u; ¢ is for solution in polar coordinates.

In the neighborhood of the singularity, computed results for the solution «
or ¢ and corresponding values from previous studies are compared iy Table 4.10
Good agreement is seen: this establishes the validity of the method proposed in
this study. Tables 4.11 and 4.12 show the derivatives in the x and v directions.
Unfortunately, comparison is not possible since no published results for the
denvatives 1n this important region are available. Figures 4.13, 4,14 and 4.15 show
the contour lines representing the approximate solution « and the derivatves

= and =, using the series solution with five coefficients.

o i
&



Tables 4.13 - 4.18 show the convergence of the solution » and its
derivatives obtained by both the least-squares and minimax approximation

methods in the series solution. Good convergence is observed.

Table 4.6 Pointwise convergence of a solution # on a square grid points
of 3.5x3.5. The results shown are based on a mesh size on each
element: 3x3, 5x5 7x7, 9x9

POINT

0.595238 0.642857 0.785714 0.857143 1.000000
0.594195 0.622162 0.714702 0.844223 1.000000
0.592566 0.620119 0.707747 0.842104 1.000000
0.592016 0.619413 0.705947 0.841472 1.000000
0.571429 0.607143 0.714286 0.857143 1.000000
0.568003 0.591688 0.682206 0.835286 1.000000
0.566450 0.589772 0.666509 0.832536 1.000000
0.566032 0.589164 0.677404 0.831747 1.000000
0.500000 0.500000 0.500000 0.857143 1.000000
0.500000 0.500000 0.500000 0.823763 1.000000
0.500000 0.500000 0.500000 0.819743 1.000000
0.500000 0.500000 0.500000 0.818540 1.000000
SINGULAR




Table 4.7 Comparison results of solution # of the problem of Motz on a unit mesh
The numbers i the table have the following significance:

1St value - Interpolated results of the Legendre Collocation Method with 9 x 9 mesh size

20d yalue - By Lefeber in Reference [33]

3rd yalue - By Symm in Reference [37]

4th value - By Whiteman and Papamichacl in Reference [36

0582016 0594203 0.600828 0612085 0627943 0648925 0674768 0705947 0.740272 0778701 0

10874 | 0853473 | 0.008197 | 0.953890 | 1000000
0591360 | 0593537 | 0600123 | 0611288 | 0627168 | 0547990 | 0673769 | 0704320 | 0730197 | 0777738 | 0818

8173 0862738 0.907758 0953669 1000000

0589839 0591998 0598546 0.809578 0625500 0646423 0872341 0.703770 0738452 0.777289 0818835 0882777 0.807770 0.953882 1.000000
0589182 0551341 0.597849 0.608888 (.824695 0545492 0671360 0.702138 0737356 0.776294 0818118 0862020 0807320 0.853463 1.000000
059118 0.599775 080883 0.562466 064547 067135 0.70213 073736 0.77630 081812 0 86203 0.90733 0.95347
055134 080839 064543 070214 0.77629 086202 095346

0.583354 0585421 0.591716 0602513 0617986 0638833 0 685041 0.697180 0732968 0.773048 0815733 0880735 0.908541 0953115 1.000000
0582748 0584804 0.581054 0601737 0617215 0637877 0663987 0.695470 0731777 0.771971 0814398 0.858930 0.906057 0.952873 1.000000
058465 0.58097 060168 (VA AVATH 083785 088397 0 69546 0737 077187 081500 (85994 0.90606 (0.95288

0572793 0574705 | 0580484 0580241 0605665 | 0625604 0652237 08681075 0.723066 0.785817 0811827 () 856809 0.804768 0852334 1000000
0572211 0574100 | 0579848 (583803 0804530 0624756 0651155 0.683908 0722292 0.764842 0810017 0856677 0.904129 0.951981 1.000000
057401 057478 058975 050443 062473 085114 068390 072223 0.76484 031002 0.85668 0.80413 095198
057410 .58980 062476 068351 0.76484 0.85668 0.95188

0.558385 0559365 | 0564941 0574058 0586655 0 606485 0633075 | 0673433 0710884 | 0796913 0803809 | 0854374 | 0.902328 0951145 1.000000
05574974 0559564 | 0.564471 0573128 0586345 | 0.605381 0831800 | 0668572 | 0.708639 | 0.755171 0803528 0852680 | 0.901829 0.950933 1.000000
055949 056441 057308 (58631 0.60536 083179 066656 0.70864 0.75517 (0 80363 085268 0.90183 0.95094

0540916 | 0.542111 0.545789 0552344 0563138 | 0579410 | 0605056 | 0.641875 0882500 | 0745530 | 0798520 | 0843466 | 0900306 | 0.850302 1.000000
0540580 | 0541760 | 0.545405 (551974 0562413 | 0.578556 0803694 | 0641560 | 0680837 0743812 | 0796778 | 0848644 | 0.899582 | 0.049831 1000000
054170 054536 055104 056232 0.57854 0.60368 064155 068063 074381 079678 (.84865 0.89959 0.94993

054178 055197 057856 0.64156 07438 0 84864 094993
0521113 | 0521784 | 0523736 | 0527010 | 0533838 0563100 | 0.603446 | 0672188 | 0.735337 0846335 | 0898728 | 0.949603 | 1000000
0520307 | 052146 | 0523407 | 0527080 | 0533030 0561952 | 0603768 | 0ARGS4D | 0.733218 0845545 | 0897920 | 0.940201 § 1000000
052148 | 052347 052707 | 053302 056195 | 060376 | 068954 | 073322 084555 | 089793 | 0.94921
DE00000 0500000 0500000 05 0500000 0500000 0 728904 0839966 0898885 0050074 1000000
0500000 0500000 0500000 05 05 0500000 0.500000 0728474 0844385 DBU7303 004833 000000
050000 0 49959 05 05000 050000 0 6ARdE 072848 } 788 084438 089732 094895
0 50000 50000 050000 0 72847 0 84437 0.94892

o



Table 4.8 The coefficients ¢, computed from interpolated results

obtained through the Legendre Collocation Method with 9 x 9 mesh size

N ¢, Least-Squares Approx. | Minimax Approx.
2 ¢ — | 0.152249E+00 0.155735E100
= | 0424141B-02 0 403734E-02
3 ¢ - | 0.152953E+00 0.152170E+00
o = | 0473627602 0.460635E-02
. — | 0.I85410E-03 0. 158638E-03
1 ¢~ | 0153098E+00 0 152702E+00
.~ | 0470106E-02 0.467300E-02
= 0131639503 0 115928E-03
C — | 0137679604 2070959 1E-05
5 o~ | 0.152633E+00 0.152487E-+00
.= | 0471037E-02 0.468686E-02
o~ | O.138776E-03 0.135949E-03
I, — | 0969339E-05 [0.581385E-05
o~ | 0-489977E-06 0. 424645E-06
6 o~ | 0.152304E+00 0.153066F 100
¢~ |0470320E-02 0471379E-02
¢, — |0131855E-03 0149621 £-03
o= | -0A4G0SATE03 2022852804
o~ | 0-168264E-05 Z0 289008 E-05
¢, — | 0.198979E-08 0.515987E-06

94



Table 4.9 Comparison the solution # or ¢ on the sector arc
of the problem of Motz ( see Figure 4.10 )

05

Point Angle 0 Interpolated LCM | Least-squares Minimax f\ppro_\j
No. results (9 = 9) Approx. ( 5 coetffs. ) | [ 5 coelfs, )
1 0.000000 0.818540 0.818934 .818496
2 0.314159 0.811433 0.811433 0.811082
3 0.628319 C.789953 0.790030 0789741
4 0.942478 C.757709 0.757709 0.757296
5 1.256637 0.719010 0.718655 0.718243
6 1.570796 0677404 0.677404 0.677404
7 1.884956 0637786 0.637688 0638121
8 2.199115 0.601179 0601179 0601438
9 2.513274 0.566908 0.567139 0.566784 |
10 2.827433 0.533745 0.533745 0.533195
11 3.141593 0.500000 0.500000 0.500000
0.820 "
»’\ﬂ\ * o Plot1 |
0788 + L o Plat 2
’ & Plotd |
grs6 - oow i
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j

Figure 4.11 Plot of the solution values along the arc from O to 7
as shown in Table 4.9:
Plot 1 - Interpolated value from the Legendre Collocation Method
Plot 2 - Least-squares approximation value
Plot 3 - Minimax approximation value.



Table 4.10 Comparison results of the solution « of the problem of Motz on a 0.25 unit mesh in the neighborhood of
the singular point O:

15t value - 3 points Least-squares approximation result on the Legendre Collocation Method

20d value - S points Minimax approximation result on the Legendre Collocation Method

37d value - Lefeber's result in Reference [33]

ath vape - Symm's result in Reference [37]

5t value - Whiteman and Papamicheal's result in Reference [536]

0.562459 0.570014 0579358 0590825 0604432 0.619997 0636626 0653666 0670629
0562420 0569973 0.579309 0590761 0.604410 0.619831 0.636496 0.653511 0.670448
0.561952 0569473 0.578770 0.590176 0.603768 0619186 0635724 0652670 0669540
056195 0.56947 057877 0.59017 0.60376 0.61918 063572 0.65267 0.66954
056195 056947 057877 059018 060377 061519 063572 0.65267 0.66954
0548811 0.555555 0564431 0.576189 0591255 0.600033 0.628077 0647146 0665642
0548774 0555517 0564386 0576131 0591178 0.608933 0627953 0.646996 0665465
0548417 0555128 0563958 0575650 0590629 0.608304 0627239 0646199 0664591
0.54841 055512 0.56395 0.57565 0.59063 0.60830 062724 0.54620 0.66458
054842 055513 056396 057565 059063 0.60830 062724 064620 0.66459
0533695 0536994 0546584 0.558046 0575121 0.596870 0619631 0.641270 0661421
0.533667 0538964 0546549 05579499 0.575054 0.596778 0.619511 0641124 0.661249
0533424 0538696 0546245 0.557640 0.574612 0.596229 0618854 0640366 0.660402
0.53342 053869 054624 0.55764 0.57461 0.59623 061885 0.64037 066040
0.53342 053870 054624 0.55764 057461 0 59623 061885 0.64037 0.66040
0517258 0.520262 0.524989 0.533826 0.553544 0.564223 0612592 0636844 0658518
0517243 0.520245 0524969 0533797 0553495 0.584141 0612478 0.636801 0658349
0517120 0520108 0524808 0.533591 0.553186 0.583671 0611865 0636072 0.657521
051712 052011 052481 053359 055318 0.58367 061188 0.63607 065752
051712 0.52011 052481 0.53359 055319 058367 061186 0.63607 0.65752
0.500000 0500000 0 500000 0.500000 0.500000 0576910 0.609617 0635308 0657473
0 500000 0,500000 0500000 0500000 0500000 0576834 0609505 0.635166 0657304
0.500000 0500000 0.500000 0500000 0500000 0.576408 0608911 0 634447 0 656482
050000 050000 0 50000 0.50000 0 50000 057641 0.60891 0.63445 065648
0.50000 050000 050000 0.50000 0.50000 0.57641 0 60891 0.63445 065648
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Table 4.11 The derivative ﬁl\i of the problem of Motz on a 0.25 unit mesh m the neighborhood of

the singular pomt O:.
15t value - 5 points Least-squares approximation result on the Legendre Collocation Method
204 value - 5 points Minimax approximation result on the Legendre Collocation Method

0.027157 0.033538 0.041450 0.050351 0.058740 0.064791 0.087754 0.068241 0.067259
0.027164 0.033519 0.041406 0.050285 0.058656 0.064695 0.067652 0.068138 0.067200
0.023622 0.030755 0.040783 0.053628 0.066492 0074673 0.076833 0.075342 0.072526
0.023628 0.030737 0.040743 0.053565 0.066408 0.074575 0.076730 0.075238 0.072426
0.017992 0.024981 0.036801 0.056293 0.079767 0.091315 0.089421 0.083539 0.077813
0.017995 0.024967 0.038766 0.056231 0.079676 0.091208 0.088310 0.083432 0.077710
0.008807 0.0148627 0.024565 0.050655 0.110396 0,122489 0.104591 0.081128 0.082036
0.009909 0.014619 0.024541 0.050602 0.110281 0.122355 0.104469 0.091016 0.081931
0.000000 0.000000 0.000000 0.000000 SINGULAR  0.156208 0.113041 0.094451 0.083697

0.000000 0.000000 0.000000 0.000000 POINT 0166044 0.112912 0.094337 0.083591

. ,



Table 4.12 The derivative [m of the problem of Motz on a 0.25 unit mesh in the neighborhood of

the singular point O:
15U value - 3 points Least-squares approximation result on the Legendre Collocation Method
20d yajue - 3 points Minimax approximation result on the Legendre Collocation Method

0.051712 0.054023 0.054860 0.053411 0.048700 0.041509 0033627 | 0.026561 0.020878
0.051715 0 054029 0 054955 0.053400 0.048685 0.041492 0.033608 0026541 0.020855
0.067533 0.061866 0.064964 0.064442 0.057815 0.046282 0.034485 0.025258 0.018744
0.057510 0.061842 0064936 0.064411 0.057784 0.046255 0.024463 0.02523¢9 0.018728
0.063307 0.070704 0.078431 0.082313 0.72693 0.050744 0.032280 0.021145 0.014641
0.063262 0.070659 0.078380 0.082256 0.072641 0.050708 0 032257 0021129 0.014629
0.067856 0.078752 0.084314 0.114724 0.105398 0.047444 0.022182 0.012642 0.008197
0.067798 0.078691 0.094242 0.114630 0.105309 0.047406 0.022135 0.012632 0.008190
0.069€34 0082246 0.103081 0.149145 SINGULAR  0.000000 0.600000 0.000000 0.000000

0 089572 0082180 0102977 0.149015 POINT 0.000000 0.000000 0.000000 0.000000




Table 4.13 Pointwise convergence of Least-squarcs approximation on the eigensolution
in the neighborhood of the singular point O. The results arc on a 0.25 unit mesh
and based on 9 x 9 mesh size for each element in the Legendre Collocation Method solution:
ISt value - two cocflicients in the cigensolution Equation (4.21)

204 yalue - three coefficients in the eigensolution Equation (4.21)
31d value - four coufficients in the eigensolution Equation (4.21)
4th yalue - five coefficients in the eigensolution Equation (4.21)

0562697 0570293 | 0.579641 0.581070 0.604657 0620035 0636491 0.653310 0.670004
0.562656 0.570202 0.579538 0.591002 0.804674 0.520191 0.6365843 0.653917 0.870926
0.5682676 0 570250 0.579621 0.501121 0.604820 0 620380 0637058 0.654147 0.671155
0.562459 0.570014 0.579358 0.550825 0.604492 0619997 0 636625 0.653666 0.670629

. —_— I S U———
0.548955 0555724 0.564553 0576307 0.691285 0.608930 0.627794 1).646637 0.664858
Q. 548058 0 555700 0.564577 0.576343 0.591425 0.609230 0628313 0.647431 0.665986
0 548980 0555742 0.564643 0.576435 0.501545 0609374 0.628473 0.647503 0666135
0.548811 () 555556 0.564431 0.576189 0.591255 0.608033 0.628077 0.647146 0.665647
—t 0533774 0628085 0.546663 0.558080 0575064 0 596673 0.610246 0.640653 0.660527
0.533794 {1 5236084 0 546690 0.558166 0.575269 0.597061 0.619875 0.641575 0.661798
0.533811 0530125 0.546737 0.558232 0.575356 0 597168 0 619952 () 821688 0.661888
0533695 0.538404 0.546584 0.558046 0.575121 0.596870 0.619631 0.641270 0661421
0517292 0.520300 0.525018 0.533820 0.553453 0.583978 0.612148 0 6536264 0.657559
0.517308 0520313 0 575046 0.533896 0.553854 0 584259 0612837 0637261 0.658915
0517317 0.525070 (533833 0.553710 0.584478 0812626 06372343 0.658860
0.5817758 0 B20267 0574880 0.533826 0 553544 08547223 0812592 .636944 0.658514

4 L
0.500000 0 500000 0 500000 0.500000 0.500000 0 576655 0.608156 0.634607 0.6856401
0.500000 0500000 0.500000 0.500000 0.500000 0.577074 0.609861 0.635628 0.657875
0500000 0 500000 0.500000 0500000 0 500000 0577140 0609941 1 835608 0.857917
0 500000 G 500000 G 5U0000 0 500000 0.500000 6876910 0609617 0.835308 0B57473
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Table 4.14 Pointwise convergence of Minimax approximation on the eigensolution u

in the neighborhood of the singular point O. The results are on a 0.25 unit mesh

and based on 9 x 9 mesh size for each element in the Legendre Collocation Method solution:
1St value - two coefficients in the eigensolution Equation (4.21)

20d yalue - three coefficients in the cigensolution Equation (4.21)

31d yajue - four coefficients in the eigensolution Equation (4.21)

4th yalue - five coefficients in the eigensolution Equation (4.21)

0.564600 0.572316 0.581818 0.503443 0.607266 0.622911 0.639648 N.656744 0673702
0.562442 0.569955 0.579243 0 500642 0.604231 0.619648 0.636186 0653133 0.670007
0.562496 0.570072 0.579433 0.580011 0.604585 0.620091 0.636717 0.853748 0.670695
0.562420 0.569973 0.579308 0580761 0.604410 0.619891 0.636496 0.653511 0.670448
0.550421 0.557304 0.566328 0578256 0.593513 0.611487 0.630695 0.649868 0.668393
0.548784 0.555494 0.564324 0.575023 0.591015 0.608708 0.627663 0 646643 0.665055
0.548833 0.5554584 0.564483 0576251 0.591322 0.808102 0.628144 0.647204 0.665684
0.548774 0.555517 0.564386 0.576131 0.591178 0.508933 0.627953 0 646996 0.665465
0.534775 0.54017¢ 0.547857 | 0.559535 0.576858 0.508897 0.621907 0843709 0.663929
0.533670 0.538444 0.546499 0557910 0.574914 0.598574 0.619242 0.640791 0.660861
0.533708 0.539018 0.546618 0 558087 0.575168 0.596820 0.619679 0.641310 0.661446
0.533667 0.5284864 0.546549 0 55799% 0.575054 0 598778 0.619511 0641124 0.661249
0.517801 10520863 0 525671 0.534653 0.554704 0.585876 0.614620 0639196 0.660872
0.517243 0 520234 0.524940 0.533742 0.553390 0.583960 0.612223 0 636483 0.657975
0.517264 0.520273 0 525005 0 533847 0.553573 0584258 0.612627 0636973 0.658533
0517243 0.520245 0.524960 0.5337407 0.553485 ( 584141 0.612478 0.636801 0.658349
|
0.500000 0506000 0 500000 0.500000 0.500000 0.878372 0.611548 0 637492 0659772
0.500000 0 500000 ¢ 500000 0.500000 0.500000 0.576666 0.609257 0.634852 0.656935
0500000 0 500000 0.500000 0.500000 0.500000 0.576%38 0.60964% 0.635333 0 657484
0.500000 0.500000 0 500000 0.500000 0.500000 0576834 0.609505 0 635166 0657304

001



Table 4.15 Pointwise convergence of - of Least-squares approximation on the eigensolution u

in the neighborhood of the singular point O. The results are on a 0.25 unit mesh

and based on 9 x 9 mesh size for each element in the Legendre Collocation Method solution:
15t value - x - derivative based on two coefficients in the cigensolution Equation (4.21)

2nd yalue - x - derivative based on three coefficients in the eigensolution Equation (4.21)

314 value - x - derivative based on four coefficients in the eigensolution Equation (4.21)

4th vajue - x - denvative based on five coefficients ‘in the eigensolution Equation (4.21)

0.027352 0.033631 0.041386 0.05011¢ 0.058327 0.064191 0.066964 0.067262 0.068130
0.027123 0.033505 0.041428 0.650352 0.058773 0.064861 0.067866 0.068401 0.067517
0.027225 00336371 0.041570 0.050501 0.058818 0.064983 0 067850 0.068430 0.067473
0.027157 0.033539 0.041450 0.0503561 0.058740 C.064791 0.067754 0.068241 0.067289
0.023781 0.0307594 0.040684 0.053368 0.066052 0.074044 0076018 0.074343 0.071342
0.023810 0.03074¢9 0.040797 0.053674 0.066580 0.074804 0.077005 0.075558 0.072797
0.023682 0.030838% 0.040800 0.053784 0.066686 0.074887 0.0770486 0.075538 0.072698
0.023622 0.030753 0.040783 0.053628 0.066492 0.074673 0.076833 0.075342 0.072526
0.018086 (0.024885 0.036691 0.056028 0.0793086 0.080656 0.088580 0.082521 0.076616
0.017952 0.024981 0.036835 0.058374 0.078913 0.081511 0.089648 0.083803 0.078124
0.01803¢ 0.025050 0.038906 0.056456 0.0799%8 00815675 0.0859664 0.083751 0.077989
0.017952 0024981 0.038801 0.066293 0.079767 0.081315 0.089421 0.083539 0077813
0.009850 0.014620 (.024485 0.050441 0.109906 0.121776 0103721 0.090094 0 08082¢
0.008%11 0.014628 0.024597 0.0507486 0.110625 0122767 0104868 0.091425 0082373
0.008G322 0 014668 0.024836 0.050804 0110722 0 122841 0.104876 0.091357 0.082217
0 008807 0014627 0.024585 0.050655 0.1103%¢6 0. 122488 0 104591 0.081128 0.082038 L
0.000000 0.000000 0.000000 0.600000 SINGULAR (1.155430 0112155 0.083411 0.082487
0.0000C0 0.060000 0.000000 0.000000 POINT G.156563 (113347 0.084761 0.084044
0 D00000 0.0G0000 0000000 0.000000 0 156663 0113350 0.094688 0.083881
0.000000 0000000 0 000000 0.000000 0 156208 0113041 0.094451 0 083697
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Table 4.16 Pointwise convergence of < of Least-squarcs approximation on the eigensolution u

in the neighborhood of the singular point O. The results are on a 0.25 unit mesh

and based on 9 x 9 mesh size for each element i the Legendre Collocation Method solution:
1St value - v - derivative based on two cocfficients in the cigensolution Equation (4.21)

2d yalue - v - derivative based on three coefficients i the eigensolution Equation (4.21)

31d vajue - y - derivative based on four cocfficients in the eigensolution Equation (4.21)

4th yajue - v - denvative based on five coefficients in the ergensolution Equation (4.21)

0.052160 0.054538 0.085520 0.054008 0.048330 0.042168 0.034313 0.027269 0.021601
0.051806 0.054183 0.055086 0053480 0.048726 0.041474 0.033529 0.026401 (1020857
0.051890 0.054213 0.056146 0.053595 0.048875 0.041671 0.033776 0.026703 £.021018
0.051712 0.054028 0.054980 0.053411 0.048700 0.041509 0.033627 0.026561 0.020876

0.057846 0.062236 0.065368 0.064866 0.058260 0. 046753 0.034984 0.025779 0.018282
0.057726 0.062038 0.065111 0.064555 0.057878 0.046287 0.034437 0.025149 0.018586
0.05/733 0.062077 0.065183 0.084660 0.0580186 0.0464503 0.034629 0.025384 0.018864
0.057533 0.061866 0.064064 0.064442 0.057815 0.046282 0.034485 0.025268 0.018744

0.063521 0.07095Q 0.078694 0.082563 0.072944 0.051027 0.032596 0.021485 0.014985
0.063502 0.070891 0.078810 0.082474 0.072808 0.050789 0.032263 0.021082 1014540
0.063526 0.070943 0.078692 0.082584 0.072935 0.050821 0.03240% 0.021244 0.014728
0.063307 0.070704 0.078431 0082313 0.072683 0.050744 0032280 0.021145 0.014641

0.088007 0.078827 0.094462 0.114788 0.105407 0.047548 0.022269 0.012808 £.008372
0.068055 0.078454 0.084528 0114982 0.1056801 0.047513 0.022156 0.012614 0.008148
0.068091 0.078018 0.094623 0. 115091 0.105733 0.047601 0.022234 0012698 0.008244
0 067856 0.078752 0.094314 0.114724 0.105398 0.047444 0.022152 0.012642 0.008197

0.069763 0.082381 0.103158 0149068 SINGULAR 0000000 0.000000 0.000000 0.000000

0.068836 0.082456 0.103294 0.148458 POINT 0.000000 0.000000¢ 0.000000 £.000000
0.068875 0.082521 0.103385 . 149615 0.000000 0 000000 0.000000 0.000000
0.0649634 0. 082246 0.103061 0149145 0.000000 0.000000 0.000000 0.000000
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Table 4.17 Pointwise convergence of 5~ of Minimax approximation on the eigensolution u

in the neighborhood of the singular point O. The results arc on a 0.25 unit mesh

and based on 9 x 9 mesh size for each element in the Legendre Collocation Method solution:
15U value - x - derivative based on two coefficients 1 the eigensolution Equation (4.21)

ond valye - x - derivative based on three coefficients in the eigensolution Equation (4.21)

3t yalue - x - derivative based on four coefficients in the eigensolution Equation (4.21)

4 yalue - x - derivative based on five coefficients in the eigensolution Equation (4.21)

0.027814 0.034175 0.042083 0.0560884 0.058343 0.065249 0.068091 0.0868350 0.067148
0.027012 0.033343 0.041204 0.050057 0.05840¢6 0.06442¢ 0.067383 0.067877 0.066956
0.027255 0.033615 0.041505 0.050388 0058757 0.064788 0.067728 0.068192 0.067226
0.027255 0.033615 0.041505 0.050388 0.058757 0.064788 0.067729 £.068192 0.067226
0.024165 0.031321 0.041413 0.054355 0.067287 0.0756414 0.077381 0.075615 0.072486
0.023507 0.0305685 0.040572 0.053381 0.066172 0.074320 0.076473 0.0745G64 0.072204
0.023697 0.030814 0.040828 0 053655 0 086508 0.074671 0.076810 0.075294 0.072453
0.023697 0.030814 0.040828 0.053655 0.066508 0.074671 0.076810 0.075284 0.072453
0.018391 0.025433 0.037385 0.057133 0.080885 0.092444 0.090257 £.084000 0.077905
0.017910 0.024862 0.036631 0.058051 0.079441 0.090844 0.089062 0.083185 0.077502
(.018043 0.025022 00368323 0056318 0.079788 0.081319 0.089401 0.083483 0.077740
0.018043 0.025022 0.036833 0.056319 0.078788 0.0913189 0.089401 0.083493 0.077740
| 0.010122 0.014881 0.024868 0.051493 0.112262 0.124315 0.105767 0.091760 0.082224
0 009865 0.014562 0.024461 0080483 ¢ 110008 0122047 0.104185 0080778 0081728
0.008934 0.014648 0.024583 0 050676 0 110430 0.122507 0.104577 0. 091085 £.081963
0.009534 0.01464¢ 0.024583 0 050676 0110430 0.122507 0.104577 0.091085 0.081963 2
0.000000 0.000000 0.000006 0 000000 SINGULAR 0.158763 0.114403 0.095158 0083923
0.000000 0.000000 0.000000 0 000000 POINT 0.155675 0.112827 0.084087 0.083397
0.000000 £.000000 0 000000 { 0.156247 0.113031 0.0944089 0.083625
0.000000 0.000000 0.000000 0.156242 0.113031 0.094408 0.08362¢8




Table 4.18 Pointwise convergence of = of Minimax approximation on the eigensolution u

in the neighborhood of the singular point O. The results are on a 0.25 unit mesh

and based on 9 x 9 mesh size for each element in the Legendre Collocation Method solution:

I8t value - v - derivative based on two coefficients in the eigensolution Equation (4.21)
20d yajue - 3 - derivative based on three coefficients in the eigensolution Equation (4.21)
31d value - v - derivative based on four coefficients in the eigensolution Equation (4.21)
4t yape - v - derivative based on five coefficients in the eigensolution Equation (4.21)

0.053841 0.056238 0.057197 0.055806 0.050778 0.043416 0.035350 0.0281189 0.022301
0.051773 0.054058 0.054953 0.053371 0.048634 0.041423 0.033522 0.026434 0.020723
0.051779 0.054114 0.055058 0.053816 0.048808 0.041619 0.033736 0.026669 0.020884
0.051715 0.054028 0.054855 0.053400 0.048685 0.041482 0.033608 0.026541 0.020855
0.0586459 0.064090 0.067242 0.066677 0.058870 0.048058 0.035987 0.028547 0.019883
0.057547 0.061845 0.064805 0.084352 0.057710C 0.046176 0.034381 0.025148 0.018622
0.057580 0.061933 0.065045 0.064531 0.057906 0.046371 0.034571 0.025342 0.018827
0.057510 0.081842 0.064936 0.084411 0.057784 0.046255 0.034463 0.025238 0.018728
0.065440 0.072984 0.080847 0.084740 0.074838 0.062372 0.033488 0.022101 0.015448
0.083281 0.070638 0.078316 0.082155 0.072531 0.05061¢% 0.032184 0.0210860 0.014553
0.063338 0.07075¢ 0.078502 0.082392 0.072771 0.050813 0.032341 0.021203 0.014698
0.063262 0.070658 0.078380 0.062256 0.072641 0.050708 0.032257 0.021128 0.014628
0.070019 0081130 0.056953 0.1176862 0 107880 0.048737 0.022888 0013166 0.008620
0 067804 0.078648 0.094138 0.114455 0.106123 0.047319 0.022087 0.012594 0.008150
0.067881 0.078800 0.054381 0 114804 0105472 0.047485 0.0221858 0012672 0.008225
0.067798 0. 078681 0.094242 0.114830 01053089 0.047406 0022135 0.012632 0008190
0.071811 (.084669 0.106838 0152707 SINGULAR 0.000000 0.0600000 0.000000 0.000000
0.069572 0.082128 0.102855 0.148765 POINT 0.000000 0.000000 0.000000 0.000000
0.088656 0.082282 0.103127 0 149234 £.000000 0.000000 0.000000 0.000000
0.068572 0082180 0.102977 0.148015 0.000000 0.00000C £.000000 0.000000

F01
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Figure 4.13 Contour plot of solution # in the neighborhood of singularity

The solution of the problem of Motz

Figure 4.12 Three-dimensional plot of the solution # obtained through

the Legendre Collocation Method.
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107
4.4 Solution of Laplace's Equation in L-shaped Domain

As a third example of the application of the method in this study, consider the
problem of finding the approximate solution ¢ in an L-shaped region that satisfies
Laplace's equation and is subjected to mixed boundary conditions as depicted in

Figure 4.16.

7

V e . e
Y=L ccifie
X 1s specified
C I B
Vig=0 fi;-’f? is specified
Ax
24 4 o A
S s specified 0 5=0 X
p=0
D E

ag

—= s specified
ay

Figure 4.16 L-shaped domain and boundary conditions for Laplace's equation.

The length of side OA = AB = DE = EO = |, while BC = CD = 2. Thus, the region
can be easily broken into three square elements with sides equal to unity.
The differential equation has the known exact solution ¢ in polar

coordinates (#,¢ ) in the form
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2 .2 ,
¢=r*sin=6 (4.24)
3

satisfying Laplace's equation in polar coordinates

as shown in Appendix A. Equation (4.24) reveals that the radial derivative of ¢
approaches infinity 1f » = 0. Thus, singularity occurs at the origin O in Figure
4.16.

As indicated in Figure 4.16, it is necessary to derive the equations for the
prescribed normal derivatives }‘\f’ and }‘f from Equation (4.24), and apply the
boundary conditions along the boundary lines AB, BC, CD and DE. Clearly,
Equation (4.24) satisfies the conditions along EO and OA lines. Since Equation
(4.24) 1s defined m polar coordinates, and the normal derivatives have to be
formulated in cartesian coordinates, the following transformation formulas ( see

Figure 4.17 )

r=yJxt 4yt

¥ (4.25)
0= tan~' =
X
will be used.
The derivative of ¢ with respect to x is given by
& cpcr o¢od ,
P _cpar ¢ ab (4.26)

ax  Jordx J6x
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Figure 4.17 Polar coordinates (r, @) related to cartesian coordinates (x,))

and with respect to y

a9 _cycr agcd
oy crcdy 28cy

From Equation (4.25), one has

ar X

= Y
ﬂx V .,\'2 + V‘z

(""}‘ ).J

—— = = =51 0
2y V J x2 + ))2

ce¢ -y  sind
dx  x*+y? r

and

20  x  cosd
Oy xI+)? ”

Differentiation of Equation (4.24) gives

(4.27)

(.4.28)

(4.29)

(4.30)

(4.31)



f?
2 tin g (4.32)
ar 3 3

and
¢ 2 2
o =ricosy 433
50 37 co~;3(9 (4.33)

Again, it 1s clear from Equation (4.32) that %”—) », when » — 0. This confirms
the occurrence of a singularity at the origin O of Figure 4.16.
Substitution of Equations (4.28), (4.30), (4.32) and (4.33) into Equation

(4.26) gives

2 1 :
~—r isin- ¢ (4.34)
J S

and Equations (4.29), (4.31), (4.32) and (4.33) into Equation (4.27) yields

YR ,
f;¢ =Zr %cos;l;ér’ (4.35)
cy 3 3

where r and 6 in Equations (4.34) and (4.35) are defined by Equation (4.25).
Thus, in Figure 4.16. Equation (4.34) is the Neumann boundary condition along
the AB and CD lines; the Dirichlet condition in Equation (4.35) will be applied

along the DE and BC lines.
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Figure 4.18 [-shaped domain for Laplace's equation is shown with
three elements, and 9 x 9 mesh size for each element.

In this study, the p-version technique is adopted in solving the problem
using the Legendre Collocation Method. Therefore the entire L-shaped region s
broken up mto three major elements: EOGD, OFCG and OABF (see Figure 4.18).
Two major steps are required for solving the problem that contains a singularity.
First, the approximate solution is obtained through the Legendre Collocation
Method, and second the circular sector in the neighborhood of singularity is
isolated (see Figure 3.1 or 3.2), then the series solution in this sector 1s tormulated
and obtained by determining its coefficients either by the least-squares or minimax
approach.

Similar procedures to the problem of Motz are applied. Thus, at each
interior collocation point of each element, Laplace's equation is satistied by
Equation (4.8). In addition to these equations, the solution and first normal

derivative are required to be continuous across element boundaries. The use of a



global numbering scheme guarantees satisfaction of solution continuity (see Table
4.19); derivative continuity is ensured by applying Equation (2.52) in the x
direction (OF line), and a similar procedure is applied in the y direction (line OG -
see Section 2.8). The boundary conditions defined in Equation (4.24) for lines EO
and OA, also Equations (4.34) and (4.35) for lines AB, BC, CD and DE are
satisfied as described in Section 2.8. The corner points are treated according to the
procedures outlined in Section 2.9. The resulting set of simultaneous linear
equations is solved by LU decomposition and the backward substitution method.
The desired accuracy i1s achieved by increasing the order of Legendre polynomial
used to construct the approximate solution until two successive approximations are
sufficiently close to each other.

Figure 4. 18 shows the domain divided into three major elements with 9 x 9
mesh size for each element. Thus, there are 225 points for the entire domain as
indicated in Table 4.19, and the number of equations is also 225. In Table 4.20
the exact solution values are compared with the Legendre Collocation Method
results at the collocation points. Table 4.21 shows the relative errors. It 1s noted
that higher errors occurred in a neighborhood of the singularity, ranging from
4.96% to 9.25%. For the rest of the region, very accurate results are obtained.
Thus, it confirms the need of special treatment in the neighborhood of the
smgularity. Furthermore, for the problem contamning singularity it will not be
appropriate to use the solution values at the collocation points in computing the
dertvatives since error near re-entrant corner will introduce higher error in the
entire domain. Good convergence is noted in Table 4.22, and the three-
dimensional view of the solution obtained through the Legendre Collocation

Method with a 9 x 9 mesh for each element is shown in Figure 4.19.



Table 4.19 Numbering scheme for the domain shown in Figure 4.18

209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 | 224
192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207
175 | 176 | 177 1178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190
158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173
141 1 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156
124 1125 | 126 | 127 (128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 [ 139
107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122
80 91 92 93 94 95 96 97 o8 99 100 | 101 | 102 | 103 | 104 | 105
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
64 65 66 67 68 69 70 71 72

55 56 57 58 59 60 61 62 63

46 47 48 49 50 51 52 53 54

37 38 39 40 M 42 43 44 45

28 29 30 31 32 33 34 35 36

19 20 21 22 23 24 25 26 27

10 11 12 13 14 15 16 17 ‘ 18

1 2 3 4 5 6 7 8 9

191

174

157

140

123

106

89



Table 4.20 Comparison results of the solution ¢ between the Legendre Collocation Method

and exact solution at the collocation points:
First value - Legendre Collocation Method

Second value - Exact solution

12535 1.2501 1.2066 1.1366 1.0534 09736 09115 0.8753 0.8674 0.8585 0.8253 0.7768 Q7254 06821 06513 0.6344
1.2599 1.2492 1.2057 1.1356 1.0525 0.9727 9107 0.8746 0.8660 0.8576 0.8246 0.7758 0 7248 0.6816 0.6508 0.633¢
1.2501 1.2394 1.1854 1.1247 1.0407 0959849 0 Bg72 0.8807 Q0 8520 0.8435 0.8103 07813 0.7161 0.6669 0.6365 C.6197
12402 1.2385 1845 1.1238 1.03¢8 09591 0 8963 08598 08513 0.8428 0.8095 0.7805 07085 0.6664 0.6360 0.6182
1.2066 1.1954 1.1498 1.0761 0.6881 0.9034 0.8375 0.7995 07905 0.7817 0.7473 0.6974 06483 08041 0.5749 0.5589
1.2057 1.1845 1.14829 1.0752 0.9872 08025 G 8367 07987 07857 07808 0.7468 0.6968 0 8458 0.6037 0.5744 0.5585
1.1366 1.1247 1.0781 0.9970 09015 0.8085 07364 0 6951 06854 0.6760 0.6396 0.5883 0.4985 0.4719 0.4578
1.1356 1.1238 1.0752 0.9961 0.9006 0.8077 07355 0.6943 0.8847 08752 0.6388 05877 0.4880 0.4715 04573
10534 1.0407 0.9881 09015 07947 0 6881 ©.8045 05572 0.5465 0.5360 0.4963 0.4440 ) 3634 0.3418 0.3306
1.0525 1.0388 09872 0.9008 0.78937 06872 060 0.5584 0.5456 0.5350 0.4955 04434 0.3830 0.3415 03302
0.973% 0.8508 0.9034 0.8086 0.6881 05620 04582 038588 03887 053742 0.3305 02810 02202 0.2058 01987
098727 0.5591 0.9025 0.8077 0.6872 05808 G 4570 0.2888 0.2858 03732 03288 0.2805 0.2200 2057 0.1084
08115 0.8972 0.8375% 0.7364 0.6045 0.4582 03237 0.2407 0.2230 62073 0.1618 0.1278 0.0888 0.0902 0.0869
08107 0.8963 0.8367 0.7355 0.6036 0.4570 03221 0.2320 0.2214 0.2056 0,1610 0.1274 00567 0.0801 0.0868
0.8753 0.8607 0.7995 0.6951 0.5573 0 3808 02407 0.1144 00818 0.0572 0.0234 00256 0.0182 0.0177 0.0172
G.8746 08588 0.7987 0.6843 0.5564 0.3986 2380 0.1090 0.0749 00545 0.0335 0.0254 00181 00178 0.0171
0.8674 0.8520 790 0.6854 0.5465 0 3867 0 2230 0.0819 0.0000 0.0000 0.0000 00000 00000 G 0000 0.0000
0 8860 08513 0.7847 0.6847 0.54586 02858 0.2214 0.0748 0.000C 00000 0.0000 G 0000 0.0000 0.0000 Q.0000
0.8585 0.8435 07817 0.6780 0.5360 137 0.20732 0.0572 0.0000
08575 0.8428 0.7808 06752 0.5350 03732 0.2056 0.05 0.0000
0.8253 0.8103 07473 08396 0 4043 03305 01618 G 0.0000
0.8246 0.8085 07466 06389 (0.43585 Q3208 01810 00335 00000
Q7766 Q7613 04440 0.283¢ 1278 0.0258 0.0000
07758 07606 0.4434 22806 01274 0.0254 00000
07254 C.7101 0.6483 0.5381 0.3973 02441 01082 0.0213 0.0000
7248 0.7085 0.6458 05375 {3968 02438 01080 0.0214 0 0000
0.682 0.66069 0.8041 04585 03534 00068 00192 0.0000
06816 0.6664 06037 04980 (.3630 C 096 00191 0.0000
66513 06365 0.574% 4719 0.3418 0.2058 00902 G.0177 0.0000
08508 06360 (5742 04715 03415 G.2087 0901 00178 0.0000
(06344 081 05588 04578 0.33068 1987 ¢.0888 aei72 §.0000
0.6335 0.6192 D 5585 04573 0.3302 G.1882 G oseg 00174 0 0000
0.6304 068158 0.5552 04 0.3280 01870 00862 0.0168 0.0000
0 6300 0.6153 65548 04541 0.3277 01868 003861 00170 00000

0.6304
0.6300

0.6158
0.6153

Q0.56552
0.5548

0.4545
0.4541

0.3280
03277

01970
0.1968

0.0882
0.0861

0.0168
0.0170

0.0000
0.0000

71l



Table 4.21 Percentage relative error of the solution ¢ at the collocation points

05134 0.0731 0.0757 0.0803 0.0859 0.0903 0.0922 0.0848 0.1635 0.1000 0.0871 0.0849 0.0776 0.0729 0.0711 0.0723
0.0731 0.0737 0.0764 0.0811 0.0869 0.0813 0.0946 0.0841 0.0902 0.0870 0.0921 0.0861 0.0794 0.0743 0.0728 00737
0.0757 0.0764 0.0794 0.0849 0.0818 0.0882 0.0893 0.1000 0.1040 0.1069 00973 0.0938 0.0866 0.0810 0.0794 0.0804
0.0803 0.0811 0.0849 0.0921 0.1024 0.1124 01202 0.1206 0.1163 0.1130 0.1190 0.1104 (.0988 0.0921 0.0899 6.0910
0.0855 0.0869 0.0919 0.1024 0.1189 0.1430 0.1573 0.1623 0.1687 01732 0.1563 0.1418 0.1198 0.1062 0.1018 0.1031
0.0903 0.0613 0.0982 0.1124 0.1430 0.1948 0.2610 0.2940 0.2811 0.2671 0.2628 0.1948 0.1453 0.1178 0.1133 0.1114
0.0822 0.0946 0.0983 01202 0.1573 0.2610 0.5107 0.6905 0.7185 0.8112 0.5107 0.2564 0.1619 0.1280 0.1160 0.1174
0.08648 0.0841 0.1000 0.1206 0.1623 0.2940 0.6805 4.9559 9.2518 4.9558 0.0516 0.6878 0.1124 0.3920 0.2012 0.4469
0.16356 0.0802 0.1040 0.1163 0.1687 0.2811 0.7195 9.2518 0.0000 0.0000 0.6000 0.6000 0.0000 0.0000 0.0000 0.0000
G.1000 0.0870 0.1069 0.1130 G.1732 0.2671 0.8112 4.8558 0.0000
0.0871 0.0821 0.0873 0.1180 0.1563 0.2628 0.5107 00516 ©.0000
0.0849 0.0861 0.0938 0.1104 0.1418 0.194¢ 02564 0.6878 0.0000
0.0776 0.0794 0.0866 0.0868 0.1199 0,14532 0.1619 0.1124 0.0000
0.0729 0.0743 0.0810 0.0921 0.1082 0.1178 0.1280 0.3820 0.0000
0.0711 0.072¢9 0.0794 0.0899 01018 0.1133 0.1160 0.2012 0.0000
0.0723 0.0737 0.0804 0.0810 0.1031 0.1114 0.1174 0.4468 0.0000
0.0714 0.0738 0.0811 0.0913 0.1041 01115 01410 0.6844 0.0000

0.0714

0.0739

0.0811

0.0913

0.1041

0.1115

0.1410

0.6844

0.0000

N



Table 4.22 Pointwise convergence of the solution ¢ at 0.5 x 0.5 grid points:
First value - The Legendre Collocation Method with 3 x 3 mesh size

Second value - The Legendre Collocation Method with S x S mesh size

Third value - The Legendre Collocation Method with 7 x 7 mesh size

Fourth value - The Legendre Collocation Method with 9 x 9 mesh size
Fifth value - Exact solution in Equation (4.24)

1.180544 1.150178 1.058083 0799745 0.661301
1.234199 1.059635 0.879675 0.729065 0.633247
1.248412 1.054614 0.869581 0.726155 0.630980
1.253453 1.053434 0.867441 0.725404 0.630410
1.259821 1.052531 0.866025 0.724841 0.629961
1.150178 0.900078 0.849974 0.450038 0.350434
1.059635 0.801025 0.552486 0.400512 0.330570
1.0564614 0.795880 0.547570 0.397940 0.328459
1.053434 0.794653 0.546482 0.387326 0.328031
1.062531 0.793701 0.545562 0.396850 0.327689
1.059083 0.649974 0.000000 0.000000 0.000000
0.879675 0.552486 0.000000 0.000000 0.000000
0.869581 0.547570 0.000000 0.006000 0.000000
0.867441 0.546482 0.000000 0.000000 0.000000
0.866025 0.545562 0.000000 0.000000 C.000000
0.799745 0.450038 0.0000006
0.729085 0.400512 0.000000
0.726155 0.397940 0.000000
0.725404 0.397326 0.000000
0.724841 0.396850 0.000000
0.661301 0.350434 0.000000
0.633247 0.330570 0.000000
0.630980 0.328459 0.000000
0.630410 0.328031 0.000000

0.620961 0.327689 0.000000
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Figure 4.19 Three-dimensional view of the solution ¢ ot Laplace's cquation
with the boundary conditions defined in Figure 4.16

It is important to show that the coefficients in the series solution determined
by a using least-square or minimax approach will produce results that are in good
agreement with the exact solution along the sector arc. Note that the solution along
the sector arc is the boundary condition for the series solution formulated for the
isolated sector near the singular point. The most accurate approximate solution
along the arc will make the approximate solution closest to the exact solution.
Table 4.23 shows good agreement with the series solution along the sector arc: the

data in this table is plotted in Figure 4.20.



Table 4.23 Comparison the solution ¢ along the sector arc with
a fixed radius ¥ = 0.5 and at various angles 6 (from O to 1.5 n)

Point | Angle Exact Interpolated | Least-squares | Minimax
No. in radians | solution LCM (9 % 9) | Approx. (2 Approx. (2 odd
odd coefls.) coefls )
1 10.000000 | 0.000000 0.000000 0.000000 0.000000
2 10471239 | 0.194669 0.195661 0.194703 0.195363
3 | 0.942478 | 0.370282 0.370975 0.370327 0.371238
4 | 1413717 | 0.509649 0.510404 0.509678 0.510346
5 | 1.884956 | 0.599128 0.600469 0.598130 0.599359
6 | 2.356194 | 0.629961 0.629967 0.629950 0.629967
7 | 2.827433 | 0.599128 0.600469 0.599130 0.599359
8 | 3.298672 | 0.509649 0.510404 0.509678 0.510346
9 | 3.769911 | 0.370282 0.370975 0.370327 0.371238
10 | 4.241150 | 0.194869 0.195661 0.194703 0.195363
11 | 4712389 | 0.000000 0.000000 0.000000 0.000000
I\ [¢] Exact J
™) interpolated — LCM
A Least—squares ‘
h Minimax
0.6400 - U ——
0.5760 i
Q.5120
© 0.4480
—go.sam -
> L
.S 0.3200 |-
%OQE)EO o
01920
O.IQBO:—
0.0640 r
0.(3000""11l'1A"1L4L-
0.0000 0.4712 0.9425 1.4136 1.8848 2.3560 2.8272 3.2984 17696 4.2408 47120
Angle Theta

4

118

Figure 4.20 Plot of the solution ¢ along the sector ar¢ as tabulated in Table 4.23
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Singular Poiat

Figure 4.21 Grid points nearest to the singularity for each element
with 9 x 9 mesh size

As shown mn Figure 4.21 and Table 4.21, the errors in the neighborhood ot
singularity are from 4.96% to 9.25%, and the size of grid points 1s 0.025445 =
0.025445. Table 4.24 shows not only the convergence of the series solution in the
neighborhood of singularity, but also a solution with remarkable accuracy and
negligible errors in a neighborhood that is ten times smaller than the neighborhood
provided by the Legendre Collocation Method using 9 x 9 mesh size. Tables 4.25
and 4.26 show convergence of the derivatives and good agreement with the exact
solution.

It 1s important to note here that the minimax approach also produces almost
the same rate of convergence and accuracy. Thus, either approach is good for this
type of problem. Tables 4.27, 4.28 and 4.29 show a comparison of results obtained
by the least-squares and minimax series solution with the exact solution. Very

good agreement is seen. Figure 4.22 shows the contour lines of the solution ¢.



Table 4.24 Pomtwise convergence of the Least-squares solution ¢ at 0.0025 x 0.0025 grid points near singularity

0 088482 0048256 0044374 0 040785 0038525 Y 0031217 o oze241
0.058548 0048811 0044372 0.04024 0 036565 0.033684 0.031253 5028275
0058558 0 04832 0044382 (.04021 0 036671 0.033650 0031258 0028280
0.058542 0048506 0.044350 4640240 0.036660 0033680 0.0341245 002927
055480 0.055620 0.048854 0044323 0 040187 0036627 0 033844 0.031216 0028240
0053622 0048276 0042028 0 037806 0029355 0026352 0024738
0 053682 004833 0.042987 0037848 0.02939 0026422 0.024168
0053602 0048330 0.042985 0037855 0.028387 0.026426 0024170
0053676 0048325 0 042083 0037842 0033217 0.023388 0026418 0.024162
0053620 048274 0 047537 0037804 0033152 0.029357 0 024301 0.024137
0.048856 0042835 0.036842 0030777 il U2§32 24 0.02119% 0.018421 0018547
0048011 0.047887 0036883 0030812 0.678352 0021214 0018442 &
0.048820 0 047895 0036800 003081 0.025857 0021223 0018445
0.048908 0.042583 0.036879 0.030808 020344 Q029247 0.015440 00718864 0.015226
0.048854 0042837 0.036840 0030778 [REEREN e 0021104 0 01R4A20 Q016547 oozt
0044308 0 027E08 0080777 0025200 5017802 BYET=aT 0.008348 0007701
0044374 0037348 0030812 0011618 : 0.008457 0007710
0044362 0037854 0.U30813 5011820 0008459 ©007712
0024369 0037844 0.020809 0011615 0.008592 0.008455 £.007705
0.044223 0 027R04 0.030776 0011602 0000532 0.008447 0007701
G0s0198 0023183 0.025324 ] 0 U000 ¢ 00000C 000000 0000003 0 000000
0 040244 0025352 0.015¢71 G UIDULT 0.000000 0.000000 0.000000 G.000600
0.040251 0.0253357 0.015674 0,.000000 0.000000 0.0000030 0.000600 C.00000C
0.040240 0025349 0015880 0 op00an £.000000 0.000000 £.000000 0 600000
0 fem a7 £.025523 £ OA0NNKG £.600000 0000000 £.000000 0 000000
a oa 0.021155 0011604 0 000R0n
0036655 0021219 0011518 0.000000
D Dwﬁ? 1 0.021223 coviszg 3 OO0A0G :
035850 0.621217 0.011816 0000000 “he Thers 1 : G 1ne siemificance:
ooaee o oie p fooooo 'Un, numbers i the table have the following s gnificance:
First value - by using two odd-number coefficients
O 0336‘4‘~ 0018424 0.009582 T Q00U o - - A
; 0018442 0009593 {4 000000 Second value - by using three odd-number coefficients
0018445 ¢ 009595 i ULUOUt o T -
0018440 0 008592 0600900 Third value - by using four odd-number coefficients
0028321 0.018470 0009582 £.000000 s .
Fourth value ~ by using five odd-number cocfficients
1T 0016547 £ 008448 0.00000G £ Al foy e i
: PRGN o Seo00 Fifth value - exact solution
o 0 018569 4 00000
o 0 01A5R4 U0
Ia) 018547 U U000
T oo 0 ONGNG
6022 £ Breonn
002z 5 BAG000
0 Q ;v 0.007708 0 000600
0007701 0.000060

~3
(o)



Table 4.25 Pointwise convergence of ;—‘f of the I east-squares solution ¢ at 0.0025 x 0.0025 grid points near singulanty

-3.503578
-3.507588
-3.508175

-4.91222%
-4.81780%
-4.9158668
-4.917212

-4 012042

640415 1632976 1870465 1742882 5 A E018 1.075524 0673865
-1 851558 -1.835104 -1.872523 1744302 15 A.211811 -1.076678 0.874764
1951018 1935460 -1.872868 1745225 4.5 211852 -1.0756983 -.874963
-1.861308 210534543 -1 B72370 -1.744762 -1 548 -1.311h24 -1 O7o6e18 -0.874758
1.949345 1.932910 -1.870402 1.742831 15 4310146 -1.075487 0.873838
-2 125064 2145608 -2.111354 ~1.8738060 -1.702871 -1.3534588 -1.020774% -0.785346
22127423 2147991 -2.113697 -1.976147 1704857 1354951 -1.031897 0786185
2127810 48382 -2.114081 -1 1.705162 -1 355201 -1,032091 -0.786335
2127224 2147790 -2.113499 4. .704702 -1.354842 1031826 -0786145
-2 124688 -2.145532 -2.111278 1.8 ~1.792810 21383418 -1.030742 -0.785218
2521827 -2 406233 2458111 55077 D& 0523060
-2.324423 2411908 -2 458859 3356570 -0 850554 -0.624544
-2 324842 -2.412362 -2 488302 -1.356827 50 -0 624562
-2.324188 2411850 -2.458608 1 356454 -0.624504 B
2321742 2403748 -2 456021 1 353028 -0.623848
-2.918200 -2.825318 -2 456111 -1.1228468 -Q.57B200 -0.358241 -
2522038 -2.928615 1133034 -0.578883 0358031 :
2488 -2.928137 1124128 -0.5785892 -0.358688 50182
<2 E21T7RE 27057872 -2.828281 - 1a3s4E L5TRBAZ -0.358808 S325013
2519107 2700418 -2.925212 +1.122628 0578254 -0,358229 0.248568
2675022 5 3376490 0.000000 0.000000 0.060006
-2.682056 5 3380312 2000000 0 en0nn 0.000000
-2.883431 7 -3 380911 0 0O0000 G.000000 0.000000
. 1 -3.379918 £ GO0000 £.000000 0.000000
6 3376365 0005000 £.000000 £.000000

The numbers in the table have the following significance:
First value - by using two odd-number coefficients
Sccond value - by using three odd-number coefficients
Third value - by using four odd-number coefficients
Fourth value - by using five odd-number coefficients
Fifth value - exact solution

<



Table 4.26 Point

solution ¢

at 0.0025 x 0.0025 grid points near singularity

0 623882
0624544
0.624602
0.624504
0523848

0355241
0358631
0 358695
0.358a0c
C 3522

O 6? 147‘5 C4 8900 0248877
G 45544 0250144
&K 0250102
G.abyd 0250131
0.458845 240858

0.00000C
C OQ‘W""\

G OUWOOW
0000000

1.948415 2125084 2.321827 2780721 2 736540
1 2127423 324423 2783970 2738652
1 2127810 2.324842 2.784456 2740166
1951388 2427224 2324185 2783814 2 4
1.848345 2124688 2321742 2780887 2 3
1.83287¢ 2145809 2.409233 2702547 3.033106 2 2 806855
1.835104 2147991 2411928 2.705561 3 3.038572 7 2810080
1835460 2148382 2412362 2708043 3 OL4700 3.037102 ) 28 76
1.834845 2147790 2.411680 2705282 3.063886 3.036186 7 2808704
1832910 2145532 2.408145 27302418 3.080847 3.032883 1 2806748
1.870468 2111354 2456111 2825318 2503576 3142138
1.872523 2113657 2458858 2828615 3507558 3.145743
1.672888 2 114081 2.458302 2629137 3 06175 3.146289
1.872370 2.458606 2.828291 7134 3.145328
3 870402 2111278 2 456021 24925212 3 ‘3&4" 3.142020
17 1.873580 2.356645 3.094506 4 227176 3711726
1 2350281 3.007604 4.231877 3.715858
1 2350705 3008546 4232723 3716610
A 1.9 I"a@sa 2355038 3.097850 4231488 37154584
1 ‘.973869 2.356559 5.004383 4227018 3.711587 =
1.84841% 2456111 SINGULAR 4 25 3.405848
1 1.851561 2.458876 POINT 4 01 3.408851
1 "’3"164 1.951844 5 4 38 3.410444
1.704702 1.951387 4 3 3408405
1.702810 1.848345 4 12 3.405820
1.353466 1.355077 1
1.354051 1.356579 1.
13 1356827 1134
i 1.358454 1 3 a. ’\OWJQU
1 1350028 1.132828 G 000000
The number m the table have the following sigmhicance:
1030778 (898998 0878285 G GOC00a . . T
1031887 0.809984 0578892 0 000000 First value - by using two odd-number C.Qetﬂmems
0.900150 0.57850% 2000000 . ) -
0.809912 0578842 6.000000 Second value - by using three odd-number coefhicients
(. 898966 0578234 {.600000 )

Third value - by using four odd-number coefﬁcicnm
Fourth value - by using five odd-number coefficients
Fifth value - exact solution




Table 4.27 Comparison of the solution ¢ at 0.0025 x 0.0025 grid points near singularity:

First value - Exact solution
Second value - Least-squares series solution with two odd-number coefficients
Third value - Minimax series solution with two odd-number coefticients

0.058480 0.053620 0.048854 0.044323 0.040187 0.036622 0.033644 0.031216 0.029240
0.058482 0.053622 0.048856 0.044324 0.040199 0.036623 0.033645 0.031217 0.028241
0.058538 0.053673 0.048902 0.044366 0.040237 0.036658 0.033678 0.031247 0.029270
0.053620 0.048274 0.042837 0.027804 0.033182 0.029357 0.026391 0.024137 0.022404
0.053622 0.0482786 0.04293% 0.037808 0.033183 0.029358 0.028392 0.024128 0022405
0.053673 0.048322 0 042980 0.037842 0.033215 0.029388 0.026417 0.024161 0.022427
0.048854 0.042937 0.036840 0.030776 0.025323 0.021154 0.018420 0.016547 0.015210
0.048856 0.042939 0.036842 0.030777 0.025324 0.021195 0.018421 0.016547 0.015211
0.048902 0.042980 0.036877 0.030807 0.025348 0.021216 0018438 0.016563 0.015225
0.044323 0.037804 0.030776 0.023208 0.015952 0.011604 0.009582 0.008447 0.007701
0.044324 0.037806 0.030777 £.02320% 0.015953 0.011604 0.008582 0.008448 0.007701
0.044366 0.037842 0.030807 0023231 0015968 0.011616 0.009591 0.008456 0.007708
0.040157 0.033182 0025323 0.015952 0.000000 ©.000000 0.000000 0.000000 0.000000
0.040199 0.033183 0.025324 0.015953 0.00000C 0.000000 0.00000C (.000000 0.000000
0.040237 0.033215 0.025348 0.015968 0.000000 0.000000 G.000000 0.000000 0.000000
0.036622 0.029357 0.021184 0.011604 0.000000
0036623 0.029358 0.021195 0.011604 0.00000C
0.036658 0029386 00212186 0.011616 0.000000
00323644 0.026391 0018420 0.005582 0.000000
0.033645 0.026392 0.018421 0.008582 0.000000
0033678 0.026417 0.018439 0.008541 0.000000
0031276 0.024137 0.016547 0.008447 0.000000
0031217 0024138 00168547 0.008448 0.000000
0.031247 0024161 0.016563 0.008458 0.000000
(.025240 0.022404 0015210 0.007701 0.000000
0.028241 0.022405 0.015211 0.007701 0.000000
0.026270 0.022427 0.015225 0.00770¢ 0.000000



Table 4.28 Comparison of -

LAY

First value - Exact solution
Second value - Least-squares series solution with two odd-number coeflicients
Third value - Minimax series solution with two odd-number coefficients

at 0.0025 x 0.0025 grid points near singularity:

-1.948345 -1.832910 -1.870402 -1.742831 -1.547186 -1.310148 -1.075487 -0.873838 -0.713510
-1.948415 -1.832878 -1.870468 -1.742557 -1.547251 -1.310191 -1.075524 -0.873888 -0.713534
-1.951231 -1.834780 -1.872210 -1.744612 -1.548683 -1.311397 -1.076505 -0.874657 -0.714168
-2.124988 -2.145532 -2.111278 -1.87388¢9 -1.702910 -1.353418 -1.030742 -0.785219 -0.611455
-2.125064 -2.145609 =2.111354 -1.873960 -1.702971 -1.353466 -1.030778 -0.785346 -0.611476
-2.127061 -2.147625 -2.113337 -1.875812 -1.704564 -1.354725 -1.031728 -0.786082 -0.612025
-2.321742 -2.409145 -2.456021 56559 -1.849345 -1.355028 -0.898966 -0.623848 -0.458945
-2.321827 -2.408233 -2.456111 «2.356645 -1.948416 -1.355077 -0.698598 -0.623869 -0.458960
-2.324023 -2.411512 -2.458435 -2.358874 -1.851256 -1.356348 -.899834 -0.624442 -0.459376
-2.519107 -2.702418 -2.925212 -3.084392 -2.456021 -1.132626 -0.578234 -0.358228 -0.249868
-2.518200 -2.702517 -2.825319 -3.084506 -2.456111 -1.132668 -0.578255 -0.358241 -0.249877
-2.521596 -2.705089 -2.928104 -3.097453 -2.458447 -1.13373¢8 -0.578756 -0.358572 -0.250104
2 678823 -2.548526 -3.376365 -4.253953 SINGULAR 0.000000 0.000000 0.000000 0.000000
-2.679922 -2.9496386 -3.376490 -4.254111 POINT 0.000000 0.000000 0.000000 0.000000
-2.682484 -2.9524565 -3.379718 -4.258177 0.000000 0.000000 0.000000 0.000000
-2.768876 -3.060847 -3.503445 4227018 -4.812042
-2.769079 -3.060761 -3.503576 -4.227178 -4.912225
2771738 -3.063898 -3.506937 -4.231229 -4.516932
-2.780687 -3.0329¢3 -3.354987 -3.711587 -3.898680
2.780791 -3.033106 -3.355113 -3.711728 -3.898836
-2.783472 -3.036029 -3.358343 -3.715297 -3.902586
-2.736443 2.930851 -3.142020 -3.327307 -3.405820
2.7365486 -2.530962 -3.142138 -3.327432 -3.405848
2.739197 533799 -3.145177 -3.330648 -3.40823%
-2 667855 -2.806748 -2.945888 -3.053076 -3.054383
-2.662958 -2.806855 -2.846000 -3.053182 -3.094510
-2.665549 -2.808585 -2.948863 -3.056157 -3.097515



Table 4.29 Comparison of—? at 0.0025 x 0.0025 grid points near singularity:

First value - Exact solution
Second value - Least-squares series solution with two odd-number coefficients
Third value - Minimax series solution with two odd-number coefficients

|
1.949345 2.124588 2.321742 2519107 2 679823 2.768976 2.780587 2.736443 2 662855
1.849415 2 125064 2.321827 2519200 2.679922 2.769079 2.780791 2.736546 2.662956
1.851231 2127061 2.324023 2521595 2.682484 2771738 2.783472 2.739197 2 665549
1.932910 2145532 2.409145 2702418 2.949526 3.060647 3.032993 2.930851 2.806748
1.932979 2.145609 2.409233 2702517 2.949636 3.080751 3033106 2.930962 2.806855
1.934780 2.147625 2411512 2.70508¢ 2.952455 3.063698 3.03602¢8 2.93379¢ 2.809585
1.870402 2111278 2.456021 29257212 3.376365 3503445 3.354987 3142020 2 945888
1.870468 2.111354 2.456111 2925318 3376490 3503576 3.355113 3.142138 2 846000
1872210 2.113337 2.458435 2.928104 3.378718 3506937 3.358343 3145177 2.348883
1.742931 1.973889 2.356558 3.094393 4.253953 4227019 3.711587 3327307 3.053076
1.742992 1.973960 2 356645 3.094506 4254111 4.227176 3.711726 3.327432 3.053192
1.744612 1.975812 2.358874 2.097453 4258177 4.231229 3.715287 3.330648 3.056157
1.547196 1.702910 1.849345 2.456021% SINGULAR 4.912042 3.898650 3.405820 3.094383
1.547251 1.702871 1845416 7 458111 POINT 4912225 3.808836 3.405948 3.004510
1548683 1.704564 1.951258 2.458447 4.916932 3.902586 3.408239 3.087515
1.310146 1.353418 1.355028 1.132626 0.000000
1.310191 1.353466 1.355077 1.132868 0.000000
1.311387 1.354725 1.356349 1.13373¢ 0.000000
1075487 1.030742 0.898966 0.578234 0.000000
1.075524 1.030778 0.858238 0578255 0.000000
1.078505 1.031728 0.809834 04578798 0.000000
0.873838 0.785318 0623848 0.358228 0.000000
0873868 (785346 0.6223868 0358241 0.000000
0874657 0.786082 0.624442 0358572 0.000000
i i
0.713510 0.611455 0.458945 0 745858 0.000000
0713534 0.611476 (.458960 . 0.249877 0.000000
0.714168 0512025 0.458376 0.250104 0.000000

2
N
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Figure 4.22 Contour plot of solution ¢ in the neighborhood of singularity



CHAPTER 5

CONCLUDING REMARKS

In this study, a fully automated two-dimensional p-version of the Legendre
Collocation Method is formulated. The trial solution is constructed in terms of the
value of the solution at the collocation points, and these values become known
once the problem has been solved. The solution at any other points can be easily
obtained by means of interpolation. The trial solution satisfies the governing
differential equation and the boundary conditions at the collocation points. This
mixed collocation 1s a completely general method. The use of Lagrangian
terpolation functions in constructing the approximate solution and the zeros of a
Legendre polynomial as the interior collocation points makes it possible to fully
automate the computer code so that the accuracy of the solution is achieved solely
by increasing the order of the Legendre polynomial. Hence the number of roots
determines the number of collocation points and the accuracy of the approximate
solution. The choice of the zeros of a Legendre polynomial for collocation points
serves not only to produce more accurate results, but also "ready-to-use” function
values for the widely used Gauss-Legendre integration. The most significant virtue
of the Legendre Collocation Method is its ease in application via the digital
computer. The matrix elements of the defining equation vield directly the solution
and its derivatives. There is no numerical integration as in the Galerkin method.

In the A-version of the orthogonal collocation method on finite elements,
the accuracy is achieved by refining the mesh while using lower order
polynomials. In the p-version accuracy is increased by increasing the polynomial

degree. Thus, we know that for a given number of unknowns, the p-version



technique yields higher accuracy. This was found in our numerical experiments
where both techniques were implemented. Also, due to the repeated change in the
size of elements in order to increase accuracy, from the point of view of
programming, the fi-version would require much more human effort to be
implemented than the p-version.

For problems containing a boundary singularity, it is not teasible to
compute the dertvatives using the solution obtained by the Legendre Collocation
Method. The relatively high errors in the solution function in a neighborhood of
the singularity cause much higher errors in the derivatives. This difficulty has been
overcome by a combination of the Legendre Collocation Method and the use of an
eigenfunction solution near the singularity. With regard to computational effort.
the Legendre Collocation Method requires the solution of a set of N linear
algebraic equations. These equations are almost directly available in the Legendre
Collocation Method, whereas most standard methods require integrations.
Theretore the combined method developed m this study not only gives a very
accurate approximation, but also an effective means ot handling problems
contarning a boundary singularity. The coefficients of the eigenfunctions solution
in the neighborhood of the singularity are determined by either the least-squares or
minimax approach; we noted the rapid convergence of the solution obtained by
both approximations. In fact, both techniques produce almost the same accuracy.
The minimax approach requires less mathematical derivations, but requires the
solution of a set of simultaneous equations.

As demonstrated in the examples, the present formulations and numerical
procedures are accurate, efficient and dependable for practical problems governed
by partial differential equations and subjected to various boundary conditions.
Engineering accuracy is achieved with relatively little effort. both by hand and by

the computer. This makes it possible to carry out the numerical calculations in this



study on a personal computer with a conventional memory for storage. For all
calculations in the example problems, a very short computation time on a 386-
33MHz PC was observed. With such successful developments, this method
provides an attractive alternative for the study of many problems governed by

partial differential equations.



APPENDIX A

SOLUTION OF DIRICHLET PROBLEM FOR
LAPLACE’S EQUATION
BY SEPARATION OF VARIABLES

Figure A.1 Boundary conditions for Laplace's equation

Consider the following problem for the domain depicted in Figure A. 1

1 1 , .
d,, + - ¢, + P Pos =0 (A1)

and subject to the following boundary conditions
¢=0 along 6=0 (A.2)
¢=0 along &=« (A.3)
Separation of variables can be applied to the differential cquation (A.1) by

assuming a trial solution in the form

p= R(r)1(6) (A.4)
Successtve differentiation of Equation (A 4) gives

¢, =R (r)7(6H) (A.5)

$,, =R (rT(6) (A.6)



and
oo = R(r) 1" (8) (A7)
Substituting Equations (A.5), (A.6) and (A.7) into Equation (A.1) yields

RY(mT(8)+ 71 R'(r)y7(8) +—15 R(r)1T"(6)=0
. ,

or

2 R"(r) iy R(r) __17(8) _
R(¥) R(r) 7(8)
where A 1s the separation constant.
Hence, we obtain for 7"and R the two differential equations
T"(6)+AT(8)=0 (A.8)
and

PER(FY+FR(F)— AR(F)=0 (A.9)

The boundary conditions in Equations (A.2) and (A.3) imply that
7(8)=0 along =0 (A.10)
1(0)=0 along 0=« (A.11)
Three cases are possible for the value of 4 in Equation (A.8):
1. For A <0, and by taking a trial solution in the form
T=cet (A.12)
we obtain the characteristic equation
k*=2=0
or by =+
Hence, the general solution has the form
T(6) =& e 42

while the boundary conditions as given in Equations (A.10) and (A.11) are



Since the value of v/ & in the above equation is real and positive, we have
51 - O7 éz = 0.

Therefore Equation (A.8) possesses no nontrivial solution for 1 < 0.

For A =0, similarly, no nontrivial solution exists, since the general solution is
1(8)=7¢ 6+¢,

while the boundary conditions are

. For A4 > 0, using Equation (A.12) as a trial solution, one has the following

characteristic equation
k*+21=0
or ki, = +iv 1.

and the general solution can be written as

1(0) =3¢ e* ey el
The above solution contains imaginary exponents, and therefore can be
represented in the form

7(8) = ¢,cosv/ A 6+, sinA 0 (A.13)
where ¢, and ¢, are arbitrary constants.
By ispecting Equation (A.13) and the boundary conditions in Equations

(A.10) and (A.11), it is clear that a nontrivial solution exists for 4 > 0.



The eigenvalues with their corresponding eigenfunctions will be determined
later. We will proceed to find the solution for Equation (A.9).
The second differential equation (A.9) can be solved by taking a tnal
solution in the form
R(ry=r" (A.14)
Substituting Equation (A.14) into Equation (A.9), we obtain
w(p—=0r +pur —Art =0
As mentioned above, A <0 is excluded. Simplifying, we obtain
w=1=0
of f,= +/ 2. for 1> 0.
Consequently, Equation (A.14) becomes
R(ry=Brt 4+ Cpt (A.15)
where B and (" are arbitrary constants. As indicated in Figure A.1, the solution has
to be finite at the origin; in this case equal to zero when »=0. This s possible
only for ("= 0. Thus, Equation (A.15) becomes
R(ry=Br*, 1>0
Now, the general solution to a Dirichlet problem for Laplace's equation for
the domain shown in Figure A.1 is given by
#(r 0) = r'* (¢, cosv A O+ ¢, sin VA 6) (A16)
and 1t 1s still required for @(r, &) to satisfy the boundary conditions (A.2) and
(A.3) such that
P(r.0)=¢ =0
dr.a)=c,r* sinla=0
If ¢(r,0) does not vanish identically, then ¢, # 0 so that
sinvAa=0

and consequently,



ﬂzﬂ for n=12,... o
a

Therefore a nontrivial solution is possible only for the values
. N 2
n
A, = — .
a E
These eigenvalues A, correspond to the eigenfunctions

N
¢, sin—~¢
o

Hence for those eigenvalues of A, there exist only the nontrivial solutions

o N
plr.0)y=c,r=sin—48 for n=12,... . »
o

The sum of these solutions,

$(r,0) = Zcﬂ = sin%j—ré’ (A17)
=1

satisfies Equation (A.1) and the boundary conditions (A .2) and (A.3). It follows, 1f
a > 7, that the derivative of ¢ may become infinite in magnitude as » — 0. and it
is not suprising, when such singularities arise, that it is difficult to compute ¢
accurately in this region.

The solution in Equation (A.17) can also be written as

H(r.0) = Z R (r) sm%’fe (A18)

n=1
The solution in this form is suitable tor solving Poisson's equation. The right side
of the differential equation is expanded 1n terms of the same eigenfunctions, and
by substituting ¢(r,6) in Equation (A.18) into Poisson's equation, one obtains a
non-homogeneous differential equation for function of » only. The solution X (r)
1s then comprised of complementary and particular solutions. The particular

solution obtained in this way not only satisfies the differential equation, but also



the boundary conditions along two straight lines forming the angular sector. The

discussion of this method can be found in Chapter 3.



APPENDIX B

SOLUTION OF MIXED-BOUNDARY CONDITIONS
FOR LAPLACE’S EQUATION
BY SEPARATION OF VARIABLES

Figure B.1 Mixed-boundary conditions for Laplace's equation

The governing equation for the circular sector shown in Figure B.l in polar
coordinates is

1 1 R

¢N' +_; ¢r +;’F¢)[)() =0 (B 1 )

The boundary conditions along both straight lines forming the sector are given by

‘:4’5-:0 along 6=0 (B.2)
o6
¢=0 along 0=« (B.3)

Note that the boundary condition along the arc will not be considered in this

formulation.
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Stmilar to the development in Appendix A, the use of the separation of

variables method assumes a trial solution in the form

¢=R(r71T(O) (B.4)
Substitution of Equation (B.6) into Equation (B. 1) gives two differential equations
in KRand 7:

(+A1(8)=0 (B.3)
and

FER"(FY+rR(r) = AR(r) =0 (B.6)
where A 1s the separation constant. For the same reasons described in Appendix
A., 2 <0 1s excluded since it produces no nontrivial solution. Thus, the solution to

Laplace's equation (B.1) is found to be

H(r,0) = pt (c1 cosv A B+c, siny/ A 9) A>0 (B.7)
and

3 — —

(;Z: Pyt (~<»,\/Zsm\/2 O+, VA cosﬁé’) (B.8)

V2

Along &= 0, the normal derivative

oh_,

a6

and this makes ¢, = 0. The boundary condition in Equation (B.3) gives
cosvAa=0

and consequently,

Yy —
ﬁ:ﬁi{la D g for n=1,2,...,»

Hence, we have the eigenfunctions and eigenvalues

£y . TCTET ]r,. 2
¢ cos (2n-1) = }) 2 :{ 2n-1) =
a 2 a 2

and as a result, Equation (B.7) can be written as



- - lia -0
¢()‘,F)):Z o r cos ==y (B.9)

n=1\
It satisties Laplace's equation (B 1) and the boundary conditions (B.2) and (B.3).

[n the case of non-homogeneous boundary conditions, for example

D4 along 6 =0 (B.10)
;o
¢p=~5 along 6 =« (B.11)

where A and B are arbitrary constants. We proceed as follows. It is clear that
Equation (B.9) is obtained for 4 > 0 and satisties the homogencous boundary
conditions given in Equations (B.2) and (B.3). In order to satisfy the boundary
conditions, it is necessary to find another solution that can be combined with
Equation (B.9) to form the general solution satistying the Laplace differential
equation and the non-homogeneous boundary conditions. As shown in Appendix
A., when A = 0, the general solution of the Equation (B.5) is

1(0)=¢c6+¢, (B.12)
and its dertvative with respect to ¢ is defined by

1"(6)=2¢,.
The boundary conditions stated in Equations (B.10) and (B. 1 1) give

1"(0)y=2¢=4
and

Na)y=Aa+¢, =8
or ¢, =B-A4a.
Hence, the solution in Equation (B.12) becomes

1(0)= B+ A6~ a) (B.13)



Note that the boundary conditions in Equations (B.10) and (B.11) are independent
of r; therefore it 1s not necessary to find the solution in Equation (B.6) which is

only function of r.

Linearly combining Equations (B.9) and (B.13) gives the solution in the
torm
- P2t VI —1
G 0)= B+ A(0— o)+ Z o, i cosﬁi——f—’,;;‘li? 0 (B.14)
n=1 o

which satisfies the differential equation (B.1) and the boundary conditions (B.10)
and (B.11). Note that the first two functions satisty the non-homogeneous
boundary conditions, while the third satisfies the homogeneous boundary
conditions.

Examining Equation (B.14) reveals that, if « > Z, the derivative of ¢ with
respect to » tends to @ as »— 0. Thus, the problem contains a singularity, and

spectial attention has to be given for this type of problems.



APPENDIX C

WEIGHTS OF GAUSS-LEGENDRE QUADRATURE

it 1s well-known that the integration of /(&) in the interval —1< < +1 can be
approximated by

+1 N
[ rrde=d mse e

where & are the zeros of Legendre polynomial P, (&), and w, is the weight
associated with &

The function f (&) can be defined by

F(&=) (/&)
=1

where

Pe($)
E-E)PIE)

1s a Lagrangian interpolation polynomial with P (&) a Legendre polynomial of

r(&)= (

th-degree. Equation (C.1) can now be written as

b1 N N
FAE)YF(ENdE= w f(E (C.2)
J._IZ,S/U gll‘e) )

=1

From above, the weight v, can be defined as

+1
S RGIE
! (C.3)

_ J B(&) e
L (E=8)Pe)

140
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Since [’/ (&, ) is a constant, it can be taken outside the integral; then Equation
(C.3) becomes

‘ +1 [)V (

W= -
/ 5= =
P( 5«) -1 (‘:’_—

)
)
In order to calculate Equation (C.4), the recursion formula [25]

(DA =@+ D) ER(E) =il (£)

o (M

d& (C.4)

o

will be multiplied by 72(7) such that [9]
2+ DR EG) =G+ DE () Bm—i L ((E)E () (C.5)
[nterchanging & with 77 in Equation (C.5), one obtains
Qi) P EE) =+ D Py EE) =P () P (&) (C.6)
and next, subtracting Equation (C.6) from Equation (C.5) yields
i+ D= O =G+ DL BE) - B (S)YROn=i im 8 ($H) =1, (p P
(C.7)

Pertorming summation from 7 =1to N for Equation (C.7):

(=& QDB = D L+ DU B = LR OnT =20 k(6= ol

(C.8)

[t 15 easily seen that the right-hand side of Equation (C.8) is simply:

(N + D[ Lo (m PAE) = Lo () Py (O] =[B(EYECm = B0 F0E)]
due to cancellation of

(DO EE) = B (E)E0m]
by
SO AL~ PL(P(E)] for j=i+ 1,

Noting that /(&)= (=1, (&)= & and B () = 17, then Equation (C.8)

becomes
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(n- 9)2(71+‘)1’(s)1’(f7)—(N+1)[ a (D Py (E) = PLOp P ()] = (= &)

Moving the term (77— &) from right-hand to left-hand side, and seting / = 0 as the

starting integer for summation, one obtains

N
(17— 3;’)2(2f+ DB L =(N+ D[Py ()P (E) = P () P (6] (C9)

Let &, be a zero of £, (&£). Replacing 7 with & in Equation (C.9), and

noting that £, (&) =0, one has

N
(£-6)) QD REORE) =N+ )P (E) R (E)
i=0

or

N
(NFDPEIP(E) N
s = ;(uﬂ)/,m/,(g,) (C.10)

Now, integrate Equation (C.10) from -1 to +1,

] ) Hp\’(g) §] )
(V0P | 21 de- J_l§:<%+m<@>m,>cu €11

F7(&;) are constants that can be taken outside the integral. Due to the following

=0

orthogonality condition

+
Jf;,(g)/«:(g)df:o for i# 0

1

the right-hand side of Equation (C.11) is

1 Y +1
j Z(7I+1)P(5)d§ [B(EA(E) + BUEVRLE Vot Py (E) P (E)1dE
-1

=2



Equation (C.11) can now be written as

+l
Pe($) 2 1
dé=— (C.12)
LE TN AL
Substitute &= & into the following recursion formula,
(N+D PG =2N+D G P (&)= NPy (E) 13
(C.13)

- *N[)/\u';(‘fr)
and again the final result of Equation (C.13) is substituted into Equation (C.12).
Then

+1 e
]),w ( C: ) 2 .
e = e (C.14)
2 (E=¢) 7 NP 1(5/ '
The recursion formula for the derivative of a Legendre polynomial can be

defined as [25]

(I=&)VPL(E)+ NEP(E) = NPy, 1(&)
Letting £= ¢&,, a zero of P, (&), the above equation becomes
(1= &) PU(E) = NPy ()

Using the above result, again Equation (C.14) becomes

Hﬂ,'_)“,(__fl d&= 2 (C.135)
L (E-¢) (1= ENPI(ED |

and finally, the weights of Gauss-Legendre quadrature formerly expressed in

Equation (C.4) can be computed by

W, = 2 (C.16)

(=D PeEN]

Note that again, Equation (C.10) is simple and very suitable for automated

computing. P} (<) 1s defined by
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N
pecgr=qrae)=[ Jee -y for &= (1)
/=1

dx

i



APPENDIX D

THE POSITION OF THE COLLOCATION POINTS

The position of the odd number of the collocation points used in this study is listed
in the table below. Note that the interior points are the zeros of (N - 2)1 degree

Legendre polynomial.

Number of Interval Interval
Points N ~1<E<+] 0<E<+]
-1.000000 0.000000
-0.774597 0.112702
5 points 0.000000 0.500000
0.774597 0.887298
1.000000 1.000000
-1.000000 0.000000
-0.906180 0.046910
-0.538469 0.230765
7 points 0.000000 0.500000
0.538469 0.769235
0.906180 0.953090
1.000000 1.000000
-1.000000 0.000000
-0.949180 0.025448
-0.741531 0.129234
-0.405845 0.297077
9 points 0.000000 0.500000
0.405845 0.702923
0.741531 0.870766
0.949108 0.974554
1.000000 1.000000
-1.000000 0.000000
-0.968160 0.015919
-0.836031 0.081984
-0.613371 0.193314
-0.324253 0.337873
11 points 0.000000 0.500000
0.324253 0.662127
0.613371 0.806686
0.836031 0.918016
0.968160 0.884080
1.000000 1.000000
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