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ABSTRACT

On Orthogonal Collocation Solutions
of Partial Differential Equations

by
Herli Surjanhata

In contrast to the h-version most frequently used, a p-version of the

Orthogonal Collocation Method as applied to differential equations in two-

dimensional domains is examined. For superior accuracy and convergence, the

collocation points are chosen to be the zeros of a Legendre polynomial plus the

two endpoints. Hence the method is called the Legendre Collocation Method. the

approximate solution in an element is written as a Lagrange interpolation

polynomial. This form of the approximate solution makes it possible to fully

automate the method on a personal computer using conventional memory.

The Legendre Collocation Method provides a formula for the derivatives in

terms of the values of the function in matrix form. The governing differential

equation and boundary conditions are satisfied by matrix equations at the

collocation points. The resulting set of simultaneous equations is then solved for

the values of the solution function using LU decomposition and back substitution.

The Legendre Collocation Method is applied further to the problems

containing singularities. To obtain an accurate approximation in a neighborhood of

the singularity, an eigenfunction solution is specifically formulated to the given

problem, and its coefficients are determined. by least-squares or .minimax

approximation techniques utilizing the results previously obtained by the Legendre

Collocation Method. This combined method gives accurate results for the values

of the solution function and its derivatives in a neighborhood of the singularity.



All results of a selected number of example problems are compared with

the available solutions. Numerical experiments confirm the superior accuracy

the computed values of the solution function at the collocation points.
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CHAPTER 1

INTRODUCTION

The problems of mathematical physics, such as electrostatics., quantum. mechanics,

elasticity theory, hydrodynamics etc. generally lead to partial differential equations

or to ordinary differential equations. These equations have to be integrated. subject

to the initial and/or boundary conditions of each specific problem. The necessity

of solving these problems as accurately as possible in cases in which an analytical

solution is unobtainable has lead to the development of numerical solution

techniques such as the Finite Difference Method, the Finite Element Method and

the Boundary Element Method. Among the simplest methods to apply are the

Orthogonal Collocation Methods.

The formulation and improvement of various Orthogonal Collocation

Methods have attracted the interest of many investigators over the past quarter

century. There have been many publications providing surveys or accounts oh

these studies, for example, the book by 'Villadsen and Michelsen II]. A brief

account of the methods appeared in the books by Finlayson [2], and Prenter

Most of the earlier developments of the Orthogonal Collocation Method were

applied to one-dimensional problems, and when applied to two-dimensional

problems they were limited to the use of lower degree polynomials in constructing

the approximate solution, e.g. cubic Lagrangian polynomial, cubic splines, cubic

Hermite polynomials [1 41.

In the Orthogonal Collocation Method, the zeros of an orthogonal

polynomial are chosen to be the collocation points. The method was apparently

first applied to differential equations by Frazer, Jones and Skari [51 and

independently by Lanczos [6,7], and was developed further for solving ordinary



differential equations using Chebyshev series by Clenshaw and Norton [8], Norton

[9], and Wright [10]. These applications were primarily for initial-value problems.

Horvay and Spiess [11.] utilized polynomials which were orthogonal on the

boundary. Major contributions to the method were made by Villa.dsen and Stewart

[12] when they developed orthogonal collocation for boundary-value problems.

They chose the trial functions to be sets of orthogonal polynomials which satisfied

the boundary conditions, and called the method an Interior Collocation

technique. They also treated problems with trial solutions consisting of sets of

orthogonal polynomials which satisfied the differential equations with collocation

on the -boundary. This was called Boundary Collocation. The zeros of an

orthogonal polynomial were used as the boundary collocation points. They also

solved for the values of the solution function at the collocation points rather than

using arbitrary function coefficients in the expansion of the approximate solution.

This simplified the procedure for obtaining the solution. It is important to note

here that most of the problems solved using the Orthogonal Collocation Method by

previous investigators were chemical engineering problems.

Collocation methods have been used to solve integral equations for more

than sixty years. More recently, the so-called 11-, p- and hp-versions of the

standard Finite Element Method have attracted the interests of many investigators

in this fields [13,14,15]. The accuracy of the h-version is achieved by refining the

mesh size; and the p-version improves its accuracy by increasing the polynomial

degree. The hp-version balances a combination of mesh refinement and an

increase of the polynomial degree of the shape functions. The /1-, p- and hp-

version techniques using the Finite Element Method have been applied to the

Boundary Integral Element Method [16,17,181.

A major purpose of this study is to develop the p-version of the Orthogonal

Collocation Method as applied to differential equations, so that it can be easily



automated for the computer. The Orthogonal Collocation Method formulated here

differs from the procedures presented by previous investigators in that we confine

ourselves to the use of the zeros of one orthogonal set, namely the Legendre

polynomials as the interior collocation points as well as boundary collocation

points. In a series of numerical experiments, we found that the use of the Legendre

polynomials yielded the best accuracy. Furthermore, we require the approximate

solution, which is constructed using Lagrange interpolation functions, to satisfy

the governing differential equations and boundary conditions only at the

collocation points. Thus, a mixed collocation technique is adopted; it generalizes

and simplifies the procedure in solving the problem using a computer, and the

convergence of the solution is achieved by simply increasing the degree of the

polynomial used in the approximate solution. The method developed in this study

provides the derivatives, in terms of the values of the function in matrix form by

performing matrix. multiplication. Here we follow Villadsen and Michelsen [1,191

who used a repeated differentiation of the approximate solution, and evaluated it at

the collocation points. We extend further the use of the so-called Legendre

Collocation Method to problems containing boundary singularities. The goal is to

develop a solution method, capable of finding the approximate solutions as well as

the approximate partial derivatives of a given problem, especially in a

neighborhood of the singularity without using a fine mesh. The resulting combined

method is described in Chapters 2 and 3.

Chapter 2 discusses the development and formulation of the p-version finite

element technique of the Legendre Collocation Method. The automated p-version

technique is made possible by the use of the Lagrange interpolation functions to

construct an approximate solution, with the zeros of a Legendre polynomial as the

interior and boundary collocation points. The recurrence formulas for obtaining

the first derivative at the collocation points are presented in detail, and as a result,
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this derivative can be expressed in terms of the values of the solution at the

collocation points in matrix form. Matrix operations of the discretization matrix

for the first derivative will generate the .matrices for higher order derivatives which

will be substituted into the differential equation. In the same manner, the boundary

conditions are satisfied, and the whole problem is then reduced to a set of matrix

equations which are easily generated and solved on a computer.

Like all polynomial approximations, the Legendre Collocation Method is

unsatisfactory in a small neighborhood of a singularity. Thus, a special treatment is

required. Chapter 3 gives a systematic treatment in the form of eigenl i iuction

solutions in a neighborhood of the singularity which are specifically forrindated

for these problems. The coefficients are determined by least-squares or ininitnax

approximation techniques utilizing the results given by the Legendre Collocation

Method. This combined method gives the solution and its derivatives which are

important in the sample problems treated, because they represent the stresses in a

neighborhood of a singularity.

In Chapter 4, we report and discuss the numerical results on several

examples. The techniques of Chapters 2 and. 3 are applied to the problems, and

the results are compared with the available solutions obtained by previous

investigators. The numerical solution at the collocation points or at intermediate

interpolation points might be interesting in itself, but the :intention of this chapter

is to give numerical evidence of the effectiveness of the method developed in this

study -, also, to show how well all the techniques of the previous chapters work

together. In Chapter 5, we present our concluding remarks on this study.

Finally, the two general solutions of an angular region as representative of

boundary singularity are shown in the appendix. The formulation for obtaining the

weights of a Gauss-Legendre quadrature is presented as well as a table of the

Legendre collocation points.



CHAPTER 2

LEGENDRE COLLOCATION METHOD

2.1 Introduction

This chapter deals with the Legendre Collocation Method for two-dimensional

problems. The term Legendre Collocation Method is used here to signify that the

solution of a 1 D.E. for a two-dimensional region is obtained. by using the zeros of

a Legendre polynomial as the interior and boundary collocation points, which are

also the Gauss-points in numerical integration. Since the results obtained by this

method are the function values at the zeros of a Legendre polynomial, the

numerical integration formula can be immediately applied to a problem that

requires integration over the domain, such as torsion problems. This is one of the

advantages of collocating at the roots of a Legendre polynomial.

For simplicity, the formulation in this chapter will be confined to elliptic

equations applied to rectangular domains or regions that can be divided into

several rectangles such as torsion of a bar of L-shaped cross section. In addition,

the p-version rather than the h-version or hp-version technique [13, 14,15,17,18 j is

emphasized. Thus, the domain is broken up into a fixed number of (relatively)

large subdomains or elements, and high-order basis functions are used to construct

a trial solution within each element. In this approach, convergence is achieved by

increasing N, the number of collocation points within the elements, while keeping

the number of elements fixed. Clearly, the logical choice for polynomials passing

through the collocation points in this case will be Lagrange interpolation functions

that can be easily constructed and increased to any desired degree N of the

polynomial as will be shown later in this chapter.

5
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As mentioned above, the emphasis in this study is on a higher-degree

approximation or p-version technique. Fin.layson [2] stated that in higher

approximations the choice of collocation points is not crucial, but a choice in a

certain way is possible and will make the calculations both convenient and

accurate. Furthermore, Stewart and Villadsen [1.2,20] have pointed out, that a

positioning of the collocation abscissas at the zeros of orthogonal polynomials

leads to a rapidly convergent interpolation scheme, even for the functions that are

poorly represented by polynomials. Therefore it appears to be a natural choice to

use the zeros of a Legendre polynomial as the collocation points [4,201.

The application of the Legendre Collocation Method can be outlined as

follows:

1. By giving as the only input N, the degree of the Legendre polynomial ill

computer program, the zeros of the Legendre polynomial are calculated

and. chosen as the interior collocation points. In addition, the two end

points of the interval [-1,1] are added as additional collocation points.

This inclusion will enable us to ensure the continuity of both the function

and the normal first derivative values across element boundaries., also to

provide us with collocation points on the regional boundaries where the

boundary conditions for the problem should be imposed. Thus, the total

number of collocation points on the interval will be (N 2) points.

A one-dimensional trial solution in the form of a Lagrange interpolation

polynomial is taken, and matrices A and B representing the first and

second derivatives, respectively, are established. These derivatives are

expressed in terms of the values of the function at the collocation points.

The coefficients of matrix A are obtained by differentiation of the

Lagrange interpolation polynomial and then evaluated at the collocation



points. The coefficients for the matrix B are computed by simply

squaring A. Thus ., the discretization matrices A and B are both

(N+ 2) x + 2). When the ith row of A is multiplied by the values of

the function at the collocation points on the interval under consideration,

one obtains the first derivative at a point which corresponds to row

number 1.

3. The Legendre Collocation Method proceeds by breaking up the

computational domain into rectangular macro-elements forming the

region. The trial solution in a two-dimensional domain is just the product

of Lagrange polynomials in each of the dimensions. Therefore the

derivatives at the chosen collocation points can be replaced by

summations of particular rows obtained by operating with products of

the matrix A applied in the x and y directions multiplied by the known or

unknown function values at the collocation points in the appropriate row.

When the method is applied to the chosen domain, each macro-element

is mapped from the physical (X„y) space into a local (, 11) coordinate

system, and a set of simultaneous equations is generated. as a result of

satisfying the following conditions:

• The discrete approximation of the governing differential

equation is satisfied at each interior collocation point of each

element.

• The values of the function and normal derivative are requited to

be continuous at collocation points located at inter -element

boundaries. Since a global numbering scheme is adopted for the

entire domain, continuity of the function values is automatically

ensured.
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• Boundary conditions are satisfied at the collocation points on

the boundaries.

• At all corners of the domain, the boundary conditions are

satisfied. In such cases where both the normal derivative and

function values are prescribed at a corner, only the function

value is chosen to be satisfied, If, the normal derivatives in both

the x and v directions are prescribed at a corner., both derivatives

are normalized so that satisfaction in both directions is possible.

4. The sets of linear equations occurring in the illustrative problems have

been solved using Lti decomposition together with forward and

backward substitution to give the solution at the collocation points. The

solutions at any other points can be easily computed by employing the

two-dimensional Lagrange interpolation polynomials previously

constructed. For problems with no singularities, the first derivatives at

collocation points representing stresses or fluxes can be calculated by

simply multiplying the solution function vectors by A. For problems with

singularities, a special treatment is necessary and has been developed for

an accurate approximation in a neighborhood of a singularity.

In this study, the trial solutions chosen satisfy the governing differential

equation and boundary conditions at the collocation points. Thus, the Legendre

Collocation Method employed here is considered as a mixed collocation technique

as defined in References [12,21].
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2.2 One-dimensional Lagrangian Trial Solution

In many practical problems, it is impossible to determine the exact solution to the

governing differential equations. The exact solution defined in this context is an

explicit expression for the solution, in terms of known functions, which exactly

satisfies the governing differential equations and boundary conditions.

As an alternative, the Legendre Collocation Method formulated in this

study, seeks approximate solutions. These are explicit expressions in terms of

known functions. but they only satisfy the governing equations and boundary

conditions at the collocation points.

The construction of an approximate or a trial solution consists of

constructing expressions for each trial function in terms of specific, known

functions. The Legendre Collocation Method makes use of the classical method of

Lagrange in approximating a function with given values at a discrete number of

points by a finite sum of polynomials. The Lagrange interpolation polynomials are

algebraically simple, and easy to work with. They provide a systematic procedure

for constructing trial functions and for evaluating their derivatives at collocation

points. Most important, the procedure can be easily implemented and automated

for computers. For the same reason, the Lagrange formulation is widely used in the

Finite Element Method [22,23].

An approximate solution will be denoted by a letter with hat over it. Th

will denote an approximate solution for u.

In the one-dimensional case, the ( N 1) -degree Lagrange interpolation

polynomial formula for a trial solution in the arbitrary interval [A - 1 ,x,„ .] can be

defined as

,2.1)



Approximation function

11

N

10

where N is the total number of interpolation points, ii is the value of solution at

the ith point, and C. CO are Lagrange interpolating functions which have the

property

1 for i =
=	 (2.2)

0 for i

and 6. is the Krone•ker delta as defined above. It is important to note here that the

interpolation points or nodes, are also collocation points. Thus, -AT is also the

number of collocation points. .H.ere the interior points within interval are chosen to

be the zeros of a (N —2)th-degree Legendre polynomial, and the two end-points

are purposely included as collocation points, for reasons previously discussed.

Figure 2.1 (N-1) 1h-degree approximate function.
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(2 4)

The Lagrange interpolation function is defined by [24]

(c7- 4:3•••(. - 

i()=
",

Another formulation of ( , can be written as [1, 19]

P,( 
( i( ) 	 -1— `n

where 

)

(2.5)

=1

is a node polynomial of Nill-degree with the leading coefficient equal to one, and

P(r(c:._;, ) is the first derivative of P v 	defined as

{1 - 	—) (' )]	  - vdx '
1=- 1

for =	 (2.6)

and evaluated at point 	 which is the ith collocation point. In this study, the

interior collocation points are the zeros of a (N-2)ffi-degree Legendre polynomial.

An approximate solution expressed as a Lagrange interpolation 'polynomial,

as in Equation (2.1), is a variable-order polynomial, and it can be easily automated.

to be constructed to any degree desired on a computer. As in the computer

program written for this study, one needs only to input any desired integer (N —2)

as the order of the Legendre polynomial, two end-points are automatically added,



12

geometric coordinates of the domain are supplied, and then the problem is solved.

These are the only inputs needed to solve the problem using the Legendre

Collocation Method. From the standpoint of a p-version Legendre Collocation

Method, this automation is highly desirable since increased accuracy is achieved

by increasing N. Another important attraction of these polynomials is that the

undetermined coefficients tr, in Equation (2.1) are also the solutions at the

collocation points once the problem is solved. Solution values at any other

locations in the domain can be computed by interpolation from the polynomials

previously constructed.

2.3 Differentiation of a Lagrange Interpolation Polynomial

To apply the Legendre Collocation Method directly to differential equations, the

derivatives at the collocation points are expressed in terms of the values of the

solution function at collocation points. These derivatives at the collocation points

are obtained by matrix operations on the column vector of the solution function.

The solution function vector must include the boundary conditions. The column.

vector for the derivatives must include the boundary conditions on the derivatives.

The resultant matrices are substituted into the differential equation(s). In order to

obtain the coefficient matrices for first and second derivatives, Equation (2.1) has

to be differentiated. Thus,   

d d 
d

(2.7)   



I 3

As shown in the right-hand side of the above equation, it becomes important to

find. the expression for the derivatives of the Lagrange interpolation function

ei(4
If Equation (2.4) is re-written as

P\r ()

	) (J)
)

(2.8)

and then is differentiated, we obtain.

) 	 — 	 ) e'; 	 ) + 	 ( L,1= )

)(14' )+ 2 ( 1,( )Yr,

(A.
o(- )

Pk ( 	
k)

where k in Equation (2.11) denotes the kth-derivative.

Normally only 0,(0 is of interest as we shall see. For

(2.1.0) becomes

(2.	
)

Equation

PN( )( ) =	 '	 for
-	 2 Pi(r	 )

Using Equation (2.9) for	 # 4"„ and noting that e,(4') = 0, one obtains

	 for "

(2.12)

.13)

As shown in Equation (2.12) and (2.13), it is necessary to compute the first

and second derivatives of PAT(4) at collocation points. The recurrence relation for
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Pw (), which is very suitable for computer programming will be used as a basis

for finding recurrence expressions for the derivatives. The node polynomial in

Equation (2.5) can be generated by the recurrence formulas [1,19]:

1)0() =
(cf ) =	 ) for j

We differentiate Equation (2.14) twice to yield

Pi"(	 )=(. --- (f.,.).1 ;-`1(() -1-2 P;--1()

in general, for kth differentiation, one has

1")./ (k) 1(	 )1?"-klU

(2.14)

(2.15)

(2.16)

(2.17)

and the values of Pk() and PV) are obtained by inserting 4f., for	 in

Equations (2.15) and (2.16).

Equation (2.14) is started with 1)0 ( 	 as a result	 = 0, and

Equation (2.15) with	 1 will be

=	 )01(;)	 )0(	 =

Whence,

P)	 2).Pi'()-1-Pi(), where n()=(.. --, 0

P;G)=(.4.-- 3)P21()+/-)2( , ),

Similarly, for Equation (2.16), the first iteration gives

Pi"(J.) 
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where J-'() ./r( ) = 0; therefore

= 0

1)2"(ti=(..- 2)/r()+ 2 Pi'Ws = 2

=(.43)-1)2"(4')+ 2 P:()

:7-1()+ 2 P(T-1(4.')

Clearly, the values of previously calculated P;it(() and	 are used to

obtain 1-',"(,-) and P;(4-. ). Hence, the recurrence formulas presented above should

be easy to implement on a computer.

2.4 Coefficient Matrices for First and Second Derivatives

It follows from Equation (2.7), that the values of the derivatives at collocation

points can be expressed in terms of the values of the function, also at those points.

Equation (2.7) as the first derivative of an approximate solution 11 at the ith

point is repeated here in another form

17+,` =
	 (2.18)

and for i = 1,2,..., N, the vector of the first derivative of an approximate solution

can then be expressed in matrix form as

01(41)	 (-):2G:i)

l'i 	 1"1 (2 ) 	 c2(c-,f2)

r(; )--	 NJ	 U 2

.••	 ety ( 1)

-•	 ol (1 ,- 2)

e 'N   

(2.19)      



Note that the diagonal elements of the coefficient matrix are computed by

Equation (2.12), and the off-diagonal coefficients are calculated by Equation.

(2. f13). Equation (2.19) can also be written in compact form as

„ d
u' — u = Au (2.20)

where A" = (../,',;(,) are the coefficients of the N x N matrix A. Examination of

Equations (2.19) and (2.20) reveals that the first derivative operator is

represented by the coefficient matrix A. This matrix A now becomes a basis for

obtaining the higher derivatives expressed in terms of the values of the function at

the collocation points.

Similarly to the expression in Equation (2.20), the second derivative can be

written as

d	 _ ci
ci
	 Li — (14: ci
	  Li

•

Noting that t-lz can be replaced by A, we have    

e`1(. 1) 	 (2)

( 1 (1 2..)  (2.21)      

0,(4- ) — (",( ,f\)           

Replacing (i,ii;,...,nriv ) with Equation (2..1 .9), one has   

frii(4.-1)

1(2) 	 e'2(4--2) 	 e'.1(2) 	 t'iv (4:2:

e'2 	 *	 ( 	 'e1.1( ( .A7            

or
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If we let B A 2 then

d 2
	U = A 2 u

of2
	  = B u

(2.22)

(2.23)

where B1, 	 •(4)-ii
J=1

Alternatively, as in Reference [1,19], the coefficient matrix B can also be obtained

by differentiating of Equation (2.8) three times, so that

c5i.).(94." ()+k 0,• 1 ( ,f)

and for	 <„ the above equation yields

1 ),-1/( 	)
) = 3

as the coefficients located in the diagonal of the matrix B. The off-diagonal

elements can be computed by inserting 	 # into Equation (2.10) so that

)
Di (

l'71I

It is clear that, Equation (2.22) as the proposed computation for matrix B is the

simplest procedure. Furthermore, the coefficient matrix for any higher order

derivative can be easily obtained.

In general.. the Sh derivative of !? can be determined by

j (k )
	 ii =	 ude) (2.24)

=  

where A k is the kdi power of matrix A. Thus, any desired order of derivative

expressed in terins of the values of the function at collocation points can be
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obtained by simply raising A to the kth power. This can be performed easily on a

computer, and it makes the Legendre Collocation Method very attractive.

It is important to note here that the order of the approximate solution i-i

should be higher than or at least equal to k. Otherwise, a square matrix A k will be

zero and the higher order derivatives in the differential equation will riot be taken

into account.

2.5 Zeros of Legendre Polynomials

We present an automated method of calculating the zeros of Legendre

polynomials. As previously stated, these points are used as interior collocation

points. They are also the Gauss points in numerical integration. We start with the

recurrence relation from the theory of Legendre polynomials in the interval

[25]:

Po(e ) = 1
(i +1):1)„((: ) , (2i+ 1)-,;',

for i = 0,1, 2 ,	 /1. Then by letting

i +1, for =	 or j

Equation (2.25) can be written as

(21 —	 )—(f-
P,	 ) 

-

(2.25)

(2.26)

Expressed as in Equation (2.26), the recurrence relation becomes easy to program.

The derivative of a polynomial is calculated using the following recursion

formula (25]

",-1(.4f (2.27a)

or
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	,( ) = 
[P1 ()- 	

(2.27b)

Using the available values calculated by Equations (2.26) and (2.27b), the roots of

a polynomial are found by the iteration formula.

I =
	 PA'( ( k) 
	

(2.28)

which is the well-known Newton's method.

Knowing that the zeros are symmetric in the interval from x —1 to x =

one needs only to find half of the zeros, and the other half are obtained by

reflecting about the origin by changing sign. To jump directly to the neighborhood

of the desired root, where it converges by Newton's method, we will use the

following initial 'guess' to approximate the ktil root [261:

= cos
4k —1 

Jr
'

4N+2
(2.29)

The above approximation is based on an asymptotic formula used to define the

Legendre polynomial Pv (4 ) 
in terms of 9 where = cos 9, and 6' is computed

using

	

4k —1	 I	 4k —
= 	 7r i-

4.N+2	 8W2 cot
	 n. + 0 ( N ) for k
4N+2

(2.30)

Notice that Equation (2.29) uses only the first term of Equation (2.30). The

refinement for the location of the zero is clone by Newton's method as mentioned

above.

As mentioned earlier, the Legendre Collocation Method provides the

solution at the collocation points. The interior points within the interval are the

zeros of a Legendre polynomial. Thus, for a problem that requires .numerical

integration, as in the St. Venant torsion problem, it is necessary to calculate the

weights associated with the zeros of the Legendre polynomial that were previously
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obtained by Newton's iteration formula in Equation 2.78). These weights, used in

Gauss-Legendre quadrature can be computed from

7
)1"j =	

2 )[ P1,, ( 41 )] 2
	 (C.16

as derived in Appendix C. Notice that the fonnula for computing iv ; also consists

of terms needed for finding the zeros of the Legendre polynomial in (2.28). Thus,

this computation is a. simple matter once the zeros of the Legendre polynomial are

calculated.

2.6 Legendre Collocation Method Applied to Differential
Equations in Two-Dimensional Domain

The Legendre Collocation Method is based on the Orthogonal Collocation

Method introduced by Villadsen and his co-workers [1 12 19,20,27], which

consists of satisfying the differential equation(s) and/or boundary conditions at the

zeros of a selected Jacobi Polynomial of a selected degree. Increasing the degree

of the polynomial and, correspondingly the number of zeros, increases accuracy,

but also the number of unknowns. In the Legendre Collocation Method, we use

Legendre Polynomials exclusively, because it simplifies the treatment, and we

found by numerical experimentation that this yields the best accuracy.

fo illustrate the method, consider the Poisson equation

7, 2
C./ if 	 Cil

V -11 (x,y)
i3xL

(2.31)

in the domain Q as depicted in Figure 2.2, and subjected to essential, or Dirichlet,

boundary conditions

t-r =tr on 1- 1 	(2.32)

and natural or Neumann boundary conditions
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Gill
	  =-- if or 1- 2 	(2.33)

where the total boundary F = fl + L. Note that lr and ii.
	prescribed values of

the function and the -normal derivative on the boundaries	 and L, respectively.

Figure 2.2 Domain and boundary conditions for Poisson equation.

Let it be the approximate solution in terms of a series of known functions

with arbitrary coefficients. This trial solution satisfies none of the given Equations

(2.31), (2.32) and (2.33) everywhere so that the so-called mixed collocation

technique is employed [12,21]. The mixed collocation method is a general

technique that can be applied to any differential equations and boundary

conditions. In contrast, the interior collocation technique uses a trial solution it

that satisfies the boundary conditions in Equations (2.32) and (2.34) identically,
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and the undetermined coefficients in the trial solution are found by satisfying the

governing differential equation (2.3 1) at n points in the domain C.). Boundary

collocation requires an approximate solution it that satisfies the differential

equation (2.31) identically, and the coefficients are adjusted to satisfy the

botindary conditions in Equations (2.32) and (2.34) at n points on +

2.7 Linear Transformation of Two-dimensional. Domains

As mentioned in the preceding sections, the interior collocation points are chosen

at the zeros of a Legendre polynomial defined in the interval from = —1 to

+1. In addition to the n zeros of the Legendre polynomial, for each dimension,

two end points are added as extra interpolation points in the trial solution.

Therefore the total number of points in one dimension will be (ii + 2) points, and

the trial solutions will be (n + I) - degree polynomials in the .v- and y-directions.

In a procedure used by several investigators in this field [4 12,19,

28,29,30,31], the zeros of orthogonal polynomials are taken as the collocation

points, and the domain is broken up into several pieces as in the Finite Element

Method. This method is sometimes called Orthogonal Collocation on Finite

Element [4]. By adding the two endpoints of each interval to the zeros of the

Legendre polynomial in each direction, and using a global numbering scheme for

the entire domain, the mapping of the boundary nodes of the so-called parent

element (4,== ±0 onto the boundary nodes of the real element in the

rectangular domain .v E (x„.v,„, ),y e(y„,y,. +1 ) (see Figure 2.3) will automatically

ensure the continuity of the function values at the collocation points on inter-

element boundaries. Furthermore, there are enough undetermined parameters to



enforce continintv of normal derivatives at the inter-element boundacv collocation

points .

L'Ar1/4..sq rL ii ii

Figure 2.3 Lineal mapping area element onto patent element

Since the final solution is obtained as the function values at the zeros of a

Legendre polynomial, we have "read . to use" twction values rot numerical

integration. For example, in the problem of a rectangular bar under torsion_ the

torque is calculated by

I, 2f n ciAck

(2. 4) )



x = r+1 	 V 	 Xr4-1 	 Xr 

2
(2 3.5)

and
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where u is the Prandtl stress function, NLX and NO' are the number of collocation

points, w, and w i are the weights corresponding to the zeros of the Legendre

polynomial, and e l and e2 are constants due to linear transformations in the x and

directions, respectively.

The transformation of rectangular shapes is straightforward so that

..15+1 	Y, (2.36)

Hence, e l and c, are given by

x,. +1 x r 	Ax
2

and

(2 37)

(2,38)

where A; e-) and Ay" are element sizes in the x and y directions.

2.8 The Legendre Collocation Element Formulation .

in Two-dimensional Domains

As in the Finite Element Method, a trial solution is constructed in the parent

element 77 coordinate system. Thus, in each element, using a one-dimensional

trial. solution Equation (2.1) as a basis, the trial solution for a two-dimensional

problem is defined by the tensor-product of the 4= and ij spaces, so that

NPX

17) = •	
4) e ( /7) uu 	2.39)

1=1



where .NPX and NP1.7 are the number of points in the	 and i direclions,

respectively. This interpolation Equation (2.39) is riot actually used in the solution

process since the problem is solved in terms of the value of -11,, at the collocation

points. The collocation points are chosen at (4=,, t71. ) where, and .t7 i are the same

collocation points defined in one dimension.

In order to replace the Laplacian operator in Equation (2.31) and the

normal derivative in the Neumann boundary conditions in Equation (2.33) with the

derivatives expressed in terms of function values at the collocation points,

Equation (2.39) has to be differentiated, The first partial derivative of Equation

(2.39) with respect to 4= will be

onn„= 	 (q)	 (2.40)
=1

At a collocation point 17(4=k , qui ), all terms of /I) i ( rim ) except that for J	 m will

drop-aut

//in ) —

Therefore, for each element, the first derivative with respect to ,;• 	 at the

collocation points can be written as 

) = 	 = (2.41)

or in matrix form

for k = , 2 , 	 NPX and in =	 • IVP Y 

NI}'   

(-1, 11(1) 	 e 2 ( -e;,1 ) 	 • • 	 CA(T),,,, (

( 1. (c. ,2) 	 ) (2.42)    

r"-) 	 NP,V 	 —	 e tivPx	 NPX )       



•

{

11,ri( k , 111) 	 e ( 111 ) 	 e( 111) 	 • • • 	 e 'AT) . (J1) 	 11 0

11( 	 , 1/NPY) 	 e 	 11 NRY 	 (1) NRY 	 • • 	 e ' 	( 11 i\TY ) 	 k ,NPY
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for in = 1,2,...,,NPY. Examining the coefficient matrix in Equation (2.42), it is

clear that this is the matrix A in Equation (2.20). Thus, A which used for

calculating the first derivative at the collocation points is not only applicable for

the one-dimensional problem, but is also valid for the two-dimensional case.

Matrix A now serves as a basis for computing the higher derivatives at the

collocation points. Consequently, B in Equation (2.23) can also be used to obtain

the expression for the second partial derivative at the collocation points along the

and /7 directions. In concise form, Equation (2.42) will be

Ci -2-- X u
	

(2.43)

Similarly, the first derivatives with respect to 1/ can be written as

17 11 =k 	 ' 1 tr)1')))) = (2.44)
r

where k and in have the same meaning as above. In matrix form, Equation (2.44)

can be written as

l'e ,11(‘: +lc ', 112 .) 	 e '1( 112) 	 e '2 ( rh ) 	 — 	 (11. ',/ %TY ( ii2 ) 	 li k (2.45)

Again, in a concise form, Equations (2.44) and (2.45) will be

= AYu

Note that for NPX = NET, AX is the same as AY. Similar conditions apply for B in

x and y directions.

Denoting the approximate solution at the k" collocation point in (;" and the

111th collocation point in /7 as



(2.47)
NPY

C1 km = 11 ( 4-

and replacing B by BX or BY as required, the second derivative with respect to

at the collocation point 	 can be written as

27   

11M (2.46)  
Im    

where BX,., are the coefficients of BX in the kth row. The second derivative with

respect to i will be

In the collocation method, the governing differential equation (2.31). and

the boundary conditions in Equations (2.32) and (2.33) can be written as

V 2 	) —•) = 0 in the domain O. 	 (2.48)

11(P, )	 = 0 on boundary F 1
	 (2. 49)

(VI( , ) 	
= 0 on boundary I-2

	 (2.50)

where r are the collocation points in the domain and on the boundaries. In the

Legendre Collocation Method, Equation (2.48) will be evaluated at the interior

collocation points, which are the zeros of a Legendre polynomial. Equations (2.49)

and (2.50) are satisfied at the collocation points on the boundaries.
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A typical
element

Figure 2.4 A typical interior collocation point where the governing
equation is evaluated.

Equation (2.48) is applied at the kmUl interior collocation point (see

Figure 2.4), and mapping from the physical (x,y) coordinate into a local (J,

coordinate as shown in Figure 2. 3, the resulting equation will be      

13Xki 1 inn + (2.51) 
X,. +1 — X,.   

where in the above equation, the constants due to the transformation have been

taken into account. Equation (2.51) has to be repeated for each interior collocation

point inside the domain, such that k 2, ..,.NPX —1 and m . AT,PY —1.

Furthermore, the problem is solved based on a global n- - Thering scheme, where

the local double indices km should be converted to a single index in the global



NPX

2.5
" i n'

1=1
A P' )

2
A. NPX .1 tfin

.1 	A x ( " )
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scheme. Thus, continuity of the solution at the inter-element boundary points is

automatically satisfied (see Figure 2.5).

Interelemeau boundary
NP.V for element (p)
I for element (q)

Figure 2.5 Inter-element boundary point IBC at which the continuity
of the function and normal derivative is imposed.

As mentioned earlier, for a particular point IBC at an inter-element

boundary point as shown in Figure 2.5, the continuity of the .normal derivative can

be imposed by requiring that

where x ( " ) and AP ) are the element sizes of element (p) and element (q),

respectively in the x direction. Equation (2.52) will be applied at all collocation

points on the boundaries between elements. Similar equations can be obtained for

satisfying the continuity of the normal derivative in the y direction.



• - Boundary collocation point

j =- NPT
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I =

ry

Interior collocation point
—

Figure 2.6 Boundary points located at left-side vertical and top-side
horizontal boundaries

If the Neumann boundary condition in Equation (2,50) is prescribed on the

left-side vertical boundary as shown in Figure 2.6, then for each boundary

collocation point, the resulting equation is

lin = ‘1 I (2.53 )

where A x is the size of element in x direction, and (1--1 is the prescribed normal

derivative. As depicted in Figure 2.6, Equation (2.53) is applied at the mth

collocation point in the 17 direction.
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CA7

Interior collocation point
- 	 n? )

• - Boundary collocation point

Figure 2.7 Boundary points located at right-side vertical and bottom-side
horizontal boundaries

In case Equation (2.50) is prescribed on the top-side horizontal boundary

(Figure 2.6), we will have

31

(2,54)

for the kth boundary collocation point in (see Figure 2.6).

Applying Equation (2.50) at the boundary collocation point on the right-

side -vertical boundary (Figure 2.7), where ch is prescribed., we have

(2.5.5)
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Similarly, for the boundary point located on the bottom-side of the horizontal

boundary (Figure 2,7), the equation will be

= 4-4 (2.56)

Equations (2.53), (2.54), (2.55) and (2.56) are repeated at all collocation

points on the boundary where Neumann conditions such as specified in Equation

(2.50) are prescribed. The corners of the domain require special treatment, as will

be described in the next section.

It is a simple task to satisfy the Dirichlet boundary conditions expressed in

Equation (2.49). The resulting set of simultaneous equations, globally assembled

to satisfy the governing equations at the interior collocation points, Dirichlet and

Neumann boundary conditions at boundary collocation points, and also conditions

at all corner points can be written in matrix form as

K u F (2.57)

where K, the global coefficient matrix, may be called the stiffile.s's mcarix as in the

conventional Finite Element Method, u and F are the solution and load vectors,

respectively. A single index is used in the global numbering scheme for the entire

computational domain. The subscripts of u are based on this single-index

numbering scheme, so as to ensure the continuity of the solution at inter-element

boundary collocation points, and to satisfy the Dirichlet conditions. This is done

by setting the coefficients

and the loads

1--;; =

where 1 is the global number of the collocation point on the boundary, and it is the

prescribed function value.
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2.9 Treatment of Corners

As mentioned earlier, the Legendre Collocation Method is very well suited for

rectangular domains or 'L-shaped regions that can be broken up into three

rectangular elements. Thus, a computational domain will present a series of

corners which require special attention as the boundary conditions on both sides

forming the corner may not be the same. For mixed boundary-value problems, two

situations may occur at a corner point as depicted in Figures 2.8 and 2.9. In the

first case, as in Figure 2.8, for a smooth function, the solution at the node located

at a corner-point is unique; there will be only one solution at that corner.

Therefore, a known value of the function is enforced as a boundary condition.

While corners with different values of derivative at the two sides exist in many

practical problems (see Figure 2.9), the Legendre Collocation technique provides

an easy treatment as will be outlined below.

Corner point
 	 is prescribed --------

u is prescribed

Figure 2.8 A corner with known values of the function and normal derivative.
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— is prescribed
	

Corner point

prescribed

Figure 2.9 A corner with known values of normal derivative.

For example, the situation at the corner as shown in Figure 2.10 has two

normal derivatives	 and ---	 as prescribed values. Furthermore, in this

particular example, the total number of collocation points in both	 and

directions is taken to be the same, NPX NPY — 5. For the given node numbering

scheme and reference axes as shown, Equation (2.55) gives the first der i vative in

the x direction for that corner (point 65) that can be written as

['milt 65

5 ii +A52 62 A53ii
-A ') A5 5 116 , 58)   

where A5 1 , . , A55 are the coefficients located in the last (NPX 5) row of matrix A.

in Equation (219) or (2,20). While	 /165 are the function values associated



1 ti + A 1, +	 n
Ax,	 51 29 	 52-38 	 /-`53-4 +

1164 + A55 65) = I

54 1156 + Aysilfo ) =

	(Au + A5 3
A x' 61 + A5
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with the point numbers in Figure 2,10. Similarly, from Equation (2.54), the

derivative in they direction is

2 
„ (A,,u 29 + _A 5 ,11 3 	A s3 u47 + A54 /156 + A')

	A	 -65 	 -

Equations (2.58) and (2.59) are normalized to yield

2

(3y

Now both equations can be equated to give

Ay 	 (7, 
A„ 1129 + A52 /138 + AI i 47 + A541156)

2
A x (4.---ty, 

2	 4. 5 , 55

y (c) 	A X(e) J\)

(2.62)

u6 „ = 06 + / 5 2 116 7 + A531163 + A54116  

Equation (2.62) is the equation for point number 65, and therefore will be

positioned in the row number 65 in the matrix equations for the complete problem,

and the location of the coefficients in the column of the matrix corresponds to the

point number of the unknown ii, Thus, the boundary conditions at a corner are

taken into account.
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6,1

A typical element

Figure 2.10 Definition at a corner for a 5 '2, 5 mesh for each element.

In general , Equation (2.62) can )written in the form

NPY

A • )('')
A (e) —A X

AX Arpx 	 y 0 (2.63)

as the enforcement of conditions on the .r-lor.rnal derivatives in the x and y directions

at upper right corner point of the region. Slight modifications in Equation (2.63)

are necessary for different locations of the corner point.



CHAPTER 3

TREATMENT OF BOUNDARY SINGULARITIES

3.1 Introduction

In many problems of practical importance, singularities either inside the domain or

on the boundaries are encountered. In the design process, the quantities involving

derivatives such as stresses, bending moments, shear forces etc. are particularly

important. One type of singularity is, for example, a re-entrant corner in the

torsion problem that causes high stress concentration at this corner 1321 Therefore

it is important to obtain an accurate knowledge of the behavior of the derivatives

in a neighborhood of the singular point.

it is generally impossible to obtain an accurate approximation in a

neighborhood of i singular point, using a single standard numerical method such

as finite difference, finite element or boundary element. The most common method

in dealing with singular points using available computer software is to refine the

mesh around the location where the singularity occurs. This procedure, if it

converges, will produce slow convergence in the entire domain and especially near

a singularity [33,34].

In this study, the Legendre Collocation Method applied to this type of

problem also shows the same slow convergence in the neighborhood of singularity.

The advantage of this method over other methods is Mat using a higher

approximation collocated at the zeros of a high degree Legendre polynomial, will

automatically provide a finer mesh near sharp re-entrant corners as depicted in

Figure 3.1. Such sharp re-entrant corners give rise to singularities of various types.

37
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Moreover, it is easy to increase the degree of the polynomial when using a

computer program. However, evaluation of the accuracy of a solution obtained

using such a procedure should be considered with extreme care.
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Figure 3.1 Legendre collocation points in the neighborhood of a singularity.

Hence, special treatment for problems involving singularities is highly

desirable. A major purpose of this study is to 'further extend the use of the

Legendre Collocation Method by a modification that can produce accurate results

near the singularity. We begin by getting satisfactory accuracy everywhere except

in a neighborhood of singularity. Once the solution at any desired point in the

domain sufficiently far from the singularity can be computed satisfactorily, then

these results are used in a modified procedure for obtaining a solution in a.

neighborhood of the singularity. The resulting solution will also be capable of

giving approximate partial derivatives in a neighborhood of the singularity.
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The treatment discussed below will be confined to problems involving

boundary singularities, which occur frequently in practical engineering. Such

singularities occur when there is a sudden change of direction of the boundary,

producing a re-entrant corner or a change in boundary conditions at some point on

the boundary that is not a corner.

A comprehensive review of methods for treating problems with

singularities is given by Lefeber [33]. Even though the book -is dedicated to the

Boundary Element Method, Lefeber provides citations of numerous references on

the treatment of singularities.

As a typical example of the proposed treatment in this study, we consider

the problem of a bar with an L-shaped cross-section under torsion. The procedure

can be outlined as follows:

1. The domain is divided into three rectangular elements forming the L-shaped

region, and the solution at the collocation points for the entire domain is

obtained by the .Legendre Collocation Method.

2. In a neighborhood of the singularity, a circular sector with fixed radius and

angle 6) from 0 to 1.5R- is established. In this sector, the defining equations

are re-written in polar coordinates, and the solution is obtained in terms of

an infinite series of eigenfunctions for the circular sector. Tins solution

satisfies the governing differential equation and the boundary conditions at

the edges of the domain forming the re-entrant corner. -Note that the

solution need not satisfied the boundary condition along the circular arc.

3. A selected number of points are taken along the circular arc, and solution

function values are calculated at those points by interpolating the results

obtained by the Legendre Collocation Method. A finite number of terms of
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the homogeneous series solution in the circular sector is taken. The

coefficients of the terms in this truncated series are determined by a discrete

least-squares procedure to approximate the previously computed values at

the selected points along the sector arc. Thus, the boundary condition at the

discrete points along the sector arc is satisfied 'as accurately as possible' by

the solution in the circular sector. By using the least-squares approach, the

effect of the oscillation of the trigonometric functions comprising the

solution along the arc is minimized. The complexity of finding the

coefficients can also be avoided by selecting the points along the arc in

such a way that the eigenfunctions are mutually orthogonal with respect to

summation of the truncated set.

4. Once the coefficients become known, the approximate solution and its

partial derivatives can be found.

As previously stated, in the above treatment of the singularity, the

undetermined coefficients in the finite series solution for the circular sector are

determined by the least-squares approach. The derived series solution satisfies the

governing differential equation and also the boundary conditions along the two

adjacent sides of the singularity. The task is now to make the values computed by

the series solution agree with the previously computed values of the function along

the sector arc. This becomes the boundary condition for the solution in the sector.

There is another attractive approach in matching the series solution along the

sector arc. This is a minimax approximation, or minimizing the maximum error

[35], and it is done by simply taking the matching points along the arc at the zeros

of a Chebyshev polynomial that have been transformed to coincide with the

interval, representing the length of the arc. As a result, a set of simultaneous linear

equations has to be solved for determining the unknown coefficients in the series
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solution. Thus, it is not required to find the orthogonality conditions for

summation of the eigenfunctions that make up the truncated series solution. The

details of reasoning about this minimax approach will also be presented in this

chapter.

The combination of Legendre collocation and discrete least-squares or

minimax formulation in obtaining the solution near a singularity is at -tractive

because no numerical integration is required.

A problem previously done by Whiteman and Papamichael [36], Symm

{37,38], and Lefeber [33], termed "The Problem of Motz" [39], will next be

formulated for the purpose of comparison. This problem consists of finding a

numerical solution of Laplace's equation in the finite rectangular domain, with a

set of mixed boundary conditions, one of which produces a singularity. Whiteman

and Papamichael used a Conformal Transformation Method considered very

efficient in. solving singular problems in rectangular domains [331, Symm treated

the problem of Motz by a boundary integral method. In this chapter, similar

procedures applied to the torsional problem will be applied to the problem of

Motz.

3.2 Eigenfunctions Solution for Torsion of an L-shaped Bar

As mentioned above, the circular sector is defined in the neighborhood of a

singularity, as depicted in Figure 3. . A Fourier series solution is obtained such

that it satisfies the boundary conditions along the two boundaries forming the re-

entrant corner, but the boundary condition along the arc is left undetermined.

Substitution of this solution into the governing differential equation yields a

complementary and particular solution. This final form of the .infinite series
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solution, containing the undetermined coefficients of the complementary solution,

is truncated and the undetermined coefficients are determined by a discrete least-

squares procedure, using the orthogonality condition with respect to summation of

the truncated set of eigenfunctions.

In polar coordinates, Poisson equation in a two-dimensional region is given

by [40]

Orr
	 =	 0)
	

(3.1)

Consider a circular sector as shown in Figure 3.2. Note that the angle 0 varies

from 0 to	 and the radius r from 0 to R. Differential equation (3. 1) is subject to

the following boundary conditions

0= 0 along 80	 (3.2)

0= 0 along 0 — 3r
2
	 (3.3)

f (0) along r = R
	

(3. 4)

It is important to note here, based on the membrane analogy introduced by L.

Pratidtl. [321, that the solution 0 of the torsion problem behaves like the deflection

of a homogeneous membrane supported at the edges, with the same outline as that

of the l_,, ,-shaped cross section of the twisted bar subjected to a uniform lateral

pressure. Thus, 0 has to be finite at the origin (See Figure 3.2).

As discussed in Appendix A., using the method of separation of variables,

the general .form of the solution in terms of eigenfunctions for the homogeneous

part of equation (3.0 satisfying the homogeneous Dirichlet boundary conditions at

the edges forming the angular sector is found to be

? (r)sin---1' 7r-0	 (A.1 8)
n=1
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X

Figure 3.2 Circular sector for Poisson equation in polar
coordinates.

Now, replacing R„(r) with b(r) and taking a =1-,l-r as shown in Figure 3.2, the

solution Ø(r, 0) can be written in the form

n

913
n (r)sin--0 (3.5)

Solution (3.5) satisfies the boundary conditions along 0 = 0 and 0= 	 The

coefficients b, (r) can be determined using the following formula, taking into

account orthogonality and normalization

(	 = 	 if --'	 2170(r,O)sin 	 d0
	3 71" 0 	3

.6)
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Orthogonality conditions and normalization factors related to Equations (3.5) and

(3.6) are given by

=	 2n	 2n/
sin	 ()sin — 0 c16) 0, for n ^
3 3

and

-	 ,

	

sin'	 0 6/0=
3
	

4

To solve the inhomogeneous differential equation (3.1), isjr, 0) in the

right-hand side of Equation (3.1) is expanded in terms of the eigenfunctions

sin ' 0 in the form the

0) =1:13,.,.
. 2n

. )stn — 0 (3.9)

(3.7)

(3.8)

where

B,,(r) —
„ 	 3

By substituting Equations (3.5), (3,9) and (3.10) into Equation (3. 1),

ordinary differential equations whose solutions yield the /5,,, (r).

In case of the torsional problem,

hir e 0) = 2

and therefore the coefficients are given by

4	 2 	2ti
B„(r	

i
)= 	  2 sin 	 &/8

37r )	 3

or

4 [
Bn (r)= ---- (-0

iiir

(3.10)

we obtain the

(3.11)

(3.12)

(3.13)



r r

fl 	 1

0 00

11=1

( 2 ,17 \ 2 211
1 (r) ---- sin 	 0

\ 3 1 3

(3.15)

(3.16)

5 ; '(r) sin-
3 

0
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Next, differentiating 0(r, 0) with respect to r and 8, we obtain,

n
(r) sin-

3
(3.14)

11 =: 1 

CI:

and then Equations (3.9), (3.14), (3 1 5) and (3.16) are substituted into Equation

(3.1) to get

)1=1

. 	 2n 2/1
b;(r) sin 	

	3 	 ■ 	 3
n=1

b7( r)sin
1

B (r)sin 3-L1 61
3

(3.17)

Matching coefficients of the eigenfunctions	 on both sides of Equation

(3.17), we obtain the following differential equations which are only functions of r

, 	 (r)
hi,;(r) 	 " • b„(r) 	 – B ( ) 	 (3.18)

Each of these is a standard nonhomogeneous differential equation with solution

comprised of a complementary and particular part.

To find the cotnplementary function, it is necessary to solve .the

homogeneous part of Equation (3.18). T.hus, the solution of equation

16, 1; (r) (7
1);;,(r) .+ 	

has to be found. Try a solution in the form

= r k

By substituting 1),(r), b,(r) and b„,(r) into Equation 3.19),, we have

= 0



or

2K+2K H -
( 7 n 4 

[(-fl ITr
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2
231

k (k —1 . k + k r 	 — 	  rk-2 — 0,
, }

and upon simplification

1 n
k 2 	= O.

■. 3 .1

Thus

k = 2n

and the complementary solution to Equation (3.19) is given by
2r,

h 	 c 	 + „ rtie 	 n (3 ,20 )

To find a particular solution b p (r)of Equation (3,18), one needs to replace

„(r) with Equation (3.13), so that

b" (r) +
	 ( 1 )	

, 3r
	

(

	

H IT
	 — 	 .21)

In this case, tiy

hip ( r

and substitute again b„(/).	 ) and	 ) into Equation (3.2 1) getting

K
9

fl 1T ( 9 - n 2 )

n # 3

K. is unbounded when n = 3 and the particular solution is given by

2
b„p(r) 	 [(— 	 —

mr(9 iv)
n # 3	 (3.22)

Combining Equations (3.20) and (3.22), we obtain the general solution of

Equation (3.18) with I (r , 0) = 2 as given by
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= r + r 3 + 
	9r 2	

(—ty	 # 3
n ;49 — n 2 ) -

However, it is required that b,,( ) be finite when r = 0. Hence, -c-'„ = 0, and

h,(.0 =	 +	 [(-1)"
2,"	 9 r -

n# 3
n 49	 )

Finally, the solution for the Poisson equation (,-.) .1) for the circular sector

depicted in Figure 3.1. can be written as

91 2

rT' r +
tor (9 — n 2 )

,.sin 	 0 (3.24)

The solution in the form of Equation (3.24) satisfies the differential equation in the

domain and also the boundary conditions at both lines that form the re-entrant

corner of the region. Obviously, this solution of Equation (3.24) still needs to

satisfy the boundary condition at the circular arc where r = R.

3.3 Discrete Least-Squares Approximation
for Torsion of L-shaped Bar

The Legendre Collocation Method that is used to solve numerically the torsional

problem in the L-shaped region gives only the solution function at the collocation

points, if an arc is drawn using the singular point as the origin and a radius equal

to R, then the function values along the arc can be calculated by means of the

interpolating Lagrange polynomial used previously. Thus, we can have the

function values at any points along the circular arc. Now, using these values a.s

boundary conditions along the arc, one can determine the coefficients c, in

Equation (3.24).

47

(3.23)
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The discrete least squares approach will be used for determining

coefficients c„, so that the error involved as measured by the sum of the squares of

the differences between the values of the approximating function and the given

values at chosen discrete points is minimized. The selected points along the arc are

chosen to insure orthogonality with respect to summation of the truncated set of

eigenftmctions. Then the coefficients c„ can be easily computed using the formula,

expressed as a summation. This eliminates the need to solve a system of linear

equations, as is generally required for this approach.

For the purpose outlined above, Equation (3.24) will be re-arranged as

follows

0) — (

2, 	 .
SIR - 	 --- 0 (3.25)   

n=1  

Fixing r = ./? for the circular boundary, and using a finite 'number of terms M and

N . respectively . in place of the "infinite series in Equation (3.25), we have

0( R, 61)   9 R 2 	[
t]sin-211

Ti

. 2n
' sin (3.26)      

Note that n should not be equal to three because this would make the left-hand

side of Equation (3.26) infinite. In addition, it is independent of c„, therefore the

upper limit of summation can be different from the right-hand side of the equation.

To calculate cH in Equation .26) using a least-squares approach, the same

finite number of points (9k. k = 1, 	 will be chosen on the circular arc r = R.

The different subscript k is used because Equation (3.26) that contains the

summation should be evaluated at each point 8. Therefore Equation (3.26) can be

written as



(R,ok-)= O(R0k)-
11= 1

9 R 2

17.7(9 —I/ 2 )
7n

I "	 sm	 0,, (3.28)

and

49

Ø(f?,
-= 1

.11 , 3

9R2 	
--[( 	 l]si 

'7/1
n 	

r/ 2 )	 3
C R sin

(3.27)

for k = L 2 „ N

where 0(1?„61 ) are chosen points on the arc. The summation in the right-hand side

of Equation (3.27) is valid only for odd numbers, and the total number of terms Al

in the summation is taken so that if the summation is evaluated the difference in

the values with (Al— 1) and Al terms is small enough to indicate convergence.

This is done in the computer program.

For simplicity of formulation, let us define   

.	 2,i
sin 1),v, ( I?, 	 ) = cn (3.29)

n=

The error at a discrete point 0. is given by

04, )	 '(R, 04, ) p ( R Ok ) 	 (3,30)

The discrete least squares approximation requires that, for finding c„ in Equation

(3.29), we minimize the quantity

2( )

k=1

which is the summation over N points of Equation (3.30), squared. In other words,
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—2

.
sin - 0,.	 = minimum	 (3.3 I)

I 

or in expanded form

2
• sinS = sin 	 f

n= 1   

• • + f( I? 0, 217
Sin        

C r

and if Equation (3.3 I) is considered to be a function of 	 for the minimum to

occur. it is necessary for the Al to satisfy

Consequently,

— 0, 	 1, 	 N
(7C,,

( 3 .3 2 )  

r-   
171

=-1  

. .	 2 it
R sin	 0, sm.	 0 , =0        

or in expanded form

711 2 	
-
	 7/7 	 4 	 211

f . ( I?, 	 )sin	 —	R still.sin-7-	 + c•2 	sin 	 sin 
3
 OA.

= 1

/2,—, 2
+. • • -Fcv,	 • sin -  	+•• +

N 	 )11
sin — 9k siCl 	 0 /,3

=0 	 (3.33)

Thus, we have N simultaneous equations. On the other hand, we can easily

calculate the coefficients c .„ if there exist orthogonality conditions with respect to

summation such that
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sin e(pk. sin in v i, = 0 for e # in = integers (3.34)

where

7
(P k = 0„, (3.35)

In the trigonometric identity [41

coscp+cos3(p+cos5(p+-••+cos(2k —1)(p+—+cos(2N —1)(p= 4-sin2N(pcseco

or

A

cos(2 k — 1 ) y = J_;, siti2N(pcse(p,	 (3.36)

the right-hand side vanishes if

sin 2 N(p -= 0,

2N(p = (2 k 1).7, for k

or

q) 1,

	 (2k N
	 2
	 k = 1,2 _ . . N
	

(3.37)

Furthermore,  the left hand side of Equation (3.34) can be written as

sin e (04, sin1n(7)k = —	 cos(/' —m)(7) -
k=1 

cos( e + in)(/). (3.38)       

To prove the orthogonality condition in Equation (3.34), it is necessary to show

that each summation term of Equation (3.38) is equal to zero for e . Using the

identity Equation(3.36) together with Equation (3.37), the first summation term

can be written as
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ni)
cos(f. 	 =>,....dcos(2k l)

N 2
k =1 	 k 	 (3.39)

1	 Jr-
= s n 2N 	

2	 iV 2 
— yr
,'\,/	 2

CSC 

Clearly, the right hand side of the above equation vanishes for any integer 	 — 110 •

Similarly, the second term

cos( ( + in) (pi, = 0,	 for I # in
I: =I

since (r + in) will be an integer.

It follows that,

Sill r(p..sinnicp, = 0,	 for (.::' # In
lc =1

At this point, we still have to take into account the case j = iii # 0, so that the right

hand side of Equation (3.34) becomes

Sin 2 in CO ,

k =1

Using the identity

sin - 	= -1 — cos2in	 (3.40)

we obtain



A'
•

111 CO I,

k --1 47= ft 	 k=

k =I 	 k =1

cos2inco k

2111 IT
cos(2k

(3.41)
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Note again,

cos(2k —

k

2 m n- 	12iiiir	 2 in
= S111 7 —

N 2 2 	 N 2	 Ai 2

= 0,

for in any integer, and

= N

as the

Hence, we have

Equation (3.34).

42)
N

sin 2 ni (-pk -, -----

normalization factor when ( 2, = in # 0 in

In conclusion, by noting Equation (3.35) we have,

0,	 if e # in;
sin- 	 Of_ sin--	 = (3.43)

--, if e = in # 0
, 2=

Where

—1) 37r
(3.44)

N	 4

Now, substituting from Equation (3.43) into Equation „ we have



6.3	 911	 2,, .

Sill
 2n

3
n=1

18r

iI 	-
tn(o)—n 2 )

2 1.1
—1))1	 sin - (9 (3.47)

j (R,0,,) sin -- 0), sin - ----
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(R, Ok )S11 11 -1-7

1

and finally, the coefficient c„ is given by

N
0 ,

2

2n
)si	 , 	 for	 = 1,2,..., N	 (3.45)

= 

where 9k is defined as in Equation (3.44).

We conclude that in the neighborhood of a re-entrant corner, the series

solution for an L-shaped bar under torsion given in Equation .24) is

0) = .
i sm--- +

3 
91' 2

[11 TC( 9 — 112)I

11
—	 sin:L:1-- (9 (3.46)     

n=1 =
n #3  

where the c,, are defined by Equation (3.45). As mentioned earlier, we are

particularly interested in derivatives that represent the shearing stresses. These

derivatives can easily be obtained by differentiating Ofr , 0) with respect to r and

0. Therefore, the radial derivative can be defined by

and the tangential derivative is given by

17 Zy 	 2n
, cos- --&+

3 

9 .2
	  [(-1)" dcos--

	

3 nz(9 — n 2 )	 3
(3.48)  

1   
n 3
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By inspecting the equation for the radial derivative, it is clear that a singularity

occurs when r = 0 and frl = 1.

Thus, the "best fit" mean squares approach employed above for the finite

series expansion (3.45) corresponds conceptually to the orthogonal Fourier series

expansion for the infinite series.

Using the above derivations as a basis, it is easy to obtain the eigensolution

and its derivatives for the problems governed by Laplace's equation in an L-shaped

domain. One needs only to eliminate the term

/7=1

92	 . 7 /1
([	 lism	 (3.49)

nrc(9 it72 )

in the eigensolution Equation (3.25). Note that this term resulted from the right

side of the Poisson equation

zu( - 0) = 2	 (3.50)

in Equation (3.1). Thus, for Laplace's equation the coefficients e n are given by

C P? = AIR :1: 

k
	

./ I?, 0, sin	 0, 	 for	 —	 (3.51)

where

.1( 1( 0k) = 0 0, 0k)
	

(3.52)

Hence, the eigensotution for the isolated sector near the singular point is defined.

by-

(h(r" = r sin	 0 (3.53)
1 1=1

and its derivatives can be computed using the following formula:
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c3r	 3
#3-1

* 3 Sill

(3.54) 
2/7 	 2/1

3 C
if 	

COS 

3.4 Minimax Fit at Chebyshev Zeros

As discussed earlier, the boundary condition at the sector arc depicted in Figure

3.2 and 3.3 are satisfied "as well as possible" using a discrete least-squares

procedure. The merit of this way of obtaining the undetermined coefficients

Equation (3.26) is that there is no need to solve a system of linear equations for c„.

However, Kopal [41] has pointed out that for a system of orthogonal

functions, the error of an approximation obtained by minimizing the average error

will oscillate correspondinp, to the number of collocation points used in finding the

undetermined coefficients c„ . In addition, the least-squares fit gives the greatest

errors at the extreme ends of the range, and smaller errors in the middle of the

range [7,42.43]. Therefore, we will now examine a procedure that ca.n minimize

the maximum error within some specified range. :n this study, the range \vitt be

along the sector arc shown in Figures 3,2 and 3.3. Since the determination of the

unknown coefficients in Equation (3.25) will be carried out on a certain interval

of variable 0 with a fixed radius t— R, and there is complete freedom of choice in

the selection of the values Ok along the sector arc where the interpolated function

values will be obtained, there are advantages in choosing d, in a certain way.
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It is well known that if the zeros of the Chebyshev polynomial "1:„,(	 are

used to construct an interpolation polynomial J (0) of degree at most N. then for

9 in [-1,1] the maximum error will have the smallest possible .value [414

The interval of the approximation is a sector arc which varies from 9 = a to

b. In most cases, a = 0, and b is equal to some multiple of 7r. The

transformation

+a b—c,+ 	 9 (3 55)

is used to convert the variable 0 from the interval [01 to [— I, 11. The zeros of

(0) are at

= cos it- = 0,1,2,	 , N

and the corresponding interpolation points in [a, b] are then at

+b ,b - ci 	 k 	 0,1.... , N
	

(3.56)

The value of the maximum deviation from zero in the interval Ia, b] [44]

If the derivative t"' 	 in the maximum error defined by [44 -I

T1

R, ( o) 	 ( 0 ) — P\ ( 0) = N + 0- o

is finite, arid equal to (..., then we have ensured that    

+   b — 
(3.57)

2 A (N+1)!         
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in the interval [a, N.

For convenience, Equation (3.26) with fixed t. R is repeated here:

Ot I?, 0) - 9 R 2 2

	

sin
11
	sin--	  0

.	 7))/
tur (9 - r1 2 	3

0.26)   

Yf

As discussed above, by computing the value of O(R, 0,,r ), k =-1„...,N in the

interval (cr,/d at

where

b + a 	 — 	 k - Jz -0 A = 	 - cos	 .
A,	2

ti3 58)

cos
k 	 ;Tr

N 	 1 2 k =	 ...

are the zeros of the Chebyshev polynomial 7:„(i)) in the interval [-1, It the

interpolation error is minimized in the minimax (nrinimuni - maximum error)

sense. Thus, substituting Equation (3.58) into Equation (3.26), leads to a

simultaneous system of linear equations for determination of the c„. The resulting

system can be solved using any standard methods, for example, It decomposition

and back substitution.

It is important to note here, the zeros of 1 v 0	 and consequently the

locations of Oh. expressed in Equation (3.58), tend to be packed more densely near

the ends of the interval than at the center as shown in Table 3.1. While the least-

squares method gives equidistant interpolation points throughout the range except

the one equidistant from the end points, use of the Chebyshey zeros as

interpolation points will crowd the data points closer to both end points than in the

least-squares method (see Table 3. 1).
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Table 3.1 Interpolation points 0 	 the sector arc from 0= 0 to 0= 1.57r

Point no. Least-squares sense* 0 ) . _Minimax sense** Ok.

1 0..000000 0.000000

2 0..471239 0.115320

3 1.413717 0.971258

4 2.356194 2.356194

5 3.298672 3.741131

6 4.241150 4.597069

7 4.712389 4.712389
The node points, for k = 2, ..., 6, are calculated by:

* - Equation (3.44)
** - Equation (3.58)

Thus, as stated by Lanczos [7], the non equidistant distribution of the data points

which are strongly increased around the two ends of the range will prevent the

error oscillations from becoming damaging. Note that the biggest errors usually

occur in the neighborhoods of the two end points of the range. Moreover, by using

the transformed Chebyshev zeros as the chosen points, the error now oscillates

with the same order of magnitude, and absolutely smallest maximum error

throughout the interval.

3.5 Series Solution for the Problem of'Motz

The problem of Motz mentioned earlier is a problem with mixed boundary

conditions satisfying Laplace's equation in a rectangular domain. This problem can
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be considered as a standard example for treatment of a singularity of this type. At

one side of the rectangular domain, a change in boundary conditions occurs. This

leads to a singularity which is not located at an angular point, but it will be viewed

as a corner with 8 = 7r. The singularity treatment will further be formulated by

taking the point where the change of boundary conditions occurs as the center of

semi-circular region with radius r = R. Figure 3.3 shows the geometric definition

of the problem.

Consider the semi-circular region in Figure 3 3 governed by Lapla ce's

equation:

V 2 Ø - 0 	 (3.59)

with boundary conditions

c70 = 	 •	 along 8= 0	 (3.60)
en (79

0= B along 0= 71- 	(3.61)

and

0= RI(0) on the circular arc	 (3.62)

Recall that boundary conditions along the arc are satisfied at discrete points, and

the function values at these points are given by interpolation of the solutions

obtained previously through the Legendre Collocation Method. The boundary-

matching will be done by the least-squares method.

Reasoning as in the previously discussed problem, and using the result•ing

Equation. (B.14) in Appendix B., the series solution satisfying the mixed -boundary

conditions on the straight line except on the sector arc specified in Equations

(3.60) and (3.61), and Laplace's Equation (159) is found to he:

Cr

0(r,0)= B+ A(0-- a +
217

cn r 2 cos 	  0 (3.63)
17=
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Figure 3.3 Mixed boundary conditions on a. line.

The first two functions satisfy the non-homogeneous boundary conditions, while

the summation term satisfies the homogeneous boundary conditions as forinulated

in Appendix B. .Applying Equation (3.63) along the sector arc where r U. for

a = 7r (See Figure 3.3), and taking a. :finite number of terms for the suinim tion, we

have

OM 60 B + /4 ( 0— Tr
2 r, I 	 2 /7 —

cos	 0
2

( 3 .

Re-arrange Equation (3.64) to yield



= (I?, 0,, ( 3 .68)
7 /1- 1 ,

COS = IilIfli FUUIfl
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00,60— B AO— ;z -

2), 	 2fl— 1
cos 	 0 (3.65)

To calculate the coefficients c , 1 by the discrete least-squares approximation

method, we denote

J . (R,Ok.)= 	 B 71(81, 	 (3.66)

and

— ,
p 	 CHR 	 COS 	 k 	 (3.67)

ri= I

where 0, k = 1 ,	 are selected points along the arc necessary for determining

c„. Expression for the errors similar to those in Equation (3.30) are obtained at

these points, and as a result, by using a least-squares method, the quantity that

should be minimized is given by

Again Equation (3.32) is the necessary condition for Equation (3.68) to be a

minimum. Upon minimizing Equation (3.68), we have

2n- 1 . 	(	 1 	 .1 	 77'n - 1 7 11 -- I
1 (I? Ok ) cos 	 0, -- 	 C 	 2I R'' cos OA. cos 	 0, 4-- c,1? -' cos 

--y
-) Of cos 	 (9k

k I

2 2/7
+CH 2 cos --

2

2 N 1	 2//— I
2 cos   0k COS 	 0k l =

( 3.69)

and by observing Equation (3.69), c can be easily computed if there exists an

orthogonality condition with respect to summation such that



k=1

cos(2m — I) (7), cos(2fri — q 	 - cos2(m n)q)k + cos2(m	 1)(7)
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and

If we let

= I

k = I

2m —1	 2n—
cos 	  0i, cos 	 0 = 0 for I 1 I,2 	 2

cos 2 2	 - Ok constant, for in =

(3.70)

(3.71)

(3.72)

the requirement in Equation (3.70) now becomes

eos(2tri —1) cok cos(2n — tp k. = 0, for	 (3.73)
k =1

Equation (3.73) can be further transformed using the trigonometric identity in

Equation (3.74)

3.74)

[ii the previous section, it has been shown that

cos(2k — 1)q)---- -; sin2 Ncpcsc cp	 (375)

will vanish if

(2k I) 7
tor k =	 N	 (3.76)

N 2

(see Equations (3.36) and (3.37)).

Substituting (pk in Equation (3.37) into the first term of the right-hand side

of Equation (3.74) yields



A T

COS2(111 — Fl

k .1 -=1

c s(2k -
)

(in — n)7r
AT
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(in - -1-1)7T 	 (in — n) r
= sin? N 	  csc 	

= 0

and into the second term yields

(3.77)

cos2(ni + n
k=1

—

	cos(2k — 1) 	
+ 	 1).rr

(in+ 	 (1)1+ — ) 7Z-

= sin 2 N	 ese

	

IV	 N
= 0

3.78)

Note that in and n are any integers. In conclusion, the orl:hogoruaiity condition

expressed in Equation (3.70) can be satisfied.

To find the constant, again Equation (3.70) is transformed using the

trigonometric identity

cos 2( 211 — 1) (01, .79)   

and substituting the value of ( -Ak yields

cost (2i7 11)(0 =

k=1 

(2n— )rt-
cos(2k (3.80)

k=1       

The first tel.rm of the right-hand side of Equation (3.80) is equal to N and the

second .term is

(2n-1)7r	 (2n— ),,T. 	(2n-1)7c
cos(2 k ) 	  = 2 sin 2 N    csc  	 = 0

k=1

therefore Equation (3.80) or (3.71) can be defined by
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-, .cos - (217-1)(p, =—
N

' 	 2
k=1

(3.81)

Having proved the orthogonality condition in Equation .).70), and applying

it to Equation (3.69), we have

(211-1)
f (R 0 )cos Cil cos"

(2 /7 – I )
=	 (3.82)

Notice that	 and R are independent of A. -, and using Equation (3.81) the

coefficients • becomes 

( J? 0„ )cos-2± 11 - 1-0k (3.83)
1  

where

= 2 (p i, = 
2/• –1)7

(3.84)

( I?, (),) 	 I?, 	 – /1( Ok –,T)- 1]

Finally, the series solution obtained for Laplace's equation for the region

depicted in Figure 3.3 is

00%0) = I-3+ ;4(0– ,T)+ .2,
2

1 
cos 

-) /1– 1 0 (3 . 85)
11= I

The radial partial derivative is given by 

2/7-1	 27/7-1 0
C

cos (3.86)   

From the above equation, singularity occurs when r 	 ) and n	 The tangential

derivative is
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2/1 	 1 	 2, 	 . 	 -
Sin  	 (3 87)

Similar to the torsional problem of the L-shaped bar discussed in Section

3.3, the coefficients c„ in Equation (3.85), can also he determined using the

minimax approach described in Section 3.4. This is a simple matter of fixing /— R,

and replacing 0 with 04 in Equation (3.85); we then have

0(1∎ , 	 )– 13 – 	 – 	 cos ?ti –1	
(3.88)

f1==

where the value of cb(R. 04. ), 1 = 1,2,... N in the interval [0,	 for the semi-

circular arc (see Figure 3.3) is computed at

and

71" 
cos

/ (k - 1)
k N 2

cosi
(-)k -1) 77-\

k = 	 N
N

(3.89)

This leads to a simultaneous system of linear equations for determination of the

coefficients	 The resulting system can be solved using LU decomposition and

back substitution.



CHAPTER 4

APPLICATIONS

4.1 Introduction

The presented formulations and solution. procedures of the Legendre Collocation

Method combined with an eigensolution series will now be tested on the following

list of examples:

• A square bar under torsion

• The problem of Motz

• A Laplace equation for an L-shaped region.

The above problems demonstrate the versatility and accuracy of the

method. For a torsional problem of a square bar where there is no singularity

involved, the Legendre Collocation Method developed in this study will be applied

to a standard kind of two-dimensional problem most likely to be encountered in

order to demonstrate its effectiveness. Not only the torsion :function and its

derivatives representing the shearing stress, but also the necessary torque are

accurately and easily computed. The results are compared with the series solution

by Timoshenko [32]. For this problem, only the Legendre Collocation Method

described in Chapter 2 is applied.

In the second problem, termed the problem of Motz, the solution and its

derivatives are obtained by means of procedures outlined in Chapters 2 and 3.

Note that in this problem, Laplace's equation is the governing equation and the

boundary conditions are mixed. The domain is rectangular and a -boundary

singularity occurs due to mixed boundary conditions on one side of the rectangle.

This type of problem is less likely to be encountered in practical engineering

67
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applications. The combined method developed in this study consists of the

:Legendre Collocation Method in combination with a series solution with. its

coefficients determined by least-squares or minimax approximation, for

calculating the solution and its derivatives in the neighborhood of singularity. The

results are compared with the available solutions obtained by previous

investigators [33,36,37]. Good agreement is obtained. Furthermore, the

procedures developed in this study are found easier to program, and simpler in the

sense that there are no complicated mathematical formulations involved in

comparison with the previous studies. The method used in the analysis of the L-

shaped region is similar to that for the immediately preceding problem. This

problem contains a singularity at the re-entrant corner, and is formulated in such a

way that the form of the exact solution at the re-entrant comer is known. Thus, a

more reliable comparison, of the 'numerical results can be expected. Through the

use of the Legendre Collocation Method alone, we find that relatively high errors

occur in the neighborhood of the singularity, near the re-entrant corner. This

demonstrates the need for the special treatment of the singularity. The approximate

solution and its derivatives in the neighborhood of singularity are then compared

with the exact solution and derivatives. Again, very good agreement is obtained.

This last example has been used by several authors [16,171 in their study of the

Boundary . Integral Method or Boundary Element Method. Unfortunately, in their

papers there are no numerical values of either the solution or its derivatives

available. Thus, comparisons are not possible.

4.2 Torsion of A Square Bar

Consider a square bar under torsion as shown in. Figure 4.1.. We will examine the

accuracy and rate of convergence of the solution, its first derivatives related to



(4.2)

and

(X 'I' + —ki 1 	 A y

2 !VPX
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stress or flux, and the numerical integration of the solution at the collocation

points to find the torque, using the Legendre Collocation Method. This classical

problem satisfies the following Poisson equation [45]

VP = —2 in a square domain	 (4..1)

where 'I' is the Prandtl stress function. The boundary conditions on all sides of the

square cross-section are P = 0. Consequently, the values of the stress function a.t

the boundary collocation points, including the four corner points are zero. Once

the problem is solved, the solution P at the interior collocation points becomes

known, and the shearing stress components z 	 r., are computed using the

following formulas

—Onx
(4.3)

The application of the Legendre Collocation Method to this problem

generates a ( —2) x (NI'Y — 2) system of linear equations. Since 4' = 0 on the

boundary and the problem is solved for P. we need only to determine P at the

interior collocation points. Thus, a modified Equation (2.51)

BY„ 	 (4.4)

that satisfies the governing equation (4.1) is applied to each interior point (AT A ,y,,

for A. = 2,...,NPX —1 and in = 2,...,NPY —1 to yield a system of equations.
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Figure 4.1 9 x 9 mesh for a square bar under torsion. Global
numbering scheme is shown with NPX NPY = 9.

Note that in the computer program, the double indices km for 'P are replaced by

single indices, and a global numbering scheme is adopted (see Figure 4.1). Also,

the same number of points is taken in both the x and y directions. Hence, AT21/2:7=

NP )17 , the coefficient matrix AX is the same as AY, and BX is also equal to Y.

Finally, the x component of shearing stress is defined by

111'Y 

for in = 1 , ... NP Y	 (4.5)

as an approximation to Equation (4.2). :In order to obtain the stresses for the entire

domain, Equation (4.5) will be repeated for k = 1 , . . , NPX Similarly, the shearing

stress in the y direction in Equation (4.3) is computed by
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r.,.)(xk 'Yin) = A k1 k-P„ for k = 1,..., NPX	 (4.6) 
1=1 

and will also be evaluated for ni =1,..., NP

In the computation, the length of side a is taken as unity, therefore

A = Ay = a = I. As shown in Figure 4.1, the interior collocation points are riot

equally spaced. This is due to the fact that those points are the zeros of a Legendre

polynomial. The figure shown is for a 9 x 9 mesh; therefore the interior points are

the zeros of the 7th-degree Legendre polynomial.

Convergence is studied at two selected points (see Figure 4.1):

• The middle point of the cross section (Point 41) where the maximum stress is

located;

• The mid-point of a side of the square (Point 5, 37, 45 and 77) where the

maximum shearing stress occurs.

In order to study the convergence of the solution ftmction and the maximum

shearing stress, these two points should. be kept in the same place independently of

the mesh, therefore an odd number of meshes had been selected. For example,

3 x 3, 5 x 5 etc.

Table 4.1 below gives the results of maximum value of the stress function

which converges very rapidly as indicated by percentage error.

Table 4.1 Maximum Stress Functionion	 - Torsion of Square Bar
	...,

Mesh Size
3 x 3 5 x 5 7 x 7 9 x 9 11x 11

LCM 0.125 0.148148 0.147362 0.147343 0.147343
Exact 0.147343 0.147343 0.147343 0.147343 0.147343

%-Error 15.16 0.55 0.01 0 0

* Exact - Infinite Series Solution by Timoshenko [32].
* LCM - Results obtained using Legendre Collocation Method.
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For 9 x 9mesh size, there are 49 interior points at which the Poisson equation that

governs the torsional problem, is satisfied, and the function values around the

boundaries are equal to zeros. Therefore the total number of algebraic equations

solved for P is also 49. As indicated in Tables 4.1., various mesh sizes are used in

the computation, and their corresponding numbers of equations are:

• 3 x 3 mesh size and one equation to be solved;

• 5 x 5 mesh size and nine equations to he solved, etc.

Therefore for N x N mesh size, there will be (N — 2) x ( N —2) equations to be

solved, and the number of system equations would be different for different types

of boundary conditions. Note that with only one equation and one unknown, the

error is 15.16%. The error drops to 0.55% when 5x 5 mesh size is used. From an

engineering standpoint, this is a quite negligible error,

In many problems in mechanics, we are particularly interested in the first

derivative of the approximate solution which represents the stress. As expected, a

comparison between Table 4.1 and Table 4.2 shows the maximum shearing stress

converges more slowly than the maxi -mum stress function P . It is understandable,

since the maximum stress is calculated by Equation (4.5) or (4.6) which is another

approximation of the approximate solution T. The convergence of the stress is

also quite rapid as depicted in a graphical plot in Figure 4.2.

Table 4.2 k - value for aximum Shearing Stress - Torsion of Square Bar

Mesh Size
3 x 3 5 x 5 7 x 7 9x9 11. x 11

LCM -0.5 -0.685185 -0.674157 -0.6756 -0.675221
Exact -0.675186 -0.675186 -0.675186 -0.675186 -0.675186

%-Error 25.95 1.48 0.15 0.06 0.01

* Maximum Shearing Stress is given by [32

= kG Oa
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As has been mentioned in Chapter 2, one of the advantages of taking the

zeros of a Legendre polynomial as collocation points is the availability of function

values needed for numerical integration employing Gauss-Legendre quadrature

(see Equation (2.40)). The torque for the torsion of a square bar is obtained by

summing the product of the solution T at the collocation points with the

associated weights, computed using Equation (C;I.6) in Appendix. C. Table 4.3

shows again the rapid convergence of the torque.

Table 4.3 it) - value for Torque -7Forsion of Square Bar.

Mesh Size
3 x 3 5 x 5 7 x 7 9 x 9 11 x 11

LCM 0.25 0.141975 0.1406 0.140579 0.140577
Exact 0.140577 0.140577 0.140577 0.140577 0.140577

'-Error 77.84 0.55 0.01 0 0

* Torque is given by [32]:

Al t = k I 00a 4

Table 4.4 shows a comparison between Timoshenko's solution [321 and the

approximate solution of the torsion function iT using a 9 x 9 mesh. Note that

Timoshenko's solution which is a series solution is computed up to 10 -9 in

accuracy, with the summation ranging from 119 to 500 terms. Therefore it can be

considered as the exact solution. As can be expected, due to sharp corner points,

the highest relative errors of 1.23% occur at the four points nearest to the corner

points. In Figure 4.1, these points are numbers 11, 17, 65 and 71. The errors at

other points in the domain are extremely low, ranging from 0.00058% to 0.079%.

In Figure 4.3„ we have a 3-D view of the torsion function P while Figure 4.4
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shows its contour plot. Both figures are based on the 9 x 9 mesh solution of the

Legendre Collocation Method.

Figure 4.2 Convergence study of maximum shearing stress of square bar
under torsion.
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Figure 4.3 View of torsion or stress function LP plotted based
on 9 x 9 mesh solution.

Figure 4.4 Contour plot of torsion function 4"
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Figure 4.5 Three-dimensional plot of the shearing stress r obtained

using 9 x 9 mesh size.

Also of interest is a comparison between shearing stresses obtained by

Titnoshenko {32] and the Legendre Collocation Method utilizing Equation (4.6).

Again, this comparison is performed at the collocation points (see Table 4.5 ). The

higher relative errors occur at the collocation points nearest to the top and bottom

sides of the square domain shown in Figure 4.1. Thus, on the line where point

numbers 10 to 18 are located, the ,errors range from 2.08% to 4.19% for 9 x 9

mesh solution. The same magnitude of errors occurs at point numbers 64 to 72.

Errors at other points are negligible, ranging from 0.007% to 0,25%. It is important

to note here, that the locations of the maximum shearing stress components are

correctly located by this method. As indicated in Table 4.2 and can be calculated

from results in Table 4.5, the error of the maximum shearing stress is 0.06% - a

negligible number. Figure 4.5 shows a 3-D plot of the shearing stress r,. Figure

4.6 shows another 3-D plot of the magnitude of the resultant shearing stress where
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one can immediately find the location of the maximum shearing stress. .A contour

plot of the magnitude of the resultant shearing stress is given in Figure 4.7.

The above torsion problem illustrates the general applicability and accuracy

of the Legendre Collocation Method when applied to the most common types of

problems. Further illustrations, typical of real situations containing singularities

are included in the next sections.

Figure 4.6 Three dimensional plot of the magnitude of resultant shearing stress.
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Table 4.4 Comparison of torsion function qj at the collocation points see Figure 4.1 )
The numbers in the table have the following significance:
1st value - Legendre Collocation Method result (9 x 9)
2nd value- Timoshenko's result [32]

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0,000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0,002856
0.002821

0.009556
0.009548

0.014706
0.014712

0.016551
0,016546

0,014706
0.016546

0.009556
0.009548

0.002856
0.002821

0.000000 O.UUQ558 0.038210 0.062810 0.071762 0.062810 0.038210 0.009556
0.000000 0.009549 0.038210 0.062812 0.071760 0.062812 0.038210 0.009549

0.000000 D.O147O8 0_062810 0 108646 0.126135 0.108646 0.062810 0.014706
0.000000 0.014712 0.062812 O108645 0.126136 0.108645 0.062812 0.014712

0,000000 0.016551 0.071762 0.126135 0.147343 0.126135 0.071762 0.016551
0.000000 0,016546 0,071760 0.126136 0.147343 0 126136 0.071760 0,016546

0.000000 0.014706 0.062810 0,108646 0,126135 0.108646 0.062810 0.014706
0.000000 0.014712 0.062812 0.108645 0.126136 0.108645 0.062812 0_014712

0.000000 0,009556 0,038210 0.062810 0 071762 0.062810 0.038210 0.009556
0 000000 0.009549 0.038210 0.062812 0.071760 0.062812 0.038210 0.009549

0.000000 O002856 0.009556 0 014706 0.016551 0.014706 0.009556 0.002856
0_000000 0.002821 0.009548 0.014712 0.016546 0.014712 0.009548 0.002821

0.000000
0.000000

0.000000
0.000000

0 000000
0 000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0 000000
0 000000

0 000000
0 000000

0.000000 0 000000 0 000000 0 000000 0 000000 0 000000 0 000000 0.000000 0.000000
0.000000 8O00000 0 000000 0 000000 0.000000 0 000000 0.000000 0.000000 0.000000



0.000000
0.000000

0.000000
0,000000

0.000000
0.000000

0 000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

-0.128484 -0:097819 -0.044136 -0.019729 0.000000 0.019729 0.044136 0.097819
-0.131211 -0.094685 -0.046066 -0.018986 0 000000 0.018986 0.046066 0.094685

-0.213433 -0 092273 0.000000 0,092273 0.213433 0.351858
-0 213416 -0.092260 0.000000 0.092260 0.213416 0.351932

0.602778 0.553529 -0.380708 -0.178391 0.000000 0,178391 0.380708 0.553529
-0.603005 -0.553699 -0.380594 -0.178426 0,000000 0 178426 0.380594 0.553699

-0.675600 -0,625620 -0 444132 -0 215113 0.000000 0,215113 0.444132 0.625620
-0.675186 -0.625523 -0.444197 -0.215098 0000000 0.215098 0.444197 0.625523

-0.602778 -0.553529 -0.380708 -0 178391 0.000000 0.178391 0.380708 0.553529
-0.603005 -0,553699 -0.380594 -0.178426 0.000000 0.178426 0.380594 0.553699

0.400485 -0.351858 -0.213433 -0 092273 0 000000 0.092273 0.213403 0.351858
-0 399502 -0.351932 -0 213416 -0 09226C) 0.000000 0.092260 0.213416 0.351932

-0 128484 -0_097819 -0.044136 -0 019729 0,000000 0.019729 0,044136 0.097819
-0 131211 -0.094685 -0 046066 -0 018986 0.000000 0,018986 0.046066 0.094685

0.000000
0.000000

0 128484
0 131211

0,400485
0.399502

0.602778
0.603005

0.075600
0.675186

0,602778
0.603005

0.400485
0.399502

0.128484
0.131211

Table 4.5 Shearirw, stress z -,. at the collocation points:
The number in the table have the following significance:
ist value l._.elizendre Collocation Method result ( 9 x9 )
2rd value - Timoshenkols result [32]

0. 000000
0 000000

0 000000 0 000000 0 000000 0 000000 0 000000 0 000000 0.000000 0 000000
0 000000 0.000000 0.0'00000 0.000000 0 000000 0. 000000 0.00'0000 0 000000
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4.3 The Problem of Motz

The problem of Motz [33,39] is a problem that satisfies Laplace's equation

Vu =O0 (4.7)

and is subject to mixed-boundary conditions as depicted in Figure 4.8, where

ABCD is a rectangle with the dimensions AO = OB = BC. This problem has been

solved by several other investigators using different approximation techniques

[33,36,37 46]. The most accurate results were obtained by Whiteman and

Papamichael [36] using a Conformal Transformation Method; Symui [37] treated

the problem using an integral Equation Method, Lefeber [33] obtained exactly the

same values as those of Whiteman and Papamichael by using a Boundary Element

Method specifically formulated for this problem. The mathematical complexity of

these previous works makes the procedure proposed below, a combination of the

Legendre Collocation Method and an Eigenfunctions solution in the neighborhood

of the singular point, very attractive.

Observation of Figure 4.8 reveals that this problem contains a boundary

singularity at point 0. Note that along boundary AO, ii= 0.5 is prescribed, and

the normal derivative on boundaty OB is zero. Thus at point 0 there is a change

in the boundary condition, and that gives rise to a singularity. Two major steps

will be implemented. First, the formulation described in Chapter 2 will be used to

obtain the solution ti at the collocation points in the entire computational domain;

then the special treatment outlined in Chapter 3 will be applied, so that an accurate

solution of u, including its derivatives in a neighborhood of singularity, are

obtained.
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Figure 4.8 Geometric definitions for the problem of Motz

For convenience in comparison with the results obtained by the other

authors [33,36,37], the dimensions of the rectangle domain depicted in :Figure 4.8

are taken to be .14 x 7. The use of the p-version of the Legendre Collocation

Method requires that the computational domain be broken up into two fixed

elements: AOED and OBCF, both are square elements 7 7 in size. The accuracy

of the solution u is achieved by increasing the number of collocation points, which

are determined by the degree of Legendre polynomial used in the x and

directions.

As shown in Figure 4.9, a global numbering scheme using a single index is

adopted for the entire domain. Thus, in computation, the continuity of the value of

the function at the collocation points located at the junction between the two

elements is automatically ensured. 'The most obvious example of these points are

the interelement boundary points along line OF But for convenience in writing
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the formulas, the double subscript numbering scheme is used in Chapter 2, and

will be used here.

0— Interior collocation points where D.E. is satisfied,

o	 Dirichlet's conditions arc satisliad.
• — Neumann's conditions are satisfied.
0— Normal derivatives are continuous at interelement

boundary.
- Normal derivatives in N. and y directions are satisfied

Figure 4.9 The domain is divided into two elements, and 7 x 7 - -Legendre
collocation grids for each element are shown.

In this example, the same number of collocation points in the x and y

directions, NPX 	 .NPY i.s taken. Thus, the coefficient matrices for the first

derivative is AX AY, and for the second derivative is .BX = BY. Figure 4.9

shows the domain with two .macro elements, and for each element NPX NPY

Hence, the interior collocation points are the zeros of the 5 11 - degree Legendre

polynomial, and there will be a total of 91 nodes for the entire domain as shown.

These are the nodes where the solution u has either to be determined or prescribed.
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As mentioned earlier, the first step in handling this problem containing a

boundary singularity is to determine the solution u at the collocation points in the

entire domain. As a result of the application of the Legendre Collocation Method,

a set of simultaneous equations has to be solved. This set of algebraic linear

equations is generated by the following requirements:

(a) The interior collocation equations from the differential equation, namely

( 2 

-

ATX•\ 2 •ATY
'7)

ki Jim + A	 v )

have to be satisfied at each of the interior nodes of each element (See

Figure 4.9). Note that Equation (4.8) is a modification of Equation (2.50

to suit this problem. The superscript in parentheses denotes the element

number, here e = 1,2.

(b) The boundary collocation equations stem from satisfying:

Dirichlet conditions along lines AO and BC.. Thus,

1 u„ (

I) = 0.5 along  line AO
,, =1

(4.9)

and

NPY

2 ) 	 = 1 0 along line BCA ,
(4.1(i)

BX

Since a single index is used in the computer program, in the

assembled matrix Equation (2.57), the elements of the matrix .K

that correspond to the node number n of the global numbering

scheme will be equal to unity, i.e. K = 1., and the corresponding

load vector F has components equal to either 0.5 or

(4.8)
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depending on which. boundary line (OA or BC) is considered.

Note that this satisfaction of the function values on the boundaries

AO and. BC not only includes the corner points A, -B, and C, but

also the inter-element boundary point 0.

• Neumann conditions along OB, CD, and DA boundaries. For

boundary lines OB and CD, it is only necessary to satisfy the

prescribed normal derivative, i.e.   = 0 at the interior boundary

collocation points. At points 0, B, and C, the function values are

to be satisfied. Thus, on line 0.B

AY u. 1 = 0	 for = 2,..., ATPX — 1	 (4.11)

Similarly, at the interior nodes on line EC, one has

A \J . 11 	=0	 for /=2 	 AIPA . — 1	 ( 4.12)

For line DE    

2)

(

Ay
A Y,„7 . 1 ..., 	 0	 for	 = 2,	 , N/)... 3( — 1	 (4.13)

at point E, the enforcement can be done by either one of the

following equations

NPY

A //	 0 (4 14a)   

or



P
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0	 (4.I.4b) 

The satisfaction of prescribed normal derivative, i.e. ---- 	 , at the

interior nodes on line AD gives

AY	 = 0 for j = 2, . NI) Y -1 	 (4.15)

Note that the resulting Equations (4.11), (4.12), (4.13), (4.I4a),

and (4.14b) are based on Equations (2.54) and (2.56), while

Equation (4.15) stems from Equation (2.53).

(c) The normal derivative continuity equations at interior nodes along line

OE, the interelement boundary are given by      

---,-	 =
v (-}- -

for	 .,NPY -  

A k.0) 0.10 

as in. Equation (2.52).

(d) The corner equation at corner point 1) in Figure 4.9: Both normal

derivatives in the x and directions are zero. The equation similar to

Equation (2.63) applied to corner D is given by 

2

A x" )  
11 T X I (4.17)   
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Solving a set of algebraic equations resulting from the Legend re Collocation

technique outlined above gives the solution ti at the collocation points. The

solution. is remarkably accurate except in a neighborhood of singular point. Thus, a

special treatment as described in Chapter 3 will be applied as follows:

a. Once a half circle sector for isolating the singular point 0 has been

established (see Figure 4.10), Equation (3.88) derived in Chapter 3 is

applied along the sector arc of this isolated. region. Thus, the resulting

equation can be written as

0(1?,0)— 0.5 ------ Cos	 0
	

(4.18)

where A and B in Equation (3.88) have been replaced with the known

values of A = 0, B 0.5, and f? is a fixed radius (see also Figure 3.3).

Furthermore, Equation (4.18) not only satisfies the Laplace equation

(4.7), but also both the Neumann conditions on line OB and 'Dirichlet

conditions on line AO.

A 	 0 	 13

Figure 4.10 An half circle sector isolated for a special treatment
in the neighborhood of a singular point 0
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2n — 1= 	 J? 0 ) cos
NR 2

(4.19)
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if Equation (4.1.8) is made equal to the solution function that was

obtained by the Legendre Collocation Method along the arc, then the

coefficients CH can be determined. Note that Equation (4.18) is expressed

in polar coordinates (#', 9) with the origin at point O. The function u

obtained by the Legendre Collocation Method is now replaced by 0 in the

half sector domain. To ensure accurate results of solution, the radius ,R of

the half sector must be taken sufficiently large so that, outside the sector,

the solution u obtained by the Legendre Collocation. Method is virtually

unaffected by the singular point O. Thus, as a general rule, to be on a safe

side, the fixed radius will be half the length of the longer side of the

rectangular element.

b. In this study, the determination. of the coefficients	 in Equation (4.18)

can be performed by the folio -wilily; two alternative methods:

A discrete least -square approximation.

As outlined in Chapter 3, Equation (3.83) is used to determine c f,

such that

where R = 3.5

Ok. (2k-1)	 k "i„ . , N

R,O)= 0(1?,0)— 0.5

and /7 is the number of selected discrete points on the arc. Note

that the solution O(R, Ok.) is the value of the function on the arc,

computed by interpolating the solution u previously obtained
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through the Legendre Collocation Method. it is clear that before

the interpolation can be done., the polar coordinates (r, (9) have to

be transformed into cartesia.Il coordinates	 ).

• Minirnax approximation at Chebyshev zeros.

Iii this alternate procedure, in order to determine c„, it is

necessary to solve a set of simultaneous equations generated by

Equation (4.18) such that

2 ,e 	 1

I cos 	 R	 — 0. 5	 (4.20)

where R= 3.5. and

i 	 ( 2kT 	 — iT
- + COS 	  1. k = 	 A.

Note that 04_ are the zeros of a Chebyshev polynomial that have

been mapped onto the real interval [0„ TC] (see Figure 4.10). The

function values 0(R,O ir ) in Equation (4.20) have the same

meaning as O(R. Ok ) it the discrete least-squares approximation

described above.

c. Once the constant coefficients c„ pit Equation (4.18) are determined

through either one of the methods described above, Equation (3.50) now

takes the form

0(' i9)=(t5-i-	 crir = cos 
n

 1 	(4.21)

N ?

and will satisfy Laplace's equation (4.7). In additioi to that, Equation

(4.21) identically satisfies the boundary conditions along the straight line
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AB containing the singularity at point 0, and approximately satisfies the

values of the function along the sector arc. Thus, Equation (4.21) not only

gives the approximate solution in this isolated sector, but also can be used

to calculate the derivative with respect to the radius P

0 	 ? — 1.24 Ji	 7) 11 - 1
=   C r 	 OS— 	

6r	 2	 2
ri=1

and the derivative with respect to 9

(4.22)

n=1

2ir
2

'711 —I
sin - 7,	 0 (4.2

From Equation (4.22), it is obvious that 	 (3,..), when n=1 and r --> 0.

This establishes the existence of the singularity at point 0 in Figures 4.8,

4.9 and 4.10.

The convergence of the appro. . ate solution u obtained through the

Legendre Collocation Method is shown in Table 4.6. Table 4.7 shows the

comparison with previous results obtained by Lefeber [331, Symm [37], and

Whiteman and Papamichael [36]. It is important to note here that the Legendre

Collocation Method produces the solution at the collocation points which are the

corresponding zeros of the Legendre polynomial plus the two endpoints of the

interval. The solutions at a unit mesh point in Table 4.7 are obtained by two-

dimensional interpolation of the Legendre Collocation Method results on each

element. Thus, a certain degree of accuracy may be lost during the interpolation

process. But, as indicated in Table 4.7, all data appear to be in good agreement.

The conclusion can be drawn that the Legendre Collocation Method gives a very

accurate result at the collocation points. A smooth three-dimensional plot of the
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approximate solution u using 9 x 9 mesh size for the entire domain is displayed in

Figure 4.12.

As mentioned previously, the neighborhood of the singularity is treated as

an isolated circular sector, and the series solution for this sector is then formulated.

Table 4.8 shows the rapid convergence of the coefficient c„ obtained by both

methods, namely the least-squares and minimax approximation applied on the arc

in computing the coefficients. Thus, by taking five points along the sector arc, s

has been reduced to the order of 10-' The results presented in the study are based

on five coefficients in the series solution Equations (4.21), (4.22), and (4.23).

Furthermore, by inspecting the coefficients in Table 4.8 for both approximation

methods, one sees that there is not much difference in convergence for the series

solutions. Either one of the methods can be used for accurate results. To ensure the

validity of the least-squares and minimax approximation methods, the solution u

along the arc is calculated at eleven equally spaced points, and as shown in Table

4.9 and Figure 4,11 the results are in good agreement. Note that the notation used

for the solution in cartesian coordinates is n -, 0 is for solution in polar coordinates.

In the neighborhood of the singularity, computed results for the solution ii

or 0 and corresponding values from previous studies are compared in Table 4.10.

Good agreement is seen: this establishes the validity of the method proposed in

this study. Tables 4.11 and 4.12 show the derivatives in the x and 1 , directions.

Unfortunately, comparison is not possible since no published results for the

derivatives in this important region are a ailable. Figures 4.13, 4.14 and 4.15 show

the contour lines representing the approximate solution u and the derivatives

—
( 7re (•iv ,and — using the series solution with five coefficients.' 
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Tables 4.13 - 4.18 show the convergence of the solution u and its

derivatives obtained by both the least-squares and -min nax approximation

methods in the series solution. Good convergence is observed.

Table 4.6 Pointwise convergence of a solution u on a square grid points
of 3.5 x 3.5. The results shown are based on a mesh size on each
element: 3 x 3, 5 x 5, 7 x 7, 9 x 9

0.595238 0.642857 0.785714 0.857143	 1.000000
0.594195 0.622162 0.714702 0.844223	 1.000000
0.592566 0,620119 0.707747 0.842104	 1.000000
0.592016 0.619413 0.705947 0.841472	 1.000000

0.571429 0.607143 0.714286 0.857143	 1.0000001
0.568003 0.591688 0.682206 0.835286	 1.000000
0.566450 0.589772 0.666509 0.832536	 1.000000
0.566032 0.589164 0.677404 0.831747	 1.000000

0.500000 0.500000 0.500000 0.857143	 1.000000
0.500000 0.500000 0.500000 0.823763	 1.000000
0.500000 0.500000 0.500000 0.819743	 1.000000
0.500000 0.500000 0.500000 0.818540	 1.000000

SINGULAR
POINT



Table 4.7 Comparison results of solution u of the problemof Motz ot unit tesh
The numbers in the table have the following significance:
1st value - Interpolated results of the Legendre Collocation Method with 9 x 9 mesh size

2nd value - By Lefeber in Reference [33]
3rd value - By Symm in Reference [37]
4th value - By Whiteman and Pa amichael in Reference 36

0.592016
0 591360

0 600828
0.600123

(3 612085
0.611268

0 E,1, (.71 77 ,31 886t;')_,4373 00 . 90Q0877197R 00..995533809_09

0.589839 0.598546 0 6098'76 u 818835 0 802777 0.907770 0.953689
0 589192 1 0.597849 0.608888 0813116 0 862020 0.907320 0.953463

• 0 599775 0 60883 I 0 81812 0 86203 0.90733 0.95347
• 0 60889 0 86202 0. 95346

0.583354 0.585421 0.591716 0 602519 0 617986 0.638833 0 665041 0.697180 0.732966 0.773046 0 815793 0 860735 0.906541 0.953115
0 582748 0.584804 0.591054 0 601737 0 617215 0 637877 0 663987 0.695470 0.731777 0.771971 0 814998 0 859930 0.906057 0.952873

0.58469 0.59097 0 60168 0 61717 0.63785 0.66397 0.69546 0 73177 0 77197 0 81500 0 85994 0.90606 0.95288

0.572793 0.574705 0 580484 0 590241 0.605665 0.625604 0.652237 0.681075 0.723066 0 765817 0 811827 0 856899 0.904768 0 952334
0 572211 0 574100 0 579848 0 539803 0 604530 0 624756 0.651155 0.683908 0722292 0.764842 0 810017 0.856677 0.904129 0.951981

0.57401 0.57978 0 58975 0 60449 0 62473 0 65114 0.68390 0.72229 0.76484 0 81002 0.85668 0.90413 0.95198
0 57410 0.58980 0.62476 0 68391 0.76484 0.85668 0.95198

°O 7755659131663331 °800750° 0° .66676354723 4CG 77 01 8°86 ' -3: ;9 17 •
• 0 63179 0.6665.6 0 70864 0 75517

0 69250.0

11 1

0.6'05056 0.641975

II

• 0.603694 0 641560 0 690637
0.60368 0.64155 0 69063

0.64156

0 672188 0.735337 0 793299 0 846335 0.898728 0.9496030.521113 	 0 521764
0 520907	 0.52149 0.669540 0.733218 0 791154 0 845546 0 897920 0.949201

0 52149 0 66954 0 73322 0 79116 0 34555 0.89793 0_94921

0 500000
0_500000

0.500000
0.500000
0 50002
0.50000

0_500000
0.500000
0 49999

0 500000
0 501:CK...0

.19a:J8
0

0 503coo
0 5'00000

50001

0 500000
0 500000
0 50000
0 50000

0.500000
0 500000
0 5000

0.500000
0 500000
0 50000
0 50000

656001
0 6564-87
0 65648

0.728904
0 728474
0 72848
0 7284/

o 7:98132
0 788908

78891

.039966
8443R8

0 84438
8443/

•8
0.897303
0 89732 0.94895

0.94893

0.9800/ '
0 948933

1 000000
1 000000

1.000000
1.000000

1 c0000
1 000000

. 000000

.000000

1 000000
1.000000

1 000000
1.000000

000000
1 000)00

1 0000UU
1 000000



Table 4.8 The coefficients c computed from interpolated results
obtained through the Le endre Collocation Method with 9 x 9 mesh size

en Least-Squares Approx. Minimax Approx.

3 0 152')49E+00.	 ...w 0.155735E+00

.	 _ 0.424141E-02 0 403734E-02

C) 152953E+00. 0.152170E+00

c	 --'--- 0,473627E-02 0.460635E-02

0,185410E-03 0.158638E-03

_ 0 153098E+00 0 -152702E-4-00

c2 --- 0 470106E-02

1 0.13 1639E-03

0,467300E-02

- , 0.115928E-03

0.137679E-04 -0.709591E-05

5 0.152633E+00 0 :152487E+00

El 0,471037E-02 0 468686E-02

MN 0.138776E-03 0 135949E-03

Mill -0.969339E-05 -0.581385E-05

IIM 0 489977E-06 -0_424645E-06	 .
MN 0.152304E+00 0 153066E+00

i
0,470370E-02C2 -7--- 	 - 0 471379E-02

0,131855E-03INI 0.149621 E-03

1111 -0.46054 -7E-05 -0.228528E-04

0.168264E-05 -0.289098E-05

IIEN 0 198979E-08 0.515987E-06

94
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Table 4.9 Comparison the solution re or 0 on the sector arc
of the problem of Motz ( see Figure 4.10 )

Point
N o.

Angle f Interpolated LCM
results L9 	 9 )

Least-squares Tm .

Approxj 5 coeffs.

	

. , imma.: 	 .,,, 	 AppioN• - 	 - 	 ' 	 - 	 - 	 - 	 '

( 5 coca's. )

1 0. 000000 0.818540 0.818934 0,818496
2 0.314159 0.811433 0.811433 0,811082
3 0.628319 0.789953 0.790030 0.789741
4 0.942478 0.757709 0.757709 0,757296
5 1.256637 0,719010 0.718655 0.718243 	 _

6 1.570796 0.677404 0.677404 0.677404
7 1.884956 0.637786 0,637688 0.638121
8 2.199115 0.601179 0.601179 0.601438
9 2.513274 0.566908 0.567139 0.566784

10 2.827433 0.533745 0.533745 0.533195
1 1 3.141593 0.500000 0.500000 0.500000 

0.820

0.788

0.756

0.724

2c u 0.602

0.660

0.628
u_

0.596

0.564

0.532

0.500
0.00 0.32 	 0.64 0.96 1.28 1.60 	 1.92 	 2.24 	 2.56 	 2.88

Angle Theta
3.20

Figure 4.11 Plot of the solution values along the arc from 0 to ir
as shown in Table 4.9:
Plot 1 - Interpolated value from the Legendre Collocation Method
Plot 2 - Least-squares approximation value
Plot 3 - Minimax approximation value.



Table 4.10 Comparison results of the solution 71 of the problem of Motz on a 0.25 unit mesh in the neighborhood. of
the singular point 0:
1st value - 5 points Least-squares approximation result on the Legendre Collocation Method
2nd value - 5 points Minimax approximation result on the Legendre Collocation Method
3rd value - Lefeber's result in Reference [33]
4th value - Symm's result in Reference [371
5th value - Whiteman and Papamichears result in Reference [36]

0,562459 0.570014 0_579358 0.590825 0.604492 0.619997 0,636626 0,653666 0,670629
0_562420 0.569973 0.579309 0.590761 0.604410 0.619891 0.636496 0653511 0.670445
0.561952 0 569473 0.578770 0.590176 0.603768 0.619186 0.635724 0.652670 0.669540
0.56195 0.56947 0.57877 0.59017 0.60376 0.61918 0.63572 0.65267 0.66954
0.56195 0.56947 0.57877 0.59018 0.60377 0.61919 0.63572 0.65267 0.66954

0.548811 0.555555 0.564431 0,576189 0.591255 0.609033 0.628077 0.647146 0.665642
0.548774 0.555517 0.564386 0.576131 0.591178 0.608933 0.627953 0.646996 0.665465
0,548417 0.555128 0.563958 0.575650 0.590629 0.608304 0.627239 0.546199 0.664591
0.54841 0.55512 0.56395 0.57565 0.59063 0.60830 0.62724 0.64620 0.66459
0.54842 0.55513 0.56396 0.57565 0.59063 0.60830 0.62724 0.64620 0.66459

0.533695 0.538994 0_546584 0.558046 0.575121 0,596870 0.619631 0.641270 0.661421
0.533667 0.538964 0.546549 0_557999 0.575054 0.596778 0.619511 0.641124 0.661249
0.533424 0.538696 0 546245 0.557640 0.574612 0.596229 0.618854 0.640366 0.660402
0.53342 0.53869 0.54624 0.55764 0.57461 0.59623 0.61855 0.64037 0.66040
0.53342 0.53870 0.54624 0.55764 0.57461 0.59623 0.61885 0.64037 0.66040

0.517258 0.520262 0.524989 0.533826 0,553544 0.584223 0612592 0_636944 0.658519
0.517243 0,520245 0 524969 0.533797 0.553495 0,584141 0.612478 0.636801 0.658349
0.517120 0.520108 0.524808 0.533591 0.553186 0.583671 0 611865 0.636072 0.657521
0.51712 0.52011 0 52481 0 . 53359 0.55318 0.58367 0.61186 0.63607 0.65752
0.51712 0.52011 	 1 0 52481 0.53359 0.55319 0,58367 0 61186 0.63607 0.65752

0.500000 0.500000 0. 500000 0 500000 0.500000 0.576910 0.609617 0.635308 0.657473
0.500000 0.500000 0. 500000 0.500000 0.500000 0.576834 0 609505 0.635166 0.657304

0.500000 0.500000 0.500000 0.500000 0.500000 0.576408 0 608911 0 634447 0.656482
0.50000 0. 50000 0 50000 0.50000 0.50000 0.57641 0. 60891 0.63445 0.65648
0.50000 0,50000 0.50000 0.50000 0.50000 0.57641 0.60891 0.63445 0.65648



(,Table 4.11 The derivative T; of the problem of Nilotz on a 0.25 unit mesh in the neighborhood of

the singular point 0:
1st value - 5 points Least-squares approximation result on the Le gendre Collocation Method
2nd value - 5 points Minimax approximation result on the Legendre Collocation Method

0.027157 0.033539 0.041450 0.050351 0.058740 0.064791 0.067754 0.068241 0.067299
0.027164 0.033519 0.041405 0.050285 0.058656 0.064695 0.067652 0_068138 0.067200

0.023622 0,030755 0.040783 0.053628 0.066492 0 074673 0.076833 0.075342 0.072526
0.023628 0.030737 0.040743 0.053565 0.066408 0,074575 0.076730 0.075238 0.072426

0.017992 0.024981 0.036801 0_056293 0.079767 0.091315 0.089421 0.083539 0.077813
0.017995 0.024967 0.036766 0.056231 0.079676 0.091208 0.089310 0.083432 0.077710

_._
0.009907 0_014627 0.024565 0_050655 0.110396 0.122489 0.104591 0.091128 0.082036
0.009909 0.014619 0.024541 0.050602 0.110281 0.122355 0.104469 0.091016 0.081931

	0.000000
	

0.000000
	

0 000000
	

0.000000
	

SINGULAR 0.156208
	

0.113041
	

0,094451
	

0.083697
	0.000000

	
0.000000
	

0 000000
	

0.000000
	

POINT	 0 156044
	

0.112912
	

0.094337
	

0.083591



Table 4.12 The derivative	 of the problem of Motz on a 0.25 unit mesh in the neighborhood of

the singular point 0:
1st value - 5 points Least-squares approximation result on the Legendre Collocation Method
2"cl value - 5 points Minimax approximation result on the Legendre Collocation Method

0.026561
0 026541

0.020876
0.020855

0.051712
0,051715

0.054029
0 . 054029

0 054960
0 054955

0.053411
0.053400

0.048700
0.048685

0.041509
0.041492

0.033627
0.033608

0.057533 0.061866 0.064964 0.064442 0.057815 0.046282 0.034485 0.025258 0.018744
0.057510 0.061842 0.064936 0.064411 0.057784 0.046255 0.034463 0.025239 0.018728

0.063307 0.070704 0 078431 0.082313 0.72693 0.050744 0.032280 0.021145 0.014641
0.063262 0.070659 0.078380 0.082256 0.072641 0.050708 0.032257 0.021129 0.014629

0.067856 0.078752 0.094314 0.114724 0.105398 0 047444 0.022152 0.012642 0.008197
0.067798 0.078691 0.094242 0.114630 0.105309 0.047406 0.022135 0.012632 0.008190

0.069634
	

0.082246
	

0.103061
	

0 . 149145
	

SINGULAR 0.000000
	

0 000000
	

0.00000 0
	

0.000000
0 069572
	

0.082180
	

0.10.2977
	

0.149015
	

POINT	 0.000000
	

0.000000
	

0. 000000
	

0.000000



Table 4.13 Pointwise convergence of Least-squares approximation on the eigensolution u
in the neighborhood of the singular point 0. The results arc on a 0.25 unit mesh
and based on 9 x 9 mesh size for each element in the Legendre Collocation Method solution:
1st value - two coefficients in the eigensolution Equation (4.21)
2nd value - three coefficients in the eigensolution Equation (4.21)
:3rd value - four coefficients in the eigensolution Equation (4.21)
4th value - five coefficients in the eigensolution Equation (4.21)

0.562697 0,570293 0.579641 0.591070 0.604657 0.620035 0.636491 0.653310 0.670004
0.562656 0.570202 0.579538 0.591002 0.604674 0.620191 0.636843 0.653917 0.670926
0.562676 0,570250 0.579621 0.501121 0.604829 0.620380 0.637058 0.654147 0.671155
0.562459 0.570014 0.079358 0.590825 0.604492 0,619997 0.636626 0.653666 0.670629

0.548955 0.555724 0.564593 0,576307 0.591285 0.608930 0.62 /794 0.646637 0.664859
0 548058 0 555700 0.564577 0.576343 0.591425 0.609230 0.628313 0.647431 0,665986
0.548980 0,555742 0.564643 0.576435 0.591545 0 609374 0.628473 0.647593 0.666135
0.548811 0 555555 0.564431 0.576189 0.591255 0.609033 0.628077 0.647146 0.665642

0.533774 0.539085 0.546663 0.558080 0.575064 0 5966T3 0.619246 0,640653 0,660527
0.5:33794 0 539094 0 546690 0.558166 0.575269 0.597061 0.619875 0.641575 0.661798
0.533811 0,539125 0.546737 0.558232 0,575356 0 597168 0.619992 0 641688 0.661888
0.533695 0.538994 0.546584 0.558046 0.575121 0.596870 0.619631 0.641270 0.661421

0.517292 0.520300 0.525018 0.533820 0.553453 0.583978 0.612149 0 636264 0.657559
0,517308 0.520313 0,525046 0.533896 0.553654 0_584399 0.612837 0.637261 0.658915
0517317 0 5702', 29 0.525070 0.533933 0.553710 0.584478 0.612926 0.637343 0.658969
0.51 .7258 0 520262 0.524989 0.533826 0,553544 0.584223 0.612592 0.636944 0.650519

0.500000 0.500000 0 500000 0. 500000 0 500000 0.576655 0.609156 0.634607 0.656491
0.500000 0,50000 0.500000 0.500000 0,500000 0_577074 0.609861 0.635628 0.657875
0.500000 500000 0,500000 0.500000 0 . 500000 0.577140 0.609941 638699 0.6579 1 7
0.500000 0 5 00000 0 500000 0 500000 0 . 500000 0.576910 0.009517 0.635308 0 6574.73



Table 4.14 Pointwise convergence of 'Minimax approximation on the eigensolution U
in the neighborhood of the singular point O. The results are on a 0.25 unit mesh
and based on 9 x 9 mesh size for each element in the Legeridre Collocation Method solution:
1st value - two coefficients in the eigensolution Equation (4.21)
2nd value - three coefficients in the eigensolution Equation (4.21)
3rd value - four coefficients in the eigensolution Equation (4.21)
4th value - five coefficients in the eigensohnion Equation (4.21)

0.581818
0.579243
0.579433
0.579309

0.503443
0.590642
0.590911
0.590761

0.607266
0.604231
0.604585
0.604410

0.622911
0.619648
0.620091
0.619891

0.639648
0.636186
0.636717
0.636496

0.656744
0.653133
0.653748
0.653511

0_673702
0.670007
0.670695
0,670448

0.564600
0.562442
0.562496
0.562420

057316
0.569955
0.570072
0.569973

0.550421 0 557304 0,566328 0 5i8256 0.593513 0.611487 0.630695 0,649868 0.668393
0.548784 0.555494 0.564324 0.576023 0.591015 0.608708 0.627663 0 . 646643 0.665055
0.548833 0.555594 0.564483 0.576251 0.591322 0.609102 0.628144 0.647204 0.665684
0.548774 0.555517 0.564386 0.576131 0.591178 0.608933 0.627953 0.646996 0.665465

0.534775 0.540179 0.547897 0,559535 0.576858 0,598897 0.621907 0 643709 0_663929
0.533670 0.538944 0,546499 0.557910 0.574914 0.596574 0.619242 0.640791 0.660861
0.533708 0.539018 0,546618 0 558087 0.575168 0.596920 0.619679 0.641310 0.661446
0,533667 0.538964 0.546549 0.557999 0.575054 0 596778 0.619511 0, 641124 0.661249

0.517801 0 520863 0 525671 0.531653 0.554704 0.585876 0.614620 0639106 0.660872
0.517243 0.520234 0.524940 0.533742 0.553390 0.583960 0.612223 0.636483 0.657975
0.517264 0.520273 0 525005 0 533847 0.553573 C.).584258 0 612627 0.636973 0.658533
0.517243 0. 520245 0.524969 0,533707 0.553495 0 584141 0.612478 0 636801 0.658349

0.500000 0.500000 0.500000 0.500000 0.500000 0.578372 0.C-11549 0 63749 3

0.500000 0.500000 0 500000 0.500000 0.500000 0.576666 0.609257 0.634852 0.656935
0 500000 0.500300 ft ,.-)00000 0.500000 0.530000 0 -.,76939 0.609649 0.635333 0.657484
0.500000 0.500000 0.5.00000 0.500000 0.500000 0.576834 0.609505 0_635166 0 657304



of 
c7i , Table 4.15 Pointwise convergence of 	 of Least-squares approximation on the eigensolution u

in the neighborhood of the singular point 0. The results are on a 0.25 unit mesh
and based on 9 x 9 mesh size for each element in the Legendre Collocation Method solution:
ist value - x - derivative based on two coefficients in the eigensolution Equation (4.21)
2nd value - - derivative based on three coefficients in the eigensolution Equation (4.21)
3rd value - x - derivative based on four coefficients in the eigensolution Equation (4.21)
4th value - - derivative based on five coefficients rn the eigensolution Equation (4.21)

0.027392 0.033631 0.041386 0.050119 0.058327 0.064191 0 066964 0.067262 0.066130
0.027123 0.033505 0.041428 0.050352 0.058773 0.064861 0.067866 0.068401 0.067517
0.027225 003361 0.041570 0.050501 0.058916 0,064983 0 067950 0,068430 0.067473
0.027157 0.033539 0.041450 0.050351 0.058740 0.064791 0:067754 0.068241 0.067299

0.023781 0.0307,94 0.040684 0.053368 0.066052 0.074044 0 076019 0.074343 0.071342
0_023610 0.030748 0 040797 0.053674 0.066580 0.074804 0.077005 0.075558 0.072797
0.023682 0.030839 0.040900 0.053784 0.066686 0.074887 0.077046 0.075538 0.072698
0.023622 0.030755 0.040783 0.053628 0.066492 0.074673 0.076833 0.075342 0.072526

0.018086 0.024985 0.036691 0,056028 0.079306 0.090656 0.088580 0.082521 0.076616
0.017997 0.024991 0.036835 0.056374 0.079913 0.091511 0.089648 0.083803 0.078124
0.018038 0.025050 0.036906 0.056456 0.079998 0.091575 0.089664 0.083751 0.077989
0.017992 0.024981 0.036801 0.056293 0.079767 0.091315 0.089421 0.083539 0 . 077813

0.009950 0,014620 0.024485 0.050441 0.109906 0.121776 0 103721 0.090094 0 080829
0.009911 0.014638 0.024597 0.050746 0 110625 0 122767 0 104868 0.091425 0.082373
0.009933 0 014668 0.024636 0.050804 0 110722 0 122841 0.104876 0.091357 0.082217
0 009907 0.014627 0 . 024565 0.050655 0_110396 0 122489 0.104591 0.091128 0.082036

0.000000
	

0.000000
	

0.000000
	

0.000 000
	

SINGULAR
	

0 155430
	

0 112155
	

0.093411
	

0.082487
0.000000
	

0.000000
	

0.000000
	

0. 000000
	

POINT
	

0.156563
	

0 113341
	

0.094761
	

0.084044
0.0000, 00
	

0.000000
	

0_000000
	

0.000000
	

0.166663
	

0 113350
	

0.094688
	

0.083881
0..000000
	

O. 000000
	

0,000000
	

0.000000
	

0 156208
	

0 113041
	

0 094451
	

0 083697



Table 4.16 Point-wise convergence of	 of Least-squares approximation on the eigensolution 7/

in the neighborhood of the singular point O. The results are on a 0.25 unit mesh
and based on 9 x 9 mesh size for each element in the Legendre Collocation Method solution:
1st value - y - derivative based on two coefficients in the cigensolution Equation (4.21)

2nd value - y - derivative based on three coefficients in the eigensolution Equation (4.21)
3rd value - y - derivative based on four coefficients in the eigensolution Equation (4.21)
4th value - y - derivative based on five coefficients in the eigensolution Equation (4.21)

0.052150 0.054538 0.055520 0,054008 	 0.0493 0.042168 0,034313 0.027269 0.021601
0.051906 0.054193 0.055066 0 053490 	 0.048726 0,041474 0.033529 0.026401 0.020657
0,051890 0_054213 0.055146 0.053595 	 0_048875 0.041571 0.033776 0.026703 0,021019
0.051712 0.054029 0.054960 0,053411 	 0.048700 0.041509 0.033627 0,026561 0.020876

...0_1
0.057846 0,062236 0.065368 0_064866 	 0.058260 0.046753 0.034984 0.025779 0.019282
0_057726 0.062039 0.065111 0.064555 	 0.057879 0.046287 0.034431 0.025149 0.018586
0.057 -733 0.062077 0.065183 0.064660 	 0.058016 0.046453 0.034629 0.025384 0.018864
0.057533 0.061866 0.064964 0.064442 	 0.057815 0.046282 0.034485 0.025258 0.018744

0,063521 0.070959 0.078694 0.082563 7 0.072944 0.051027 0.032596 0,021485 0.014995
0,063502 0.070891 0.078610 0.08247,4 	 0,072808 0.050789 0.032263 0.021082 0.014540
0.063526 0,070943 0.078692 0.082584 	 0.072935 0.050921 0.032405 0.021244 0.014729
0.063307 0.070704 0.078431 0 082313 	 0.072693 0.050744 0.032280 0.021145 0,014641

0 . 068007 0.078927 0.094462 0,114786 	 1 0 105407 0.047546 0.022299 0 012808 0,008372
0.068056 0.078954 0,094529 0.114962 	 0,105601 0.047513 0.022156 0.012614 0.008148
0,068091 0 079016 0.094623 0.115091 	 0.105733 0 047601 0.022234 0.012696 0 008244
0067856 0.078752 0.094314 0.114724 	 0.105398 0.047444 0.022152 0.012642 0.008197

0,06.9763
	

0.082791
	

0.103158
	

0.149068
	

SINGULAR
	

0 000000
	

0.000000
	

0.00000 0
	

0.000000
0.069836
	

0,082456
	

0.103294
	

0.149459
	

POINT
	

0. 000000
	

0.000000
	

0.000000
	

0.000000
0.069875
	

0.082'521
	

0.103395
	

0.149615
	

0.000000
	

0 000 000
	

0.000000
	

0.000000
0.069634
	

0.082246
	

0 . 103061
	

0 14.9145
	

0,000000
	

0.000000
	

0.000000
	

0.000000



Table 4.17 Pointwise convergence, of	 of Minimax approximation on the eigensolution

in the neighborhood of the singular point 0. The results are on a 0.25 unit mesh
and based on 9 x 9 mesh size for each element in the Legendre. Collocation Method solution:
ist value - x - derivative based on two coefficients in the eigensolution Equation (4.21)
2nd value - - derivative based on three coefficients in the eiensolution Equation (4.21)
0rd value - x - derivative based on four coefficients in the eigensolution Equation (4.21)
4111 value - x - derivative based on five coefficients in the ei2-ensolution Equation '4.21)

0.027814 0:034175 0:042083 0,050984 ' 0.059343 0:065299 0.068091 0 068350 0.067148
0.027012 0.033343 0.041204 0 050057 0,058406 0.064429 0.067383 0.067877 0.066956
0,027255 0.033615 0.041505 0.050388 0 058757 0.064788 0,067729 0.068192 0.067226
0.027255 0.033615 0.04150.5 0.050388 0.058757 0.064788 0.067729 0.068192 0.067226

0.024165 0.031321 0.041413 0 054355 0.067287 0.075414 0_077381 0.075615 0_072496
0.023507 0.030595 0.040572 0.053361 0.066172 0.074320 0.076473 0.074994 0.072204
0.023597 0.030814 0.040828 0 053659 0.066508 0.074671 0.076810 0.075294 0.072453
0.023697 0.030814 0.040828 0.053659 0.066508 0.074671 0.076810 0.075294 0.072453

0.018391 0.025433 0_037385CET-0-5-,7133 0.080895 0.092444 0.090257 0.084000 0.077905
0.017910 0.024862 0.036631 0 056051 0.079441 0.090944 0.089052 0 083195 0.077502
0.018043 0.025022 0.036833 0056319 0.079786 0.091319 0.089401 0.083493 0.077740
0.018043 0.025022 0.036833 0.056319 0.079786 0.091319 0.089401 0.083493 0.077740

0.010122 0.014891 0.024968 0 051493 01122.62 0.124315 0 105767 0.091760 0.082224
0 009865 0. 	 14562 0.024461 0 050463 0 110008 0 122047 0.104195 0 090778 0 081729
0.009934 0.014649 0.024583 0 050676 0 110430 0.122507 0.104577 0 091085 0.081963
0.009934 0.014649 0.024583 0 050676 0.110430 0 122507 0.104577 0.091085 0.081963

____
0 000000
	

0.000000
	

0.000000
	

0.000000
	

SINGULAR
	

0.158763
	

0.114403
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0 083923
0.000000
	

0.000000
	

0.000000
	

0 000000	 POINT
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0.094097
	

0.083391
0.000000
	

0.000000
	

0 000000
	 0.000°00	 0 156242

	
0.113031
	

0.094409
	

0.083625
0.000000
	

0,000000
	

0.000000
	 o. 000000	 0.156242

	
0.113031
	

0.094409
	

0.083625



Table 4.18 Pointwise convergence of 	 of Minimax approximation on the eigensolution

in the neighborhood of the singular point O. The results are on a 0.25 unit mesh
and based on 9 x 9 mesh size for each element in the Legendre Collocation Method solution:
1st value - v - derivative based on two coefficients in the eigensolution Equation (4.21)
2nd value - y - derivative based on three coefficients in the eigensolution Equation (4.21)
3rd value - - derivative based on four coefficients in the eigensolution Equation (4.21)
4th value - y - derivative based on five coefficients in the eigensolution Equation (4.21)

0.050778
0.048634
0.048809
0.048685

1
1---	

0.043416
0.041423
0.041619
0.041492

0.035350
0.033522
0.033736
0.033608

0.028119
0.026434
0.026669
0.026541

0.022301
0.020723
0.020984
0.020855

0.053841
0.051773
0.051779
0.051715

0.056238
0.054058
0,054114
0.054029

0.057197
0.054953
0.055058
0.054955

0.055606
0.053371
0.053516
0.053400

0.059649 0.064090 0.067242 0.066677  0,059870 0.048058 0.035987 0.026547 0.019883
0.057547 0.061845 0.064905 0.064352 0.057710 0.046176 0.034381 0.025148 0.018622
0.057580 0.061933 0.065045 0.064531 0.057906 0.046371 0.034571 0.025342 0.018827
0.057510 0.061842 0.064936 0.064411 0.057784 0.046255 0.034463 0.025239 0.018728

0.065440 0.072994 0.080847 0.084740 0.074839 0.052372 0.033488 0.022101 0.015440
0.053281 0.070638 0.078316 0.082155 0.072531 	 0.050619 0.032184 0.021060 0.014553
0.063339 0.070759 0.078502 0.082392 0.072771 	 0.050813 0.032341 0 021203 0.014698
0.063262 0.070659 0.078380 0.082256 0.072641	 0.050708 0.032257 0.021120 0.014629

0.070019 0 081130 0.096953 0.117662 0 107980 	 0_048737 0 022888 001360 0 008620
0 067804 0.078649 0.094139 0 114455 0.105123 	 0.047319 0.022087 0.012594 0.008150
0.067881 0.078800 0.094381 0 114804 0 105472 	 0.047489 0.022185 0.012672 0.008225

0.067798 0,078691 0.094242 CJ 114630 0.105309 0.047406 0022135 0.012532 0.008190

0.071811
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The solution of the problem of Motz

0.6 0,B I .00.4-1 .0 -0.8 	 -0.6 -0.4 -0.2 0.0 0.2

Figure 4.12 Three-dimensional plot of the solution it ob ained through
the Legendre Collocation Method.

Figure 4.13 Contour plot of solution it in the neighborhood of singularity
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Figure 4.14 Contour plot of `-'" in the neighborhood of singularity

[ 06

Figure 4.15 Contour plot of	 in the neighborhood of singularity
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4.4 Solution of Laplace's Equation in L-shaped Domain

As a third example of the application of the method in this study, consider the

problem of finding the approximate solution 0 in an L-shaped. region that satisfies

Laplace's equation and is subjected to mixed boundary conditions as depicted in

Figure 4.16.

i70 is specified

is specified
3 11)

r? 0	
specified

x.

Figure 4.16 L-shaped domain and boundary conditions for Laplace's equation.

The length of side OA = AB = DE = ECG = 1, while BC — CD — Thus, the region

can be easily broken into three square elements with sides equal to unity.

The differential equation has the known exact solution 0 in polar

coordinates (r,O) in the form



108

.
= sin-

3 
0

satisfying Laplace's equation in polar coordinates

(4.24)

2 Ø 	1 2 	 I a
2-,=r - (79'

as shown in Appendix A. Equation (4,24) reveals that the radial derivative of

approaches infinity if r 	 0. Thus, singularity occurs at the origin 0 in Figure

4.16.

As indicated in Figure 4.16, it is necessary to derive the equations for the

prescribed normal derivatives--.((t and	 from Equation (4,24), and apply the

boundary conditions alonv, the boundary lines AB, BC, CD and DE. Clearly,

Equation (4.24) satisfies the conditions along EQ and OA lines. Since Equation

(4.24) is defined in polar coordinates, and the normal derivatives have to be

forimilated in cartesian coordinates, the following transformation formulas ( see

Figure 4.17 )

I = 	 +v2

9 = tan -I X
	 (4.25)

will be used.

The derivative of with respect to x is given by   

0 r 	  5 0
er Ox 00 5x

(4.26)  



and

(4.29)

(4.30)

= sin 9
+y 2

09 	—y 	 sin 8
Sx x2 . 2y

Figure 4.17 Polar coordinates (r, 0) related to cartesian coordinates (x,y)

and with respect to y

c-?0 (2 0	 c
(3y (7 r (2 . 1) SOSy

From Equation (4.25), one has

X
=  	 = COS 9

(7/ x	 2\IX y 2

(4.27)

(.4.28)

1 09

61 	x	 COS
= 	 2 =y X/ y

Differentiation of Equation (4.24) gives

(4 3 1)



1 10

and

e"; 	 2	 I	 .
= r sm —

3 
d

(1"

2 2 	2
eo =

(4.32)

(4.33

Again, it is clear from Equation (4.32) that  	 cf), when r	 0. This con -firms

the occurrence of a singularity at the Origin 0 of Figure 4.16.

Substitution of Equations (4.28), (4 30), (4.3 -) and (4.33) into Equation

(4.26) gives

3 r
	 ins-0

and Equations (4.29), (4.31), (4.32) and (4.33) into Equation (4.27) yields

2	 1.
= r cos— u

y 3

(4.34)

(4.35)

where r and 0 in Equations (4.34) and (4.35) are defined by Equation (4.25).

Thus, in Figure 4,16, Equation (4.34) is the Neumann boundary condition along

the AB and CD lines; the Dirichlet condition in Equation (4.35) will be applied

along the DE and BC lines.
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- Interior collocation points

Figure 4.18 L-shaped domain for Laplace's equation is shown with
three elements, and 9 x 9 mesh size for each element.

In this study, the p-version technique is adopted in solving the problem

using the Legendre Collocation Method. Therefore the entire L-shaped region is

broken up into three major elements: EOGD, OFCG and 0.ABF (see Figure 4.18).

Two major steps are required for solving the problem that contains a singularity.

First, the approximate solution is obtained through the Legendre Collocation

Method, and second the circular sector in the neighborhood of singularity is

isolated (see Figure 3.1 or 3.2), then the series solution in this sector is formulated

and obtained by determining its coefficients either by the least-squares or .minimax

approach.

Similar procedures to the problem of Motz are applied. Thus, at each

interior collocation point of each element, Laplace's equation is satisfied by

Equation (4.8). In addition to these equations, the solution and first normal

derivative are required to be continuous across element boundaries. The use of a



1 1 2

global numbering scheme guarantees satisfaction of solution continuity (see Table

4.19); derivative continuity is ensured by applying Equation (2.52) in the x

direction (OF line), and a similar procedure is applied in the y direction (line OG -

see Section 2.8). The boundary conditions defined in Equation (4.24) for lines E0

and OA, also Equations (4.34) and (4.35) for lines .A.B, BC, CD and DE are

satisfied as described in Section 2.8. The corner points are treated according to the

procedures outlined in Section 2.9. The resulting set of simultaneous linear

equations is solved by LU decomposition and the backward substitution method.

The desired accuracy is achieved by increasing the order of .Legendre polynomial

used to construct the approximate solution until two successive approximations are

sufficiently close to each other.

Figure 4. 18 shows the domain divided. into three major elements with 9 x 9

mesh size for each element. Thus, there are 225 points for the entire domain as

indicated in Table 4.19, and the number of equations is also 225. In Table 4.20

the exact solution values are compared with the Legendre Collocation Method.

results at the collocation points. Table 4.2 1 shows the relative mors. It is noted

that higher errors occurred in a neighborhood of the singularity, ranging from

4.96% to 9.25%. For the rest of th.e region, very accurate results are obtained.

Thus, it confirms the need of special treatment in the neighborhood of the

singularity. Furthermore, for the problem containing singularity it will not be

appropriate to use the solution values at the collocation points in computing the

derivatives since error near re-entrant corner will introduce higher error in the

entire domain. Good convergence is noted in Table 4.22, and the three-

dimensional view of the solution obtained through the Legendre Collocation

Method with a 9 x 9 mesh for each element is shown in Figure 4.



Table 4.19 Nu rmberingscheme for the domain shown in Figute 4.18

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

175 176 177 178 179 180 181 183 184 185 186 187 188 189 190

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173

156

139

122

90 91 92 93 94 95 98 99 100 101 102 103 104 105

73 74 75 76 77 78 79 80 81 	 82 	 83 	 84 	 85 	 86 	 87 	 88

72

63

54

45

36

27

64 65 66 67 68 69 70 71

55 56 57 58 59 60 61 62

46 47 48 49 50 51 52 53

37 38 39 40 41 42 43 44

28 29 30 31 32 33 34 35

19 20 21 22 23 24 25 26

2

113

225

208

191

174

157

140

123

106

89



1-2535 1 2501 1.2066 1.1366 1.0534 0 9735 0 9115 0 8753 0 8574 0.8585 0.8253 0 7766 0 T2t34 0 6821 0 5513 0 6344
1.2599 1.2492 1.2057 1.1356 1.0525 0.9727 0.9107 0.8746 0.8660 0.8576 0.8246 0.7759 0 7248 0.6816 0.6509 0.6339

1.2501 1.2394 1.1954 1.1247 1.0407 0 9599 0 8972 0.8607 0 8520 0.8435 0.8103 0 7613 0 7101 0 6669 0,6365 0.6197
1.240 1.2385 1.1945 1.1238 1.0398 0.9591 0 8963 0 8599 0.8513 0.6428 0.8095 0.7600 0 7093 0.66E64 0.6360 0- 6192

1,2066 1.1954 1.1498 1.0761 0.9881 0 9C)34 0 8375 0.7995 0 7905 0.7817 0.7473 0.6974 0 6463 0- 6041 0.5749 0.5589
1.2057 1.1945 1.1469 1.0752 0.9872 0.9025 0 8367 0.7987 0.7897 0.7809 0.7466 0.6968 1 6458 0.6037 0-5744 0.5585

1.136'6 1,1247 1.0761 0.9970 0.9015 0- 803% 0 7364 0 6951 0 6854 0.6760 0.6396 0 5883 0 5381 0.4985 0.4714 0.4578
1-1356 1.1238 1.0752 0.9961 0.9006 0. 8077 0.7355 0 6943 0.8847 0.6752 0.8389 0 5877 0.537; 0.4980 0.4715 0-4573

1.0534 1.0407 0.9581 0.9015 0 7947 0 6881 0,8045 0.5573 0.5465 0,5360 0.4963 0 4440 0 3973 0-3634 0 3418 0- 3306
1-0525 1_0398 0.9872 0.900006 0.7937 0 6872 0 6035 0.5564 0.5456 0 5350 0.4955 0.4434 0 3969 0.3630 0.3415 0 3302

0.9736 0 9599 0.9034 0.8066 0.6881 0 5620 0 4582 0 3008 0_3867 0 3742 0.3305 0.2810 0 2441 0 2202 0 2059 0 1987
0-9727 0.9591 0.9025 0.8077 0.6872 0 5809 0 4570 0.3988 0.3856 0.3732 0.3296 0.2805 0 2435 0.2200 0 2057 0.1984

0.9115 0.8972 0.6375 0.7364 0.6045 0 4582 0 32,, 7 0 2407 0.2230 0 2073 0.1816 0,1270 0 1032 0.0968 0.0902 0 4869
0.9107 0.8963 0.8367 0.7355 0.6036 0- 4570 n 3851 0 2390 0.2214 0.2056 0,1610 0.1274 0.10810 0 0967 0.0901 0.0868

0.8753 0.860.+7 0.7995 0.6951 0.5573 0'3498 0.2407 0.1144 0.0819 0.0572 0.0334 0.025o 0 0213 0.0192 0.0177 0.0172
0.8746 0.8599 0.7987 0.6943 0.5564 0 3986 0 2390 0.1090 0.0749 0 0545 0.0335 0.0254 0 0214 0 0191 0.0178 0.0171

0.8674 0.8520 0.7905 0.6854 0.5465 0 3867 0 2230 0.0819 0.0000 	 0.0000 	 0-0000 	 0 0900 	 0 0000	 0.0000	 0.0000

0 8680 0 8513 0.7897 0.8847 0.5458 0 3856 0.2214 0 0749 0.0000 	 0 0000 	 0 0000 	 0 0000 	 0 0000 	 0 0000 	 0.0000

0.8585 0.8435 0.7817 0.8780 0.5360 0 3742 0.2073 0.0572 0.0000
0.8576 0.8428 0.7809 0.6752 0-5350 0 3732 0 2056 0.0545 0.0000

00.8233 0.8103 o 	 ,, 0.6396 0 4963  5 0 1618 0.0334 0.0000
0.8246 0.8+095 0 	 -- 0.6389 0-4955 t 0 1610 4.8335 0.0000

0 7 766 0 7613 0 6974 0 5883 0 4440 0 2810 0 1 	 b 0 0256 0 0000
7769 0.7606 0 6968 0 5877 0.4434 0 2805 ,	 . 0.0204 0000

0 7254 07101 0.6463 0.5381 0.3973 0 2441 0 1082 C., 0213 0 0000
0 7248. 0.7096 0.6458 0 5375 0.3969 0 2438 0 1080 0.0214 0 0000

0.6669 , 85 0 '634 0 2202 0966 0192 0-0000
0 6816 0.6664 0.6037 0 4980 0.3630 0.2220 0 0967 0 0191 0.0000

0 651; 0 6380 ..	 .., , 0 4719 0.3418 0 2059 0 0902 0 0177 0.0000
:.- 0 6360 0 57 4. 0 471" 0 3415 0.2057 0 0901 0.0178 0 0000

0 6344 0.6197 0 5509 0 4570 0-33106 0 1987 0.0869 0.0172 0.0000
0.6339 0,6192 0 5585 i 4573 0.3302 0 1934 0 0868 0 0171 0 0000
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0.6304
0 6300

0.6158
0.6153

0.5552
0.5548

0.4545
0.4541

0.3250
0 3277

0 1970
0.1958

0.0862
0 . 0861

0-0168
0.0170

0.0000
0.0000

Table 4.20 Comparison results of the solution 0 bet Teen the Le42,,endre Collocation Method
and exact solution at the collocation points:
First value - Legendre Collocation Method
Second value - Exact solution

0.6304
	

0.6158
	

0.5552
	

0.4545
	

0.328,0
	

0 0862
	

0.0168
	

0 0000
0.5548 	 0.4541 	 0.3277 	 0 ;9t55 	 0 0361 	 0 0170 	 0.000006300 	 0.8153 44,



0,07 4 	 0.0739 0.0811 0.0913 0.1041 0.1410 0.6844 0.0000

Table 4.21 Percentage relative error of the solution 0 at the collocation points

0,5134 0.0731 0.0757 0.0803 0 0859 0.0903 0.092 2 0.0848 0.1635 0.1000 0.0871 0.0849 0.0776 0.0729 0.0711 0.0723

0.0731 0.0737 0.0764 0.0811 0.0869 0.0913 0 . 0946 0.0941 0.0902 0.0870 0.0921 0.0861 0.0794 0.0743 0.0729 0.0737

0.0757 0.0764 0,0794 0,0849 0.0919 0.0982 0.0993 0.1000 0.1040 0.1069 0.0973 0.0938 0.0866 0.0810 0.0794 0.0804

0.0803 0.0811 0.0849 0.0921 0.1024 0,1124 0 1202 0.1206 0.1163 0.1130 0,1190 0.1104 0.0998 0.0921 0.0899 0.09 0

0.0859 0.0869 0.0919 0.1024 0,1199 0.1430 0.1573 0.1623 0.1687 0.1732 0.1563 0.1418 0.1199

-

0.1062 0.1018 0.1031

0.0903 0.0913 0.0982 0.1124 0.1430 0.1949 	 0.2610 0.2940 0.2811 0.2671 0.2628 0.1949 0.1453 0.1178 0 1133 0 1 	 14

0.0922 0.0946 0.0993 0.1202 0.1573 0.2610 	 0.5107 0.6905 0.7195 0.8112 0.5107 0.2564 0.1619 0.1280 0.1160 0.1174

0.0848 0.0941 0.1000 0.1206 0.1623 ^4.95590.2940 	 0.6905- 9.2518 4.9559 0.0516 0.6878 0 1124 0.3920 0.2012 0.4469

0.1635 0.0902 0.1040 0 . 1163 0 . 1687 0 2 	 11 	 0.7195 r9.2518 0.0000 	 0.0000 	 0.0000 	 0.0000 	 0.0000 	 0.0000 	 0.0000 	 0.0000

0 1000 0.0870 0.1069 0.1130 0.1732 0.26 71 	 1 2 4.9559 0.0000

0.0871 0.0921 0.0973 0 11 	 0 0.1563 0.2628 	 0.51 	 ' 0,0516 0.0000

0.0849 0.0861 0.0938 0.1104 0.1418 0.1949 	 0.2564 0.687E 0.0000

0 . 0776  0.0794 0,0366 0.0996 0.1199 0.1453 	 0.1619 0.1124 0.0000

0.0729 0.0743 0.0810 0.0921 0.1062 0.1178 	 0.1280 0.3920 0.0000

0:0711 0.0729 0 . 0 7 94 0.0399 0 1018 0.1133 	 0.1160 0.2012 0.0000

0.0 t 23 0.073 7 0.0804 0.091 0 0, 1031 0.1114 	 0.1174 0.4469 0.0000

0.0714

0.0739

0.0811

0.0913

0.1041

0.1115

0.1410

0.6844

0.0000



Table 4.22 Pointwise convergence of the solution at 0.5 x 0.5 grid points:
First value - The Legendre Collocation Method with 3 x 3 mesh size
Second value - The Legendre Collocation 'Method with 5 x 5 mesh size
Third value - The Legendre Collocation Method .with 7 x 7 mesh size
-Fourth value - The Legendre Collocation Met -hod with 9 x 9 mesh size
Fifth value - :Exact solution in .F_',cluation (4.24)
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1.180544
1234199

1.150178
1.059635

1 059083
0 879675

0 799745
0 729065

1.248412 1.054614 0.869581 0,726155
1.253453 1.053434 0.867441 0.725404
1.259921 1.052531 0.866025 0.724841

1.150178 0.900076 0.649974 0.450038
1.059635 0.801025 0.552486 0.400512
1.054614 0.795880 0.547570 0.397940
1.053434 0794653 0_546482 0.397326
1.052531 0,793701 0.545562 0.396850

1.059083 0.649974 0.000000 	 0.000000
0.879675 0.552486 0.000000 	 0.000000
0.869581 0.547570 0.000000 	 0.000000
0.867441 0.546482 0.000000 	 0.000000
0 866025 0.545562 0..000000 	 0.000000

0.799745 0450038 0.000000
0.729065 0.400512 0.000000
0.726155 0.397940 0,000000
0.725404 0.397326 0.000000
0.724841 0.396850 0.000000

0.661301 0.350434 0.000000
0.633247 0.330570 0.000000
0.630980 0.328459 0.000000
0.630410 0.328031 0.0000 00
0.629961 0.327689 0.000000

0.661301
0.633247
0.630980
0.630410
0.629961

0 350434
0 330570
0 328459
0 328031
0 327689

0.0 0000 0
0.000000
0. 000000
0.0 00000
0.000000



Figure 4.19 Three-dimensional view of the solution 0 of Laplace's equation
with the boundary conditions defined in Figure 4.16

It is important to show that the coefficients in the series solution determined

by a using least-square or minimax approach will produce results that are in good

agreement with the exact solution along the sector arc. Note that the solution along

the sector arc is the boundary condition for the series solution formulated for the

isolated sector near the singular po . nt. The most accurate approximate solution

along the are will make the approximate solution closest to the exact solution.

Table 4.23 shows good agreement with the series solution along the sector are the

data in this table is plotted in Figure 4.20.
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Exact
Interpolated - LCM
Least--squares

'1. 	 1inirno

0.6400

0.5760

0.51 20

0.4480

7,j." 0,3840

0C 0.3200

0.2560

0.1 920

0.1 280

0.0640

0.0000
0.0000 0.471 2 0.9425 1.41 36 1.8848 2.3560 2,8272 3.2984 3.7696 4.2408 4.1) 20

Angle. Theta

Table 4.23 Comparison the solution along the sector arc with
a fixed radius r 0.5 and at various angles 0 (from 0 to 1.5 TO

Point
No

Angle 0
in radians

Exact
solution

interpolated
LCM (9x 9)

Least-squares
Approx. (2
odd coca's.)

Minimax
Approx. (2 odd
coeffs )

1 0.000000 0.000000 0.000000 0.000000 0.000000
2 0.471239 0.194669 0.195661 0.194703 0.195363
3 0.942478 0.370282 0.370975 0.370327 0.371238
4 1.413717 0.509649 0.510404 0.509678 0.510346
5 1.884956 0.599128 0.600469 0.599130 0.599359
6 2.356194 0.629961 0.629967 0,629950 0.629967
7 2.827433 0.599128 0.600469 0.599130 0.599359
8 3.298672 0.509649 0.510404 0.509678 0.510346
9 3.769911 0.370282 0.370975 0.370327 0.371238

10 4.241150 0.194669 0.195661 0.194703 0.195363
11 4.712389 0.000000 0.000000 0.000000 0.000000 

I 18

Figure 4.20 Plot of the solution 0 along the sector arc as .tabulated in Table 4.23
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ci = 0 025445

d

Figure 4.21 Grid points nearest to the singularity for each element
with 9 x 9 mesh size

As shown in Figure 4.21. and Table 4.21, the errors in th e neighborhood of

singularity are from 4.96% to 9.25%, and the size of grid points is 0.025445

0.025445. Table 4.24 shows not only the convergence of the series solution in the

neighborhood of singularity, but also a. solution with remarkable accuracy and

negligible errors in a neighborhood that is ten times smaller than the neighborhood

provided by the Legendre Collocation Method using 9 x 9 mesh size. Tables 4.25

and 4.26 show convergence of the derivatives and good agreement with the exact

solution.

It is important to note here that the minimax approach also produces almost

the same rate of convergence and accuracy. Thus, either approach is good for this

type of problem. Tables 4.27, 4.28 and 4.29 show a comparison of results obtained

by the least-squares and minirnax series solution with the exact solution. Very

good agreement is seen. Figure 4.22 shows the contour lines of the solution O.

d



Table 4.24 Poi ltwise convergence of the Least-squ'ires solution 0 at 0.0025 x 0.0025 grid points near s Iuia

° 058452 0 05'3622 0.048856 0 r , 	 _ 0 046199 0.036623 0 023645 0.031217 0 Cr92211
0.058548 0 053682 0-048911 0 044374 0040244 0 036565 0.033684 0.031253 0 0292750.058559 0.053692 0.04801200 0.044382 0.040251 0 036671 0,023690 0 . 031268 0 029280
0.055542 0 053676 0.048906 0 - 044309 0 040240 0.036660 0 033060 0.031146 0 0292710.058480 a 053620 0.048854 0,044323 0 040197 0.036627 0.'028.644 0.031216 0 029.240

0 043622 0 0487176 0,042939 0 007500 3163 0 029350 0.026392 0.024138 0 0224050 053682 0 048331 0.042987 0.037848 0 033721 0.029391 0.025422 0.024155 0 . 072431
0-053892 0.048339 0.042995 0.037855 0 033227 0.029397 0.026426 0 - 024170 0 022435
0.053676 0 046325 0 042983 0 037844 0 032217 0.029380 0 026418 0.024163 00324200 053520 0 048274 0 042937 0.037504 0.033182 0.02957 0 0283:91 0.024137 0 022404

0 048856 0.042939 0.036642 0.030777 0 025324 0 0021195 0.018421 0.015547 0 015211
0 048011 0.042987 0,036883 0 030,512 0.0_.25352 0.021215 0 018442 0.016566 0 015228
0,048920 0 042995 0.036890 0_030818 0.x25357 J 02122 -, 0.018445 0,01056 0 015.23 -,
0.048906 0.042983 0.036879 0.030809 0 010049 0 021217 0.018440 0 016064 0.015226
0.048854 0 042.937 0.036840 0 030776 0,025'3' ' 021104 0 018420 0 016547 L, 015210

0.044324 0 027505 0.030777 0.023209 0,015950 ,-, 	 11804 0 009582 0.008448 0 007701
0 044974 0,037,3,15 0.030812 0.023,235 0015971 0, 011818, 0.0095913 0,008457 u007710
0.044382 0 037855 0.0'30818 0.023239 1..1,015974 0 011620 0.009595 0 005459 u 007712
0.044369 0 037.844 0.030809 0,023232 0. 51,5.:? 0 011616 0.009592 0,005456 0 007709
0.044323 0 037W4 0.030776 0 023208 0 015952 0 011604 0.009582 0.008447 	 n 007701

0.040199 0 033163 0,0n324 0 015952 0 UDC.KM:1 	0 000000	 0.000°00 	 0.000000 	 0 000°00
0 040244 0 033221 0.025352 001.5971 0, 00501,,,0 	 0 000000 	 0 0.)00000 	 0 000000 	 0 000000
0.040251 0. 033227 0.025357 0.015074 0000000 	 0.000000 	 0.000000 	 0.000000 	 0.000000
0.040240 0'032217 0.025349 0.015960 0 000000 	 0.000000 	 0.000000 	 0.000000 	 0 000000
0 040197 0,033102 0.025213 0 015952 0 000000 	 0 000000 	 0-000000 	 0.000000 	 0 000000

_ ..........
0 036623 7 	 56 0,0211'95 0011604 0 000020
003808 ' 	 , 0.021219 0011F16 0.000000
0.035671 0 00.. 0,021223 0 011620 0 000000
0 035660
0 036522

0.02.536
029277

0,021217
0021194

0.011616
0 011604

0 000000
n nwyno

1-..---7
re numbers in the table have the follow/in(	 ,	 f --	 ---, 	 ,_4 SU -11 1C2 MA, ,

- First value - by using two odd-number coefficients0cn,3845
0 033054

0 026392
0 026422

0.018421
0.018442

0.00958,_
0 . 00554

0 000°00
U 00,0,000 Second value - by using three odd-number coeffic lc nts

0 033090
0 032680

0 026420
0.02(1418

0 018445
0 0184 ,10

0 00959,5
0 6,29'Z. 90 .

0 30000°
0 00000o	. 	 tic. -	 -r, 	 US I 	 •	Third val	 -	 I_ ' u sing tour odd-numbe.‘x coefficients	--, 	 .

0,033644 0 026391 0.015430 C. 0309. , 6 , 71000000
Fourth value - b 	 using five odd number coefficients

0 031217 0 024 - ;.'-;_. D 016547 0 0064 ,,_, 0,000000 - 	 -
0 031252, 0 024166 0 016566 0 006457 0 0000100 Fifth value - exact solution
0 031 258 0 024170 0 016569 0.008459 0 03014)0
0 031345: 0 024', ,_,3 0 016564 0 006456 0 00060 ,0
0 031216 0 024137 0 015547 0 008447 U 05035

_ 	 _I
029241 0.022405 0 015211 0 000000

6 029275 0.02247,1 0 01522 0 000 r-lr:r!re:Dr)
0.029250 0.0'22435 0.015231 0.007712
0 029271 0.022428 0 015226 0.007709 0. OC.0000
0.029240 0 022404 0 015210 0 007901 0.00000



i70 	 ,Table 4.25 Point-wise convergence of 	  o f the I east-squa olution 4) at 0.0025 x 0.0025 grid points near singularity

-1 949415
-1 951553
-1 951918
-1 951395
-1.949345

-1 932979
-1.9'35104
-1 935466
-1 92,4943
.1 932910

-1.870468
-1.8725,23
-1.872568
-1 872370
-1.870402

-1 742992
-1 7449,02
-1.745225
-1.744764
-1.742931

-1 547951
-1 548939
-1 549227
-1 548824
-1 547196

.1 310191
-1311611
1 311853

-1.311524
„1 310146

-1.075624
-1 076678
-1.076353
-1 076618
-1 075457

-0 8738,68
-0.874794
-0.874963
-0 874758
-0 673838

-7) 713534
-0 714275
-0 714419
0 714260

-0 713,510

12506,1 -2.145609 -2.1113 4 -1 9739(30 -1 702971 -1 35'2,4 ,30 -1.03.07714 -0 785346 -0 311476

-3 127423 -2.147991 .2.113697 -1.976147 -1 704851 -1 354951 -1.031697 -0,786188 0 612120

-2127810 42 148382 -2.114081 -1 976507 -1 705164 -1 356'701 -1.03'2091 -0 736338 -0 512240

-2 127224 .2147799 -2_113499 -1.975966 -1.704702 -1 5354542 -1.031826 -0.756145 -0 612099

-2 124988 -2 145532 -2.111278 -2673859 -1.70,290 0 -1 353418 -1.030742 -0.785319 -0611455

-2 321827 -2 409233 -2.456111 -2.3566,45 -1.949416 -1 35E3077 -05987198 -0.023,569 -0 4585(60

-2.324423 -2 411925 -2 458559 -2 359281 -1 ,951591 -1 35E3579 -0.399934 -0.624544 -0 45'9445

- 2 -324512 --2 -112367 -2 459302 42 359705 -I 951944 -1 3,5 ,3827 -0 900150 _0, 6248.67 -0 4b9537

-2 324133 -2 411680 -2,458606 -2 359039 .1_951397 -1 356454 -0 899912 -0 674504 -0 459427

-2 3,21742 -2 409145 -2 456021 -2 3506 --2,9 -1 949345 -1 355026

---L

-0.894956, -0.623348 -0 458945

-2 51,9200 -7 702517 -2.925319 -3. og4506 -2 456111 -1 132668 	 -0_578235 -0 358241 .0249977

-2.522036 -2 70.5561 -2.928615 -2,6197994 -2 458876 -1 133934 	 -0 576593 -0 358(331 -0 250144

522466 -2 706043 -2.929137 -3 098.548 -2 48931 ,4 1134138 	 -02'78999 -0.358098 -0 250192

_7 5.21759 -2 705,202 -2.925291 -33097650 -2 45b6CO3, -1 l ,1_blb 	 -0.57F,842 -0.353606 -0 250.131

-21319107 -2 702418 -2.925212 -3 0947393 -2 456021 -1 1 -32626 	 -0 578234 -0.3513229 -0 2 ,195L-'8

-2.679922 -2.949'636 -3 376,3 490 -4 254111 SINGULAR 	 0.000000 	 0.000000 	 0.000000 	 0.900000

-2.542956 -2 952975 --3 380312 -4 256927 PONT 	 0 00C.I000 	 0 000000 	 0.000000 	 0 000000

-7 583431 -2 953497 -3 380911 -4 259650 0 000000 	 0 000000 	 0 000000 	 0 000000

-2.6826 ,14 -2 952631 -3 379919 -4 253431 0 000000 	 0 000000 	 0.000000 	 6, 000000

-2 679523 -7 949526 43 376365 -4 2539133 0 000000 	 0.000000 	 0.000090 	 0.000000

-2 769079 -a 060761 -3.505678 -4 227, 178 -4.91222'3
-2 772230 -3 084241 -3.507558 -4 231977 -4 .91 ;8.9 1
:2772717 -3.054750 -3.508175 -4 232723
_7 771601 -3 083.869 -3.60713 4 -4 73314(3,9 -4917213
,.2 768978 .23 060(3 :7 -2 503445 .4 	 2i.-,,-,10ig -4 912042

-2 780791 -0..-.11-.1,..0 -3 355113 3 711726 .3 89E3836
41 783970 036.'_:. :2-3 -3 353943 -3 715959 -3 9032'52
- 2. 7 134456
-7733614

-3 0.3.1 - 1 .:".7
43 0'36186

-3 359,530
-73 35-5519

-3 710511,2
-3 715454

-.3 90739 ,363
-3. 902796 The numbers in the table have the folloNvino ,,fonificance....._.„	 -	 ,

-2 780087 3332902 - 3 354987 42 71153 .4 -5 895.699 -l'irst value - by using two odd-number coefficients
- -1 7313546 -3 14213a -3 327437 -3 405.948

	

V 	 -	 usino three	 id	 1_ 	 -ft" 	 t ..

	

SeCOnd	 alue	 bv	 5 	nee odd 	 )k...r eo,_	 leien 
.2 739692 -	 „.. 	 .. 	 , -3.145743 _3 331247 - 3 405851
-2 740166 -2 	 9:....!•:. 	 2-6 -3 14628:; -3 331 rf .-.....,., -3 410444 -1-11ird value - by using four odd-number coefficient ,,
-2 739324
-2 73 ,3443 -: 	 9,.1: 1 3751

-3.145328
-3 142020

'

-3, 409405
f 	 - :3 405820

"---'

Fourth value - b'4 usmi2 five odd-number coefficients

-2 66296 	 -2 946000 	 -3 05319: 3 094510 _____ Fifth value - exact solution
-2.666034 -7 94 6U,

- 7 . CC, 9.49007 -3 057239 -.3.098611

.2 	 :7,659
(3,32355

-2 948990
- 2 945a6a 053070

.3_097651
-3 094393



Table 4.26 Point-vvise convergence of `,;, of the Least-squares solution atat 0.0025 x 0.0025 grid points near singularity

1 949415 2 125064 2.321827 2.519200 2 679922 2 769079 2 780791 2 736540 20(1295(1
1 901558 2 127423 2,324423 2 522036 2 682956 2 772230 2.783970 2 739692 2 666034
1 951918 2 127810 2.324842 2522435 2 683431 2772717 2,784456 2 740160 2 666492
1 951396 2.127224 2 324186 2.521759 2582044 2 771891 2 783614 2 739324 2 , '65659
1 949345 2 124988 2_321742 2.519107 2 679823 2 768976

3735.87 3735443

1 932979 2 145609 2.409233 2 702517 	 r2 949636 	 4060761 3 033106 2 930962 .	 506:9 5 --

1 935104 2.147991 2.411928 2.705561 2 952975 	 1 	 3.064241 3.036572 2.934327 2
1 9354 ,3C) 2 148382 2 412362 2 706043 2.953497 	 1 	 3 064780 3.037102 2 93,4836 2 319579
1 934943 2.147790 2.411680 2 705262 2.952031 	 ' 	 3.063859 3.036186 2,933937 2.809704
1 932910 2 145532 2.409145 2.702418 2.949526 	 i 	 3 060647 3.032993 2.930851 2 806748

1 870468 2 111354 2455111 2.925319 33764(0 	 3503576 3355113 3 142138 2 946000
1 872523 2.113697 2 458859 2 928615 338022 7 	 3 507558 3.358945 3.145743 7 949399
1 872868 2 114081 2.459302 2929137 3 380911 	 3508175 3 359530 3.146289 2.949907
1 872370 2 113499 2.458605 2928201 4117.10	 3 507134 3 358519 3.145328 2940990
1870402 2.111278 2 456021 2.925212 3375465 	 3303445 3 354987 3.142020 2 945888

1 742992 1,973960 2 356645 3 094506 4354iii 	 4 2 77176 3.711726 '3 377432 3 053192
1 744902 1.978147 335Q81 3.097994 4 25'.'.:,2 7 	4.7,31	 77 3 715959 3 331247 3 056712
1 745225 1.076507 2 359705 3 098546 . 2596.1 .3 	 4 233723 3 718610 3.331525 a,  057239

1.744764 1.975966 2550030 3 097650 43542.1 	 4.231469 3 715494 3.330810 3 056291

1 742931 1973889 2.356559 3 094393 4.253953 	 4 227019 3.711587 3.327307 3 053076

1 547251 1 702971 1.949416 	 ---' 2 456111 SNGULAR 	 4 912225 	 3 896836 	 3.405948 	 5 094510

1 548939 1.704851 1. 951391 2.458876 PONT 	 4 917801 	 3.903232 	 3 409851 	 3.098:277

1 549227 1 7031,54 .951944 2 45931,5 4 918668 	 3 903965 	 3 410444 	 3 0.C:.,311

1 548824 1.704702 1.951397 2.455606 4 917213 	 3.202795 	 3.409405 	 107T651

1 547196 1 702910 1.949345 2455021 4 912042 	 3 898690 	 3.405820 	 C. 00613.

1 310191 1 353466 1.355077 1 132668 0 000000
1 311611 1 . 354931 1.356579 1.133934 0000000
1 311658 1 355201 1 356827 1134138 0.003000

1.354842 1356454 1 133818 0.000200
1	 1114 ,3 1353418 1 355028 1 137)626 0 000000

The  number in the table have the followinc , swilificance
1 075574
1 076678

1 030778
1 0::1::9 -7

0 898998
0.399984

0 578255
0 51889:3

0 C.,00,000 	
-

I First value - bv usino two odd-number coefficients
1	 0:1:8'f .-'..
1 076 , 116

1 	 0 -.:2:_. ,:•.1
10318157

0900102
0.899912

0.576020
0.575542

0 000003
0000/230

1 3:::;::l4'2

1 	 z_-,

Second value - by USIT1+2, three odd-number coefficients_
1 0764. - 0 898966 0 578234 0 00,0000

Third value - by using, four odd-number coefficients
0 873868
0 874794

0 785346
0 786188

0 62386,9
0 624544

0 355241
0 358631

0.000000
0 000000

_Fourth value - by using five odd-number coefficients
0 8749;33 0 786338 0 624662 0 355698 0 000000 	 -

Fifth value - exact solution
0 874758 0 78-6145 0.624504 0 358606 0 000000
0.873636 0.765319 0.623646 	 . 0.358229 000005(1

0 713534
0714218
0 714419
0 '71476n
0.713510

0611476
0612120
0.612240
0_512099
0611455

0 458960
0.459446
0.459537
0.459427
0.458945

249877
0.250144
0.2.50192
0.25Q131
0.249868

0.0f jy.,uu
0 95..0 090

000221:0
0 000000 NJ

NJ



Table 4.27 Comparison of the solution (ip at 0,0025 x 0.0025 grid points near sing la
First value - Exact solution
Second value - Least - squares series solution with two odd -number coefficients
Third value - Minimax series solution with two odd-number coefficients

0.058480
0.058482
0 058538

0.053620
0.053622
0.053673

0.048854
0.048856
0.048902

0.044323
0.044324
0,044366

0.040197
0.040199
0.040237

0.036622
0.036623
0.036658

0,033644
0.033645
0.033678

	

0.031216 	 0.029240

	

0.031217 	 0.029241

	

0.031247 	 0.029270

0.053620
0.053622
0.053673

0.048274
0.048276
0.048322

0.042937
0.042939
0.042980

0.037804
0.037806
0.037842

0.033182
0.033183
0.033215

0.029357
0.029358
0.029386

0.026391
0.026392
0.026417

	

0.024137 	 0.022404

	

0.024138 	 0 022405

	

0.024161 	 0.022427

0.048854 0.042937 0,036840 0.030776 0.025323 0.021194 0_018420 0,016547 	 k 	 0.015210
0.048856 0.042939 0.036842 0.030777 0.025324 0.021195 0.018421 0.016547 	 1 	 0.015211
0.048902 0.042980 0.036877 0.030807 0,025348 0.021216 0 018439 0.016563 	 0.015225

0.044323 0.037804 0,0307/6 0.023208 0.015952 0.011604 0.009582 0 008447 	 0.007701
0.044324 0.037806 0.030777 0.023209 0.015953 0.011604 0_009582 0.008448 	 I 	 0,007701
0.044366 0.037842 0.030807 0,023231 0.015966 0.011616 0.009591 0.008,456 	 0 007709

---7 0.040197 0.033182 0.025323 0.015952 0.000000 	 0.000000 	 0.000000 	 0.000000 	 0.000000
0.040199 0.033183 0.025324 0 . 015953 0.000000 	 0.000000 	 0.000000 	 0.000000 	 0.000000
0.040237 0.033215 0.025348 0.015968 0 000000 	 0 000000 	 0.000000 	 0,000000 	 0.000000

0.036622 0.029357 0.0211 0_011604 0,000000
0.036623 0.029358 0.021195 0.011604 0.000000
0,036658 0.029386 0.021216 0,011616 0.000000

0 033644 0.020391 0.015420 0 . 009582 0000000
0.033645 0.026392 0,018421 0,009582 0.000000
0.033678 0,026417 0.018439 0.009591 0.000000

0.031216 0.024137 0.016547 0.008447 0.000000
0.031217 0,024138 0.016547 0.008448 0.000000
0.031247 0.024161 0_016563 0.008456 0.000000

0.029240 0,02 404 0.015210 0.007701 0.000000
0.029241 0.022405 0.015211 0.007701 0.000000
0_029270 0.022427 0.015225 0.007709 0.000000



Table 4.28 Comparison of 4 at 0.0025 x ft0025 grid points near singularity:

First value - Exact solution
Second value - Least-squares series solution with two odd-number coefficients
Third value - Minimax series solution with two odd-number coefficients

-1.949345
-1.949415
-1.951231

-1_932910
-1.932979
-1.934780

-1.870402
-1,870463
-1.872210

-1.742931
-1.742992
-1.744612

-1.547196
-1.547251
-1.548683

-1.310146
-1.310191
-1.311397

-I 075467
-1.075524
-1.076505

-0.673838
-0,873868
-0.874657

13510
-0.713534
-0 714169

-2.124988
-2.125064
-2.127061

-2.145532
-2.145609
-2.147625

-2.111278
-2.111354
-2.113337

-1.973889
-1.973960
-1 975812

I 	 -1 702910
-1.702971
-1.704564

-1.353418
-1.353466
-1 354725

-1.0,30742
-1.030778
-1.031728

-0 785319
-0.735346
-0 786062

-0.611455
-0.611476
-0.612025

-2.321742 -2.409145 -2_456021 -2.356559 -1 949345 -1.355028 -0,898966 -0.623845 -0.458945
-2.321827 -2,409233 -2.456111 -2.356645 -1 949416 -1.355077 -0.598995 -0 623869 -0.458960
-2.324023 -2_411512 -2.458435 -2.358874 -1.951256 -1.356349 -0.899834 -0.624442 -0,459376

-2.519107 -2,702418 -2.925212 -3,094393 i 	 -2456021 -1 132626 -0.578234 -0 358229 -0.249868
-2.519200 -2,702517 -2.925319 -3.094506 I 	 -2.456111 -1.132668 -0.578255 -0.358241 -0.249877
-2 521596 -2.705089 -2.928104 -3.097453 1 	 -2,455447 -1.133739 -0.578796 -0_353572 -0.250104

-2 679873 -2.949526 -3,376365 -4 253953 SINGULAR 	 0.000000 	 0.000000 	 0.000000 	 0.000000
-2.679922 -2.949636 -3.376490 -4.254111 POINT 	 0.000000 	 0.000000 	 0.000000 	 0.000000
-2,682484 -2.95245'3 -3.379718 -4.258177 0.000000 	 0.000000 	 0.000000 	 0.000000

-2.768976 -3.060647 -3.503445 -4.227019 -4.912042
-2.769079 -3.060761 -3.503576 -4 227176 ! 	 -4.912225
.2.771738 -3.063698 -3.506937 -4.231229 -4.916932

-2 780657 -3.039992 -3.354957 -3 711587 i -3.898690
-2.780791 -3.033106 -3.355113 -3 711726 1 	 -3,895836
-2,783472 -3,036029 -3.358343 -3 715297 1 -3 902586I ' 	 -1

I
-3.40582002 736443 ' -7.930851 -3.142020 -3.327307 I

-2 736546 -2.930962 -3,142138 -3.327432 -3.405948
-7.739197 -2.933799 -3.145177 -3.330648 -3.409239

-2.662855 -2.806748 -2 945888 -3.053076 -3.094393
-2.662956 -2.8, 06855 -2 946000 -3:053192 -3.094510
-2.665549 -2.809585 -2 948863 -3_056157 -3.097515



Table 4.29 Comparison of	 at 0.0025 x 0,0025 -id points	 singularity:
First value - Exact solution
Second value - Least-squares series solution with two odd-number coefficients
Third value - Minimax series solution with two odd-number coefficients

1.949345 2.124988 2.321742 2.519107 2.679823 2_768976 2-780687 2.736443 2.662855
1.949415 2.125064 2.321827 2.519200 2.679922 2.769079 2.780791 2,736546 2:662956
1.951231 2.127061 2.324023 2.521596 2.682484 2.771738 2.783472 2.739197 2.665549

1.932910 2.145532 2.409145 2 702418 2.949526 3.060647 3.032993 2.930851 2.806748
1.932979 2.145609 2.409233 2.702517 2,949636 3.060761 3-033106 2,930962 2.806855
1.934780 2.147625 2.411512 2.705089 2.952455 3.063698 3,036029 2.933799 2.809585

1.870402 2.111278 2.456021 2.925212 3.376365 3.503445 3.354987 3 1420'20 2-945658
1 .870468 2.111354 2.456111 2.92531^ 3.376490 3.503576 3.355113 1.142138 2.946000
1. 872210 2	 1337 2.458435 2.928104 3.379718 3.506937 3.358343 3.145'177 2.948863

1.742931 1.973889 2.356559 .094 	 - 4.253953 4.227019 3.71 .587 3.327307 3.053076
1.742992 1.973960 2_356645 3.494506 4.254111 4.227176 3.711726 3 327432 3.053192
1.744612 1.975812 2,358874 3.097453 4.258177 4.231229 3.715297 3330545 3.056157

1.547196 1.702910 1.949345 2.456021 SINGULAR 	 4.912042 	 3.898690 	 3.405820 	 3.094393
1.547251 1.702971 1.949416 2 456111 POINT 	 4.912225 	 3.895836 	 3.405948 	 3.094510
1.548683 1.704564 1.951256 2.458447 4.916932 	 3.902586 	 3 409239 	 3-097515

1,310146 1.353415 1.355028 1 13266 0.000000
1.310191 1.353466 1.355077 1.132668 0 000000
1 311397 1.354725 1.356349 1.133;39 0-000000

1,075487 1.030742 0.598966 0.578234 0.000000
1.075524 1.030778 0.898998 0 578255 0.000000
1 076505 1,031728 0.899834 0.578795 0.000000

0.873838 0.785319 0.623848 0.358229 0.000000
0.873868 0 785346 0.623869 0-358241 0.000000
0.874657 0.786062 0.624442 0.35857'2 0.000000

0 713510 0.611455 0.458945 0 7445'5 0.000000
0 713534 0.611476 0.456960 0.24987 7 0.000000
0.714169 0.612025 0.459376 0.250104 0.000000
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126

Figure 4.22 Contour plot of solution 0 in the neighborhood of singularity



CHAPTER 5

CONCLUDING REMARKS

In this study, a fully automated two-dimensional p-version of the Legendre

Collocation Method is formulated. The trial solution is constructed in terms of the

value of the solution at the collocation points, and these values become known

once the problem has been solved. The solution at any other points can be easily

obtained by means of interpolation. The trial solution satisfies the governing

differential equation and the boundary conditions at the collocation points. This

mixed collocation is a completely general method. The use of Lagrangian

interpolation functions in constructing the approximate solution and the zeros of a

Legendre polynomial as the interior collocation points makes it possible to fully

automate the computer code so that the accuracy of the solution is achieved solely

by increasing the order of the Legendre polynomial. Hence the number of roots

determines the number of collocation points and the accuracy of the approximate

solution. The choice of the zeros of a Legendre polynomial for collocation points

serves not only to produce more accurate results, but also "ready-to-use" function

values for the widely used Gauss-Legendre integration. The most significant virtue

of the Legendre Collocation Method is its ease in application via the digital

computer. The matrix elements of the defining equation yield directly the solution

and. its derivatives. There is no numerical integration as in the Galerkin method.

In the h-version of the orthogonal collocation method on finite elements,

the accuracy is achieved by refining the mesh while using lower order

polynomials. In the p-version accuracy is increased by increasing the polynomial

degree. Thus, we know that for a given number of unknowns, the /2-version.

127
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technique yields higher accuracy. This was found in our numerical experiments

where both techniques were implemented. Also, due to the repeated change in the

size of elements in order to increase accuracy, from the point of view of

programming, the h-version would require much more human effort to be

implemented than the p-rersion.

For problems containing a boundary singularity, it is not feasible to

compute the derivatives using the solution obtained byJ the Legendre Collocation

Method, The relatively high errors in the solution function in a neighborhood of

the singularity cause much higher errors in the derivatives. This difficulty has been

overcome by a combination of the Legendre Collocation Method and the use of an

eigenfunction solution near the singularity.  With regard to computational effort,

the Legendre Collocation Method requires the solution of a set of N linear

algebraic equations. These equations are almost directly available in the 'Legendre

Collocation Method, whereas most standard methods require integrations.

Therefore the combined method developed in this study not only gives a very

accurate approximation, but also an effective means of handling problems

containing a. boundary singularity. The coefficients of the eigenftmctions solution

in the neighborhood of the singularity are determined by either the least-squares or

minimax approach; we noted the rapid convergence of the solution obtained by

both approximations. In fact, both techniques produce almost the same accuracy.

The minimax approach requires less mathematical derivations, but requires the

solution of a set of simultaneous equations.

As demonstrated in the examples, the present formulations and numerical

procedures are accurate, efficient and dependable for practical problems governed

by partial differential equations and subjected to various boundary conditions.

Engineering accuracy is achieved with relatively little effort, both by hand and by

the computer. This makes it possible to carry out the numerical calculations in this
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study on a personal computer with a conventional memory for storage. For all

calculations in the example problems, a very short computation time on a 386-

33MHz PC was observed. With such successful developments, this method

provides an attractive alternative for the study of many problems governed by

partial differential equations,



APPENDIX A

SOLUTION OF DIRICHLET PROBLEM FOR
LAPLACE'S EQUATION

BY SEPARATION OF VARIABLES

Figure A.1. Boundary conditions for Laplace's equation

Consider the following problem for the domain depicted in Figure A.

2 	 =
	 (A. I)

and subject to the following boundary conditions

0= 0 along 8= 0 	 (AL2)

0= 0 along 0— a 	 (A.3)

Separation of variables can be applied to the differential equation (A.1) by

assuming a trial solution in the form

0= R(r) T (0)	 (A . 4)

Successive differentiation of Equation (AA) gives

RV) T (0)	 (A.5)

'NO T(8)	 (A.6)

13



(A.8)

(A.9)

(A.12)
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and

000 = R(r) 7'"( 0)	 (A.7)

Substituting Equations (A.5), (A.6) and (A.7) into Equation (A.1) yields

or

1	 ,
I?" (r)T (0	 — R'(r) 1 (0 )

. 2 R H (r)(lri) . + r
R(r) 	 R(r)

	 R(r) "(9) = 0r 2

T"(0 ) 

1(0)

where /1 is the separation constant..

Hence, we obtain for T and I? the two differential equations

T"(0)+ /IT(9) = 0

and

r 2 R" ')+r '(r)— AI r)=0

The boundary conditions in Equations (A..2) and (.A.3) imply that

T(9) = 0 along 0— 0

7( 0) = 0 along 0 a

Three cases are possible for the value of l in Equation (A.8):

1. For A < 0, and by taking a trial solution in the form

7' = e,"

we obtain the characteristic equation

k 2 —	 0

or	 .

Hence, the general solution has the form

T( 0)	 0 + e --,07, 0

while the boundary conditions as given in Equations (A.1'0) and (A. 	 are
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T(0) = + ?.2 = 0
e ."	 = 02

Since the value of 	 a in the above equation is real and positive, we have

= 0 ,	 e2 = °-
Therefore Equation (A.8) possesses no nontrivial solution for 2 < O.

2. For 2 = 0, similarly, no .nontrivial solution. exists, since the general solution is

7(8)= cO+ 2

while the boundaty conditions are

7(0) = E!2 = 0

7 1 (a) = c7 1 a= 0

Again, we have = = 0, thus

T(8) 0.

• For 2 > 0, using Equation (A. 12) as a trial solution, one has the following

characteristic equation

k 2 + = 0

or	 k12 = ±11/-1

and the general solution can be written as

rin( 	 = el\l" 	

0

The above sot ution contains imaginary exponents, and therefore can b •

represented in the form

T(8) = cost + sin8 	 (A.

where el and e2 are arbitrary constants.

By inspecting Equation (A.13) and the boundary conditions in Equations

(A.10) and (A.11), it is clear that a nontrivial solution exists for 2 0.
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The eigenvalues with their corresponding eigenfunctions will be determined

later. We will proceed to find the solution for Equation (A.9).

The second differential equation (A.9) can be solved by taking a trial

solution in the form

R(r) = r''

Substituting Equation (A.14) into Equation (A.9), we obtain

p (p — 1) rit p r" —Ar'i = 0

As mentioned above, 2 0 is excluded. Simplifying, we obtain

,u 2 — A = 0

or /1 1,2 	for A, > 0.

Consequently, Equation (A,14) becomes

R(r)= B r" 	 -r-"

(A.14)

(A.15)

where B and C are arbitrary constants. As indicated in Figure A.1, the solution has

to be finite at the origin ., in this case equal to zero when r O. This is possible

only for O. Thus, Equation (A.15) becomes

	R(r) B	 2, > 0

Now, the general solution to a Dirichlet problem for aaplace's equation for

the domain shown in Figure A.1 is given by

	r , 0 ) =	 (c i cosArif 0+ c, sin V20 	 (A. 16)

and it is still required for 0(r 9) to satisfy the boundary conditions (A„..) and

(A.3) such that

0(. 1 , 0 ) = = 0
0(r, a) = c2 r sin A,a = 0

If 0(r, 0) does not vanish identically, then c7 # 0 so that

sin J, a = 0

and consequently,
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= 	
71" ,

or 11 =
a

Therefore a nontrivial solution is possible only for the values

These eigenvalues A„ con-es -pond to the eigenfunctions

n 7r
Sal-- 0

a

Hence for those eigenvalues	 there exist only the nontrivial solutions

17 TC
(0(r .

,	 =	 r -	 61 for r =
a

The sum of these solutions,

0( 1 ', 0 )= Cn • Usrrl
7
	 71- 9
a

(A.I7)
Pi =

satisfies Equation (A.1) and the boundary conditions (A. ) and (A.3). It follows,

a> Tr, that the derivative of 0 may become infinite in magnitude as r 	 0, and it

is not suprising, when such singularities arise, that it is difficult to compute 0

accurately in this region.

The solution in Equation (A.17) can also be written as

0 , 0) = „(

17r
sin

1

a
(A 18)

The solution in this form is suitable for solving Poisson's equation. The right side

of the differential equation is expanded in terms of the same eigenfi.inctions, and

by substituting. 0(r, 0) in Equation (A.18) into Poisson's equation, one obtains a

non-homogeneous differential equation for function of only. The solution R„(r)

is then comprised of complementar=y and particular solutions. The particular

solution obtained in this way not only satisfies the differential equation, bu.t also
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the boundary conditions along two straight lines forming the angular sector. The

discussion of this method can be found in Chapter 3.



APPENDIX B

SOLUTION OF MIXED-BOUNDARY CONDITIONS
FOR LAP: LACE'S EQUATION

BY SEPARATION OF VARIABLES

Figure B.1 -Mixed-boundaiy conditions for Laplace's equation

The governing equation for the circular sector shown in Figure B. 1 in polar

coordinates is

(B 1)

The boundary conditions along both straight lines forming the sector are given by

along 8 0	 (B.2)

= 0 along 0= a 	 (B.3)

Note that the boundary condition along the arc will not be considered in this

formulation.
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Similar to the development in Appendix A, the use of the separation of

variables method assumes a trial solution in the form

= R(r) T( 9) 	 (BA)

Substitution of Equation (B.6) into Equation (.B. ) gives two differential equations

in R and

T "(0) + AT(0) = 0 	 (B.5)

and

r 2 1?"(r) + r (r) 2R(r) = 0	 (B.6)

where A is the separation constant. For the same reasons described in Appendix

A., 2, 5_ 0 is excluded since it produces no nontrivial solution. Thus, the solution to

Laplace's equation (B.1) is found to be

0(r , 0) 	 (cicosj 	 c, sin Ari 0), 	 2 > 0
	

(B.7)

and

c j sin 	 0+ c2 	)	 (13.8)

Along 0= 0, the noimal derivative

and this makes c2 .= 0. The boundary condition in Equation (B.3' gives

cos a = 0

and consequently,

(2n  1) 7r
a 2

for n = 1, 2 ,	 , Cl)

Hence, we have the eigenfanctions and eigenvalues

r n —1) 7r. 6) )
a 2

CH cos

and as a result, Equation (B.7) can be written as
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0(). ,0)= 11

	- 	 -
2 " COS ( 	 0") a (B 9)

P1=I

It satisfies Laplace's equation (B.1) and the boundary conditions (B.2) and (B.3).

in the case of non-homogeneous boundary conditions, for example

,---=	 alonL, 	0
(70

(B 10)

0= B along 0 a	 (B.11)

where A and B are arbitrary constants. We proceed as follows It is clear that

Equation (B 9) is obtained for 2 > 0 and satisfies the homogeneous boundary

conditions given in Equations (B.2) and (B.3) In order to satisfy the boundary

conditions, it is necessary to find another solution that can he combined with

Equation (B.9) to form the general solution satisfying the Laplace differential

equation and the non-homogeneous boundary conditions. As shown in Appendix

A., when /1= 0, the general solution of the Equation (B.5) is

T( 0) = 0+ 	 (B.12)

and its derivative with respect to 0 is defined by

r( 0) = .

The boundary conditions stated in Equations (B.10) and (B 1 1) give

T'(0 ) = = A

and

T( = A a+ i":.2 B

or (72 = B— A a.

Hence, the solution in Equation (B. 12) becomes

I'( 0) = B + A(0— a)
	

(B.13)
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Note that the boundary conditions in Equations (B.10) and (.B.11) are independent

of r; therefore it is not necessary to find the solution in Equation (13.6) which is

only function of r.

Linearly combining Equations (.B.9) and (B.13) gives the solution in the

form

CC

00.,0)= B+ AO— a)- et?

2 it- n	 (2 11 —
cos (B.14)

which satisfies the differential equation (B.1) and the boundary conditions (B.10)

and (B.11). Note that the first two functions satisfy the non-homogeneous

boundary conditions, while the third satisfies the homogeneous boundary

conditions.

Examining Equation (B.14) reveals that, if a> 	 the derivative of 0 with

respect to r tends to (JD- as r 	  0. Thus, the problem contains a singularity, and

special attention has to be given for this type of problems.
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APPENDIX C

WEIGHTS OF GAUSS-LEGENDRE QUADRATURE

It is well-known that the integration of 	 in the interval —.I 5_ '`"5_; +1 can be
approximated by

(Cl )

where	 are the zeros of Legendre polynomial PAT () and li e -is the weight

associated with

The function f() can be defined by

IC

where

is a Lagrangian interpolation polynomial with PA,,-(c) a Legendre polynomial of

Nth-degree. Equation (C. 1) can now be written as

From above, the weight ii , can be defined as

(C. 2)

=	 ( Lf ) 614-:
PA/ (4- ) 	 61( .;

	 (C.3)
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Since P.,(&) is a constant, it can be taken outside the integral ., then Equation

(C.3) becomes

141

In order to calculate Equation (C.4) the recursion formula [251

will be multiplied by f'(//) such that [9]

(2/ -1-1),P,(4)/),(//)=(/+1)/ 1(4) 1-',(r1) — i	 )1)(17)
	

(C.5)

Interchanging with /7 in Equation (C.5), one obtains

(21+1) iii ),(/7) 1;(4)=(i+ 1 )P,+1(77) -1 / ),---1( ti)•/:( ,;)

and next, subtracting Equation (C.6) from Equation (C.5) yields

(2 +:1)( lim.,)/),)/ ),(//)=0 +01 	 1()/),( TOL - P, 7) 1

Performing summation from i 1 to N for Equation (C.7):

(C.6)

) -
	 , (//)1),()J

(C 7)

( 7)- j1(2i 	 Pi ( <_;) .1); ( 1i ) =
	

1)1 	 ,(1/ ) P,(.4t:
	 ,	 1 ), (1))1---11 P,oni ) , 	 ,( //)/),(,;.; ) li

(C.8)

It is easily seen that the right-hand side of Equation (C.8) is simply:

(N + 1 )[P,v+I(//),;() --- Pv( 11. ) PA; 	 Pi(17) - Po( 11) 1 1(

due to cancellation of

+ 1 )[ PH-1( /1),

by

i[P,--1(4')1,(/1)— P 	 (0] 	 for j =

Noting that Po 	= Po ( 0=1, 11(4) 	 and /I( /7) = /7, then Equation (C 8)

becomes
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(17— )	 2i + 1)	 (N -1-1)[PAT+1 (77)1"\,() — P,(17) J +1 (4=) —(17—

Moving the term (	 ,-;) from right-hand to left-hand side, and seting = 0 as the

starting integer for summation, one obtains

(2i +1)/),()P,( i) = (N +	 +1( i7)	 () —	 (1 -I)' Ny_fl (C)]	 (C.9)
i=0

Let L'f, be a zero of Pv ( ). Replacing t7 with	 in Equation (C.9), and

noting that Pr(4 -', ) = 0, one has 

+1)P),P 	 (N+ 1 ),PN+1(

Or

I.-- 0 

142

( 1 +1)Pv+, j, I \ (,.)

)
2r + 1) P,( 	 (C.10)

j=0 

Now, integrate Equation (C.10) from -I to -i-- I,

(A/- + 1)/),,,,,,,(‘„)  	 (1 '2i + 1) P, 	 )4	 (C.41)

P, ( ) are constants that can be taken outside the integral. Due to the following

orthogonality condition

1)+1

Po () P, (14' , 0	 for i # 0

the right-hand side of Equation (C.11) is

+1

-t	
+1) f 	 cq= 1[1)0 (4-- )P0,()+ 11(4')I(4,)+...+1): \,(4 )1	 th)\,(4,)};

a=0 	 —1

=7
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Equation (C.11) can now be written as

	6k, = 	
( 	 (IV +

Substitute = j, into the following recursion formula,

(N +1)1"\T +1 ()= (2 A1 +1) j, 1),v (c„ .. 1 )—

(C.12)

(C.13 )

and again the final result of Equation (C.1 ) is substituted into Equation (C.12).

Then

..14 	 j 147 =.'
I ( '' - . "1 ) 	 - 	

)/ f)
1 p	 ,,5 \ 	 2	

(C.14)

 recursion formula for the derivative of a Legendre polynomial can be

defined as [251

(1—	 ( ) + Nc..f1„ ( ) = AirP,v _ 1 ( )

Letting	 a zero of f(), the above equation becomes

	

(1 — 	 ) Pk ( 	 =

Using the above result, again Equation (C.14) becomes

(C.15)

and finally , the weights of Gauss-Legendre quadrature formerly expressed in

Equation (C.4) can be computed by

2= 	
2

(C 16)

Note that again, Equation (C.16) is simple and very suitable for automated

computing. I  (4"., ) is defined by
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c/
ci x

for (C.17)
1=1  



APPENDIX D

THE POSITION OF THE COLLOCATION POINTS

The position of the odd number of the collocation points used in this study is listed
iii.. the table below. Note that the interior points are the zeros of - 2)U degree
Legendre polynomial.

Number of
Points N

Interval
-1...+1

Interval
0 ._ 4=__ +1

5 points

-1.000000 0.000000
-0.774597 0.112702
0.000000 0.500000
0.774597 0.887298
1.000000 1.000000

7 points

-1.000000 0.000000
-0.906180 0.046910
-0.538469 0.230765
0.000000 0.500000
0.538469 0.769235
0.906180 0.953090
1.000000 1.000000

9 points

-1.000000 0.000000
-0.949180 0.025446
-0.741531 0.129234
-0.405845 0.297077
0.000000 0.500000
0.405845 0.702923
0.741531 0.870766
0.949108 0.974554
1.000000 1.000000

11 points

-1.000000 0.000000
-0.968160 0.015919
-0.836031 0.081984
-0.613371 0.193314
-0.324253 0.337873
0.000000 0.500000
0.324253 0.662127
0.613371 0.806686
0.836031 0.918016
0.968160 0.984080
1.000000 1.000000
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