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ABSTRACT

Simulation Study for the Effect of Dependencies
in Queueing System

by
Yitao Bai

Few theoretical results have been obtained in the literature for the effects

of dependencies between random variables on the performance of queueing

systems. This thesis aims at investigating this issue via simulation. Several

dependencies are studied in detail, including dependencies between interarrival

times, between interarrival time and service time, between service times and

dependencies between different stages in networks of queues. We define several

classes of dependent random variables and study their correlation coefficients,

then we apply them to single and multiple station service systems. Comparisons

with the independent case, for which the explicit form solution are available, are

made and characterized by figures. The main contribution of this thesis is that it

disproves the monotonicity properties of effect of dependencies on system

performance in both single and multiple service stations queueing systems.

These results may be helpful in evaluating the performance of both

telecommunication and manufacturing systems.
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CHAPTER 1

INTRODUCTION AND PRELIMINARIES

This thesis is motivated by the need to provide a guideline for the theoretical

work on dependency effect. Normally, when dealing with queueing models, we

assume that interarrival process and service process are independent. Study on

the effect of dependency seems to be so difficult that little work has been done in

this area. In this case, computer simulation on these models seems to be the first

step. The simulation results are relatively accurater. Thus they helps pointing

out the direction of research in this subject.

Here we use computer to generate random numbers By using inverse

transform method, we can generate variables of various kinds of distribution. In

this way, arrival and service process can be simulated under any dependency

condition.

This thesis presents the simulation results of different dependency condi-

tions on single node, single server queues and 2-server tandem queues.

1.1 SIMULATION LANGUAGES

Since most realistic simulations must be done by computer because of the

number of calculations required, the analyst should choose a computer

programming language of communicating the essence of the model to the

computer. Common computer languages such as FORTRAN, C, COBOL,

BASIC or Assembler can be used to write simulation model. This is sometimes

done when the simulation model is not complicated, only a small computer

system available, or the analyst is thoroughly conversant with the language.

Nevertheless, a analyst who wants to minimize the portion of model construction
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which have been expressly design for simulation. These languages imbed in the

compiler contain function necessary for every simulation: establishing and

updating a time clock, generating random occurrences and initializing,

incrementing and printing system statistics such as utilization of service facilities

and waiting time. Dozens of simulation languages currently exist: GPSS

(General-purpose System Simulation), SIMAN and SIMSCRIPT for discrete

event simulation, CSMP (Continuous Simulation Modeling Package) and

DYNAMO continuous simulation, and GASP and SLAM for hybrid simulation.

Simulation analysts are increasingly attempting to interface formal statistical

routines with simulation models. The structure of GPSS, SIMAN and

SIMSCRIPT permit the user to call a FORTRAN, C or Assembler subprogram

for its purpose, although in practice, discovering the correct way in which to

implement this feature through the operating system of a particular computer can

be tedious.

The simulation models constructed in this paper are relatively simple after

analytical effort has been made. Simulation languages used in dependency effect

analysis must be flexible so that different structure of dependency can be

simulated without much difficulty. In this case, common language such as

FORTRAN, C, COBOL can be used for simulation purpose. Also, because C is

a update common language and has more effective functions, the simulation

programs used for analyzing dependency effect are written by C language.

1.2 THE INVERSE TRANSFORMATION METHOD

Simulating &Gil queueing model requires the simulation model can simulate

virtually any kind of distribution for either customer interarrival time or service

time . A general method - called the Inverse Transformation Method - is used
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throughout this paper to simulate random variables with a continuous

distribution. This method is based on the following proposition:

Proposition 1.1	 Let U be a uniform (0,1) random variable. For any

continuous distribution function F if we define the random variable X by

X = (U)

then the random variable X has distribution function F. (F -1 (u) is defined to

equal that value x for which F(x) = u)

Hence we can simulate a random variable X from the continuous distribut-

ion F, when F is computable, by simulating a random number U and then setting

X = F-1 (U).

For example, simulate an exponential random variable :

F(x) = 1 - e -Px,

then F (u) is that value of x such that

_ e-px = u,

or

x = -log(1 - u) I p.

Hence if u is a uniform (0,1) variable , then

F-1 (U) = -log(1 -	 p

is exponentially distributed with mean p.

1.3 RANDOM NUMBER GENERATOR

When the analyst speaks of a "random" process, then, the process as a whole

that may be categorized and relative frequencies of those attributes occurring

may be tabulated. The purpose of random number generation in a simulation

model is to convey to the model the nature of statistical distribution to be

modeled and to create the impression that the value of the next draw from the

distribution cannot be guessed.
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Several attributes of random number generators are considered desirable:

1. Efficiency -that is, the generator produces random numbers at relatively little

cost for computer time and computer workspace.

2. Uniformity - that is, approximately equal percentage of the data will be

distributed in each equal length area.

3. Conformity to the desired type of statistical distribution, with mean, variance

and range as stipulated.

4. Independence - that is, the inability to predict the value of the (N+ 1)th

random number based on the value of the Nth random number except by

examining the computer code.

5. Absence of trends - that is, generation of ascending or descending strings of

values which are neither excessively long nor excessively short.

6. Long cycle length -that is, a relatively large number of numbers which can be

generated before the algorithm produces a sequence identical to the previous

sequence.

The Computer-based method of generating random numbers requires the

initial definition of one or more constants called seeds which affect the

magnitude of the random numbers produced. These seeds actually create pseudo

random numbers instead of truly random ones. Most random number generators

start with an initial value X , which is seed, and then recursively compute values

by specifying positive integers a, c, and m, and then letting

Xn+ 1 = (axn +c) modulo m, n> =0,

where the above means that axn + c is divided by m and the remainer is taken as

the value of xn+ 1 . Thus each xn is either 0,1,...,m-1 and the quantity xn/m is

taken as an approximation to a uniform (0,1) random variable. It can be shown

the subject to suitable choice for a, c, m, the above gives rise to a sequence of
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number that looks as if it was generated from independent uniform (0,1) random

variable.

Before using the random number generator of the available computer

system, SUN-UNIX, to provide (0,1) uniform distribution random variables for

simulating a random variable of desirable continuous distribution, we have to

confirm it has approximately the same cumulative distribution function for a

(0,1) uniform distibution. This is done by using the random number generator to

create a large number of random data that fall in each divided area between 0

and 1.

Table 1.1 show the result after generate 5,000 (0,1) uniform distributed

random data.

Table 1.1 Frequency of Random Data in Each Area

Random Data	 Number of Data fall	 Percentage
Value	 in this range	 %

0.0 - 0.1	 492	 0.0984
0.1 - 0.2	 503	 0.1006
0.2 - 0.3	 507	 0.1014
0.3 - 0.4	 499	 0.0998
0.4 - 0.5	 497	 0.0994
0.5 - 0.6	 500	 0.1000
0.6 - 0.7	 510	 0.1020
0.7 - 0.8	 495	 0.0990
0.8 - 0.9	 503	 0.1006
0.9 - 1.0	 494	 0.0998

From table 1.1, we can see that the numbers of the random data fall in each

area are almost identically distributed. That approximately follows the (0,1)

uniform distribution function.



CHAPTER 2

EFFECTS OF DEPENDENCIES BETWEEN
INTERARRIVAL TIME AND SERVICE TIME ON

SINGLE NODE QUEUEING SYSTEMS

The queueing model analyzed in this chapter is GIG/ 1 single node queueing

systems.

Normally, the basic assumption for this system are:

1. Customers individually and immediately enter the queueing system.

2. The interarrival times are independently and identically distributed.

3. There is only one server in the system.

4. The server completely serves on customer at a time without interruption.

5. Service time are independently and identically distributed.

6. A customer always remains in the queueing system until its waiting time in

the queue (if any) and service are completed, at which time it immediately

leaves and its server immediately begins serve another customer (if any had

been waiting in the queue).

7. The queue discipline is first-come-first-served.

There are cases in which service time and customer interarrival time are not

independent. There may be some kind of correlation between customer

interarrival time and service time, between interarrival times, or between service

times. Few results have been reached in this subject, because it is very difficult

to get theoretical result in general situation. In this case, simulation of this

system can provide a guideline for the theoretical research.

In this chapter, we provide simulation result for effects of dependencies

between interarrival time and service time on performance of single queueing

systems. In the first section we analyze the case in which interarrival and service
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considers the model in which interarrival time and service time are negatively

correlated (r < =0) .

2.1 EFFECT OF POSITIVE CORRELATION ON SYSTEM
PERFORMANCE

2.1.1 Effect of Positive Correlation Generated by Variables
with Bivariate Distribution

First we consider a bivariate exponential distribution for the correlated

interarrival and service time. Suppose three independent exponential

distributions are:

P[U t} = 	 it;

P[U2 > = e -P2t ;

PrU12>t] = e -P 12'

The customer interarrival time is expressed as

T = min(Ui , U12),

while service time satisfies:

S = min(U2 , U12).

Hence the exponential marginal distribution function is given by:

Fi(ti) = P[T > t 1 ] = e-(Pi +Pi2)ti;

F2(t2) = P[S > t2J = e-0)2 +Pi2)t2.

The correlation coefficient between the interanival time and service time then

can be expressed as:

r /9 124/3 1 -FP2+Pi2) • 	 (2.1)

We are now considering the following queueing model: customer interarrival

time follows exponential distribution with parameter u i =Pi +p 12 , while the

service time follows exponential distribution with parameter u 2 p2+p12.
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Further more, we fix u1 and u2 so that the marginal distribution of the

customer interarrival time and service time will not change no matter how

correlation coefficient varies.

If p 12 increases by c Cie P12: = p 12 +c), then p i ' = Pi -c and p2 ' 	 p2-c.

Here -p 12 < = c, because normally service rate exceeds interarrival rate; and c

< = p i , because the exponential distribution parameter cannot be negative.

So the correlation coefficient becomes:

= (p12+ c) 1 (Pi +P2+P12-c). 	 (2.2)

= 0 when c -P12 ; r t max = (Pi +p12) / (P2 +P12), when c = p i .

By changing c from -p 12 to p i , we obtain correction coefficients from 0 to

+P12)/(P2+P12)-
Intuitively, a bivariate exponential distribution relationship between

interarrival and service time improves system performance by decreasing the

average waiting time, because positive correlation coefficient means that the

interarrival time decreases as service time decreases and increases when service

time increases.

Fig. 2.1 is the simulation of the model described above, with p i =4,

p2 =6,p3 =7, and simulation running time for each r is 400. Horizontal axis

represents correlation coefficient while vertical axis represents the average

waiting time in the queue for each customer. The figure shows that average

waiting time in the queue has a trend of decreasing, but not monotonously

decreasing with the increment of correlation coefficient.

2.1.2 Effect of Positive Correlation Generated by Variables
with Uniform Distribution

in this chapter, we try to construct another queueing model which has positive

correlation between customer interarrival time and service time.
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Figure 2.1 Positive Correlation between Interarrival and Service
Generated by Variables with Bivariate Distribution

Let {X,} follows (0,3) uniform distribution;

{4} follows (0,2) uniform distribution;

{.4} follows (0,1) uniform distribution.

"a" is a factor which ranges from 0 to 1.

For ith customer, the interarrival time is defined as

Ti 	+ (I - a)Yi,

and service time is defined as

Si = 	 (1 - a)Yi .

The correlation coefficient for this model is calculated as:

r = a(l -a) [(13a2-8a+4)(5a2-2a+ 1)r-5 . (2.3)
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For the purpose of comparison, we also establish a similar queueing model

which has no correlation between customer interarrival time and service time.

Let {X,'} follows (0,3) uniform distribution;

{11,2 '} follows (0,2) uniform distribution;

{W,'} follows (0,2) uniform distribution;

{4 1 } follows (0,1) uniform distribution.

The ith customer interarrival time is defined as:

= X + (1 -a)Y ,

while service time for ith customer is defined as

Si ' = Zi ' + (1 -a)Wi '

Fig. 2.2 is the simulation result of the models described above with

simulation running time 1500. The solid line represents the correlation model,

while the dash curve represents the respective comparison model. It shows that:

when the correlation coefficient ranges from 0 to 0.3, the average waiting time

doesn't have any trend over comparison model; when it ranges from 0.3 to 0.5,

the decreasing trend is obvious, the solid curve is always below the dash curve.

The conclusion is that in positive correlated model generated by uniform

distribution variables, the average waiting time in the queue does not have a

decreasing trend until the correlation coefficient between customer interarrival

time and service time reaches certain value.

2.2 EFFECT OF NEGATIVE CORRELATION ON SYSTEM
PERFORMANCE

Negative correlation represents opposite trends of two variable. Increasing trend

of one variable results the decreasing trend of the other and verse-vise. Most of

researches on dependency deal with positive correlation. In this section, we are

trying to establish a negative correlation between customer interarrival time and
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Figure 2.2 Positive Correlation between Interarrival and Service
Generated by Variables with Uniform Distribution

service time to see how this kind of correlation affects the system performance

measures.

One of the negative correlated model constructed as following:

Let {X} follows (0,3) uniform distribution;

{4} follows (0,1) uniform distribution;

{Z„} follows (0,2) uniform distribution.

The ith customer interarrival time is defined as:

Ti 	+	 - (1-a)Yi 1.



The ith customer service time is defined as:

Si = 	 + Yi+i (1-a) -Yi+2 .

The (i+l)th customer interarrival time is defined as

Xi+1 + aYi+3 (1-a)17i+4 •

The (1+1)th customer service time is defined as

Si+1 = Zi+1 + aYi+4 -

Correlation coefficient between T and S is calculated as:

r = -all -a) / (4a2 +22a+24)".

12

(2.4)

The customer interarrival and service distribution and correlation between

interarrival and service time changes coresponding to the variance of a. In this

case, a comparison model is necessary. The comparison model should be

similar to the dependency model but has independent customer interarrival time

distribution and service time distribution.

Let	 follows (0,3) uniform distribution;

{Y.a '} follows (0,1) uniform distribution;

{Kt} follows (0,1) uniform distribution;

{Z,7 '} follows (0,2) uniform distribution.

The ith customer interarrival time is defined as:

T1 ' = 	 + aYi' ( 1-a)Yi+1 1 •

The ith customer service time is defined as:

Si ' —	 -F a Wi -

The (i+ l)th customer interarrival time is defined as :

Ti+i l	 + aYi4. 2 1 (1-a)Yi+3 '.

The (1+ i)th customer service time is defined as:

Si+i l = 4+1 ' + aWi+2 ' - (1-a)Wi+3 1 .
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Figure 2.3 Effect of Negative Correlation between Interarrival and service

Fig. 2.3 is the simulation result of the models described above with

simulation running time 1500. The dash curve represents the comparison model

with respective while the solid line represents the correlation model.From the

figure, we can not see any trend of how negative correlation coefficient between

the interarrival time and service time will affect the system. The conclusion is

that generally, negative coefficient between interarrival time and service time

does not have any trend of its effect on system performance.



CHAPTER 3

EFFECTS OF DEPENDENCIES BETWEEN ADJACENT
INTERARRIVALS ON SINGLE NODE QUEUEING

SYSTEMS

In this chapter, we develop simulation results for effects of dependencies

between adjacent customer interarrivals on performance of single node queueing

systems. The correlation model used in this chapter is somewhat similar to that

of Chapter 2. In the first section we analyze cases in which customer

interarrivals are positively correlated (ie. correlation coefficient r> =0); section

2 consider the model in which interarrivals are negatively correlated (r < =0). In

each case, the simulation result is displayed on a figure on which the result can

be directly analyzed.

3.1 EFFECTS OF POSITIVE CORRELATION BETWEEN
ADJACENT INTERARRIVALS

3.1.1 Effects of Positive Correlation Generated by Variables
with Bivariate Distribution

A bivariate exponential distribution for the adjacent customer interarrival time is

constructed as dependent model.

Let {X„} follows exponential distribution with parameter p i ;

{Y„} follows exponential distribution with parameter p 2 .

The distribution function of each variable are shown as:

P[X>t] =e i t;

P[Y > t] = e -P2 t .

The ith customer interarrival time is expressed as:

Tt = min(Xi , Yi , Yi + 1).

The interarrival time then follows exponential distribution with parameter u i =

PI +2P2.

14
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Figure 3.1 Positive Correlation between Adjacent Interarrival
Generated by Variables with Bivariate Distribution

Hence the exponential marginal distribution function is given by:

p[T > r] 	 e"(P1 +2P2)t .

Service time follows exponential distribution with parameter u 2 (u2 >

The correlation coefficient between the adjacent customer interarrival time

can be expressed as

r = P2 I (2.Pi 	 3P2)
	

(3.1)

Here, we fix u 1 , the marginal distribution of the customer interarrival time

will not be changed no matter how correlation coefficient varies.

If P2 decrease by c, the new correlation coefficient is

r' = (p2 	/ (2p 1 + 3P2 + c) 	 (3.2)
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rs = (p2 - c) I (2p i + 3p2 + c) 	 (3.2)

By changing c from -p 1 /2 to p2 , we are able to obtain correction coefficients

from 0 to 1/3.

Intuitively, a bivariate exponential distribution relationship between adjacent

customer interarrivals worses system performance by increasing the average

waiting time in the queue.

Fig. 3.1 is the simulation of the model described above, with p i =2, p2 =4,

u2 = 12, and simulation running time for each r is 400. The figure shows thatthe

average waiting time tends to increase, but not monotonously increases when the

correlation coefficient increases.

3.1.2 Effect of Positive Correlation Generated by Variables
with Uniform Distribution

In this section, we try to construct another queueing model which has positive

correlation between customer interarrival time and service time.

Let {Xn} follows (0,2) uniform distribution;
ft " is a factor which ranges from 0 to 1.

For ith customer, the interarrival time is defined as

= Xi + (1-a) Xj+i,

and service time follows (0,1) uniform distribution.

The correlation coefficient can be calculated as

r = a(1 -a) I (2a2 -2a +1). 	 (3.3)

Let y = a(1 -a),

then

r = y I (1-2y).

Because y ranges from 0 to 0.25,

r 	 = 0.5, 	 when a = 0.5;
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	r min 0,	 when a = 0 or 1.

That means the maximum correlation happens when new variable takes both

factors equally and the minimum correlation coefficient happens when new

variable exclusively depends on one factor.

For comparison, we also establish a similar queueing model which has no

correlation between adjacent customer interarrivals.

Let {X",„'} follows (0,2) uniform distribution.

The ith customer interarrival time is defined as

	T i ' =	 + (1 -a)Xi+1  ,

while i+ lst customer interarrival time is defined as

Ti+ 1 1 	Xj+2I	 (1-a)Xi+3 .

Service time follows (0,1) uniform distribution.

Fig. 3.2 is the simulation result of the models described above with

simulation running time 1500. It shows that: when the correlation coefficient

ranges from 0 to 0.35, the average waiting time doesn't have any trend over

comparison model; when it ranges from 0.35 to 0.5, the decreasing trend is

obvious, the solid curve is always above the dash curve. The conclusion is that

in model described above, the average waiting time in the queue will not have a

increasing trend until the correlation coefficient between adjacent customer

interarrival time reaches certain value.

3.2 EFFECT OF NEGATIVE CORRELATION BETWEEN
ADJACENT INTERARRIVALS

In this section, we are trying to establish a negative correlation between adjacent

customer interarrival time to see whether there is any trend of the effect over

system performance when the correlation coefficient between the adjacent

interarrival time increases.
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Figure 3.2 Positive Correlation between Adjacent Interarrival
Generated by Variables with Uniform Distribution

The following model is one of the negative correlation model between

adjacent interarrival:

Let {Xn } follows (0,3) uniform distribution;

{ Yn} follows (0,1) uniform distribution.

The ith customer interarrival time is defined as

--=X + 	 (1-a)17i4.1.

The (i+l)th customer interarrival time is defined as

= X 1 + ari+i - ( 1-12)Yi+2-
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Figure 3.3 Effect of Negative Correlation Between Adjacent Interarrivals

The customer service time follows (0,1) uniform distribution .

The respective correlation coefficient is:

r = a(l-a) I (2a+8).	 (3.3)

The customer interarrival distribution of this model changes correspond to the

variance of a. The comparison model is similar to the dependency model but has

independent interarrival time between adjacent customer.

Let {Xn1 follows (0,3) uniform distribution;

{Y„'} follows (0,1) uniform distribution.

The ith customer interarrival time is defined as:
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71' = Xi ' + aYit + (1-a)Yi+1 1 .

The i+ 1st customer interarrival time is defined as :

Ti+ C = Xi+ C + aYi+2: + (1-a)Yi+3 `.

The customer service time also follows (0,1) uniform distribution.

Fig. 3.3 is the simulation result of the models described above with

simulation running time 1500. Compared with independent model, the negative

correlation between the adjacent interarrival does not have a trend to increase or

decrease the average waiting time in the queue.



CHAPTER 4

EFFECTS OF DEPENDENCIES BETWEEN ADJACENT
SERVICES ON SYSTEM PERFORMANCE

This chapter is divided into two sections: section 1 develops simulation

results for positive correlation; section 2 shows how negative correlation effect

the system performance.

4.1 EFFECT OF POSITIVE CORRELATION BETWEEN
ADJACENT SERVICES

4.1.1 Effect of Positive Correlation Generated by Variables
with Bivariate Distribution

Let {Xn} follows exponential distribution with parameter p 1 ;

{Yn} follows exponential distribution with parameter p 2 .

The ith customer service time is expressed as:

Si = min (Xi, Yi , Yi+1).

The service time then follows exponential distribution with parameter u 1 = p i +

2p2 .

Customer interarrival time follows exponential distribution with parameter

u2.

The correlation coefficient between the adjacent service time can be

expressed as:

r P2 / (2Pi + 3P2).
	 (4.1)

Here, we fix u 1 , then the marginal distribution of the service time will not

be changed no matter how correlation coefficient varies.

If p2 decrease by c, the new correlation coefficient becomes:

r` = (p2 - c) I (2p z + 3/32 + c). 	 (4.2)
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By changing from -p 1 /2 to p2 , we are able to obtain correction coeffi-

cients from 0 to 1/3.

Fig. 4.1 is the simulation of the model described above, with simulation

running time t=400, p i =3, p2 =2, u2 =5. After running simulation 150 times

for different value of correlation coefficient, the result shows that this kind of

positive correlation between adjacent service time has a trend to increase, but not

monotone increase, the average waiting time in the queue,

Adjacent Service Correlation

Figure 4.1 Positive Correlation between Adjacent Services
Generated by Variables with Bivariate Distribution
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4,1.2 Effect of Positive Correlation Generated by Variables
with Uniform Distribution

Let {X,i} follows (0,1) uniform distribution. "a" is a factor which ranges from 0

to 1.

For ith customer, the service time is defined as:

Si = XL + (1-a) Xi+

and the customer interarrival time follows (0,2) uniform distribution.

The correlation coefficient can be expressed as:

r = all -a) I (2a2 -2a +1).	 (4.3)

Let y = a(1-a),

then

r = y I (1-2y).

Because y ranges from 0 to 0.25,

r. = 0.5,	 when a = 0.5;

r • = 0,	 when a = 0 or 1.

The comparison model is a similar queueing model which has no correlat-

ion between adjacent customer services.

Let {Xn '} follows (0,1) uniform distribution.

The ith customer service time is defined as:

Si ' =	 + (1-a)Xi+j:

The 1+1st customer service time is defined as:

Si + Xi+ 2 t (1--a)Xi + 3'

The customer interarrival time follows (0,2) uniform distribution.

Fig. 4.2 is the simulation result of the models described above with

simulation running time 1500. It shows that: mostly, the correlation model has a

trend to increase, not monotone increase, the average waiting time in the queue.

When r ranges from 0.35 to 0.5 the increasing trend is obvious.
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Figure 4.2 Positive Correlation between Adjacent Services
Generated by Variables with Uniform Distribution

4.2 Et ii.ECT OF NEGATIVE CORRELATION BETWEEN
ADJACENT SERVICES

In this section, we are trying to establish a negative correlation between adjacent

service time to see the effect over system performance when the correlation

coefficient between the adjacent customer service time increases.

The following model is one of the negative correlation model between

adjacent interarrivals:

Let {Xn} follows (0,2) uniform distribution;



{Yn} follows (0,1) uniform distribution.

The ith customer service time is defined as

Si = X + aY + (1-a)Yi+1 .

The i+lst customer service time is defined as

+ aYi+1 + (1-a)Yi+2 .

The customer interarrival time follows (0,4) uniform distribution.

The correlation coefficient can be expressed as

r = - a(1-a) / (2a+3).

25

(4.3)

The customer service time distribution of this model changes corresponding to

the variance of a. The comparison model should be similar to the dependency

model but has independent service time between adjacent customer.

Let {X,'} follows (0,2) uniform distribution;

{Y,'} follows (0,1) uniform distribution;

The ith customer interarrival time is defined as

Si ' = Xi ' +	 (1-a)Yi+ t.

The i+ 1st customer interarrival time is defined as

Si+ 1 1 Xi+ 1 I -r aYi+2 ' - (1-a)Yi+3 '.

Customer interarrival time also follows (0,4) uniform distribution.

Figure 4.3 is the simulation result of the models described above with

simulation running time 1500. Compared with independent model, the negative

correlation between the adjacent service time has no trend of increasing or

decreasing the average waiting time in the queue.
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CHAPTER 5

EFFECTS OF DEPENDENCIES ON TANDEM QUEUES

Consider a two server system in which customers arrive at a Poisson rate at

server I. After being served by server 1 they then join the queue in front of

server 2. Here, we suppose there is infinite waiting space at both servers. Each

server serves on customer at a time with server i taking an exponential time with

rate ui for a service, i =1,2. Such a system is called a tandem queues.

In this chapter, we are trying to find out how dependency affect the system

performance in tandem queues.

5.1 EFFECT OF POSITIVE DEPENDENCY BETWEEN INTERARRIVAL
AND SERVICE AT SERVER 1

Suppose three independent exponential distribution are:

P[Ui > = 	 i t ;
P[U2 > t] = 0'2';

P[U1.2>fl =
The customer interarrival time is expressed as:

T = min(U i , U12),

while service time at server 1 satisfies:

S min( U2 , U12)

Service time at server 2 is a Poisson process with rate u 3 .

/43 >`P2+ 7 12 > = Pi ±P12.
Hence the exponential marginal distribution function is given by:

F 1 (t 1) = P[T > t i] = C(P1 +P12)ti;

F2(t2) = P[S > t2] = e ('2"12)2;

F3 (t3) 	 P[Q > t2] = e-u3t2.

27



28

So customer interarrival time follows exponential distribution with parameter

u i = p i +p 12 , while the service time at server 1 follows exponential distribution

with parameter u2 P2 ±P12-

The correlation coefficient between the interarrival time and service time at

server 1 is:

r P12 / (P1 +P2 ±P12)
	

(5.1)

We fix u 1 and u2 so that the marginal distribution of the customer interarri-

val time and service time at server 1 won't change no matter how correlation

coefficient varies.

If p12 increases by c, then the new correlation coefficient becomes:

	= (p12+c) I (Pi +P2+Pirc)	 (5.2)

r' min 0 when c = P12 ;12; max (pi +p i2)/(p2+p i2), when c = p i .

By changing c from -p 12 to p i , we obtain correction coefficient from 0 to

(Pi +P12)/(P2 +P12)-

Figure 5.1 is the simulation result of the model above, with p i =3, p2 =6,

Pt2= 4, u3 = 12. It shows that the average waiting time in the queue has a slow

trend of decreasing, but not monotonously decreasing, with respect to the

increment of correlation coefficient.

5.2 EFFECT OF POSITIVE DEPENDENCY BETWEEN
SERVICES AT SERVER 1 AND SERVER 2

Suppose three independent exponential distribution are:

P[U i >I]	 e P i t ;

P[U2 > /1 = CP21.

PRI 12> = CP14

The customer interarrival time is expressed as:

S = min(Ui , U2),
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Server 1 in Tandem Queue

while service time at server 1 satisfies:

Q =-- min(U2 , ti12)

Customer interarrival time is a Poisson process with rate u 3 .

The correlation coefficient between the service time at server 1 and server 2

r P12 / (P1 +P2 +P I2)
	

(5.3)

We fix u 1 and u2 so that the marginal distribution of the service time at

server I and server 2 will not be changed no matter how correlation coefficient

varies.
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From previous analysis, we know that r will change from 0 to (p 1 +p12)

l(p2 +p i2) according to the variance of p 12 .

Figure 5.2 is the simulation result of the model above, with running time

400, Pi =5, P2 =7, P12=6, u3 =4. It shows that the average waiting time in the

queue has a slow trend of increasing, but not monotonously increasing, with

respect to the increment of correlation coefficient.

Server 1 and 2 Correlation
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Figure 5.2 Effect of Positive Correlation Between Service time at Server 1 and
Server 2 in Tandem Queue
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5.3 EFFECT OF POSITIVE CORRELATION BETWEEN
ADJACENT INTERARRTVALS

Let {X} follows exponential distribution with parameter p i ;

{Yn} follows exponential distribution with parameter /92 •
The distribution function of each variable are shown as:

P [X > t] 

P[Y> = CP2t

The ith customer interarrival time is expressed as:

T = min(Xi,

The interarrival time then follows exponential distribution with parameter u 1

P1 + 2P2-
Service time at server 1 and server 2 follows exponential distribution with

parameter u2 and u3 respectively.

The correlation coefficient between the adjacent customer interarrival time

can be expressed as:

r = P2 / (2P1 	 3P2).
	 (5.4)

Here, we fix U 1 , the marginal distribution of the customer interarrival time

will not be changed no matter how correlation coefficient varies.

If p2 decrease by c, the new correlation coefficient is:

r' = (p2 - c) 1 (2p i + 3/32 + c) .	 (5.5)

By changing c from -p 1 /2 to p2 , we are able to obtain correction coeffi-

cients from 0 to 1/3.

Figure 5.4 is the simulation result of the model above, with running time

400, p 1 =2, p2 =3, u2 =10, u3 =14. It shows that the average waiting time in the

queue has a slow trend of increasing, but not monotonously increasing, with

respect to the increment of correlation coefficient.
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5.4 EieletCT OF POSITIVE CORRELATION BETWEEN
ADJACENT SERVICES AT SERVER 1

Let {X,i} follows exponential distribution with parameterp i ;

{Y,} follows exponential distribution with parameter p 2 .

The distribution function of each variable are shown as:

P[X>t] = e-P i t ;

P[Y>t] = CP2 f

The ith customer service time at server 1 is expressed as:

=	 yi+1).
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The service time at server 1 then follows exponential distribution with parameter

Pi + 2P2-

Hence the exponential marginal distribution function is given by:

P[P >	 = c(P 1 +2P2)t .

Customer interarrival time and service time at server 2 follow exponential

distribution with parameter u 2 and u3 respectively.

The correlation coefficient between the adjacent customer interarrival time

can be expressed as:

r = p2 / (2p i + 3/92)	 (5.6)

From previous analysis, the correction coefficients can be changed from 0 to

1/3.

Figure 5.4 is the simulation result of the model above, with running time

400, p i =2, p2 =3, u2 =5, u3 =12. It shows that the average waiting time in the

queue has a slow trend of increasing, but not monotonously increasing, with

respect to the increment of correlation coefficient.

5.5 EFVECT OF POSITIVE CORRELATION BETWEEN
ADJACENT SERVICES AT SERVER 2

Let {Xn} follows exponential distribution with parameter p i ;

{Yn} follows exponential distribution with parameter p2 .

The distribution function of each variable are shown as:

P[X> = i t ;

P[Y > = CP2! .

The ith customer service time at server 2 is expressed as:

Qi = min(Xi, 	 4_ 1).

The service time at server 1 then follows exponential distribution with parameter

= p i + 2p2 .
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Server 1 in Tandem Queue

Hence the exponential marginal distribution function is given by:

P[Q > = e(P 1 +2P2)t.

Customer interarrival time and Service time at server 1 follow exponential

distribution with parameter u2 and u3 respectively.

The correlation coefficient between the adjacent customer interarrival time

can be expressed as:

r = P2 / (2p i + 3P2) 	(5.7)

The correction coefficient can be changed from 0 to 1/3.

Figure 5.5 is the simulation result of the model above, with running time

400, p i =3, p2 =3, u2=5, u3 =7. It shows that the average waiting time in the
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queue almost has no trend of increasing or decreasing, with respect to the

increasing of correlation coefficient.
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CHAPTER 6

CONCLUSION

In the previous chapters, we analyzed the effects of dependencies on several

GIG/1 queueing systems and 2-server tandem queues. Simulation results for

each model are shown on figures and conclusions are drawn from analyzing the

curves obtained by simulation. This chapter is the summary of these results.

In a single node, single server queue, positive correlation between inter-

arrival time and service time has a trend of improving system performance

measures, by decreasing the average waiting time in the queue or etc., with the

increment of correlation coefficient. On the other hand, positive correlations

between adjacent interarrivals and positive correlation between adjacent services

have trends of worsening the system performance by increasing the average

waiting time in the queue or etc., with the increment of correlation coefficient.

Nevertheless, none of these effects has monotone property of effect of

dependency on system performance. Negative correlation between interarrival

time and service time, negative correlation between adjacent interarrivals and

negative correlation between adjacent services do not have any trend or certain

effect on system performance.

In the 2-server tandem system, positive correlation between interarrival

time and service time at server 1 shows a trend of improving the system

performance. Positive correlation between server 1 and server 2, positive

correlation between adjacent interarrival time and positive correlation between

adjacent service time at server 1 have trends of worsening system performance

measures, by increasing the average waiting time in the queue with the

increment of correlation coefficient. The positive correlation between adjacent

service time at server 2 has almost no certain trend of effect on system

36
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performance. Again, none of these effects has monotone property of effect of

dependency on system performance.



APPENDIX A
DATA

Positive Correlation between
Interarrival and Service

Generated by Bivariate Variables
in A Single Node Queue

Average Waiting
Time in the Queue

Correlation
Coefficient

0.000000
0.003065
0.006149
0.009251
0.012373
0.015515
0.018676
0.021856
0.025057
0.028278
0.031519
0.034780
0.038062
0.041365
0.044689
0.048035
0.051402
0.054790
0.058201
0.061634
0.065089
0.068566
0.072067
0.075590
0.079137
0.082707
0.086301
0.089918
0.093560
0.097226
0.100917
0.104633
0.108374
0.112141
0.115933
0.119751
0.123595
0 127466

0.352907
0.522851
0.384457
0.394570
0.337386
0.475894
0.343482
0.362042
0.436016
0.590071
0.374040
0.362420
0.506607
0.483176
0.349757
0.410109
0.317168
0.430969
0.302783
0.369379
0.567848
0.383583
0.440497
0.459728
0.388192
0.626548
0.343815
0.465843
0.283837
0.451053
0.348195
0.474589
0.349887
0.489496
0.466603
0.491533
0.282196
0.325254
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	0.131364	 0.390263

	

0.135289 	 0.348932

	

0.139241 	 0.345692

	

0.143220 	 0.418540

	

0.147228 	 0.300611

	

0.151263 	 0.265932

	

0.155327 	 0.428655

	

0.159420 	 0.325212

	

0.163542 	 0.305268

	

0.167694 	 0.529815

	

0.171875 	 0.303122

	

0.176086 	 0.387070

	

0.180328 	 0.374856

	

0.184600 	 0.361285

	

0.188904 	 0.396124

	

0.193238 	 0.359581

	

0.197605 	 0.293370

	

0.202003 	 0.323406

	

0.206434 	 0.364097

	

0.210898 	 0.369711

	

0.215395 	 0.346091

	

0.219925 	 0.316456

	

0.224490 	 0.317920

	

0.229088 	 0.331815

	

0.233722 	 0.292352

	

0.238390 	 0.368053

	

0.243094 	 0.378426

	

0.247834 	 0.344857

	

0.252610 	 0.319151

	

0.257422 	 0.251359

	

0.262272 	 0.291541

	

0.267159 	 0.276079

	

0.272085 	 0.308634

	

0.277049 	 0.285296

	

0.282051 	 0.429516

	

0.287093 	 0.323788

	

0.292175 	 0.240538

	

0.297297 	 0.343450

	

0.302460 	 0.285154

	

0.307664 	 0.278798

	

0.312910 	 0.381372

	

0.318198 	 0.390131

	

0.323529 	 0.277664

	

0.328904 	 0.303699

	

0.334322 	 0.285539

	

0.339784 	 0.352823

	

0.345291 	 0.275592

	

0.350844 	 0.294449

	

0.356443 	 0.248830

	

0.362089 	 0.270300

	

0.367781 	 0.340660

	

0.373522 	 0.282093

	

0.379310 	 0.293268

	

0.385148 	 0.258411
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	0.391036	 0.232939

	

0.396973	 0.225414

	

0.402962	 0.247194

	

0.409002	 0.233242

	

0.415094	 0.314374

	

0.421240	 0.295396

	

0.427439	 0.247719

	

0.433692	 0.189930

	

0.440000	 0.264692

	

0.446364	 0.237173

	

0.452785	 0.356970

	

0.459262	 0.238856

	

0.465798	 0.235553

	

0.472393	 0.242438

	

0.479047	 0.232948

	

0.485761	 0.230127

	

0.492537	 0.232285

	

0.499375	 0.268564

	

0.506276	 0.239890

	

0.513241	 0.227463

	

0.520270	 0.263753

	

0.527365	 0.283412

	

0.534527	 0.199067

	

0.541756	 0.260715

	

0.549053	 0.214456

	

0.556420	 0.219368

	

0.563857	 0.217920

	

0.571366	 0.189755

	

0.578947	 0.197566

	

0.586602	 0.230070

	

0.594331	 0.172100

	

0.602136	 0.207190

	

0.610018	 0.194291

	

0.617978	 0.199653

	

0.626016	 0.234557

	

0.634135	 0.229325

	

0.642336	 0.188191

	

0.650619	 0.213855

	

0.658986	 0.175090

	

0.667439	 0.186101

	

0.675978	 0.185412

	

0.684605	 0.197692

	

0.693321	 0.181202

	

0.702128	 0.179762

	

0.711027	 0.185247

	

0.720019	 0.150812

	

0.729107	 0.166293

	

0.738291	 0.160686

	

0.747573	 0.162189

	

0.756955	 0.192996

	

0.766438	 0.163910

	

0.776024	 0.148390

	

0.785714	 0.155931

	

0.795511	 0.153050



0.805416
0.815431
0.825558
0.835798
0.846154

0.165300
0.149936
0.134815
0.145871
0.128024
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APPENDIX B
PROGRAM

#include 	 < string. h >

#include 	 < math .h >

#include 	 <stdio.h >

#define 	 max(x,y) (x> =y)?x:y

#define 	 min(x,y) (x < =y)?x:y

/*SINGLE NODE QUEUEING SYSTEM*/

/*analyze bivariate dependency between interarrival time and

service time*/

main°

{

double drand480, rand_t, rand_u, rand_s;

float tpl,p2,p3,p10,p20,p30;

float a[10000],b[10000],c[10000],d[10000],z[10000];

float dt[10000],du[10000],ds[10000];

Ent i,j,k,n,m,l,num;

int x,y,q1,tql;

float e;

float g,s1;

float w[1.0000],s[10000],wt[200],aq1[200],z1[200];

FILE *fp *fq;

printf(" input sumulation running time\n");

12



scanf("%f",&0;

/* input T series exponential distribution parameter */

printf(" input T series parameter\n");

scanf(" %f" , &p 1 0) ;

/* input S series exponential distribution parameter */

printf("%s\n", "input S series parameter");

scanf("%f",&p20);

/* input U series exponential distribution parameter */

printf(" input U series parameter\n");

scanf("%f",&p30);

for (1=0;1< =150;1+ +) {

e=(p1O+p30)*1/150-p30;

printf("e=%f\n",e);

pi =p10-e;

p2=p20-e;

p3 =p30+e;

zl =p3/(pl +p2+p3);

a[0]=-- 0.0;

b[0]=0.0;

/* generate arrivals, compute arrival time, service

time*/

for(i= i;i < = 10000 + +) {

randt=drand480;
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dt[i] =-(log(1-rand_t))/p1; 	 /*generate T series

data*/

rand s=drand480;

ds[i] =-(log(1-rand_s))/p2; 	 /*generate S series

data*/

rand_u=drand480;

du[i]=-(log(1-rand_u))/p3; 	 /*generate U series

data*/

d[i]=min(dt[i],du[i]);

a[i]=a[i-1]+d[i]; 	 /*compute arrival time*/

b[i) =min(ds[i],du[i]); 	 /*compute service time*/

if(a[i] > t) {

n=i-1,

break;

}

/*compute service completion time if it doesn't exceed

simultion running time t*/

for a .---1;10000;j+ ±) {

z[j]=-- max(c[j-1],a[j]);

c(j) =z [j] +b[j];

if (c[j] >t)

break;



}

if(m <n) 
{

for (i=m+1;i<=n;i++) c[i]=t;

}

/*caculation of waiting time and server idle time*/

g=0.0;

for(i=1;i< =m;i++) {

w[i]=max(0,4i-11-a[i]);

g=g+w[i];

}

wt[1] =g/m;

printf(" %d\n",1);

}

ifqfp=fopen("result99","w"))= =NULL){

printf("cannot open file\n");

exit(0);

}

for(i=0;i< =150;i+ +) {

fprintf(fp," %f 	 % n" ,zl[i],wt[i]);

}

fclose(fp);
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