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ABSTRACT

Adaptive Two-Stage Detection
Scheme in Synchronous Two-User

CDMA Systems

by

Yong Jiang

A conventional single user detector is not optimum in the multiuser environment

because the multiuser interference can not be modeled as an additive Gaussian pro-

cess. Such a receiver is very vulnerable to the near-far situation. The receiver that is

optimum for multiuser environment has high complexity and requires a knowledge of

the received signal energies. Various versions of the receiver that handle the near-far

situation have been proposed in the literature. In this work, an adaptive two-stage

scheme for a synchronous two-user environment with unknown received energies is

proposed. It consists of a tandem of the conventional receiver and the interference

canceler whose weights are adjusted by an adaptive algorithm. The error probability

was evaluated analytically and it was shown that the receiver provides performance

that is satisfactory in the near-far scenarios.
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CHAPTER 1

INTRODUCTION

In wireless personal and mobile communication the main issue in demodulation of

digital signals sent simultaneously by several transmitters who share a multiple ac-

cess channel is the selection of the multiplexing format. Compared to the well known

multiple access techniques like frequency division multiple access (FDMA, all users

transmit simultaneously in different frequency bands) and time division multiple ac-

cess (TDMA, all users occupy the same bandwidth but transmit in different time

slots), code division multiple access (CDMA) allows all the users to transmit at the

same time and to occupy the entire available bandwidth. In CDMA, each user is

assigned a distinct signature sequence which is used to modulate his message. To

demodulate, the conventional single-user detector is implemented, which correlates

the received signal with each of the signature sequences as if other users did not ex-

ist in the common channel. Besides the desired signal, the sampled output of each

correlator contains the residual interference from all other users. Under the condi-

tion that the received signal energies are similar, the amount of interference can be

reduced by choosing the signature sequences so that their crosscorrelations are low

enough. However, if strong interferences are presented, i.e. some users are very week

in comparison to others, it is unable to recover the message of the weak users reliably,

even if the signature sequences have very low crosscorrelations. This is referred to

as the near-far problem. To solve the problem, the traditional ways are the design

of signals with more stringent crosscorrelation properties and power control, which is

the adaptive adjustment of transmitter power depending on its location and on the

received powers of the other users. This comes at the price in the multiple access

capability reduction and bandwidth and complexity increase.

1
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The fact that the residual interference at the output of each correlator can not be

modeled as an additive white Gaussian process makes the conventional detector not

optimal. By assuming the knowledge of each user's energy and the signature sequence,

optimum detection can be achieved that maximizes the log-likelihood function. The

structure of the optimum multiuser detector consists of a matched filter front-end

followed by the decision system. The algorithm that decision system implements is

the Viterbi algorithm [1]. For two users, the optimum solution is one of the four

possible values of the vector of data bits. However, with the increase of the number

of user, the complexity goes up exponentially. Therefore, lower complexity multiuser

detectors are desired whose performance is close to the one of the optimum detector.

Several suboptimum multiuser detectors have been proposed, one of which is

presented in [3], where the tentative decisions obtained with the conventional single-

user detector depending on the polarity of the outputs of the matched filters, are

weighted and subtracted from the output of the matched filter. The weights are fixed

since the energies of the signals are known.

Instead from the conventional single-user detector, the tentative decisions can

be obtained from a decorrelator, which removes the interference without knowing

the energies of input signals. The error probability of one user at the output of the

decorrelator is invariant with regard to the strength of the signals of other users,

while its signal-to-noise ratio is less than in the single user case. In [3], the outputs of

the decorrelator, considered as bit estimates, are weighted and utilized to cancel the

interference from the outputs of matched filters. Again, the weights are fixed with

the knowledge of input signals' energies.

The need of the knowledge of the information of received energies results in

the increased price for it requires to estimate the energy of each user. One should

consider other approaches that do not require the knowledge of the energy of each

user. An adaptive algorithm well known as "Bootstrap Algorithm" introduced in [2],



3
offers the possibility of implementation in the CDMA systems. The weights in the

second stage are to be adjusted adaptively so that the interference can be removed

by subtracting the weighed bit estimates from the outputs of matched filters without

the knowledge of the received energy. In this work, a synchronous two-user detector

is discussed, where adaptive canceler is applied in the second stage, and the energies

of input signals are assumed unknown. The output error probability is computed and

simulated to compare to those for the conventional receiver, decorrelating detector and

the detector in [3]. The convergence speed of the adaptive iteration is also observed.
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CHAPTER 2

DETECTION IN SYNCHRONOUS CDMA SYSTEMS

2.1 Conventional Single-user Detector

A two-user synchronous CDMA receiver is shown as in Figure 2.1, which is referred to

as a conventional single-user detector. The filter is matched to the signature sequence

of each user. The data bit estimates are the hard limiter's outputs of the matched

filters.

Figure 2.1 A synchronous two-user conventional CDMA receiver

The input signal can be written as

M M

x(t). E bi (ovA,s,(t— iT)	 E b2(i)vA2s2(t iT) n(t) 	 (2.1)

where n(t) is white Gaussian noise with zero mean and power spectral density of

N0 /2. The symbol streams {bi (i)} and {b2 (i)} take values on {-1,1}, Al and A2

are their energies respectively. The unit-energy signature sequences assigned to both

users are .51(0 and s2(t) and have duration T. The outputs of the matched filters are

expressed as

4
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xi(i) = 	 pVA2b2(i) n1(i)

x 2 (i) = VA2b2(i) Witibi(i)+ n2(i)

f
T

o 	(t)Cit = 1, for j=1, 2

P 	 10 s1(t)s2(t)dt

n i (i) and n 2 (i) are zero mean Gaussian random variables having variance N0/2 and

crosscorrelation pNo /2. After decision, the outputs are

bi (t) 	 sgn[x i (i)}

b2 (t) 	 sgri[x 2 (i)] 	 (2.5)

For the sake of brevity, time index i is omitted from most of the expressions in the

text.

In (2.2), besides the desired signals, the interferences caused by the other user

also exists. The performance of the conventional single-user detector is acceptable

provided the similarity of the energies of the received signals and/or the low cross-

correlations of the signature waveforms. In practice, unfortunately, one user is often

much stronger than the other so that the weaker user becomes undetectable, even

if the signature waveforms have very low crosscorrelations. This problem, known as

"near-far" problem is the main shortcoming of the conventional single-user detector.

2.2 Optimum Detector

Figure 2.2 gives an optimum detector. The optimum or the maximum likelihood

decision on MO and b2 (i) denoted by 14(i) and b 2 (i) is one that maximizes the log-

likelihood function. Noticing that in (2.1) the noise is white and Gaussian, assuming

with

and
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Figure 2.2 Optimum two-user detector

that the optimum detector knows the received energies, it should select the argument

to achieve

min /
T i 	 2

i [x(t) — E vAk1;k(0)sk(0)] dt} = max {241;)T x (Al;)T H(Al;)}

(2.6)

where

x = [x i (o), x 2 (o)iT

= [61 (0), 62 (o)]

and

H= [

A 	 viAi 0
0 	 -\/A 2

It is easy to solve the right-hand side of (2.6). Since bk (0) E { — 1, 1}, the

function therein can be computed for each of the four possible values of b and the

vector that maximizes the function gives the solution to the optimum demodulation

problem. In the K-user case, there are 2' possible values of 1; meaning that the

complexity increases exponentially with the number of users.

The optimum detector provides important performance improvement over the

conventional single-user detector, and in particular, it solves the near-far problem.



7

However, the price for this is exponential complexity in the number of users. Low

complexity multiuser detectors are desired whose performance will be close to the

performance of the optimum detector.

2.3 Suboptimum Detector

Due to the high complexity of the optimum detector, one should consider a subop-

timum detector with satisfactory performance and simpler algorithm. Instead of the

optimum decision system in Figure 2.2, an interference canceler is employed, as shown

in Figure 2.3.  

•
interference 

canceler

Y2        

32(t)

Figure 2.3 Suboptimum two-user detector

Various schemes of interference canceling have been proposed, two of them are

discussed bellow.

2.3.1 Bit Estimates Obtained with the Conventional Single-
user Detector

An approach to obtain suboptimum multiuser signal detector [1] is shown in Figure

2.4 where the estimates, b 1 and b2 are obtained from the conventional detector.

bl = sgn(x i )	 (2.7)

b2 = sgn(x2)	 (2.8)
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y1

Y2 • b2

Figure 2.4 Two-stage receiver for two synchronous users, with bit estimates obtained
by conventional detector.

Since the received energies are assumed known, the weights are set as

P\/-42

and

W2 = P\/Ai.

yielding the outputs of the second stage, before the decision:

Al 	p A 2 b2 tv i b 2 + n 1

= N/A i 	P \/112(b2 — b2 ) + n1
	 (2.9)

Y2 = 	 A2 b2 P 	 w261 + n2

\/A2 b2
	 A 1 (b1 61) + n2 	 (2.10)
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If the signal of user 2 is comparatively strong, the conventional detector will select

b2 = b2 with high probability, in which case the interference caused by user 2 will be

canceled effectively, and therefore, the decision on the bit transmitted by user 1 can

be noticeably improved. On the other hand, the decision on the bit of user 2 will not

get improved since b 1 = b 1 does not occur with high enough probability.

2.3.2 Bit Estimates Obtained by Decorrelator
In [3] Varanasi and Aazhang proposed another approach to obtain suboptimum =1-

tiuser signal detector, shown as Figure 2.5.

The reference estimates are the outputs of a decorrelator instead of the con-

ventional detector which was used in Section 2.3.1. The outputs of the decorrelator

are

z1 = Xi - PX2

= (1 — p 2 ) VA 1 b1 	— pn 2
	 (2.11)

z2 = X2 -

	(1 — p2 ). A2 b2 + n 2 — pn i 	(2.12)

The corresponding bit estimates are

1;1 = sgrt(zi )

= sgn[(1 — p2 )1A 1 bi n 1 — pn 2 ]	 (2.13)

b2 = sgn ( z2 )

= sgn[(1 — p2 )jA2b2 + n2 — pm.]
	

(2.14)



Figure 2.5 Two-stage receiver for two synchronous users with bit estimates obtaine
d by decorrelator.

Define

= 	 Pn2 	 (2.15)

and

	77 2 = n2 — pn 1	(2.16)

It is easy to show

Elm} = E{712 } = 0

E{74.} E{774. p2 n22 — 2pni n2}

No 	2 NO 9 2 NO
2 +P 2	 -1° 2

1 0

= 	 p2)N20 (2.17)



and

E{} = ( 1 — P2 ) 1212- -21

E{Thn2} =	 ni n2 — pE {r }4

= p 2a- — pa 2

=.:- 0

similarly

E{772ni} = 0

also

E{nii;2}
	

E {nogn[(1 P 2 )A2b2 + 972]1

= 0	 (2.21)

E{ 611;2} = E Ibisgn[(1 — P 2 )\I A2b2 272)}

= 0 	 (2.22)

Similarly

E{n 2 61 } = 0	 (2.23)

E{ b26,.} = 0

With the knowledge of the received signals' energies, the weights are fixed as

= pVA2

and

w2 = p\lAi

Therefore, the outputs of the canceler, before the decision, are

(2.24)

= \Aibi PVA2b2 — wi2 +

VAi bi pVA2(b2 — 1;2) -I-- n 1 	(2.25)



and
12

Y2 	 A2b2 p\/441bi — tvA. + n2

= A 2 b2 + pv/Ai(bi b;) + n2 (2.26)

The error performance of bit estimates 6 i and b2 in (2.13) and (2.14), which

are the outputs of decorrelating detector, remains invariant to interference signal

strengths. In fact, the error performance depends on the signal-to-noise ratio at the

outputs of the decorrelating detector. Consider z 1 , the SNR of z1 is

S 11T Rzi	
(1 — p 2 ) 2

(1 — p 2 )No
(1 	 p 2 ) Al

Na

= (1 — p2 )SNR1 (2.27)

where SNRI. = Ai/./V0 is the received signal-to-noise ratio of user 1. S N Rzi is reduced

by (1 — p2 ) after decorrelating. If SNR1 is large enough, b 1 can be detected as b 1 at

a high probability, hence the bit transmitted by user 1 is correctly recovered. Same

results can be obtained for user 2.



CHAPTER 3

ADAPTIVE SEPARATION OF SUPERIMPOSED
SIGNALS

In code division multiple access (CDMA) systems, the received signal can be con-

sidered as a superimposed signal in which desired signal needs to be separated from

the interference. An approach is proposed in [2] referred to as "a bootstrapped algo-

rithm", in which each of the outputs of the separator is used as a reference input to an

least mean square (LMS) algorithm which produce the other output. For simplicity,

all signals discussed here are assumed real.

3.1 The Forward-Forward Structure

Consider a two-user case as in Figure 3.1, the model is

x(t) = As(t) n(t) 	 (3.1)

where

x(t) 	 [s i (t)s 2 (t) ]T

n(t) =

A

[n i (t)n 2 (t)} 71

1 a l

[ a2 1

The assumption that an = a22 = 1 does not set any limitation since the power of the

signals is assumed unknown. Separation is performed to use a 2 x 2 matrix W f f to

make

y(t) = wf fx(t) = g(t) 	 (3.2)

where g(t) is the estimate of s(t).

In Figure 3.1 a cross-coupled forward-forward structure is depicted. w 1 and w2

are weights. The relation between input and output can be written as

13
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Figure 3.1 A forward-forward adaptive separator

y(t) = wffx(t)

where

(3.3)

1 	 -Wi

[ -w2	 1
(3.4)

Substituting (3.1) into (3.2) we get

y = wffAs + wffn

where

HfI =

and

Hffs + n ff

1 — tv1a2 	 al — wl
a 2 — to2 	 1 — to2a1

(3.5)

(3.6)

nff = wffn (3.7)



Rif = E [Y(t)YT (01
= Hff Rs liTcfWffRn,W .Ti

where

R, = E {s(t)sT (t)}

and

= E {n(t)nT (t)}

The signal vectors are assumed uncorrelated, then

g2 o
= 	 1 	 .10

[ N0 /2 	 0Rn = 0 	 N0/2

15
To separate the signals, w 1 and w 2 are supposed to be chosen so that Hf f is a diagonal

[ 1 	 a,a 2
Hff 0

The output correlation matrix is given by

matrix. Therefore, the desired solution is

w 1 = a 1

w2 a2

for which
0

1 — a i a 2

(3.11)

(3.12)

(3.13)

where a2 and o-2 are the power of Mt) and s 2 (t) respectively, N0 /2 is the variance2

of n 1 (t) and n 2 (t) which are uncorrelated process. By substituting (3.10), (3.12) and

(3.13) into (3.11) we get

riiRf f = r21

r12	 N0	 1 +
r22 j + 2 [ 	 w2)

21), 	 w2 )

1 + (3.14)   



where

= (1 — wia2) 2 + (72 (ai — wi) 2

2r12 = cii2 (a2 — w2)( 1 wia2) 0.2(ai — w1)(1 — w2ai) 	 r21

_(,, 	 _ \2
	 a2uiy.4 2 	 Gu2) 	 u2 1

	w2a1)2

16

(3.15)

It is stated in [2] that, for N0/2 = 0 (no noise), liff is diagonal if and only if Rff is.

Therefore, decorrelation of the output signal is a useful criterion for signal separation,

i.e.

E{yi(t)y2(t)} = 0 	 (3.16)

In Figure 3.1, the upper loop attempts to cancel the interference caused by

s 2 (t), while the lower loop attempts to cancel interference caused by s i (t). The

bootstrapping results from control on both weights w i and w2 . It was shown that the

resultant algorithm converges to the unique solution w 1 = a 1 and w2 = a 2 if noise

power is zero ( N0 /2 = 0 ) and a 1 < 1, la 2 1 < 1. At the same time, the output

signals are given by

y1(t) = (1 — aia2)si(t) 	 (3.17)

y2(t) = (1 — a i a 2 )s 2 (t) 	 (3.18)

That is, the signals are indeed separated but are scaled by a factor which is related

to the model parameters.

3.2 The Backward-Backward Structure

In Figure 3.2, a backward-backward structure is depicted. The output-input relation

is given by

y(t) 	 wbbx(t) = g(t) 	 (3.19)

where



Wbb

1= 	 wff
1 — W1W2

1 	1
[1— W1W2 —W2 1   

17    

X2 Y2        

Figure 3.2 A backward-backward adaptive separator

(3.20)

in which wff is given in (3.4). Since w bb and wff differ only by the scalar factor

1/(1 — w 1 w 2 ), we can easily adopt the results of Section 3.1 to this case. In particular

y = H bbs wbbn (3.21)

where

Hbb = 	 )2 
H

fW1W2)

The desired solution still is

= a 1

W 2 a2 (3.22)

1



= 0

d 
E {Y(t)} = —2E {Yi(i)Y2(t)} = 0

and similarly

(3.24)

(3.25)
dw2

18

The output correlation matrix is given by

Rbb = EIYMY T (t)}
1 

fR f
W 1 W 2) 2

(3.23)

where Rf f is given in (3.14). In [2] it is indicated that, when N 0 /2 = 0 (no noise), the

two output powers are minimized if and only if (3.22) is satisfied. Thus, simultaneous

minimization of both output powers has been proposed as an optimization criterion.

Notice that, equating the derivative of the output power to zero is a necessary con-

dition of minimization, that is

dwi
.E.{0(t)} = E { —

d
[x i (t) — w 1 y 2 (t)1 2 }

dw 1

—2E{y i (t)y2 (t)}

From (3.24) and (3.25) we can conclude that the minimum crosscorrelation between

two outputs is the necessary condition for minimum output powers. Therefore, in

this configuration, decorrelation of outputs and minimization of their powers are

equivalent, however, this conclusion does not hold for forward-forward structure, in

which case the assignment of the above mentioned derivative to zero gives

	ct -7)1. E{y 2 (t)} = E	 w1x2(t)]2}dw 1

= —2E{x 2 (t)y i (t)}

	

= 0	 (3.26)

and similarly

(3.27)
d 

E{A(t)} = — 2E{xi.(t)Y2(t)} = 0
dw2

which does not lead to the diagonal matrix of Rf f



CHAPTER 4

ADAPTIVE TWO-USER CDMA DETECTION

In Chapter 3 an approach of separation of superimposed signals was presented. It has

been applied on the two-user CDMA detection in which the various control schemes

on weight update control are employed. It is assumed that the received energies of

the signals are unknown.

4.1 Adaptive Detection with Bit Estimates Obtained from
the Outputs of the Matched Filters

4.1.1 Scheme

We consider a two-user synchronous CDMA receiver with the interference canceler of

the forward-forward structure, as shown in Figure 4.1.

Figure 4.1 A two-user synchronous CDMA receiver with the bit estimates obtained
by conventional detector.
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It is similar to the one introduced in Section 2.3.1 with the difference that the

weights are to be updated adaptively. As discussed in Section 3.1, it is indicated

that decorrelation of the output signals can be a criterion for the signal separation in

forward-forward structure, that is, using

Ef Y i (t)Y2(t)} = 0

Here, the output powers Elyn and Efyn will be minimized simultaneously by the

control algorithm of iterative search

wi (n + 1) 	 w.i(n) — itt
dE{y(n)}

, = 1,2
dw •

(4. 1)

where p, is the convergence and stability rate constant, n is the index of iteration.

The optimum weights that minimize the output powers are the steady state values

obtained from
dE {yn 0

dw1

and
dE{yn

— 0dw2

Noticing that y i = xi — w1b2 and Y2 = X2 - w2 b1 , we get

cl
E {(x1 wii)2) 2 } E {(x i — wil)2)(—b2)} 

dw 1

(4 .2)

and

L2
E {(x 2 — w2b1 ) 2 } = E {(x2 — w210(---1)0}

= 0
	

(4. 3)

From (4.2) we get

—E {xib2} wi E {b2b2} = 0



that is

ivlo = E{xib2}

= VAlE{bib2} -d-PVA2E{b2b2} E{nib2}

Similarly

W20
	 A2 E{b2 b1 } -FpViliE{bik} E{n2i)1}

The right-hand side of (4.3) is the crosscorrelation of the output of one user and the

bit estimate of the other user.

E {(x 2 — w2k)( — bi } = Ef

Therefore (4.1) can be written as

wi (n + 1) = wi(n) pE{y2(n)bi (n)}

The convergence speed is controled by scalar 1./.

The outputs of the canceler are

Yi = VAIN + p1,/A2b2 — wib2 + n 1 	(4.6)

Y2 = VA2b2 PVA1b1 W21)1 + n2
	 (4.7)

After substituting (4.4),(4.5) into (4.6) and (4.7), the canceler outputs become

yio =	 [hi — FIN b211)2] -1- p VA2[b2 — E{ b21)2}62] Elni 621 + n i 	(4.8)

y20 = VA2[b2 E{b2b1}k] pVAi[bi — Efbibilk]	 +7-12	 (4.9)

The joint statistics appearing in above expressions will be evaluated in terms of the

system's parameters in Section 4.1.2.

If the bit estimates of the sampled correlator's outputs are almost perfect, i.e.

bl f.•2 b1 and b2 	b2 , then

21

(4.4)

(4.5)
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E { 1) 1 1) 2 } N 0

E{ b2i)2} ti

- 

1

and

E {b2b1} 

- 

0

E { b1 b1 } 

- 

1

This will make the canceler output, from (4.8) and (4.9), become interference free,

i.e.

\/Aibi

and

Y2 \/A2b2 -I- 72 2

The respective signal-to-noise ratios SNR1 = A i /No and SNR2 = A 2 /No will deter-

mine the error performance. To get clean bit estimates b 1 and b2, it requires a low

spectral efficiency (small p). In the mean time, both large and approximately equal

SNRs are also required to achieve the above results. If the power of one of the signals

is much larger than that of the other, say p2 SNR2 SNR1 , i.e. AlT2

b2 will still be an almost perfect estimate of b2 , on which case w 10 p \/A 2 from

(4.4). At the same time, however, x i = v/A ibi p\/A2b2 + n 2 is dominated by b 2 ,

which is the interference caused by user 2. This will lead to b 1 b2 , hence, from

(4 .5), w20 N/A 2 and from (4.9), Y2o + n2, in which the desired signal

b2 is cancelled. A disastrous output performance of b 2 occurs because of the power

inversion effect of the canceler.

To solve the problem, the control algorithm has to be rectified. One way of

doing so is to add a constraint to the iterative algorithm so that at any bit interval,

the weights are set such that

?D .; = min{w i ,w2 },j 	 1,2 	 (4.10)
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The restriction effectively prevents the increase of the weight that affects the stronger

signal which can achieve perfect decision without the canceler. Under such constraint,

w20 will be replaced by smaller one, w10 pv / A 2 , resulting in the second output

y2	 (1	 ) A2 b2 + 	 A i bi + n 2

This will definitely better than the output without constraint. The amount of im-

provement depends on the desired component to the residual interference ratio at the

output, which is [(1 — p)Ip] 2 ASNR.

Since it is unnecessary to perform canceling on the much stronger signal, another

constraint can be considering as "disabling" the canceling loop that contains the larger

weight element, that is

max{w i , w2 } = 0	 (4.11)

In the case discussed above, it means w 2 = 0. Therefore the decision output of the

larger signal comes directly from the input signal. This scheme can be successful to

obtain perfect detection when p2 SNR2 > SNR i .

4.1.2 Error Performance

The bit estimates at the output are defined as

b1 = sgn(yi)

b2 = sgn(y2 )	 (4.12)

The two-user error probabilities Poi (6) and Poe (c) are conditional error probabilities

averaged over b 1 , b2 , b2 and b1 , b2 , &I., respectively.
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Consider the detector in Figure 4.1. Without loss of generality, consider user 1

first:

Poi (E) = Ebi,b2,b -2 	-Pr{ bi in errorlbi , b2, 1;21
1 	

[Pr(n is > A l —	 A262 w1o1;2)
b2,b2

Pr(ni < —VI —	 A2b2 w1062)]

[Pr(71 1. > A i — p\/A2 b2 tv10, b2 = —1)
b2

+ Pr (n i <	 — A2 b2 — w1o
, 

hatb2 = —1)

• Pr(n i > A l — to\ I A 2 b2 + wio,62 = 1)

Pr(n i < —1Al —	 A262 w10 , b2 1)]

1
—
2 
E [Pr(ni > 	 to\/A2b2 w10, n2 < — A2 b2 p.VA ir )
b,

• Pr(n i <	 p.VA2b2 — w1o, n2 < --VA2b2

• Pr(ni >	 pVA2b2 wio, n2 > —v/A2b2 + 416)

+ Pr(ni < 	 — P .VA2b2 + w1o, n2 > — v/A2b2 AV Al)

—1
4 

[Pr(n i > N/Ai p.VA2 w 10 , n2 < N/A2 4A-1)

• Pr(n i < 	 + 411_2 — w1o, n2 < N/A2 — A i )

• Pr(n i > A1 + 4112+ wio, n2 > 'VA2 toViti)

▪ Pr(n i < 	 p\l/ A2 + wio, n2 > VA2 p\l/ Ai)]

▪ Pr(n i > 	 — Jo\ I A2 — 2v10 , n2 < —VA2 + 4111)

• Pr(n i < 	 — )0\ I A2 — wio,n2 < — V A2 — PV/A1)

• Pr(n i > 	 — P .\,/A2 wio, n2 > — viA2 pV/A1)

Pr(ni < —\/Ai — pV/A2 wio, n2 > — VA2 4A1)]
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-2-1 [Pr(n i > ylA1 + p'\./A2 	 n2 < N/A2 + p-VAi)

+ Pr (n 1 >'1111 p VA2 — wio, n2 < — IA2 py/A1)

+ Pr (n 1 > ./A1 + p I A2+ w1o, n2 > .1A2 + 10.\ I Ai)

Pr(n i > 	 p \I A2+ w1o, n2 > — /A2 + 10\ 1401
I1 n2)dnidn2
., 

where
1 	 [ 74. — 2pn1n 2 +

fni ,n2 (ni n2) = 7rNo N/1 p2 
exp 
	 No(1 — p2 )

and the regions of integration are

D1 	{n 1 > VA]. + PI/A2 — wio, n2 < N/A2 + pVi

D2 	 {n 1 > IA1 — AVA2 — wio, n2 < — IA2 +

D3 	 {n 2 > IA2 p\I I Ai+ w1o, n1 > IA1 + PVIA2}

D4 	 In 2 > ..VA 2 — W Al + wio, ni > --y/A1 + pIA21

To evaluate the optimum weights, rewrite (4.4) and (4.5) as follows

w10 = N/Ai E i)2} PN/A2E{b22} Efnii)21

(4.13)

(4.14)

W20 = A2 E{b2 b 1 } p.\/AiEfbibil + E{n 2 b1 }

The joint statistics are derived as follows:

E{b 1 61 } = Pr{b i = b1 } — PrIb i	j)1.}	 (4.15)

Denote the error probability of the bit estimates b 1 and b2 as Pi i (6) and Pi2(E)

respectively, i.e.

Pi i (e). Pr(bi 	61 )

Pi2(E) = Pr(b2 b 2 )



Also

Efbi l0 = 1 — Q 
(\/	 + pv/A2)

(

A/Ai — p\/A2)
\PV0 /2

Q
VN0/ 2

(4.16)

E{ b2b2 } — 1 — 2Pii(6)

= 1 — Q 
(N/A 2 + pv/A1)

Q
VA 2 pv/Ai 

VN0 /2
(4.17)

then

E{b1 b1 } = [1 — Pi i (E)] —

= 1 — 	 (E)

However

Pii (c) = Pr{ b i in error}

Eb1 , b2 Pr{gi in errorlbi, b2}
1—E 	 > 	 A2b2} + Pr {ri i < 	 A2b2}14 A

Average over both values of b2,

26

pii(0 1 [Q, (VA i p\R2)
2 	 VNo/2

+Q
(VAi + mA2)1

\i/N0 /2

where
1roo _ t2 12 di

Q(x) = 
V27

 i
x 

e

Similarly,

Therefore

Pi2(€) = Pr{1)2 in error}

2 	
(N/ A2 —  Ai)

Q 
(VA2 + AVAT) -11

IN012 	 NIN012



— 11
1 — 2Q A2b2 PVAi 

vIN0 ,12
+ 1  

27
E {b1 62} = Eb1,b2 -{bisgn[IA2b2 -1- )9 Nlitibi -1-72 2]1

= 	 E b1 [Prfn2 > —VA 2 b2 — 	 — Pr{n 2 < —v/A 2 b2 — pls/A i bi }
bl,b2

1 	 —VA2b2 — PN/Aibi
b,,b2 	%/No/2

2Q (—VA 2 b2 — p Al.vN / 2 )1

Similarly,

—N/A2	 ✓— !WA' 	N/ A2 — Jo\ /Ai 
2 	 ✓N0 /2 	 ✓/V0/2

—Q ( --V A2 + p\/Ai.) Q (N/A2 + Th■✓/ 
VN0 /2 	 v/No/2

2
= { [1 — 2Q ("i, N+072 All [1 2Q (11A2 

N/12
WA') }

o

Q \,/✓A2 — pv/A i 	( v/A2+ Pv/A1)
IN0 /2 	 viN0/2

(VA]. p.V.A. 2 ) Q (VA]. Pv/A2)Efb2 1;1 1 	 Q
VI N0/2 	 .VN0/2

(4.18)

(4.19)

Efni1;21 E{n i sgn(v A2b2 p Alb' + n2)}

1 	[f° 001 	 n2)dnidn2
b 1 ,b2 -oo --17-12b2- p\TAT.N.

1 0: 1 -
n2)cinidnd n1 fnl,n2 C n1,

00

[I fp, nifn i ,n2 (ni,n2)dnidn2

f nifni,n2( 72 1,n2)dnidn2

=1

(4.20)

where the integral regions are

D 1 : {—oo < n 1 < oo, 1,/A2 — 4.4 1 < n 2 < opo}

D2 : {-00 < n1 < oo, 	 < n 2 < cx)}



28

D3 	 1L —oo < n 1 < c)o, \/./12 — 4.711 < n2 < ool

D4 	 {—oo < < 	 A2 + p\/A.1 < n 2 <oo}

S1 •• {—oo < n 1 < co, —oo < n 2 < --VA2 )0\ I Al}

S2 {

▪ 

—CC < n i < oo, —oo < n2 < —\/A2 PlAi}

S3 	 {-00 < n1 < oo, —oo < n 2 < jA2 PVAi}

S4 	 {-00 < n 1 < oo, —oo < n 2 < VA2 PVAil

Similarly,

4
Efn2 1;11 	 rofi 	 761'n2

(Thi n2)dnidn2
D, 

— 	 n2f,,,,,,2(n1, n2)dnicin2
ti

where the integral regions are

A2 < n 1 < oo, —oo < n2 < oo}

D2 	 { Ai + p\./A2 < < oo, —oo < n2 <oo}

D3 : {V,A i — pN/A 2 < n 1 < oo, —oo < n 2 < oo}

D4 : I Al + A2 < < oo,—oo < n 2 < oo}

S1 	{—oo < <	 — p\R 2 , —oo < n 2 < oo}

S2 	 {—oo < n 1 < —1/A i + p N/A2 , —oo < n 2 < co}

S3 	 {—oo < < VA. 1 p / A 2 , —Do < n2 <oo}

S4 	 {—oo < < 	 p•VA2, —oo < n 2 < oo)

(4.21)

With the constraint scheme in either (4.10) or (4.11), the optimum weights w 10 and

w20 in the above expressions should be modified accordingly.

Numerical results are computed with respect to the signal-to-noise ratios and

crosscorrelation coefficients. The curves are plotted versus the difference of the two

input SNRs. As before, SNR1 is kept constant. the error probabilities of conventional

receiver and the decorrelating detector in [3] with fixed weights are also presented.
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Figure 4.2 Computed error performance with bit estimates obtained from conven-
tiona 1 detector with p = 0.7, and S'NRI. 8 dB.

In Figure 4.2 p = 0.7 is used. the performance of user 1 in conventional detection

is too poor to be detected as ASNR goes high, reaching an error probability of 0.5,

which shows the vulnerability of the conventional detector to the near-far problem. As

predicted, the curve of minimum power of user 2 also approaches to 0.5 when ASNR

becomes larger, because of the reason that was discussed in Section 4.1.1. Marginal

improvement occurs at large ASNR when constraint from (4.10) is imposed. More

ever, with the constraint from (4.11), an excellent performance is achieved which is

even better than that in [3]. The performance of user 1 keeps unchanged no matter

whether the constraint strategies are used when ASNR > 0 dB. This results from

the fact that the constraint strategies are designed to prevent the stronger user (user

2 in this case) from being canceled due to the power inversion effect.

Figure 4.3 depicts the case for p = 0.5. A better performance of user 2 under

constraints from (4.10) is observed than that of previous case. Again, as expected,

the performance of user 1 is virtually the same as that in [3]. This results from the
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Figure 4.3 Computed error performance with bit estimates obtained from conven-
tiona 1 detector with p = 0.5, and SNR1 = 8 dB.
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Figure 4.4 Computed error performance with bit estimates obtained from conven
tiona 1 detector with p = 1/3, and SNR1 = 8 dB.
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factor [(1 — p)Ip] 2 being greater in this case.

Figure 4.4 is the case for p= 1/3. the deterioration in the performance of user 2

for very high ASNR, as predicted, is due to the fact that p2 SNR2 >> SNR1 mentioned

in Section 4.1.1. With the constraint from (4.10) the curve of user 2 matches that

of [3], while the performance of user 1 is slightly degraded over a limited range of

ASNRs.

4.1.3 Simulation
1. Simulation on error performance

Numerical results from simulation of the error probability are presented as func-

tions of signal-to-noise ratio and the crosscorrelation coefficient. The error proba-

bility curves are plotted versus the different of the two input SNRs, i.e. ASNR =

S N R2 — SNR1 (dB), with S'NRi kept constant . Three different crosscorrelation co-

efficients, p = 0.7 (corresponding to the high bandwidth efficiency system), p = 0.5

and p = 1/3 are considered. The constraints mentioned above are applied to avoid

the possible cancelation of the stronger signal at its output side. To assure the ac-

curacy of the Monte-Carlo method, the error probability is estimated after at least

10 bits in error are observed. The error probability curves for three different p's are

depicted in Figures 4.5, 4.6 and 4.7. Observing the curves from the simulation and

the computation in the Section 4.1.2, we can see that they match very well.
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Figure 4.5 Simulated error performance with bit estimates obtained from conven-
tional detector with p = 0.7, and SNR1 = 8 dB.

a)
a,

-2
	

0
	

2 	 4 	 6
	 8	 10

	
12

SNR2-SNR1 (dB)

Figure 4.6 Simulated error performance with bit estimates obtained from conven
tional detector with p = 0.5, and SNR I. = 8 dB.
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Figure 4.7 Simulated error performance with bit estimates obtained from conven
tional detector with p 1/3, and SNR1 = 8 dB.
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2. Convergence speed

In the adaptive canceler, the speed of convergence is also interesting. With the

minimum power method, weights are updated at each iteration and will reach their

optimum values if the iteration converges. The stability and the speed of convergence

is determined by in (4.1). A simulation has been done to observe the performance

of the weights as it varies for different input signal-to-noise ratios. Figure 4.8 and

Figure 4.9 are the curves for w 1 and w 2 versus the iteration step, where SNR1 =

SNR2 = 8dB, p = 0.7. Figure 4.10 and Figure 4.11 are those for SNR 1 = 8dB,

SNR2 = 14dB and p = 0.7. p, varies from 0.0002 to 0.002 in both cases.

From the curves shown above we can see that, when p = 0.0002, convergence

occurs at around 20,000 bits, while it is achieved at about 2,000 bits when = 0.002.

The larger the p is, the faster the convergence is approached. Of course ,u, cannot

exceed its limitation, otherwise the weights will diverge and the system performance

collapses. It also can be seen that the fluctuation of the weights occurs for the case

of large value of it, while convergence gets fast. The performance on = 0.0008 gives

fast convergence and little fluctuation.
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Figure 4.8 Weight (w1 ) convergence-bit estimates obtained from conventional de-
tector. p = 0.7, SNR i. = SNR2 = 8dB
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Figure 4.9 Weight (w 2 ) convergence-bit estimates obtained from conventional de-
tector. p = 0.7, SNR1 = SNR 2 = 8dB
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Figure 4.10 Weight (w i ) convergence—bit estimates obtained from conventional de-
tector. p = 0.7, SNRi = 8 dB and SNR2 = 14dB
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Figure 4.11 Weight (w2 ) convergence—bit estimates obtained from conventional de-
tector. p = 0.7, SNRi = 8 dB and SNR2 = 14dB
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4.2 Adaptive Scheme with Bit Estimates Obtained from

Decorrelator Outputs

4.2.1 Scheme

Another structure of the CDMA detector is shown in Figure 4.12. The decision

system consists of two stages. The first one is a decorrelating detector that provides

the initial bit estimates, followed by adaptive interference canceler.

Figure 4.12 Two-stage receiver for two synchronous users—bit estimates obtained by
decorrelator

The weights are updated iteratively by the control algorithm that simultane-

ously minimizes the output powers Elyn and Efy31. The optimum weights are

obtained the same way as in (4.1)

wi (n + 1) = tvi( 	
dE {On)}

,j = 1,2
dwi

The outputs of the canceler are as in (4.6) and (4.7). Applying the same derivation

shown in (4.2) through (4.5), and considering (2.21) through (2.24), we get

wlo = \/A1E{b2b2} + 10\ I A2E{b162} E{7112}

191 A2E{b21;2}
	

(4.22)
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W20 = V/A2E{b1l;3} 4A1E{b21;1} E{72261}

p \/A-I E -01611
	

(4.23)

By the substitution of (4.22) and (4.23) into (4.6) and (4.7), it is shown that the

canceler outputs become

Ylo = 	 PN/A2[b2 — Elb21;211;2] 	 (4.24)

Y20 = A2b2 PVAAbl EV)1 611 1;11 + n2 	 (4.25)

in which

E{b2 b2} = Pr(b 2 = b 2 ) — Pr(b2 b2 )

= 1 — 2Pi 2 (€)

But

Pi2(€) = Pr( b2 = 11b2 = —1)Pr(b2 = —1) + Pr(b2 = — 111)2 1)Pr(b2 = 1)

Pr {Tn. > ( 1 — p2 WA2,1 21 Pr 7-1 1 < —( 1 — p2 )\/A2}
2

Q
(  — p2 WA2  ) 1

Q ( 
 —(1 — p2 ) ,VA2

2	 Ai — p2 )N0 /2	 z	 \/(1 — p2 )N0 /2    

(4.26)

Elb2 62 1 = 1 — 2Q	
(1 —N0192/)2A2) 	

(4.27)

= Q

hence

Similarly

E{6 1 1;1 } = 1 — 2Q	 (1 P2)A1 )	 (4.28)
N0 /2

From (4.24) and (4.25) it can be seen that, if the bit estimates of the decorrela-

tor's outputs are almost perfect, i.e. b 1 b1 and b 2 b2 , the decision at the canceler

output becomes interference free, i.e.
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and

Y2 22
 

A2 b2 + n 2

The error probability of the detection is then determined by the input signal-to-noise

ratios SNR1 = A i /No and SNR2 = A2 /No .

The two schemes depicted in Figure 2.5 and Figure 4.12 are identical in the

aspects that in both case the input signals are decorrelated and then used as the

references to an interference canceler. The only difference between them is that the

adaptive weight adjustment is employed in the latter, while the weights are fixed in

the former with the knowledge of the received energies. The outputs of interference

canceler are the estimates of the signals, which are shown as (2.25), (2.26) and (4.24),

(4.25). Assume the input signal-to-noise ratio of user 1, SNR1 is same for the both

case, and that of user 2, SNR2 is very small so that b 2 can not make correct estimate

at a high probability, hence, error is likely to happen. From (2.25), when b2 is a wrong

estimate, i.e. b2 b2 , since b2 , b2 E fl, —11, the residual interference term becomes

pviA2 (b2 — b2) ±2p,1 A2 	(4.29)

which results in interference doubling. At the same time, the residual interference in

(4.24) remains  

p\I A 2 [b2 — E {b2b2}62] (4.30)

in which E {b262} < 1. It is easy to see that     

p-VA2 [b2 — E{ b2i;2}52] 24A 2   

i.e. the interference increasing in (4.24) will not be greater than the interference dou-

bling in (2.25). Therefore, from the view of statistics, the scheme of adaptive weights

will not be worse than that of fixed weights, even better in low input signal-to-noise

ratio situation. Same conclusion can be drawn when S N is low.



4.2.2 Error Performance

For the detector proposed in Section 4.2.1, the error probability for user 1 is

Poi (6)	 Ebi,b,,b--2Pr{bi in errorlbi, b2 , b2 }

E [Pr(n i >	 A2b2 tv10bA2)Pr(621b2)Pr(b2)
b,,b;

Pr(n i < —	 — pvi A2b2 + wi0A)Pr(1;21b2)Pr(b2)]
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[Q ( N/A i + pVA2 + w i0 62 )
VNo / 	2

( ✓A i pVA2 wio62 

.FT0 12
(\MI — p .VA2 + w1o62 

\Mc) /	 2

(✓Ai + /0 -VA2 — wio1;2)
V.NO/2

Since, for example

+ Q

+ Q

Pr (1;2 b2 	— 1)

Pr(621b2 =  

Pr(1;2 = 11b2 —1) = Pr {772 > — p2 )vA2}

Q

(1 — p2 )A2 )
No /2

(4.32)  

after averaging over 1;2

po i (E) =
1
2 { 	

(VÄT+ p V A2 — wio)
 + 

(\I Ai — pv/ A2 + wio)]

_ 	 \ I No/2 	N012

I. _ Q (\ (1 —Not o2/	2)A2 )]

+ [
Q (Vri. — PN/A2 — wio)

+ Q 
(VAi + p\/A2 + wio)1

1/ N0 /2 	 VAT0/2

Q (\ (1 — p2 )A2 )
No /2

(4.33)

Similarly,
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po2(6) = + Q    

( 
1 — p 2 )A i

N0 /2

[Q (N/A2 p -VAi — W2o) Q (VA2+ p\/111+ w20)

VN0 /2	 VN0/2

Q ( (1 -- p 2 )A4 )

N0 /2

w20 are, as (4.22) and (4.23)

wip = p A2E{b262}

W20 	 PV111-E{bii)i}

E{b1 b1 } and E{b2 b2 } are as (4.28) and (4.27).

Numerical results from the computation of the error probability are presented

as the functions of signal-to-noise ratio and the crosscorrelation coefficients. For

comparison, the error curves for the canceler with fixed weights in [3] are also plotted.

All the error curves are plotted versus ASNRs (ranging from -10dB to 12dB), with

SNR 1 kept constant.

Same crosscorrelation values as before, p = 0.7, 0.5 and 1/3 are used in Fig-

ures 4.13, 4.14, 4.15 respectively. Signal from user 1 is considered as desired signal

while that from user 2, interference. The performance of user 2 improves as ASNR

increases. Now we consider the performance of user 1.

Instead of coming from the conventional detector in Section 4.1, the bit esti-

mates here come from the decorrelator whose performance is invariant to the inter-

fering signal energies. From the figures it is seen that the error probability of the

decorrelator remains unchanged with interfering signal strength. Due to its error per-

formance invariance to the received signals' energies, the decorrelator is an excellent

where w 10 and

(4.34)
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Figure 4.13 Computed error performance with bit estimates obtained from decor-
relator with p = 0.7, and SNR1 = 8 dB.

a

Figure 4.14 Computed error performance with bit estimates obtained from decor
relator with p = 0.5, and SNRi = 8 dB.
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Figure 4.15 Computed error performance with bit estimates obtained from decor-
relator with p = 1/3, and SNR1 = 8 dB.

choice for the first stage. It is also noticed that the considerable performance degra-

dation of the decorrelator occurs with the increasing value of p. The degradation

results from the decrease of the signal-to-noise ratio at the output of the decorrelator

in comparison to its input, as shown in (2.27).

The performance of user 1 improves as the interfering user becomes stronger.

When the interfering signal is sufficiently strong, it is the noise, rather than interfer-

ence that is a primary source of errors, since the interfering signal is estimated very

well and hence it is completely canceled. Thus, the error probabilities of user 1 in the

figures remain constant when the energy of user 2 keeps increasing, in which case the

interference is totally canceled so that only SNR1 determine the error performance.

When the interfering signal is weaker, it is observed that the error probabilities

of two-stage detectors are only marginally higher than those of the decorrelator for

some range of ASNR. The explanation of the behavior is straightforward. The inter-

fering signal's bits are not well estimated and therefore the cancelation is not always



user 1 -
user 2 ---

1
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successful. The adaptive canceler adaptively displays better performance than one

with fixed weights as in [3], when the interfering signal energy is lower as predicted

in Section 4.2.1. On. the other hand, in the high interfering signal energy situation,

the performance of the both schemes becomes identical.

4.2.3 Simulation
1. Simulation on error performance

A simulation is conducted with p 	 0.7, 0.5 and 1/3 respectively. SNR1 is fixed

at 8 dB, while ASNR = SNR2 SNR1 (dB) varies from -4 dB to 12 dB. The

output error probability is plotted with respect to ASNli and the crosscorrelation

coefficients. Observing Figures 4.16, 4.17, 4.18 we notice that they match Figures

4.13, 4.14, 4.15 respectively.

2

0 62 4
Pe

12108

Figure 4.16 Simulated error performance with bit estimates obtained from decorrelat
or with p = 0.7, and SNR I. = 8 dB.
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Figure 4.17 Simulated error performance with bit estimates obtained from decorrelat
or with p 0.5, and SNRI. = 8 dB.
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Figure 4.18 Simulated error performance with bit estimates obtained from decorrelat
or with p 1/3, and SNR1 = 8 dB.
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2. Convergence speed

Figures 4.19 to 4.22 are the curves for weights w1 and w2 Convergence occurs ap-

proximately in 20,000 steps for i = 0.0002 and much faster for larger ifs. As SNR 1

is fixed at 8 dB, curve of w 2 displays larger fluctuation for SNR2 = 14dB than that

for SNR2 = 8dB. However, the severe fluctuation of w2 at large SNR2 is not critical

to the error performance. This can be concluded from (4.7)

Y2 = A2b2	 — w211 + n2

where the first term of the right-hand side is dominant when much stronger user 2

presents, therefore the correct decision can be achieved even though w 2 fluctuates

heavily.
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Figure 4.19 Weight (w i ) convergence—bit estimates obtained from decorrelator. p =
0.7, SNR i = SNR2 = 8dB
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Figure 4.20 Weight (w 2 ) convergence—bit estimates obtained from decorrelator. p
0.7, SN.Ri SNR2 -= 8dB
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Figure 4.21 Weight (w i ) convergence-bit estimates obtained from decorrelator. p =
0.7, SNRi = 8 dB and SNR2 = 14dB
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Figure 4.22 Weight (w 2 ) convergence-bit estimates obtained from decorrelator. p=
0.7, SN.Ri = 8 dB and SNR2 = 14dB



CHAPTER 5

CONCLUSIONS

A synchronous two-stage CDMA detector for two users which did not require knowl-

edge of energies of received signals, was discussed and analyzed. For the decision sys-

tem employing adaptive canceler based on the bit estimate coming from conventional

single user detector, constraint strategies were imposed to successfully prevent the

performance degradation of the stronger user due to the power inversion effect. The

two-stage detector based on the decorrelating first stage was shown to perform signifi-

cantly better than the conventional detector, decorrelating detector and the two-stage

detectors based on conventional detecting first stage. With the strong interference

present, its performance approaches the performance of an optimum detector. In the

presence of weak interfering signal, the adaptive scheme displayed better performance

than the fixed-weight scheme. Furthermore, the adaptive scheme did not require the

knowledge of the received signal energies while fixed-weight scheme did. Therefore,

there is no need for estimation of the received signal energies.

In the adaptive canceler, weights were adjusted in each iteration, and converged

to their optimum values. The iterative stability and convergence speed were deter-

mined by the factor it. Large fluctuation of weight performance occurred when one

user was much stronger than the other. However, the system performance was hardly

affected by the fluctuation due to the dominant strength of the stronger user.

The future work should include the multi user detector (user number is greater

than two), different adaptive weight control algorithms and asyschronous signal en-

vironment.
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