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ABSTRACT

On Adaptive Censored CFAR Detection

by
Loizos Anastasiou Prastitis

In an automatic radar detection system the received signal in every

range resolution cell is compared with a threshold to test for the presence of

a target. A Neyman-Pearson type test is used which maximizes the proba-

bility of detection for a fixed probability of false alarm. For the simple case

where the noise is homogeneous a fixed threshold is chosen to achieve the

designed constant false alarm rate (CFAR). In the more realistic case the

noise background is non-stationary due to clutter and interference. In this

situation, the threshold used for testing a particular cell is usually set adap-

tively using data from nearby resolution cells. A number of such adaptive

schemes have been proposed and these are reviewed and the analysis of some

of them extended. In this dissertation, new adaptive thresholding techniques

for use in nonhomogeneous background environments are proposed and an-

alyzed. It is shown that these new schemes under many conditions perform

better than the methods described in the literature in terms of achieving

lower probabilities of false alarm and higher probabilities of detection.

First we analyze the greatest-of, GO and smallest-of, SO-CFAR detec-

tors in time diversity transmission. Time diversity transmission is employed

to combat deep fades and the loss of the signal. We then present a com-

parison of the detection performance and the false alarm regulation of the

CA,GO and SO-CFAR detectors.

Then we propose and analyze the Automatic Censored Cell Averaging

CFAR detector, ACCA-CFAR, which determines whether the test cell is

in the clutter or the clear region and selects only those samples that are



identically distributed with the noise in the test cell to form the detection

threshold. In the presence of two clutter power transitions in the reference

window, the ACCA-CFAR detector is shown to achieve robust false alarm

regulation performance while none of the detectors in the literature performs

well.

For multiple target situations we propose and analyze the Adaptive

Spiky Interference Rejection detector, ASIR-CFAR, which determines and

censors the interfering targets by performing cell-by-cell tests, without a pri-

ori knowledge about the number of interfering targets. In addition, the results

of the Censored Cell Averaging CFAR detector, CCA-CFAR, are extended

for multiple pulse transmission and compared with those of the proposed

detector.

For multiple target situations in nonhomogeneous clutter the Data Dis-

criminator detector, DD-CFAR, is proposed and analyzed. The DD-CFAR

detector performs two passes over the data. In the first pass, the algorithm

censors any possible interfering target returns that may be present in the

reference cells of the test cell. In the second pass the algorithm determines

wheather the test cell is in the clutter or the clear region and selects only

those samples that are identically distributed with the noise in the test cell to

form the detection threshold. An analysis of the processing time required by

the proposed detector is also presented, and compared with the processing

time required by other detectors.

Finally we propose and analyze, the Residual Cell Averaging CFAR

detector, RCA-CFAR, an adaptive thresholding procedure for Rayleigh en-

velope distributed signal and noise where noise power residues instead of

noise power estimates are processed. The fact that the noise residues be-

come partially correlated to the same degree, if the adjacent samples are



identically distributed, enable us to identify non-homogeneities in the clut-

ter power distribution, by simply observing the consistency in the degree of

correlation.
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Chapter 1

INTRODUCTION AND
OVERVIEW OF PREVIOUS
WORK

1.1 Introduction

The received signal in a radar signal processor is always accompanied by noise. The

performance of the radar receiver is greatly dependent on the presence of noise, and

the receiver is desired to achieve constant false alarm rate, CFAR, and maximum prob-

ability of target detection. Thermal noise generated by the radar itself is unavoidable.

In addition, returns from other targets referred to as interfering targets, unwanted

echoes (clutter) typically from the ground, sea, rain or other participation, chaff and

small objects, interfere with the detection of the desired targets. The distinction

between clutter and target depends on the purpose of a radar system. For an air

surveillance radar, land, rain and weather conditions are clutter sources. For a radar

in metereology, weather conditions are regarded as a target, and aircrafts are consid-

ered as clutter. Land for instance, is considered the target for a ground mapping radar

while weather conditions and aircrafts constitute clutter sources. From experimental

data, the clutter backscattering coefficient (effective echoing area can be modeled

by either the Rayleigh, the Log-normal, or the Weibull distribution depending on

the type of clutter [1]. If the clutter returns are Rayleigh envelope distributed, and

they are identically distributed with the thermal noise, this constitutes the simplest

1
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clutter model. The environment in which the radar operates depends on the above

factors that may yield statistically non stationary signals with unknown variance at

the receiver input.

In general, the radar system consists of a transmitter and a receiver at the same

location with one or two antennas. The transmitted signal is an electromagnetic

signal or sometimes an acoustic one [2]. The amplitude of the signal at the receiver

input depends on the target radar cross section, RCS, which is a measure of the

amount of the electromagnetic energy a radar target intercepts and scatters back

towards the receiver. In general, the target RCS fluctuates because targets consists

of many scattering elements and returns from each scattering element vary. Target

RCS fluctuations are modelled according to the four Swerling target cases [3]. Cases I

and II represent targets composed of a large number of independent scatterers none of

which dominates, e.g. large aircrafts, rain clutter and terrain clutter. Cases III and

IV represent targets that have a single dominant nonfluctuating scatterer together

with other smaller independent scatterers, e.g. rockets and missiles. Swerling I and

II targets produce signals whose envelopes are Rayleigh distributed, while Swerling

cases III and IV targets produce signals whose envelopes are chi-squared distributed.

Cases I and HI assume slow target RCS fluctuations, and thus signal returns are

considered completely correlated pulse-to-pulse but independent scan-to-scan. Cases

II and IV assume rapid target RCS fluctuations and therefore signal returns are

considered independent pulse-to-pulse. It should be pointed out that for a single

pulse transmission per scan, case I is identical to case II, and case III is identical to

case IV.

1.2 Radar Signal Detection
The detection of a radar signal embeded in noise can be formulated as a problem

in hypothesis testing [4-8]. The null hypothesis, denoted by Ho, is the hypothesis
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that the received signal is due to noise only while the alternative hypothesis, denoted

by H1 , is the hypothesis that the received signal is due to a target return echo plus

noise. The null hypothesis, Ho , should be tested against the alternative hypothesis,

H1 to obtain a decision about the presence or the absence of a target. This test leads

to two kinds of error probabilities. The probability of false alarm, PF, which is to

decide H1 while hypothesis Ho is true, and the probability of miss which is to decide

1/0 while hypothesis H1 is true. A decision rule that does not require knowledge of a

priori signal statistics appropriate for radar signal detection, is designed based on the

Neyman-Pearson criterion. The optimum Neyman-Pearson detector, for this case is

shown in Figure 1.1, where r(t) denotes the received signal and co, the carrier angular

frequency. The input signal at the receiver, when a target is present, is an attenueded,

randomly phase shifted version of the transmitted pulse embedded in white Gaussian

noise [9]. The received signal r(t) is processed by the inphase and quadrature channels

as shown in Figure 1.1. For Swerling cases I and II, X and Y are Gaussian random

variables with parameter 0 and IL [N (0 , . Under hypothesis Ho (thermal noise only)

2u 2 and under hypothesis H 1 (signal plus noise) pc = 2o- 2 + 2a 2 where 2a 2 is the

signal power. Thus is given by

= 2a
2 	for Ho (1.1)

2o2 (1	 F-to-2 ) 	 for H1

If we define S = , the signal to noise ratio at the receiver input, SNR, is given by

2u 2 	for Ho
= 2u2(1 S) for H1

As shown in Figure 1.1, the input to the threshold device Q is given by

Q = x2 + y2

Thus, from the assumed noise model the conditional probability density function,

pdf, of Q is given by

=	
12e-q/0.2

2cr 1 	,—q/a2(1-FS) 
for 	 Ho

for H10.2 (1+

(1.2)

(1.3)

(1.4)
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The Neyman-Pearson criterion requires that the probability of false alarm, PF, is

less than a desired value, a, and that the probability of target detection should be

maximized. This results in the likelihood ratio test, that is,

H1

A(q) = Pon-1 (q1H1) >
(1.5)

PQ1H0(q( 1/0) <
Ho

where A(q) is the likelihood ratio, pQ w,(q1Hi ) is the conditional probability density

function, pdf, of Q when hypothesis Hi, i = 0,1 is true, and A is the detection

threshold which is obtained from the constraint PF = a, that is

PAIH-0 (ilHo)dA = a 	 (1.6)

The solution of (1.6) yields a threshold which is a function of the noise variance.

In a real radar environment where the total noise is a nonstationary process

whose variance may vary with time, the ideal fixed threshold detector does not achieve

any regulation in the probability of false alarm. For a design probability of false alarm,

PF = 10 -8 , a small increase in the noise variance by only 3dB results in an increase

of 10 -4 in the false alarm probability as shown in Figure 1.2.

1.3 The CA-CFAR Detector
As we saw in the previous section, the ideal fixed threshold detector may yield an

excessive number of false alarms. This overloads the radar receiver, since in addition

to the detection process, other processes are initiated by the radar, such as tracking

for example. In order to achieve constant false alarm rate, CFAR, adaptive thresh-

olding procedures are needed. Finn and Johnson in [10], proposed the cell averaging

constant false alarm rate, CA-CFAR, detector. The estimate of the noise level in

every detection is formed by the nearby noise samples. Then, based on this estimate

the detection threshold is set. In other words, the detection threshold is designed
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in such a way, to adapt to changes in the environment. The noise observations are

obtained by sampling in range and doppler as shown in Figure 1.3. The bandwith of

each doppler (bandpass) filter is equal to the bandwith of the transmitted rectangular

pulse, B, where B = 1/r and 7 is the transmitted pulse width. The output of each

square-law detector is sampled every 7 seconds which corresponds to a range interval

of c7/2. Each sample can be considered as the output of a range-doppler resolution

cell with dimensions 7 in time and 1/7 in frequency. Therefore we obtain a matrix

of range and doppler resolution cells, as shown in Figure 1.4. The CA-CFAR detec-

tor is shown in Figure 1.5, where we show the range cells only for a specific doppler

frequency. Each resolution cell is tested separetely in order to make a decision. We

shall assume that the test cell is the middle one, a customary assumption made in

the literature. The cells surrounding the test cell are known as the reference range

cells which comprise the reference window. The reference cells to the left of the test

cell are referred to as the leading range cells, while the reference cells to the right of

the cell under test are referred to as the lagging range cells. We assume that the cell

outputs are observations from statistically independent and identically distributed

random variables. The conditional probability density function of the output of the

jth range cell is given by

for j 1, , N(N = M/2). denotes the parameter of the distribution from

which the observation qi is generated. It should be pointed out that through out this

dissertation, uppercase letters are used to denote random variables, while lower case

letters are used to denote the corresponding observations. The value of it depends on

the contents of the jth cell. If the jth cell contains thermal noise only, it is normalized

to unity. If it is immersed in clutter then, u = 1 C where C denotes the average

clutter power to thermal noise power at the receiver input. If the jth cell contains a

target return then it = 1 + I, where I denotes the target return average signal power
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to thermal noise power ratio at the receiver input. If the jth cell is immersed in the

clutter and in addition, contains a target return then 1 C I. The cell under

test is assumed to be the one in the middle, and is denoted by the subscript 0. The

cell under test may contain either noise alone or target plus noise. The conditional

probability density function of the output of the test cell is given by

1 

PQ01H, (qo Hi) =	
2(72 (i+s) eXp 	 go 

1 	
2a2 (1+S) J 	 H1

exp(--u-)

for Swerling cases I and II, and

	1 2 	 S/2 	1	 go 	1

PC2o (q0	 =
2
 v[ 2a2 (1+S)]2 

[2a-	 1+S/2 q°J exp[ 2a2 (1+S/2) 1

2 ,72 	 20.2 ) 	 1/0

for Swerling cases III and IV. 20. 2 is the input noise variance and S is the average

received signal to noise ratio, SNR. The received signal r(t) is square law detected

and sampled in range by the N 1 range resolution cells as shown in Figure 1.5.

We assume that q l, qN are samples from exponential distribution and that they

are independent. The maximum likelihood estimate, 2;2 , of the parameter of the

distribution is derived as follows : The likelihood function is

L[2cr 2 ] P(q1) • • • qN; 20T2 )
N
11 p(qi ,2o-2 )
j=1

N

( 202 )n)
n 

exp [—	 (E q•)
2a 2 	3j=1

1 	 1
(1.10)	 .

The derivative of the likelihood function is given by

d[L(2o-2 )] 1 	N
	E 	 (1.11)

d202	 2,72	 (272)2 j=i

Equating the derivative to zero the maximum likelihood estimate of 2o. 2 is

1 N
20'2 = 	 q	 (1.12)

j=1

Thus, the maximum likelihood estimate of the noise level in the cell under test is

equal to the arithmetic mean of the nearby resolution cells. The noise level estimate
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is then scaled by a constant T, the threshold multiplier, which is chosen to achieve

the desired probability of false alarm a. The output of the cell under test is then

compared to the adaptive threshold Tq according to

H1

Qo 	 T Q 	 (1.13)

Ho

where Q is the sufficient statistic of noise level in the test cell, Q = N(2o-̂ 2 ), in order

to make a decision about the presence (H 1 ) or the absence (H0 ) of a target in the

test cell. The design expression for the probability of detection is

PD 	 Pr(Q0 > Tql-11)
oo

= f dqpQ(q) f N o wi (q0 1H i )dqo 	(1.14)
Tq

where pQ (q) is the pdf of the test statistic Q. Similarly the design expression for the

probability of false alarm is

PF = Pr(Q 0 > TQlHo )

The probability density function, pdf, of Q is pc2(q) = G(N, 1), where G(N,1) is the

Gamma distribution with parameter N and 1. Thus,

pQ(q) —
11(

1
N)q

N-1 exp(—q)	 (1.16)

Assuming that the primary target in the test cell is fluctuating according to Swerling

II model, substituting equations (1.8) and (1.16) into equation (1.14) the probability

of detection is

Setting S = 0, in equation (1.17), the design expression for the probability of false

alarm is

PF (1 + T)—N 	 (1.18)
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T s)

PD
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The scaling constant T is then computed from equation (1.18) thus,

T = (PFA) - N — 1	 (1.19)

It is clear from equations (1.17) and (1.18), that both the probability of detection

and the probability of false alarm are independent of the noise parameter it. As the

number of reference range cells becomes large (N oo), the probability of detection

approaches

and the probability of false alarm approaches

PF = liMN,,,„(i T) -N

= exp(—T) (1.21)

Equations (1.20) and (1.21) are the expressions which describe the performance of the

ideal (fixed threshold) detector. Thus, for homogeneous clutter background environ-

ment, the CA-CFAR detector is the optimum detector in the sense that its probability

of detection approaches that of the ideal fixed threshold detector, as the number of

reference noise samples becomes very large.

The CA-CFAR detector achieves the design probability of false alarm and a

high detection probability in a homogeneous background environment, that is, when

the received noise samples are identically distributed and statistically independent,

as we saw earlier. In a real environment howe-;,. the noise samples may not be

homogeneous. We will study the detection performance as well as the false alarm

regulation properties of the CA-CFAR detector and all other detectors considered in

this dissertation, based on the following four models of background environment.
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Model A: Clutter power transitions

This model is defined to describe the situation in which there is a single tran-

sition in the clutter power distribution as shown in Figures 1.6 and 1.7. In practice,

the clutter power transition may represent the boundary of a precipitation area. In

Figure 1.6 the cell under test is in the clutter, while in Figure 1.7 the test cell is in the

clear. A cell is said to be in the clear if it contains only thermal noise. As mentioned

earlier, the test cell is assumed to be in the middle of the reference window. Assuming

that in is the number of range cells immersed in clutter, then the test cell is in the

clutter, if and only if m > N/2, where N is the even total number of reference range

cells. If m < N/ 2, the test cell is in the clear.

Model B: Two clutter power transitions

This model is defined to describe the situation in which there are two clutter

power transitions in the clutter power distribution, as shown in Figures 1.8 and 1.9.

If m i and m 2 represent the location of the clutter power transitions in the leading

and lagging reference window respectively, and the range cells between m i and m 2

are immersed in clutter, the test cell is said to be in the clutter if m i < N/2 < m2

as shown in Figure 1.8. On the other hand if m 1 and N — m 2 range cells are immersed

in clutter, the test cell is said to be in the clear if m 1 < N/2 < m2 as shown in

Figure 1.9.

Model C: Spikes in individual cells.

This model is defined to describe the situation where the clutter background

environment is composed of homogeneous white Gaussian noise plus interfering tar-

gets. The targets appear as spikes in the individual range cells as shown in Figure

1.10. These targets may fall in either the leading or the lagging reference range cells

or in both the leading and lagging range cells.

Model D: Clutter and Spikes in reference window

This model describes the most general case in which not only there is a transition
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in the clutter power distribution, but also interfering target returns. Typical cases of

this model are presented in Figure 1.11.

1.4 Threshold Exceedance Probability
In this section we derive an expression for the threshold exceedance probability. This

expression will be used in the next section and through out this dissertation to derive

expressions for the false alarm and the detection probabilities of the detectors that

are considered. The threshold exceedance probability, Pr(E i ), is defined to be

Pr(Ei) = Pr(Q o > TQlHi), i = 0, 1 (1.22)

where Q is the sufficient statistic of the noise level in the cell under test whose

probability density function, pdf, is denoted by pc2 (q), and Qo is the random variable

denoting the output of the test cell. The threshold exceedance probability is equal to

PF for i = 0, while for i = 1, it is equal to the probability of detection PD. Defining

a new random variable R according to

R = Q o — TQ	 (1.23)

the threshold exceedance probability of equation (1.22) can be written as

Pr(Ei) = > i = 0,1 (1.24)

Let the conditional pdf of R given hypothesis Hi, i = 0,1, be pRilig (r1Hi ). Therefore,

the threshold exceedance probability is given by

00
Pr(Ei ) =	 pR i lis (rlHi)dr, i = 0,1	 (1.25)

The moment generating function, mgf, of R under hypothesis Hi is defined to be

(DRIHi (w) = gexp(—wR)11-1i]

E PRIH, (r1 Hi)exp(—wr)dr, (1.26)
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where E[.} denotes the expectation operator. Inverting the integral of equation (1.26),

we may express the conditional pdf of R in terms of its mgf as,

1
4) .R1H (w) exp(coR)dw i = 0, 1

27z c
(1.27)

The contour of integration c consists of a vertical path in the complex w-plane crossing

the negative real axis at w = c 1 . It is closed in an infinite semicircle in the left half

w-plane. c1 is chosen so that the contour c encloses all the poles of (DR I B., (co) that lie

in the left half w-plane. Substituting equation (1.27) into (1.25) and performing the

integration with respect to r, the threshold exceedance probability is obtained to be

1.5 The CA-CFAR Detector in
Nonhomogeneous Background Environment

In this section we derive expressions for the probability of detection and the prob-

ability of false alarm for the CA-CFAR detector in the presence of a clutter power

transition in the reference window of the cell under test. Also the case of the presence

of interfering targets is studied.

The detection performance as well as the false alarm regulation properties of

the CA-CFAR detector may be seriously degraded for the four models described in

section 1.3. If the test cell is in the clear region but a group of reference cells are

immersed in the clutter (Figures 1.7 and 1.9), a masking effect results. That is, the

threshold is raised unnecessarily and therefore the probability of detection (along with

the false alarm probability) is lowered significantly, even though there may be a high

SNR in the cell of interest. On the other hand, if the test cell is in the clutter but a

group of reference cells are in the clear (Figures 1.6 and 1.8), the probability of false

alarm increases intolerably. When interfering targets lie in the reference cells of the
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target under consideration (Figure 1.10), denoted hereafter as the primary target, the

threshold is raised and detection of the primary target is seriously degraded. This

is known as the capture effect. Assuming that m samples in the reference window

are in the clear and the remaining N — m samples including the test cell are in the

clutter, Q is given by

Q = q3 + E q3 	 (1.29)

where

PQ)(qj) = 14-7-c-1 exp(--11-i+c ) j m + 1,	 ,N

and C denotes the clutter to thermal noise power ratio at the receiver input. The

expression for the probability of detection is defined to be

exp(—qj)	 j =	 ,rn (1.30)

PD = Pr(Q 0 > TQlHi )
1

=	 furichm(w)dw
2iri

(1.31)

where (D RIB', (w) is the moment generating function, mgf, of R = Qo—TQ and is given

by

(DRIth(w)= 	
C(1 + + S) -1 (1 — wTrm

(w-1- 1(i+c+s)) (1 — coT(1+ C))N-m

Substituting equation (1.32) into (1.31) the probability of detection is obtained to be

1 	 T 	
m—N 	

T 	 -m
PD = (1 + Cr—N [

1 + C
+ 

(1 + C + S)
	l j 	 [1 + 	

1 + C + Si
1 

(1.33)

In equation (1.31), the contour of integration c is crossing the real w-axis at w = ci

and is closed in an infinite semicircle in the left half w-plane. c 1 is selected so that c

encloses all poles of 0 Rim(b)) that lie in the open left half w-plane. Setting S = 0 in

equation (1.33) the probability of false alarm is

-m
	PF = (1 + T)N_m [1 + 71 	(1.34)

1 + C

In the case where the test cell is in the clear and m reference samples are in the

clutter, Q is given in expression (1.29) where

{exp(—q.)	 j = m +1, ... ,N
PQ,(qi) = 	 1 	 q

i+c exP( — T+1-c7 ) i = 1, • • - ,m	
(1.35)

(1.32)
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Following the same procedure as before the probability of detection is derived to be

PD = (1 + C) -ni 	C) T/(1 S)) -m(1 T/(1 S))m -N 	(1.36)

Setting S = 0 in the above equation, the probability of false alarm is given by

PF = (1 + (1 + C)T) -m(1 T) m-N (1.37)

Similarly, when rn interfering targets appear in the reference window with Q given in

equation (1.29) the probability of detection is

-rn
PD= [I + (1 + I) 	 T(1 + 8) 	 1.(1 +	 S)

[ 	 (1.38)1
where I is the interference to noise ratio. In Figure 1.12 we study the false alarm

regulation performance of the CA-CFAR detector when a clutter power transition is

present in the leading reference window and the test cell is in the clear. We assume

N = 16 and a design probability of false alarm, a = 10'. Clearly, the CA-CFAR

detector does not achieve the design probability of false alarm due to the fact that

the noise level estimate in the test cell is underestimated and a masking effect results.

In Figure 1.13 we show the probability of detection of the CA-CFAR when one and

two interfering targets are present in the reference window. We assume a window

of N = 16 and a design probability of false alarm of a = 10 -4 . In the presence

of one interfering target, the probability of detection degrades as compared to the

homogeneous environment as shown in Figure 1.13, due to the capture effect. The

degradation is even more acute in the presence of two interfering targets.

1.6 CFAR Detectors

To alleviate the problems mentioned above, different techniques have been proposed

in the literature [11-30]. The problem of the increase of the false alarm probability

due to the presence of a step discontinuity in the distributed clutter, has been treated
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by Hansen and Sawyers [11,12]. They proposed the greatest-of-selection logic in cell

averaging constant false alarm rate detector, GO-CFAR, to control the increase in the

false alarm probability. A detailed analysis of the false alarm regulation capabilities

of the GO-CFAR detector has been performed by Moore and Lawrence [13]. In

[14], Weiss has shown that if one or more interfering targets are present, the GO-

CFAR detector performance is very poor. He suggested the use of the smallest-

of-selection logic in cell averaging constant false alarm rate detector, SO-CFAR. The

SO-CFAR detector was first proposed by Trunk [15] in order to improve the resolution

of closely spaced targets. In order to improve the probability of detection of the CA-

CFAR, the GO-CFAR and SO-CFAR detectors, Barkat and Varshney [16] and Barkat

[17] proposed the use of multiple estimators to obtain the detection threshold. For

multiple target situations, when an a priori estimate about the level of interference

can be obtained from the radar's tracking system, it is possible to lower the adaptive

threshold, thereby minimizing the capture effect which deteriorates the performance

of the CA-CFAR detector. Mc-Lane in [18], proposed a modified CA-CFAR detector

which employs threshold compensation based on that a priori information about the

location of the targets. An extension of this procedure to the GO-CFAR and the SO-

CFAR detectors was performed by Al-Hussainni and Imbrahim [19]. Furthermore,

Barkat and Varshney [20] proposed the weighted cell-averaging CFAR, WCA-CFAR,

detector by assigning optimum weights to the sums of the leading and lagging range

cells such that CFAR is achieved while the probability of detection is maximized.

Barboy [21] proposed an interative censoring scheme to detect a number of targets

which may be present in the reference window.

Recently, a new class of order statistics-based thresholding techniques have ap-

peared in the literature [22-27]. Rohling [22] introduced an order statistic based

estimation technique to achieve CFAR for nonhomogeneous environments. He pro-

posed the order-statistic CFAR, OS-CFAR, detector which chooses one ordered sam-
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ple to represent the noise level estimate in the cell under test. Elias-Fuste et al. [23]

proposed two new OS-CFAR detectors that require only half the processing time of

the OS-CFAR detection [22]. One is the ordered statistic greatest of OSGO-CFAR,

while the other is an ordered statistic smallest of the OSSO-CFAR detector. Rickard

and Dillard [24], proposed the censored Mean Level Detector, CMLD, in which the

largest samples are censored and the noise level estimate is obtained from the remain-

ing noise samples. For a fixed number of interfering Swerling targets II, Ritcey [25]

studied the performance of the CMLD. Al-Hussainni [26] extended this procedure

to the greatest-of-detector. Gandhi and Kassam [27], proposed a generalization of

the OS-CFAR detector and the CMLD, known as the trimmed mean, TM-CFAR,

detector. The TM-CFAR detector implements trimmed averaging after ordering the

samples in the reference window. In the order-statistic detectors, mentioned above

the censoring points are preset. This implies that these detectors achieve robust

performance given some a priori knowledge about the background environment. In

general however, such a priori information may not be available, and these detectors

they may suffer similar masking and capture effects as well as increase in the false

alarm probability, like the CA-CFAR detector. To alleviate these problems in the

above mentioned fixed censoring schemes, adaptive censoring procedures have been

proposed in the literature [28-30]. In [28], the generalized censored mean level de-

tector, GCMLD, was proposed. The GCMLD employs a signal processing algorithm

which adaptively selects the censoring point by performing cell-by-cell tests. The

GCMLD is robust when the reference window contains interfering targets in homo-

geneous noise. In [29], the generalized two level, GTL-CMLD was proposed. The

GTL-CMLD achieves robust performance in the presence of both interfering targets

and clutter power transitions. In [30] the adaptive censored greatest-of, ACGO-CFAR

detector has been proposed. In this scheme, two tentative estimates of the noise level

in the test cell are obtained by independantly processing the outputs of the leading
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and lagging reference range cells. The final estimate of the noise level is set to be

the maximum of the two tentative estimates which are obtained by introducing a

cell-by-cell criterion for accepting or rejecting reference samples.

1.7 Dissertation Organization
In this dissertation, robust detection techniques for CFAR processing in non-homogeneous

environments are considered. First, in chapter II we study the GO and SO-CFAR

detectors for single pulse transmission. Due to the fact that in many practical situa-

tions time diversity transmission is employed in order to combat deep fades and loss of

signal, the results of the SO and GO-CFAR detectors are extended for multiple pulse

transmission. In chapter III, we propose a CFAR detection algorithm, the Automatic

Censored Cell Averaging CFAR detector, ACCA-CFAR, which determines whether

the test cell is in the clutter or the clear region and selects only those samples which

are identically distributed with the noise in the test cell to form the detection thresh-

old. We show that the required processing time for a decision to be reached is less

than that of the order-based statistics processor, the ACGO-CFAR detector. When

two clutter power transitions are present, the false alarm regulation properties of the

proposed detector are shown to be more robust as compared to those of the GO and

ACGO-CFAR detectors. In chapter IV we propose the Adaptive Spiky Interference

Rejection, ASIR-CFAR, detector which determines and censores the interfering tar-

gets by performing cell-by-cell tests. The detection performance of the ASIR-CFAR

detector is compared to those of the GCMLD and CCA-CFAR detectors in multiple

target situations. It is shown that when the probability of false alarm becomes stricter

and the reference window becomes smaller the detection performance of the proposed

detector is better as compared to those of the GCMLD snd the CCA-CFAR detectors.

Also we study the effect of the probability of false censoring on the design probability

of false alarm for both the GCMLD and the ASIR-CFAR detectors. In addition, we
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show that the required processing time of the proposed detector is less than that of

the GCMLD detector. The results of CCA-CFAR detector are also extended for time

diversity transmission. In chapter V we propose and analyze the Data Discriminator,

DD-CFAR processor in the presence of both interfering targets and clutter power

transitions in the reference window of the primary target. The DD-CFAR processor

performs two passes over the data. In the first pass, the algorithm censors any possi-

ble interfering target returns that may be present in the reference cells of the test cell.

In the second pass the algorithm determines whether the test cell is in the clutter or

the clear region and selects only those samples that are identically distributed with

the noise in the test cell. The false alarm regulation and detection performance of

the DD-CFAR detector are compared to those of the ACGO, TM, GO and SO-CFAR

detectors. Finally in chapter VI, we propose an adaptive thresholding procedure for

Rayleigh envelope distributed signals and noise, where noise power residues instead of

noise power estimates are processed. We show that it is the optimum constant false

alarm rate, CFAR, detector when the noise samples are statistically independent and

identically distributed in the sense that its detection performance approaches that of

the ideal (fixed threshold detector) as the number of noise samples becomes large.

However, an attractive feature of the proposed detector is that the noise residues be-

come partially correlated to the same degree, if the adjacent samples are identically

distributed, and this enables us to identify non-homogeneities in the clutter power

distribution which may be censored, by simply observing the consistency of the degree

of correlation between adjacently received samples.



	 squarer________
X

integrator

cos(coct)

r(t)
threshold
device

sin( coct)

Y
integrator 	 squarer

Figure 1.1 Optimum receiver, squarer realization

CO



6 80
	

2 	 4
I 	 I 	 1 	 I 	 I 	 I 	 I 	 I 	 I	 I 	 E 	 I 	 I 	 I 	 11111111

10
Increase in noise power (dB)

Figure 1.2 The effect of increased noise on the probability
of false alarm of a fixed threshold detector.

19

1

1 0 -8



Figure 1.3 Range and doppler sampling process. sample

receiver

IF signal
+ noise Doppler

Filter
Square Law
Detector

r(t)

Doppler
Filter Square Law

Detector

Doppler
Filter

Square Law
Detector



Doppler

cells forming
CFAR estimate

21

guard
cells

cell
under
test

Range

Figure 1.4 Matrix of range and doppler cells.



Input

Signal

Square
Law
Detector

Noise Level Estimator

q

- TT
Tq

Detection
Decision

Comparator

Figure 1.5 	 Cell Averaging CFAR Detector



Clutter
power (dB) test cell

0 	 m

Figure 1.6 Model of a clutter power transition when the test cell
and m reference samples are in the clear.



Clutter
power (dB)       

test cell              

0
	

m

Figure 1.7 	 Model of a clutter power transition when the test cell
is in the clear and m reference cells are in the clutter.



Clutter
power (dB)

test cell

0 	 m 
1
	 m 

2
	 N

Figure 1.8 Model of two clutter power transitions present,
one in the leading and the other in the lagging
reference window. Test cell is in the clutter.



Clutter
power (dB)

test cell

0 m 
2 

N

Figure 1.9 Model of two clutter power transitions present. The
test cell is in the clear and some of the reference
cells are in the clutter.



Clutter
power (dB) test cell

Figure 1.10 Sample model of homogeneous background
environment with a number of spikes present
in the reference window.



28

Clutter
power (dB)

test cell

0 	 cell number

Clutter
power (dB)

test cell

0 	 cell number

Figure 1.11 Sample clutter power distributions when one
and two transitions are present and spikes
appear in the reference window.



10

1

--1 7r-

1 0 -2

a)
10 -3

0

›•

10 -4

0

10 -5

10 -5

10 -7 111111111111111111111111 11111111 	 I

0 	 5 	 10 	 15	 20 	 25 	 30
	

35
	

40
Clutter to noise ratio (dB)

Figure 1.12. Probability of false alarm of the CA—CFAR
in the presence of a clutter power transition.
N=16, a=10 -4 .

29



1.0

30

0.9 —

0.8 —

0.7

z

* *-* *-* IT=none
00000 IT=1

0

co'

▪

 0.6
0

°

•

 0.5

-CD2 0.4
0

0.3 —

0.2 —

0.1 -
- ,-*

0.0
0 	 10 	 20 	 30 	 40

Signal to Noise Ratio (dB)

Figure 1.13. Probability of detection of the CA—CFAR
detector in the presence of interfering targets.
N=1 6 , cc=1 0 -4 .

/



Chapter 2

THE GO AND SO-CFAR
DETECTORS IN TIME
DIVERSITY COMBINING

2.1 Introduction
As we saw in the previous chapter, the presence of discontinuities in the background

environment, such as that produced at chaff or clutter edges, of the conventional cell

averaging, CA-CFAR detector, may cause the probability of false alarm to increase

intolerably when the cell under test is immersed in clutter. On the other hand when

the test cell is in the clear and a group of reference cells are in the clutter, a masking

effect results. Thus, depending on the location of the clutter edge we want to choose

the group of samples that are identically distributed with the noise in the test cell to

form the estimate of the noise level in the cell under test. If the test cell is in the clutter

and a clutter power transition is present in the reference window, the maximum of the

sums of the outputs of the leading and lagging range cells is chosen to represent the

estimate of the noise level in the test cell. This yields the greatest-of-selection logic in

cell averaging CFAR detector which is referred to as the GO-CFAR detector. In the

case where the test cell is in the clear the minimum of the sums of the outputs of the

leading and lagging range cells is chosen. This yields the smallest-of-selection logic in

cell averaging CFAR detector which is referred to as SO-CFAR detector. Also, the

presence of interfering target returns in the reference window of the primary target,

31
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causes degradation of the probability of detection. Thus, assuming that a number of

interfering targets are present either in the leading or lagging range cells, the noise

level estimate in the cell under test is chosen to be the minimum of the sums of the

outputs of the leading and lagging range cells (smallest-of-selection).

In communication systems, some parameters of the received signal such as the

amplitude or phase may flactuate with time and this phenomenon is referred to as

fading [6]. Similarly, in radar the received signal might fade due to target fluctuations,

so time diversity transmission, in which multiple pulses are transmitted, is employed.

In this chapter, not only we analyze the GO and SO-CFAR detectors for single pulse

transmission but in addition, we extend the analysis of [11,12,14] for a more realistic

approach where multiple pulses are transmitted.

In section 2.2, the GO and SO-CFAR detectors are described and analyzed for

single pulse transmission. In section 2.3 the analysis for the GO and SO-CFAR detec-

tors is extended for multiple pulse transmission. In section 2.4 we show the simulation

results in comparing the three detectors (CA,GO,SO-CFAR) for different background

environments. In section 2.5 we present a summary along with our conclusions.

2.2 The GO and SO-CFAR Detectors for a
Single Pulse Transmission System

In this section, we study the performance of the GO and SO-CFAR detectors when

one pulse per antenna scan is transmitted. As shown in Figure 2.1, the input to the

selection logic is the sum of the outputs of the leading window, U and the sum of the

outputs of the lagging window V. The output of the selection logic depends on the

particular CFAR processor. To control the increase of the probability of false alarm

due to the presence of a clutter power transition in either the leading or the lagging

reference window, while the test cell is in the clutter, the GO-CFAR detector was

proposed in [11,12]. In the GO-CFAR detector the estimate of the noise level in the
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cell under test is set to be the maximum of the sums of the output of the leading and

lagging range cells.

Thus, in the case of the GO-CFAR detector, the output of the selection logic is

the maximum of U and V, and

Q = max(U, V)

where
M

U 	 q;
i=1

and
N

v= E
j=M+1

The random variables U and V are governed by the Gamma distribution with pa-

rameters M and 1, G(M,1), where G(M, 1) is the pdf of a Gamma distribution with

parameter M and 1. Thus,

	Pu(q) =Pv(q) = 
1

F(m) qm -1 exp -q 	 q > 0	 (2.4)

The cumulative distribution function, (cdf), of U and V is therefore given by

Pu(q) = Pv(q) = q 
1
	 qm-1 exp(—q)dq	 (2.5)0 r(m)

Also, the cumulative distribution function, cdf, of Q which is given in equation (2.1)

is, [31]

	PQ(q) = Pu (q)Pv (q)	 (2.6)

The probability density function, pdf, of Q is equal to the derivative of the cdf of Q,

that is,

pQ(q) = —
d

PQ(q) = 2pu (q)Pu (q)
dq

--11	 A K_	 q

= 2 r(m) q1" exp( —q) fo r(m) exp( —q)dq	 (2.7)

(2.1)

(2.2)

(2.3)
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The integral in the above expression is the incomplete Gamma function which can be

expressed as finite series expansion

M-1 gki
7(M, = F(M) [1 exp(—q) E

k=0 •

Substituting equation (2.8) into equation (2.7), the pdf of the test statistic Q is

obtained to be

2qm-1 exp( —q)
 1 — exp ( — q) 	 q

k

pQ (q) 	 (2.9)
F(M)	 k=0 A '

The expresssion for the probability of detection of the GO-CFAR detector is obtained

by substituting equation (2.9) into equation (1.14), that is,

(2.8)

PD = 2 1-r- To  r 
2 

M-1 (M k —1) 2 + 
 TGO  ') -(M+k)E(

1+ S	 k=o 	 1+S (2.10)

For S = 0 the above expression yields the design probability of false alarm, PF

M-1 (
PF = 2(1 + TGO) — 2 E 	 k

m + k —1) (2 + TGO)
-(m+k)

k=0
(2.11)

Equation (2.11) is the design expression for the probability of false alarm and is used

to calculate the scaling constant TGO, by solving PF = CY.

The GO-CFAR detector performs well when a clutter power transition is present

in either the leading or the lagging reference window while the test cell is in the clutter.

However, in the presence of interfering targets or when a clutter power transition is

present while the test cell is in the clear, the detection performance of the GO-CFAR

detector degrades significantly. To alleviate this problem the smallest-of-selection

logic, SO-CFAR was proposed in [14]. In the SO-CFAR detector the estimate of the

noise level in the cell under test is set to be the minimum of the sum of the outputs

of the leading and lagging range cells. Thus, in the case of the SO-CFAR detector

the test statistic, Q, is given by

Q = min(U, V)	 (2.12)
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where U and V are given in equations (2.2) and (2.3) respectively. Thus, the pdf of

the test statistic Q [31] is given by

pQ (q)	 pu(q)[1 — Pv (q)] + pv (0[1 — Pu(q)]

= pu(q) pv(q) [pu(q)Pv(q) Pv(q)Pu(q)]

= Pu(q) Pv(q) - 	 (q) 	 (2.13)

Substituting the expression given in equation (2.4) into equation (2.13), where 4° (q)

is the pdf of the test statistic for the GO-CFAR detector and is given in equation

(2.9), the pdf of the test statistic for the SO-CFAR detector is obtained to be

2qm-1 exp(-2q)	 qk
pQ(q) = 	 (2.14)

r(m) 	 k=0 kl

Substituting the above expression into equation (1.14) the probability of detection of

the SO-CFAR detector is given by

Tso -Af	 m k — 1)	 Tso  ) - kPD = 2 2+  	 (2.15)
1 + S)	 2 + 1 + Sk=0

Setting S = 0 in equation (2.15) we obtain that the design expression for the proba-

bility of false alarm, PF, for the SO-CFAR detector is,

MM-1 (M+k — 1 	
k

)

PF = 2(2 + TSQ) - E 	 (2 + Tso)" 	 (2.16)
k=0

As in the case of the the GO-CFAR detector, equation (2.16) is used to calculate the

scaling constant Ts0, so that PF = a. The scaling constants for the SO and GO-

CFAR detectors are shown in appendix A for different sizes of reference window (N =

16, 24, 32) and three design values of probability of false alarm (10 -4 ,10 -6 , 10 -8 ).

Next, we consider the CA,GO and SO-CFAR in a time diversity system.

2.3 The GO and SO-CFAR Detectors in Time
Diversity Transmission

Assuming that L pulses are processed, the received signal r(t) is square law detected

and sampled in range by the N +1 resolution cells resulting in a matrix of L x (N +1)



{

9_L-10__ 	 I

PQ0 (go) = 	 r(L) exR—q0)
90 	 exp{-0/(1+S)]

r(L)(1+S)L

Ho
(2.19 )

H1
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observations that are denoted by qij, i = 1,	 , L and j = 1, 2, ... , N as shown

in Figure 2.2 Notice that we use j to index the cell number, whereas, i denotes

the observations corresponding to the ith pulse from the jth cell. As before, the

qij , i = 1, . . . , L and j = 0, , N(111 = N/2) are exponentially distributed random

variables. In this case, we do not process a single observation, that is, we first form

the sum of the L observations from each range cell,

L
qi E qii j = 0,	 , N	 (2.17)

qj given in equation (2.17) are then processed as before by various detectors. The

difference is that in carrying out the analysis, the composite data are not observations

from exponentially distributed random variables, but they may viewed as observa-

tions from chi-squared random variables with 2L degrees of freedom [32], since each

composite observation is the sum of L exponentially distributed observations. Simi-

larly, the test sample qo is the sum of the L exponential observations from the test

cell, i.e.
L

go =	 gio 	 (2.18)
i=i

The conditional pdf of the test statistic Q o is now given by

The pdf of the noise level estimate of Q depends on the particular detector.

In the case of the cell averaging CFAR detector, CA-CFAR, Q is the sum of

all composite reference observations Q i, Q N. If Qj , j = 1, . . . , N are identically

distributed with the noise in the test cell, their probability density function, pdf, is

given by
L-1
qi 

PQ3(qi) r(L) exP(—qj) (2.20)

Therefore, the pdf of Q is given by

NL-1
pQ (q) = 	 exp(— q)

r(NL)
(2.21 )



-- 2 — r ) T - —r (1 T) -(N L+L —1—r)
L —1 r (2.25)

L-1

PF =
r=0
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(2.22)

The expression for the probability of detection is

rco
PD = 1 dqPQ (q)	 pwili(q01H1)40

Tq

Substituting equation (2.21) into (2.22) we have

L-1 TL-1.--r (L	 1	 1-1

PD E 	 qN L+L-2—r exp [ —qo 	)]clq	 (2.23)
r=0 (NL — 1)!(1 S)L - r-1 o	 1 S

Performing the above integration the probability of detection is obtained to be

PD =
L-1  NL-FL-2—r 	 TL-1r 	)—(NL+L-1—r)	 (2.24)
r=0 	 L —1 — r 	 (1 + SY---r-1 (1 + 

1 S

Setting S = 0 in equation (2.24) the probability of false alarm for the CA-CFAR

detector is

r=0

Considering now the GO-CFAR detector, the estimate of the noise level in the

cell under test is given by equation (2.1) where U and V are the sum of the composite

observations of the leading and lagging range cells respectively, that is,

U = L qj 	(2.26)
j=1

and
N

E qj 	(2.27)

Thus,
M	

Nq = max / (E qi) , E q;)} 	 (2.28)
j=1 	 j=M +1

In the case of the SO-CFAR detector, the estimate of the noise level in the cell

under test is given by equation (2.12). Thus, for the SO-CFAR detector

M	 N ) 1
q = min E{ ( qi 	

Li
,J=1 	 J=m+i

Substituting equation (2.19) into equation (2.22), yields

oo	 L-1 exp( — --C1-2711+S q)( --CLI2T1+S
PD	 PQM E  (L — 1 — k)!(1 S)L d0

	

	 qk=0

(2.29)

(2.30)



ML-1 L-
-2

k=0 r=

(ML-1--k+L— 2 — r)! 	 TD

(ML — 1)!k!(L —1 — r)! (2 + 1z)tIL+k+L-1-r
1+S (2.33)
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The pdf of the test statistic given in (2.28) for the GO-CFAR detector is derived to

be
2,7mL-iexp(— q)	 2 ML-1 exp(_20 qML-1+k

pQ (q) =  	 (2.31)F(ML) 	 F(ML) 	 k!

Substituting (2.31) into (2.30), the expression for the probability of detection for the

GO-CFAR detector is

L-1 	 9 T17(3)L-1-k	 leo AIL
exp(_(1p20 =	 +L-k-2	 )q)dq

kt (L-1 — kg(m L) 0 	 k 	
TGO

+ s

2 	 TG0L-r-1 ML-1L-1 00
	  1+S 	E	 qm-L+L+k_2_,_ exp(—(2 +  TGO  )0,432)

L) k! (L — 1 — r)! k=0 r=0 f0 	 1 + S A

which yields

T„L-1-k
1+S 

ML-1 	 (1+ Tr)).ML+L-k-1
1+Sk=0 \

L-1
= 2 E (ML+L—k-2)

k=0 	 ML-1

For S = 0, the above expression yields the design expression for the probability of

false alarm, PF, formul(tipmleLp+ulle —traknim2isiio. n(ifo+r TthliGe06E, 0)...Gm10- +-CL_F kA detector, that is,

— 2 L-1

k=0 	 ML —1

ML-1L-1 (ML k L — 2 — r)! 	T6,0-1-T
—2 E E   (2.34)(ML-1)!k!(L —1 — r)! (2 + TGO)ML+k+L-1-r

k=0 r=0

Equation (2.34) is used to compute the threshold multipliers TG0, by solving PF = a.

Using equation (2.13), the pdf of the test statistic given in (2.29) for the SO-

CFAR detector is derived to be

pO.G

2 ML-1 exp (_20 qML-1+k
pQ (q) = 	

F(ML) k=0 	k!
(2.35)

Substituting equation (2.35) into equation (2.30) the design expression for the prob-

ability of detection for the SO-CFAR is obtained to be

	PSO — 
L-1 	 2(T12 )L-1-k(L An_ 2 — k)!

	D  
E 	

— k)m (A IL)(1 + Tso 
=0 (L 	 i+s)k 

(2.36)
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_ 2 LE-1( M L + L — k — 2
M L — 1k=0

(M L + k + L — 2 — r)!	
Tcc.) L-1—rML-1 L-1

1)!k!(L — 1 — r)! (2 + 
1-Es +2 E 

k.0 r=. (ML L — 	 Tz)ML-1-k-I-L-1-r (2.37)

As in the case of the GO-CFAR letting S = 0, the above expression gives the design

probability of false alarm for the SO-CFAR detector that is,

p p = L\-1	 2(Tso)L-1—k (11 M L -- 2 -- k)!
k -0= (L 1 — qr(mL)(1+ 7190 )M L+L—k-1 	 (2.38)
i 

—2 L-1 ML+L—k-2 	 Ts0L-1-k
ML — 1 	 ) (1 + Tso rni+L-k- 1

k=0

+2 
ML-1 L-1 (ML+k+L-2-0!

k=n 	 (M L — 1)!k!(L — 1 — r)! (2 + T50;	 L+r ("9 ) E E 	

The threshold multiplier T80 for the SO-CFAR is computed from the above expression

by solving PF = a. The scaling constants for L = 4, are also shown in appendix A.

2.4 Results
In this section we evaluate and compare the false alarm and detection performance

of the CA, SO and GO-CFAR detectors for different background environments. In

Figures 2.3 and 2.4 we study the detection performance of the CA, GO and SO-CFAR

detectors in homogeneous background environment. We assume a reference window

of N = 16 and design probability of false alarm, a = 10-4 . In Figure 2.3, where

single pulse transmission (L = 1) is assumed the detection performance of all three

detectors is approximately the same. The additional detectability loss introduced by

the GO-CFAR detector is very small and falls in the range of 0.1 to 0.3dB as shown

in Figure 2.3. In the case of the SO-CFAR detector the additional detectability

loss is shown to be approximately 1dB. In Figure 2.4, where multiple transmission is

employed (L = 4), the detection performance of all three detectors is also shown to be

approximately the same. However, the detection performance as compared to the case

Tsn  L-1—k
1+S 

(1 + 2:52)M L+ L — k —1
1+.9

k=0 r=0
)ML+k+L-1—r
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with L = 1 (Figure 2.3) is significantly improved due to the enhanced performance

offered by the time diversity transmission. For signal to noise ratio 15dB and above

the probability of detection for all three detectors is equal to one. In Figures 2.5

and 2.6 the detection performance of the CA,GO and SO-CFAR detectors in the

presence of one and two interfering targets is studied. We assume N = 16 and a

design probability of false alarm a = 10 -4 . In Figure 2.5, the SO-CFAR detector is

shown to be superior to both the CA and GO-CFAR detectors for L 1, 4. Both

the CA and GO-CFAR detectors suffer from the capture effect since the interfering

target in the reference window of the primary target raises the adaptive threshold. In

Figure 2.6 where two interfering targets are present, one in the leading and the other

in the lagging reference window the detection performance of all three detectors is

seriously degraded due to the capture effect. The SO-CFAR detector also suffers from

the capture effect in this case since both the leading and lagging reference window

contain interfering targets. Note that in both Figures 2.5 and 2.6 when L = 4 the

detection performance improves due to the diversity transmission.

In Figures 2.7 and 2.8 we study the false alarm regulation of the CA, SO and GO-

CFAR detectors (L = 1, 4) in the presence of a clutter power discontinuity (C = 30dB)

in the reference window. We assume that the test cell is immersed in clutter and that

N = 16. In both Figures when the number of cells immersed in clutter is sixteen

i.e. homogeneous environment, all detectors achieve the design probability of false

alarm a = 10 -4 . However, when the clutter edge is in the test cell the false alarm

probability of the SO-CFAR detector approaches unity and that of the CA and GO-

CFAR detectors is approximately one and two orders of magnitude higher than the

desired value (a = 10'). The false alarm regulation of the GO-CFAR detector is

shown to be superior to that of both the CA and SO-CFAR detectors.
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2.5 Summary and Conclusions
In this chapter, we described and analyzed the CA,GO and SO-CFAR detectors for

single pulse transmission. Then we have extended the analysis of the GO and SO-

CFAR detectors in [11,12,14] for time diversity transmission. In the presence of a

clutter power transition in the leading or the lagging reference window we showed

that the GO-CFAR detector performs better than the CA-CFAR detector. The SO-

CFAR detector was shown to be robust in the presence of interfering targets in either

the leading or lagging reference window of the cell under test. Finnally, we compared

the SO and the GO-CFAR detectors when time diversity transmission is employed.

The detection probability of both detectors was significantly improved due to the

enhanced performance offered by the time diversity transmission.
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Chapter 3

AN AUTOMATIC CENSORED
CELL AVERAGING CFAR
DETECTOR IN
NONHOMOGENEOUS
CLUTTER

3.1 Introduction
When the clutter background environment is not homogeneous, as we saw earlier,

the performance of the CA-CFAR detector is seriously degraded. If the test cell is

in the clear but some of the reference cells lie in the clutter, the threshold is raised

unnecessarily and therefore the probability of detection is degraded. On the other

hand, if the test cell is in the clutter but a group of reference cells is in the clear,

the CA-CFAR detector underestimates the noise level in the test cell thus yielding an

excessive number of false alarms. In order to alleviate the above problems, different

techniques have been proposed in the literature. The GO-CFAR detector, that selects

the maximum of the outputs of the leading and lagging reference window was studied

in the previous chapter. It was shown that the additional detectability loss due to

the greatest-of selection logic was in the range of 0.1 to 0.3dB. However, in the case

where the test cell is in the clear and some of the reference cells are immersed in

clutter, its detection performance is seriously degraded.
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In order to alleviate the above problems, a number of order statistics-based

thresholding techniques have been proposed in the literature [22-34 In the order

statistics-based processors, the reference samples are first ordered in ascending order

and then depending on the particular processor a censoring procedure is applied to

identify the reference samples that are not identically distributed with the noise in

the test cell. In [22-27] the censoring point(s) is(are) preset. This implies that a

priori knowledge about the background environment is needed for these detectors to

perform well. In [28-30] a signal processing algorithm which adaptively selects the

censoring points by performing cell-by-cell tests is used.

In this chapter, we propose an adaptive censoring algorithm which like the

detectors in [27,30] performs cell-by-cell tests to censor the unwanted samples, but

does not rank order the reference observations. In addition, the proposed detector

which is referred to as the automatic cenored cell averaging (ACCA) CFAR detector

is designed to be robust when more than one clutter power transition occurs in the

reference window, while the processors in [27,30] make no such provision.

In section 3.2, we briefly describe the ACGO-CFAR detector. In section 3.3,

we present a description of the ACCA-CFAR detector. The mathematical analysis to

derive the design equations used to implement the proposed detector is presented in

section 3.4. In section 3.5 we study the computational complexity of the ACCA and

ACGO-CFAR detectors in terms of processing time requirements. In section 3.6, the

detection performance and the false alarm regulation of the ACCA-CFAR detector

are evaluated by means of computer simulations. Its performance is compared with

the performances of the GO-CFAR and ACGO-CFAR detectors for homogeneous

and non-homogeneous background environment. Our conclusions are briefly stated

in section 3.7.
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3.2 The ACGO-CFAR Detector
The order statistics-based thresholding techniques in [22,24,25,27], require some a

priori knowledge about the background environment in order to censor the unwanted

samples, since the censoring points are preset. In [30], the Adaptive Censored Greatest-

of CFAR detector, which adaptively selects the censoring points was proposed for

various non-homogeneous background environments. In the ACGO-CFAR detector,

the censoring algorithm is applied independently and in parallel to both the outputs

of the leading range cells qj, j = 1, . . . , M(M = N/2) and the outputs of the lagging

range cells qj , j = M 1, . , N. The outputs of the leading and the lagging cells

are rank ordered independently of each other to yield the ordered sequences

q(i) 	 q(2) 5_, • • • , q(m) 	 (3.1)

and

q(M+1) C q(M+2) 5_, • • • , q(N)	 (3.2)

respectively. The censoring algorithm then, compares the ordered sample q(k+1) to

the threshold Tk Sk at the kth step. A decision is obtained according to

H1

q(k+1) < Tk Sk	 (3.3)

Ho

where Tk is the kth scaling constant which is selected so that the desired probability

of false censoring, PFc, is achieved. In equation (3.3), Sk denotes the sum of the

lower k ordered samples, that is,

k

Sk = E q(j) 	 (3.4)
a=1.

The censoring procedure stops if a particular test hypothesis H 1 is decided to be true

or when all samples in the group of cells under consideration are tested. The estimate

q of the noise level in the test cell is set to be the maximum of u and v, that is,

q max(u, v)	 (3.5)



M2+k - 1 mi k
	 + m1 m2 ) - (n-L2+k)
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— rn2m2 E
(

k=0
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(3.6)

(3.7)

where
„.,

11, = — E q(j)
rni J=1

and
1 M2

V =	 E q(N12-Fi)
-2 j= i

m 1 and m 2 are the samples in the leading and lagging reference window respectively,

that survive the censoring procedure. The probability of false censoring, PFC, the

ordered samples q(k+i), , M at the kth step of the censoring procedure is the prob-

ability that hypothesis H1 is decided to be true while hypothesis Ho is actually true.

The probability of false alarm, PFC, is derived to be [30]

PFC = k ) -I- Tk(M — Oi k

The probability of false alarm, PF, is equal to the probability that the output of

the cell under test, Q o is greater than the detection threshold, T q, under hypothesis

Ho , that is,

PF = Pr(Qo > QI-Wo) 	 (3.9)

where Q denotes the estimator of the noise level in the test cell given in equation

(3.5). The design equation for the probability of false alarm, PF, is derived to be [30]

-m l 4. (1 4. 	-M2

PF	 (1 -T

	

M1	 M2)

(3.8)

m2-1

— E
k=0

(mi k — 1,„,
m2 	 + m1 + m2 )-(mi+k)

k

The scaling constant T, is computed by solving the equation PF = a. In Figure 3.1,

we study the censoring capabilities of the ACGO-CFAR detector where out of M = 8

statistically independent random variables, m were generated with mean pc = 1 and

the remaining r = M — m with mean it = 1 + I denotes the interference to noise

ratio. The censoring is more robust as the interference becomes stronger. Also, as
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the number of samples containing interference increases the probability of censoring

these samples for a given I decreases.

3.3 The ACCA-CFAR, Detector
In this section, we present the algorithm, that the ACCA-CFAR detector uses to

censor the unwanted samples in the reference cells, that may/or not contain an ex-

tended clutter edge and obtain an estimate of the noise level in the cell under test. A

censoring procedure is implemented to make an assessment of the background envi-

ronment. The censoring procedure begins by first initializing two parameters, k 1 = 0

and k2 = N. q 1 is then compared with a scaled version of q2 , 1-142 , where 7', is the

scaling constant which is selected to satisfy the design probability of false censoring,

PFC. If q1 > T,q2 then the mean of Q 1 (Q 1 ) is decided to be greater than the mean

of Q 2 (Q 2 )(where we use uppercase letters to denote random variables and lowercase

letters to denote there corresponding observations). Thus, a high to low clutter power

transition is assumed to occur in cell 1 (hypothesis H 10 ) and k 1 is updated to 1. In

this event, the algorithm continues with the next step in which the samples q 2 and

q3 are considered. On the other hand, if q 1 < T,q2 two possible cases arise. Either

q1 and q2 are identically distributed (hypothesis H00 ) or a low to high clutter power

transition occurs (hypothesis H0 1 ). In order to determine which one of Hoo or H01

is true, we then compare q2 with Tcq i . If q2 > Tcq i hypothesis H01 is decided to be

true and lc ]. = 1. If q2 < Tcq i hypothesis H00 is decided to be true and k 1 remains

unchanged, i.e., k 1 = 0. The algorithm continues in the same manner until all the

samples from the leading cells are tested. The value of k1 is updated every time H10

or H01 is true. Observe that up to this point the maximum possible value of k i is

M — 1. Then, the last sample from the leading cells, qm, is compared with a scaled

version of the first sample from the lagging cells, 7 1,qm+1 . If qm > Tcqm+i we decide

that QM > Qm+i , i.e., hypothesis H10 is true. Since the test cell is located between



k2

q = E qi
i=ki+i

(3.11)
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the cells indexed by M and M 1, the clutter power transition may occur in either the

Mth cell or the test cell. It should be pointed out that in this test , it is not possible

to determine the exact location of the clutter edge as the test cell is not considered

by the censoring algorithm. In order to avoid an excessive number of false alarms in

the event that the transition occurs in the test cell, we assume that the noise in the

test cell is identically distributed with QM and the second parameter k 2 is set equal

to M. At this point the algorithm stops and the estimate noise in the test cell is

obtained by combining qK,..+. 1 , , qh-, which have been determined to be identically

distributeed with the noise in the test cell. On the other hand, if qm < Tcqm.4. 1 either

H00 or H01 might be true. As before, we compare qM+1 with 71,qm . > Tcqm

hypothesis H01 is decided to be true. Again the clutter power transition may occur

in either the test cell or the (M 1)th reference cell. As in the previous case, we

decide that the edge is located in the test cell and therefore M, while k 2 remains

unchanged, that is, all the leading samples are censored. If qm+1 < T,qm hypothesis

H00 is decided to be true and both k 1 and k2 hold on to these previous values. The

algorithm continues in the same manner until a clutter power transition is detected.

When a clutter power transition is detected, the value of k 2 is updaded accordingly

while the value of k 1 does not change when the lagging samples are being tested. If

no transition is detected k 2 = N. Observe that when a transition is detected in the

lagging cells, the algorithm stops without testing the remaining of the lagging cells.

This is due to the fact that after the transition, it is not possible to determine whether

any of the remaining cells are identically distributed with the noise in the test cell or

not. After the censoring procedure finishes, the noise level estimate, q, is set to be
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The output of the test cell is then compared to the adaptive threshold T(J)q, that is,

H1

go T(J)q (3.12)

Ho

in order to determine the presence (H1 ) or absence (H0 ) of a target in the test cell.

The scaling constant T(J) is chosen so that the design false alarm probability, a, is

satisfied. The variable J = k2 is the number of samples that are included in the

threshold estimation process.

In Figure 3.2, we study the censoring capabilities of the proposed censoring

algorithm where out of N = 16 ststistically independent random variables 4 were

generated with parameter iz = 0 and the remaining 12 with parameter p, = C. The

simulation was conducted for L = 1 and 4 and 6 x 10 -3 , 4 x 10 -3 , 10 -3 and

10 -4 . As expected, the probability of detecting the clutter power transition increases

as C increases. The unwanted samples are censored more efficiently (i) as /3 increases

because the adaptive threshold in each step of the censoring process decreases, and

(ii) as L increases due to the enhanced performance offered by the diversity in the

system configuration. For example when the clutter to noise ratio is 30dB and L = 1,

the probability of edge detection increases from approximately 0.5 to 0.9, when /3

increases from 10 -3 to 6 x 10'. On the other hand if L is changed to L = 4 for the

same clutter to noise ratio, the probability of edge detection approaches unity.

3.4 Analysis of the ACCA-CFAR Detector
The probability of false censoring, PFC, is defined as the probability to falsely de-

cide the presence of a step discontinuity in the reference window when in fact no

discontinuity is present. PFC, can be written as a contour integral of the moment

generating function, mgf, of the equivalent statistic R3 Qi — where qj and

qi_ i are the observations from the jth and (j — 1)th reference cells respectively. The



do [uv]

dxn

• • • (3.16)

L-1 ( L-}- k--1 \ 	Tck

2_,
k=0	

k	 ) (1 + T,PFC = (3.17)(1 + 	 11+k
k=0 \
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scaling constant 7 1, is selected so that the desired probability of false censoring, 1(3, is

achieved. Thus,

PFC =	 > 011100)

1
= —	 W-127r2i 	 4' I) R., Woo (w)clw

where the mgf of the equivalent statistic R.; is given by

(3.13)

(1) R, illoo
L 	 L

= E[exp(-w(E qij — Tc E qi(i-i))
i-1

]i. i=i
L 	 L

- fo ... f°° exp ( 
i=i

- E qii) exp (-w E qij) dqij . . . dqLjo 	 i.i
L 	 L

•fo . . . fo exp (- E qi ,j_ i) exp (Tow E qi ,j_ 1 ) dqi ,;_ i . . . dql,,j_ i
i.i

(3.14)

1=1

[(I 	 W) (1 —1TcA L

In equation (3.13), the contour of integration c is crossing the real co-axis at

co = c1 and is closed in an infinite semicircle in the left half w-plane. c 1 is selected

so that c encloses all the poles of (DR.,Woo(w) that lie in the open left half co-plane.

Substituting equation (3.14) into equation (3.13), the residue at w = -1 is

1	 dL-1	 1
	Res, i = 	

(L - 1)!lini'1 choL-1 w(1 - Tcw)L

1	 L-1 ( L _ 1 \ dk 0. 
	 (3.15)(L - 1)!

	 — Tew )—L dL-1—k(w -1)

	

= 	 li n1 	 1 	 /	k ) dwk 	 dwL-1-k'
E
k=0

and by using

)

(

)n v dnu + n dv dn- lu
0 	 dxn 	 1 dx dxn -1

(n ) dK u dn-ku
+ k ) dxk dxn-k + ...

n d2 v dn -2 u
2 ) dx 2 dxn -2

dnu
u

dxn

the probability of false censoring is derived to be
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The scaling constant 77, is computed from equation (3.17) by solving PFC =

The probability of false alarm, PF, is equal to the probability that the output

of the cell under test, go , exceeds the detection threshold, T(J)q, under hypothesis

1/0 . That is, from the test of expression (3.12), the probability of false alarm is given

by

PF = Pr(Qo > T(J)QIH0) (3.18)

where Q denotes the estimator of the noise level in the test cell which is given by

equation (3.11). Following the same procedure as in the derivation of the expression

for the probability of false ecensoring, the probability of false alarm, PF, is the contour

integral

PF =	
1

f W -1 4) RIH0(W)th-4,27ri

where the equivalent statistic R is given by

R = Q0 - T(J)Q

(3. 1 9)

(3.20)

The contour of integration is the same as that of equation (3.13) except c 1 is selected

so that all the poles of 4R1 ic,(w) that lie in the open left half w-plane are enclosed.

The moment generating function, mgf, of R under H o is given by

L 	 J L
Rillo(W) = E {exP( —WE qi0 -- EE qii))1

i=1 	 §=1 i=1

	= 100 0
	 Lioo

Jo exp (-co E gio) exp
i.,i

00 	 J L

	f• Jo	
o exp (w71 E E

j=1 i=1

	

/. 	 00 

= (1 +(1+w)(1 - \ —

E qio) dqio • • . dqL0
i=i

)
 J L

ii exP - EE qii dqii . . . dqLi
J=1 i.i

(3.21)

Substitution of equation (3.21) into (3.19) and with the residue at w -1 given by

1	 (.0-1
= (L dwL-1 w(1 Tco)J-L}

(L

1	 E
1 )! 	

L-1 ( L _ 1
(_ 1 )L-1-kw -(L-k)

k=0
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E PF (M - k1 ,k2 )Pr(111 — k 1 , k2 )
1=1 k2=m +1

(3.24)
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(J L k 1)! 	 Tk 
(J L — 1)! (1 — Tu.)).1L+k

the probability of false alarm, PF, is derived to be

(3.22)

L-1 (J1,-1- k —1
PF

k=0
T(J)k (1 + T(J)) — (n+ k) (3.23)

Equation (3.23) is used to calculate the threshold multipliers T(J), J = 1, . . . , N, so

that PF a. Observe that equation (3.23) is the expression for the probability of false

alarm under the assumption that the censoring procedure correctly identifies the J

reference samples that are identically distributed with the noise in the cell under test.

In general however, some samples that are identically distributed with the noise in the

cell under test may be censored or some samples that are not identically distributed

with the noise in the test cell may be included in the threshold estimation process.

The exact expression of the probability of false alarm is given by

where PF(M k1 , k2 ) denotes the conditional probability of false alarm given that

M — k1 samples from the leading and k 2 — (M + 1) samples from the lagging cells

are included in the threshold estimation process, and Pr(M — k 1 , k2 ) is the joint

probability mass function of M k J, and k2 . The joint probability mass function can

be written as

Pr(M — k 1 i k2 ) = Pr(M k 1 )Pr(k 2) ( 3.25)

since the random variables of the leading reference window are independent of those

of the lagging reference window. Assuming that the censoring procedure identifies

correctly all the samples that identically distributed with the cell under test, i.e.

Pr(M k1 ) =Pr(k2 ) = 1, equation (3.24) reduces to equation (3.23). The use of

expression (3.23) to calculate the parameter T(J), is justified under the assumption

made in designing a CFAR processor, that is, CFAR processors assume that the

reference noise observations are representative of the noise in the test cell. [27,29,30]
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In Figures 3.3 and 3.4 we present the probability of false alarm versus the probability

of false censoring for L 1, 4 and a = 10 -4 for the ACCA-CFAR detector. We

observe that when L = 1 and the desired PFG, is less than 6 x 10 -3 the probability

of false alarm that is achieved by the ACCA-CFAR detector is equal to the design

value. On the other hand, when the desired probability of false censoring is greater

than 6 x 10 -3 the probability of false alarm increases above the design value. Thus,

to avoid overcensoring which causes underestimation of the noise level in the test cell,

when L 1 and a = 10 -4 we choose the desired value of PFC to be 6 x 10'. It should

be pointed out that the maximum value of PFC with which a is achieved is chosen

to avoid reducing the censoring cababilities of the proposed algorithm, since it will

discourage censoring possible clutter edge(s). Similarly, when L = 4 and a = 10'

we choose the desired value of PFC to be 4 x 10'.

3.5 Time processing requirements
An attractive feature of the proposed detector as compared with order statistics-

based processors is the reduced amount of processing time required to implement the

censoring procedure which makes an assessment of the background environment and

then makes a decision about the presence or absence of a target in the cell under

test. In Figure 3.5, we compare the processing times of the detectors for L = 1. We

have assumed that in the order statistic processor ( ACGO-CFAR) the heap sorting

algorithm which is the fastest sorting routine [33] is used to rank order the data.

When the heap sort is used, N log2 N comparisons are required to sort the data. We

have also assumed that a single DSP processor [34,35], employing special floating

point hardware so that multiplications and additions take the same amount of time

to be executed, is used. The maximum required number of machine cycles for the

three detectors are derived to be

rAcGo = 2Nlog 2 —N + 4N + 1
2

(3.26)
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TACCA = 7N — 4 	 (3.27)

We observe that when

N > 24.5 	(3.28)

the execution time of the ACCA-CFAR detector is smaller than the execution time

of the ACGO-CFAR detector.

3.6 Results
The false alarm regulation and detection performance of the ACCA-CFAR detector

have been evaluated by means of computer simulations. The results are compared

with those of the GO and ACGO-CFAR detectors. The ACGO and GO-CFAR de-

tectors are analyzed in detail in [30] and [11,12] respectively. In the case of multiple

pulses (L = 4), the ACCA detector is compared only with the GO-CFAR detector.

The ACGO-CFAR detector is not shown because the order statistics analysis required

to compute the threshold multiplier is extremely cumbersome. The GO-CFAR de-

tector sums independently the outputs of the leading and the lagging range cells and

selects the maximum of the two to be the estimate of the noise in the test cell. The

ACGO-CFAR detector obtaines two tentative estimates of the noise level in the test

cell by independently processing the outputs of the leading and lagging range cells.

The final estimate of the noise level in the cell under test is set to be the maximum

of the two tentative estimates.

Unwanted samples in the reference window may be continously distributed in

the form of a clutter as shown in Figure 3.6. In Figures 3.6a,3.6b,3.6c the reference

window is shown with the test cell immersed in the clutter and some of the reference

noise samples in the clear, where in Figure 3.6d the test cell is in the clear and some of

the reference samples are in the clutter. The false alarm regulation performance of the

ACCA-CFAR detector is compared with those of the GO and ACGO-CFAR detectors
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based on the different environments shown in Figure 3.6. As mentioned earlier, when

the test cell is in the clutter, and some of the reference cells are in the clear, (as

shown Figures 3.6a,3.6b,3.6c) the conventional CA-CFAR detector underestimates

the noise in the test cell, yielding an excessive probability of false alarm. On the

other hand when the test cell is in the clear and a group of reference cells is in

the clutter, (Figure 3.6d) a masking effect results. That is, the threshold is raised

unnecesarily resulting in poor detection performance. In Figures 3.7 and 3.8 the

false alarm regulation properties of the ACCA-CFAR detector are shown for various

values of the background noise level. The results show the CFAR properties of the

ACCA-CFAR detector for N 16 reference noise samples and for single (L = 1) and

multiple pulse (L = 4) transmission. Three desired probabilities of false alarm are

considered (10 -2 , 10 -3 ,10') and the probability of false censoring is assumed to be

6 x 10' in Figure 3.7 and 4 x 10' in Figure 3.8. In both cases where L 1 and

L = 4 the false alarm probability of the proposed detector is shown to be robust for

all the three values of desired probability of false alarm considered.

In Figures 3.9 and 3.10, the probability of false alarm of the AC CA, GO and

ACGO-CFAR detectors is shown, when the test cell and r reference cells are in the

clutter. In both Figures all the detectors achieve the desired probability of false

alarm when the number of reference cells is 16, i.e. homogeneous case. As the clutter

power transition increases, the false alarm regulation of the ACCA-CFAR detector is

superior as compared with the case of the GO and ACGO-CFAR detectors. Although

the probability of detecting the clutter edge when C = 15dB is greater than the

probability of detecting the clutter edge when C = 5dB, the probability of false

alarm in the latter case is lower. This is due to the fact that the censoring procedure

sometimes may miss the clutter edge in the leading window, since the clutter power

transition is low and as a result the cells that are immersed in clutter will raise the

threshold, thus, the probability of false alarm is lowered. In the case of the ACGO-
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CFAR detector, the probability of false alarm increases as the clutter to noise ratio

increase as shown in Figure 3.9. When L = 4 and the clutter power transition is

high (30dB) as shown in Figure 3.10, the performance of the ACCA-CFAR detector

is superior to that of the GO-CFAR detector, even in the case where the clutter

edge is next or in the test cell. This is due to the fact that as we saw in Figure

3.2, the unwanted samples are censored more effectively as L increases due to the

improvement in the probability of edge detection provided by the diversity in the

system configuration.

In Figures 3.11 and 3.12, we present the probability of false alarm that is

achieved by the ACCA, GO and ACGO-CFAR detectors when a group of reference

cells surrounding the test cell are immersed in the clutter, that is, two clutter edges

are present, one in the leading and one in the lagging reference window. The ACGO-

CFAR detector is shown only in Figure 3.11 for L = 1. We observe that the false

alarm control properties of the ACCA-CFAR detector are more robust than those

of the GO-CFAR detector, especially when the clutter to thermal noise ratio, CNR

is high. This is due to the fact that the censoring procedure of the ACCA-CFAR

detector is more effective as the clutter to noise ratio increases. Also the GO-CFAR

detector that selects the maximum of the individual sums of the leading and the lag-

ging range cells, underestimates the noise level in the test cell, since some of the range

cells that are in the clear will be included in the threshold estimation, thus lowering

the adaptive threshold. In this environment, the false alarm regulation properties of

the ACGO-CFAR detector are poor. This is due to the fact that in the application

of the censoring procedure, all the cells in both the leading and lagging windows

that are in the clutter are censored. Consequently, the total noise in the test cell is

severely underestimated and the clutter in the test cell appears as a target return

causing the probability of alarm to approach unity as C increases. In all the cases

where L = 4, and as the clutter transition becomes higher the false alarm regulation
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of the ACCA-CFAR detector is superior compared to that of the GO-CFAR detector.

In both Figures when two clutter power transitions are present the robust perfor-

mance of the proposed detector as compared to the GO and ACGO-CFAR detectors

is demonstrated.

In Figures 3.13 and 3.14, the false alarm regulation probability of the GO,

ACGO and ACCA-CFAR detectors is examined, in the case where the leading window

is in the clear and the clutter edge is at the test cell and extended gradually as k

increases through out the lagging window. When L = 1 the performance of both the

ACCA and GO CFAR detectors are more robust as compared to that of the ACGO-

CFAR detector since the ACGO-CFAR detector for high clutter to noise ratio censors

all the cells immersed in clutter in the lagging window, and since the test cell is in

the clutter the noise in the cell under test is severely underestimated. As the number

of reference cells immersed in clutter in the lagging window increases, the GO-CFAR

detector which chooses the maximum sum of the outputs of the leading and lagging

window is superior, since this constitutes the best environment for the GO-CFAR

detector. When L = 4 and the clutter power transition is high, the false alarm

regulation of the ACCA-CFAR detector is more robust than that of the GO-CFAR

detector. Also in the case where some of the reference cells in the lagging window

are in the clear the false alarm regulation of the GO-CFAR is worst than that of the

proposed detector. On the other hand as the number of reference noise samples that

are in the clutter increases, the false alarm properties of the GO-CFAR detector are

superior since this constitutes the best environment for the GO-CFAR detector.

In 3.15 and 3.16, two clutter power transitions are present, one in the leading

and one in the lagging reference window. The false alarm regulation achieved by

the GO-CFAR detector is inferior in all cases since the maximum of the sums of the

leading and lagging reference window will be chosen, and consequently some of the

reference samples that are in the clear will be included in the threshold estimation.
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In Figure 3.16 where L = 4, the false alarm regulation of the ACCA-CFAR detec-

tor is superior, as compared with the probability of false alarm of the GO-CFAR

detector, demonstrating the robustness of the ACCA-CFAR detector in such acute

environments where two clutter power transitions are present.

In Figures 3.17 and 3.18, we show the false alarm regulation of the ACCA and

ACGO-CFAR detectors, in the case where a group of reference cells are immersed in

the clutter and the test cell is in the clear. The false alarm regulation properties of

the GO-CFAR detector are not shown, since the test cell is in the clear and a group

of reference cells is in the clutter. Thus, the GO-CFAR detector raises the threshold

unnecessarily, and the probability of detection along with the false alarm probability

are lowered significantly. In the case of the ACCA-CFAR detector, the probability of

false alarm is lower when C 5,15dB as shown in Figure 3.17. This is due to the fact

that the censoring procedure of the ACCA-CFAR detector may sometimes miss the

clutter edge when the clutter to noise ratio is low (Figure 3.2) and consequently the

adaptive threshold is raised, yielding in low probability of false alarm. However, in

Figure 3.18 where L = 4, the ACCA-CFAR detector achieves the design probability

of false alarm since the clutter edge in the lagging window is detected more effectively

due to the diversity transmission. The probability of censoring the clutter edge when

C = 15 and 30dB is greater than the probability of censoring the clutter edge when

C = 5dB, thus in the latter case, some of the reference samples immersed in clutter

are included in the threshold estimation. This causes the threshold to be raised

unneccesarily yielding in lower probability of false alarm.

In Figures 3.19 and 3.21 we show the detection performance of the ACCA-CFAR

detector. In Figure 3.19, we show the probability of detection of the ACCA,GO,CA,

Ideal and ACGO-CFAR detectors in homogeneous background environment. The

probability of detection in all cases is shown to be almost identical with the ideal

detector to be superior as expected. In Figure 3.20, we show the probability of
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detection of the ACGO, GO and ACCA-CFAR detectors, when the test cell and a

group of reference cells are in the clutter. The detection performance of all three

detectors is shown to be approximately the same. In Figure 3.21, the probability of

detection of the ACCA and ACGO-CFAR detectors is studied in the case where a

number of reference cells in the lagging window is immersed in the clutter and the

test cell is in the clear. In both cases where C 10dB and C = 20dB the detection

performance of the ACCA-CFAR detector is better than that of the ACGO. This

is due to the fact that in the ACGO detector, as the number of cells that contain

interference increases, the censoring capabilities of the ACGO-CFAR detector are

degraded as shown in Figure 3.1. In the above environment the samples containing

interference are not effectively censored since in the lagging reference window, out of

eight range cells, five are immersed in the clutter. It should be pointed out however,

that as the number of samples containing interference becomes smaller, the ACGO-

CFAR detection performance will improve significantly.

3.7 Summary and Conclusions
In this chapter, we have considered the problem of CFAR detection in nonhomo-

geneous background environments. We have proposed the ACCA CFAR detector,

which determines whether the test cell is in the clutter or the clear region and selects

only those samples which are identically distributed with the noise in the test cell

to form the detection threshold. The ACCA-CFAR detector does not require rank

ordering of the received data, thus, reducing the processing time considerably. The

processing time required for the ACCA-CFAR detector was shown to be less than the

time required by the ACGO-CFAR detector as the number of reference noise samples

increases. In addition, when two clutter power transitions are present (leading and

lagging window) the false alarm regulation properties of the ACCA-CFAR detector

are superior, as compared to those of the GO and ACGO-CFAR detectors.
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Chapter 4

AN ADAPTIVE SPIKY
INTERFERENCE REJECTION
CFAR DETECTOR

4.1 Introduction
The presence of interfering targets in the reference window of the conventional CA-

CFAR detector, causes the adaptive threshold to be raised unnecessarily, and conse-

quently the probability of detection degrades dramatically especially when the number

of interfering targets increases. To overcome this problem the SO-CFAR detector was

proposed in [14]. However, in the event that interfering targets appear in both the

leading and lagging reference window, the SO-CFAR detector also suffers from the

capture effect as we saw in chapter 2. In order to alleviate this problem, a number

of detection algorithms whose objective is to censor the unwanted spikes, have been

proposed in the literature [22-27]. These detection algotithms, first rank order the

received observations and use a linear combination of the ordered samples to estimate

the detection threshold. The weights of the higher order samples are set equal to zero

so that the largest returns which are likely to correspond to interference are not in-

cluded in the threshold estimation process. The major drawback of these algorithms

is that the censoring point is preset. In the event that the number of the samples that

are censored is greater than the actual number of interfering targets in the reference

window, some of the largest noise samples are censored as well. Therefore, the noise
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level in the test cell is underestimated causing an excessive number of false alarms.

On the other hand, these detectors suffer from the capture effect if the number of

samples that are censored is smaller than the actual number of interfering targets in

the reference window. These detectors perform well only when the number of samples

that are censored is equal to the number of interfering targets. Thus, a priori informa-

tion about the number of interfering targets is required for these detectors to perform

well. In general, such a priori information is not available. To overcome this prob-

lem adaptive censoring algorithms are needed [21,28]. Barboy et al. [21] proposed

the censored cell averaging CCA-CFAR detector where several passes over the data

may be required to detect a number of targets that may be present in the window

of interest. In [28], the generalized censored mean level detector (GCMLD) has been

proposed. The GCMLD employes a signal processing algorithm which adaptively

selects the censoring point by performing cell-by-cell tests.

In this chapter, we propose and analyze the Adaptive Spiky Interference Rejec-

tion ASIR-CFAR detector which determines and censors the samples that correspond

to interfering targets by performing cell-by-cell tests. The remaining samples are com-

bined to form the detection threshold. The ASIR-CFAR detector, like the CCA and

GCMLD detectors, does not require a priori knowledge of the interfering environment

to perform well. The detection probability of the ASIR, GCMLD and CCA-CFAR

detectors in multiple target situations are evaluated and compared. In the case of mul-

tiple pulses (L.4), the ASIR-CFAR detector is compared only with the CCA-CFAR

detector. The GCMLD detector is not shown because the order statistic analysis

required to compute the threshold multipliers is extremely cumbersome. Also, we

study the false alarm regulation of the GCMLD and the ASIR-CFAR detectors, for

different values of probability of false censoring. A comparison of the ASIR-CFAR

detector with that of the GCMLD detector in terms of the required processing time

for their implementation is also examined.
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In addition, the analysis of the CCA-CFAR detector is extended for for time

diversity systems. In real radar systems, time diversity transmission is often used to

circumvent the high probability of a deep fade on a single pulse transmission which

may result in loss of the signal [36].

In section 4.2, the CCA-CFAR detector is analyzed and we present the mathe-

matical analysis to derive the design equations used for the CCA-CFAR detector in

time diversity transmission. In section 4.3 we briefly describe the GCMLD detector.

In section 4.4, we present a description of the ASIR-CFAR detector, and we study

the effect of the false censoring probability on the design probability of false alarm for

both the proposed detector and that of the GCMLD. In section 4.5 the mathematical

analysis to derive the design equations used to implement the proposed detector. In

section 4.6, the detector performance of the ASIR-CFAR detector is evaluated by

means of computer simulations. Its performance is compared with the performance

of the CCA-CFAR and GCMLD detector for homogeneous and non-homogeneous

background environments. Our conclusions are briefly stated in section 4.7.

4.2 Analysis of the CCA-CFAR Detector
In the CCA-CFAR detector, the procedure for detecting the targets that may lie in

the window of interest is as follows [21]:

(i) The sum, sNo , of the outputs of all the cells (including the one in the middle of

the window) is formed,

N

SNo 	 (4.1)
j=o

where No N 1. Then, the output of each cell in the entire window is compared

to the threshold

b1 = aosNo 	(4.2)
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The samples which exceed this threshold are declared to correspond to target returns.

These samples are discarded and the remaining ones which are reindexed are summed

to form
N1-1
E qj	 N1 = No — j1,	 (4.3)
j=o

where j 1 is the number of samples censored in the first step. Notice that the remaining

samples have been reindexed.

(ii) The outputs of these remaining cells are compared with a new threshold

b2 ==a 1 .5 1,T, (4.4)

As in the first step, the j 2 observations that exceed the threshold are decided to

correspond to target returns and are not included in the threshold of the third step

which is
N2 -1

	3 N2 = E 	 N2 = NO — 	 j2 	 (4.5)
j=0

The procedure continues in the same manner until no samples exceed the threshold.

At the first iteration step the probability of false alarm in any one of the N +1 range

cells in the window of interest, say the one in the middle, is given by

PF Pr(Q0 > aO SNO !Ho)

The probability of false alarm can be written as the contour integral

1
	PF =	 W-14 ) R1H0 (W)dl.4.)

27ri c

where the equivalent statistic R is given by

R = Qo — aoSNo 	(4.8)

In equation (4.7), the contour of integration c is crossing the real w-axis at w

and is closed in an infinite semicircle in the left half w-plane. C 1 is selected so that

(4.6)

(4.7)



L-1 ( L(Nj — 1) k — 1
PF = E )(1 + - 6-141—)L (N) -1 )+kk=0 	 1-ao

kl—ao (4.14)

92

c encloses all the poles of (1),R ilio (c.,.)) that lie in the open half w-plane. The moment

generating function, mgf, of the equivalent statistic R under 1/0 is given by

]

( I) lilHo( 0) = E [exp(—w 
L
E qid E exp(  wa° ) 

L No-1
  qij

	

i.i	 1 - asp i=1. j=i,joo
= (1 +w) -L (1 	1 aa 	)L(N0-1)	 (4.9)

o'
--ow

a

Substituting equation (4.9) into (4.7) and with the residue at w = —1 given by

1 	 dL-1 [ 	 wao -L(N6-1)
Res,„,_,_ i = 	 lim,i 	  w -1 (1 —  	 (4.10)

(L — 1)! 	 dwL-1 	 1 — ao

the probability of false alarm is derived to be

L(No -1)+ k—1
PF = 2_,

k=0

(cto_j)k
kl—ao 

) (1 	 __ED___)L(N0-1)+k
s 1- as

If we let L 	 1(single pulse transmission) in equation (4.11) then,

PF = (1 — ao)N0_l

(4.11)

(4.12)

The threshold multiplier for the first iteration .2 0 is computed by solving PF = a.

In [21], the exact threshold multipliers for the subsequent iterations have not been

computed because the analysis is too cumbersome. Instead they are computed from

(1 — ai_ 1 )NJ -1 = a 	 (4.13)

which is similar to (4.12). Following the same approach, the threshold multipliers in

time diversity transmission are computed from

which is similar to (4.11). Next we give a brief description of the GCMLD detector

along with the design equations.
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4.3 The GCMLD Detector
The Generalized Censored Mean Level Detector, GCMLD, which does not require any

prior knowledge about the number of interfering targets and achieves robust CFAR

performance was proposed in [28]. The number of interfering targets is determined

by a censoring procedure which is applied to both the leading and the lagging range

cells independantly.

The outputs of the range cells are ranked in ascending order according to their

magnitude to yield the N (M = N/2) ordered samples

q (1) 5_ q(2) 5_ • • • q(M)	 (4.15)

Let the lowest ordered sample, q( 1 ), represent the estimate of the background noise

level. q (2) is then compared to the threshold T1q(1), where T1 is a scaling constant

chosen to achieve a desired probability of false censoring, PFC, the rank-ordered

samples q(j), j = 2, ... , M. If q( 2 ) is greater than T1 q( 1 ), it is decided that the samples

corresponding to qu), j = 2, ... ,111 are returns from interfering targets and therefore

will be censored. If q( 2) is less than T1 q (1) , then q (2) it is decided to correspond to

a noise sample without interference. In this case, the sum of the lower two ordered

samples S2 q(i) q(2) is formed. q( 3) is the compared to a new adaptive threshold

T2S2 . If q( 3) exceeds T2 S2 , it is declared to correspond to an interfering target return

and it is censored together with the samples that are greater than q( 3). Otherwise,

q(3) is declared to be a noise sample without interference. In general, at the kth step,

q(k+1) is compared to TkSk, and a decision is made according to

H1

>
Tk Sk 	(4.16)

Ho

where Tk is the kth scaling constant, and Sk is the sum of the lower k ordered samples.

Using the expression in (4.16), the probability of false censoring, PFC, is given by [28]

(M k + 1) 
PFC	

+ TM—k)111—k
(4.17)
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PF - (1 + T)N-m (4.18)
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Assuming that m 1 samples are censored from the leading cells and m 2 samples are

censored from the lagging cells, then the remaining samples in the leading and the

lagging window are combined to form an estimate, q, of the noise level in the cell

under test. q is then scaled by the constant T to achieve the desired probability of

false alarm, PF, which is given by [28]

4.4 The ASIR-CFAR Detector
In this section, the ASIR-CFAR detector is described and analyzed. Without loss of

generality, we assume that no two adjacent range cells may contain spiky interference

for this situation may be viewed as the case of a group of cells in the clutter, which

was the topic of chapter 3. The censoring procedure starts by comparing q 1 with a

scaled version of q2, Tiq2. The scaling constant Ti is selected to satisfy the desired

probability of false censoring 7. The desired choice of -y is presented later in the paper.

If q1 > Ti q2 , it is declared to correspond to an interfering target return. Consequently,

qi is censored. If qi < Tiq2 , one or two possible hypotheses might be true; either q i

and q2 are both noise only samples or q 2 is an interfering target return. The second

step of the censoring procedure depends on the outcome of the first one. If q i has

been declared to be an interfering target return, the censoring algorithm proceeds by

testing q3 since q2 must be a noise only sample as no two adjacent range cells contain

interfering targets. On the other hand, if the outcome of the first step is q1 < Tiq2 ,

we proceed by testing q 2 .

• In the former case, q3 is compared to both Ti q2 and Tiq4 . If q3 > Tiq2 and q3 > Tiq4 , 
q3

is decided to correspond to an interfering target return and is therefore censored. In a

similar manner as bofore the algorithm proceeds by testing q 5 . If these two conditions

are not satisfied, q3 is decided to be a noise sample and q 4 is then tested.
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• In the latter case, q 2 is compared to both Ti qi and Tiq3 . If q2 > TiQ 1 and q3 > Tiq3,

q2 is censored as it is declared to correspond to an interfering target return and the

algorithm proceeds by testing q4 , otherwise, q4 is tested in the next step.

In general, qi is compared to 	 and Tiqj+i , If q; > Tiqi_i and q; > Ti qi+i , qi is

censored and the algorithm proceeds by testing q;+2. Otherwise, q; is not censored

and qi _f. 1 is tested in the next step. The procedure continues in the same manner

until a decision about qN_ i is made. If qN__ 1 is decided to be an interfering target

return, the algorithm stops since its adjacent observation qN cannot correspond to

an interfering target return. If qN_ i has not been censored, a decision about qN is

made by comparing it with TigN-1. If qN >	 qN is censored. Otherwise qN is

included in the threshold estimation process. After the censoring procedure finishes,

the noise level estimate, q, is defined to be the sum of the uncensored samples. The

output of the test cell is then compared to the adaptive threshold T(J)q, that is,

H1

qo 	 T(J) q 	 (4.19)

Ho

in order to determine the presence (H1 ) or absence (H0 ) of a target in the test cell.

The scaling constant T(J) is chosen so that the design false alarm probability, PF,

is satisfied. Assuming m samples are censored by the censoring procedure, then the

veriable J (J = N m) , is the number of samples that survive the censoring process.

In Figures 4.1 and 4.2 we plot the probability of false alarm versus the probability

of false censoring for L = 1,4 and a = 10' and 10 -6 , for the GCMLD and the

ASIR-CFAR detectors. Note that by setting the design value of PFC = 7, we desire

to falsely declare a noise sample as a sample of a return echo from an interfering

target with probability 7, while by setting the value of PF = a means that we desire

to falsely declare a noise sample in the test cell as a target return with probability

a. If 7 > a overcensoring is encouraged which cause the actual probability of false

alarm to increase. If y < a censoring is discouraged and the interfering targets are
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censored with lower probability causing impaired target detectability. We observe

that when a = 10' and the desired PFC is less than 2 x 10' the probability of

false alarm that is achieved by th ASIR-CFAR detector is equal to the design value.

On the other hand, when the desired PFC is greater than 2 x 10' the probability of

false alarm increases above the design value. This is due to the fact that when PFC

is large overcensoring is encouraged. Therefore, the probability of censoring some of

the largest noise samples, which causes underestimation of the noise level in the test

cell, is high. Thus, when a = 10 -4 we choose the desired value of PFC to be 2 x 10 -3 .

Observe that the maximum value of PFC with which a is achieved is selected because

any PFC smaller than that will discourage censoring of possible interfering targets

thereby reducing the censoring capabilities of the proposed algorithm. Similarly,

when a 10 -6 the optimum choice of PFC is 10'. Similarly for the case of multiple

pulse (L 4) when a = 10' or 10 -6 the optimum choice of PFC is 3 x 10 -3 and

2 x 10' respectively. In Figure 4.2, we show the probability of false alarm versus

the probability of false censoring for N = 16 and 32 and a = 10' and 10 -6 , for the

GCMLD detector. In [28] where the GCMLD was proposed and analyzed no study

was presented on the effect of the probability of false censoring on the probability of

false alarm. So in the case of the GCMLD we also study the effect of the probability

of false censoring on the probability of false alarm and we choose the optimum value

for the probability of false censoring. The probability of false censoring was chosen

to be the same as the probability of false alarm. We observe that when a = 10'

and the desired probability of false censoring is less than 10 -4 the probability of false

alarm achieved by the GCMLD detector is equal to the design value for both N = 16

and 32. On the other hand when the desired probability of false censoring is greater

than 10' the probability of false alarm increases above the desired value for both

N = 16 and 32. Similarly, when a = 10 -6 the optimum choice for the probability of

false censoring is 10 -6 . Thus, in the case of the GCMLD detector the optimum value
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for the probability of false censoring will be the same as a.

4.5 Analysis of the ASIR-CFAR Detector
At the jth step, j	 1, N, the probability of false censoring , PFC, is the probability

that Q .; exceeds both Ti Qi_ i and TiQi+i when 	 Q; and Q,.+.1 are noise only

samples (hypothesis How), that is,

PFC = Pr(Q; > 	 > TiQ i+11-11000)	 (4.20)

and can be written as

,q,,T►
dq .la exp( — qi+i)

where by evaluating the inner intagrals we obtain

3

PFC = 	

L-1 (-1)(L —
• E 
	(L	 k)!

Z	 exp(—qi)(L — 1)! 2

k=0

L-1 (_1)q,+2qf1-1 exp(—M1 11TJ) E
(L 1 — r)!	

dq;
r=0 

and PFC is obtained to be

L-1 L-1 (1/T)2L-2-k-r(3L 3 — r — k)!((L 1 ) ) 1

(L — 1 k)!(L — 1 — r)!(1 2/Ti)3L-2-r-kk=0 

—2 N-"' 
((L — 1)!) -1 (11TOL-1-r(2L — 2 — r)!L-1

PFC

f=0 	(L — 1 — r)!(1

(4.21)

(4.22)

(4.23)

In the censoring procedure presented in section 4.4, the first and the last samples are

tested separately, for possible interfering targets, from all the other samples in the

reference window, since there is only one adjacent reference sample, that is q2 for the
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first sample and qN_ i for the last sample. Thus, the probability of false censoring the

first sample can be written as

PFC = Pr(Q 1 > Ti(22(Hoo) 	 (4.24)

while the probability of false censoring the last sample is

PFC = Pr(QN > TiQN_ i Woo) 	(4.25)

In equations (4.24) and (4.25), hypothesis H 00 denotes the case where the two samples

involved in these tests, are noise only samples. Considering the expresion in (4.25)

PFC, can be written as a contour integral of the moment generating function, mgf, of

the equivalent statistic RN = QN — TiQ N_i where qN and qN- 3. are the observations

from the last and the (N — 1)th reference cells respectively. The scaling constant Ti

is selected so that the desired probability of false censoring, 7, is achieved. Thus,

PFC = Pr(RN > 01Hoo)
1	 f

=	 T:7 I W-14 RN11100( W ) C1W (4.26)

where the mgf of the equivalent statistic R, is given by

L	 L

(DR,11100 = E exp( —w(Eqij — TcEqi(j-i)))
:=1

00 	 0o 	 L 	 L

	=
exp (— E 	 exp (—co E qii) dqii du;

	

i=i 	 i=i

• Jo 	exp (— E 	 exp (7-cco E qi,;_i) dqi,j-4 • • • dqL,j-i
i=i

1 	 1= 	
1 	 co) 	 (.0— Tc)r 	

(4.27)

In equation (4.26), the contour of integration c is crossing the real co-axis at w = c1

and is closed in an infinite semicircle in the left half w-plane. c 1 is selected so that c

encloses all the poles of (DRNIHoo ( 1 that lie in the open left half w-plane. For these.c4),

two tests, PFC is obtained by substituting equation (4.27) into (4.26), thus,

Tik

L-1	k	 (1 + Ti ) Li+k
k=0

PFC (4.28)



j 1,N

(4.29)

j = 1,N

That is the scaling constant is calculated from

(117'0 21* -2-k-r(3L-3-r-k)!((L-1)!) -1

1-dk=0 (L-1-kNL-1-0!(14-21Z) 3 L-2- r- k
\--,L-1 ((L-1)!) -1 (1/TO L-1-r (2L-2-r)! —2

13FC = 	 (L-1-r)!(14-1/Ti)2L-i-r

L k —1 )
z-k=0

Tik
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(i+ToL+k

In Figure (4.3) we compare the censoring capabilities of the proposed detector in

the case where time diversity transmission is employed, that is, L = 4. We assume

that two interfering targets are present in the reference window. Clearly for both

probabilities of false alarm considered, that is, 10 -4 and 10 -6 , when L = 4 the

censoring probability of the ASIR-CFAR detector improves dramatically due to the

enhanced performance offered by the time diversity transmission. For example when

the signal to noise ratio is 20dB, for L =1 the probability of detection is approximately

0.45 while when L =4 the detection probability approaches unity.

The probability of false alarm, PF, is equal to the probability that the output

of the cell under test, g o , exceeds the detection threshold, T(J)q, under hypothesis

Ho . That is, from the test of expression (4.19), the probability of false alarm is given

by

PF = Pr(Qo > T(J)QIII0) (4.30)

where Q denotes the estimator of the noise level in the cell under test. Following

the same procedure as in the derivation of the expression for the probability of false

ecensoring, the probability of false alarm, PF, is given by the contour integral

1PF 	 I
277-1 	

W- RI110(W)dW

where the equivalent statistic R is given by

(4.31)

R = Qo — T(J)(2 	 (4.32)

The contour of integration is the same as that of equation (4.26) except c 1 is selected

so that all the poles of (I) R iHo (w) that lie in the open left half w-plane are enclosed.
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The mgf of R under Ho is given by

L 	 J L
E[eXp	 qio T E qij))]

i=1 	 j=1 i=1

exp (—co 	 gio) exp (— E qio) dqio • • • dqLofoc

	 f oo

	

t=l 	 i=i

	

co J L	 J L
•
J
o 	r exp 	 qii exp 	 qii dqi; dqLi

	

j=1 i=1 	 j=1 1=1

	

= (1 + co) -L (1 — Tco) -11-1 	(4.33)

Substitution of equation (4.33) into (4.31) and with the residue at w = —1 given by

(w) =

1 	 ciL-1

(L 	 {w(1 — T th.)). L

1 	 L-1E 7- -k 	(_1)L-4-kw-(L-k)
(L — 1)! k=0

(JL + k — 1) !
	Tk

(JL — 1)! (1 — Tw)J-Ed- k
(4.34)

the probability of false alarm, PF, is derived to be

JL + k — 1 )
T(J)[1 + T (J)] -(JL+ k)

k
(4.35)

The threshold multipliers T(J), J = 1, ... , N — 1, are computed by solving PF =

a. Observe that equation (4.35) is the expression for the probability of false alarm

under the assumption that the censoring procedure correctly identifies the J reference

samples that are identically distributed with the noise in the test cell.

4.6 Results
The performance of the ASIR-CFAR detector in multiple target situations is studied

by means of computer simulation and compared to those of the CCA and GCMLD

detectors. The GCMLD detector is analyzed in detail in [28]. The design expressions

for the probability of false censoring and the probability of false alarm of the GCMLD-

CFAR detector were presented in section 4.3.
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An attractive feature of the proposed detector as in the case of the ACCA-

CFAR detector, is the reduced amount of processing time required to implement the

censoring procedure which makes an assessment of the background environment. As

in chapter three, we assume that the heap sorting algorithm, which is the fastest

sorting routine is used to rank order the data [33]. Also a DSP processor [34,35],

employing special floating point hardware so that multiplications and additions take

the same amount of time to be executed, is used. The maximum required number of

machine cycles for the two detectors are derived to be

TGCMLD 2N10g2-
N 

+ 4N +1
2

(4.36)

TASIR 	 (4.37)= 7N --4

In Figure 4.4, we show the the total execution time, expressed in machine cycles,

versus the size of the reference window. Clearly the execution time of the proposed

detector is much smaller than that of the GCMLD detector.

In Figures 4.5 to 4.7 we compare the censoring capabilities of the CCA, GCMLD

and ASIR-CFAR detetcors. In Figure 4.5 we assume a window size of N = 32 and

a probability of false alarm 10'. We show the probability of false censoring one,

two and three interfering targets. As the number of interfering targets increases, the

probability of censoring decreases in all three detectors considered and this may cause

degradation in the probability of detection. In Figure 4.6 the window size is N = 16

and we study the censoring capabilities of all three detectors for two different values

of false alarm probability, 10' and 10 -6 , and for two interfering targets present in

the reference window. The censoring capabilities of the CCA-CFAR detector are

seriously degraded as shown, when the probability of false alarm becomes stricter,

that is equal to 10 -6 . On the other hand the censoring capabilities , of the GCMLD

and the ASIR-CFAR detectors are more robust especially when the signal to noise

ratio is above 30dB. However, the GCMLD for values of signal to noise ratio less
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than 30dB, shows also some degradation in the probability of censoring while the

performance of the proposed detector is robust. For example, if the signal to noise

ratio is 20dB the probability of censoring in the case of the GCMLD when a = 10',

is approximately 0.52 while when a = 10 -6 is approximately 0.22. In Figure 4.7,

three interfering targets are present in the reference window and a probability of

false alarm of 10 -6 is assumed. The censoring capabilities of the three detectors are

compared in terms of the size of the reference window. Both the GCMLD and the

CCA-CFAR detectors suffer degradation in their censoring probability when the size

of the window is reduced from N = 32 to N 16 while the censoring capabilities

of the ASIR-CFAR detector remain unchanged as shown. In summary, in all three

detectors, as the number of interfering targets increases the probability of censoring

degrades. As the false alarm probability becomes stricter and the size of the window

smaller the performance of the GCMLD and the CCA-CFAR detectors is seriously

degraded while the performance of the ASIR-CFAR detector is robust. It should be

pointed out that in general it is desired to have a small, and keep N small to limit the

number of false alarms and minimize the likelihood of encountering a large number

of interfering targets in the reference window.

In Figure 4.8, we present the detection probability of the CA, CCA, and ASIR-

CFAR detectors in homogeneous background environment. We have assumed that

N = 16, L 1 and a = 10 -6 . The detection performance of the CCA, GCMLD

and ASIR-CFAR detectors is shown to be approximately the same. They are slightly

superior than that of the CA-CFAR detector. This is due to the fact that sometimes

the adaptive censoring procedures in the CCA, GCMLD and ASIR-CFAR detectors

may censor some of the largest noise samples thereby slightly underestimating the

noise level in the test cell. However, this effect is not significant.

In Figures 4.9 to 4.22, we compare the detection performance of the ASIR,

GCMLD and CCA-CFAR detectors when two, three, four, six and ten interfering
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targets are present in the N reference cells. In Figures 4.9 and 4.10, the detection

performance of the ASIR, CCA and GCMLD detectors are shown for a = 10 4 . Two

interfering targets and a single pulse transmission have been assumed. In Figure 4.9

one interfering target is present in the leading and the other in the lagging reference

window while in Figure 4.10 both interfering targets are in the lagging window. For

N = 16, the CCA-CFAR detector suffers from the capture effect. When N = 32

the detection performance of the GCMLD detector is shown to be better for signal

to noise ratio in the range of 15 to 25dB as shown in Figure 4.9. For example for

probability of 0.9 the relative loss in signal to noise ratio of the ASIR-CFAR detector

as compared to GCMLD is approximately 2dB. However, in the range of 0 to 15dB the

detection performance of the ASIR-CFAR detector is shown to be better. In Figure

4.11, a is reduced to 10' and two interfering targets have been assumed. When

N = 32, the detection performance of the GCMLD detector is superior to that of the

ASIR and CCA-CFAR detectors. However, when the size of the window is reduced

to N = 16 both the CCA-CFAR and GCMLD detectors suffer from the capture effect

while the performance of the ASIR-CFAR detector is robust.

In Figures 4.12 to 4.16 we compare the detection performance of the CCA,

GCMLD and ASIR-CFAR detectors for single pulse transmission and when three

interfering targets are present in the reference window. In all cases where the reference

window is small, N 16, the detection performance of the CCA-CFAR detector is

seriously degraded due to the capture effect. In Figures 4.12 and 4.13 we assume

that a = 10'. In Figure 4.12, the detection performance of the GCMLD detector is

shown to be superior to that of the ASIR-CFAR detector. However, when all three

interfering targets are present in the leading reference window as shown in Figure

4.13, the detection performance of the ASIR-CFAR detector is shown to be superior

to both the CCA-CFAR and GCMLD detectors for both N = 16 and N = 32. In

Figures 4.14 and 4.15 a is reduced to 10'. When N = 32 the detection performance
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of the GCMLD detector is shown to be better than those of the CCA and ASIR-

CFAR detectors. However, when the size of the window is reduced, N = 16, the

GCMLD detector suffers from the capture effect while the detection performance of

the proposed detector is robust. In Figure 4.16, we assume the presence of three weak

interfering targets in the reference window and single pulse transmission. For N = 32

the detection performance of the GCMLD and the ASIR-CFAR detectors are almost

identical and superior to that of the CCA-CFAR detector. However, when N = 16,

clearly the detection performance of the ASIR-CFAR detector is superior to both the

CCA-CFAR and GCMLD-CFAR detectors.

In Figures 4.17 and 4.18 we assume single pulse transmission and four interfering

targets in the reference window. In Figure 4.17 where a = 10', for N = 32 the

detection performance of the CCA-CFAR and GCMLD detectors are almost identical

and superior to that of the ASIR-CFAR detector. When the size of the window is

reduced to N = 16, both the CCA-CFAR and GCMLD detectors suffer from the

capture effect while the detection performance of the ASIR-CFAR detector is robust.

When the probability of false alarm becomes stricter, a = 10 -6 , as shown in Figure

4.18 the detection performance of the CCA-CFAR detector is degraded dramatically

for both N = 16 and N = 32. When N = 32 the detection performance of the

GCMLD detector is superior to that of the ASIR-CFAR detector in the range of

15 to 30dB. However, when the size of the window becomes smaller, N = 16, the

detection performance of the ASIR-CFAR detector is superior.

In Figures 4.19 to 4.22 we consider the presense of a large number of interfering

targets that appear in every other cell in the reference window. Although, the presence

of ten interfering targets may not be realistic, we are comparing the three detectors

to study their robustness in such acute environment. When the number of interfering

targets is large, the detection performance of the CCA-CFAR detector is seriously

degraded and in some cases as shown in Figure 4.19 and 4.22 the detection probability
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is almost zero. In Figure 4.19, we assume the presense of ten strong (b=5) interfering

targets in a reference window of size N = 32, and single pulse transmission. The

detection performance of the GCMLD detector is shown to be superior to both the

ASIR and CCA-CFAR detectors. The censoring procedure of the GCMLD detector,

censors the large number of interfering targets more effectively since the reference

noise samples are rank ordered and b=5. In Figure 4.20, we assume the presense of

ten weak (b=0.4) interfering targets and ten interfering targets with the same radar

cross section area (b=1.0) with the target in the test cell. Single pulse transmission

and a = 10 -6 is assumed. In the case where b = 1.0 the detection performance of

the GCMLD detector is slightly superior to that of the ASIR-CFAR detector while

when b = 0.4 the detection performance of the ASIR-CFAR detector is superior to

that of the GCMLD detector. This is due to the fact, that the weak interfering target

returns may be censored as noise samples by the censoring procedure of the GCMLD

and therefore may not be censored. In Figures 4.21 and 4.22 the size of the window

is reduced to N = 16. The detection performance of the proposed detector is shown

to be superior to both the GCMLD and CCA-CFAR detectors. It should be pointed

out that, in the presence of strong interfering targets and a large reference window,

N = 32, as shown in Figure 4.19, the GCMLD detector was superior while in the

case of a small reference window, N = 16, the ASIR-CFAR detector is shown to be

superior even in the presense of strong interfering targets, b = 10, as shown in Figure

4.22.

In Figures 4.23 to 4.25, we assume L = 4 pulses are processed. As the number of

interfering targets increases and the size of the reference window becomes smaller, the

performance of the CCA-CFAR detector deteriorates while the detection performance

of the proposed detector remains robust.

As we mentioned earlier it is generally desired to have a small and keep N

small to limit the number of false alarms and minimize the likelihood of encountering
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a large number of interfering targets in the reference window. The results presented

demonstrated that in these situations the performance of the proposed detector is

superior than that of the CCA-CFAR detector.

4.7 Summary and Conclusions
In this chapter, we have considered the problem of CFAR detection in multiple tar-

get situations. We have proposed and analyzed the ASIR-CFAR detector which

determines and censors the samples that correspond to interfering targets, using an

adaptive censoring procedure. The analysis of the CCA-CFAR detector was extended

in time diversity combining. The performance of the ASIR-CFAR detector was shown

to be superior as compared with the performance of the CCA and GCMLD-CFAR

detectors when both the window size, and the design false alarm probability are small.

Also the effect of the probability of false censoring on the design probability of false

alarm in the case of the GCMLD and ASIR-CFAR detectors was studied. In addi-

tion, we have shown that the processing time required for the implementation of the

proposed detector is less than the processing time required for the GCMLD-CFAR

detector.
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Figure 4.10. Probability of detection of the ASIR, GCMLD
and CCA—CFAR detectors when two interfering targets
are present in the lagging window.
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Figure 4.11. Probability of detection of the ASIR, GCMLD
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Figure 4.13. Probability of detection of the ASIR, GCMLD
and CCA—CFAR detectors when three interfering
targets are present in the leading window.
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Figure 4.17. Probability of detection of the ASIR, GCMLD
and CCA—CFAR detectors when four interfering
targets are present.
L =1, b =1 . 0, a=1 -4 , -y=2 x 10 -3
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Figure 4.20. Probability of detection of the ASIR, GCMLD
and CCA—CFAR detectors when ten interfering targets
are present.
N=32, L=1, b=1. 0, a=1 	 7=1 0-3
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Figure 4.21. Probability of detection of the ASIR, GCMLD
and CCA—CFAR detectors when six interfering targets
are present.
L=1, N=16, b=1. 0, a=10 -4 , -y=2x10 -3
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Figure 4.23. Probability of detection of the ASIR and the
CCA—CFAR detectors when two interfering targets
are present.
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Figure 4.24. Probability of detection of the ASIR and the
CCA—CFAR detectors when four interfering targets
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Figure 4.25. Probability of detection of the ASIR and the
CCA—CFAR detectors when three interfering targets
are present.
L =4 , b =1 . 0, a =1 0 -6 , -y=2 x 1 0 -3



Chapter 5

DATA DISCRIMINATOR
AVERAGING CFAR
DETECTOR IN MULTIPLE
TARGETS AND
NON-HOMOGENEOUS
CLUTTER.

5.1 Introduction
In CFAR, all the samples that are generated from distributions which are different

from the distribution that generates the noise in the test cell should be consored before

the detection threshold is formed. In the previous chapter, we have assumed that the

unwanted samples in the reference window are due to returns from interfering targets.

A censoring procedure which censors these interfering target returns was proposed

and analyzed. However, this is not the only source of interference, since some of the

reference range cells may be also immersed in clutter as we saw in chapter three.

In this chapter, we consider the problem of CFAR detection when a number

of range cells may contain interfering targets and/or a group of range cells may be

immersed in clutter. We propose a data processing algorithm which performs two

passes over the data. In the first pass, the objective of the algorithm is to censor

possible interfering target returns that may be present in the reference cells of the test
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cell. In the second pass the algorithm determines whether the test cell is in the clutter

or the clear region, and selects only those samples which are identically distributed

with the noise in the test cell to form the detection threshold. The proposed detector

is referred to as the data discriminator (DD) CFAR processor. In addition, unlike

the TM [27] and the ACGO-CFAR [30] detectors, the proposed detector does not

rank order the reference noise samples which is a time consuming process before the

application of the censoring procedure. We assume that all targets are flactuating

according to the Swerling case II model and are embedded in uncorrelated Rayleigh

envelope distributed clutter.

In section 5.2, we present a brief description and the design expression for the

probability of false alarm of the TM-CFAR detector. In section 5.3, a description of

the DD-CFAR detector is presented and the censoring procedure that the proposed

detector uses to censor any unwanted samples is described. In section 5.4, we present

the analysis of the DD-CFAR detector and we derive expressions for the probability

of false censoring an interfering target, probability of false censoring a clutter power

transition and the expression for the design probabilty of false alarm. In section

5.5, we present simulation results of the performance of the DD-CFAR detector as

compared to other detectors that are tailord for each specific background environment.

Finally in section 5.6, we present a summary along with our conclusions.

5.2 The TM-CFAR Detector
The trimmed mean CFAR detector [27], TM-CFAR, first orders the range cells ac-

cording to their magnitude and then trims T1 cells from the lower end and T2 cells

from the upper end before summing the rest. The noise level estimate, q, is set to be

N- T2

q = E q(3)
.2=2-,+1

(5.1)

where q(j) denotes the jth ordered sample. The output of the test cell is then compared
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to the adaptive threshold Tq, that is,

H1

qo C T q 	 (5.2)

Ho

in order to determine the presence (H1 ) or the absence (H0 ) of a target in the test

cell. The probability of false alarm, PF, is equal to the probability that the output

of the cell under test, go , exceeds the detection threshold, Tq, under hypothesis Ho.

That is, from the test of expression (5.2), the probability of false alarm is given by

PF = Pr(Qo > TqlHo) 	 (5.3)

and is derived to be [27]
N-T1-T2

PFA = 	 Mvi(T) 	 (5.4)

where

N! 
Aivt (T) = Ti !(N — T1 —1)!(N 	 — T2)

T1
T

N-3 + Tj=0 (N-Ti-T2)

and

Mvi (T) = 
a 	

i = 2, ... , N — T1— T2 	 (5.7)
i 
ai

  T

where a t = (N 	 i+1)I(N —T1 —T2 - i + 1 . The value of the threshold multiplier

T for a design probability of false alarm, a, is computed iteratively from equation

(5.4) for a given value of T1 and T2. When there is no trimming, (T1 = 0, T2 = 0) the

TM-CFAR detector reduces to the CA-CFAR detector.

5.3 The DD-CFAR Detector
In this section, we propose the Data Discriminator CFAR, DD-CFAR, detector. The

censoring procedure that the DD-CFAR detector employes to discard all the unwanted

samples in the reference window, is deployed in two passes.

x
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First Pass

During the first pass over the data, the censoring algorithm searches for interfering

target returns. At the first step q 1 is compared with a scaled version of q 2 , Ti q2 .

The scaling constant Ti is selected to satisfy the design probability of false censoring

PFCI = 'Y. If q1 > Ti q2 , it is declared to correspond to an interfering target return.

Consequently, q 1 is censored. If q 1 < Tiq2 , one of two possible hypotheses might be

true; either q i and q2 are both noise only samples or q 2 is a sample from a distribution

with a higher mean than the distribution of q 1 . The second step of the censoring

procedure depends on the outcome of the first one. If q i has been declared to be

an interfering target return, the censoring algorithm proceeds by testing q 3 . On the

other hand, if the outcome of the first step is q 1 < Tiq2 , we proceed by testing q 2 .

• In the former case, q3 is compared to both Tiq2 and Tiq4. If q3 > Tiq2 and

q3 > Ti q4 , q3 is decided to correspond to an interfering target return and is

therefore censored. In a similar manner as before the algorithm proceeds by

testing q 5 . If both conditions are not satisfied, q 3 is decided to be a noise

sample and q4 is then tested.

• In the latter case, q2 is compared to both Tiq i and Tiq3. If q2 > Tiqi and

q3 > Tiq3 , q2 is censored as it is declared to correspond to an interfering target

return and the algorithm proceeds by testing q 4 . Otherwise, q3 is tested in the

nest step.

In general, qj is compared to Ti q;_ i and Tiqi+i , If qj > Tiqa_ i and qj > Tiqi+i , qi is

censored and the algorithm proceeds by testing qi+2• Otherwise, qj is not censored

and qi.fi is tested in the next step. The procedure continues in the same manner

until a decision about qN_ i is made. If qN_ i is decided to be an interfering target

return, the algorithm stops since its adjacent observation qN cannot correspond to

an interfering target return. If qN_ i has not been censored, a decision about qN is

made by comparing it with TiqN_ i . If qN > Ti qN_ i , qN is censored. Otherwise qN is
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included in the threshold estimation process. Observe that in the first pass over the

data, the algorithm does not search for interfering targets being in adjacent range

cells as this case may be viewed as a cloud extended over a number of range cells

which is handled by the algorithm implemented in the second pass over the data.

Second Pass

During the second pass over the data, the censoring algorithm processes the remaining

samples to determine which ones are identically distributed with the noise in the test

cell. Before any tests take place, a new array of data q 1 , , qM , Tri+1 , , q7, is formed

by reindexing the samples that survive the censoring process of the first pass. The

test sample is located between qx4..- and qi-g+1 . Since the number of samples censored

from the leading range cells may be different than the number of samples censored

from the lagging range cells, M may not be equal to N/2. In this pass the algorithm

begins by initializing two parameters, k 1 = 0 and k2 = N. q1 is then compared with a

scaled version of q2 , T,q2 , where T, is the scaling constant which is selected to satisfy

the design probability of false censoring, PFCC = If q i > Tcq2 then the mean of

Q1(Q1) is decided to be greater than the mean of Q 2 (Q 2 )(where we use uppercase

letters to denote random variables and lowercase letters to denote there corresponding

observations). Thus, a high to low clutter power transition is assumed to occur in

cell 1 (hypothesis H10 ) and k1 is updated to 1. In this event, the algorithm continues

with the next step in which the samples q 2 and q3 are considered. On the other hand,

if q1 < Tcq2 two possible cases arise. Either q 1 and q2 are identically distributed

(hypothesis H00 ) or a low to high clutter power transition occurs (hypothesis H 01 ).

In order to determine which one of H00 or H01 is true, we then compare q 2 with Tcqi •

If q2 > Tcqi hypothesis H01 is decided to be true and ki = 1. If q2 < 7141 hypothesis

H00 is decided to be true and k 1 remains unchanged, i.e., k 1 = 0. The algorithm

continues in the same manner until all the samples from the leading cells are tested.

The value of k1 is updated every time H10 or H01 is true. Observe that up to this point
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the maximum possible value of k 1 is M — 1. Then, the last sample from the leading

cells, TH, is compared with a scaled version of the first sample from the lagging cells,

T47,-4 1 . If q7,--4 > Tcq-cf+1 we decide that Qv > QT,i+i , i.e., hypothesis Hio is true.

Since the test cell is located between the cells indexed by M and M+ 1, the low to high

clutter power transition may occur in either the Mth cell or the test cell. It should

be pointed out that in this test , it is not possible to determine the exact location

of the clutter edge as the test cell is not considered by the censoring algorithm. In

order to avoid a false alarm in the event that the transition occurs in the test cell,

we assume that the noise in the test cell is identically distributed with QM and the

second parameter k2 is set equal to M. At this point the algorithm stops and the

estimate noise in the test cell is obtained by combining az. • • • , qic2 which have been

determined to be identically distributed with the noise in the test cell. On the other

hand, if girl < +1 either H00 or Hal might be true. As before, we compare qic,i +i

with 71,q-1,7. If q—A-T+1 > 71,q1-1,7 hypothesis H01 is decided to be true. Again the clutter

power transition may occur in either the test cell or the (M + 1)th reference cell. As

in the previous case, we decide that the edge is located in the test cell and therefore

= M, while k2 remains unchanged, that is, all the leading samples are censored. If

qm+1 < Tcqw, hypothesis H00 is decided to be true and both k 1 and k2 hold on to their

previous values. The algorithm continues in the same manner until a clutter power

transition is detected. When a clutter power transition is detected, the value of k 2 is

updated accordingly while the value of k 1 does not change when the lagging samples

are being tested. If no transition is detected k 2 N. Observe that when a transition

is detected in the lagging cells, the algorithm stops without testing the remaining of

the lagging cells. This is due to the fact that after the transition, it is not possible

to determine whether any of the remaining cells are identically distributed with the

noise in the test cell or not.
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• dq.f"Zi exp(—q3+1)

PFCI {11(14 }3°r(L)}

(5.11)

•IT(WI— 1 exp(—q,) 
Jo

(1.2 ' dqjLfil exp(—qi_i)

138

After the censoring procedure finishes, the noise level estimate, q, is set to be

k2
q 	E qi 	(5.8)

The output of the test cell is then compared to the adaptive threshold T(J)q, that is,

H1

qo c T(J)q	 (5.9)

Ho

in order to determine the presence (H1 ) or absence (H0 ) of a target in the test cell.

The scaling constant T(J) is chosen so that the design false alarm probability, a, is

satisfied. The variable J = k2 — k1 is the number of samples that are included in the

threshold estimation process.

5.4 Analysis of the DD-CFAR Detector
At the jth step, j 1, N of the first stage of the censoring procedure, the probability

of false censoring an interfering target, PFCI, is the probability that Qi exceeds both

TiQ3--.1 and Tigi+i when Qi_ i , Qi and Q3+1 are noise only samples (hypothesis Hock),

that is,

PFCI = Pr(Qi > TQj_ i , Qi > TQj+i II1000 )	 (5.10)

and can be written as

where by evaluating the inner intagrals we obtain

f  1 3 oof 	 L-1 (-1)(L1)!0_i_ r 17L-1—r

I r(L) f Jo {q2/-l exp( qi[1. 2/Ti]) E 	
r=0 	 (L —1 — r)!

PFCI

(-1)(L — 1)!q11 -1-k

(L —1 — k)!
exp(—q;)(L — 1)! 2

k=0

+2qf—l exp(—M1 1/Ti]) 	(-1)q;r*J-1-r*L-1-r dqj
(L — 1 — r)!r=0

(5.12)
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(5.13)

(5.14)

and PFci is obtained to be

L-1L-1 ( 1 /T )2L-2-k-r(3L _ 3 — r k ) ! ((L — 
1),),

E E + 1
(L —1 — k)!(L —1 — r)!(1 2/71 ) 3L-2- r- kr=0 k=0

L-1 (ti,

—2 E 	i r) 10./T)L-1--(2L - 2 — r)! 
(L 1 — r)!(1 1/T) 2L-1-rr=0

The probability of false censoring the first sample is

PFCI Pr ( Q1 > TiQ21H00)

while the probability of false censoring the last sample is

PFCI = Pr(QN > TiQN-1 Woo) 	 (5.15)

In (5.14) and (5.15), hypothesis H00 denotes the case where the two samples involved

in these tests, are noise only samples. For these two tests, PFCI is obtained to be

L + k-1

) (1 + Ti) L+ kk=0

PFCI =

PFCI = (5.16)

That is the scaling constant is calculated from

(1M2L-2-k-r (3L-3-r-k)!((L-1)!) -1 

Lir=0 L-sk=0 (L-1-0(L-1-r)!(1-1-2/7) 3 L -2- r-k
((L-1)!) -1 (1/T)L -l-r (2L-2-r)!

`-` Z-dr=0 	 (L-1-r)!(1-F1M2L-1-r

L-1 L k —1 ) 	Tik 
Lik=0 	 k (i-FT0L+k

PFCI = (5.17)

In the second pass of the algorithm the probability of false censoring a clutter power

transition, PFCC, is defined as the probability to falsely decide the presence of a step

discontinuity in the reference window when in fact no discontinuity is present. PFCC,

can be written as a contour integral of the moment generating function, mgf, of the

equivalent statistic Ri = Qi 7',Q;_ i where qj and qi_i are the observations from

the jth and (j — 1)th reference cells respectively. The scaling constant 7', is selected

so that the desired probability of false censoring, •y, is achieved. Thus,

= Pr(Ri > 01Hoo)
1

= 	 w27r2

PFCC

du) 	 (5.18)



i= 1

qii	 T	 qiu_i)))1(I) RilHoo = E exp(—
i= 1

00

• • • 10 0°
exp (— E gij) exp (—w E gia ) dqi; .. .

/ 	 i=1

n dK u dn-k u
k 	 dxk dxn-k -4- • • •

do u
u 

dxn
(5.21)nn• • • +

where the mgf of the equivalent statistic Ai is given by
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L 	 L

•
Jr: ...rexp (— E qi ,j_ i ) exp (Tcw E gi J .... 1 ) dgi,j_ i ... dgi,,i_ i

i=3. 	 i=i
1 	 ( 	 1 	L

	

= [( 	
1 + w ) 1 — Tcc.o 	

(5.19)
)]

In equation (5.18), the contour of integration c is crossing the real w-axis at

w = c1 and is closed in an infinite semicircle in the left half w-plane. ci is selected

so that c encloses all the poles of (DRAB-00(w) that lie in the open left half w-plane.

Substituting equation (5.19) into equation (5.18), the residue at co = —1 is

1 	 dL-1 	 1

	

Resu,_,_ i = 	 lim
(L -- 1)! 	

1 	w-+ - dwL-1 W(1 — T,W)L

L-1 (L — 1 ) dk (1 _ Tcw )—L dL-1—k (w -1.)
=

(L —

1 
1)!

lim,,--.-1 E 	 i 	 (5.20)
k 	 dwk 	 cich.,L-1—k

k=0

and by using

dn [UV] ( n= ) v d'u _L ( n 	 dv dn-1 u ( n \ d2 v dn-2 u
dxn 0 ) 	 dxn M 1 ) dx dxn -1 + 2 ) dx 2 dxn-2

the probability of false censoring is derived to be

L---i (L k — 1
PFCC = E 	 ) (1 + Te )L+kk=0

(5.22)

Equations (5.17) and (5.22) are used to calculate Ti and 7 1, so that PFC I = -y and

PFCC = P.
The probability of false alarm, PF, is equal to the probability that the output

of the cell under test, go, exceeds the detection threshold, T(J)g, under hypothesis

Ho . That is, from the test of expression (5.9), the probability of false alarm is given

by

PF = Pr(Qo > T(J) (21 1/0) 	 (5.23)
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where Q denotes the estimator of the noise level in the test cell which is given by

equation (5.8). Following the same procedure as in the derivation of the expression

for the probability of false ecensoring, the PF, is the contour integral

1
PF = — 27r 2, c• f W -1 (1)R1Ho(w)clw

where the equivalent statistic R is given by

R = Q 0 — T(J)Q

(5 .24)

(5.25)

The contour of integration is the same as that of equation (5.18) except c 1 is selected

so that all the poles of (I)RiHo(w) that lie in the open left half w-plane are enclosed.

The mgf of R under Ho is given by

L 	 J L
RIH0 (W) = E[eXp(—WE qio T 	 qi;))]

1=1 	 j=1 1=1

r" 	 exp (—w E qio) exp

100 	 co
exp ( wT

L

Eqi.) dqi....dqL.
i=i

exp ( J L
— 	 qij) dqij . . . dqi,j

i=1 i=1

i=11=1
J L

= (1 + w) -L (1 — Tw) -iL 	(5.26)

Substitution of equation (5.26) into (5.24) and with the residue at w = —1 given by

Res„- 1
1

(L 	.1)1 	dwL_i 	
— TwYL

1 	(L — 1 )	 w—(L—k)

(J L 1)! (1 — Tw)-11-fk

- 1)! 	 k=0 	 k(L — 1)! 1m1----1 E
(Hi k 1)! k=° Tk

(5.27)

the design expression for the probability of false alarm, PF, is

pF= LE-1 JL+k—
kk=0

T(J ) k(1 T(J))- ( IL+k ) (5.28)

Equation (5.28) is used to calculate the threshold multipliers T(J), J =

that PF = CX.
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In Figures 5.1 and 5.2, we plot the probability of false alarm versus the probabil-

ity of false censoring a clutter edge (/9) for L = 1, 4 and a = 10', for the DD-CFAR

detector. The curves are parametric to different values of probability of false cen-

soring an interfering target (-y). We observe that when 7 is equal to 2 x 10' the

probability of false alarm that is achieved by the DD-CFAR detector is equal to the

design value. On the other hand when 7 increases (7 = 3 x 10 -3 ,4 x 10 -3 ,5 x 10')

the probability of false alarm increases irrespective of the value of S. When Q is

greater than 2 x 10'(7 kept at 2 x 10 -3 ) the probability of false alarm increases

above the design value. This is due to the fact that when, /3 is large overcensoring is

encouraged. Therefore, the probability of censoring some of the largest noise samples

as clutter edge(s), which causes underestimating of the noise level in the test cell,

is high. For values of /3 less than 2 x 10', the DD-CFAR detector still achieves

the design value of probability of false alarm, however, when /3 is smaller, this will

discourage censoring of possible clutter edge(s). Thus, for a = 10' we choose the

desired values of PFCC = 2 x 10 -3 and PFCI = 2 x 10 -3 . Similarly in the case of

multiple pulse (L = 4) the optimum choices are PFCC = 10' and PFCI = 10-3.

5.5 Results
The false alarm control and detection performances of the DD-CFAR detector for

some nonhomogeneous background environments are evaluated and compared to

those of the GO, SO, ACGO and TM-CFAR detectors. In the comparisons with

the ACGO and the TM-CFAR detectors, we only considered single pulse transmis-

sion (L = 1) since the order statistics analysis for multiple pulse transmission is too

cumbersome.

In Figures 5.3 and 5.4 the false alarm regulation properties of the DD-CFAR

detector are shown for various values of the background noise level. The results

show the CFAR properties of the DD-CFAR detector for N = 16 reference noise
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samples and for single (L = 1) and multiple pulse (L 	 4) transmission. Three

desired probabilities of false alarm are considered (10 -2 , 10', 10 -4 ) and we assume

2x 10 -3 and 7 = 2 x 10 -3 in Figure 5.3 and 0 = 10 -3 and 7 = 10 -3 in Figure

5.4. In both cases where L = 1 and L = 4 the false alarm probability of the proposed

detector is shown to be robust for all the values of desired probability of false alarm

considered.

In Figure 5.5, we study the false alarm regulation properties of the DD-CFAR

detector in the presence of both one and two clutter power transitions for L = 1

and 4. We observe that the false alarm control performance is more robust when

one transition is present since the probability of detecting one edge is higher than

the probability of detecting both edges. Also, when the per pulse clutter to noise

ratio C is small (C < 12dB) the number of false alarms when L = 4 is greater than

the number of false alarms when L 1. This is due to the fact that although the

probability of detecting the edge(s) when L = 4 is higher than the probability of

detecting the edge(s) when L = 1, the probability of false alarm when L = 4 is higher

than the probability of false alarm when L 1 due to the diversity in the system

configuration. As C increases, the probability of correctly assessing the environment

increases substantially especially when L = 4 thereby achieving more robust false

alarm control performance than the case where L = 1.

In Figures 5.6 and 5.7, we compare the false alarm regulation properties of

the DD-CFAR detector to those of the TM(k i , k2 ) and ACGO-CFAR detectors for

L = 1. In the case of one clutter edge (Figure 5.6) the false alarm control performance

of the DD and ACGO-CFAR detectors are comparable. The TM-CFAR detectors

considered, are tailored to censor all 4 clear samples since k1 > 4. We observe that as

k1 increases, the probability of false alarm of the TM-CFAR detector decreases, while

as k2 increases its probability of false alarm increases. In the presence of two clutter

transitions as shown in Figure 5.7, the ACGO-CFAR detector censors all the high
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power clutter samples from both the leading and the lagging range cells especially

when C is large. Therefore, it severely underestimates the noise level in the test cell

and its probability of false alarm approaches unity as C becomes large. The false

alarm probability of the DD-CFAR detector is more robust than those of the TM-

CFAR detectors, especially when C is large, because the TM-CFAR detectors use

one or more clear cells in the threshold estimation process. In Figures 5.8 to 5.10

we study the false alarm regulation of the ACGO, TM and DD-CFAR detectors in

the presence of two clutter power transitions, extending at various locations in the

leading and lagging reference window. In Figures 5.9 and 5.10 where the clutter to

noise ratio is 20dB and 30dB respectively, the false alarm probability of the ACGO-

CFAR detector is the highest. This is due to the fact that the censoring procedure of

the ACGO-CFAR detectors, underestimates the noise level in the test cell since all

the high power samples are censored. In Figures 5.8 and 5.9 the DD-CFAR detector

has the highest probability of false alarm since the censoring procedure may miss the

clutter edges for low clutter to noise ratio (10dB,20dB). However, when the clutter to

noise ratio is high (30dB) as shown in Figure 5.10 the performance of the proposed

detector is superior as compared to the others.

In Figure 5.11, we present the detection probability of the GO, CA, ACGO, DD-

CFAR and the ideal detector. We have assumed that N = 16, L = 1 and a = 10'.

The performance of all detectors is approximately the same with the ideal detector

superior as expected. In Figure 5.12, we study the detection performance of the DD-

CFAR and the TM-CFAR detectors when interfering targets in homogeneous noise

are present in the reference window. The GO and SO-CFAR detectors are not shown

since as we saw in chapter 2 they both yield extremely poor detection performance in

this environment. We have assumed that four interfering targets whose radar cross

section is the same (b=1.0) with the target in the test cell are present in the reference

window. The dashed curves represent the performance of the DD-CFAR detector.
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The notation for example DD(1, 3) in the figure means that one interfering target is

present in the leading window and three interfering targets are present in the lagging

window. The detection probability of the TM-CFAR detector does not depend on the

location of the interfering targets since the outputs of all the reference range cells are

rank ordered before any censoring takes place. However, the detection probability for

the TM-CFAR detector depends on the preassigned censoring points. The case where

TM(0, 4) is superior to all others. In this case the largest four samples in the reference

window are censored. This is equivalent to assuming exact a priori knowledge about

the number of interfering targets since four interfering targets have been assumed in

the reference cells. When however the assessment of the interfering environment is

not correct and the number of higher ordered samples that are censored is less than

the actual number of interfering targets in the reference window, the performance

of the TM-CFAR detector is seriously degraded as shown for example in the case of

TM(0, 1). Unlike the TM-CFAR detector the performance of the proposed detector

is robust. Also a similar comparison of the proposed detector with the ACGO-CFAR

detector is presented in Figure 5.13. The detection performance of both detectors is

shown to be approximately the same.

In Figures 5.14 to 5.19 we compare the GO, ACGO, TM and DD-CFAR detec-

tors in the presence of clutter power transition in the leading window and a number

of interfering targets in the lagging window. All the interfering targets are assumed

to have the same radar cross section area with the target in the test cell (b= 1.0). All

camparisons are shown for N = 16, L = 1 and for C = 10, 20, 30dB. The detection

performance of the GO-CFAR detector is seriously degraded in the presence of inter-

fering targets in the reference window due to the capture effect. In the case where

exact a priori information is available about the interfering environment, the perfor-

mance of the TM-CFAR detector is superior to all others. For instance in Figure 5.14

the case of TM(4, 2) is superior to all others, since 4 samples from the leading and
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two samples from the lagging window are trimmed, which is equivalent to an exact

knowledge of the environment. However, in the case where there is no trimming in

the lagging window, TM(4, 0), the detection performance of the TM-CFAR detector

is seriously degraded. On the other hand, the detection performane of the ACGO

and DD-CFAR detector remain robust. However, in the case where the number of

interfering targets increases as shown in Figures 5.17 to 5.19, the DD-CFAR detec-

tor is slightly superior as compared with the ACGO-CFAR detector. This is due to

the fact that as the number of interfering targets present in the leading or lagging

reference window increases the detection performance of the ACGO-CFAR detector

degrades as shown in Figure 3.1 of chapter 3.

In Figures 5.20 to 5.25 the SO, ACGO and the DD-CFAR detectors are com-

pared in the presence of one and two interfering targets in the leading or the lagging

reference window and when a clutter power transition (C = 10, 20, 30dB) is present

in the lagging reference window. The test cell is assumed to be in the clear and the

interfering targets have the same radar cross section (b=1.0) with the target in the

test cell. Single pulse transmission and a reference window of N = 16 is assumed. The

detection performance of the SO-CFAR detector is superior to all others as shown in

Figures 5.20 to 5.22, since this constitutes the best environment for the SO-CFAR.

However, in the case where an interfering target is present in both the leading and

the lagging reference window the detection performance of the SO-CFAR detector is

seriously degraded due to the capture effect as shown in Figures 5.23 to 5.25. The

detection performance of the DD-CFAR detector is shown to be better as compared

to that of the ACGO-CFAR detector especially when the clutter to noise ratio is high

(30dB). As the clutter to noise ratio becomes higher the censoring procedure of the

DD-CFAR detector is more effective.

In Figure 5.26, we study the detection probability of the DD-CFAR detector

for L = 1 and 4 in the presence of three interfering targets and different background
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environments. Since C is high, the probability of detecting the possible clutter edges is

high, therby obtaining a robust estimate of the noise level in the test cell. We observe

that the detection performance in all three background environments is robust and

fairly close to the performance of the ideal detector. The detection probability of the

DD-CFAR detector is greatly improved when L = 4 due to the enhanced performance

offered by the diversity transmission. For example, considering the environment of

case (a) for L 1 and a signal to noise ratio of 15dB the probability of detection is

approximately 0.49. For the same signal to noise ratio, where L = 4 the detection

probability achieved by the DD-CFAR detector almost doubles and is equal to one.

In Figure 5.27, we compare the required processing time of the TM, ACGO and

the DD-CFAR detectors for L = 1. We have assumed that in the order statistics

processors (TM and ACGO-CFAR) the heap sorting algorithm which is the fastest

sorting routine [33] is used to rank order the data. When the heap sort is used,

N log 2 N comparisons are required to sort the data. We have also assumed that

a single DSP processor [34,35], employing special floating point hardware so that

multiplications and additions take the same amount of time to be executed, is used.

The maximum required number of machine cycles for the three detectors are derived

to be

TTM = 2Nlog2 N N + 2 	 (5.29)

TACGO = 2Nlog22 -1- 4N + 1 	 (5.30)

TDD = 11N — 2 	 (5.31)

We observe that when

N > 24.5 	(5.32)

the execution time of the DD-CFAR detector is smaller than the execution time

of the ACGO-CFAR detector. The execution time of the TM-CFAR detector is

approximately the same to that of the ACGO-CFAR detector.
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5.6 Summary and Conclusions
In this chapter, we have considered the problem of CFAR detection when some of

the range cells may contain interfering targets and/or a group of range cells may be

immersed in the clutter. We proposed the Data Discriminator CFAR detector, DD-

CFAR, which performs two passes over the data. In the first pass, the objective of

the algorithm is to censor all possible interfering target returns that may be present

in the reference cells of the test cell. In the second pass the algorithm determines

whether the test cell is in the clutter or the clear region and selects only those samples

which are identically distributed with the noise in the test cell to form the detection

threshold. The most attractive feature of the DD-CFAR detector, is that unlike the

TM and ACGO-CFAR detectors, it does not rank order the reference noise samples

which is a time consuming process, and yet achieves robust performace as compared

with the order-based statistics counterparts.
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Figure 5.4. Probability of false alarm versus noise power (dB)
L =4 , /3=1 0 -3 , 7=1 0 -3
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Figure 5.5. Probability of false alarm of the DD—CFAR detector in the
in the presence of one and two clutter power transitions.
N=16, a=1 0 -4



Figure 5.6. Probability of false alarm of the DD,TM and the ACGO—CFAR
detectors in the presence of one power transition.
N=16, L=1, a=10 -4 , ,8=2x10 -3 , 7=2x10-3.
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Figure 5.7. Probability of false alarm of the DD,TM and the ACGO—CFAR
detectors in the presence of two clutter power transitions.
N=16, L=1, a=10 -4 , f3=2x 1 0 -3 , y=2x 10 -3.



Figure 5.8. Probability of false alarm of the DD,TM
and the ACGO—CFAR detectors when the test cell and 2K reference
cells are in the clutter.
C=10dB, N=16, L=1, a=10 -4 , )6=2x10 , y=2x10 .
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Figure 5.9. Probability of false alarm of the DD,TM
and the ACGO—CFAR detectors when the test cell and 2K reference
cells are in the clutter.
C=20dB, N=16, L=1, a=10 -4 , 13=2x10 -3 , 7=2x10 -3 .



Figure 5.10. Probability of false alarm of the DD,TM
and the ACGO—CFAR detectors when the test cell and 2K reference
cells are in the clutter.
C=30dB, N=16, L=1, a=10 -4 , 13=2x10 -3 , 7=2x10-3.



Figure 5.11. Probability of detection
of the DD,ACGO,GO,CA—CFAR, and the Ideal detectors
in homogeneous background environment.
N=16, L=1, a=10 -4 , ,8=2x10 -3 , 7=2x10 -3 .
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Figure 5.12. Probability of detection of the DD and TM—CFAR
detectors when a number of interfering targets are present
in the reference window.
N=16, b=1. 0, L=1, a=1 0 -4 , g=2 x 1 0 -3 , -y=2 x 1 0 -3 .



Figure 5.13. Probability of detection versus SNR(dB) of the
ACGO—CFAR and the DD—CFAR detectors in the presence of four
interfering targets.
N=16, b=1. 0, a=10-4.
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Figure 5.14. Probability of detection of the DD,ACGO,GO and
TM—CFAR detectors when one interfering target and a clutter
power transition are present in the reference window.
C=10dB, N=16, b=1. 0, L=1, a=10, 13=2x10 -3 , y=2x10-3.



Figure 5.15. Probability of detection of the DD,ACGO,GO and
TM—CFAR detectors when one interfering target and a clutter
power transition are present in the reference window.
C=20dB, N=16, b=1. 0, L=1, a=10 -4 , g=2x10 -3 , y=2x10-3.
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Figure 5.16. Probability of detection of the DD,ACGO,GO and
TM—CFAR detectors when one interfering target and a clutter
power transition are present in the reference window.
C=30dB, N=16, b=1. 0, L=1, a=1 0 -4 , (3=2x1 0 -3 , 7=2x10 -3 .
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Figure 5.17. Probability of detection of the DD,ACGO,GO and
TM—CFAR detectors when three interfering targets and a clutter
power transition are present in the reference window.
C=10dB, N=16, b=1. 0, L=1, a=10 -4 , 13=2x10 -3 , y=2x10-3.



Figure 5.18. Probability of detection of the DD,ACGO,GO and
TM—CFAR detectors when three interfering targets and a clutter
power transition are present in the reference window.
C=20dB, N=16, b=1. 0, L=1, a=10 -4 , (3=2x10 -3 , 7=2x10-3.
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Figure 5.19. Probability of detection of the DD,ACGO,GO and
TM—CFAR detectors when three interfering targets and a clutter
power transition are present in the reference window.
C=30dB, N=16, b=1. 0, L=1, c=10, 	 =2x1 	 -y=2x10-3.



Figure b.20. Pobability of detection or the 1)1.),,U and AuLiu—ctrAtt
detectors when a clutter power transition and one interfering
target are present while the test cell is in the clear.
C=10dB, N=16, b=1. 0, L=1, a=1 	 g=2x 1 0 -3 , 'y =2 x 1 0 .



U 	 1U 	 U 	 iU

Signal to Noise Ratio (dB)

Figure 5.21. Pobability of detection of the DD,SO and ACGO—CFAR
detectors when a clutter power transition and one interfering
target are present while the test cell is in the clear.
C=20dB, N=16, b=1. 0, L=1, a=10 -4 , /3=2x10 -3 , y=2x10-3.
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Figure 5.22. Pobability of detection of the DD,S0 and ACGO—CFAR
detectors when a clutter power transition and one interfering
target are present while the test cell is in the clear.
C=30dB, N=16, b=1. 0, L=1, a=10 -4, te=2x10 -3 , 7=2x10-3.
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Figure 5.23. Pobability of detection of the DD,SO and ACGO—CFAR
detectors when a clutter power transition and two interfering
targets are present while the test cell is in the clear.
C=10dB, N=16, b=1. 0, L=1, a=10 -4 , g=2x10 -3 , 7=2x10-3.
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Figure 5.24. Probability of detection of the DD, ACGO and the
SO—CFAR detectors when a clutter power transition and two
interfering targets are present while the test cell is in
the clear.
N=16, b=1. 0, L=1, C=20dB, a=10 -4 , (3=2x10 -3 , 7=2x10-3



Figure 5.25. Pobability of detection of the DD,SO and ACGO—CFAR
detectors when a clutter power transition and two interfering
targets are present while the test cell is in the clear.
C=30dB, N=16, b=1. 0, L=1, a=10 -4 , (3=2x10 -3 , y=2x10-3



Figure 5.26. Probability of detection versus SNR (dB) of the DD—CFAR
detector.
C=30dB, a=10-4



Figure 5.27. Total execution time in machine cycles versus the
window size.



Chapter 6

OPTIMUM DETECTION OF
RAYLEIGH SIGNALS IN
NONSTATIONARY NOISE-THE
(RCA) CFAR DETECTOR

6.1 Introduction
In adaptive thresholding techniques, the detection threshold is set so that the detector

adapts to changes in the background environment. As we saw in chapter one, one such

processor is the Cell Avaraging CFAR detector, CA-CFAR, [10] in which the estimate

of the noise power in the cell under test is equal to the arithmetic mean of the outputs

of the nearby range cells. The CA-CFAR detector achieves constant false alarm rate

when the noise samples are independent and identically distributed. As we saw in

previous chapters, in real environment the noise samples may not be homogeneous.

Non-homogeneities in the background environment may be continously distributed

in the form of a cloud and/or may manifest themselves as spikes in individual cells.

Consequently as we saw in chapter 1, the CA-CFAR detector may neither achieve the

design false alarm probability nor a high detection probability.

In this chapter, we propose a new adaptive thresholding procedure for Rayleigh

envelope distributed signals and noise, where noise power residues instead of noise

power estimates are processed. Hence, the proposed detector is referred to as the

residual cell averaging (RCA) CFAR detector. We show that it is the optimum

176
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constant false alarm rate (CFAR) detector when the noise samples are statistically

independent and identically distributed in the sense that its detection performance

approaches that of the ideal (fixed threshold) detector as the number of noise samples

becomes very large. We also discuss the merits of the proposed technique in rejecting

interferences in the noise samples.

In Section 6.2, we describe the RCA-CFAR detector, and in section 6.3 the

analysis of the proposed detector is presented. Our results are presented in Section

6.4. Our conclusions are briefly stated in Section 6.5.

6.2 The RCA-CFAR Detector
The sequence of observations q i, , q2m.fi is stored in the tapped delay line, as

shown in Figure 6.1. The tap in the middle of the delay line is designated as before

to be the one under test. The samples in the taps lagging the test tap have been rein-

dexed. They are denoted by qm+i , , q2m . Furthermore, in order to study the opti-

mality of the proposed detector, we assume that the reference samples, q1, q2 , • • , q2M,

are due to noise alone. The reference noise samples are governed by the exponential

distribution with probability density function (pdf)

pQi (qi) = 1 exp(—qi/p,), qi > 0

i = 1, , 2M (6.1)

where denotes the average noise power at the receiver input. The test tap, may

contain either noise alone or target plus noise. In the event that the test tap contains

a target, in addition to noise, the test sample is exponentially distributed as well, since

the envelope of the desired signal is Rayleigh distributed. However, the parameter of

the distribution governing the observation in the tap under test is different from
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(6.2)

Thus, the conditional pdf of the output of the test tap is

—gob,

go > 0 for Ho
Novit(golHi) = 1 	4,-- 4u /p.(1-1-S)

go > 0 for Hi

where hypothesis Ho denotes the noise only case, while hypothesis H 1 means that a

target is also present in the test cell. The noise samples are assumed to be statistically

independent from each other. Also the target is independent from the noise. The

outputs of the reference cells, q1 , g2 , , g2m, are first subtracted and the new samples

are then combined to yield an estimate, q, of the noise variance (power) in the cell

under test. q is then scaled by a constant, T , in order to achieve the design probability

of false alarm, a. The output of the cell under test, g o , is compared to the adaptive

threshold, Tq, in order to make a decision about the presence or the absence of a

target in the test cell. In the next section we show the analysis of the RCA-CFAR

detector.

6.3 Analysis of the RCA-CFAR detector
In order to obtain an estimate of the noise variance in the test cell, we first subtract

the outputs of all the adjacent reference cells from each other, that is,

zi = gi — gi+i , 	 i 	 1,... ,2M — 1

Z2M q2M	 (6.3)

Lemma: Given two exponential random variables X and Y with the same parameter,

the probability density function of the random variable W = X — Y is given by

pw(w) exp(-1w1/y) — cc < w < oo 	 (6.4)

The proof of the above lemma is straightforward since [31]

Pw(w) = Px(w) *PY( — tv) 	 (6.5)



179

where "*" denotes the convolution operation. Thus, the pdf of the noise residue Zi

is given by

Pz,(zi) = 
1

exp(—Izi lhh) — co < zi < oo	 (6.6)

for i = 1,	 ,2M 1, and

PZ2M( z2M) 1eXP(—Z2M/P)	 Z2M 0

The system of 2M equations depicted by expression (6.3) have a unique solution

which can be written as
2M

qi 	= 1, . , 2M 	 (6.8)
.i=i

Also, the jacobian of the transformation is equal to one. Therefore, the likelihood

function, [32] L[z i ,	 , z2m], of the noise residues is given by

2M 2M
Z2m1 =PQ 1...q2M zi, >2 	 . . . , z2m ) 	 (6.9)

j=1	 j=2

where pq 1 ...(2 2m (•, • • • , .) denotes the joint pdf of the random variables Qi, . • • , (22M.

Since the noise samples are statistically independent, the likelihood function, L[z i ,	 , z2m]

can be written as

(6.7)

1	 1 2M 2M
Z2mi = 2M exp[--	zi]

i=1 j=i

(6.10)

Combining the terms in the double summation in equation (6.10), the likelihood

function, L[zi ,	 , z2m], of the random variables Z1 ,	 , Z2m, may be written as

1	 1 2m
L[zi ,	 z2m] =	 2m. exp(--- E izi )	 (6.11)

i=i

Theorem 1 [37]

A statistic T(Z) of a random vector Z with range I is sufficient for a parameter 0 in

O ( parameter space ), if and only if there exists a function g (t , 0) defined for t in I

and 8 in 0, and a function h defined on RL such that the likelihood function

	L = g (71 (z), 0)h(z), 	 (6.12)
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for all z E RL,0 E O. Applying theorem 1 to the likelihood function of equation

(6.11) we obtain the sufficient statistic

2M
T(zi ,...,z2m) = E izi

i=1

Theorem 2 [37]

Let,

(6.13)

L = exp [E ci(0)Ti (z) -1- d(9) + 5(z)] 	 (6.14)

and let C denote the interior of the range of (c 1 (0), 	 c,(9)). If the equations

E[Ti (z)] 	 Ti(z), for i = 	 n 	 (6.15)

have a solution

B(z) = 	 ,k(z)] 	 (6.16)

for which {c i [8(z)], 	 E C, then B is the unique maximum likelihood esti-

mate of 9.

Hence, by theorem 2, we obtain that the maximum likelihood estimate, 	 of the

parameter is given by
1 	 2111

E zi 	(6.17)
2/.

In order to make a decision about the presence or the absence of a target in the

test cell, we perform the test
H1

go	 T q 	 (6.18)

Ho

where q is equal to the sufficient statistic 2M1.1 where is given by equation (6.17).

The probability of false alarm, PF, may be written as a contour integral that is,

1	co-14)	 (1)Q(—Tw)dc'-'PF = 	 fc	 Qo o (w) (6.19)

(1) Qo i Tio (u.)) denotes the moment generating function, mgf , of the random variable Q o

under hypothesis 1/0 , while (I) Q (c.o) denotes the mgf of the estimator, Q, of the noise
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PF= (1 + T) 2M
(6.24)

variance in the test tap. Similarly, the probability of detection, PD , is given by
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PD = 1 -111c201111PAQ(—Tw)dw (6.20)

In expressions (6.19) and (6.20) the contour of integration c consists of a vertical path

in the complex co-plane that is crossing the real w-axis at w = It is closed in an

infinite semicircle in the left half w-plane. The choice of c 1 will be presented later in

the analysis. The mgf of Q o under hypothesis Hi, j = 0,1, is defined to be

(1) Q ,,m(w) = E[exp(—wQ 0) Hi ]	 (6.21)

where E [•] denotes the expectation operator. Thus, using equations (6.2) and (6.21),

the mgf of Q o under Hi , j = 0,1 is obtained to be

J 1/(1+ pw) 	 Ho
(1)Q01111(‘'-')=. 	 1/[1-Ey(l+S)w] H1

(6.22)

Similarly, using equation (6.1),the mgf of Q may be shown in a straightforward manner

to be

i'DQ(w) = 	
1 

(1 + µW )2M 	
(6.23)

The contour integral of expression (6.19) is evaluated in terms of the simple pole at

w = —1/y, while the contour integral of expression (6.20) is evaluated in terms of

the simple pole at w = —1/p(1 S). Observe that the poles of 01) Q (co) lie in the

right-half w-plane since Q is a positive random variable. In evaluating (6.19) c i lies

in the open interval (-1/p, 0), while in evaluating (6.20) c i lies in the open interval

(-1/p(1 S), 0). Hence, the probability of false alarm is obtained to be

and the probability of detection is

1
(6.25)PD .= 

(1 +	 )2A11+S
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As the number of reference range cells becomes very large (M	 oo), the probability

of false alarm approaches

PF = exp(—T) 	 (6.26)

while the probability of detection approaches

( 1 	 S)
(6.27)PD exp

Equations (6.26) and (6.27) are the expressions which describe the performance of

the ideal (fixed threshold) detector. Thus, the RCA-CFAR detector is the optimum

CFAR processor when the noise samples are statistically independent and identically

distributed in the sense, that its detection performance approaches that of the ideal

detector as the number of reference noise samples becomes very large.

6.4 Results
An attractive feature of the RCA-CFAR detector is the fact that the noise residues

become partially correlated to the same degree if the adjacent samples are identically

distributed. To see this, consider the correlation coefficient, p i , between Zi and Zi+1.

p i is defined to be
E[Zili+1]— E{Zi1E{Zi +1 1 

Pi = 	 (6.28)

for i = 1, 	 , 2M — 1. 4denotes the variance of Zi . Since Qi, 	 and Qi+2 are

identically distributed, then Zi and Zi+1 are also identically distributed with zero

mean and variance 2p2 . It can be shown in a very straightforward manner that

E(Zili+1 ) = —lg. Hence, pi —1/2. Also the correlation coefficient between Zi and

Zi is equal to zero when ji 0 or 1. That is, the correlation matrix, A, of the

noise residues is a tridiagonal matrix. The elements of the main diagonal are all equal



0 	 —1/2A =

0 • • •

• • •	 0 (6.29)
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to 1, and the elements of the two off diagonal entries are all equal to -1/2. That is,

r 1 	 -1/2 	 0 	 0
I —1/2 	 1 	 —1/2 	 ... 	 0

—1/2 1

Assuming that a clutter edge with SNR= C appears in the ith cell, then using

equation (6.28), it may be readily shown that

pi = —1/2 	 j i — 2, i — 1

Pi-2 = - {2[1 + (1 + C) 2 ]} -112

Pi-1 = —{(1 + C)[2(1 + (1 + C) 2 )] -112 1

(6.30)

(6.31)

(6.32)

We observe from equation (6.31) that when the edge is large, P i- 2 approaches zero,

while pi_ i approaches —1/V2-. Now, let us assume that an interfering signal with

SNR= I appears in the ith cell. Using equation (6.28) as before, it may be shown

that

pi = —1/2 	 2,i— 1,i 	 (6.33)

pi-2 = pi = —12[1 + (1 + 1)21}-112	 (6.34)

pi-1 = 	 + 1/(1 + I) 21 -1 	(6.35)

We observe from equation (6.34) that when the interference is large, p i ... 2 and p i

approach zero, while pi_ i approaches unity. The above change in the correlation

coefficient allows us to identify the non-homogeneities in the clutter power distribution

which may then be censored by simply observing the consistency in the degree of

correlation between adjacently received samples.

The detection performance of the RCA-CFAR detector, is presented in Figures

6.2 and 6.5 for various values of M and a homogeneous noise background environment.

In Figure 6.2, the design probability of false alarm is a = 10', while in Figure 6.3, the
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design probability of false alarm is a = 10 -6 . As expected, the detection probability

of the RCA-CFAR detector approaches that of the ideal detector as the number of

reference noise samples increases. In Figure 6.4, we present the CFAR loss of the

RCA-CFAR detector. The CFAR loss is defined to be the increase in signal to noise

ratio (dB) that is required so that the CFAR processor achieves the same detection

probability with the ideal detector with that SNR. In obtaining these results, we

have assumed a detection probability of 0.9. The false alarm regulation properties of

the RCA-CFAR detector have been evaluated by means of computer simulation for

various values of the background noise level. We have assumed a design probability

of false alarm a = 10'. The results are presented in Figure 6.5. We observe that the

actual false alarm probability is close to the design value irrespective of the average

power of the background noise.

6.5 Summary and Conclusions
In this chapter, we have proposed the RCA-CFAR processor in which noise power

residues are combined to obtain the adaptive threshold. The detection performance

of the RCA-CFAR detector is identical to the detection performance of the CA-

CFAR detector. In a homogeneous background environment the CA-CFAR detector

is preferred because it requires less processing of the received observations. However,

the fact that the noise residues that are processed by the proposed detector become

partially correlated enables us to identify non-homogenieties that may be present in

the real environments, by observing the consistency of the degree of correlation where

no such feature is available in the CA-CFAR detector.
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Chapter 7

SUMMARY AND
CONCLUSIONS

In this dissertation, new adaptive thresholding technigues for CFAR processing in

non-homogeneous background environments were proposed and analyzed in time di-

versity transmission. We developed various signal processing algorithms in which the

samples in the reference window of the cell under test, that may yield a poor esti-

mate of the noise level, were effectively censored. First we presented the analysis for

single pulse transmission of the GO and SO-CFAR detectors. Then the results were

extended for time diversity transmission. A comparison of the performance for both

detectors in single pulse and multiple pulse transmission was presented, demonstrat-

ing the enhanced performance of both detectors when time diversity was employed.

The presence of clutter power transitions in the range resolution cells of a con-

stant false alarm rate detector may cause an excessive number of false alarms or im-

paired target detectability as we saw in chapter one. We proposed a CFAR detector

algorithm, the Automatic Censored Cell Averaging CFAR detector, ACCA-CFAR,

which determines whether the test cell is in the clutter or the clear region and se-

lects only those samples which are identically distributed with the noise in the test

cell to form the detection threshold. Its most attractive feature was the fact that

the unwanted samples were efficiently censored without having to rank order. The

required processing time for a decision to be reached was shown to be less than that
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of the order-based statistics processor (ACGO). In addition, when two clutter power

transitions were present, one in the leading and the other in the lagging reference

window, the false alarm regulation properties of the proposed detector was shown to

be robust, while none of the CFAR detectors in the literature perform well.

In real operating environment, reflections from other targets may appear as

spikes in the reference window of the cell under test, causing the detection thresh-

old to be raised too high. Thus, the primary target in the test cell may be missed.

The Adaptive Spiky Interference Rejection, ASIR-CFAR, detector which determines

and censores the interfering targets by performing cell-by-cell tests was proposed and

analyzed, in multiple target situations. The detection performance of the proposed

detector was compared to those of the CCA and GCMLD detectors in both homo-

geneous and interfering environments. Also the analysis of the CCA-CFAR detector

was extended for multiple pulse transmission. In addition, we studied the effect of

the probability of false censoring on the false alarm regulation of both the GCMLD

and the proposed detector. Comparison of the GCMLD and the proposed detector

in terms of the required processing time was also presented.

Then, the Data Discriminator CFAR detector, DD-CFAR, was proposed and

analyzed in the presence of clutter power transitions and/or interfering target returns

in the range resolution cells. The DD-CFAR processor performs two passes over the

data. In the first pass, the algorithm censors any possible interfering target returns

that may be present in the reference cells of the test cell. In the second pass the

algotithm determines whether the test cell is in the clutter or the clear region and

selects only those samples that are identically distributed with the noise in the test cell

to form the detection threshold. The false alarm control and detection performance of

the DD-CFAR detector for non-homogeneous background environment was compared

to those of the ACGO, TM, GO and SO-CFAR detectors. Unlike the TM and ACGO-

CFAR processors, the proposed detector does not require rank ordering of the received
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data. As the number of reference cells increases, the processing time required by the

DD-CFAR processor, was shown to be less than the processing time required by other

CFAR detectors.

Finally, we proposed a new adaptive thresholding procedure for Rayleigh enve-

lope distributed signals and noise, where noise power residues instead of noise power

estimates are processed and is referred to as the Residual Cell Averaging detector,

RCA-CFAR. We showed that it is the optimum constant false alarm rate (CFAR)

detector, when the noise samples are statistically independent and identically dis-

tributed, in the sense that its detection performance approaches that of the ideal

(fixed threshold) detector as the number of noise samples becomes large. However,

the fact that the noise residues become partially correlated to the same degree, if the

adjacent samples are identically distributed, enables us to identify non-homogeneities

in the clutter power distribution, which may be censored, by simply observing the

consistency in the degree of correlation between adjacently received samples.

As mentioned throughout this dissertation, clutter power transitions may be

present in the reference window of the cell under test. We have assumed that the

parameter of the cell that contains the clutter edge is it = 1 + C, where the adjacent

cell which is in the clear has parameter it that is normalized to unity. A more realistic

approach can be considered in which the clutter power transition is extended gradually

among range cells.

Recently a number of CFAR processors that exhibit robust performance have

been proposed in the literature. However, a crucial point that is usually underesti-

mated is the amount of processing time required to implement the different processing

algorithms. A study should be made where possible use of parallel processing algo-

rithms is possible. An evaluation of the performance of different processing algorithms

with respect to different parameters, such as processing time, utilization, complexity

and cost should also be investigated.
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In chapter four, we proposed the ASIR-CFAR detector for multiple target situ-

ations. The processing algorithm of the ASIR-CFAR detector can be applied in case

where random interfering pulses, such as those generated from nearby radars or pulse

jammers, are present at the reference window of the primary target. Random inter-

fering pulses, with an average repetitive frequency comparable to that of the radar,

will coincide in time with only a small fraction of the pulses in any received pulse

train [7].

Finally the decision algorithm of the DD-CFAR detector can be studied in

conjuction with distributed systems where decision from various sensors are being

processed to make the final decision according to some decision rule (AND,OR).



Appendix A

Scaling Constants of the CA,GO
and SO-CFAR Detectors



Appendix B

Scaling Constants for the
DD-CFAR Detector
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T(1) 22.7
T(2) 4.612
T(3) 2.3065
T(4) 1.5021
T(5) 1.1051
T(6) 0.8712
T(7) 0.7178
T(8) 0.6098
T(9) 0.5298
T(10) 0.4682
T(11) 0.41933
T(12) 0.37965
T(13) 0.34677
T(14) 0.31912
T(15) 0.29555
T(16) 0.2752
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