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ABSTRACT

Statistical, Random and Fractal Characterizations of Surface
Topography with Engineering Applications

by
Gongyao Zhou

Two methods, namely the conventional and fractal geometry

methods, are developed for surface topography characterization. The

conventional method utilizing statistical and random process

techniques is used to study waterjet machined surfaces. In the study

the waterjet surfaces are separated into smooth and striation zones,

where striation influence is negligible in the smooth zone. It is found

that the smooth zone has a random, moderately isotropic texture,

with the height distribution nearly Gaussian. In the striation zone the

major frequencies of the surface profile power spectra are

independent of cutting parameters, while the amplitudes of these

frequencies monotonically increase with cutting speed or depth of

cut. The effects of cutting speed, depth of cut, orifice diameter, and

abrasive size on the surface topography are also studied. This

provides useful information for controlling process parameters to

obtain smooth finished surfaces. The spectral analysis is used to

investigate the structure dynamics of the waterjet machining system.

It is found that the vibration of the abrasive waterjet machining

system plays an important role in the striation formation.

Manufactured surfaces which have random texture, such as

those produced by electrical discharge machining, waterjet cutting,

and ion-nitriding coating, can be characterized by fractal geometry. A



Gaussian random fractal model coupled with structure functions is

used to relate surface topography with fractal geometry via fractal

dimension (D) and topothesy (L). This fractal characterization of

surface topography complements and improves the conventional

statistical and random process methods of surface characterization,

especially in the study of contact mechanics and wear processes. The

Gaussian fractal model for surface topography is shown to predict a

primary relationship between D and the bearing area curve, while L

affects this curve to a smaller degree. Several experiments are

performed, and the results support the predicted effects of D and L

on the bearing area curve.

Fractal characterization of surface topography is further

applied to the study of contact mechanics and wear processes. A

fractal geometry model is developed, which predicts the wear rate in

terms of fractal parameters D and L for wear prediction. This model

shows that the wear rate V r and the true contact area A r have the

relationship Vr (A r)m(D) , where m(D) is a function of D and has a

value between 0.5 and I. Next the optimum (i.e. the lowest wear

rate) fractal dimension in a wear process is studied. It is found that

the optimum fractal dimension is affected by contact area, material

properties, and scale amplitude. Experimental results of wear testing

show good agreement with the predictions based on the model.
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CHAPTER 1

INTRODUCTION

Tribology is a multi-disciplinary science which involves the study of

interfacial actions in friction, lubrication, and wear phenomena. The

importance of tribology for economic savings in modern technological

development is now universally realized. The applications of

tribology knowledge have been widespread in the such fields as

material science, machinery design, biomedical engineering, space

engineering, and electromagnetic information storage mechanisms

(Jost 1990; Bhushan 1991). Characterization and analysis of surface

topography play a crucial role in tribology.

The methodology of surface measurement and evaluation has

been developed for more than 50 years. In the last half century, with

the rapid development of precision instruments and measurements,

and the emergence of a large amount of new technologies, it has

become clear that surface characterization and analysis are not only

important in tribology but also in the study of thermal and electrical

conductance, optical scattering, electromagnetic radiation,

superconductivity etc. Roughly speaking, surface measurement and

evaluation have undergone four stages of development: the original

single-point measurement method (for example, peak-to-valley

height); statistical method (for example, arithmetic average height,

root-mean-square height, and autocorrelation function); random

process method (for example, power spectrum density moments,

mean surface slope and curvature); and the recently developed

fractal geometry method (for example, fractal dimension and

1
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topothesy).

This thesis focuses on the methodology used in the study of

surface topography characterization and modeling, the functional

relationships between surfaces and manufacturing processes, and

engineering applications of the methodology in tribology science.

There are two major parts in the thesis. In the first part, a

three-dimensional surface evaluation system based on statistical and

random process methods is introduced. A specific kind of waterjet

generated surface is evaluated. The effects of cutting parameters and

structure dynamics on abrasive waterjet (AWJ) generated surfaces

are investigated. This study provides useful information in surface

quality and manufacturing process control of waterjet machined

surfaces.

The statistical and random process methods have some

shortcomings in the surface topography study. It has been found that

manufactured random surfaces have a multi-scale property and they

are fractal (Jordan, Hollins, and Jakeman 1986). These findings imply

that random surfaces are non-stationary (Sales and Thomas 1978),

non-differentiable (Berry 1980), and the measured parameter values

are instrument dependent (Majumdar and Bhushan 1990). These

properties have a significant effect on quantitative analysis and

evaluations of surfaces. Fractal geometry does not have the above

shortcomings and it has great advantages in characterizing surface

contact support ability and in modeling of wear mechanism. This is a

main topic of part two, the major emphasis of this thesis, where

fractal geometry is implemented in surface topography

characterization, wear prediction modeling, and wear process testing.
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The structure of this thesis is as follows. Chapter 2 applies the

statistical and random process methods to a specific kind of surface:

waterjet generated surfaces. Several classification and evaluation

methods for surface topography are introduced. The principles and

technology of waterjet machining and the striation phenomenon are

described. Waterjet machined surfaces are evaluated by separating

the surfaces into smooth and striation zones. The study is then

expanded to include the effects of cutting parameters and structure

dynamics on waterjet generated surfaces.

As an introduction to fractal geometry, chapter 3 presents a

general description of fractals and explains some basic concepts such

as self-similar fractals, self-affine fractals, and fractal dimension.

Techniques developed for determining fractal dimensions are

discussed. It is observed that the structure function method is very

useful as a tool for obtaining fractal dimension and topothesy for

fractal sets.

In chapter 4 a Gaussian random fractal model for surface

topography characterization is proposed. Based on this model it is

found that fractal geometry is directly related to the bearing area

curve. Because fractal geometry is a quantitative and concise

expression of surface contact support ability, it is possible to use

fractal parameters to replace traditional bearing area curves.

Experimental results shown agree with the analytical results based

on this model.

Since fractal geometry can be used to characterize surface

contact support ability, it is practical to apply this method to wear.

This is discussed in chapter 5. The fractal property of islands is used
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to simulate a real random surface, and the fractal relation of contact

asperities is found. Based on the adhesive wear theory a wear

prediction model is developed using fractals, and in terms of this

model the effects of fractal parameters on wear rate are analyzed.

The optimum fractal dimension in wear processes is discussed. The

fractal method is implemented in a wear testing process and the

results qualitatively support the wear prediction model. Chapter 6

contains conclusions and suggested future work.



CHAPTER 2

CHARACTERISTICS OF ABRASIVE WATERJET
GENERATED SURFACES AND EFFECTS OF CUTTING

PARAMETERS AND STRUCTURE VIBRATION

2.1 Introduction

Abrasive waterjet (AWJ) machining is an emerging technology which

enables the shaping of practically all existing engineering materials.

Due to the advantages of AWJ machining such as fast cutting speed,

no heat effect zone, and ability to cut harder materials, it has been

widely used in many industrial applications. Like other high energy

beam cuttings, AWJ cutting has the defect of leaving striation marks

on the cut surface. This significantly affects the dimensional accuracy

and surface finish. The striation marks on the surface can be

improved by adjusting the jet entrance angle (Matsui et al., 1990),

slowing down the cutting speed, and using multi-passes cutting

(Souda, 1991). However these are not efficient ways and striation can

not be eliminated completely. For fully understanding the processes

of AWJ machining and seeking a way to enhance dimensional

accuracy and surface finish, it is essential to study the characteristics

of AWJ generated surfaces.

The topography of AWJ generated surfaces has been studied by

several researchers. Based on a flow visualization study of waterjet

cutting process, Hashish (1984, 1991), proposed that the waterjet

erosion process consists of two cutting regimes. The first regime (on

the top of the kerf) is dominated by the cutting wear mode where

5



6

penetration occurs in a small impact angle. The second regime (on

the bottom of the kerf) is dominated by the deformation wear mode

where penetration occurs in a large impact angle. The surface is

smooth in the first regime but is marked by striations in the second

regime. Based on this study, Tan (1986) suggested a model based on

the kinematics/geometry of the cutting process to explain the

characteristics of striated surfaces. He showed the modeled results to

be in good agreement with experimentally obtained data. Hunt, Kim

and Reuber (1988), in conducting an experimental study for AWJ cut

metal surfaces involving striations, observed that the surface

roughness increases monotonically with increase in depth of cut or

cutting speed and that a linear relationship correlates them very

well. A similar conclusion was made by Neusen, et al. (1987) in the

cutting of metal matrix composites. Kovacevic (1991) used a second-

order mathematical model to characterize the surface roughness as a

function of several AWJ operation parameters across the entire cut's

depth.

Despite the common observation that an AWJ cut surface may

consist of two zones of different texture: a smooth zone near the top

of the cut and a rough striation zone below some depth from the top,

researchers have not studied the texture of a surface in the smooth

zone and how it differs from the texture of a surface in the striation

zone.

In this chapter we present an experimental study of the

topography of AWJ generated surfaces such that we are able to

reveal the distinct difference in surface texture between the smooth

zone and the striation zone. It is found that the smooth zone has a
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homogeneous, random, Gaussian, and moderately isotropic texture.

The surface roughness parameters Ra and Rq in this zone depend

weakly on depth of cut, cutting speed, and orifice diameter, although

they increase monotonically with increasing abrasive particle size. In

contrast, the surface roughness and the amplitude of power spectrum

in the striation zone increases strongly with increasing depth of cut

or cutting speed.

Hashish (1991,1992) presented his recent study of the general

characteristics of AWJ machined surfaces. He proposed that there are

two types of waviness in AWJ machined surfaces. The first type of

waviness is the jet-induced waviness, which exists on the surface

dominated by the deformation wear mode. The second type of

waviness is the traverse-induced waviness, which may appear in

both the cutting and deformation wear zones. In Harshish's paper he

also mentioned that some dynamic factors and vibration may be the

causes of striation formation. However these causes remain

somewhat a conjecture, as pointed out by himself that no

quantitative data are available.

In this chapter we shall present a detailed study of the

structure dynamics of our AWJ machine to find out the role of the

vibration of the AWJ machining system in striation formation.

2.2 Evaluation of Surface Topography

2.2.1 Classification of Surfaces

Classification of surfaces can be done as depicted in Figure 2-1

(Nayak, 1971; Zhou, Leu, and Dong, 1990). Surfaces of solids can be
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Figure 2-2 Sampling grids for the multi-parallel profile method
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divided into homogeneous and inhomogeneous surfaces. For

homogeneous surfaces the statistical properties of surface texture are

invariant with respect to translation of surface of examination.

Homogeneous surfaces can be separated into deterministic and

random surfaces. The texture of deterministic surfaces has strong

periodicities. The method of measuring and assessing deterministic

surfaces are described in the ISO standard of surface roughness

(1966). The current surface evaluation practice is often based on the

assumption that a surface in question is homogeneous and

deterministic.

Random surfaces can be further divided into Gaussian and non-

Gaussian surfaces based on the distribution of surface heights

(Thomas, 1982b). Gaussian surfaces can be isotropic or nonisotropic.

If the statistical characteristics of surface texture are invariant to

direction of surface profile measurement, the surface is termed

isotropic. For Gaussian isotropic surfaces, it suffices to measure one

profile and use its power spectral density (PSD) moments to assess

the whole surface (Longuet-Higgins, 1957; Nayak, 1971). For

Gaussian nonisotropic surfaces, several non-parallel profiles should

be sampled and their PSD moments used for assessment (Longuet-

Higgins, 1962; Nayak, 1973).

To classify an unknown surface the following procedure can be

used. First, single-profile measurements can be made on different

locations of the surface to identify surface homogeneity. For

inhomogeneous surfaces, a multi-parallel profile method can be used

for evaluation. Autocorrelation functions can be obtained for further
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examination of homogeneous surfaces (Peklenik, 1967). If the

surface is random, the next test is to evaluate height distribution. If

this evaluation shows that the height distribution is Gaussian, the

next step is to evaluate whether the surface is isotropic or

nonisotropic.

2.2.2 Methods of Surface Topography Evaluation

2.2.2.1 Surface Parameters

The multi-parallel profile method constitutes the extension of the

conventional 2-D profile measurement technique (American National

Standard, 1985) to 3-D surface texture measurement. Essentially,

dense parallel profiles are obtained for evaluating the surface

texture. The sampling grid pattern for the multi-parallel profile

method is illustrated in Figure 2-2. The probe of a profilometer

traverses along the X direction to obtain a profile and returns to the

starting point. It is then displaced d y along the Y direction before

measuring the second profile, and so on. In Figure 2, N x is the

number of sampling points on each profile, Ny is the number of

sampled profiles on the surface, d x is the sampling interval in X

direction. Once the data array has been obtained, various surface

parameters can be computed for the surface evaluation.

The first step in computing surface parameters involves the

identification of a reference plane for a surface under evaluation. The

least square technique can be used for identifying this plane. After

the reference plane (Ax+By+C) has been identified, the surface height

Z(x, y) can be expressed relative to this plane as
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Z(x, y) Z(x, y) - (Ax + By + C) 	 (2.1)

The obtained Z(x, y) data allow determining all the surface roughness

parameters as in the 2-dimensional case involving single profiles.

The following four surface roughness parameters will be used in this

study.

1) Average surface height

r rRa. 1§ .1 j I Z(x, y)I dxdy (2.2)

where S is the surface area of concern.

2) Root-mean-square surface height

Rq = (—s I (z(x,y)) 2 dxdy) 112 (2.3)

3) Skewness

r
Rsk = 

1 
3 	(Z(X,Y))3 dxdy

S R
q

(2.4)

4) Kurtosis

Rku = 	 4 1 (z(x,y))4dxdy
S R_

(2.5)



(2.6)0<_Y 1

0 5. y' 	 1 (2.7)

1 2

2.2.2.2 Isotropy Identification

There exist methods for identifying surface isotropy. Nayak (1973)

proposed the y criterion

112,-Fki

12-0[22-413)1 /2)1/2
fr2 2 AI3 ),1/2

where I2 and 13 are statistical invariants which are composed by

second-order power spectrum density (PSD) moments (see Appendix

A). For an isotropic surface, y =1. For a surface whose profiles have

very long crests, 'y = 0. Sayles and Thomas (1979) proposed the

following alternate formula:

where M2min and M2max are the minimum and maximum second-

order PSD moments. The autocorrelation function (Kubo and

Peklenik, 1968) and spatial spectrum (Majumdar and Bhushan,

1990) analyses could also be used for isotropy identification, but

they can only provide qualitative characterization.

2.3 Waterjet Cutting Technology

2.3.1 Principle of Waterjet Machining
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Waterjet cutting involves the compression of water to an extremely

high pressure (up to 379.5 MPa) and subsequently forcing the water

through a small orifice (0.1016 to 0.508 mm in diameter) to impact

on the workpiece at a velocity which may approach 750 meters per

second. The water stream causes rapid erosion of the workpiece and

generates a kerf slightly wider than the orifice diameter. The

effective power of the water stream is determined by the water

pressure and orifice diameter. By adding a granulated abrasive

material to the focused water stream, the ability of the stream to

erode hard and high-density materials is greatly enhanced. A

schematic diagram of AWJ system is given in Figure 2-3.

2.3.2 Striation Phenomenon

A specific feature of AWJ cutting is the formation of striation marks

below a relatively smooth area on the machined surface. Figure 2-4.

shows that the AWJ generated surface may contain two main zones: a

comparatively homogeneous upper zone, a lower zone containing

continuously increasing striation marks. Similar complexity in

surface texture has been observed on surfaces generated by other

manufacturing methods such as by a laser beam (King and Powell,

1986). Significant striation lines appear when the ratio of the

available energy of jet to the required energy of material destruction

drops below a critical value. This ratio depends on the cutting speed,

depth of cut, flow rate and particle velocity. The amplitude of

striation marks increases as the distance of cut increases.
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2.4 Evaluation of Waterjet Generated Surfaces

2.4.1 Characterization of Surface Topography in Smooth Zone

The Ingersoll Rand Streamline waterjet cutting system was used in

the experiment. Six workpieces were investigated after having been

machined. Their manufacturing specifications are listed in Table 2-1.

The system for measuring surface topography is shown in Figure 2-5.

The textures of the machined surfaces are shown in Figure 2-6.

We first evaluated the homogeneity of the generated surfaces.

The variation in Ra and Rq in different areas of the surface revealed

the existence of homogeneous (smooth) and inhomogeneous

(striation) regions.

The second step was to evaluate the stochastic property of the

smooth, homogeneous region of the surface. The autocorrelation

functions of the surface profiles measured in 0° (parallel to the

moving direction of the cutting head) and 90° are shown in Figure 2-

7. For all of the measured profiles the autocorrelation function

decreases from 1 to 0 rapidly with increase in correlation length X

and then oscillates around the X axis. This indicates that the texture

of the smooth part of the surface is dominantly random.

The third step involved evaluating whether the random surface

is Gaussian or not. The ideal Gaussian surface's probability

distribution graph has a bell shape with the skewness equal to zero

and kurtosis equal to three. The graphs obtained as shown in Figure

2-8 (a) to (f) indicate that for practical purposes the studied surfaces
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Workpiece Material Pressure
(MPa) 	 _

Orifice
(mm)

Nozzle
(mm)

Cut Speed
(mm/min)

StandOff
(mm)

Depth
(mm)

Abrasive
(Garnet)

W71 Steel 331.2 .254 .762 7.6 1.5 63.5 #80

W72 Steel 331.2 .254 .762 , 15.2 1.5 63.5  #80

W73 Titanium 345 .254 .762 25.4 1.5  20.32 #120

W74 Titanium 345 .254 .762 101.6 1.5 20.32 #120
W15 Stainless

steel
345 .254 .762 25.4 1.5 12.7 #80

W76
	 . steel

Stainless 345 .254 .762 50.8 1.5 12.7 #80
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(a) WJ1, a=3.83 pm, Rku=3.173, Rsk=.108 (b) WJ2, a=3.91	 Rku=3.31, Rsk=.29

(c) WJ3, c:r=3.3 pm, Rku=3.289, Rsk=.336 (d) WJ4, cr=4.27	 Rku=3.12, R sk=0.102

(e) WJ5, a=4.11 pm, Rk u=3.34, R sk=.265	 (f) WJ6, a=5.01 pm, Rku=3.53, R sk=0 .361



(g) A surface with small striation marks 	 (h) A surface with heavy striation marks

(3'=6.3 gm, Rku=3.8, Rsk=-0.26	 6=13.1 gm, Rku=2.5, Rsk=0.46

Figure 2-8 Amplitude distribution graphs of waterjet cut
workpieces, (a)-(f) from smooth zone, (g)-(h) from striation zone

Table 2-2 y and y' values for AWJ, EDM (electrical discharge
machined) and GRD (ground) surfaces
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meet these requirements, thus these surfaces are of the Gaussian

type. As a comparison, Figure 2-8 (g) and (h) are two distribution

graphs for surface profiles from the transition zone and striation

zone depicted in Figure 2-4. Obviously these are not of Gaussian

distribution.

The isotropic property of the generated surface in the smooth

zone was also evaluated. Based on equations (2.6) and (2.7), y and y'

values of the six AWJ workpieces were calculated. They are listed in

Table 2-2. For comparison, y and y' values for two surfaces generated

by electrical discharge machining (EDM) and three surfaces

generated by grinding were also calculated. They are also listed in

Table 2-2. It is clear that EDM surfaces are strongly isotropic and

grinding surfaces are strongly anisotropic (Sayles and Thomas, 1979).

The y and y' values of AWJ surfaces are between those of EDM

surfaces and those of grinding surfaces, and they are closer to those

of EDM's. This suggests that the texture of AWJ surfaces is

moderately isotropic.

The values of several surface parameters were calculated for

the smooth regions of the six AWJ generated surfaces and they were

compared with those of the surfaces generated by milling and

turning; see Table 2-3. The comparison shows that the values of Ra

and Rq of AWJ generated surfaces are comparable to those generated

by conventional milling and turning techniques. However, the values

of R sk and Rku are quite different. This is because AWJ surfaces are of

random, Gaussian type, but the other two types of surfaces are

deterministic and periodic. Gaussian and isotropic surfaces are

preferred in many engineering applications due to their uniform
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property. Thus there is a good potential for the use of AWJ

machining as a replacement for turning, milling, and other

conventional shaping processes.

Table 2-3 Parameter values of surfaces generated by waterjet,
turning, and milling processes (the values for turning and milling
were each averaged from five workpieces).

2.4.2 Power Spectrum Analysis for Striation Zone

We have also used power spectrum analysis to study the surface

texture in the striation zone. We examine the frequency and

amplitude characteristics of the power spectrum and their relations

with cutting speed and depth of cut. The results of this study are

presented below.

2.4.2.1 Frequency Characteristics

The influence of depth of cut on the frequency content of power

spectrum of an AWJ surface is shown in Figure 2-9. Eight profiles

were sampled at the depths from 2 mm (top surface) to 16 mm
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(bottom surface) in the cross striation direction on an AWJ surface.

The dominant frequencies are the same (1 HZ) for all of the eight

profiles. This means that the depth of cut has no effect on the

dominant frequency of power spectrum of the striation surface.

The influence of cutting speed on the dominant frequency of

power spectrum was also examined. Four workpieces were cut in

different speeds of 6, 8, 10, and 12 in./min., respectively. Their

striation (spatial) wavelengths can be determined easily by counting

the number of striation marks in a unit length. If the striation

wavelength and cutting speed for each surface are considered, the

dominant frequency of power spectrum can be found for all the

surfaces. For these four workpieces their dominant frequency of

striation are the same. This means that like the depth of cut, the

cutting speed is found to have no apparent effect on the dominant

frequency of power spectrum.

2.4.2.2 Amplitude Characteristics

Figure 2-10 (a) and (b) show the amplitude of the dominant

frequency of surface profile power spectrum for several surfaces

generated at different depths of cut and different cutting speeds. It

can be seen that the larger the depth of cut or cutting speed, the

larger this amplitude.



Figure 2 -9 Power spectra of profiles obtaines from the striation zone of a surface
at different depths from the top



Figure 2-10 Amplitude of dominant frequency of profile power
spectrum as a function of (a) depth of cut (b) cutting speed



26

2.5 Relations of Surface Roughness
with Cutting Conditions

2.5.1 Effects of Cutting Parameters

In this subsection we shall study the effects of cutting parameters on

the whole waterjet cutting surface including both smooth and

striation zones. The effects of operational parameters including depth

of cut, cutting speed, orifice diameter, and abrasive size on the

generated surface were investigated for 35 steel specimens. Table 2-

4 lists the values of parameters that are used in the study.

Eleven of the specimens were machined at various depth of cut

(Table 2-4) while the rest of the cutting condition was fixed. Surface

profiles were sampled from the top, middle and bottom portions of

each specimen. Figure 2-11 shows the functional relations of surface

roughness parameters R a and R q with depth of cut. Generally

speaking, the roughness of the top portion of the surface is

independent of the depth of cut (see Ra 1 and Rq 1 data). For the

bottom portion of the surface, depth of cut clearly affects surface

roughness (see Rai and Rq 3 data). There exists a critical depth of cut,

beyond which the relationship is: the larger the depth of cut the

rougher the generated surface, and below which the depth of cut has

almost no effect on the surface roughness. Essentially, below a

certain depth of cut the entire machined surface is smooth with

negligible striation effect. Above this depth of cut, however, striation

becomes significant and the surface can be divided into a smooth

zone and a striation zone. Under the condition stated in Figure 2-11,

the critical depth of cut is about 18 mm. Machining at a depth of cut
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lower than this would generate surfaces which are entirely smooth.

For studying the effect of cutting speed on surface roughness,

twelve of the steel specimens were machined at different cutting

speeds (Table 2-4) with the values of other cutting parameters fixed.

Again, three profiles were sampled from the top, middle, and bottom

potions of each specimen. Figure 2-12 shows the relations between

surface roughness and cutting speed. They have very similar shapes

to those between surface roughness and depth of cut in Figure 2-11.

The roughness of the top portion (which is smooth) is not strongly

affected by cutting speed, but the roughness of the bottom portion

(with striation) is strongly affected by cutting speed. There is also a

critical cutting speed, below which the entire surface is smooth and

above which the surface consists of a smooth zone and a striation

zone. For the condition stated in Figure 2-12, this critical speed is

about 45 mm/min.

The result of surface evaluation for varying orifice diameter is

depicted in Figure 2-13. The values of R a and Rq for the upper

portion of the surface are approximately constant, while the

roughness of the bottom portion increases dramatically as the orifice

diameter becomes less than 0.125 mm, the critical value of orifice

diameter in this experiment. Again, this result demonstrates that the

roughness of the upper part of the surface is invariant with respect

to the operating condition.

In testing the effect of abrasive particle size, the above three

sets of experiments were used to help select the values of the

operation parameters so that the surfaces generated are entirely

smooth. The selected condition was: cutting speed = 25.4 mm/min,
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cutting thickness 	 12.7 ram, and orifice diameter = 0.2286 mm. No

significant striations were observed in any of these surfaces. Figure

2-14 shows that both Ra and Rq increase monotonically with increase

in particle size. This relation can be explained from the mechanism of

surface formation by impinging abrasive particles. Our previous

study (Geskin et al., 1989) showed that the material removal by AWJ

is due to the superposition of dimples generated by individual

particles. Thus the roughness of the generated surface is a function of

particle size. The test result indicates that the roughness parameters

R a and Rq of the generated surface are proportional to abrasive

particle size.

Table 2 -4 Values of cutting process parameters used in the
experiments

Cutting Speed Test Depth of Cut Test Orifice Diameter Test
,

Abrasive Size Test
Specimen Speed

(mm/min)
Specimen Depth

(mm)
Specimen Diameter

(mm)
Specimen Size

(1m)

CS1 12.7 CT1 5.08 OD1 0.1016 AS1 120

CS2 22.9 CT2 7.65 002 ,. 	 0.1270 AS2 175

CS3 33.0  CT3 10.16 OD3 0.1524 AS3 277

CS4 , 	 43.2 CT4 12.70 OD4 	 A 0.1778 , 	 AS4 , 	 384

CS5  53.3 CT5 15.24 005 0.2032

CS6 63.5 CT6 17.78 OD6 0.2286

CS7  73.7 Cif 20.32 OD7 0.3048

CS8  83.8  C148 22.86  OD8 0.3556

CS9 94.0 C19 25.40

CS10 104.1 CT10 38.10

CS11 114.3  CT11 50.80

CS12 127.0



Figure 2-11 Surface roughness in relation to depth of cut. R a i and
R q I are for the top surface, Rae and Rq 2 for the middle surface, and
R a3 and Rq3 for the bottom surface. The cutting condition is: water
pressure = 317.4 MPa, cutting speed = 20.3 mm/min., sapphire nozzle
diameter = 0.2286 mm, carbide tube diameter = 0.8322 mm,
abrasive size = 80# Garnet, abrasive flow rate = 199.5 g/min, and
stand-off distance = 1.5 mm.



Figure 2-12 Surface roughness in relation to cutting speed. The
cutting condition is: water pressure = 317.4 MPa, cutting thickness =
12.7 mm, sapphire nozzle diameter = 0.2286 mm, carbide tube
diameter = 0.8322 mm, abrasive size = 80# Garnet, abrasive flow
rate = 199.5 g/min, and stand-off distance=1.5 mm



Figure 2-13 Surface roughness in relation to orifice diameter. The
cutting condition is: water pressure = 331.2MPa, cutting thickness =
12.7 mm, cutting speed = 25.4 mm/min., carbide tube diameter =
0.8322 mm, abrasive size = 80# Garnet, abrasive flow rate = 214
g/min and stand-off distance = 1.5 mm



2.5.2 Discussion

We have found from the experiments that the roughness of the

upper part of the examined surface is invariant with respect to the

operation condition. The formulation of a mathematical model

predicting the characteristics of this smooth region is part of our on-

going study. Here we simply provide an explanation for this

observation.

The surface generated by AWJ contains a region where the

direction of the jet does not change in the course of the jet

penetrating into the workpiece. The jet penetration depth is

determined by the balance of the available energy of the jet and the

required energy of material destruction. The available jet energy is

determined by the condition of jet formation, such as water pressure

and orifice diameter, and the condition of jet-workpiece interaction,
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such as cutting speed and depth of cut.

The jet penetrates into the workpiece only if the available

energy of the jet is dissipated and eventually approaches the

material destruction energy required. This determines the depth of

jet penetration. The conditions of surface generation in the regions of

excessive jet energy are identical at different portions of the surface,

thus the generated surfaces are homogeneous.

Our study shows that the smooth portions of the generated

surfaces are fairly isotropic. The surface generated by AWJ is formed

by the superposition of micro dimples created by individual

abrasive particles. The large number of dimples and grooves

determines the isotropy property of the generated surface. The

roughness of this surface depends on the size of grooves.

The operation parameters (orifice diameter, cutting speed, and

depth of cut, etc.) which determine the available energy of the jet do

not affect the surface topography if the jet has sufficient energy such

that the entire penetrated surface is homogeneous and isotropic. The

conditions under which the available jet energy and the required

material destruction energy become comparable determine the

critical values of the operation parameters.

2.6 Effects of Structure Dynamics
on Striation Formation

2.6.1 Experimental Observations

The mechanism of striation formation is a main topic in

characterization and modeling of waterjet machined surfaces.
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According to Hashish's (1984, 1991) observation the striation occurs

only at the lower part of the surface which is mainly due to the

erosion mode changes along the penetrated direction and the whole

cutting process is cyclic in natural. This conclusion is based on some

video pictures recorded by a high speed movie camera in the

direction perpendicular to the traverse direction. What can be seen

from the pictures are only the projections of the cutting processes to

a plane (i.e. a two dimensional visualization). However from our

experiments it is noticed that the jet is off the cutting plane at the

bottom of the kerf, so the cutting process is not in a two-dimensional

plane but in a three-dimensional space. The striation marks appear

at the upper portion of the surface can also be seen in some cases.

This means that a further explanation of striation formation is

necessary.

The driving mechanism of the waterjet machining system made

by Ingersoll-Rand is shown in Figure 2-15. A five axes gantry robot

is the main feature of this machining system. The cutting head is

mounted on the gantry. The translation along the X-axis is provided

by motor X and a pinion-rack system. The translations of Y and Z

axes are provided by motors Y and Z, and two motorized ball-screws.

Two rotation axes are perpendicular to each other; one rotates

around Y-axis and the other around Z-axis. The five axes motions are

controlled by Allen Bradley 8200 series CNC controller. Figure 2-16

(a) and (b) are the power spectral density graphs of two surfaces cut

in Y and X directions by using the AWJ machine, respectively. It is

found that when the cutting is in the Y direction a single peak

spectrum is observed, whereas when cutting is in the X direction a
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multi-peak spectrum is observed. Comparing the amplitudes of the

two spectra, the surface cut in the Y direction shows much larger

amplitude than the sample cut in the X direction (approximately 20

times). Comparing the textures of the two surfaces, it was find that

although they were machined in the same cutting parameters and

same material, they have quite different striation patterns. When the

cutting is done in the Y-axis, the surface shows more regular and

periodic striation and larger amplitude than the surface cut in the X-

axis. According to Hashish's (1984) erosion model or Tan's (1986)

geometry/kinematics model, there should be no difference in the

striation patterns by using the same cutting parameters. From our

observations, the only difference between these two cutting

processes is that the AWJ machining system has different driving

mechanism in X and Y directions. From these observations it is

suggested that the two different striation patterns are possibly

caused by the driving mechanism. To find out what is the effect of

structure dynamics on the striation formation we did the following

testings.



Figure 2-15 Schematic of the 5-axis gantry robot



Figure 2-16 Power spectral densities measured in different depths of two samples
with cutting speed 80 mmlmin. in (a) Y and (b) X directions on the 5-axis machine



Figure 2-17 The schematic of the end-effector

38
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2.6.2 Vibration Testing

Experiments were done by just turning the drive of the robotic

system and the jet on without moving the robot arms, and by

measuring the vibrations at the four positions of the end-effector as

shown in Figure 2-17. The vibrations and their power spectral

densities of the four positions are shown in Figure 2-18. It was found

from the figure that the same vibration frequency in the X direction

can be measured from positions a and b, but this vibration can not be

found in the perpendicular Y direction of positions c and d. The

vibrations in the X direction show much larger amplitudes than the

vibrations in the Y direction. The dominant frequency of the

vibration in the X direction is 1 Hz and this matches with the

striation frequency, whereas the frequencies of the vibrations in the

Y direction show a random behavior. Because the vibration of 1 Hz is

much lower than the natural frequency of the robotic system and

their PSD have nearly the same vibration magnitude at positions a

and b, the vibrations at these two positions should be in-phase. Thus

the bigger compliance of the nozzle head in X direction is not the

reason of the formation of the periodic striation.

2.6.3 Effect of the Motor Driving System

By examining the motor-driving system of the system (see Figure 2-

15), two possible vibration sources for causing regular striation in

the Y direction were identified. Two motors that used to drive the

translations in the X and Y directions are mounted on the frame of

the gantry robot. They both rotate along the Y axis and their motions

are coupled with the roll mode of the robot, so the vibration only
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happens in the X direction. There is no motor rotation about the X

axis and the stiffness of the structure in Y direction is relatively high,

so there is no periodic vibration in the Y direction. By further

analysis we found that the translation for Y axis is acted by a pair of

ball-screw. This kind transmission has high position resolution, small

backlash, and vibration. The translation for X axis is acted by a pair

of pinion-track and it has lower position resolution, larger backlash,

and vibration. We also measured vibration frequency of motor X, it

was found that its rotator had a vibration frequency of one Hz. All of

these suggest that when cutting in the Y or X direction the vibration

of motor X or motor X is the main source of the striation formation on

the waterjet generated surfaces for our AWJ cutting system.

The vibration of an AWJ machining system plays an important

role in the generation of the striation marks. For our Ingersoll-Rand

waterjet machine, the vibrations of motor X and motor Y are the

main cause of striation formation. To decrease the vibration and

improve surface quality the possible ways are the isolation of motors

with the robot arms, and the design of vibration absorbers.



(d) 	 (h)
Figure 2-18 (a), (b), (c) and (d) are the displacements measured at the positions a,
b, c, and d shown in the figure 2-17 (e), (f), (g), and (h) are the power spectral
densities of (a), (b), (c), and (d).
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2.7 Chapter Conclusion

AWJ surfaces can be separated into two parts: the smooth zone and

the striation zone. The proportions of these two zones on a surface

depend on the cutting condition described by cutting speed, depth of

cut, and orifice diameter. By controlling the cutting conditions, a

surface can be totally smooth with no striation zone, or can be

completely dominated by striations. By the use of autocorrelation

functions, surface height distributions, and isotropy identification

criteria, it is concluded that the surface topography of the smooth

zone is random, Gaussian, and moderately isotropic.

From the profile power spectrum analysis for the striation zone

of an AWJ surface, it is found that the dominant frequency of this

spectrum is independent of cutting speed and depth of cut. The

amplitude of the spectrum increases monotonically as depth of cut or

cutting speed increases.

The parameters Ra and Rq are strongly related to depth of cut

and cutting speed for the striation zone of an AWJ surface. Their

values increase rapidly as depth of cut or cutting speed increases. In

the smooth zone, the dependence of these parameters on depth of cut

or cutting speed is from weak to negligible. These properties can be

utilized to define cutting process conditions in which a high quality

smooth surface can be obtained. For example, if the cutting speed is

less than 45 mm/min., the depth of cut less than 18 mm, and the

orifice diameter larger than 0.125 mm, a very fine surface can be

generated on a steel workpiece by AWJ machining.

The vibration of an AWJ machining system plays an important

role in the generation of striation marks. In our 5-axis waterjet
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machine, the vibration of the machine structure is the main cause of

striations. This vibration originates from the driving motor and is not

due to structure resonance.



CHAPTER 3

FUNDAMENTALS OF FRACTAL GEOMETRY

3.1 Chaos—A New Science

Over the last decade or so, physicists, biologists, astronomers and

economists have created a new way of understanding the growth of

complexity in nature. This new science, called chaos, offers a way of

seeing order and pattern where formerly only the random, erratic,

and unpredictable, in short the chaotic, had been observed. The

science of chaos cuts across traditional scientific disciplines, tying

together unrelated kinds of wildness and irregularity: from the

turbulence of weather to the complicated rhythms of the human

heart, from the design of snowflakes to the whorls of windswept

desert sands. Fractal geometry is the most significant approach in the

science of chaos. Fractals have blossomed tremendously in the past

few years and helped reconnect pure mathematics research with

both the natural science and computing. Within the last 5-10 years

fractal geometry and its concepts have become central tools in most

of natural science: physics (Mandelbrot and Ness 1968), chemistry

(Avnir, Farin, and Pfeifer 1984), biology (Goldberger, Rigney and

West 1990), geology (Peitgen and Saupe 1988), meteorology

(Mandelbrot 1982), material science (Avnir, Farin and Pfeifer 1985),

and tribology (Ling 1990; Manjumdar 1990). In this dissertation the

emphasis is on tribology.

Fractal Geometry is an improvement and development of

Euclidean geometry, a natural geometry of the physical world.

Euclidean geometry describes ordered objects such as points, curves,

44
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surfaces and cubes using dimensions of 0, 1, 2, 3, respectively. But

the real world is never so ideal and simple. Shapes such as coastlines,

mountains, landscape and clouds are not easily described by

traditional Euclidean geometry. Fractal geometry provides an

excellent description of many natural shapes and it is not like

Euclidean shapes which have one, or at most a few, characteristic

sizes or length scales (the radius of a sphere, the side of a cube),

fractals, like coastlines, possess no characteristic sizes and scales.

Natural shapes are complex and hard to describe, but they often

possess a remarkably simplifying invariance under changes of

magnification. This statistical self-similarity is the essential quality of

fractals in nature. It may be quantified by a fractal dimension, a

number that agrees with our intuitive notion of dimension but need

not be an integer.

The concept Fractal Geometry was first proposed by

Mandelbrot (1976). The word fractal' corresponds to the verb

meaning "to break;" i.e. to create irregular fragments. The original

idea to use fractals came from Mandelbrot's question, "How long is

the coast of Britain?" (1967). Seacoast shapes are examples of highly

complicated curves such that each of their portions can, in a

statistical sense, be considered as a reduced scale image of the whole.

Coastlines, when measured with increased precision (finer scale),

would furnish lengths ten, hundred or even thousand times as great

as the length read off a school map. Figure 3-1 illustrates this

property based on Richardson's investigated results (1961). The most

significant features of this kind of fractal phenomena are



4.0

AUsTRALIA
INICOAsT

CIRCLE

SOUTH AFRICAN COAST
GERmioi 0 	 0 	 0	

""0-- • LAND FRONnE 	
Osn 19°°

LAND-FRONTIER OF PO
0 	 RTUGAL

1.0	 1.5	 2.0	 2.5	 3.0	 3.5

Log io (Length of Side in Kilometers)

Figure 3-1 Length infinity of coastlines

46

	Lo

	 Li

	

L2

- L3

▪ Lk

INIMMIN11■111111111 	 111111■■■■•11111111M

MOM =MOM 	 1111111106 ■101
	

IMMO MEMO

IMO NW II=
	 MI MO NM OM 	 0111 RIM MD

Figure 3-2 Cantor Set



4 7

length infinity and statistical self-similarity. Some examples such as

boundaries of countries and shapes of mountains and clouds have the

same fractal property. For a better understanding of self-similarity,

its mathematical description will be introduced next.

3.1.1. Self-Similarity

The middle third Cantor set is one of the best known and most easily

constructed fractals; nevertheless it displays many typical fractal

characteristics. It is constructed from a unit interval by a sequence of

deletion operations, see Figure 3-2. Let L o be a unit length. Let L 1 be

the set obtained by deleting the middle third of L o so that L 1 consists

of the two intervals and each has length 1/3. Deleting the middle

third of these intervals gives L2; thus L2 is comprised of four

intervals, each of length 1/9. We continue in this way, with Lk

obtained by deleting the middle third of each interval in Lk_i. Thus

Lk consists of 2k intervals each of length 3 -k . Assume the number of

intervals is N, the length of each segment is 1/M then the dimension

of the Cantor set is

log	 N log 2k
= 0.631D=

log M
.

log 3k
(3.1)

where M is the magnification. Thus a fractional dimension comes out.

The Koch curve is another well known example; see figure 3-3.

Let Lo be a unit length. The set L 1 consists of four segments obtained

by removing the middle third of L o and replacing it by the other two

sides of the equilateral triangle based on the removed segment.



log	 N
D= loe M (3.4)
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Construct L2, L3, ... Lk by repeating the same procedure as applied to

L 1 . Thus Lk comes from replacing the middle third of each straight

line segment of Lk_ 1 by the other two sides of the equilateral

triangle. Its structure should look like this: the number of segments

is N= 4k , the length of each segment is 1/M = 3 -k . The dimension of

the Koch curve can be calculated as

log	 N log 4kD= log M = log 3k = 1.26 (3.2)

For a general description of fractal dimension (for self-similar

fractals), we have the following definition. For an object of N parts,

each scaled down by a ratio 1/M from the whole

NM-D = 1	 (3.3)

The fractal (self-similarity) dimension D is defined by

This kind of purely mathematical sets is called exactly self-similarity.

Most of sets in nature do not have such regular segments. They

possess similarity in statistical sense. So they are refereed to as

statistically self-similar.



Figure 3-3 Koch curve
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3.1.2 Self-Affinity

The definition of self-similarity is based on the property of equal

magnification in all directions. However, there are many objects in

nature which have unequal scaling in different directions. Wiener's

scalar Brownian motion B(t) is a typical example of a self-affine

fractal (Mandelbrot 1968). It has different measuring units in the

time (t) axis and in the random walking distance (B) axis. Brownian

motion has two well-known invariance properties:

1) Setting B(0)=0, the random process B(t) and b" 112B(bt) are

identical in distribution for every ratio b>0. One observes that the

rescaling ratios of t and of B are different, hence the transformation

from B(t) to b -1 /2B(bt) is an "affinity." This is why B(t) is called

"statistically self-affine." A very important role is played in fractal

geometry by the more general fractional Brownian motions (fBm's)

B D (t), where O<D<1. If B D (0)=0, the random processes B D (t) and

b" (2-D) B D (bt) are identical in distribution. The value D=3/2 sets

Brownian motion B(t) as a special case of BO).

2) The fBmts possesses the following invariance:

4B(t+t) - B(t)1 2> = CITI4-2D (3.5)

where < > represents the statistical average, C is a constant and D is

the fractal dimension. This is the most important property and later

on it will be used for fractal dimension and topothesy calculations.
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3.2. Techniques for Obtaining Fractal Dimensions

There are many definitions of dimensions for fractal sets, such as

Hausdorff dimension, compass dimension, box dimension, mass

dimension, and area-perimeter dimension (Mandelbrot, 1982;

Peitgen and Saupe, 1988), and there are several methods for

computing each of these dimensions. These dimensions can be most

readily calculated from images or graphs for self-similar fractals (see

Figure 3-4). However, for self-affine fractals which are not self-

similar, the dimension cannot be obtained so readily (Mandelbrot,

1985). In this study, we are mainly concerned with the

microtopography of surfaces. The observed magnifications in vertical

and horizontal directions usually differ by a factor of 100 to 10,000.

The obtained graphs indicate that the surface profiles tend to be only

self-affine, not self-similar. Thus other techniques must be used to

compute fractal dimensions. If a homogeneous and isotropic rough

surface has a fractal dimension D s and its profile in an arbitrary

direction has a dimension D p , then a simple relation exists between

them; namely, D s = 1 + Dp (Mandelbrot, 1984). In this study all

dimensions are calculated from profile measurements. For

convenience the subscript p of D p has been omitted.

3.2.1 Power Spectrum Law of Fractals

Functions with fractal graphs can be obtained by specifying a certain

form for their power spectra. Profiles of machined surfaces often

lead to power spectra having fractal characteristics (Berry and Lewis,

1980; Mandelbrot, Passoja, and Paullay, 1984; Majumdar and

Bhushan, 1990). In particular, the power spectrum has the following
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general form:

SO)) wsq-2D	 (3.6)

where CO is spatial frequency, q is a constant and D is the fractal

dimension of the profile. By plotting the data of S versus o) on doubly

logarithmic coordinates, it is observed that if the curve has a large

portion close to a straight line then the profile is fractal in this

straight line range, and its D can be obtained by D = 
5 - a
2 , where a

is the slope of the straight line. Figure 3-5 gives such an example

using an electrical discharge machined specimen. One problem is that

when the power spectrum of a profile is plotted, there are often

severe statistical fluctuations on the graph; see Figure 3-5 (a). It is

very difficult to find a unique D from this type of graph. Possible

sources of these fluctuations are that when a time-domain

continuous signal is Fourier transformed, first the signal must be

digitized and filtered, and then transformed from time domain to

frequency domain. Signal digitization and filter errors, white noise

and energy leakage are likely to occur in these processes. An

averaged power spectrum of several profiles can be used to improve

this technique for obtaining D; see Figure 3-5 (b), (c) and (d).

However after the averages are performed, fluctuations still can be

observed; it is still a little difficult to determine a unique D from

these figures.
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Figure 3-5 Power spectrum of an EDM surface from (a) a single
profile, (b) 5 averaged profiles, (c) 10 averaged profiles, and (d) 20
averaged profiles.
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3.2.2 Structure Function and Its Use in Determining Fractal
Dimensions

Suppose z(x) is a fractal function; it is known (Berry,1979) that the

correlation (z(x i )z(x 2)) (and hence the variance (z 2(x))) is infinite, and

z(x) is not differentiable. Berry suggested that a structure function be

used to characterize z(x). The increment [z(x+?)-z(x)] is assumed to

have a Gaussian distribution with the following second moment

(called the structure function)

2 g 	7C	 4-2D
([Z(X-14.) - z(x)]2) = (4-2D) sin[2(2D-3)]r(2D-3)1X,1	 + m2 (3.7)

where m is the mean,	 is any displacement along the X direction, g is

a constant, D is the fractal dimension of the z(x) function and r( ) is

the Gamma function. It can be seen that the chords joining z-values

separated by a distance A. do have a finite mean square slope. If

there exists a displacement A,=L such that the chord relative to m has

an r.m.s. slope of unity, then a concise formula can be written:

where L is a characteristic parameter of the fractal function called its

topothesy. By comparing equations (3.7) and (3.8), an equation

relating the structure function with fractal geometry parameters is

derived:

([z(x-I-20 - z(x)] 2) = 1,2D-2 1714-2D + m2, 1 < D < 2	 (3.9)
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Taking the natural logarithm of both sides of (3.9), we obtain

Y = log(1 + m2) + 2(D - 1)logL +2(2 - D) X	 (3.10)

where Y = logaz(x+k) - z(x)] 2), X = loglX1 and 1.1.= mL1-DIX.1D-2. If p.<< 1, this

equation assumes the following (approximate) simpler form: -

Y 2(D-1)logL + 2(2-D)X	 (3.11)

which we call the structure function equation and from which we

find that D and L can be expressed as:

13
D 

4-
	0 <13 < 2	 (3.12)2

logL = 2D-2 	 (3.13)

where 13 is the slope of equation (3.11) and I is the Y-intercept of the

equation.

The structure function can be used for experimentally

computing D and L of fractal surfaces. It can be used to identify

whether a surface is fractal or non-fractal. Non-fractal surfaces do

not possess the above mentioned properties; in other words, their

doubly logarithmic plots either do not have a unique slope (3, or the

slope lies outside the range of (3.12). To see this we shall look at

several examples of surface data which were obtained by using a

stylus profilometer. Figure 3-6 (a) shows a saw tooth surface profile,
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and (b) is the Log-Log plot of its structure function. Obviously it is

not fractal. Figure 3-7 shows the profiles of three electric discharge

machined surfaces. The structure function graphs used to calculate

their fractal parameters are given in Figure 3-8. It can be seen that

they have straight slopes over a large range of correlation length.

These observations suggest that the structure function provides an

effective method for finding D and L of self-affine fractal sets.



Figure 3-6 Structure function as an identifier of fractals: (a) a saw-
tooth shape profile, (b) log-log plot of structure function of the saw-
tooth shape profile.



Figure 3-7 Profiles of three EDM surfaces generated with different
process parameters



Figure 3-8	 Structure function graph of (a) EDM #1 surface,
D=1.252, L=0.0516 gm, (b) EDM #2 surface, D=1.385, L=0.150 gm, and
(c) EDM #3 surface, D=1.546, L=0.237 gm.
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3.3 Fractal Characterization of Surfaces

Characterization of surface topography has become increasingly

important in many engineering fields. The methodology of analyzing

surface topography has been developed for more than fifty years

(Thomas, 1988; Jost, 1990). Over thirty parameters are used to

quantify topography in the International Standard of Surface

Roughness. This rash of parameters (McCool, 1987) causes endless

disputes about the methods of measurement and evaluation of rough

surfaces. Over the last dozen or so years it has been realized (Sayles

and Thomas, 1978; Jordan, Hollins, and Jakeman, 1986; Majumdar

and Bhushan, 1990) that much of the difficulty in using standard

measures of surface roughness stems from the non-stationary and

multi-scale nature of surface topography as well as the dependence

of the measurements on instruments. The shortcomings of

conventional statistical and random process methods have stimulated

interest in new approaches to characterizing surface roughness.

Fractal geometry was initially proposed as a means of

characterizing surface topography by Mandelbrot (1982, 1984). The

application of fractals in surface related phenomena is very recent

and shows great potential in such fields as tribology, surface contact

mechanics, thermal conductance, optical scattering on rough surfaces,

chemical reactivity of surfaces, currents in superconductors (Jordan,

Hollins, and Jakeman, 1986; Ling, 1990; Majumdar, 1989; Avnir,

Farin, and Pfeifer, 1984), etc. The use of fractal geometry in surface

topography analysis is still in a beginning stage. Ling (1990, 1987)

proposed an exponential law based on experimental results, and

discussed several potential advantages of using fractals for the study
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of boundary lubrication. Majumdar (1990, 1989) proposed a fractal

surface model based on Weierstrass-Mandelbrot functions to

characterize rough surfaces, and gave two major applications in

surface contact conductance and electromagnetic wave scattering by

rough surfaces. Some other approaches using fractals in engineering

analysis of surfaces were also reported (Gagnepain and Roques-

Carmes, 1986; Kaye, 1986; Roques-Carmes, et al., 1988; Dauw, et al.,

1990). These studies represent attempts to introduce fractals as

means of characterizing rough surfaces and they include various

methods for computing fractal dimensions. Although a good start has

been made in applying fractal geometry to the study of surface

topography, there is still much work to do in determining the extent

to which fractals can be used to characterize and model surfaces.

3.4. Fractals in Machined Surfaces

Fractal geometry provides an excellent description of many natural

shapes. Examples of fractal geometry have been found in the study

of coastlines. The features of naturally occurring shapes are often

complex and hard to describe by conventional methods, but they

sometimes possess a remarkable invariance under changes of

magnification. This invariance, which is called self-similarity, may

only be valid in a statistical sense, and it is the essential quality of

fractals in nature. Fractals are quantified by the fractal dimension D.

Most surfaces used in engineering are initially formed by

solidification of a liquid, fracture of a solid, or deposition of materials.

These surfaces then undergo multi-event processes such as forming,

electric discharge machining, waterjet cutting, and surface coating.
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The final texture of the surface is a cumulative result of all the

events which have occurred. It has been shown (Mandelbrot, 1982;

Majumdar, 1990; Ling, 1990) that the surfaces formed by these

processes produce fractal structures. The geometry of rough surfaces

has a multi-scale property (Jordan et al., 1986), so it is of great

importance to find a scale-independent characterization method to

study surface topography. Currently, parameters such as root-mean-

squares of height, slope, and summit curvature are commonly used

for surface topography characterization. However, the variances of

slope and summit curvature depend strongly on the resolution of the

measuring instrument and filter (Thomas, 1982a). It is also known

that surface topography is non-stationary, therefore the variance of

the height is affected by the size of the sample (Sayles and Thomas,

1978). It often happens that for the same surface, instruments with

different resolution and sampling length will yield different

parameter values.

Fractal dimension is scale invariant, and it yields a robust

numerical measure of surface topography, no matter what the

instrument resolution and sampling length are. It appears that

fractal geometry provides a more reliable and natural method for

analyzing surface topography than do conventional methods.



CHAPTER 4

FRACTAL CHARACTERIZATION OF SURFACE
TOPOGRAPHY AND IMPLEMENTATION IN

SURFACE CONTACT

4.1 Introduction

It has been known from chapter 3 that fractal geometry can be used

for surface characterization and that machined surfaces are fractals.

A logical step is to model a random surface by fractal geometry and

to find the relation of fractal geometry with the conventional surface

characterization method. The objectives of this study are to find new

applications of fractals to the characterization of surface topography

and to uncover insights into the physical significance of fractal

parameters in these applications. After reviewing some basic notions

in fractal geometry, we postulate a model for surface profiles based

on Gaussian random functions. Our model includes the fractal

dimension D and the topothesy L as the parameters. It is shown that

our model predicts that D has a strong relationship to and L has a

relatively weak influence on the bearing area curve. The prediction

has been confirmed by experiments. This study indicates that our

approach may very well play a useful role in surface contact

mechanics.

64
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4.2 Gaussian Random Fractal Modeling
of Surface Topography

We shall now describe the mathematical model which will be used to

characterize the topography of the surfaces under consideration. This

model will then be used to analyze features of surfaces in

engineering applications; in particular, we shall make some

predictions about the qualitative relationship between the model

parameters and bearing area curves.

4.2.1 The Model

Let the surface studied be a rectangle with sides of length a>0 and

b>0. We introduce a Cartesian coordinate system so that this sample

occupies the planar region

= [0, a] x [0, 	 = [(x, y) 	 9t2 : 0 5. x 5_ a, 0 	 b} 	 (4.1)

The surface topography for this sample can be represented by a

continuous function 00 : R o -4 R, so that the surface patch under

consideration can be defined by

00 = (430 (x, y) : (x, 	 E Ro) 	 (4.2)

It is mathematically convenient to extend the surface to the whole

plane in a symmetric fashion as follows: We first extend (1:0 0 to 431 on

R = [-a, a] x [-b, b] according to the formula



1<x<a, 0.545_b
-a<x5.0, 05_y5.
-a<x<0,

(4.3)

66

cDo(x , y ),
(1) 0( - x, y) ,(13.1(x, Y)= L o (-x, -y),

0(x, -1) ,

Next, we extend continuously along radial directions so that it is zero

on the circle

x2 + y2 = (ro + c)2

and beyond. Here c	 (a2b2)1/2 and ro > 0 is a parameter which will

be specified in the sequel. To be more precise, we define (1) : 91 2 -->

by the formula

(x, y), 	 (x, y) E R

)(x, y) =	 i(xo, yo), (x, y) 4 R, x2 + y 2 <(r0 + c )2

0,	 x2 + y “r o + c) 2

(4.4)

where in the middle entry (xo , yo ) is the point at which the ray from

the origin to (x, y) intersects the boundary of R and p is equal to (r 0 +

c) - (x2 + y2 ) 1 /2 divided by (ro + c) - (x02 + y02)1/2. Thus we may

assume that our sample of the surface is defined over the whole

plane by 8 = (c1 (x, y) (x, y) E 91 2 ). Note that (1) : 91 2 —> 91 is a bounded,

continuous function which agrees with 0 0 on Ro and vanishes when

x2 + y2 + c)2 .

We shall use a Gaussian random function (Rice, 1944, 1945;

Berry, 1979) to model the topography (t) of the surface O. The

plausibility of such a Gaussian model can be argued on at least two

levels: On physical grounds, the formation of many types of surfaces

can be viewed as deriving from the cumulative effects of a large



6 7

number of essentially independent factors which tend to be random

and have similar distributions; hence, the viability of a normally

distributed model can be inferred from the central limit theorem. In

addition, Gaussian models have already been used successfully to

predict surface phenomena, as for example in the study of rough

surface scattering in Berry (1979). Now to our definition: define Q =

[-d, d]x[-d, d] to be a square with d so large that Q contains the disk

y): x2 + y2 (r0 + c)2 } in its interior. Let Z: Q 	 91 be a continuous

random variable with the following properties:

(i) For every allowable 	 the random variable i(x, 4) = Z(x +
•) - Z(x, •) defined on -b y b is normally distributed with mean

3-a 	3-0C	 a-i
m(a, L, 4) = t 14 I[( 2 	- sL] and standard deviation L 2 141 2 i.e.,

3-a a-i 	 z r  -(C—m)2 P(A(x, ) z) = (27c L 	 i4i 	 ) -2 expi. 	dC (4.5)
2L3-a

where a and L are real parameters such that 1< a <3 and 0 < L, t

(t<<l) is a positive scaling parameter indicative of the nominal

thickness of the sample, s is a small positive parameter with

dimension (micrometers)* and P denotes the usual probability

measure. Z(x, •) denotes the function of y obtained by fixing the first

argument of Z at x.

(ii) For every allowable i , the random variable A(y, 	 = Z(*,

y+i)-Z(•, y) defined on -a x <_ a is normally distributed with mean
3-a 	3-a	 a-i

m(a, L, ri) = t IR 2 ) -sL] and standard deviation L 2 Ii I 2 ; i.e.,



S(C0) — op,	 as 61 	 0,0 (4.7)
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3-a a-1 - z 	 -(c-m)2
P(A(y, r) 5.. z) = (2n L 	 )-2 J exp[ 	 g (4.6)

2L3-a ia-i

where Z(•, y) denotes the function of x obtained by fixing the second

argument of Z at y.

(iii) cl) = Z on Q and ro = 1.

The parameter a is related to the fractal dimension of the profiles of

the surface topography and it can be proved (Falconer, 1990) that it

is also associated with the power spectra of the profiles by the

asymptotic formula

It is shown in Berry (1979) that the structure functions of the

profiles satisfy (3.7). As mentioned in the preceding section, the

parameter L is called the topothesy of the surface. We shall refer to

the model defined by (i) (iii) as the Gaussian fractal model.

We shall confine our attention to surface profiles along lines

parallel to the x-axis. A typical profile is defined by selecting and

fixing a yo E [0, b], so that the corresponding profile is represented by

the function (I) (x) = Z(x, yo).

Using (ii), (iii) and the fact that c13( •, -(1+c)) = 0, we compute

that

P(0 	 = PCZ(•, Yo) 	 = P(Z(•, yo) - Z(•, - (1 + c)) z) (4.8)



= (23t L3- a a-1y)-L'2 fzeXp[ -( —111)2
2L3-aya-1

-00

(4.9)

s o

b9

where y = yo + 1 + c. Thus 4) is normally distributed with mean m =

3-a 	3-a oc-
t[( 2 ) -sL]y and standard deviation a = L 2 y 2 ; from which we

infer that the profile is an example of a nonstationary random

process such that the height distribution has a variance ( a 2) which

increases with sample size c. This observation is in agreement with

the conclusions of Sayles & Thomas (1978).

A few words are in order concerning our choice for the mean in

the fractal model. It can be seen from a careful inspection of rough

surface data in such references as Majumdar & Bhushan (1990) and

Thomas (1982b) that typical height distributions of profiles do not, in

general, have mean zero. Therefore, it makes sense to postulate a

nonzero function of parameters for the mean. The simplest such

function, of course, is linear in the parameters a and L. As we shall

show in the sequel, (
3 

2-
-a

) is equal to D-1, where D is the fractal

dimension, hence it seems reasonable to single out this expression in

the mean function. It is reasonable to assume that a flat (non-fractal)

surface corresponds to D 1 and L = 0 and thus the mean will be

equal to zero. In view of these remarks, m should be of the form



3-a
m ci( 2 ) + c2L (4.10)

70

which corresponds to our assumed form of the mean with ci = ty and

c2 = -sty. Observe that the factors 14 I and Fri I in the means of A(x, 4)
and d(y, 1), respectively, guarantee that the corresponding means go

to zero with and ri as they should. We have assumed that the

coefficient ty is positive and -sty is negative. These choices are based

on an inspection of experimental data in the literature and the

following mathematically plausible rationale: An increase in the

fractal dimension corresponds, in a certain sense, to an increase in

the length of the graph of the surface profile (1), and as this length

increases, a greater portion of points on the graph are forced to lie at

larger heights. L can be viewed as a measure of randomness

superimposed on a typical fractal profile, and this randomness tends

to move profile points to smaller heights. This rather intuitive

argument concerning choice of signs is not really essential, because

we can simply use profile data to estimate the coefficients

independent of any preconceptions about their positions on the real

line.

We shall use the surface profile data to estimate the model

parameters as follows: Let the measured height distribution data be

zn . From this data we can compute D-1 = 
3-a 

and L using the2

structure function method in the preceding section. One obvious

equation for the coefficients is



From these equations we may solve for m and 'y.

If we want to estimate the coefficients in m, we can consider

several rough surfaces on samples having the same physical

properties and dimensions. To illustrate this, let (zk(i)), 1 i N

represent height distribution data from N profiles. Let the

corresponding fractal parameters be DM, LW, 1 i 5_ N. Then we can

estimate c1 and c2 by the least-square solution of the equations

4.2.2 Normalized Bearing Area Curve and
Fractal Parameters

The concept of the bearing area curve of a surface topography was

introduced by Abbott (1933), and six decades of engineering practice

have shown that it provides the best qualitative measure of the area

of contact between two surfaces, and thus of the rate of wear of two
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abutting surfaces which are in motion relative to each other. Figure

4-1 illustrates the bearing area curve which is obtained from the

bearing ratio

th P(z h) = p(r)dt (4.14)

where z is the profile height, p is the probability density of the

height, and h is the cutting height from the reference line M-M. By

plotting th over a range of discrete heights h for a profile, one obtains

the bearing area curve as shown in Figure 4-1. For purposes of

comparison, we introduce the normalized bearing area curve. In

practice, the exact nature of the height distribution of a profile is

usually not known, so the normalized bearing area curve can be

obtained experimentally as follows: A rather large number of heights

are measured over the profile and then scaled (or normalized) by

setting the minimum and maximum heights equal to zero and one,

respectively. Then the true normalized bearing area curve is

approximated by the complementary cumulative frequency

distribution of the normalized height data.



0% 	 20% 	 40%50% 60% 	 80% 	 100%
BEARING RATIO

Figure 4-2 Relation between fractal dimension and
bearing area curve
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It is of interest to determine the relationships between the

parameters a and L of the Gaussian fractal model and the bearing

curves of the surface profiles. Using standard techniques from fractal

geometry, it can be proved (Falconer, 1990) that the graph of the

profile function 4) almost surely has both Hausdorff and box
5-a

dimension equal to -T. By almost surely, we mean that the set of y o

values for which this dimension statement is invalid has probability

measure equal to zero. Defining the fractal dimension D to be the

common value of the Hausdorff and box dimensions, which are

denoted by dim es and dims , respectively, we have
5-a

D = dimH (graph 4)) = dims (graph 4)) =

almost surely, and hence (4.9) can be rewritten in the form

2(D - 1) 2(2-D) _ 	
- (C-m)2

P(05_ = [27EL	 ] 2 
z

f exp(
2L2(13- )2(2—dd 

(4 .15)

We note here that m can be rewritten as a function of D and L as

follows:

m(D , L) = ty[(D-1) sL] = t(l+yo+c)[(D-1) - sL]	 (4.16)

Thus 4) = Z(•, y o ) has a normal distribution with mean m and standard

-00

deviation

= GOD,	 =	 )(D-1)11=	
L  )(D-i} (1+Yo+c)7 (4.17)



aL D-1)(L/VD - 2 ) (4.20)

We compute that:

75

am 	 am
alp = ty and --aL ,sty (4.18)

As 1<D<2 and O<L<1 (p.m) for most surface profiles encountered in

engineering applications, it is clear that m is a strictly increasing

function of the fractal dimension and a strictly decreasing function of

the topothesy over the range of values of D and L. Similarly, we

compute that

ap = (-7 YD -1 ) y log(1" )
a6L

7
(4.19)

which is negative over this range of parameters (note that L < 1 < y =

1+y o+c). On the other hand, a is a strictly increasing function of the

topothesy L satisfying

In order to relate the fractal parameters to the bearing area

curve for our model, we assume that only D and L are allowed to

vary for the surface sample under consideration. Suppose that we

measure profiles for two samples and find that the fractal

parameters are (D1, L1) and (D2, L2), respectively. The height

distribution data is used to obtain the corresponding normalized
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bearing area curves B 1 (z) and B2(0, where	 is the normalized height

1. If the sample size for each profile is sufficiently large, then

the resulting cumulative frequency distribution will be essentially

unchanged by the addition of two arbitrarily chosen points to each

sample. Hence, we may assume that both samples have the same

minimum and maximum heights, so that the same scale factor, which

we denote by k, can be used to normalize the height data between

zero and one. It may also be assumed that the height interval from

minimum to maximum is large enough to contain three a—bounds on

both sides of the means of both distributions. Then we scale each

data set and associated Gaussian model as shown in Figure 4-2 in

order to obtain the normalized height distributions. Let pi and p2 be

the respective probability density functions for the normalized

height distribution. Then the normalized bearing area ratios are

1	 1
Ba) = pi(t)dt and B 2( ) = 	 p2(c)dc	 (4.21)

Let m(D1, L1), 6(1) 1, L1) and m(D2, L2), 6(D2, L2) be the means and

standard deviations of the height distributions of the two profiles. It

is clear from the model that if m(D 1 , L 1 ) < m(D2 , L2), then there exists

a Z1 (see Figure 4-2) which is near one such that B 1 (z` ) < B20 ) for all

0 .5. P5.. A. This observation leads naturally to a prediction about the

relationship between the fractal parameters and the bearing area

curve as follows:

Prediction: The Gaussian fractal model for surface topography
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defined by (i)-(iii) implies that for two profiles the bearing area

curves satisfy B1(z) < B2() for all normalized heights 0

where zr is a real number near one, whenever m(Di, Li) < m(D2, L2).

If s << 1, as we predict will be the case, the bearing area curves

satisfy this property whenever Di < D2.

4.2.3 Topothesy and Ensemble Variance

The topothesy L can be shown to increase with increasing q in the

asymptotic power spectrum formula (4.7), and so it can be viewed as

a measure of the strength of each fractal surface profile. We compute

that

((Z(x+L, •) - Z(x, •))2) = E[(Z(x+L, •) - Z(x, •))2]
1 0.	 _g_in)2

= (2n L2) -2 C2 exp( 	 2 )(1.0 = L2 + m2
2L

-00

(4.22)

where ) denotes the ensemble average of all profiles on the sample

taken parallel to the x-axis and E denotes the mathematical

expectation of the random variable. Thus, as noted in the preceding

section, L can be identified as the distance over which a chord of a

profile has an r.m.s. slope of one. There is another interpretation of L

which is more directly related to the geometrical features of the

surface profiles being investigated. Consider the ensemble of profiles

{Z(0, y) : 0 y b} over the surface sample, and take 4) = Z(41., y 0) to be

the base profile. It follows from (ii) that the distribution of the

profile ensemble about 4) has variance L3-a Fri la-1 ; hence, we have a
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nonstationary random process for which L is a measure of the

scattering of the ensemble of Gaussian random fractals about the

base function 4) as shown in Figure 4-3. Consequently, we may think

of L as representing a secondary level of irregularity or roughness

superimposed on the graph of 4  whose primary fractal irregularity is

characterized by the fractal dimension.

Figure 4-3 The ensemble of Gaussian random fractal profiles
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4.3 Experimental Results and Discussion

We have performed measurements on several surface profiles in

order to test the validity of the predictions based on our Gaussian

model of surface topography and to better understand the physical

significance of the fractal parameters D and L.

4.3.1 Relation of Fractal Dimension to Bearing Area Curve

Conventionally, the simplest and most widely recognized parameters

of surface roughness are Average Height R a, Root-Mean-Square

Height Rq , and Maximum Peak-to-Valley Height Rmax (ASME, 1985).

It often happens that some surfaces have nearly equal values of Ra ,

R q, and Rmax but their surface features are quite different. For

example, BR1 and BR2 in Figure 4-4 are two surface profiles

generated by different machining methods. They have nearly equal

values of R a , Rq , or Rmax • However, the two profiles are quite

different. The peaks and valleys of BR2 are fewer and thinner than

those of BR1. In wear the number and size of peaks and valleys of

surfaces in contact are extremely important features.

The bearing area ratios of these surfaces are calculated by the

following procedure. First the sampled profile height data are

normalized between 0 and 1, with the lowest point being 0 and

highest point being 1. Then the normalized height range is divided

into 20 equal divisions. For each division the probability of the

height data is computed by dividing the number of data points in

this range by the total number of data points. The cumulative



Figure 4-4 Two profiles having nearly equal values of conventional
roughness parameters but different features: (a) profile BR1
generated by waterjet cutting, Ra = 4.2611m, Rq = 5.351.tm, and Rmax =
31.6gm and (b) profile BR2 generated by electrical discharge
machining, Ra = 4.25p.m, Rq = 5.68p,m, and Rmax = 33.1pm.



Figure 4-5 Bearing area curves of BR1 and BR2. Their fractal
parameters are DBR1 = 1.47, LBRi = 0.53 gm and DBR2 = 1.34, LBR2
0.177 p.m.

density function forms the bearing area curve. It can be seen from

Figure 4-5 that the bearing area curve of BR1 is above that of BR2.

This implies that when the surfaces are in contact BR1 has more

contact area, i.e. the surface support ability of BR1 is greater than

that of BR2.

Another example is given by the two profiles in Figure 4-6. The

parameter values of R a , Rq , and Rmax for BR3 and BR4 are nearly

identical. This time, however, the two profiles are not so obviously

different as in Figure 4-4. Figure 4-7 shows their bearing area

curves, which imply that BR4 has weaker support ability in surface

contact than does BR3.
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(b)
Figure 4-6 Another two profiles having nearly equal values of
conventional roughness parameters but different features: (a)
profile BR3 generated by waterjet cutting, R a = 2.52 gm, Rq = 3.15

and Rmax = 21.0 gm and (b) Profile BR4 generated by electrical
discharge machining, R a = 2.55 1.1m, Rq = 3.158 p.m, and Rmax = 22.0
gm.



Figure 4-7 Bearing area curves of BR3 and BR4. Their fractal
parameters are DBR3 = 1.50, LBR3 = 0.318 um and DBR4 = 1.42, LBR4 =

0.189 um.

Figure 4.8 Bearing area curves of BR1, BR2, BR3, and BR4 surfaces.
Note that DBR3 >DBR1>DBR4 >DBR2 (refer to Figures 4-4, 4-7).
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Fractal dimension is a useful measure of surface contact support

ability like the bearing area curve. It has an advantage over the

bearing area curve in that it characterizes the surface contact

support ability by a single number. It is very interesting that not

only DBR1 > DBR2 and DBR3 > DBR4 in agreement with the sizes of the

respective bearing area curves and support abilities, but that the

agreement applies to all of the four surfaces, even though the Ra , Rq ,

and Rmax values of BR1 and BR2 are very different from those of BR3

and BR4 (refer to Figure 4-8).

The bearing area curves of the three EDM surfaces in Figure 3-

6 are plotted in Figure 4-9, which also provides the values of fractal

parameters for three surfaces. Again, the fractal dimension has a

good agreement with the bearing area curve in characterizing the

contact support ability of a surface. As a further test of the predicted

dominance of D over L in determining bearing area curves, the data

from five EDM samples were used to estimate c1 and c2 via (4.13). We

found that ci = 0.221 and c1 = -0.0756. Thus our experimental results

are in complete agreement with the Gaussian fractal model with

regard to the relationship between fractal dimension and the bearing

area curve.

4.3.2 Relation of Topothesy to Bearing Area Curve

Topothesy, which has units of length, can reflect information related

to surface height deviation. This relationship was also indicated in

the prediction in Section 3.2 using the Gaussian fractal model. In the

experimental investigation of this relationship, we use



Figure 4-9 Bearing area curves of three EDM surfaces. Their fractal
parameters are EDM #1: D = 1.252, L = 0.0516 gm; EDM #2: D = 1.385,
L = 0.15 gm; EDM #3, D=1.546, L=0.237 gm.

••• 	 •	 •	 W
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BEARING RATIO

Figure 4-10 Bearing area curves of BR5 and BR6 surfaces. Their
fractal parameters are DBR5 = 1.453, LBR5 =0.0368 gm, DBR6 = 1.466,
LBR6=0.564 gm.
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two surfaces, one is treated by ion-nitriding coating (BR5) and the

other is made from waterjet cutting (BR6). They have nearly equal

fractal dimensions: DBR5 = 1.453 and DBR6 = 1.466, but very different

topothesies: LBR5 = 0.0368 and DBR6 = 0.564 gm. Figure 4-10 shows

that the bearing area curve of BR5 is above that of BR6. This agrees

with the predicted relationship since DBR5 DBR6 and LBR5 < LBR6• By

comparing Figure 4-10 with Figures 4-8 and 4-9, it can be seen that

the influence of L on the bearing area curve (and hence the surface

contact support ability) is less than that of D, because an increase of

L by 15 times produces a smaller difference in the bearing area

curve than an increase of D by only a small percentage. Thus the

fractal dimension is the primary parameter and the topothesy is the

secondary parameter in determining the surface contact support

ability. This is consistent with the general agreement among the

researchers that the fractal dimension is the major property

indicator in surface topography, while the topothesy only reflects

small-scale variations.

4.4 Chapter Conclusions

Based on the Gaussian fractal model, we have derived equations to

relate the bearing area curve with the fractal dimension D and

topothesy L. This analysis leads to the prediction that the bearing

area curve shifts higher as D increases or L decreases. The

experimental results obtained from a number of waterjet cut, electric

discharge machined, and ion-nitriding treated surfaces verify this

prediction. The study further reveals that D has a larger effect on the

surface contact support ability than L. Thus the fractal dimension can



8 7

replace the bearing area curve used in the conventional method for

the study of surface contact and wear, and it is more concise and

practical since it provides a simple quantitative measure of the

contact support ability of surfaces.

The Gaussian fractal model appears to offer a very promising

approach to the analysis of surface topography. It also provides

additional evidence of the usefulness of fractal geometry for the

study of surfaces in engineering applications. Now that fractal

geometry has been shown to be useful in describing surface contact

and wear both theoretically and experimentally, a logical next step is

to find a fractal geometry model for the prediction and control of

wear. This will be discussed in the next chapter.



CHAPTER 5

FRACTAL GEOMETRY MODEL FOR WEAR PREDICTION
AND APPLICATIONS IN WEAR TESTING

5.1 Introduction

Wear is a process that involves surface contact, stress action, and

surface degradation. As a measure of damage to or material removed

from a solid surface, wear can be considered to be the result of the

surface being stressed mechanically, thermally, and chemically. The

cost of wear in the United States has been estimated in the tens of

billions of dollars per year. There has been a continuing research

effort to gain improved understanding of wear phenomena, to

predict wear behavior, and to control wear processes.

When two rough, nominally flat surfaces are brought together,

surface roughness causes contact to occur at discrete contact spots.

The true contact area is the accumulation of areas of the individual

contact spots. For most metals at normal loads this will be only a few

percent of the apparent contact area (Greenwood and Tripp 1970). A

significant aspect of contact mechanics is that deformation occurs in

the region of the contact spots which build up load-related stresses.

Typical models of surface deformation are either elastic, plastic or

mixed elastic-plastic, depending on nominal pressure, surface

topography, and material constants.

Fractal geometry as a tool for the characterization of surface

topography has gained much attention in recent years (Gagnepain

and Roques-Carmes 1986; Ling 1990; Majumdar and Bhushan 1990).

88
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This is due in part to the observations that fractal geometry can

reflect the natural and intrinsic property of random phenomena

(Mandelbrot 1982; Peitgen and Saupe 1988; Kaye 1989) and that it

can overcome several disadvantages of conventional statistics and

random process methods of surface analysis (Majumdar and Bhushan

1990). These advantages suggest, for example, that fractal geometry

can be applied to surface contact mechanics. Majumdar and Bhushan

(1991) explored these applications in a pioneering study. They gave

a fractal representation of surface contact area and derived a fractal

model of surface contact mechanics. In chapter 4 a fractal model,

which has a clear connection with conventional method for studying

surface topography, is developed. This model leads to a concise

quantitative representation of the bearing area curve, and it strongly

suggests the applicability of fractal geometry to surface contact and

wear process analysis.

The objective of the study in this chapter is to establish a

fractal model for wear prediction, with which to study the effects of

fractal geometry parameters on wear rate.

5.2 Physical Interpretation of Fractal
Geometry Parameters

Fractal geometry reveals natural properties of random and

unpredictable phenomena. The fractal dimension, D, is the most

important aspect of fractals. For different fractal phenomena, the

fractal dimension parameter may characterize different properties of

fractal sets. For surface topography characterization, fractal

parameters can be related to a conventional concept, the normalized
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bearing area curve. From the modeling of and experiments with

fractal surfaces, it is concluded (see chapter 4) that if D increases or

the topothesy L decreases, the normalized bearing area curve will

shift higher and that D has a larger effect on the normalized bearing

area curve than L. It is well known that the bearing area curve is an

indicator of surface contact support ability: the higher the bearing

area curve the stronger the contact support ability. Thus the fractal

dimension can represent the bearing area curve used in

conventional analysis for the study of surface contact and wear, and

it is more concise and practical since it provides a simple

quantitative measure of the contact support ability of surfaces: the

larger the fractal dimension value the stronger the contact support

ability.

5.3 Fractal Geometry and Wear Theory

By using the same fractal approach as that developed by Majumdar

and Bhushan (1991) in the study of surface contact mechanics, here a

fractal model for surface wear processes is developed. This model

reveals interesting relationships between wear characteristics and

fractal parameters.

5.3.1 Fractal Property of Islands

It has been shown by Archard (1980), Mandelbrot et al. (1984), and

Majumdar and Bhushan (1990) that the microtopography of a

machined surface is similar to a map of the earth's surface, which has

islands in the various bodies of water. When a rough surface is in

contact with a flat surface, the flat surface (like an ocean in the
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formation of islands on the earth) cuts the rough surface and forms

the contact area. This island analogy has been successfully used to

study contact mechanics (Majumdar and Bhushan 1991), and we

shall therefore employ it to analyze wear. Korcak (1938) proposed an

empirical law which can be described as follows. If all the islands of

a region are listed by size, then the total number N of islands of size

A exceeding S satisfies the following relation:

N(A?..5) = C3S -13 	(5.1)

where C3 is a positive constant and B is a factor shown by

Mandelbrot (1982) to be B=D/2, where D is the fractal dimension of

the coastlines of the islands. Based on equation (5.1) it can be

derived (Majumdar and Bhushan 1991) that the total area of all

islands, A r, can be expressed in terms of the fractal dimension as

follows:

= 	 D S 	 I< D <22-D (5.2)

where SL is the area of the largest island.

5.3.2 Fractal Relation of Contact Spots and Asperities

The Weierstrass-Mandelbrot (W-M) function can be used to simulate

a fractal surface profile and has the form (Berry and Lewis 1980;

Majumdar and Bhushan 1990):

00

GD, 	 cos(27cynx zoo= 7(2-D)n < D <2; y> 1	 (5.3)
n=n 1



Sc =
G2

(Q a y / 2E)21 (D-1) (5.5)
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where z(x) represents a fractal profile, D is the fractal dimension of

the profile, y is a frequency factor, n is an integer, n 1 is the minimum

number of n which is determined by the measuring length, and G is a

factor called the scale amplitude by Majumdar (1990). It can readily

be shown that L = C4G, where C4 is given by the formula

ic(2D-3)

	

r(2D-3)sin( 2	 )] 1 /(2D - 1)C4 4 	 (2-D) (5.4)

For a given surface the fractal dimension D is a fixed number, and

hence C4 is a constant. Thus we see that G is directly related to the

topothesy L.

It has been shown (Majumdar and Bhushan 1991) that the

critical area Sc that distinguishes the elastic and plastic regimes can

be expressed as

where 6 	 is the yield strength, E is the elastic modulus and Q is a

factor that relates the hardness H to the yield strength a y as H = Qa y .

If SL > Sc , the real areas of contact in both elastic and plastic

deformations need to be considered, and from Majumdar and

Bhushan (1991) these contact areas are, respectively:

Are = 	
(SL SL SGc(2-D)/2) 	(5.6)
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D	 D/2 (2-D)/2
A rP = 2-D SI- SC

(5.7)

5.3.3 Adhesive Wear Theory

There exist many wear theories such as adhesive, abrasive, fatigue,

corrosion, and delaminative theories (Archard 1953, 1980; Kruschov

1957; Suh 1973). The origin of all these is Archard's adhesive wear

theory (1953). Archard's adhesive wear theory has been widely

accepted and utilized (Stolarski 1990; Wu and Cheng 1991), since the

derived relationship among the wear volume, sliding distance and

contact area has been observed to agree well with experimental

results. The mechanism of adhesive wear is consistent with our

experimental setup of wear testing, and so we shall use it as the

starting point of the analysis which follows. Adhesive wear can be

described as follows: materials weld at sliding asperity tips, are

transferred to the harder member, possibly grow in subsequent

encounters, and are eventually removed by fracture, fatigue or

corrosion. It is shown in (Archard 1953) that adhesive wear can be

expressed in the form

V=KAcd (5.8)

where V is the wear volume, K is a wear coefficient, Ac is the true

contact area, and d is the sliding distance. The true contact area A c

has the relation Ac = ---, where W is the load and p is the flow

pressure under combined normal and tangential stresses. According

to Tabor (1959) the flow pressure under a static load, p m , is related



12W T
s= Ac 17— =

„..c 	k c (5.10)

Pm
P = (1 + 3 11 2)1/2 (5.11)
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to p by

p2 3S2 = (Pm ) 2 	(5.9)

where s is the shear strength. The adhesive theory of friction (Tabor

1959) leads to the expression

where T is the total friction force and [I is the coefficient of friction.

Substituting (5.10) into (5.9) yields

The wear equation now becomes

V = K(1+3 11 2)1/2 A r d	 (5.12)

W 
where A r = Pm
	

is the true contact area under static loading.

As mentioned above, the model of surface deformation usually

involves a combination of elastic and plastic effects. It is reasonable

to assume that the total true contact area, A r, is the sum of the

elastic contact area, A re , and the plastic contact area, Arp , i.e.,



9 5

Ar = Are + Arp 	 (5.13)

This leads to the following wear volume equation

V = (1+3112) 1 /2 (Ke A re + KpA rp ) d 	 (5.14)

where Ke and Kp are the elastic and plastic wear coefficients,

respectively.

Notice that in (5.14) the wear coefficient K has been

decomposed into elastic and plastic components. It was pointed out

by Archard (1980) and Stolarski (1990) that if the deformations are

completely plastic, then K is essentially a probability coefficient

which represents the cumulative effects of lubrication, sliding speed,

temperature, chemical reactions, material properties, etc., and K is

independent of the topographies of the surfaces which are in contact.

For example, if K=10 -3 in a completely plastic wear process, then one

in a thousand events results in a worn particle. It was, however,

observed by Archard (1980) that an actual wear process also

includes elastic deformations, and this will introduce a surface

topography dependent element to K, i.e. K becomes an Ar dependent

coefficient rather than a constant. By decomposing K into elastic and

plastic parts, the coefficient K is replaced by the coefficients Ke and

Kp, both of which are independent of the geometric features of the

contacting surfaces. Thus Ke and Kp can be treated as probability

constants. According to Archard's investigations, K varies widely,

from 10 -7 to 10-2 in unlubricated wear. If the deformations are

completely plastic, the maximum value of Kp is 1/3. The value of Ke
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in most wear processes is less than 10 -3 .

5.4 Wear Prediction Model and Analysis

Here we shall develop a model that relates wear to fractal

parameters. By substituting (5.6) and (5.7) into (5.9), the wear

volume becomes

v.(1+3 µ2)1/2SL [ Keo_SL (D-2)12 sc (2-D)/2)+KpsL(D-2)12s (2-D)12] d (5.15)

With (5.2) and (5.5), equation (5.15) can be rewritten as

2y=0.+.3g2) 1 /2A r [K e-(K -K )( 	 D	 (2-D)/21j d (5.16)e P (2-D)Ar 	
G

(QG 	 \21(D

For ease in analysis, we normalize the variables in (5.16) as follows:

V 	* — A,	 *
=V*=	 , A 	 , G 	  and xif = 	 (5.17)dA a 	 r — A a 	(Aouz,

where A a is the apparent contact area; V* is the normalized wear

rate; Ar* is the normalized true contact area; G* is the normalized

scale amplitude; and Iv is a material property constant. With the

normalized variables, equation (5.16) can now be rewritten as

DG*2 \ (2-D)/1V*.(1+31.1,2)1/2Ar*[1(e-(Ke-KA
(2-D)Ar* v2/(D-1)) (5.18)

We call this the fractal geometry model of wear prediction. With
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(5.18) the wear rate V * can be evaluated as a function of Ar * , D, G * ,

and ip .

If the area of the largest contact spot S L is less than the critical

area of plastic deformation, i.e., SL < Se, then only plastic deformation

will take place. In that case Ke = 0 in (5.18).

5.4.1 Effect of Fractal Dimension on Wear Rate

The effect of fractal dimension on wear rate is a major concern. To

numerically investigate how V* is affected by D using equation

(5.18), the values of other parameters need to be chosen. Based on

the literature (Archard 1980; Majumdar and Bhushan 1990; Stolarski

1990) and the experimental results presented in chapter 4, for

ordinary cases the parameter values are chosen as G*=10 -9 , v=0.01,

Ke=10 - 4 , Kp=0.1. Log(V*) is plotted against log(A r* ) in Figure

5-1 for various D values. It can be seen that there are two regions of

D that have significantly different wear rate behavior. In the first

region, for D between 1.15 and 1.5, V* decreases with increasing D.

In the second region, for D between 1.6 and 1.9, V* increases slightly
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Figure 5-1 Effect of fractal dimension (D) and normalized contact
area (Ar*) on normalized wear rate (V*)
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Figure 5-2 The V*-A r* relation for the first range of fractal
dimension D: 1.15-1.5
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Figure 5-3 The V*-Ar* relation for the second range of fractal
dimension D: 1.6-1.9
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with increasing D. To show this more clearly, the relations in these

two regions are plotted separately in Figures 5-2 and 5-3. Figure 5-2

shows that when D increases V* decreases and that this relationship

is nonlinear. When D increases from 1.15 to 1.2, an increase of D by

only 0.05, V* decreases by an average of 3.2 decades for the range of

A r* considered. When D increases from 1.2 to 1.3, V* decreases by

2.5 decades. As D increases from 1.3 to 1.4 and from 1.4 to 1.5, the

decreases in V* are 1.2 and 0.5 decades, respectively. Figure 5-3

shows that V* increases with increasing D for the range of D between

1.6 and 1.9. This wear rate behavior in the two fractal dimension

regions can be explained as follows. When D increases between 1.15

and 1.5, the corresponding bearing area curve will shift higher. This

means that there is a larger area involved in the surface contact.

Under the same load, the normal contact pressure between the

contact surfaces decreases with increasing D, thus the wear rate

becomes smaller. When D increases between 1.6 and 1.9, the number

of asperities per unit surface area increases and accordingly the tips

of the asperities become sharper and weaker. Therefore, despite the

fact that the normal contact pressure decreases with increasing D,

this results in a larger wear rate.

The above observations can be summarized as follows: For

fractal surfaces with D<1.5 the surface contact support ability is a

dominant character of the wear process; but when D>1.6 other factors

such as the sharpness of asperities may emerge to exert more

influence on the wear rate. It should be noted that the value of D

that distinguishes the two regions of wear rate behavior may vary
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for different wear parameter values. For example, the D value is

about 1.7 for the wear material and process described in Section 5.6.

5.4.2 Dependence of Wear Rate on True Contact Area Under
Static Loading

From Figure 5-1, it can be seen that for every D, V* increases

exponentially with A r* , since each plot is a straight line on the log-
V

log graph. In Archard's equation, the wear rate (V r = d ) is

proportional to the true contact area under static loading, i.e., Vr

A r . As he (1980) pointed out, this relationship was based on the

assumption that all deformations are plastic and that the asperities

are isolated. On the other hand, if all deformations are elastic and the

asperities are isolated, the wear rate should satisfy the relation V r

(A0 2 / 3 (see Archard 1980). If deformations are mixtures of elastic

and plastic deformations and the asperities are not isolated, the wear

rate can be expected to have the relation V r a ( A r) q, where q is an

undetermined constant which is related to the surface topography.

In the wear prediction model (5.16), we have included both

elastic and plastic deformations. It is possible to use this equation to

predict the power q in the relation V r cic ( A r)". Rewrite equation

(5.16) as follows:

Vr [KeA r j(Ke - Kp)(Ar)D/2]

where
D	 G2 

i `(2-D) (n•.cavi2E) 2/(D-1))(2-D)/2

(5.19)

(5.20)
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For a typical case encountered in engineering practice, D=1.5, G=10 -7

m, Qa y/2E=0.001 (for steel material), K e =10 -4 , and Kp =0.1, then

j=0.42 and equation (5.19) can be estimated as

\T r . [10 -4A r - 0.42 10 -4(A r)D/2] +0.042(A0D/2 = (Ar)m(D) (5.21)

or

V r (Ar)m(D) 	(5.22)

where m(D) --- D/2 (note that the other items of A r in (5.21) are

extremely small) is a monotonically increasing function of D and has

a value approximately between 0.5 (when D=1) and 1 (when D=2).

Once the fractal dimension of a surface is given, m(D) can be

determined as a value between 0.5 and 1. By checking the slope of

log(V*) versus log(A r* ) for each D in Figure 5-1, it is found that these

slopes are between 0.6 (when D=1.15) and 0.94 (when D=1.9). These

slopes match with our estimation in (5.22). Additional confirmation

of this fractal power proportionality can be found in the

experimental results provided by Archard (1953) about 'wear rate

over load graphs for brass and stellite pins rubbing on tool steel

rings'. Because in the adhesive wear theory the true contact area has

the relation with the normal load as Ar a W, these experimental

results also can be used to detect the relation between wear rate and

true contact area. Based on these experimental results, for brass

material the relation is V r (A r)0.98, and for stellite V r a (A00.92 .

This is consistent with our predicted fractional power

proportionality. These data support the validity of our model, and in
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so doing, demonstrate the role which fractal geometry can play in the

analysis of wear processes.

5.4.3 Effect of Other Parameters on Wear Rate

The effect of the scale amplitude on wear rate predicted by our model

can be observed from Figure 5-4. When G* increases from 10 -12 t o

10 -6  (with D fixed at 1.5 and the other parameters having the same

values as before), V* increases monotonically with G*. This is due to

the fact that a larger surface scale amplitude leads to greater plastic

deformation wear.

The effect of the material constant yr on V* is shown in Figure

5-5. It can be seen that V* decreases with increasing y (between

0.0001 and 1). This can be explained by the fact that the hardness of

material increases with increasing v.

5.5 Optimum Fractal Dimensions of Wear Processes

For a surface in a wear process, the most important requirement is

low wear rate. Fractal dimension has been shown to be related to

surface contact support ability and wear rate via our model

discussed above. The fractal dimension of the lowest wear rate is of

considerable significance in any wear process. The optimum fractal

dimension can be found by differentiating (5.18) with respect to D

and setting it to 0, i.e.



105

Figure 5-4 Effect of scale amplitude G* on normalized wear rate
(V*)
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Figure 5-5 Effect of material constant v on normalized wear rate
(V*)
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dV* r 	D G *2 	 (2-D)/2= +3112) 1/2A r*(KP -Ke)L (2-D)Ar*v2/(D-1)-IdD
11nr,2-D A r* ),,,2(2D-1)/(D- 1)21 + 1_1 =
2	 D ) (5.23)

From our prior discussions there exist A r* *0, KpACe , G*#0 and 1<D<2,

so equation (5.23) leads to

1-	 * \,,,2,(2D-1)/(D-1)2 1 + 	 = 0 	 (5.24)inr(2 D2 L \ D ) A‘G*2" 	 D

This is a non-linear equation, and solutions for D are functions of

three variables: D= F(A r * , v, G *). Thus we see that the optimum

fractal dimension depends on the true contact area, material

property constant, and scale amplitude.

Let us look more closely at (5.23) and (5.24). First, we observe

that solving (5.24) for D is equivalent to solving

D = go) = (R*)-1(2..D) e2/D v2(2D-1)/(D-1) 2
(5.25)

where R* = G* 2 /Ar * and e is the base of the natural logarithm. It is

easy to see that 4) is a strictly decreasing function of D on the interval

I< D _C. 2 such that 0(2) = 0 and 4)(D)--4 00 as D approaches 1. We

conclude, therefore, that (5.25) has a unique solution, say D = D m , in

the interval 1 < D LC_ 2 which corresponds to the intersection of the line

y = D with the curve y = 0(D).
*Referring back to (5.23), it can be readily shown that 

d cm < 0
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for 1< D< Dm and dp" > 0 when Dm < D 5. 2. Hence, the minimum value

of V* on 1 < D 2 is attained at D Dm , so Dm is the optimum value of

the fractal dimension. Since it is not possible to obtain a closed form

solution of (5.25), it is necessary to use numerical methods to obtain

values of Dm .

For finding the optimum dimension D for various A r* , Figure 5-

6 is obtained by replotting Figure 5-1. It can be seen from this figure

that for different A r* the optimum D's are different, but they all are

roughly in the range 1.45-1.55. The effect of the material constant w

on the optimum dimension can be found by comparing Figures 5-6,

5-7 and 5-8 which have values of yr equal to 0.01, 0.1, and 0.001,

respectively. In Figure 5-7 (w = 0.1), the optimum values of D for the

various A r * are in the range 1.33-1.4. In Figure 5-8 (xv . = 0.001), the

optimum dimensions are in the range 1.58-1.71. All three figures

show the same tendency of D as A r* decreases from 0.5 to 10 -6 : the

optimum D shifts to a higher value as A r* decreases. Also, the figures

show that the value of optimal D decreases as N increases.

The influence of G * on optimum dimension can be seen by

comparing Figures 5-6, 5-9, and 5-10. The optimum D values are

around 1.5, 1.55, and 1.45 for the G* values of 10 -9 , 10-8 , and 10 -10 ,

respectively. The value of D increases as G* increases.

5.6 Implementation in Wear Testing

In this section the wear testing results are presented to qualitatively

support the fractal model for wear prediction. In our



Figure 5-6 Relation of normalized wear rate (V*) to fractal dimension (D)
with tif = 0.01, G* = 10-9 , and various values of Ar*
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Figure 5-8 Relation of normalized wear rate (V*) to fractal dimension (D)
with ij = 0.001, G* = 10 -9 , and various values of Ar*
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Figure 5-9 Relation of normalized wear rate (V*) to fractal dimension (D)
with G* = 10-8, ii = 0.01, and various values of A r*
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Figure 5-10 Relation of normalized wear rate (V*) to fractal dimension (D)
with G* = 10 -10 , kl1 = 0.01, and various values of Ar*
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wear testing experiments the wear mechanism (Dubrovsky and Shih

1988) consisted of an alloy steel roller (rotating part) and an ion-

nitriding treated shoe (fixed part). When the testing was performed,

a load was exerted on the mating surfaces and the wear rate was

measured periodically. During the wear process the fractal

dimensions of the roller and shoe were obtained using the method of

surface topography measurement described in (Zhou, Leu and Dong

1990). The fractal dimensions of four pairs of rollers and shoes were

calculated in the experiments and they had very similar values.

The histogram of the wear rate from one of our experiments is

shown in Figure 5-11. It can be seen from the figure that during the

first 30 minutes of testing the wear rate was fairly high, and then

decreased and stayed at a very low rate until 120 minutes had

elapsed; after this time the wear rate increased dramatically. These

observed changes of wear rate are consistent with the well-known

three stages of a wear process: run-in, mild wear, and severe wear

and they can be explained as follows. At the beginning of the wear

process the two contact surfaces were fresh and they had very sharp

peaks. When they interacted with each other, the sharp layers were

worn off gradually. So in this stage (the run-in stage) the wear rate

was a little higher than that in the subsequent stage. After the first

stage the surfaces became smoother and thus had a larger contact

area and a smaller contact stress. This resulted in a stable and very

low wear rate. This is the second stage (the mild wear stage) which

was between 30 and 120 minutes. The third stage (the severe wear

stage) existed after 120 minutes. In this stage there existed large

shear and normal stresses on the contact surfaces because of



Figure 5-11 The three stages of wear rate
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Figure 5-12 Three stages of variations in the fractal dimensions of
(a) roller and (b) shoe
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Figure 5-13 The model result based on experimental determined
parameters.
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thermal, molecular, and physical actions. The surfaces became

rougher and rougher, and this led to a significant increase in wear

rate as the process continued.

The changes of fractal dimensions associated with the above

testing are given in Figure 5-12 (a) and (b) for the roller and shoe,

respectively. During the first 30 minutes, the fractal dimensions

increased from their initial values. This is referred to as the

enhancement stage of fractal dimension in the figure. Apparently

when the surfaces first came into contact, the fresh and sharp layers

of surfaces were removed; the surfaces became smoother and the

surface contact support ability increased. After this stage, from the

30th to the 120th minute, D increased slightly but maintained an

overall balance. This is referred to as the balance stage of fractal

dimension. From the 120th minute, D decreased greatly as the

process continued. This is called the descent stage of fractal

dimensions. This clearly implies that the contact support ability of

the surfaces become poorer and poorer because the surfaces become

rougher and rougher. Comparing Figure 5-11 with Figure 5-12 we

see that the three stages of wear rate correlate with the three stages

of fractal dimension very well. This suggests that fractal dimension

can be used to monitor the wear process. The same observations hold

for the other three pairs of wear components.

From our wear testing processes some parameter values for the

roller were obtained as follows: g=0.06, v=0.0034, G*=65x10 -9

(average value of the whole process), K e =10 -4 , and Kp =0.1. For

examining the validity of our model, the obtained parameter values

of the wear testing are substituted into equation (5.18) and the wear
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prediction graph is plotted in Figure 5-13. From the figure it can be

seen that the optimum fractal dimension for this specific wear

process is around 1.7. This implies that D=1.7 is a change point of

wear rate, i.e. if D is less than 1.7, V* decreases with D increasing,

and if D is larger than 1.7, V* increases with D decreasing. By using

the result in Figure 5-13, the fractal dimension behavior of the roller

in Figure 5-12 (a) can be explained according to the following

observations. At the first 30 minutes because D is less than 1.7, when

D increases from 1.65 to 1.69 V* should decrease. From the 30th to

120th minute because V* keeps the lowest rate. Between 120

and 230 minutes because D is either higher than 1.7 (from the 120th

to 150th minute) or far lower than 1.7 (from the 150th to 230th

minute), V* should increase. This prediction analysis which is based

on the fractal dimension behavior matches fairly well with the wear

rate histogram in Figure 5-11. It should be noticed that the wear

prediction model does not account for the temperature increasing

and resulted material property changes during the wear process, so

it is possible to have some variance between the prediction and

practical result.

5.7 Chapter Conclusions

It has been shown in this chapter that fractal geometry can be used

to analyze wear processes. The fractal geometry model for wear

prediction leads to results which are consistent with experimental

observations. Using this model it has been found that there are two

regions of D which have different wear rate behavior. In the first

region as D increases, for example from 1.15 to 1.5 in Figure 5-1, the
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wear rate will decrease greatly, and in the second region as D

increases, for example from 1.6 to 1.9 in Figure 5-1, the wear rate

will increase slightly. We have explained these phenomena by using

surface contact support ability and sharpness of asperities. In

addition, the model predicts that the wear rate increases

monotonically as scale amplitude G increases or as material constant

w decreases. Since there is a direct relation between G and topothesy

L, the model provides a convenient means for using the fractal

parameters D and L to predict wear rates.

Based on the model we have found that there is a relationship

between wear rate and true contact area under static loading as Vr

(A r)m(D), with m(D) between 0.5 and 1. This estimation is consistent

with Archard's proposed relations of V r cic A r for purely plastic

deformation and V r a ( A 0 2/3 for purely elastic deformation. Our

model gives a general and practical expression for V r and A r in

terms of surface fractal properties.

The optimum fractal dimension, corresponding to a minimum

wear rate in a wear process, is derived by using the wear prediction

model. It has been found that the optimum fractal dimension is

determined by A r , ur, and G. In ordinary cases a surface used in

engineering practice has an optimum fractal dimension around 1.5,

and this value shifts with changes in the three key parameters.

When the A r or w increases the optimum D decreases, but when G

increases the optimum D increases. This optimum fractal dimension

study provides useful information about how to prepare surfaces for

wear reduction.

The results of wear testing tend to support our wear prediction
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model which leads to the conclusion that our fractal approach has

considerable potential for the analysis of wear.



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

Two methods for surface characterization were studied in this thesis.

The conventional method using statistical and random-process

techniques was successfully used in classification, identification, and

evaluation of AWJ machined surfaces. It was found that the smooth

zone of waterjet cut surface has a random, moderately isotropic

texture, with the height distribution near Gaussian. With this method

the relations between AWJ cutting process parameters and surface

roughness were also obtained, which shows that for the smooth zone,

surface roughness increases slowly with increase in cutting speed,

and it has negligible dependence on depth of cut; for the striation

zone, however, surface roughness increases rapidly with increase in

cutting speed or depth of cut. Power spectral analysis was used to

study the mechanism of striation formation on AWJ cut surfaces. It

was found that vibration of machine structure is the main cause of

striation in the AWJ system. These results indicate that statistical

and random-process techniques are, in general, suitable for

identification, evaluation, and comparison of surface topographies.

The conventional method has some shortcomings because it

uses a stationary random process to analyze a non-stationary, non-

differentiable, and multi-scale surface profile. This may result in

errors in the quantitative evaluation of surfaces. Fractal geometry, as

a new method, can overcome the shortcomings of the conventional

method. In the thesis a Gaussian fractal model for surface
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characterization was developed. Based on this model, the relation

between the fractal geometry method and the conventional method

was revealed through the use of bearing area curve to characterize a

surface. It is found that the bearing area curve shifts higher as

fractal dimension (D) increases or topothesy (L) decreases. This

relation reveals that fractal geometry can be used to characterize

the contact support ability of a surface effectively. This led to our

subsequent development of using fractal geometry for wear

modeling and prediction. By using our wear prediction model it has

been found that there are two regions of D which have different

wear rate behavior. In one region wear rate decreases greatly with

increasing D, and in the second region wear rate increases slightly

with increasing D. Based on the model the relationship between wear

rate and true contact area was found as V r ( A Om (D) , with m(D)

between 0.5 and 1. The optimum (lowest wear rate) fractal

dimension is derived by using the model. It shows that the optimum

fractal dimension is only determined by three parameters, Ar, jr , and

G

Although two different methods have been studied and some

shortcomings of the conventional method are mentioned in the text,

one should not jump to the conclusion that fractal geometry method

will completely replace conventional method in the near future.

Fractal geometry apparently has some advantages over conventional

method and greater potential comparing with conventional method,

but it is in its infant stages, and a lot of research work needs to be

done in the future. Conventional method has been utilized for a long

time and is widely understood and accepted as a major tool in
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surface engineering research and applications. Chapter 2 of the thesis

provides an example of the usefulness of the conventional method.

6.2 Future Work

As mentioned above, the fractal geometry is very efficient in the

characterization of surface contact support ability, but in the

evaluation of surface texture properties such as average surface

height, slope, and curvature, up to now fractal geometry cannot

provide effective parameters to characterize these properties. It is

necessary to find some fractal parameters to represent these surface

texture properties. According to the discussion of fractal dimension,

topothesy, and ensemble variance in chapter 4, it is possible to relate

L with surface average height, D with slope, and a combination of D

and L with curvature. For doing this, a mathematical derivation and

some experimental proofs need to be done.

In the Gaussian fractal model of surface topography discussed

in chapter 4 of the thesis, a Gaussian distribution of surface height

was assumed. But a real surface often has skewness, and is not a

standard Gaussian distribution, thus a modified fractal model for

surface topography needs to be considered. For doing this, a modified

height distribution, for example t-distribution, can be used in

derivation of the model equations.

In the fractal geometry model for wear prediction discussed in

chapter 5, some dynamic factors such as changes of temperature,

material properties, friction, and lubrication are not included in the

model. For a quantitative prediction of wear rate, these factors must

be considered. The possible way is introduce some dynamic
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coefficients in the wear prediction model and then determine these

coefficients by doing wear testings.

Fractal dimension is the most important aspect in fractal

geometry. Finding practical means for computing the fractal

dimension of a fractal set is still the subject ongoing study. The

process of computing fractal dimension is often made more difficult

by fluctuation and multi-stages on the log-log graph, and it is

sometimes hard to find a unique value for fractal dimension. In the

thesis, the structure function technique is introduced to calculate the

fractal dimension, but in its log-log graph different stages of slopes

still can be found. A technique that can identify which stage of slope

is desired fractal dimension under consideration needs to be

developed.



APPENDIX

An interesting fact about Gaussian nonisotropic surfaces is that only

certain invariant combinations of the power spectra density (PSD)

moments Mpq appear in the probability distributions of the surface

statistics. Longuet-Higgins (1962) and then Nayak (1973) have

shown that for (p + q) 5. 4, there are only seven such invariants. They

are:

= Moo ;

12 = (MO2 + M20 ) ;

1 3 = M20MO2 - M11 2 ;

= M40 + 2M22 + M04 ;	 (A.1)

15= 2(M4oM04 4M13M31 -1-3 M222 ) ;

16= (M40+ M22) (M04+ M22) - (M31 + M13 ) 2

1 7 = M40(M22M04 -M13 2) -M31(M31M04 - M13 M22) + M22(M13M31 -M 222)

where the surface PSD moments, Mpq, are defined by

Mpq 	 f f 4:13 (k x ,k y ) kxP ky dkx dky 	(A.2)
-.0 -00

where kx and ky are frequency vectors in the X and Y directions,

(I)(k x , ky ) is the surface PSD, and p and q are positive integers. The

quantities in eqn. (A.1) are invariants in the sense that they do not

depend on the orientation of the X-Y axes, but this orientation
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influences the functional form of (11)(kx , ky). A significant relationship

between profile moments and surface moments has been derived,

see (Nayak 1971); it has the following form

Mnocosne + CiriM n _ Licosn - lOsin0

riiur‘,2
n
ivi n .2 ,2cosn-20sin20 + ...+M on sinne (A.3)

where 0 is the angle between measured direction and the X axis,
n! 

and Mno , the profile nth moment in the 0 direction,m!(n-m)!

can be defined as

Mno = f0(k)kndk	 (A.4)

where k is the profile frequency vector in the 0 direction, 0 0 (k) is the

profile PSD and n is a positive integer.

If we choose 0 = 0 in eqn. (A.3) from a profile measured on a

Gaussian nonisotropic surface, the surface moment M 00 can be

obtained as

Moo = Moo	 (A.5)

If three nonparallel profiles are measured in the 01, 0 2 , and 0 3

directions, the following relation holds
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rMi

20 (cos 201 2cose1sin01 sin 201VM201 \
M11 = COS 2 0 2 2COSO2SiI102 sin 202 M202
MO2 \FOS 2 03 2COS83Si1103 sin 2 03)\„1\42031

(A.6)

If five nonparallel profiles are measured, the surface moments M40,

M31 , M22, M13 and M04 can be calculated in the same manner. Hence

the seven statistical invariants in expression (A.1) can be calculated

with only five nonparallel profiles. For convenience in our derivation

five special angles are chosen:

= 0, n/6 , rc/4 , 7c/2 , and 37c/4.



BIBLIOGRAPHY

Abbott, E. J., and F. A. Firestone, 1933. "Specifying Surface Quality."
Mech. Engng. 55, pp. 569-572.

American National Standard. 1985. Surface Texture (Surface
Roughness, Waviness, and Lay), ANSI/ASME B46.1-1985, The
American Society of Mechanical Engineers.

Archard, J. F. 1953. "Contact and Rubbing of a Flat Surface." Applied
Physics. Vol. 24, pp. 981-988.

1980. "Wear Theory and Mechanics." in Wear Control Handbook,
Edited by Peterson, M.B., and W.O. Winer, ASME, New York.

Avnir, D., D. Farin, and P. Pfeifer. 1984. "Molecular Fractal Surfaces."
Nature Vol. 308, pp. 261-263.

1985. "Surface Geometric Irregularity of Particulate Materials:
The Fractal Approach." Colloid and Interface Science. Vol. 103,
pp. 112-123.

Berry, M. V. 1979. "Diffractals." Physics A. Vol.12, pp. 781-797.

Berry, M. V., and Z.V. Lewis, 1980. "On the Weierstrass-Mandelbrot
Fractal Function." Proceedings of the Royal Society, A Vol. 370,
pp.459-484.

Chao, J., E. Geskin, and Y. Chung. 1992. "Investigations of the
Dynamics of the Surface Topography Formation During
Abrasive Waterjet Machining." Proceedings of 11th
International Conference on Jet Cutting Technology, St.
Andrews, Scotland, Sept. 8-10.

Dauw, D. F., C. A. Brown, J. Griethuysen, and J. Albert. 1990. "Surface
Topography Investigations by Fractal Analysis of Spark-Eroded
Electrically Conductive Ceramics." Annals of the CIRP, Vol.
39/1.

Dubrovsky, R., and I-Tsung Shih, 1988. "Development of the
Computer Controlled Seizure Testing Methodology." In New
Materials Approach to Tribology: Theory and Applications,
Materials Research Society Symposium Proceedings, Vol. 140.

129



1 3 0

Falconer, K. 1990. Fractal Geometry: Mathematical Fundations and
Applications. John Wiley & Sons.

Gagnepain, J. J., and C. Roques-Carmes, 1986. "Fractal Approach to
Two-Dimensional and Three-Dimensional Surface Roughness."
Wear, Vol. 109, pp. 119-126.

Geskin, E. S., W. L. Chen, S. S. Chen, F. Hu, M. E. H. Khan, S. Kim. 1989.
"Investigation of Anatomy of an Abrasive Waterjet."
Proceedings of Fifth American Waterjet Conference. pp. 217-
23 0.

Goldberger, A. L., D. R. Rigney, and B. J. West, "Chaos and Fractals in
Human Physiology." Scientific Amarican, February 1990, pp.
42-49.

Greenwood, J. A., and J. H. Tripp, 1970-71. "The Contact of Two
Nominally Flat Rough Surfaces." Proceedings of Institution of
Mechanical Engineers. Vol. 185, pp. 625-633.

Hashish, M. 1984. "A Modeling Study of Metal Cutting with Abrasive
Waterjets." Trans. of ASME, Journal of Engr. Materials and
Technology. Vol. 106, pp. 88-100.

—. 1988. "Visualization of the Abrasive-Waterjet Cutting Process."
Experimental Mechanics. pp. 159-169.

—. 1991. "Characteristics of Surfaces Machined with Abrasive-
Waterjets." ASME Journal of Engineering Materials and
Technology. Vol. 113, pp. 354-362.

—. 1992 "On the Modeling of Surface Waviness Produced by
Abrasive Waterjets." Proceedings of 11th International
Conference on Jet Cutting Technology. St. Andrews, Scotland,
pp. 17-34.

Hunt, D. C., T. J. Kim, and M. Reuber. 1988. "Surface Finish
Optimization for Abrasive Waterjet Cutting." Proceedings of 9th
International Symposium on Jet Cutting Technology, Sendai,
Japan, pp. 99-112.

ISO R468. 1966. International Standard of Surface Roughness.

Jordan, D. L., R. C. M. Hollins, and E. Jakeman. 1986 "Measurement



1 3 1

and Characterization of Multi-Scale Surfaces," Wear. 109, pp.
127-134.

Jost, H. P. 1990. "Tribology — Origin and Future." Wear. 136, pp. 1-17.

Kaye, B. H. 1986. "The Description of Two-Dimensional Rugged
Boundaries in Fine Particle Science by Means of Fractal
Dimensions." Powder Technology. 46, pp. 245-254.

—. 1989. A Random Walk Through Fractal Dimensions. VCH
Verlagsgesellschaft, Weinheim, F.R.G., VCH Publishers, New
York.

King, T. G., and Powell, J., (1986), "Laser-Cut Mild Steel-Factors
Affecting Edge Quality," Wear, Vol. 109, pp. 135-144.

Korcak, J. 1938. "Deux Types Fondamentaux Dedistribution
Statistique." Bulletin de I'Institut International de Statistique.
III, pp. 295-299.

Kovacevic, R. 1991. "Surface Texture in Abrasive Waterjet Cutting."
Journal of Manufacturing Systems, Vol. 10, No. 1, pp. 32-40.

Kruschov, M. M. 1957. "Resistance of Metals to Wear by Abrasion;
Related to Hardness." Institution of Mechanical Engineers,
Conference of Lubrication and Wear. London, pp. 655-659.

Kubo, M., and J. Peklenik. 1968. "An Analysis of Micro-Geometrical
Isotropy for Random Surface Structures." Annals of the C.I.R.P.
Vol. 16, pp. 235-242.

Ling, F. F. 1987. "Scaling Law for Contoured Length of Engineering
Surfaces." J. Appl. Phys. Vol. 62(6), pp. 2570-2572.

—. 1990. "Fractals, Engineering Surfaces and Tribology." Wear. Vol.
136, pp. 141-156.

Longuet-Higgins, M. S. 1957. "The Statistical Analysis of a Random
Moving Surface." Phil. Trans. of the Royal Society. Vol. A249,
pp. 321-387.

Longuet-Higgins, M. S. 1962. "The Statistical Geometry of Random
Surfaces." in Hydrodynamic Stability, Proceedings of 13th
Symposium on Applied Mathematics. American Math. Society,
pp. 105-143.



1 3 2

Majumdar, A. 1989. "Fractal Surfaces and Their Applications to
Surface Phenomena." Dissertation University of California,
Berkeley.

Majumdar, A., and B. Bhushan, 1990. "Role of Fractal Geometry in
Roughness Characterization and Contact Mechanics of Surfaces."
ASME Journal of Tribology. Vol. 112, pp. 205-216.

—. 1991. "Fractal Model of Elastic-Plastic Contact Between Rough
Surfaces." ASME Journal of Tribology. Vol. 113, pp. 1-11.

Mandelbrot, B. 1967. "How Long Is the Coast of Britain? Statistical
Self-Similarity and Fractional Dimension." Science. Vol. 155,
pp.636-638.

Mandelbrot, B., and J. W. Van Ness. 1968. "Fractional Brownian
Motions, Fractional Noises and Applications." SIAM Review. Vol.
10, No. 4, pp. 423-437.

Mandelbrot, B. 1982. The Fractal Geometry of Nature. Freeman, New
York.

Mandelbrot, B., D. E. Passoja, and A. J. Paullay, 1984. "Fractal
Character of Fracture Surfaces of Metals." Nature 308, pp. 721-
7 22.

Mandelbrot, B. 1985. "Self-Affine Fractals and Fractal Dimension."
Physica Scripta. Vol. 32, pp. 257-260.

Matsui, S., H. Matsumura, Y. Ikemoto, K. Tsujita, and H. Shimizu.
1990. " High Precision Cutting Method for Metallic Materials by
Abrasive Waterjet." 10th. Int. Symp. on Jet Cutting Technology.
Amesterdam, paper no. G3.

McCool, J. I. 1987. "Relating Profile Instrument Measurements to the
Functional Performance of Rough Surfaces." ASME Journal of
Tribology. Vol. 109, pp. 264-271.

Nayak, P. R. 1971. "Random Process Model of Rough Surfaces." ASME
J. Lub. Tech. Vol. 93F, pp. 398-407.

—. 1973. "Some Aspects of Surface Roughness Measurement." Wear.
Vol. 26, pp. 165-174.



1 3 3

Neusen, K. F., P. K. Rohargi, C. Vaidyanathan, and D. Alberts. 1987.
"Abrasive Waterjet Cutting of Metal Matrix Composites."
Proceedings of the 4th United States Waterjet Conference.
Berkeley, CA, pp. 175-182.

Peitgen, H. 0., and D. Saupe. 1988. The Science of Fractal Images.
Springer-Verlag, New York.

Peklenik, J. 1967. "Investigation of the Surface Typology." Annals of
the C.I.R.P. Vol. 15, pp. 381-385.

Rice, S. 0. 1944. "Mathematical Analysis of Random Noise." Bell Syst.
Tech. J. 23, pp. 282-332. 1945. Bell Syst. Tech. J. 24, pp. 46-
15 6 .

Richardson, L. F. 1961 in General Systems Yearbook 6, Vol. 139.

Roques-Carmes, C., D. Wehbi, J. F. Quiniou, and C. Tricot. 1988.
"Modelling Engineering Surfaces and Evaluating Their Non-
integer Dimension for Application in Material Science." Surface
Topography. Vol. 1, pp. 435-443.

Sayles, R.S ., and T. R. Thomas, 1978. "Surface Topography as a Non-
stationary Random Process." Nature 271, pp. 431-434.

—. 1979. "Measurements of the Statistical Microgeometry of
Engineering Surfaces." ASME J. Lub. Tech. Vol. 101, pp. 409-
41 8 .

Souda, V. 1991. "Implementation of an Integrated High Energy Beam
Workcell." Master Thesis, New Jersey Institute of Technology,
Newark, NJ.

Stolarski, T. A. 1990. "A Probabilistic Approach to Wear Prediction."
Journal of Physics, D: Applied Physics. Vol. 24, pp. 1143-1149.

Sun, N. P. 1973. Wear. Vol.25, pp. 111-124.

Tabor D. 1959. "Junction Growth in Metallic Friction: The Role of
Combined Stresses and Surface Contamination." Proceedings of
the Royal Society. A251, pp. 378-389.

Tan, D. K. M. 1986. "A Model for the Surface Finish in Abrasive
Waterjet Cutting." Proceedings of 8th International Symposium


	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch (1 of 2)
	Biographical Sketch (2 of 2)

	Dedication
	Acknowledgment (1 of 2)
	Acknowledgment (2 of 2)

	Table of Contents (1 of 4)
	Table of Contents (2 of 4)
	Table of Contents (3 of 4)
	Table of Contents (4 of 4)
	Chapter 1: Introduction
	Chapter 2: Characteristics of Abrasive Waterjet Generated Surfaces and Effects of Cutting Parameters and Structure Vibration
	Chapter 3: Fundamentals of Fractal Geometry
	Chapter 4: Fractal Characterization of Surface Topography and Implementation in Surface Contact
	Chapter 5: Fractal Geometry Model for Wear Prediction and Applications in Wear Testing
	Chapter 6: Conclusions and Future Work
	Appendix
	Bibliography

	List of Tables
	List of Figures (1 of 4)
	List of Figures (2 of 4)
	List of Figures (3 of 4)
	List of Figures (4  of 4)

	List of Symbols (1 of 3)
	List of Symbols (2 of 3)
	List of Symbols (3 of 3)




