# **Copyright Warning & Restrictions**

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page # to: last page #" on the print dialog screen



The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

### ABSTRACT

# A Mathematical Model for the Prediction of Depth of Cut in the Course of AWJ Machining

#### by Naijian Ma

The objective of this study is to develop a practical mathematical model for prediction of the depth of cut in the course of Abrasive Water Jet (AWJ) machining. Semi-empirical method which is an integration of theoretical derivation and statistical analysis is used for process description. A theoretical model was constructed based on kinetic energy conservation equation, physical relationship among operating parameters, abrasive size, material properties and cutting results. Then, correlation between the depth of cut and operational parameters was analyzed in order to improve the theoretical model. Finally, a regression equation representing 1000 samples was constructed.

Three statistical criteria were considered synthetically to determine the final form of the regression equation. These criteria include multiple correlation coefficient  $R^2$ , the plot of a standard residual  $g_i$ , and the number of  $g_i > \pm 2$ .

The multiple correlation coefficients for evaluation of the accuracy of the constructed equation range from 0.95 to 0.99. Prediction error in 92% of cases did not exceed  $\pm 2$  mm for samples having thickness up to 30 mm. The constructed equation was also used for process examination. It was evaluated, for example, that water contribution to the material removal is roughly 10 times less than particles contribution.

# A MATHEMATICAL MODEL FOR THE PREDICTION OF DEPTH OF CUT IN THE COURSE OF AWJ MACHINING

by Naijian Ma

A Thesis Submitted to the Faculty of New Jersey Institute of Technology in Partial Fulfillment of the Requirements for the Degree of Master of Science in Mechanical Engineering

Department of Mechanical and Industrial Engineering

May 1993

### APPROVAL PAGE

### A Mathematical Model for the Prediction of Depth of Cut in the Course of AWJ Machining

Naijian Ma

Dr. Ernest S. Geskin, Thesis Advisor Professor of Mechanical Engineering, NJIT

Dr. Rong-Yaw Chen, Committee Member

Professor of Mechanical Engineering, NJIT

(date)

(date)

Dr. Zhiming Ji, Committee Member Assistant Professor of Mechanical Engineering, NJIT

(date)

### **BIOGRAPHICAL SKETCH**

Author: Naijian Ma

Degree : Master of Science in Mechanical Engineering

Date : May 1993

### Undergraduate and Graduate Education:

- Master of Science in Mechanical Engineering New Jersey Institute of Technology, Newark, New Jersey 1993
- Bachelor of Science in Mechanical Engineering China Textile University, Shanghai, P. R. China 1983

Major: Mechanical Engineering

This thesis is dedicated to a good friend of mine, Mr. Baichuan Wang.

.

### ACKNOWLEDGMENT

The author wishes to express his sincere gratitude to his advisor, Professor Ernest S. Geskin, for his guidance, patience and moral support throughout this study.

Special thanks to Dr. Chen and Dr. Ji for their helpful suggestions and valuable comments. The author appreciates the timely help and suggestions from all the Waterjet Laboratory members.

Finally, a grateful thank you to the author's wife, Hong Zhu, and his parents for their firm support and encouragement.

# TABLE OF CONTENTS

| Chapter Pag                                                | ;e |
|------------------------------------------------------------|----|
| 1 INTRODUCTION                                             | 1  |
| 2 PREVIOUS RESEARCH SURVEY                                 | 3  |
| 2.1 The Study of the Basic Theory of AWJ Machining         | 3  |
| 2.2 The Study of the Models for Predicting Cutting Results | 9  |
| 2.3 The Study of the Particle Motion in AWJ                | 2  |
| 2.4 Comments on the Survey                                 | 6  |
| 3 KNOWLEDGE OF REGRESSION ANALYSIS                         | 8  |
| 3.1 Simple Linear Regression                               | 8  |
| 3.2 Multiple Linear Regression                             | 1  |
| 3.3 Nonlinear Regression                                   | 3  |
| 3.4 Correlation Analysis                                   | 4  |
| 4 AWJ APPARATUS AND EXPERIMENTS                            | 9  |
| 4.1 Experimental Facilities                                | 9  |
| 4.1.1 Water Preparation Unit                               | 9  |
| 4.1.2 High Pressure Water Distribution System              | 1  |
| 4.1.3 Work Station                                         | 1  |
| 4.1.3.1 Robotic Work Cell                                  | 1  |
| 4.1.3.2 Abrasive Feeder                                    | 2  |
| 4.1.3.3 Catcher System                                     | 3  |
| 4.2 Measurement Instrument                                 | 5  |
| 4.3 Experimental Procedures                                | 5  |
| 4.3.1 Samples Preparation                                  | 5  |
| 4.3.2 Experimental Data                                    | 6  |

| Chapter                                                                      | Page |
|------------------------------------------------------------------------------|------|
| 5 A MATHEMATICAL MODEL FOR PREDICTION OF DEPTH OF CUT                        |      |
| 5.1 The Idea for the New Model                                               | 37   |
| 5.2 A Theoretical Model                                                      |      |
| 5.2.1 Energy Conservation Equation                                           |      |
| 5.2.2 Velocities of Water and Abrasive at the Exit of the Tube               | 40   |
| 5.2.3 The Theoretical Model                                                  | 40   |
| 5.3 An Improved Model                                                        | 42   |
| 5.3.1 Relationship Between Depth of Cut and Individual Operating Parameters  | 42   |
| 5.3.2 Correlation among the Operating Parameters                             | 42   |
| 5.3.3 Interaction Between Water Action and Abrasive Action                   | 43   |
| 5.4 A Regression Model                                                       | 45   |
| 5.4.1 Determination of $D_t^B$                                               | 45   |
| 5.4.2 Determination of A and $C_a$                                           |      |
| 6 RESULTS AND DISCUSSIONS                                                    | 48   |
| 6.1 Regression Results for the Regression Model (5.9)                        | 48   |
| 6.2 The Practical Meaning for Every Term in the Regression Model             | 49   |
| 6.3 Correlation of Depth of Cut and Operating Parameters                     |      |
| 6.4 Effects of Water and Abrasive on the Depth of Cut                        | 50   |
| 6.5 Prediction of the Water Velocity and the Abrasive Velocity               |      |
| at the Exit of Tube                                                          | 51   |
| 6.6 Relationship Between Particle Coefficient $C_a$ and the Size of Particle | 52   |
| 7 CONCLUSIONS AND RECOMMENDATIONS                                            | 53   |
| 7.1 Conclusions                                                              | 53   |
| 7.2 Recommendations                                                          | 54   |
| APPENDIX                                                                     | 70   |
| WORKS CITED                                                                  |      |

## LIST OF TABLES

| Table                                                                   | Page |
|-------------------------------------------------------------------------|------|
| 1 Nonlinear Equations and their Simple Linear Transforms                | 24   |
| 2 Chemical Compositions of Experimental Materials                       |      |
| 3 Mechanical Properties of Experimental Materials                       | 36   |
| 4 Correlation between Operating Parameters                              | 44   |
| 5 Determination of the Form of Regression Model                         | 44   |
| 6 Determination of $D_t^B$                                              | 45   |
| 7 Correlation Coefficient for Different Combinations of A and $C_a$     |      |
| (Steel, 80 mesh, 150 data)                                              | 46   |
| 8 The Number of $g_i > \pm 2$ for Different Combinations of A and $C_a$ |      |
| (Steel, 80 mesh, 150 data)                                              | 46   |
| 9 Results of Regression Analysis for All Materials                      | 48   |
| 10 Correlation between Depth and Operating Parameters(Steel, 80 mesh)   | 50   |
| 11 C <sub>a</sub> Values for Different Sizes of the Particle            | 52   |

# LIST OF FIGURES

| Figure Page                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 Schematic of Cutting Nozzle Body 4                                                                                                                                                                                                                                                                                                                               |
| 2 The Ideal Model of a Abrasive Impinging on the Ductile Material                                                                                                                                                                                                                                                                                                  |
| 3 The Striations in the Cutting Surface                                                                                                                                                                                                                                                                                                                            |
| 4 Partitioning of Total Sum of Squares in Simple Linear Regression                                                                                                                                                                                                                                                                                                 |
| 5 A Residual Plot with an Even Random Band                                                                                                                                                                                                                                                                                                                         |
| 6 AWJ Machining System                                                                                                                                                                                                                                                                                                                                             |
| 7 The Gantry CNC 5-axis Robotic Work Cell                                                                                                                                                                                                                                                                                                                          |
| 8 The Allen-Bradley 8200R Controller                                                                                                                                                                                                                                                                                                                               |
| 9 Abrasive Feeder                                                                                                                                                                                                                                                                                                                                                  |
| 10 Catcher System                                                                                                                                                                                                                                                                                                                                                  |
| 11 The Schematic of Cutting by the AWJ                                                                                                                                                                                                                                                                                                                             |
| 12 Effect of Traverse Speed on the Depth of Cut<br>( Steel AISI 1018, $P_0=317MPa$ ; $S_a=177\mu m$ ; Group I: $D_0=0.305mm$ ,<br>$D_t=0.838mm$ , $M_a=275g/min$ ; Group II: $D_0=0.152mm$ , $D_t=0.838mm$ ,<br>$M_a=204g/min$ ; Group III: $D_0=0.254mm$ , $D_t=1.195mm$ , $M_a=209g/min$ )                                                                       |
| 13 Effect of Abrasive Mass Flow Rate on Depth of Cut<br>(Steel AISI 1018, $S_a = 177 \mu m$ ; Group I: $P_o = 317 MPa$ ; $D_o = 0.254 mm$ ,<br>$D_t = 0.865 mm$ , $U = 14 cm/min$ ; Group II: $P_o = 317 MPa$ ; $D_o = 0.177 mm$ ,<br>$D_t = 0.906 mm$ , $U = 14 cm/min$ ; Group III: $P_o = 331 MPa$ ; $D_o = 0.177 mm$ ,<br>$D_t = 1.015 mm$ , $U = 10 cm/min$ ) |
| <ul> <li>14 Effect of Abrasive Mass Flow Rate on Depth of Cut<br/>(Steel AISI 1018, S<sub>a</sub> = 177μm; D<sub>o</sub>=0.254mm, U=12cm/min;<br/>Group I: D<sub>t</sub>=1.092mm, M<sub>a</sub>=242g/min;<br/>Group II: D<sub>t</sub>=0.838mm, M<sub>a</sub>=303g/min)</li></ul>                                                                                   |
| <ul> <li>15 Effect of Nozzle Combination on Depth of Cut<br/>(Steel AISI 1018, P<sub>o</sub>=317MPa; S<sub>a</sub> = 177μm; Group I:<br/>D<sub>o</sub>=0.254mm, M<sub>a</sub>=260g/min; U=14cm/min; Group II:<br/>D<sub>o</sub>=0.365mm, M<sub>a</sub>=280g/min; U=13cm/min)</li></ul>                                                                             |
| 16 Plot of Standard Residual g <sub>i</sub> versus Depth of Cut H (A=0.960, C <sub>a</sub> =4.437)57                                                                                                                                                                                                                                                               |

| 17 Plot of Standard Residual $g_i$ versus Depth of Cut H (A=0.965, $C_a$ =4.437)57                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------|
| 18 Plot of Standard Residual $g_1$ versus Depth of Cut H (A=0.970, $C_a$ =4.437)58                                                    |
| 19 Plot of Standard Residual $g_i$ versus Depth of Cut H (A=0.960, $C_a$ =4.215)58                                                    |
| 20 Plot of Standard Residual $g_i$ versus Depth of Cut H (A=0.965, $C_a$ =4.215)59                                                    |
| 21 Plot of Standard Residual $g_i$ versus Depth of Cut H (A=0.970, $C_a$ =4.215)59                                                    |
| 22 Plot of Standard Residual $g_i$ versus Depth of Cut H (A=0.960, $C_a$ =4.014)60                                                    |
| 23 Plot of Standard Residual $g_i$ versus Depth of Cut H (A=0.965, $C_a$ =4.014)60                                                    |
| 24 Plot of Standard Residual $g_i$ versus Depth of Cut H (A=0.970, $C_a$ =4.014)61                                                    |
| 25 Plot of Standard Residual $g_i$ versus Depth of Cut H (A=0.960, $C_a$ =3.832)61                                                    |
| 26 Plot of Standard Residual $g_1$ versus Depth of Cut H (A=0.965, $C_a$ =3.832)62                                                    |
| 27 Plot of Standard Residual $g_i$ versus Depth of Cut H (A=0.970, $C_a$ =3.832)62                                                    |
| 28 Plot of Fitted Depth H versus Observed Depth of Cut<br>(Steel AISI 1018, Size of Abrasive = 50 Mesh)                               |
| 29 Plot of Fitted Depth H versus Observed Depth of Cut H<br>(Steel AISI 1018, Size of Abrasive = 80 Mesh)                             |
| 30 Plot of Fitted Depth H versus Observed Depth of Cut H<br>(Steel AISI 1018, Size of Abrasive = 220 Mesh)                            |
| 31 Plot of Fitted Depth H versus Observed Depth of Cut H<br>(Aluminum, Size of abrasive = 80 Mesh)                                    |
| 32 Plot of Fitted Depth H versus Observed Depth of Cut H<br>(Titanium, Size of abrasive = 80 Mesh)                                    |
| 33 Plot of Fitted Depth H versus Observed depth of Cut H<br>(All Materials and Sizes of Abrasive)                                     |
| 34 Water Velocity from Sapphire Nozzle according to Bernoulli's Equation                                                              |
| 35 Predicted Water Velocity at the Exit of Carbide Tube(Steel AISI 1018)66                                                            |
| 36 Abrasive Velocity at the Exit of Carbide Tube Associated with<br>Water Velocity at the Exit of Sapphire Nozzle (Steel AISI 1018)67 |
| 37 Abrasive Velocity at the Exit of Carbide Tube Associated with<br>Water Velocity at the Exit of Carbide Tube (Steel AISI 1018)      |

.

# Figure

| 38 | Relationship I between $V_a$ and Operating Parameters<br>(Steel, 80mesh, $D_0=0.177$ mm, Group I: $P_0=331$ PMa, $D_t=0.906$ mm,<br>U=14g/min; Group II: $P_0=197$ PMa, $D_t=1.01$ mm, U=10g/min;)                        | 68   |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 39 | Relationship II between V <sub>a</sub> and Operating Parameters<br>(Steel, 80mesh, D <sub>0</sub> =0.254mm, U=12cm/mim; Group I: Ma=303g/min,<br>D <sub>t</sub> =1.155mm; Group II: Ma=242g/min, D <sub>t</sub> =0.916mm) | . 68 |
| 40 | Plot of the Relationship between C <sub>a</sub> and the Size of Abrasive                                                                                                                                                  | . 69 |

## NOMENCLATURE

| А                    | The order of $M_a$ determined by regression analysis                 |
|----------------------|----------------------------------------------------------------------|
| В                    | The order of $D_t$ determined by regression analysis                 |
| Ca                   | Coefficient for the cutting efficiency of Abrasive                   |
| $C_0, C_1, C_2, C_3$ | Regression coefficient determined by regression analysis             |
| Dø                   | Diameter of sapphire orifice (mm)                                    |
| Dt                   | Diameter of carbide tube (mm)                                        |
| Ea                   | Abrasive kinetic energy at the exit of the tube( $N \cdot m / min$ ) |
| Ew                   | Water kinetic energy at the exit of the tube( $N \cdot m / min$ )    |
| gi                   | Standard Residual                                                    |
| Hw                   | Fitted depth of cut caused by water action (mm)                      |
| H.                   | Fitted depth of cut caused by abrasive action (mm)                   |
| HL                   | Fitted depth of cut caused by the interaction between water          |
|                      | and abrasive(mm)                                                     |
| Н                    | Total observed depth of cut by AWJ (mm)                              |
| Ĥ                    | Total fitted depth of cut (mm)                                       |
| Ka                   | Coefficient of abrasive velocity at the exit of the tube             |
| Kw                   | Coefficient of water velocity at the exit of the tube                |
| Ma                   | Mass flow rate of abrasive (g/min)                                   |
| $M_{\rm w}$          | Mass flow rate of water (g/min)                                      |
| $P_w$                | Percentage of water action on the depth of cut (%)                   |
| $\mathbf{P}_{a}$     | Percentage of abrasive action on the depth of cut (%)                |
| Pı                   | Initial water pressure (MPa)                                         |
| Po                   | Operating water pressure (MPa)                                       |
| R2                   | Correlation coefficient                                              |
| $S_a$                | Size of abrasive (mesh)                                              |
|                      |                                                                      |

| $S_{d}$         | Standoff distance (mm)                                           |
|-----------------|------------------------------------------------------------------|
| $S_{y/x}^2 \\$  | Conditional sample variance of y                                 |
| U               | Traverse speed of the nozzle (cm/min)                            |
| V <sub>sw</sub> | Water velocity at the exit of sapphire nozzle (m/min)            |
| V <sub>cw</sub> | Water velocity at the exit of carbide nozzle (m/min)             |
| Va              | Abrasive particle velocity at the exit of carbide nozzle (m/min) |
| Vm              | Mixed slurry velocity at the exit of the tube (m/min)            |
| W               | Work done by the cutting force of $AWJ(N \cdot m / min)$         |
| Wt              | Top kerf width (mm)                                              |
| $ ho_w$         | Water density (kg/cm <sup>3</sup> )                              |
| σ               | Flow strength of the material (MPa)                              |

# CHAPTER 1 INTRODUCTION

Abrasive Waterjet (AWJ) machining is as a new manufacture technology used for cutting, milling and cleaning a variety of metal and non-metal materials[1]. The abrasive waterjet is formed by entraining abrasive particles by high-velocity waterjet (WJ) in the mixing chamber of a nozzle body. WJ creates the vacuum in this chamber and abrasive particles are sucked into the chamber as shown in Fig 1. Water and abrasive particles are then introduced into a focusing tube where the turbulent pulsation assures mixing of two phases and forming of abrasive waterjet. Here, part of the momentum of the waterjet is transferred to the abrasive particles and particles velocity abruptly increases. As a result of the momentum transfer between the water and particles, a high-velocity slurry of abrasive is generated. This slurry can be used for machining almost all ductile and brittle materials including those which can not be cut by the conventional cutting techniques.

One of important elements of AWJ technology is evaluation of the relationship between depth of cut and process parameters [2-9]. There are three feasible approaches for the mathematical modeling of this relationship. The first is construction of an empirical model based on the statistical analysis of experimental data. The second approach involves theoretical analysis of cutting. The final one is the combination of empirical and theoretical methods. This semi-empirical method is employed in our study. A developed model includes the following variables:

- waterjet pressure (Po)
- waterjet orifice diameter (  $D_0$ )
- focusing tube diameter  $(D_t)$
- traverse speed of nozzle (u)
- standoff distance ( $S_d = 2.5$ mm in this study)
- abrasive mass flow rate  $(m_a)$

- size of particle  $(S_a)$ 

- abrasive material (garnet sand was used in this study)

- material property (flow stress  $\sigma$  was used in this work)

The objectives of this study were to

(1) establish a new mathematical model for predicting the depth of cut.

(2) investigate comparative effects of water and particle actions on the depth of cut.

(3) evaluate effects of various process parameters on the depth of cut.

(4) study the distribution of water and abrasive particles velocities at the exit of carbide tube.

The previous studies of the AWJ working mechanism are discussed in chapter 2. Statistical methods used in this study are discussed in chapter 3. The experimental apparatus and methods are presented in Chapter 4 and a new model for prediction of depth of cut by AWJ is constructed and presented in chapter 5. The prediction results and some inferences on AWJ cutting are discussed in chapter 6. Conclusions and recommendations are given in chapter 7.

### CHAPTER 2

### PREVIOUS RESEARCH SURVEY

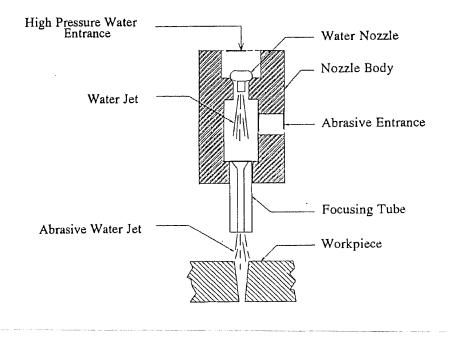
Abrasive waterjet machining is a new manufacturing technology which combines the principles of waterjet and abrasive jet machining and creates a unique process that has applied to cutting, drilling milling and cleaning by means of the erosion action of a slurry jet.

### 2.1 The Study of the Basic Theory of AWJ Machining

The most studies reduced the mechanism of AWJ machining to the workpiece-particle interaction and several theoretical models were constructed on this basis [10-19]. This approach is based on the pioneering studies of Finnie and Bitter who studied the erosion mechanism and established the equations relating volume removed by AWJ with physical and geometric process characteristics.

Finnie [20] studied an impact of a rigid abrasive grain onto a ductile metal. He derived the equations describing the trajectory of an individual particle of mass M striking a solid surface at an angle  $\alpha$  with a velocity V as shown in Fig 2.

It was assumed that the center of the particle translates in x and y directions while the particles is turned at angle  $\phi$ . The particle is considered as the cutting edge of a tool penetrating into a ductile material. The volume removal W can be found by integrating the equations of the particle motion over the period of penetration. The final equations yield:


- /

$$W = \frac{m V^2}{PCK} \left( Sin(2\alpha) - \frac{6}{K} Sin^2 \alpha \right) \qquad \text{if } \tan \alpha \le \frac{K}{6} \qquad (2.1)$$

$$W = \frac{m V^2}{PCK} \left( \frac{K \cos^2 \alpha}{6} \right) \qquad \text{if } \tan \alpha \ge \frac{K}{6} \qquad (2.2)$$

Where

- W : the volume removed by an abrasive particle
- P : horizontal component of the stress on the particle face
- C : the ratio  $L/y_t$
- K : the ratio of vertical to horizontal force component acting on particle
- m : amount of abrasive
- V : velocity of a particle



#### Figure 1 Schematic of Cutting Nozzle Body

The results of the prediction by the above equations were compared with test results from a specially designed "sandblast" type tester in which the velocity, direction, and amount of abrasive were carefully controlled. It was found that for ductile materials it is possible to predict the manner in which material removal varies with the direction and velocity of the eroding particles.

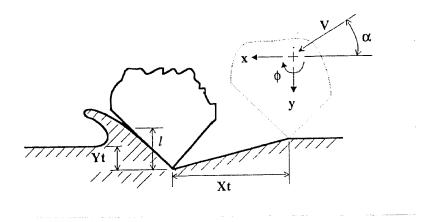



Figure 2 The Ideal Model of a Abrasive Impinging on the Ductile Material

Bitter [21] studied the erosion by solid particles in a different way. He found that the cutting surface of the workpiece exhibits two distinctive regions. The top area of the cutting surface is smoother than the bottom one in which obvious striations exist (Fig 3). According to Bitter the erosion by solid particles is divided into two types. One (the upper region) is called <u>cutting wear</u> which had been analyzed by Finnie, another one (the lower region) is termed <u>deformation wear</u> that corresponds to the erosion at almost normal angle of attack on ductile materials. Bitter derived the equation of deformation wears using the energy balance of collisions at large angles. The resulting equation for deformation and cutting wear derived by Bitter[21] are given below:

$$W_{\rm D} = \frac{1}{2} \frac{M(V \mathrm{Sin}\alpha - V_{\rm C})^2}{E_0} \qquad \qquad 0 \le \alpha \le 90^{\circ} \qquad (2.3)$$

$$W = \frac{2MC(VSin\alpha - V_c)}{\sqrt{VSin\alpha}} \left[ VCos\alpha - \frac{C(VSin\alpha - V_c)^2}{\sqrt{VSin\alpha}} \rho \right] \qquad \alpha \le \alpha_o$$
(2.4)

$$W_{c} = \frac{\frac{1}{2} M \left[ V^{2} \cos \alpha - K_{1} (V \sin \alpha - V_{c}) \right]}{\rho} \qquad \qquad \alpha \ge \alpha_{o} \qquad (2.5)$$

where

 $W_{\text{D}}, W_{\text{C}}$  : units volume loss due to deformation wear and cutting wear, respectively

- M : total mass of impinging particles
- V : particles velocity
- $\alpha$  : impact angle

 $V_{C}$  : maximum particle velocity at which the collision is still purely elastic

 $E_o$ : the energy needed to removed a unit volume of material from the body by deformation wear(deformation wear factor)

 $\rho$ : the energy needed to scratch out a unit volume from a surface (cutting wear factor)

constant : 
$$C = \frac{0.288}{y} \sqrt[4]{d/y}$$

constant :  $0.82 y^2 \sqrt[4]{y/d} (\frac{1-q_1^2}{E_1} + \frac{1-q_2^2}{E_2})^2$ 

- y : elastic load limit
- d : density
- E : young's modules
- q : poisson's ratio

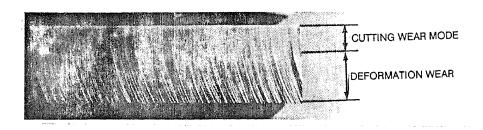



Figure 3 The Striations in the Cutting Surface

It is obvious that Bitter's equations include both elastic and plastic properties of the particles and specimen materials. This is an intricate study. The following assumptions have been made.

(1) The normal component of kinetic energy of the impacted particles is absorbed in the specimen surface and accounts for deformation wear.

(2) For certain hard materials, subjected principally to deformation wear, there is a limiting component of velocity normal to the surface below which no erosion takes place. This limiting value depends on the particle shape.

(3) The kinetic energy component parallel to the surface is associated with cutting wear.

(4) For cutting wear and large angles of attack the particles come to rest of the surface and the total parallel component of kinetic energy contributes to cutting wear. For the small angle of attack, however, the particles may sweep into the surface and finally leave again with a residual amount of parallel kinetic energy.

Neilson and Gilchrish [22] also established a similar simplified model for erosion by a stream of solid particles as follows:

$$W = \frac{\frac{1}{2}MV^{2}Cos^{2}Sin(n\alpha)}{\rho} + \frac{\frac{1}{2}M(VSin\alpha - K)^{2}}{E_{o}} \qquad \alpha \langle \frac{\pi}{2n} \qquad (2.6)$$
(A) (B)

$$W = \frac{\frac{1}{2}MV^{2}Cos^{2}\alpha}{\rho} + \frac{\frac{1}{2}M(VSin\alpha - K)^{2}}{E_{o}} \qquad \alpha \frac{\pi}{2n} \qquad (2.7)$$
(C) (B)

where

- W : the erosion produced by M pounds of particles at the angle of attack  $\alpha$  and particles velocity V
- K : the velocity component normal to the surface below which no erosion takes place

Actually, part B accounts for deformation wear and part A and C account for cutting wear at the small and large angles of attack, respectively.

In 1987, Hashish developed an improved model for the erosion by solid particles in a liquid jet. According to Hashish erosion of ductile metals by sharp particle, impact is related to the particle velocity to powers greater than 2, but less than 3 [23,24]. The existing models, however, are not satisfactory in accounting for this dependency. Also, these models do not account for particle size or shape. Hashish expanded Finnie's model including the crater width variation as the depth of the trajectory varies.

The resulting model shows a velocity exponent of 2.5 and includes the particle shape expressed by its sphericity and roundness numbers. This improved model is best suited for shallow angles of impact and is expressed as :

$$\delta v = \frac{7}{\pi} \frac{m}{\rho_{p}} \left( \frac{V}{C_{k}} \right)^{2.5} \sin(2\alpha) \sqrt{\sin\alpha}$$
(2.8)

Where

 $\delta v$  : volume removed

m : mass of particle

 $\rho_{p}$ : density of particle

- V : particle velocity
- $\alpha$  : impact angle

In the equation (2.8),  $C_k$  is a characteristic velocity that combines particle and material characteristics :

$$C_{k} = \sqrt{\frac{3\sigma R_{f}^{3/5}}{\rho_{p}}}$$

where

 $\sigma_{-}$  : material flow stress

 $R_{\rm f}$  : particles roundness

#### 2.2 The Study of the Models for Predicting Cutting Results

The modeling for predicting the cutting results is an important element in the study of AWJ. Three approaches are possible for constructing the mathematical model of a phenomena in question. The first one is constructing pure empirical model, which has the general form as follows:

$$H = C_{o} A_{1}^{x_{1}} A_{2}^{x_{2}} A_{3}^{x_{3}} \dots A_{n}^{x_{n}}$$
(2.9)

where

H : depth of cut

 $A_1 \! \ldots \! A_n \;$  : relative parameters or combination of the parameters

 $X_1 \hdots X_n$  : the power corresponding to  $A_1 \hdots A_n$ 

### Co: regression coefficient

Several such studies on the empirical model have been reported since 1980's. The example for that is the work[25] which suggested the following regression equation:

$$h/d = K_0[S_r(P/\sigma)(d/S)(V_jt/d)^{0.5}]^{\alpha}$$
 (2.10)

where

- h : depth of cut
- d : nozzle diameter

 $K_0, \alpha$  : constants

- $S_r$  : stroke ratio
- P : jet pressure
- $S \ : \ standoff \ distance$
- $V_{j}$  : jet velocity
- t : pulse duration
- $\sigma$  : material tensile strength

The second approach is the construction of a theoretical model for process prediction in which an example is Hashish's equation [26]:

$$h_{c} = \frac{(V_{c}/C_{K})d_{j}}{\left(\frac{\pi\rho_{p}ud_{j}}{14m_{a}}\right)^{2/5} + \frac{V_{e}}{C_{K}}}$$
(2.11)

$$h_{d} = \frac{1}{\frac{\pi D_{j} \sigma u}{2 C_{1} m_{a} (V_{0} - V_{e})^{2}} + \frac{C_{f}}{D_{j}} \frac{V_{o}}{(V_{o} - V_{e})}}$$
(2.12)

where

$$C_{k} = \sqrt{\frac{3\sigma R_{f}^{3/5}}{\rho_{p}}} : \text{ characteristic velocity}$$

 $h_{\rm c},h_{\rm d}$  : depth of cut due to cutting wear and deformation wear mode, respectively

- $V_o$  : initial particle velocity
- $V_e$ : threshold particle velocity
- $D_j$  : jet diameter
- $\rho_{\rm p}$ : density of particle
- $\sigma$  : material flow stress
- $R_{f}$  : particle roundness factor
- $C_f$  : coefficient of friction on kerf wall
  - m<sub>a</sub>: abrasive flow rate
  - $C_1$ : ratio of  $m_a$  in which particles cause material removal
  - u : jet traverse rate

In Hashish's model the total depth of cut was divided into two distinct zones due to different modes of interaction between impinging abrasive particles and the target material as indicated in Fig 3. The upper zone is due to a cutting wear mode at shallow angles of impact. The lower zone is due to a deformation wear mode at large angles of impact. Hashish applied a number of parameters including operating parameters, geometric parameters and material properties to his theoretical model. As reported, the correlation coefficient for many of the metals is over 0.9. But, this model is only a theoretical derived product because part of the parameters such as  $R_f$ ,  $C_f$ ,  $C_1$  are selected arbitrarily although it contains most of relative parameters. It also should be pointed out that this model only considers particle action, while omits the water action.

The third approach, termed semi-empirical method, combines empirical statistical and pure theoretical methods. An example of such approach is Chung's equation [27]

$$H = A \frac{m_a^B(P_o - Pth)}{UW_i} + C$$
(2.13)

where

m<sub>a</sub>: mass flow rate of particles

 $U \ :$  traverse speed of the nozzle

- $W_t$ : the width of the kerf
- P<sub>o</sub> : operating pressure

A,B,C,Pth : coefficients determined by regression analysis

Work [27] employed particle kinetic energy to evaluate the depth of cut. This equation include operational parameters that are readily available, then all experimental results were substituted into equation to find a final model by the method of regression analysis. This equation demonstrates an acceptable accuracy. The correlation coefficients between predicted and observed data exceed 0.9. This model, However, does not include a number of process variables such as the material properties, the diameter of sapphire and water action. This work tried to improve the results presented in [27].

#### 2.3 The Study of the Particle Motion in AWJ

The cutting results depend on slurry velocity that is the mean of water velocity and abrasive particle velocity. Because of the rather important role of particle during AWJ cutting, the particles motion was the principal subject of investigation. The motion of particles entrained in a stream of fluid has been investigated in a number of researches. Several equations were proposed for particles entrained in a\_laminar flow. The forms of these equations depend on the forces considered in a particular study. Finnie [28] employed an equation governing the motion of particle subjected to the drag force This equation has the form:

$$\frac{4}{3}\pi r^{3}\rho_{p}\frac{dv}{dt} = \frac{C_{d}}{2}\rho_{a}\pi r^{2}(U-V)^{2}$$
(2.14)

where

r : particle radius

V : particle velocity

 $\rho_{p}$ : particle density

U : air velocity

 $\rho_a$ : air density

 $C_d$  ; drag coefficient

Another form of the particle motion equation in a laminar flow and the applications are given in [29]. The various applications of this equation are discussed in [30-39].

The motion of particle in a turbulent flow was discussed, for example, in [40] Tchen [41] and Hjelmfelt [42] derived an equation of the motion of particles and discussed the particle response to the oscillatory motion of the carrying fluid. As a result of their work, the following equation was proposed:

$$\frac{\pi d^{3}}{6} \rho_{p} \frac{d U_{p}}{dt} = 3\pi \mu \rho_{f} d (U_{f} - U_{p}) + \frac{\pi d^{3}}{6} \rho_{p} \frac{d U_{f}}{dt} + \frac{\pi d^{3}}{6} \rho_{f} \left( \frac{d U_{f}}{dt} - \frac{d U_{p}}{dt} \right) + \frac{3}{2} d^{2} \sqrt{\pi \rho_{f}} \mu \int_{t_{0}}^{t} dt' \frac{(d U_{f}/dt') - (d U_{p}/dt')}{t - t'} + F_{e}$$
(2.15)

where

 $t_o$  : the starting time

index f: the fluid

index p : the particle

- U : the velocity
- d : the particle diameter
- $\rho$ : the density

### $F_e$ : external force

A numerical solution of this equation at various initial and boundary conditions is given is [43-48].

The information about the motion of particles in the AWJ formed by conventional nozzle head is limited. Particularly, there is no direct determination of particle velocity, A simplified equation for the prediction of the particle velocity is given in [49]. Its derivation is based on the conservation of momentum. The equation is as given below:

$$V_{sw} m_w = (m_a + m_w) V_C$$

$$\frac{V_{sw}}{V_{c}} = \frac{1}{1 + m_{a}/m_{w}}$$
(2.16)

where

 $V_{sw}\;$  : the water velocity at the exit of sapphire orifice

 $V_C$ : the slurry velocity at the exit of carbide tube

 $m_a$ : the mass flow rate of abrasive

 $m_w$ : the mass flow rate of water

However, these model represents a mean slurry velocity in the mixing tube and can not be applied for evaluation of water and particle velocities. Another equation of particles motion is given in [50]. The following assumptions were made in the derivation.

1. Shape of particle is spherical.

2. Gravity and air resistance are small enough to be neglected.

3. The angle between the velocity vector and the longitudinal axis of the waterjet is relatively small.

Therefore, the velocity component in longitudinal direction was used to represent the velocity of waterjet. The final form of the equations proposed by Isobe are as follows:

$$\frac{d^{2} X}{d t^{2}} m + C_{D} \left(\frac{dX}{dt}\right)^{2} \frac{\rho \pi R^{2}}{2} = 0$$
(2.17)

$$\frac{d^{2} X}{d t^{2}} m + C_{L} \left(\frac{dX}{dt}\right)^{2} \frac{\rho \pi R^{2}}{2} = 0$$
(2.18)

where

- x : longitudinal coordinate
- y : transversal coordinate
- R : radius of particle
- $\rho$  : density of particle
- m : mass of particle
- $C_{D}: \text{drag coefficient}$
- $C_L$  : lift coefficient

The above equation does not consider the energy dissipation in the turbulent flow that is an important factor in the determination of AWJ behavior. Also, the effects of interaction between particles have been neglected in this derivation.

In addition to the above model, Isobe also obtained the average velocity of abrasive particles by counting the numbers of the impact craters on an aluminum plate, which he used as a test piece, However, the obtained velocity may present the velocity of the particle on the periphery of the jet and the accuracy of the results is strongly correlated to the counting method.

Chen [51] used LTA (Laser Transit Anemometer) to measure the velocity of the waterjet and the velocity of slurry in AWJ up to 345 MPa of water pressure. A regression equation that correlated the results of velocity measurement with the operating parameters has been constructed. This regression equation has a form:

$$\frac{V_{cw} - V_{a}}{V_{sw}} = 0.627 \left(\frac{Q_{a}}{Q_{w}}\right)^{2.557 \left(\frac{D_{a}}{D_{t}}\right)^{2}}$$
(2.19)

where

V<sub>a</sub> : velocity of abrasive particles

 $V_{cw}$ : velocity of pure waterjet at the exit of focusing tube

 $V_{sw}$  : velocity of pure water jet at the exit of sapphire

 $Q_a$ : volume flow rate of abrasive particles

 $Q_w$ : volume flow rate of water

D<sub>o</sub> : diameter of sapphire

 $D_t$ : diameter of focusing tube

Chen reported that correlation coefficient for above equation is 0.926. He applied almost all operating parameters to his equation. So, his equation is easy to be used in the industrial condition although the form of the equation needs to be further improved.

#### 2.4 Comments on the Survey

1. The optimal way of mathematical modeling on AWJ machining is the use of semiempirical model that possesses physical sense and statistically satisfies experimental results.

2. Almost all of prediction of cutting results were focused on the particle action while water action was usually omitted.

3. Although several investigations of the momentum transformation from water to abrasive particles after being mixed have been reported. No satisfactory answers to description of transformation. Particularly, so far, the velocities of water and abrasive at the exit of mixing tube. 4. The published prediction technique for AWJ machining results is still not adequate for practical use are not defined sufficiently.

### CHAPTER 3

### **KNOWLEDGE OF REGRESSION ANALYSIS**

Regression analysis is a statistical technique for developing a quantitative relationship between a dependent and one or more independent variables. It utilizes experimental data on the pertinent variables to develop a numerical relationship showing the influence of the independent variables on a dependent variable of the system.

Regression can be applied to correlating data in a wide variety of problems ranging from the simple correlation of physical properties to the analysis of a complex industrial system. If there is no previous information about the relationship among the pertinent variables, the form of the equation can be assumed and fitted to experimental data on the system.

Frequently a linear function is used for such an assumption. If a linear function does not fit the experimental data properly, the use of nonlinear functions should be explored.

#### 3.1 Simple Linear Regression

In the simplest case the proposed functional relationship between two variables is

$$Y = \beta_0 + \beta_1 X + \varepsilon \tag{3.1}$$

In this model Y is the dependent variable, X is the independent variable, and  $\varepsilon$  is a random error (or <u>residual</u>) which is the amount of variation in Y not accounted for by the linear relationship. The parameters  $\beta_0$  and  $\beta_1$  are called the <u>regression coefficients</u> which are unknown and are to be estimated. Usually X is not a random variable but should take fixed value. It is assumed that the errors  $\varepsilon$  are independent and have a normal distribution with

mean 0 and variance  $\sigma^2$ , regardless of what fixed value of X is being considered. Taking the expectation of both sides of eq (3.1), we have

$$E(Y) = \beta_0 + \beta_1 X = E(Y/X)$$
 (3.2)

where the expected value of the errors is zero. E(Y|X) is called the regression of Y on X.

In order to estimate the relationship between Y and X we have n observations on Y and X, denoted by  $(X_1,Y_1)$ ,  $(X_2,Y_2)$ ,...  $(X_n,Y_n)$ . by eqs.(3.1) and (3.2) we can write the assumed relationship between Y and X as

$$Y = E(Y/X) + \varepsilon$$
(3.3)

The aim of the computation is to estimate  $\beta_0$  and  $\beta_1$  and thus E(Y/X) or Y in terms of the n observation, the values  $X_1, X_2,...X_n$ , and corresponding  $Y_1, Y_2,...Y_n$ . If  $\hat{\beta}_0$  and  $\hat{\beta}_1$  denote estimates of  $\beta_0$  and  $\beta_1$ , then an estimate of E(Y/X) is denoted by  $\hat{Y} = \hat{E}(Y) = \hat{\beta}_0 + \hat{\beta}_1 X$  Thus each observed  $Y_i$  can be written as

$$Y_{i} = Y_{i} + e_{i}$$
  $i=1,2,\cdots,n,$ 

where  $\mathbf{\hat{Y}}_i$  is the estimate of  $E(\mathbf{Y}_i)$  and  $\mathbf{e}_i$  is the estimate of  $\mathbf{\varepsilon}_i$ . Therefore,  $E(\mathbf{Y})$  has a linear relationship:

$$Y_i = \beta_o + \beta_1 X_i + \varepsilon_i = \hat{\beta_o} + \hat{\beta_1} X_i + e_i$$
  $i = 1, 2, \dots, n,$  (3.4)

The observed residual  $e_i$  is  $Y_i - \hat{Y}_i$  which is the difference between the observed  $Y_i$  and the estimated  $\hat{Y}_i = \hat{\beta}_o + \hat{\beta}_1 X_i$ . The quantity  $\hat{Y} = \hat{\beta}_o + \hat{\beta}_1 X$  is commonly called the predicted value of Y resulting from the estimated regression line.

The problem is now to obtain estimates  $\hat{\beta}_{o}$  and  $\hat{\beta}_{1}$  from the sample for the unknown parameters  $\beta_{o}$  and  $\beta_{1}$ . This can best be done by the <u>least squares method</u>. This method minimizes the sum of least squares,  $\sum_{i=1}^{n} e_{i}^{2} = SS_{E}$ , of the differences between the predicted values and the experimental values for the dependent variable. The method is based on the principle that the best estimation of  $\beta_{o}$  and  $\beta_{1}$  are those that minimize the sum of squares due to error,  $SS_{E}$ . The error sum of squares is

$$SS_{E} = \sum_{i=1}^{n} e_{i}^{2} = \sum_{i=1}^{n} \left( Y_{i} - Y_{i}^{2} \right)^{2} = \sum_{i=1}^{n} \left( Y_{i} - \beta_{0}^{2} - \beta_{1}^{2} X_{i}^{2} \right)^{2}$$
(3.5)

To determine the minimum of  $SS_E$ , the partial derivative of the error sum of squares with respect to each constant ( $\hat{\beta}_{\circ}$  and  $\hat{\beta}_{1}$  for this model) is set equal to zero to yield.

$$\frac{\partial(SS_E)}{\partial\hat{\beta}_o} = \frac{\partial}{\partial\hat{\beta}_o} \left( \sum_{i=i}^n \left( Y_i - \hat{\beta}_o - \hat{\beta}_1 X_i \right)^2 \right) = 0$$
(3.6)

$$\frac{\partial(SS_E)}{\partial\hat{\beta}_o} = \frac{\partial}{\partial\hat{\beta}_1} \left( \sum_{i=1}^n \left( Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i \right)^2 \right) = 0$$
(3.7)

Carrying out the differentiation, we obtain finally:

$$\hat{\beta}_{1} = \frac{\left(\sum_{i=1}^{n} X_{i} Y_{i} - n \,\overline{X} \,\overline{Y}\right)}{\sum_{i=1}^{n} \left(X_{i}^{2} - n \,\overline{X}^{2}\right)}$$
(3.8)

$$\hat{\beta}_{o} = \overline{Y} - \hat{\beta}_{1} \overline{X}$$
(3.9)

where  $\overline{X}$  and  $\overline{Y}$  are the average of  $X_i$  and  $Y_i$ , respectively. regression equation or eq(3.1) is:

$$\hat{\mathbf{Y}} = \hat{\boldsymbol{\beta}}_{o} + \hat{\boldsymbol{\beta}}_{1} \mathbf{X}$$
(3.10)

The practical meaning of all parameters is showed in Fig 4.

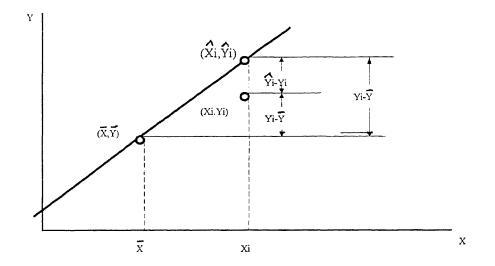



Figure 4 Partitioning of Total Sum of Squares in Simple Linear Regression

# 3.2 Multiple Linear Regression

In last section, we consider the case where only one independent variable was allowed in the regression model. Now we consider the case in which two or more independent variables are allowed:

$$Y = \beta_{o} + \beta_{1} X_{1} + \beta_{2} X_{2} + \dots + \beta_{p} X_{p} + \varepsilon$$
(3.11)

Matrix algebra is readily adaptable to multiple linear regression for eq (3.11). The assumptions are the same as for the simple linear model except that now we have p independent variables, To obtain the least squares estimates for the  $\beta_i$ , we must again minimize the error sum of squares, As with simple linear regression, we have n observations on Y, X<sub>1</sub>, X<sub>2</sub>...X<sub>p</sub>, and the error sum of squares is

$$SS_{E} = \sum_{i} e_{i}^{2} = \sum_{i} \left( Y_{i} - Y_{i}^{2} \right)^{2} = \sum_{i} \left( Y_{i} - \beta_{0}^{2} - \beta_{1}^{2} X_{1i} - \beta_{2}^{2} X_{2i} - \dots - \beta_{p}^{2} X_{pi} \right)^{2}$$
(3.12)

which is minimized by setting  $\partial(SS_E)/\partial\hat{\beta}_i = 0$  to get the system of normal equations as follows:

$$\begin{split} n \hat{\beta_{o}} + \hat{\beta_{1}} \sum X_{l_{1}} + \hat{\beta_{2}} \sum X_{2i} + \dots + \hat{\beta_{p}} \sum X_{pi} &= \sum Y, \\ \hat{\beta_{o}} \sum X_{l_{1}} + \hat{\beta_{1}} \sum X_{l_{1}}^{2} + \hat{\beta_{2}} \sum X_{l_{1}} X_{2i} + \dots + \hat{\beta_{p}} \sum X_{l_{1}} X_{p_{1}} &= \sum X_{l_{1}} Y_{i}, \\ \vdots &\vdots &\vdots &\vdots \\ \hat{\beta_{o}} \sum X_{pi} + \hat{\beta_{1}} \sum X_{l_{p}} X_{p_{1}} + \hat{\beta_{2}} \sum X_{2i} X_{pi} + \dots + \hat{\beta_{p}} \sum X_{pi}^{2} &= \sum X_{pi} Y_{i}, \end{split}$$
(3.13)

where all the summations go from i=1 to i=n. To obtain the estimates  $\hat{\beta}_{o}, \hat{\beta}_{1}, ..., \hat{\beta}_{p}$  one needs to solve the system (3.13) of P+1 linear equations for the unknown  $\hat{\beta}_{o}, \hat{\beta}_{1}, ..., \hat{\beta}_{p}$ . In the simple linear case we had two equations in two unknown. A much easier approach to the normal equation is found from matrix algebra:

$$\beta = \left(\mathbf{X}^{\mathsf{t}}\mathbf{X}\right)^{-1}\mathbf{X}^{\mathsf{t}}\mathbf{Y} \tag{3.14}$$

#### **3.3 Nonlinear Regression**

It probably comes as no surprise that possible nonlinear mathematical relationships between the variables X and Y can be transformed to linear relationships in two new variables by applying relatively simple mathematical operations to the original nonlinear form. A nonlinear model which occurs quite frequently is

$$Y = \beta_0 e^{\beta x}$$
(3.15)

The model is usually handled by means of taking the natural log of both sides of the equations yielding:

$$\ln Y = \ln \beta_{o} + \beta_{1} X \tag{3.16}$$

letting  $Z = \ln Y$ ,  $\alpha_o = \ln \beta_o$ , and  $\alpha_1 = \beta_1$ , the model thus reduces to the linear model :

$$Z = \alpha_0 + \alpha_1 X \tag{3.17}$$

using the above linear model, estimates  $\alpha_0$  and  $\alpha_1$  are obtained. From these one obtains the estimates  $e^{\alpha_0}$  and  $\alpha_1$  for  $\beta_0$  and  $\beta_1$ . We also can apply this method to the other form of nonlinear equations and just first linearizing and then doing the least squares estimation (see Table 1).

| Function            | Equation                                 | Transformed Equation                                            |
|---------------------|------------------------------------------|-----------------------------------------------------------------|
| Hyperbolic          | $Y = \frac{X}{\beta_{o}X + \beta_{1}}$   | $\frac{1}{Y} = \beta_{\circ} + \beta_1 \frac{1}{X}$             |
| Exponential         | $Y = \beta_{o} e^{\beta_{1} x}$          | $\ln Y = \ln \beta_{o} + \beta_{1} X$                           |
| Power               | $Y = \beta_{o} X \beta_{i}$              | $\ln \mathbf{Y} = \ln \beta_{\circ} + \beta_{1} \ln \mathbf{X}$ |
| Logarithmic         | $Y = \beta_{o} + \beta_{1} \ln X$        | $Y = \beta_{o} + \beta_{1} \ln X$                               |
| Inverse Exponential | $Y = \beta_{o} e^{\frac{\beta_{i}}{x}}$  | $\ln Y = \ln \beta_{o} + \frac{\beta_{1}}{X}$                   |
| Pseudo-Exponential  | $Y = \frac{1}{\beta_o + \beta_1 e^{-x}}$ | $\frac{1}{Y} = \beta_o + \beta_1 e^{-x}$                        |

table 1 Nonlinear Equations and Their Simple Linear Transforms

One should be careful using the transformations such as the above, since if it is assumed that the original variable is normally distributed, then the transformed variable may not be. The homogeneity of variance property may be likewise violated. Frequently, however, the original assumption of normality may not be justified and the transformed variables have a distribution close to normal.

### 3.4 Correlation Analysis

Having determined the relationship existing between variables, the next question which arises is how closely the variables are associated. The statistical techniques which have been developed to measure the degree of association between variables are called correlation methods. A statistical analysis performed to determine the degree of correlation is called a correlation analysis. The term used to measure correlation is referred to as a correlation coefficient, The correlation coefficient measures how well the regression equation fits the experimental data. As such, it is closely related to the standard error of estimate,  $\hat{\sigma}$ .

### (1) Correlation Coefficient R

The correlation coefficient R should exhibit two characteristics:

(a) It should be large when the variables are closely associated and small when there is the association is weak.

(b) It must be independent of the units used to measure the variables.

An effective correlation coefficient which exhibits these two features is the square root of the fraction of the sum of squares of derivations of the original data from the regression curve that has been accounted for by the regression. This is a justifiable definition since the closeness of the regression curve to the data points is reflected in how much of the total corrected sum of squares,  $SS_T$ , is accounted for by the sum of squares due to regression,  $SS_R$ . We have the equation:

$$\sum (Y_i - \overline{y})^2 = \sum \left(Y_i - \hat{Y}_i\right)^2 + \sum \left(\hat{Y}_i - \overline{Y}\right)^2 \qquad [SS_T = SS_E + SS_R] \qquad (3.18)$$

In view of this we define the correlation coefficient in terms of the proportional reduction in the sum of squares accounted for by the regression of y on x. The precise definition is

$$R^{2} = \frac{SS_{R}}{SS_{T}} = \frac{(SS_{T} - SS_{E})}{SS_{T}} = 1 - \frac{SS_{E}}{SS_{T}}$$
(3.19)

As  $SS_E \leq SS_T$ ,  $R^2$  lies between 0 and 1. If the regression curve is a poor fit of the experimental data,  $R^2$  is close to zero. After derivation,  $R^2$  for a simple linear regression is

$$R^{2} = \frac{\left[\sum(x_{i}-\overline{X})(y_{i}-\overline{Y})\right]^{2}}{\sum(x_{i}-\overline{X})^{2}\sum(y_{i}-\overline{Y})^{2}}$$
(3.20)

for the multiple linear regression  $R^2$  is

$$R^{2} = \frac{\hat{\beta} \sum (X_{1i} - \overline{X})(Y_{i} - \overline{Y}) + \dots + \hat{\beta}_{p} \sum (X_{pi} - \overline{X})(Y_{i} - \overline{Y})}{\sum_{i} (Y_{i} - \overline{Y})^{2}}$$
(3.21)

(2). Sample Variance

$$S_{v}^{2} = \frac{\sum (Y_{i} - \overline{Y})^{2}}{n - 1} = \frac{SS_{T}}{n - 1}$$
(3.22)

is the <u>unconditional sample variance</u> of y.

$$S_{y/x}^{2} = \frac{\sum \left(Y_{i} - Y_{i}\right)^{2}}{n-2} = \frac{SS_{E}}{n-2}$$
(3.23)

is the conditional value of the sample variance of y given knowledge of the associated paired values of x. It is the best estimate of the true but unknown value of  $\sigma^2$ .

(3). Sample Covariance  $cov(X_1, X_2)$ 

The definition of  $S_{xy}$  is as follows:

$$\operatorname{cov}(X_1, X_2) = E\{(X_1 - \mu_1)(X_2 - \mu_2)\} = E\{X_1 X_2\} - \mu_1 \mu_2$$
 (3.24)

Transformed:

$$cov(X_1, X_2) = E(X_1 X_2) - E(X_1)E(X_2)$$
 (3.25)

The covariance is a measure of the relationship that exists between  $X_1$  and  $X_2$ . If  $X_1$  and  $X_2$  are statistically completely <u>independent</u> random variables,  $E(X_1 X_2) = E(X_1)E(X_2)$ . This implies that the covariance of statistically independent random variables is zero. Because of the units of measure for the covariance, it is often convenient to have a dimensionless form of the covariance. One such form is the correlation coefficient between  $X_1$  and  $X_2$  defined as :

$$\rho = \operatorname{corr}(X_1, X_2) = \frac{\operatorname{cov}(X_1, X_2)}{\sqrt{S_{x1}S_{y1}}}$$
(3.26)

where  $S_{X_1}$  and  $S_{X_2}$  are the variance of  $X_1$  and  $X_2$ , respectively. The correlation coefficient is bounded between -1 and +1. If  $\rho$  is small,  $X_1$  and  $X_2$  are independent. If  $\rho$  has middle value, say,  $0.3 \le \rho \le 0.7$ , there are some correlation existing between  $X_1$  and  $X_2$ , but it is weak. If  $\rho$  is in the high value, say,  $\rho \ge 0.8$ , we may think that strong correlation exists between  $X_1$  and  $X_2$ .

### (4) Sample Residuals

The sample residuals is defined as  $e_i = Y_i - Y_i$ . One purpose of studying the  $e_i$  is to determine whether the assumption that the  $\varepsilon_i$  is distributed  $N(0, \sigma_{y/x})$  is satisfied. If this assumption is not satisfied, at least in a "robust" sense, then we are no longer assured that the estimates of  $\beta_o$  and  $\beta_i$  are minimum variance unbiased estimates. Further, all the confidence intervals and the joint confidence region are no longer valid, If the assumption

of normality is true, the  $r_i = \frac{\epsilon_i}{\sigma_{y/x}}$  which are approximated by the  $g_i = \frac{e_i}{S_{y/x}}$ , are distributed N(0,1), where  $r_i$  is the  $i^{th}$  standardized residual.

The residuals from a regression fit should be plotted on an ordinary scale against various quantities relevant to the phenomenon and the data. A non exhaustive set of such plots might be to plot the residuals against input order, independent variable, dependent variable and the fitted values of dependent variable as yielded from the model. The idea behind this type of plot is to search for evidence of non random trends or tendencies in the residuals. If the fit is adequate and the assumptions that we have made earlier are satisfied, we would expect an even band to be exhibited by the plot. An example of such a plot with an even band is given in Fig 5.

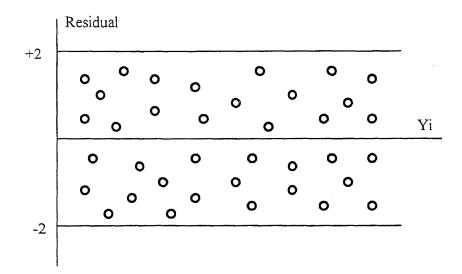



Figure 5 A Residual Plot with an Even Random Band

### CHAPTER 4

# AWJ APPARATUS AND EXPERIMENTS

The purpose of this study is to established a mathematical model which will improve existing models relating the depth of AWJ cutting with process variable. The experimental data is acquired in the course of the performed experiments. In this chapter experiments and AWJ machining apparatus will be briefly described in order to outline the principal features of the data acquisition.

The objectives of performed experiments were the study of the effect of processing parameters of AWJ on the material machining results and to construct the prediction model. An industrial scale abrasive waterjet cutting system was employed for machining tests and an analyser "Videomatrix" was used for machining results measurement. The experimental facilities, samples preparation, the test matrices, the measurement instruments and experimental procedure are described in the following sections. (All figures in this chapter were from work [27] )

#### 4.1 Experimental Facilities

The abrasive waterjet cutting system used in this study was manufactured by the Ingersoll-Rand. The system (Fig 6) xonsists of the units described below.

#### 4.1.1 Water Preparation Unit

The major components of this unit are the booster pump, filters, water softener, prime mover, intensifier, accumulator, control and safety instrumentation. The major functions of the unit is to feed continuously pure water pressurized to the required pressure. To ensure continuous flow into a high pressure cylinder, a booster pump supplies water into a low pressure water circuit (180 psi). Iron and calcium compounds contained in the water tend to come out of the solution at high pressure and damage the softener are used. This pump design also enables us to add polymer additives to the water and blends the water and polymers.

A hydraulically driven (10-40 hp) oil intensifier is the most important part of the system. It develops pressure up to 408 MPa in the water from the booster pump. There are two separate circuits for oil pressure of about 20.4 MPa developed by a rotary pump used to drive an intensifier. The intensifier is a double acting reciprocating (152.4 mm diameter) type pump.

The high pressure emergency damp valve is a rapid acting two way position valve used to turn the jet ON or OFF in response to control commands. The high pressure water from both sides of the intensifier is discharged to an accumulator where the pressure is stabilized. Since the compressibility of the water at 374 MPa is 12 percent ,water is not discharged uniformly from intensifier at various piston positions. Thus, the accumulator is needed to provide uniform discharge pressure and flow.

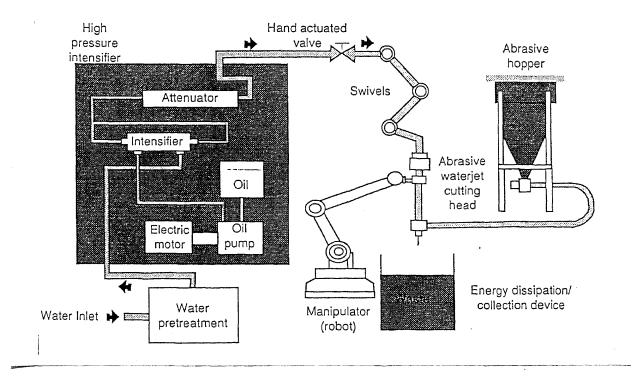



Figure 6 AWJ Machining System

#### 4.1.2 High Pressure Water Distribution System

The output from the accumulator, the high pressure water, is carried away to the work station through a series of high strength pipes, swivels, flexible joints, and fittings. A hose can be used to eliminate the need for swivels. The number of joints, elbows, and the total pipe length determine the line pressure drop. The principal advantage of the distribution system is centralized water preparation unit for several work stations, located at different suitable places for different applications.

# 4.1.3 Work Station

It is the place where actual cutting operation is performed. It can be of variety of types located at different places depending on application. The work station used in this study is described below.

# 4.1.3.1 Robotic Work Cell

The gantry CNC 5-axis robotic work cell shown in Fig 7 is controlled by the Allen-Bradley 8200R controller (Fig 8).

The controller contains the following standard features:

-Simultaneous continuous path control of all axes

-Linear interpolation

-Circular interpolation

-Digital readout for all axes

-Incremental feed for all axes

-Jog control for all axes

-Inch/metric switchable input

-Absolute/incremental input

-Manual data input

-Sequence number search/display

-Feedrate override

- -Edit lookout
- -Multiple part storage and edit
- -Memory retention during power outage
- -Dry run function
- -Tool life timer



Figure 7 The Gantry CNC 5-axis Robotic Work Cell

The controller is capable of receiving input from keyboard entry, punched tape, and/or magnetic tape in accordance with EIA standards RS-232, 244, 358 and 274. Standard G, F and M codes are utilized.

# 4.1.3.2 Abrasive Feeder

In the abrasive feeding system (Fig 9), the bulk abrasive is stored in a larger hopper whose exit is located on an electronically controlled vibrating tray. Through the control of

the amplitude of vibration, the tray meters the flow of abrasive to a hopper. It is then aspirated through a short section of a flexible tube into the mixing chamber of the nozzle body.

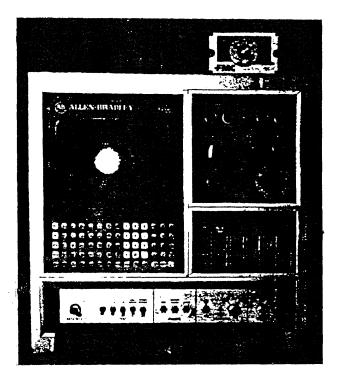



Figure 8 The Allen-Brandley 8200R Controller

### 4.1.3.3 Catcher System

The catcher tank (Fig 10) installed below the suspended cutting head collects the spent abrasive, the water and the cutting debris, which settle to the bottom of the tank. The size of the tank enables us to contain the noise of the high pressure jet. A drain near the base of the catcher tank is provided. Through the drain, the water and the abrasive flow into a settlement tank where the water drains out and the abrasive grit settles down. The grit is disposed of periodically from the tank.

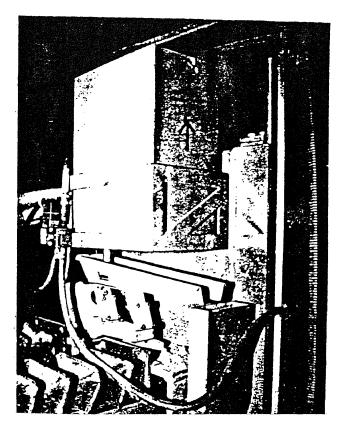



Figure 9 Abrasive Feeder

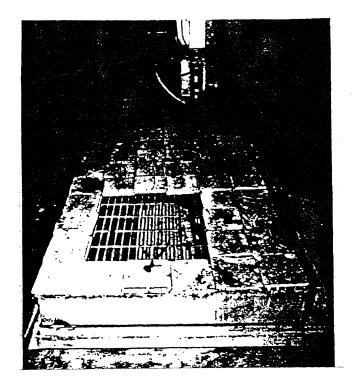



Figure 10 Catcher System

#### 4.2 Measurement Instrument

A Matrix Videometrix Econoscope is used for the measurement of experimental results such as the depth of cut and the width of kerf. This instrument is a fully automatic, 3-D video inspection system. It uses non contact technique to provide rapid dimensional verification of complete parts or specified features of a part.

The Econoscope comprises a General Purpose Computer, a 3-axis Positioning Control System, a Digital Image Processor and part Monitor Section. Specifically designed to be easy for use, the Econoscope operates at a high speed. producing very accurate (with resolution up to 0.1 micron) and repeatable results. The software is menu/prompt driven so the operator need not learn cumbersome computer language.

#### **4.3 Experimental Procedures**

The machining experiments were conducted under the following prudential considerations:

1) The workcell was always in normal conditions during experiments.

2) All experiments were carried out by one person who trained to operate the workcell.

3) Experimental setups were at the similar conditions of the whole experiments.

4) Measurement instruments were always fine tuned in normal conditions.

5) Measurements were conducted by the same person who carried out the experiments so that the experimental results were collected in the consistent situation.

### 4.3.1 Samples Preparation

In the course of experiments the samples of steel AISI 1018, aluminum Al 6061-T6 and titanium Gr-2 have been used. The chemical compositions and mechanical properties of these materials are listed in Table 1 and 2, respectively.

| Material   |          |         | Compositio | ns      |                  |           |
|------------|----------|---------|------------|---------|------------------|-----------|
| Al 6061-T6 | % Mg     | % Si    | % Cr       | %Cu     | %Al              |           |
|            | 1.0      | 0.6     | 0.2        | 0.27    | 97.93            |           |
| AISI 1018  | % C      | % Mn    | % P        | % S     | % Fe             |           |
|            | 0.15-0.2 | 0.6-0.9 | 0.4        | 0.05max | remainder        |           |
| Ti Gr2     | % N      | % C     | % H        | % Fe    | % O <sub>2</sub> | % Ti      |
|            | 0.03     | 0.1 max | 0.015max   | 0.3max  | 0.25max          | remainder |

Table 2 Chemical Compositions of Experimental Materials

|            | Tensile | Yield    | Elongation  | Vickers      | Flow          |
|------------|---------|----------|-------------|--------------|---------------|
|            | Strengt | Strength | (%in 2 in.) | Hardness(HV) | Strength(MPa) |
|            | (MPa)   | (MPa)    |             |              |               |
| Al 6061-T6 | 310     | 275      | 12          | 111          | 293           |
| AISI 1018  | 450     | 380      | 16          | 131          | 415           |
| Ti Gr2     | 345     | 275      | 20          |              | 310           |

 Table 3 Mechanical Properties of Experimental Materials

# 4.3.2 Experimental Data

All experiments were conducted on three different kinds of ductile materials (steel, aluminum, and titanium) with three types of sizes of abrasive particle (50mesh, 80mesh, 220mesh) and every combination of the experiment was done at least three times which satisfied the statistical requirements for the sample size. So, total number of the experiments is over 1000. The measured results of cutting experiments include depth of cut, top kerf width and bottom kerf width. All the data are listed in Appendix.

# CHAPTER 5

# A MATHEMATICAL MODEL FOR PREDICTION OF DEPTH OF CUT

AWJ has been a powerful cutting tool as a new manufacturing technique since it was developed. A practical prediction technique relating process conditions and results is a necessary for the technology utilization. Empirical method is a direct approach for development of a prediction technique of AWJ machining process, but it is also a blind approach. The theoretical method, Hashish's model, which is established according to the physical relationship and has a physical sense, usually contains parameters which are not readily available at industrial conditions. The balanced way, the semi-empirical method, like Chung's model. Such method used by Chung was constructed on the base of the energy balance of cutting. Moreover, the Chung's analysis does not included all important process variables such as material properties and sapphire diameter.

This study is an extension of the Chung's work by the inclusion of new variables and the actions of water.

### 5.1 The Idea for the New Model

In constructing the new model, three steps were undertaken. The first step involved development of a theoretical model which included main operating parameters, material properties, and water and particle actions. Then, the theoretical model was improved by the statistical analysis of the acquired data. The last step included the construction of the regression model, which conformed to the results of cutting experiments.

In order to simplify the model, the work was limited to cutting of steel AISI 1018 at the particles size of mesh 80. By the changes of the regression coefficient the model can be applied to different material and sizes of particle. Three statistical criteria were used to assess the fitted equation synthetically: (1) multiple correlation coefficient  $R^2$  (the higher  $R^2$  value, the better the fitting)

(2) the number of  $g_i > \pm 2\%$  (the lower the  $g_i$  value, the better the fitting)

(3) the plot of standard residual  $g_i = \frac{Y_i - \hat{Y}_i}{S_{y/x}}$  (the more even the plot, the better the fitting)

# 5.2 A Theoretical Model

AWJ machining is a complicated process. So far, it is not clear how the particle moves in the nozzle and how the particles are distributed during the cutting, In order to investigate the relationship between depth of cut and particle motion effectively, it is natural to study the variation of particle velocity at the macroscopic level, rather than at the microscopic level. Because of this, we are mostly concern with velocity distribution at the nozzle exit rather than the velocity in the nozzle. The regression analysis is used to investigate mean values of key elements of the process.

### 5.2.1 Energy Conservation Equation

It is assumed that in the course of the cutting (Fig 11), only the kinetic energy changes and while kinds of internal energy and potential energy are constant. Secondly, the workpiece damage occurs only due to the compressive stress induced by the particles stream. Then from (Fig11) we have the following relationship determined by the kinetic energy conservation:

work done by cutting of part B = kinetic energy at the exit of the nozzle of part A work done by AWJ = water kinetic energy + particle kinetic energy  $W = E_w + E_a$ 

where

W = cutting force × depth of cut = 
$$\sigma W_t uH \times 10^{-3}$$
(N • m/min) $E_w = \frac{1}{2} m_w V_{cw}^2$ at the exit of carbide tube(N • m/min) $E_a = \frac{1}{2} m_a V_a^2$ at the exit of carbide tube(N • m/min)

 $m_{w} = \left(\frac{1}{4}\pi D_{o}^{2}\right) V_{sw} \rho_{w} = 15\pi D_{o}^{2} V_{sw}$  (g/min)

Then, we have:

$$\sigma W_{t} uH \times 10^{-3} = \frac{1}{2} (15\pi D_{o}^{2} V_{sw}) V_{cw}^{2} + \frac{1}{2} m_{a} V_{a}^{2}$$
  
$$\sigma W_{t} uH = 7500 D_{o}^{2} \cdot V_{sw} \cdot V_{cw}^{2} + 500 m_{a} V_{a}^{2}$$
(5.1)

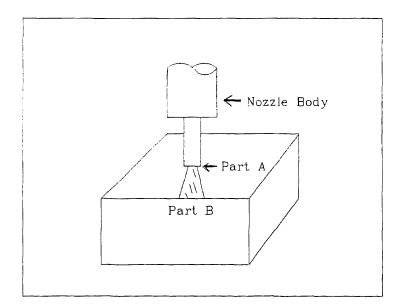



Figure 11 The Schematic of Cutting by the AWJ

# 5.2.2 Velocities of Water and Abrasive at the Exit of the Tube

According to the momentum balance of water and abrasive, we obtain a simple equation of slurry velocity:

$$V_{m} = \frac{m_{w}}{m_{w} + m_{a}} V_{sw}$$

$$V_{m} = \frac{1}{1 + \frac{m_{a}}{m_{w}}} V_{sw}$$
(5.2)

From eq (5.2) it follows that  $V_a < V_m < V_{cw}$ . In order to simplify the derivation, it is set that  $V_{cw} = V_m$ , and  $C_a$  is added into equation for  $V_m$  to form an equation for  $V_a$  which accounts for the effects of abrasive size and collision efficiency among water, abrasive and tube wall on the  $V_a$ 

$$V_{sw} = \sqrt{\frac{2 P_o}{\rho_w}}$$
(5.3)

$$V_{m} = \frac{1}{1 + \frac{m_{a}}{m_{w}}} V_{sw} = \frac{1}{1 + \frac{m_{a}}{2107.4 D_{o}^{2} P_{o}^{1/2}}} V_{sw}$$
(5.4)

$$V_{a} = \frac{1}{1 + \frac{C_{a}m_{a}}{m_{w}}} V_{sw} = \frac{1}{1 + \frac{C_{a}m_{a}}{2107.4 D_{o}^{2} P_{o}^{1/2}}} V_{sw}$$
(5.5)

#### 5.2.3 The Theoretical Model

Substituting eqs (5.3), (5.4) and (5.5) into eq (5.1) we receive:

$$\sigma W_{t} uH = 7500 \pi D_{o}^{2} \cdot \sqrt{\frac{2 P_{o}}{\rho_{w}}} \cdot \frac{\frac{2 P_{o}}{\rho_{w}}}{\left(1 + \frac{m_{a}}{2107.4 D_{o}^{2} P_{o}^{1/2}}\right)^{2}} + \frac{1}{2} m_{a} \frac{\frac{2 P_{o}}{\rho_{w}}}{\left(1 + \frac{C_{a} m_{a}}{2107.4 D_{o}^{2} P_{o}^{1/2}}\right)^{2}}$$

Arranging above equation, we obtain the following model:

$$H = C_{1} \frac{D_{o}^{2} P_{o}^{3/2} K_{w}^{2}}{\sigma W_{t} u} + C_{2} \frac{m_{a} P_{o} K_{a}^{2}}{\sigma W_{t} u}$$
(5.6)  
(A) (B)

where

$$C_1 = 15000\sqrt{2}\pi\sqrt{\rho_w}$$
$$C_2 = \frac{1}{\rho_w}$$

$$K_{\rm w} = \frac{1}{1 + \frac{m_{\rm a}}{2107.4 \, {\rm D}_{\rm o}^2 \, {\rm P}_{\rm o}^{1/2}}}$$

$$K_{a} = \frac{1}{1 + \frac{C m_{a}}{2107.4 D_{o}^{2} P_{o}^{1/2}}}$$

From (5.6) it is apparent that the part A represents the depth of penetration due to the water action, which part B represents the depth of penetration caused by abrasive action.

# 5.3 An Improved Model

The objective of this section is to improve the theoretical model in terms of (a) the correlation between depth of cut and operating parameters acquired by the previous typical researches, (b) the interaction between water action and abrasive action, and (c) correlation among the independent variables.

#### 5.3.1 Relationship Between Depth of Cut and Individual Operating Parameters

Now let's review some typical results relating depth of cut with individual operating parameters, obtained by Chung. Figure 12-15 show that the depth of cut is inversely proportional to the traverse rate (Fig 12), but it is proportional to the pressure  $P_o$  (Fig 14) and the ratio of sapphire diameter over carbide diameter. The relationship between H and  $m_a$  can be approximated by a polynomial curve (Fig 13) because the fraction of particles sufficiently accelerated by the water stream is reduced as the total amount of particles increase. beyond a specific level, further increase in the abrasive flow rate does not effect machining results. So, it is necessary to change  $m_a$  in eq (5.6) into  $m_a^A$  so as to tally with the experimental results.

### 5.3.2 Correlation among the Operating Parameters

Total 150 data of steel AISI 1018 with particle size 80 mesh was used for statistical evaluation of correlation among independent variables. Table 4 illustrated correlation coefficients between individual parameters from which we can conclude:

(1) Correlation coefficient between individual parameters are under 0.34. It means that the operating parameters are independent. This allowed us to carry out the regression analysis for the model construction.

(2) Correlation coefficient  $\rho_{W_t \cdot D_t}$  between  $W_t$  and  $D_t$  is 0.933 which allow us to substitute  $W_t$  with  $D_t^B$ .

# 5.3.3 Interaction Between Water Action and Abrasive Action

Let's set for eq(5.6) as:

(1). 
$$H_w = \frac{D_o^2 P_o^{3/2} K_w^2}{\sigma D_t^B u}$$
 (water action) ,  $H_a = \frac{m_a^A P_o K_a^2}{\sigma D_t^B u}$  (particle action)  
(2). A=B=1,  
(3).  $\frac{2107.4}{C_a} = 550$ 

From the regression analysis for eq (5.6), we found the correlation coefficient between  $H_a$  and  $H_w$   $\rho_{Ha}H_w$ =0.917. This indicates existence of interaction between  $H_a$  and  $H_w$ . Therefore, a general equation for the evaluation of H can be given in the form of:

$$H = C_1 H_w + C_2 H_a + C_3 H_w H_a + C_4 H_w^2 H_a + C_5 H_w H_a^2 + C_6 H_w^2 H_a^2 + \dots + C_o$$
(5.7)

The coefficients  $C_n$  determined by regression analysis are given in table 5. From table 5 it is obvious that the regression equation can be reduced to the form  $H = C_1 H_w + C_2 H_a + C_3 H_w H_a + C_o$  Substituting expression for  $H_a$  and  $H_w$  we obtain:

$$H = C_1 \left( \frac{D_o^2 P_o^{3/2} K_w^2}{\sigma D_t^B u} \right) + C_2 \left( \frac{m_a^A P_o K_a^2}{\sigma D_t^B u} \right) + C_3 \left( \frac{D_o^2 P_o^{3/2} K_w^2}{\sigma D_t^B u} \right) \left( \frac{m_a^A P_o K_a^2}{\sigma D_t^B u} \right) + C_o$$
(5.8)

where

 $C_n, C_a, A, B$  are regression coefficients

$$K_{w} = \frac{1}{1 + \frac{m_{a}}{2107.4 \, D_{o}^{2} \, P_{o}^{1/2}}}$$

$$K_{a} = \frac{1}{1 + \frac{C_{a}m_{a}}{2107.4 D_{o}^{2} P_{o}^{1/2}}}$$

| corre-coef | Po     | D₀     | Dı     | ma     | u      |
|------------|--------|--------|--------|--------|--------|
| Po         | 1      |        |        |        |        |
| D          | 0.332  | 1      |        |        |        |
| Dı         | 0.134  | 0.274  | 1      |        |        |
| n_a        | 0.072  | 0.24   | 0.151  | 1      |        |
| u          | -0.163 | -0.268 | -0.181 | -0.107 | 1      |
| Н          | 0.618  | 0.559  | -0.024 | 0.3    | -0.315 |
| Wt         | 0.16   | 0.152  | 0.933  | 0.266  | -0.201 |

 Table 4 Correlation between Operating Parameters

| No. | Equations                                                                                     | Multiple corre-coeff $R^2$ |
|-----|-----------------------------------------------------------------------------------------------|----------------------------|
| 1   | $H = C_1 H_w + C_2 H_a + C_o$                                                                 | 0.88861                    |
| 2   | $H = C_1 H_w + C_2 H_a + C_3 H_w H_a + C_o$                                                   | 0.95365                    |
| 3   | $H = C_1 H_w + C_2 H_a + C_3 H_w H_a + C_4 H_w^2 H_a + C_o$                                   | 0.95581                    |
| 4   | $H = C_1 H_w + C_2 H_a + C_3 H_w H_a + C_5 H_w H_a^2 + C_o$                                   | 0.95450                    |
| 5   | $H = C_1 H_w + C_2 H_a + C_3 H_w H_a + C_4 H_w^2 H_a + C_5 H_w H_a^2 + C_o$                   | 0.96009                    |
| 6   | $H = C_1 H_w + C_2 H_a + C_3 H_w H_a + C_4 H_w^2 H_a + C_5 H_w H_a^2 + C_6 H_w^2 H_a^2 + C_6$ | 0.96012                    |

 Table 5 Determination of the Form of Regression Model

#### 5.4 A Regression Model

Once the form of the model is determined, a regression model is readily available, as long as a sufficient body of experiments data is provided.

# 5.4.1 Determination of $D_{\iota}^{B}$

Eq (5.8) is used to determine the B value according to the regression analysis between H and  $D_t$  instead of between  $W_t$  and  $D_t$ . It will make the future model simpler.

First we set: A=1,  $\frac{2107.4}{C_a} = 550$  (C<sub>a</sub> = 3.832). The result for eq(5.8) is demonstrated in

table 6. Upon comparing the correlation coefficient  $R^2$ , we select B=0.85 as a value for the fitted model because of the highest correlation coefficient

| В              | 1      | 0.9    | 0.85   | 0.8    | 0.7    |
|----------------|--------|--------|--------|--------|--------|
| R <sup>2</sup> | 0.9537 | 0.9588 | 0.9597 | 0.9594 | 0.9549 |

**Table 6.** Determination of  $D_t^B$ 

### 5.4.2 Determination of A and Ca

As mentioned above, three criteria are employed to assess the quality of the regression analysis:

(1) multiple correlation coefficient  $R^2$ 

(2) standard residual  $g_{1}$ 

(3) the number of  $g_1 \le \pm 2$ 

Table 7 shows the correlation coefficient  $R^2$  for different combinations of A and  $C_a$ . Table 8 shows the number of  $g_i \le \pm 2$  for corresponding combinations. Figure 16-27 show the plot of standard residual  $g_i$  versus depth of cut H for the corresponding combinations.

|                       | A | 0.970  | 0.965  | 0.960  |
|-----------------------|---|--------|--------|--------|
| 2107.4/C <sub>a</sub> |   |        |        |        |
| 475                   |   | 0.9602 | 0.9602 | 0.9602 |
| 500                   |   | 0.9601 | 0.9601 | 0.9599 |
| 525                   |   | 0.9599 | 0.9596 | 0.9594 |
| 550                   |   | 0.9594 | 0.9591 | 0.9586 |

Table 7 Correlation Coefficient for Different Combinations of A And Ca(steel, 80 mesh, 150 data)

|           | A | 0.970 | 0.965 | 0.960 |
|-----------|---|-------|-------|-------|
| 2107.4/Ca |   |       |       |       |
| 475       |   | 7     | 5     | 5     |
| 500       |   | 5     | 5     | 6     |
| 525       |   | 5     | 6     | 5     |
| 550       |   | 5     | 5     | 5     |

Table 8 The Number of  $g_i > \pm 2$  for Different Combinations of A and  $C_a$ (Steel, 80 mesh, 150 data)

After comparing the results of regression analysis at the different combinations of A and C<sub>a.</sub> C<sub>a</sub>=4.215 and A = 0.965 are selected because of the least number of  $g_1 > \pm 2$ , the most even distribution and sufficiently high correlation coefficient. Finally, a regression model is determined as follows

$$H = C_{1} \left( \frac{D_{o}^{2} P_{o}^{3/2} K_{w}^{2}}{\sigma D_{t}^{0.85} u} \right) + C_{2} \left( \frac{m_{a}^{0.965} P_{o} K_{a}^{2}}{\sigma D_{t}^{0.85} u} \right) + C_{3} \left( \frac{D_{o}^{2} P_{o}^{3/2} K_{w}^{2}}{\sigma D_{t}^{0.85} u} \right) \left( \frac{m_{a}^{0.965} P_{o} K_{a}^{2}}{\sigma D_{t}^{0.85} u} \right) + C_{o}$$
(5.9)

where

$$K_{w} = \frac{1}{1 + \frac{m_{a}}{2107.4 \, D_{o}^{2} P_{o}^{1/2}}}$$

$$K_{a} = \frac{1}{1 + \frac{C_{a}m_{a}}{2107.4 D_{o}^{2} P_{o}^{1/2}}}$$

# CHAPTER 6

# **RESULTS AND DISCUSSIONS**

In this chapter eq (5.9) is used to predict the depth of three various metals at different operational conditions. The accuracy of the prediction is made and then some inferences will be discussed.

#### 6.1 Regression Results for the Regression Model (5.9)

Results of regression analysis of cutting of ductile materials are shown in Table 9 where the experimental data are taken from Databases 1,2,3,4 and 5. As it follows from this table all correlation coefficients are over 0.94. The fitted results which is the plot of fitted depth  $\hat{H}$  versus observed depth H are depicted in Fig 28-33 for steel, aluminum and titanium, respectively. It shows that the regression fitting is so successful that at least 97% predicted data are located within the lines  $\hat{H} = H \pm 2.5$ mm and at least 92% data are the region  $H = H \pm 2(mm)$ .

| Material  | Abrasive<br>size(mesh)<br>No.of data | No. of<br>data | Ca    | C.             | Cı     | C <sub>2</sub> | C3             | $\mathbb{R}^2$ |
|-----------|--------------------------------------|----------------|-------|----------------|--------|----------------|----------------|----------------|
|           | INO. OI data                         |                |       |                |        |                |                |                |
| Steel     | 50                                   | 38             | 5.520 | -1.815         | 12.862 | 3.020          | -5.819         | 0.9706         |
| AISI 1018 | 80                                   | 150            | 4.215 | <b>-</b> 2.106 | 29.000 | 3.008          | <b>-7</b> .701 | 0.9601         |
|           | 220                                  | 24             | 1.054 | -2.992         | 0.862  | 1.236          | -0.558         | 0.9458         |
| Aluminum  | 80                                   | 18             | 4.215 | -1.787         | 66.718 | 4.817          | -7.926         | 0.9939         |
| Titanium  | 80                                   | 26             | 4.215 | -1.091         | 32.335 | 2.834          | -8.333         | 0.9831         |

Table 9 Results of Regression Analysis for All Materials

#### 6.2 The Practical Meaning for Every Term in the Regression Model

From the model derivation, it follows that:

(1) 
$$H_w = C_1 \frac{D_o^2 P_o^{3/2} K_w^2}{\sigma D_t^{0.85} u}$$
 represents the depth cut by water action,

(2) 
$$H_a = C_2 \frac{m_a^{0.965} P_o K_a^2}{\sigma D_t^{0.85} u}$$
 represents the depth cut by abrasive action,

(3) 
$$H_{I} = C_{3} \left( \frac{D_{o}^{2} P_{o}^{3/2} K_{w}^{2}}{\sigma D_{t}^{0.85} u} \right) \left( \frac{m_{a}^{0.965} P_{o} K_{a}^{2}}{\sigma D_{t}^{0.85} u} \right) \text{ represents the depth caused by the interaction}$$

between water and abrasive particle.  $C_3$  is always negative. It means that the interaction between water and particle would be intervened each other and would reduce the total depth of cut during the cutting.

(4)  $C_0$  represents the energy loss due to friction and collision existing among water, particle and tube wall. Negative sign shows that energy loss in the course of cutting exists.

Database 6 demonstrates the changes of  $H_w$ ,  $H_a$ ,  $H_I$  and H along with the change of operating parameters during cutting steel with the abrasive size 80 mesh.

#### 6.3 Correlation of Depth of Cut and Operating Parameters

It is interesting to show that patterns of the relationship between  $H_W$ ,  $H_a$  and process variables are similar. Comparative effect of various parameters on cutting results are shown in table 10. The first column contains the correlation coefficients between  $H_W$  and operating parameters. It has been found that sapphire diameter  $D_0$  has the largest effect on  $H_W$ . Water pressure  $P_0$  lies the next. There no effect of  $m_a$  on  $H_W$  (correlation coefficient is 0.062). This proves that  $H_W$  represents a pure water action. In the  $H_a$  column, similar effects of the parameters happened to  $H_a$ . Correlation coefficient between H and the process parameters shows that  $D_o$  and  $P_0$  has the main effects on H, while the effect of  $m_a$ 

| Depth(mm)              | H <sub>w</sub> | H <sub>a</sub> | Н      |
|------------------------|----------------|----------------|--------|
| Parameters             |                |                |        |
| P <sub>O</sub> (MPa)   | 0.459          | 0.535          | 0.622  |
| D <sub>o</sub> (mm)    | 0.794          | 0.627          | 0.574  |
| D <sub>t</sub> (mm)    | -0.009         | -0.069         | -0.027 |
| m <sub>a</sub> (g/min) | 0.062          | 0.277          | 0.326  |
| u (cm/min)             | -0.115         | -0.213         | -0.145 |

is secondary. The effect of  $D_t$  and u is negative on the depth of cut, but the correlation coefficient between  $D_t$  and H is low and goes beyond the cutting experience.

Table 10 Correlation between Depth and Operating Parameters( Steel AISI 1018, 80 mesh Abrasive )

### 6.4 Effects of Water and Abrasive on the Depth of Cut

The previous works did not separate effects of water and particles on the depth of cut. In the most studies the water action was ignored. Water was considered as energy transfer media. In this study, an important inference was drawn from the model (5.9). If we consider water effect and abrasive effect on depth of cut separately, the model (5.9) will become:

$$\mathbf{H} = \mathbf{C}_1 \mathbf{H}_{\mathbf{w}} + \mathbf{C}_2 \mathbf{H}_{\mathbf{a}} \tag{6.1}$$

We can evaluate the percentage of water action and percentage of abrasive action, respectively as follows:

$$P_{w} = \frac{C_{1}H_{w}}{C_{1}H_{w} + C_{2}H_{a}} \times 100\% \qquad (\text{ for water action}) \tag{6.2}$$

$$P_{a} = \frac{C_{1}H_{a}}{C_{1}H_{w} + C_{2}H_{a}} \times 100\% \qquad (\text{ for abrasive action}) \qquad (6.3)$$

The results of the computation of percentages of each action (steel, 80 mesh) are listed in Database 6, which shows that water contribution can reach 10% of the total result. If we deleted the water action ( $C_1H_W$ ) term and use the abrasive action term only, the correlation coefficient becomes R=0.93. The consideration of water action increases correlation coefficient from 0.93 to 0.96.

#### 6.5 Prediction of the Water Velocity and the Abrasive Velocity

### at the Exit of Tube

Another inference which can be drawn from the model (5.9) is the prediction of the water velocity and the abrasive velocity at the exit of carbide nozzle. In chapter 5 we derived the velocity equations as follows:

$$V_{sw} = \sqrt{\frac{2 P_o}{\rho_w}} = \sqrt{2000} P_o^{1/2}$$
(6.4)

$$V_{cw} = \frac{1}{1 + \frac{m_a}{2107.4 D_o^2 P_o^{1/2}}} V_{sw}$$
(6.5)

$$V_{a} = \frac{1}{1 + \frac{C_{a}m_{a}}{2107.4 D_{o}^{2} P_{o}^{1/2}}} V_{sw}$$
(6.6)

where

 $C_a = 5.520$  for 50 mesh

 $C_a = 4.215$  for 80 mesh

 $C_a = 1.054$  for 220 mesh

In the above equations,  $V_{SW}$  is the theoretical water velocity at the exit of the sapphire obtained from the Bernoulli's equation.  $V_{CW}$  is the water velocity at the exit of carbide tube.  $V_a$  is the abrasive particles velocity at the exit of carbide tube. Because  $C_a$  value is received from regression analysis for the depth of cut, it follows that  $V_a$  is derived from the actual depth of cut. The derived results for three different sizes of particle are listed in the Database 7, 8 and 9 and depicted in the Figure 34-39.

Figure 34 shows the plot of Bernoulli's equation. The water velocity from sapphire Vsw is determined by pressure  $P_0$ . Figure 35-37 show the relationship of  $m_a$  versus  $V_a$  and  $m_a$  versus  $V_{CW}$ . It is showed that when  $m_a$  increases,  $V_a$  and  $V_{CW}$  decrease. The Figure 38 and 39 show the relationship between  $V_a$  and operating parameters. When  $m_a$  is over 300 g/min, the curve becomes flat and  $V_a$  does not decrease. That is suggested that the equation (6.6) is suitable for  $m_a < 300$  g/min.

# 6.6 Relationship Between Particle Coefficient Ca and the Size of Particle

It was assumed that  $C_a$  accounts for the effects of particle size and collision among water, abrasive and tube wall on the  $V_a$ . When the size of particle increase,  $C_a$  increases. A chart (Fig 40) and Table 11 show the correlation between  $C_a$  and particle size.

| Size of particle (mesh) | Diameter of particle (µm) | Ca    |
|-------------------------|---------------------------|-------|
| 50                      | 300                       | 5.520 |
| 80                      | 177                       | 4.215 |
| 220                     | 65                        | 1.054 |

Table 11 Ca Values for Different Sizes of the Particle

# CHAPTER 7

# **CONCLUSIONS AND RECOMMENDATIONS**

#### 7.1 Conclusions

(1) The semi-empirical equation (5.9) is an effective model describing the relationship between depth of cut and cutting parameters, while statistical analysis enables us to examine some phenomena which occur in the course of AWJ cutting and were not examined in the published reports.

(2) The prediction technique developed in this study can be used in the industrial condition because it included readily available information about operating conditions and material properties.

(3) A developed model includes water action, particle action and interaction between the water and particle. The cutting results can be predicted with correlation coefficient of over 0.94 for three different ductile materials and three kinds of particle sizes. We also can predict the contribution of water action and particle action at different combinations of operating parameters. It has been found that the contribution of water action is under 10% within the normal range of operating parameters.

(4) For the existing range of the process parameters water pressure  $P_0$  and sapphire diameter  $D_0$  have the strongest correlation with cutting depth. The effect of  $m_a$  is weaker, while the effect of other parameters is practically negligible.

(5) The velocities of water and abrasive particle at the exit of nozzle can be evaluated through macroscopic statistical analysis. Three theoretical equations for the velocities are suggested to show how the velocities are distributed at the exit of nozzle.

To get a complete prediction model for the machining results in the AWJ machining, it is necessary:

(1) to do more experiments for other materials including ductile and brittle materials to see the practicability of the prediction model.

(2) to investigate the effect of the nozzle design on the applications of the prediction model.

(3) to improve information concerning particles velocity distribution.

(4) to investigate cutting of the workpiece thickness exceeding 2 inches.

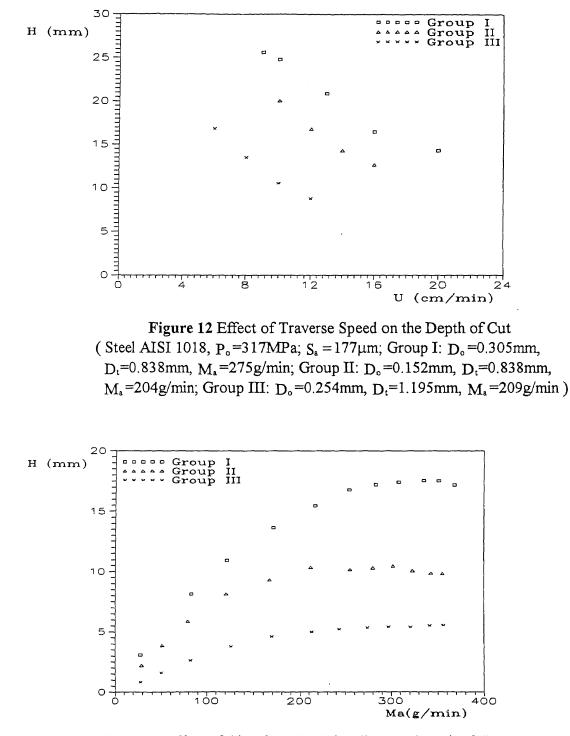



Figure 13 Effect of Abrasive Mass Flow Rate on Depth of Cut (Steel AISI 1018,  $S_a = 177 \mu m$ ; Group I:  $P_o = 317 MPa$ ;  $D_o = 0.254 mm$ ,  $D_t = 0.865 mm$ , U=14cm/min; Group II:  $P_o = 317 MPa$ ;  $D_o = 0.177 mm$ ,  $D_t = 0.906 mm$ , U=14cm/min; Group III:  $P_o = 331 MPa$ ;  $D_o = 0.177 mm$ ,  $D_t = 1.015 mm$ , U=10cm/min )

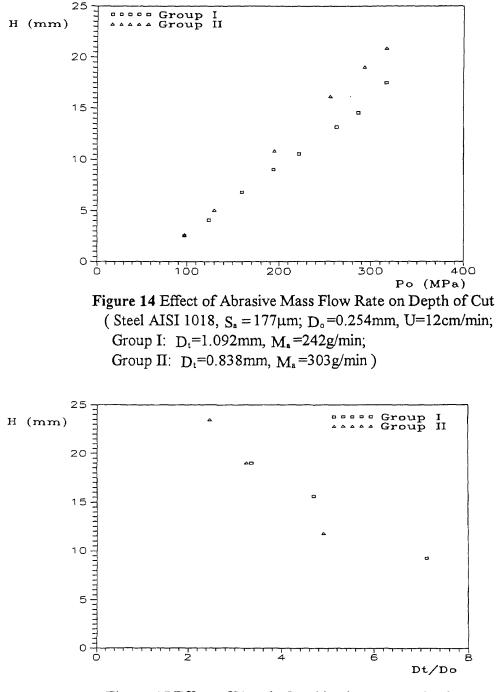



Figure 15 Effect of Nozzle Combination on Depth of Cut (Steel AISI 1018,  $P_o=317MPa$ ;  $S_a=177\mu m$ ; Group I:  $D_o=0.254mm$ ,  $M_a=260g/min$ ; U=14cm/min; Group II:  $D_o=0.365mm$ ,  $M_a=280g/min$ ; U=13cm/min )

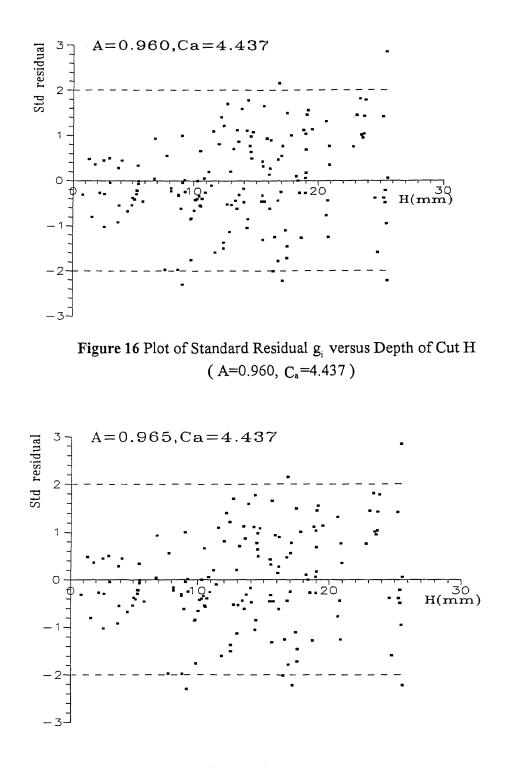



Figure 17 Plot of Standard Residual  $g_i$  versus Depth of Cut H (A=0.965,  $C_a$ =4.437 )

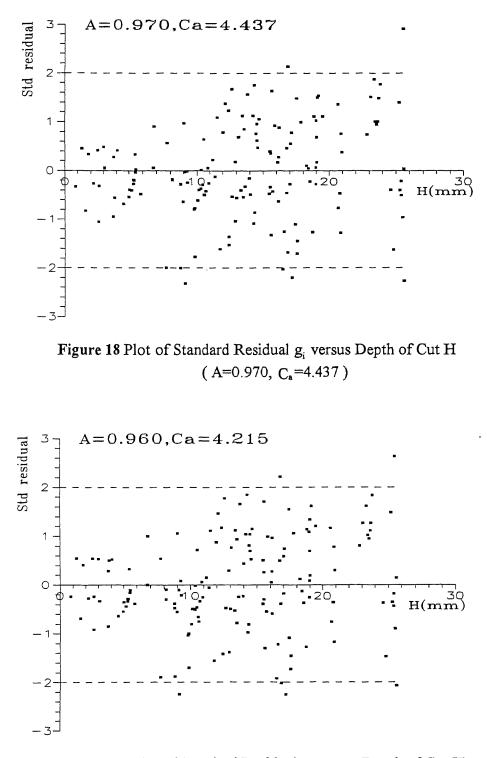



Figure 19 Plot of Standard Residual  $g_i$  versus Depth of Cut H (A=0.960,  $C_a$ =4.215)

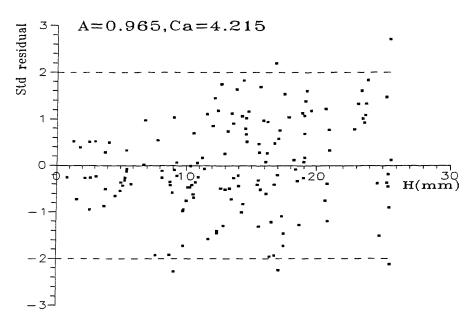



Figure 20 Plot of Standard Residual  $g_i$  versus Depth of Cut H (A=0.965,  $C_a$ =4.215 )

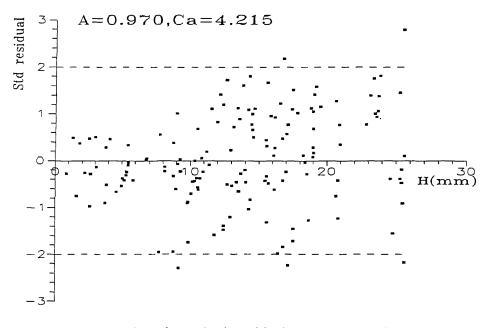



Figure 21 Plot of Standard Residual  $g_i$  versus Depth of Cut H (A=0.970,  $C_a$ =4.215 )

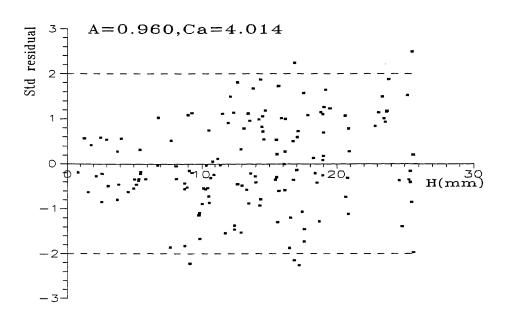



Figure 22 Plot of Standard Residual  $g_i$  versus Depth of Cut H (A=0.960,  $C_a$ =4.014 )

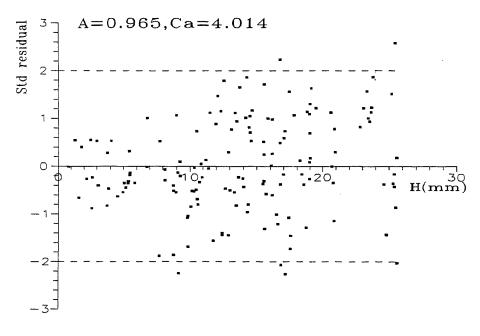



Figure 23 Plot of Standard Residual  $g_i$  versus Depth of Cut H (A=0.965,  $C_a$ =4.014)

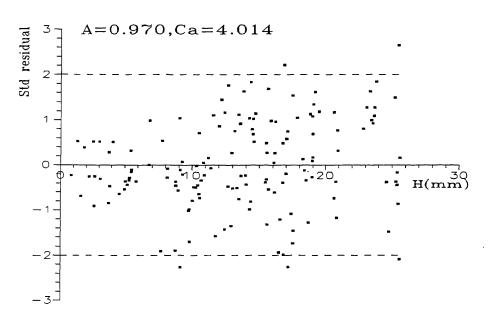



Figure 24 Plot of Standard Residual  $g_i$  versus Depth of Cut H (A=0.970,  $C_a$ =4.014 )

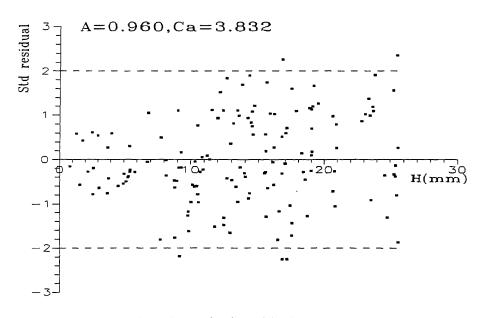



Figure 25 Plot of Standard Residual  $g_i$  versus Depth of Cut H (A=0.960,  $C_a$ =3.832 )

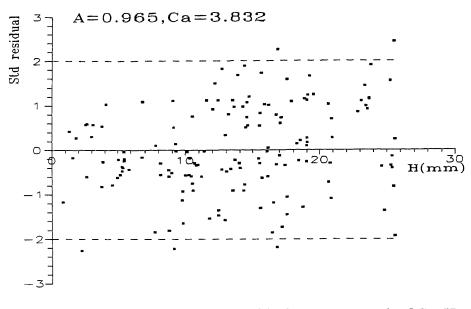



Figure 26 Plot of Standard Residual  $g_i$  versus Depth of Cut H (A=0.965,  $C_a$ =3.832 )

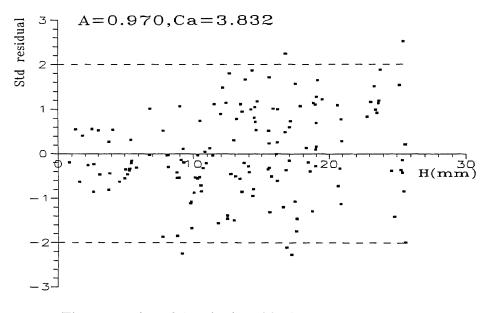
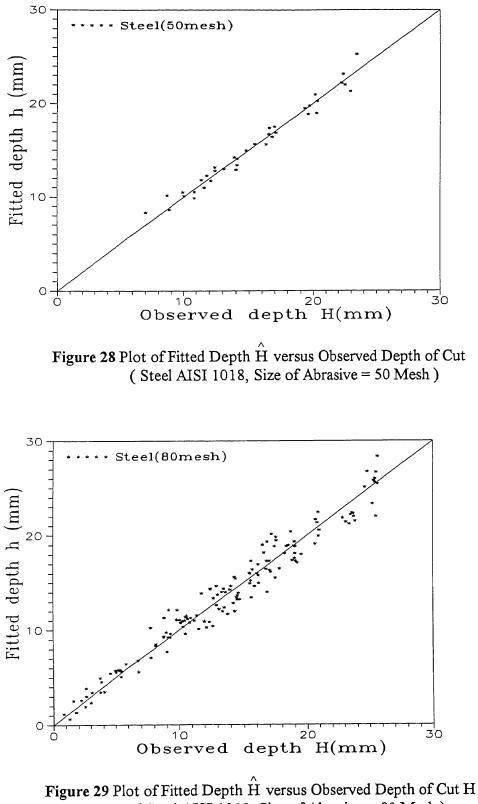
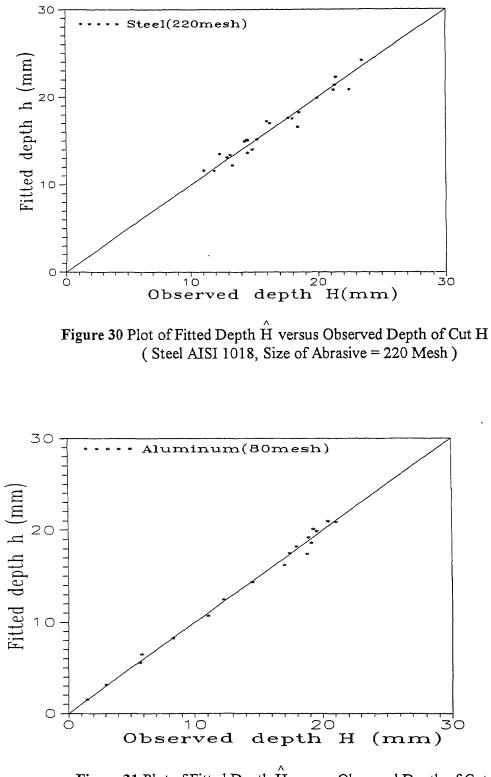
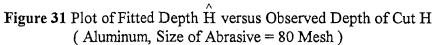






Figure 27 Plot of Standard Residual  $g_i$  versus Depth of Cut H (A=0.970,  $C_a$ =3.832 )



(Steel AISI 1018, Size of Abrasive = 80 Mesh)





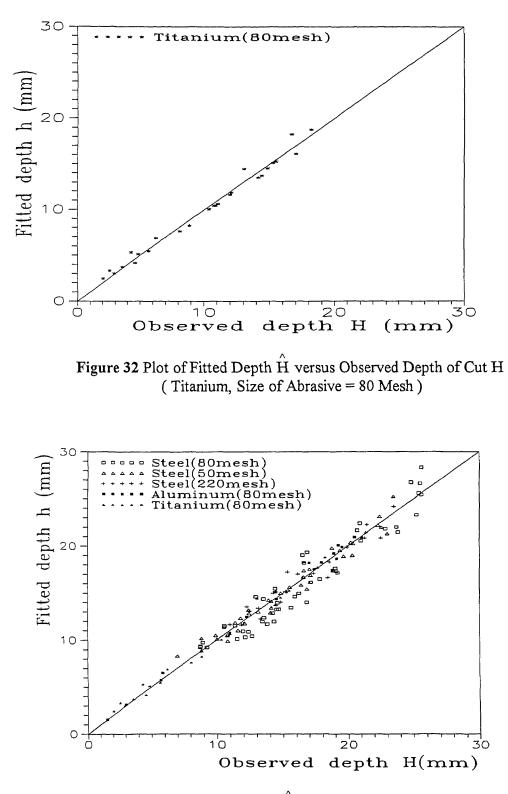



Figure 33 Plot of Fitted Depth  $\stackrel{\wedge}{H}$  versus Observed Depth of Cut H (All Materials and Size of Abrasive)

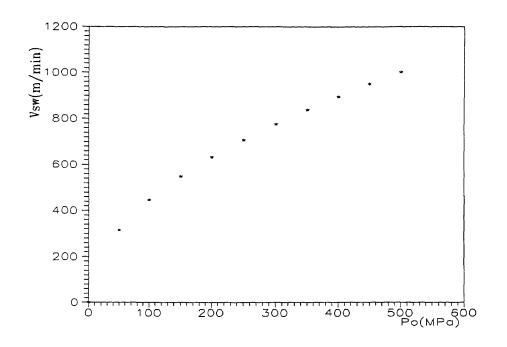



Figure 34 Water Velocity from Sapphire Nozzle according to Bernoulli's Equation

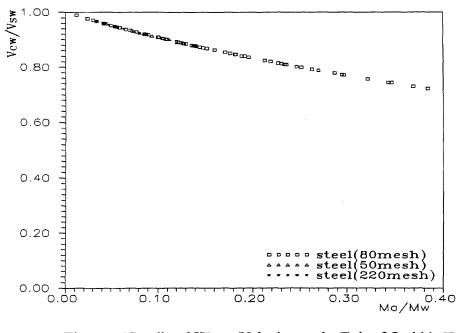



Figure 35 Predicted Water Velocity at the Exit of Carbide Tube (Steel AISI 1018)

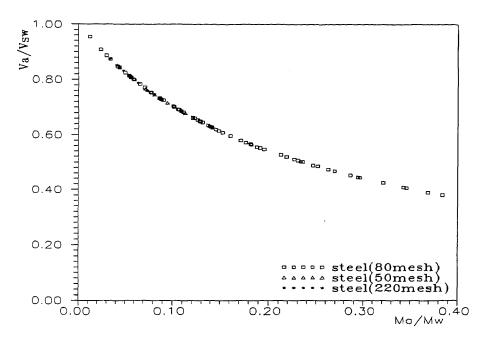



Figure 36 Abrasive Velocity at the Exit of Carbide Tube Associated with Water Velocity at the Exit of Sapphire Nozzle (Steel AISI 1018)

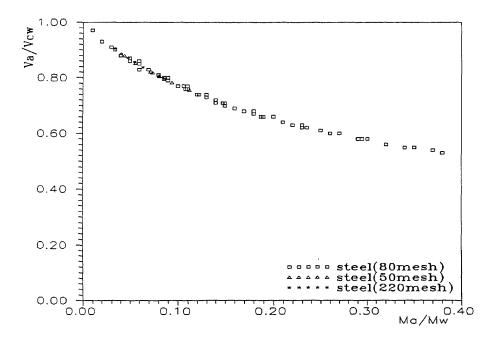



Figure 37 Abrasive Velocity at the Exit of Carbide Tube Associated with Water Velocity at the Exit of Carbide Tube (Steel AISI 1018)

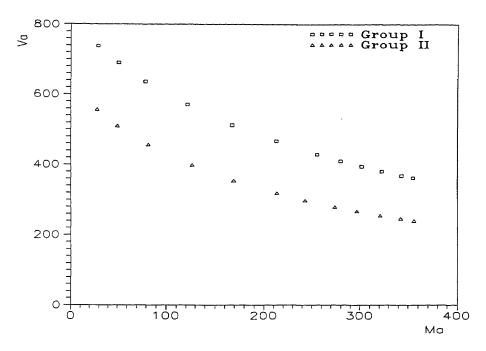



Figure 38 Relationship I between  $V_a$  and Operating Parameters (Steel, 80mesh,  $D_0=0.177$ mm, Group I:  $P_0=331$ PMa,  $D_t=0.906$ mm, U=14g/min; Group II:  $P_0=197$ PMa,  $D_t=1.01$ mm, U=10g/min; )

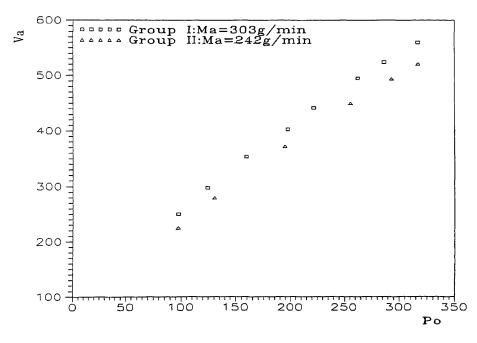



Figure 39 Relationship II between  $V_a$  and Operating Parameters (Steel, 80mesh,  $D_0=0.254$ mm, U=12cm/mim;Group I: Ma=303g/min,  $D_t=1.155$ mm; Group II: Ma=242g/min,  $D_t=0.916$ mm)

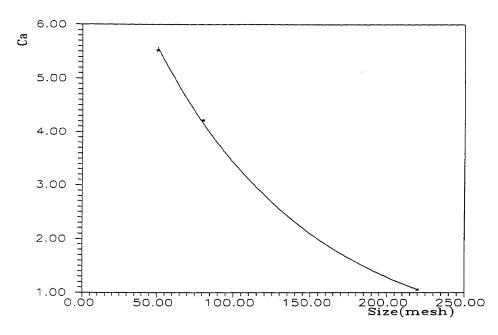



Figure 40 Plot of the Relationship between  $\mathbf{C}_a$  and the Size of Abrasive

#### APPENDIX

# DATABASE OF EXPERIMENTAL

### AND CALCULATED RESULTS

This appendix includes the following defined letters:

- P<sub>1</sub> Initial water pressure (MPa)
- P<sub>o</sub> Operating water pressure (MPa)
- D<sub>o</sub> Diameter of sapphire orifice (mm)
- D<sub>t</sub> Diameter of carbide tube (mm)
- M<sub>a</sub> Mass flow rate of abrasive (g/min)
- M<sub>w</sub> Mass flow rate of water (g/min)
- S<sub>a</sub> Size of abrasive (mesh)
- S<sub>d</sub> Standoff distance (mm)
- U Traverse speed of the nozzle (cm/min)
- $W_t$  Top kerf width (mm)
- H<sub>w</sub> Fitted depth of cut caused by water action (mm)
- H<sub>a</sub> Fitted depth of cut caused by abrasive action (mm)
- H<sub>I</sub> Fitted depth of cut caused by the interaction between water and abrasive(mm)
- H Total observed depth of cut by AWJ (mm)
- H Total fitted depth of cut (mm)
- C1, C2, C3 Regression coefficient determined by regression analysis
- $P_W$  Percentage of water action on the depth of cut (%)
- Pa Percentage of abrasive action on the depth of cut (%)
- V<sub>SW</sub> Water velocity at the exit of sapphire nozzle (m/min)
- Vcw Water velocity at the exit of carbide nozzle (m/min)
- Va Abrasive particle velocity at the exit of carbide nozzle (m/min)

# ( Use Water Nozzles and Nozzle Body of New Design) Steel AISI 1018, $S_a$ =80 mesh (Barton's HPE), $S_d$ =2.5 mm

| No. | Po(MPa) | Do(mm) | Dt(mm) | Ma(g/min) | U(cm/min) | Wt(mm) | H(mm) |
|-----|---------|--------|--------|-----------|-----------|--------|-------|
|     |         |        |        |           |           |        |       |
| 001 | 317     | 0.152  | 0.838  | 204       | 6         | 1.328  | 16.83 |
| 002 | 317     | 0.152  | 0.838  | 204       | 8         | 1.224  | 13.50 |
| 003 | 317     | 0.152  | 0.838  | 204       | 10        | 1.446  | 10.55 |
| 004 | 317     | 0.152  | 0.838  | 204       | 12        | 1.334  | 8.77  |
| 005 | 317     | 0.152  | 0.838  | 255       | 8         | 1.288  | 12.94 |
| 006 | 317     | 0.152  | 0.838  | 255       | 10        | 1.238  | 10.59 |
| 007 | 317     | 0.152  | 0.838  | 255       | 12        | 1.269  | 8.78  |
| 008 | 317     | 0.203  | 1.118  | 229       | 7         | 1.524  | 20.94 |
| 009 | 317     | 0.203  | 1.118  | 229       | 9         | 1.474  | 17.10 |
| 010 | 317     | 0.203  | 1.118  | 229       | 12        | 1.480  | 13.43 |
| 011 | 317     | 0.203  | 1.118  | 229       | 14        | 1.464  | 11.55 |
| 012 | 317     | 0.203  | 1.118  | 229       | 7         | 1.516  | 23.70 |
| 013 | 317     | 0.203  | 1.118  | 229       | 9         | 1.503  | 19.05 |
| 014 | 317     | 0.203  | 1.118  | 229       | 12        | 1.514  | 14.21 |
| 015 | 317     | 0.203  | 1.118  | 229       | 14        | 1.520  | 12.39 |
| 016 | 317     | 0.203  | 0.851  | 211       | 8         | 1.072  | 25.60 |
| 017 | 317     | 0.254  | 0.851  | 211       | 9         | 1.297  | 25.22 |
| 018 | 317     | 0.254  | 0.851  | 211       | 10        | 1.204  | 23.82 |
| 019 | 317     | 0.254  | 0.851  | 211       | 13        | 1.134  | 19.16 |
| 020 | 317     | 0.254  | 0.851  | 211       | 15        | 1.156  | 16.17 |
| 021 | 317     | 0.254  | 0.851  | 211       | 17        | 1.176  | 14.68 |
| 022 | 317     | 0.254  | 0.851  | 256       | 11        | 1.251  | 22.83 |
| 023 | 317     | 0.254  | 0.851  | 256       | 14        | 1.185  | 18.97 |
| 024 | 317     | 0.254  | 0.851  | 256       | 17        | 1.218  | 15.85 |
| 025 | 317     | 0.254  | 0.851  | 256       | 20        | 1.190  | 13.55 |
| 026 | 317     | 0.254  | 1.195  | 209       | 12        | 1.490  | 16.80 |
| 027 | 317     | 0.254  | 1.195  | 209       | 14        | 1.495  | 14.31 |
| 028 | 317     | 0.254  | 1.195  | 209       | 16        | 1.491  | 12.65 |
| 029 | 317     | 0.254  | 1.195  | 262       | 16        | 1.475  | 13.79 |
| 030 | 317     | 0.254  | 1.195  | 262       | 14        | 1.544  | 15.60 |
| 031 | 317     | 0.254  | 1.195  | 262       | 18        | 1.522  | 12.16 |
| 032 | 317     | 0.254  | 1.810  | 262       | 12        | 2.127  | 12.00 |
| 033 | 317     | 0.254  | 1.810  | 262       | 10        | 2.203  | 14.51 |
| 034 | 317     | 0.254  | 1.810  | 262       | 8         | 2.242  | 17.80 |
| 035 | 317     | 0.254  | 1.810  | 262       | 14        | 2.249  | 9.27  |
| 036 | 317     | 0.254  | 1.810  | 295       | 18        | 2.163  | 18.80 |

-

| No. | Po(MPa) | Do(mm) | Dt(mm) | Ma(g/min) | U(cm/min) | Wt(mm) | H(mm) |
|-----|---------|--------|--------|-----------|-----------|--------|-------|
|     |         |        |        |           |           |        |       |
| 037 | 317     | 0.254  | 1.810  | 295       | 10        | 2.160  | 14.58 |
| 038 | 317     | 0.254  | 1.810  | 295       | 12        | 2.220  | 11.41 |
| 039 | 317     | 0.254  | 1.810  | 295       | 14        | 2.250  | 8.97  |
| 040 | 317     | 0.308  | 0.825  | 212       | 7         | 1.004  | 25.50 |
| 041 | 317     | 0.308  | 0.825  | 212       | 8         | 1.319  | 25.40 |
| 042 | 317     | 0.308  | 0.825  | 212       | 11        | 1.211  | 20.67 |
| 043 | 317     | 0.308  | 0.825  | 212       | 14        | 1.214  | 16.57 |
| 044 | 317     | 0.308  | 0.825  | 212       | 17        | 1.209  | 14.37 |
| 045 | 317     | 0.308  | 0.825  | 275       | 9         | 1.077  | 25.60 |
| 046 | 317     | 0.308  | 0.825  | 275       | 11        | 1.324  | 24.60 |
| 047 | 317     | 0.308  | 0.825  | 275       | 13        | 1.171  | 20.87 |
| 048 | 317     | 0.308  | 0.825  | 275       | 16        | 1.156  | 16.47 |
| 049 | 317     | 0.308  | 0.825  | 275       | 20        | 1.151  | 14.30 |
| 050 | 317     | 0.308  | 1.146  | 278       | 10        | 1.381  | 23.67 |
| 051 | 317     | 0.308  | 1.146  | 278       | 13        | 1.401  | 19.50 |
| 052 | 317     | 0.308  | 1.146  | 278       | 16        | 1.390  | 15.50 |
| 053 | 317     | 0.308  | 1.146  | 278       | 19        | 1.376  | 13.93 |
| 054 | 317     | 0.308  | 1.146  | 210       | 10        | 1.436  | 18.97 |
| 055 | 317     | 0.308  | 1.146  | 210       | 12        | 1.416  | 17.03 |
| 056 | 317     | 0.308  | 1.146  | 210       | 15        | 1.395  | 12.70 |
| 057 | 317     | 0.308  | 1.146  | 210       | 18        | 1.397  | 10.70 |
| 058 | 317     | 0.308  | 1.860  | 210       | 9         | 2.033  | 14.03 |
| 059 | 317     | 0.308  | 1.860  | 210       | 7         | 2.108  | 18.23 |
| 060 | 317     | 0.308  | 1.860  | 210       | 11        | 2.085  | 9.87  |
| 061 | 317     | 0.308  | 1.860  | 210       | 13        | 2.074  | 7.73  |
| 062 | 317     | 0.308  | 1.860  | 277       | 9         | 2.076  | 17.00 |
| 063 | 317     | 0.308  | 1.860  | 277       | 11        | 2.065  | 12.47 |
| 064 | 317     | 0.308  | 1.860  | 277       | 7         | 2.175  | 2.80  |
| 065 | 317     | 0.308  | 1.860  | 277       | 14        | 2.094  | 8.80  |
| 066 | 317     | 0.365  | 0.902  | 284       | 8         | 1.184  | 25.40 |
| 067 | 317     | 0.365  | 0.902  | 284       | 9         | 1.274  | 25.30 |
| 068 | 317     | 0.365  | 0.902  | 284       | 10        | 1.252  | 24.60 |
| 069 | 317     | 0.365  | 0.902  | 284       | 13        | 1.222  | 23.47 |
| 070 | 317     | 0.365  | 0.902  | 284       | 16        | 1.177  | 18.97 |
| 071 | 317     | 0.365  | 0.902  | 284       | 19        | 1.156  | 16.13 |
| 072 | 317     | 0.365  | 0.902  | 220       | 9         | 1.289  | 25.50 |
| 073 | 317     | 0.365  | 0.902  | 220       | 10        | 1.291  | 23.10 |
| 074 | 317     | 0.365  | 0.902  | 220       | 13        | 1.228  | 18.73 |
| 075 | 317     | 0.365  | 0.902  | 220       | 16        | 1.192  | 15.70 |
| 076 | 317     | 0.365  | 0.902  | 220       | 19        | 1,186  | 12.47 |
| 077 | 317     | 0.365  | 1.186  | 218       | 10        | 1.419  | 20.63 |

| No. | Po(MPa) | Do(mm) | Dt(mm) | Ma(g/min) | U(cm/min) | Wt(mm) | H(mm) |
|-----|---------|--------|--------|-----------|-----------|--------|-------|
|     |         |        |        |           |           |        |       |
| 078 | 317     | 0.365  | 1.186  | 218       | 13        | 1.433  | 16.07 |
| 079 | 317     | 0.365  | 1.186  | 218       | 8         | 1.518  | 23.37 |
| 080 | 317     | 0.365  | 1.186  | 218       | 15        | 1.422  | 13.97 |
| 081 | 317     | 0.365  | 1.186  | 280       | 10        | 1.549  | 23.57 |
| 082 | 317     | 0.365  | 1.186  | 280       | 13        | 1.472  | 19.02 |
| 083 | 317     | 0.365  | 1.186  | 280       | 16        | 1.471  | 15.53 |
| 084 | 317     | 0.365  | 1.186  | 280       | 19        | 1.443  | 13.03 |
| 085 | 317     | 0.365  | 1.790  | 273       | 10        | 2.200  | 15.60 |
| 086 | 317     | 0.365  | 1.790  | 273       | 8         | 2.205  | 18.70 |
| 087 | 317     | 0.365  | 1.790  | 273       | 13        | 2.130  | 11.80 |
| 088 | 317     | 0.365  | 1.790  | 273       | 15        | 2.113  | 9.17  |
| 089 | 317     | 0.254  | 1.155  | 242       | 12        | 1.478  | 17.47 |
| 090 | 286     | 0.254  | 1.155  | 242       | 12        | 1.481  | 14.52 |
| 091 | 262     | 0.254  | 1.155  | 242       | 12        | 1.425  | 13.14 |
| 092 | 221     | 0.254  | 1.155  | 242       | 12        | 1.436  | 10.52 |
| 093 | 193     | 0.254  | 1.179  | 242       | 12        | 1.434  | 9.02  |
| 094 | 159     | 0.254  | 1.179  | 242       | 12        | 1.408  | 6.83  |
| 095 | 124     | 0.254  | 1.179  | 242       | 12        | 1.399  | 4.09  |
| 096 | 97      | 0.254  | 1.179  | 242       | 12        | 1.375  | 2.54  |
| 097 | 97      | 0.254  | 0.916  | 303       | 12        | 1.132  | 2.65  |
| 098 | 130     | 0.254  | 0.916  | 303       | 12        | 1.175  | 5.06  |
| 099 | 194     | 0.254  | 0.916  | 303       | 12        | 1.208  | 10.84 |
| 100 | 255     | 0.254  | 0.916  | 303       | 12        | 1.257  | 16.13 |
| 101 | 293     | 0.254  | 0.958  | 303       | 12        | 1.261  | 19.01 |
| 102 | 317     | 0.254  | 0.958  | 303       | 12        | 1.272  | 20.89 |
| 103 | 317     | 0.254  | 0.958  | 303       | 15        | 1.279  | 16.73 |
| 104 | 317     | 0.254  | 0.958  | 303       | 18        | 1.276  | 14.44 |
| 105 | 355     | 0.177  | 0.894  | 207       | 10        | 1.111  | 15.54 |
| 106 | 355     | 0.177  | 0.894  | 207       | 8         | 1.262  | 18.51 |
| 107 | 369     | 0.177  | 0.894  | 207       | 8         | 1.217  | 13.34 |
| 108 | 369     | 0.177  | 0.894  | 207       | 10        | 1.250  | 11.21 |
| 109 | 206     | 0.177  | 0.894  | 207       | 10        | 1.244  | 7.77  |
| 110 | 206     | 0.177  | 0.894  | 207       | 8         | 1.267  | 9.11  |
| 111 | 172     | 0.177  | 0.894  | 215       | 8         | 1.271  | 6.78  |
| 112 | 172     | 0.177  | 0.894  | 215       | 10        | 1.231  | 5.47  |
| 113 | 124     | 0.177  | 0.894  | 215       | 10        | 1.222  | 3.01  |
| 114 | 124     | 0.177  | 0.894  | 215       | 8         | 1.232  | 3.79  |
| 115 | 90      | 0.177  | 0.894  | 215       | 8         | 1.242  | 1.81  |
| 116 | 90      | 0.177  | 0.894  | 215       | 10        | 1.185  | 1.30  |
| 117 | 317     | 0.254  | 0.865  | 28        | 14        | 1.027  | 3.10  |

| No. | Po(MPa) | Do(mm) | Dt(mm) | Ma(g/min) | U(cm/min) | Wt(mm) | H(mm) |
|-----|---------|--------|--------|-----------|-----------|--------|-------|
|     |         |        |        |           |           |        |       |
| 118 | 317     | 0.254  | 0.865  | 83        | 14        | 1.095  | 8.16  |
| 119 | 317     | 0.254  | 0.865  | 122       | . 14      | 1.145  | 10.93 |
| 120 | 317     | 0.254  | 0.865  | 171       | 14        | 1.171  | 13.64 |
| 121 | 317     | 0.254  | 0.865  | 217       | 14        | 1.233  | 15.48 |
| 122 | 317     | 0.254  | 0.865  | 254       | 14        | 1.278  | 16.77 |
| 123 | 317     | 0.254  | 0.865  | 308       | 14        | 1.331  | 17.41 |
| 124 | 317     | 0.254  | 0.865  | 335       | 14        | 1.362  | 17.55 |
| 125 | 317     | 0.254  | 0.865  | 351       | 14        | 1.373  | 17.53 |
| 126 | 317     | 0.254  | 0.865  | 368       | 14        | 1.385  | 17.18 |
| 127 | 331     | 0.177  | 0.906  | 29        | 14        | 1.160  | 2.22  |
| 128 | 331     | 0.177  | 0.906  | 51        | 14        | 1.155  | 3.87  |
| 129 | 331     | 0.177  | 0.906  | 79        | 14        | 1.199  | 5.87  |
| 130 | 331     | 0.177  | 0.906  | 121       | 14        | 1.278  | 8.15  |
| 131 | 331     | 0.177  | 0.906  | 167       | 14        | 1.343  | 9.30  |
| 132 | 331     | 0.177  | 0.906  | 212       | 14        | 1.398  | 10.33 |
| 133 | 331     | 0.177  | 0.906  | 255       | 14        | 1.430  | 10.15 |
| 134 | 331     | 0.177  | 0.906  | 280       | 14        | 1.472  | 10.30 |
| 135 | 331     | 0.177  | 0.906  | 302       | 14        | 1.521  | 10.45 |
| 136 | 331     | 0.177  | 0.906  | 323       | 14        | 1.510  | 10.06 |
| 137 | 331     | 0.177  | 0.906  | 343       | 14        | 1.502  | 9.84  |
| 138 | 331     | 0.177  | 0.906  | 355       | 14        | 1.562  | 9.80  |
| 139 | 197     | 0.177  | 1.015  | 28        | 10        | 1.241  | 0.82  |
| 140 | 197     | 0.177  | 1.015  | 50        | 10        | 1.322  | 1.58  |
| 141 | 197     | 0.177  | 1.015  | 82        | 10        | 1.347  | 2.62  |
| 142 | 197     | 0.177  | 1.015  | 126       | 10        | 1.445  | 3.77  |
| 143 | 197     | 0.177  | 1.015  | 169       | 10        | 1.484  | 4.50  |
| 144 | 197     | 0.177  | 1.015  | 213       | 10        | 1.504  | 4.99  |
| 145 | 197     | 0.177  | 1.015  | 243       | 10        | 1.518  | 5.20  |
| 146 | 197     | 0.177  | 1.015  | 274       | 10        | 1.533  | 5.35  |
| 147 | 197     | 0.177  | 1.015  | 297       | 10        | 1.521  | 5.40  |
| 148 | 197     | 0.177  | 1.015  | 321       | 10        | 1.521  | 5.36  |
| 149 | 197     | 0.177  | 1.015  | 342       | 10        | 1.578  | 5.49  |
| 150 | 197     | 0.177  | 1.015  | 356       | 10        | 1.580  | 5.52  |

# ( Use Water Nozzles and Nozzle Body of New Design) Steel AISI 1018, $S_a$ =50 mesh (Barton's HPE), $S_d$ =2.5 mm

| No. | Po(MPa) | Do(mm) | Dt(mm) | Ma(g/min) | U (cm/min) | H(mm) |
|-----|---------|--------|--------|-----------|------------|-------|
|     |         |        |        |           |            |       |
| 01  | 305     | 0.254  | 0.830  | 193       | 7.62       | 22.27 |
| 02  | 305     | 0.254  | 0.830  | 193       | 15.24      | 12.12 |
| 03  | 305     | 0.254  | 0.830  | 193       | 10.16      | 16.58 |
| 04  | 305     | 0.254  | 0.830  | 193       | 20.32      | 8.84  |
| 05  | 305     | 0.254  | 0.830  | 265       | 7.62       | 23.45 |
| 06  | 305     | 0.254  | 0.830  | 265       | 10.16      | 19,72 |
| 07  | 305     | 0.254  | 0.830  | 265       | 15.24      | 14.11 |
| 08  | 305     | 0.254  | 0.830  | 265       | 20.32      | 10.84 |
| 09  | 317     | 0.305  | 1.117  | 154       | 7          | 19.63 |
| 10  | 317     | 0.305  | 1.117  | 154       | 9          | 15.47 |
| 11  | 317     | 0.305  | 1.117  | 154       | 11         | 12.43 |
| 12  | 317     | 0.305  | 1.117  | 154       | 14         | 9.94  |
| 13  | 317     | 0.305  | 1.117  | 197       | 7          | 22.53 |
| 14  | 317     | 0.305  | 1.117  | 197       | 11         | 16.53 |
| 15  | 317     | 0.305  | 1.117  | 197       | 12         | 13.90 |
| 16  | 317     | 0.305  | 1.117  | 197       | 14         | 11.81 |
| 17  | 317     | 0.254  | 1.089  | 175       | 7          | 19.35 |
| 18  | 317     | 0.254  | 1.089  | 175       | 9          | 16.33 |
| 19  | 317     | 0.254  | 1.089  | 175       | 12         | 11.40 |
| 20  | 317     | 0.254  | 1.089  | 175       | 14         | 10.04 |
| 21  | 317     | 0.254  | 1.140  | 228       | 7          | 22.97 |
| 22  | 317     | 0.254  | 1.140  | 228       | 8          | 20.29 |
| 23  | 317     | 0.254  | 1.140  | 228       | 10         | 16.80 |
| 24  | 317     | 0.254  | 1.140  | 228       | 12         | 14.03 |
| 25  | 317     | 0.254  | 1.140  | 228       | 14         | 11.62 |
| 26  | 317     | 0.254  | 0.869  | 228       | 8          | 22.39 |
| 27  | 317     | 0.254  | 0.869  | 228       | 9          | 20.17 |
| 28  | 317     | 0.254  | 0.869  | 228       | 11         | 17.00 |
| 29  | 317     | 0.254  | 0.869  | 228       | 13         | 14.79 |
| 30  | 317     | 0.254  | 0.900  | 228       | 15         | 13.13 |
| 31  | 317     | 0.254  | 0.900  | 180       | 8          | 20.36 |
| 32  | 317     | 0.254  | 0.900  | 180       | 10         | 16.54 |
| 33  | 317     | 0.254  | 0.900  | 180       | 12         | 14.10 |
| 34  | 317     | 0.254  | 0.900  | 180       | 16         | 10.84 |
| 35  | 317     | 0.254  | 1.773  | 209       | 8          | 12.44 |
| 36  | 317     | 0.254  | 1.773  | 209       | 6          | 17.09 |

| 37 | 317 | 0.254 | 1.773 | 209 | 10 | 8.67 |
|----|-----|-------|-------|-----|----|------|
| 38 | 317 | 0.254 | 1.773 | 209 | 12 | 7.01 |

# ( Use Water Nozzles and Nozzle Body of New Design ) Steel AISI 1018, $S_a{=}220$ mesh (Barton's HPE), $S_d{=}2.5$ mm

| No. | Po(MPa) | Do(mm) | Dt(mm) | Ma(g/min) | U(cm/min) | H(mm) |
|-----|---------|--------|--------|-----------|-----------|-------|
|     |         |        |        |           |           |       |
| 01  | 317     | 0.254  | 0.84   | 132       | 6         | 22.48 |
| 02  | 317     | 0.254  | 0.84   | 132       | 8         | 18.41 |
| 03  | 317     | 0.254  | 0.84   | 132       | 10        | 14.83 |
| 04  | 317     | 0.254  | 0.84   | 132       | 12        | 13.32 |
| 05  | 317     | 0.254  | 0.84   | 155       | 7         | 21.25 |
| 06  | 317     | 0.254  | 0.84   | 155       | 9         | 17.94 |
| 07  | 317     | 0.254  | 0.84   | 155       | 12        | 14.48 |
| 08  | 317     | 0.254  | 0.84   | 155       | 15        | 11.86 |
| 09  | 317     | 0.254  | 0.84   | 195       | 8         | 21.45 |
| 10  | 317     | 0.254  | 0.84   | 195       | 11        | 15.96 |
| 11  | 317     | 0.254  | 0.84   | 195       | 13        | 14.45 |
| 12  | 317     | 0.254  | 0.84   | 195       | 15        | 12.31 |
| 13  | 317     | 0.362  | 1.078  | 165       | 7         | 18.50 |
| 14  | 317     | 0.362  | 1.078  | 165       | 9         | 15.17 |
| 15  | 317     | 0.362  | 1.078  | 165       | 11        | 12.83 |
| 16  | 317     | 0.362  | 1.078  | 165       | 13        | 11.00 |
| 17  | 317     | 0.362  | 1.078  | 202       | 7         | 21.35 |
| 18  | 317     | 0.362  | 1.078  | 202       | 9         | 17.61 |
| 19  | 317     | 0.362  | 1.078  | 202       | 11        | 14.38 |
| 20  | 317     | 0.362  | 1.078  | 202       | 13        | 13.13 |
| 21  | 317     | 0.362  | 1.078  | 236       | 7         | 23.49 |
| 22  | 317     | 0.362  | 1.078  | 236       | 9         | 19.91 |
| 23  | 317     | 0.362  | 1.078  | 236       | 11        | 16.10 |
| 24  | 317     | 0.362  | 1.078  | 236       | 13        | 14.23 |

.

# ( Use Water Nozzles and Nozzle Body of New Nesign) Titanium, $S_a=80$ mesh (Barton's HPE), $S_d=2.5$ mm

| No. | Po(MPa) | Do(mm) | Dt(mm) | Ma(g/min) | U(cm/min) | Wt(mm) | H(mm) |
|-----|---------|--------|--------|-----------|-----------|--------|-------|
|     |         |        |        |           |           |        |       |
| 01  | 317     | 0.254  | 0.960  | 27.3      | 14        | 1.142  | 4.33  |
| 02  | 317     | 0.254  | 0.960  | 81.6      | 14        | 1.202  | 11.03 |
| 03  | 317     | 0.254  | 0.960  | 119.5     | 14        | 1.254  | 14.12 |
| 04  | 317     | 0.254  | 0.960  | 162       | 14        | 1.320  | 17.00 |
| 05  | 317     | 0.254  | 0.960  | 162       | 17        | 1.310  | 14.38 |
| 06  | 317     | 0.254  | 0.960  | 162       | 20        | 1.308  | 12.08 |
| 07  | 317     | 0.254  | 0.960  | 162       | 23        | 1.307  | 10.73 |
| 08  | 90      | 0.178  | 0.884  | 214       | 8         | 1.112  | 2.57  |
| 09  | 117     | 0.178  | 0.884  | 214       | 8         | 1.110  | 5.68  |
| 10  | 175     | 0.178  | 0.884  | 214       | 8         | 1.165  | 10.87 |
| 11  | 220     | 0.178  | 0.884  | 214       | 8         | 1.274  | 10.80 |
| 12  | 268     | 0.178  | 0.884  | 214       | 8         | 1.259  | 18.20 |
| 13  | 90      | 0.178  | 0.884  | 214       | 10        | 1.075  | 2.05  |
| 14  | 117     | 0.178  | 0.884  | 214       | 10        | 1.106  | 4.61  |
| 15  | 175     | 0.178  | 0.884  | 214       | 10        | 1.179  | 8.87  |
| 16  | 220     | 0.178  | 0.884  | 214       | 10        | 1.200  | 11.98 |
| 17  | 268     | 0.178  | 0.884  | 214       | 10        | 1.266  | 15.45 |
| 18  | 317     | 0.254  | 0.901  | 235       | 20        | 1.266  | 15.25 |
| 19  | 267     | 0.254  | 0.901  | 235       | 13        | 1.291  | 16.57 |
| 20  | 267     | 0.254  | 0.901  | 235       | 17        | 1.290  | 13.03 |
| 21  | 162     | 0.254  | 0.901  | 235       | 17        | 1.254  | 8.09  |
| 22  | 162     | 0.254  | 0.901  | 235       | 13        | 1.293  | 10.37 |
| 23  | 102     | 0.254  | 0.901  | 235       | 13        | 1.212  | 4.86  |
| 24  | 102     | 0.254  | 0.901  | 235       | 17        | 1.207  | 3.59  |
| 25  | 102     | 0.254  | 0.901  | 235       | 20        | 1.176  | 2.93  |
| 26  | 102     | 0.254  | 0.901  | 235       | 10        | 1.274  | 6.23  |

(Use Water Nozzles and Nozzle Body of New Design) Aluminum,  $S_a=80$  mesh (Barton's HPE),  $S_d=2.5$  mm

| No. | Po(MPa) | Do(mm) | Dt(mm) | Ma(g/min) | U(cm/min) | Wt(mm) | H(mm) |
|-----|---------|--------|--------|-----------|-----------|--------|-------|
|     |         |        |        |           |           |        |       |
| 01  | 317     | 0.254  | 0.947  | 190       | 25        | 1.299  | 21.03 |
| 02  | 317     | 0.254  | 0.947  | 190 ·     | 28        | 1.272  | 19.09 |
| 03  | 317     | 0.254  | 0.947  | 222       | 28        | 1,336  | 19.25 |
| 04  | 317     | 0.254  | 0.947  | 243       | 28        | 1.355  | 20.45 |
| 05  | 317     | 0.254  | 0.947  | 46.6      | 28        | 1.243  | 5.88  |
| 06  | 317     | 0.254  | 0.947  | 95.7      | 32        | 1.172  | 11.02 |
| 07  | 317     | 0.254  | 0.947  | 152       | 32        | 1.269  | 4.49  |
| 08  | 317     | 0.254  | 0.947  | 190       | 32        | 1.257  | 16.69 |
| 09  | 317     | 0.254  | 0.947  | 222       | 32        | 1.337  | 17.36 |
| 10  | 317     | 0.254  | 0.947  | 243       | 32        | 1.347  | 17.92 |
| 11  | 317     | 0.254  | 0.947  | 274       | 32        | 1.385  | 18.68 |
| 12  | 317     | 0.254  | 0.947  | 300       | 32        | 1.388  | 19.52 |
| 13  | 317     | 0.254  | 0.947  | 220       | 32        | 1.378  | 18.74 |
| 14  | 248     | 0.254  | 0.947  | 220       | 32        | 1.377  | 12.28 |
| 15  | 188     | 0.254  | 0.947  | 220       | 32        | 1.377  | 8.30  |
| 16  | 150     | 0.254  | 0.947  | 220       | 32        | 1.392  | 5.74  |
| 17  | 110     | 0.254  | 0.947  | 220       | 32        | 1.299  | 3.05  |
| 18  | 82      | 0.254  | 0.947  | 220       | 32        | 1.310  | 1.53  |

#### All Predicted Depths of Cut and Percentages of Water Action and Abrasive Action obtained by the Regression Analysis (Steel AISI 1810, 80 mesh)

| No.                                                                                                                                                                                                                                 | $C_{^{1}}Hw$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $C_{2}Ha$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $C_3 H_1$                                                                                                                                                                                                                                       | $\hat{H}(mm)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | H(mm)                                                                                                                                                                                                                                                                                                                                                                                        | Pw (%)                                    | Pa (%)                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------|
| 001<br>002<br>003<br>004<br>005<br>006<br>007<br>012<br>013<br>014<br>015<br>016<br>017<br>018<br>019<br>020<br>021<br>022<br>023<br>024<br>025<br>026<br>027<br>028<br>029<br>030<br>032<br>034<br>035<br>036<br>037<br>038<br>039 | 1.24<br>0.93<br>0.72<br>0.869<br>0.538<br>1.3984<br>1.292<br>0.712<br>1.3984<br>1.292<br>1.222<br>1.4259<br>1.122<br>1.122<br>1.122<br>1.122<br>1.122<br>1.238<br>1.2959<br>1.225654<br>1.229<br>1.122<br>1.229<br>1.225654<br>1.229<br>1.2238<br>1.229<br>1.225654<br>1.229<br>1.2238<br>1.229<br>1.225654<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229<br>1.229 | 22.67<br>17.00<br>13.60<br>11.34<br>17.16<br>13.73<br>14.35<br>12.30<br>28.17<br>20.36<br>15.27<br>13.09<br>33.87<br>20.36<br>15.94<br>27.09<br>20.84<br>15.94<br>27.03<br>21.24<br>17.49<br>14.87<br>16.84<br>12.51<br>13.18<br>12.51<br>13.18<br>15.82<br>19.77<br>16.081<br>13.18<br>15.82<br>19.77<br>16.84<br>12.51<br>13.18<br>15.82<br>19.77<br>16.84<br>12.51<br>13.18<br>15.82<br>19.77<br>12.30<br>20.77<br>12.84<br>12.51<br>13.18<br>15.82<br>19.77<br>12.88<br>15.82<br>13.18<br>15.82<br>13.18<br>15.82<br>13.18<br>15.82<br>13.18<br>15.82<br>13.18<br>15.82<br>13.18<br>15.82<br>13.18<br>15.82<br>13.18<br>15.82<br>13.18<br>15.82<br>13.18<br>15.82<br>13.18<br>15.82<br>13.18<br>15.82<br>13.18<br>15.82<br>13.18<br>15.82<br>13.18<br>15.82<br>13.18<br>15.82<br>13.18<br>15.82<br>13.18<br>15.82<br>13.18<br>15.82<br>13.18<br>15.82<br>13.18<br>15.82<br>13.18<br>15.82<br>13.18<br>15.82<br>13.18<br>15.82<br>13.18<br>15.82<br>13.18<br>15.82<br>13.18<br>15.82<br>13.18<br>15.82<br>13.18<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85<br>15.85 | -0.68<br>-0.24<br>-0.17<br>-0.36<br>-0.23<br>-0.16<br>-1.00<br>-0.60<br>-0.34<br>-0.25<br>-1.00<br>-0.34<br>-0.25<br>-1.00<br>-0.34<br>-0.25<br>-1.66<br>-0.98<br>-1.47<br>-0.56<br>-1.47<br>-0.56<br>-1.47<br>-0.56<br>-0.39<br>-0.51<br>-0.35 | $19.33 \\ 14.43 \\ 11.35 \\ 9.23 \\ 14.62 \\ 11.48 \\ 9.33 \\ 20.53 \\ 16.13 \\ 10.12 \\ 21.99 \\ 17.27 \\ 12.84 \\ 10.86 \\ 25.45 \\ 23.32 \\ 21.16 \\ 17.10 \\ 14.95 \\ 13.23 \\ 21.81 \\ 17.59 \\ 14.60 \\ 12.38 \\ 13.96 \\ 11.95 \\ 10.39 \\ 11.69 \\ 13.42 \\ 10.29 \\ 13.42 \\ 10.29 \\ 13.42 \\ 10.90 \\ 13.42 \\ 10.29 \\ 13.42 \\ 10.39 \\ 11.69 \\ 13.42 \\ 10.39 \\ 11.69 \\ 13.42 \\ 10.29 \\ 13.42 \\ 10.39 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 \\ 11.51 $ | 16.83<br>13.50<br>10.55<br>8.77<br>12.94<br>10.59<br>8.78<br>20.94<br>17.10<br>13.43<br>11.55<br>23.70<br>14.21<br>12.39<br>25.60<br>25.22<br>23.82<br>19.05<br>14.21<br>12.39<br>25.60<br>25.22<br>23.82<br>19.16<br>16.17<br>14.68<br>22.83<br>18.97<br>15.85<br>13.55<br>16.80<br>14.31<br>12.65<br>13.79<br>15.60<br>12.16<br>12.00<br>14.51<br>17.80<br>9.27<br>18.80<br>14.58<br>11.41 | 55554446666655555555555777788887777777777 | 99999999999999999999999999999999999999 |
|                                                                                                                                                                                                                                     | 0.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.26                                                                                                                                                                                                                                           | 9.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.97                                                                                                                                                                                                                                                                                                                                                                                         | 7.1                                       | 92.9                                   |

| No.                                                                                                                                                                                                                                                | $C_1HW$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $C_{2}Ha$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $C_3 H_I$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\stackrel{\scriptscriptstyle \wedge}{\mathrm{H}}(\mathrm{mm})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H(mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pw (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pa (%)                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| 040<br>041<br>042<br>043<br>044<br>045<br>046<br>047<br>048<br>049<br>051<br>052<br>053<br>055<br>056<br>057<br>059<br>061<br>062<br>0667<br>068<br>070<br>072<br>073<br>074<br>075<br>077<br>078<br>077<br>078<br>081<br>082<br>084<br>085<br>086 | $\begin{array}{c} 5.72\\ 5.00\\ 3.64\\ 2.33\\ 3.90\\ 4.33\\ 0.44\\ 1.94\\ 2.26\\ 1.85\\ 2.26\\ 2.82\\ 1.52\\ 2.68\\ 2.82\\ 1.55\\ 2.68\\ 2.82\\ 1.55\\ 2.68\\ 2.82\\ 1.55\\ 2.68\\ 2.82\\ 1.55\\ 2.68\\ 2.82\\ 1.55\\ 2.93\\ 4.26\\ 2.92\\ 4.26\\ 2.93\\ 2.93\\ 4.26\\ 2.92\\ 2.93\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\ 3.67\\$ | 46.56<br>40.74<br>29.63<br>23.28<br>19.17<br>42.28<br>38.06<br>29.27<br>19.03<br>22.27<br>19.03<br>22.27<br>15.24<br>20.42<br>16.33<br>18.04<br>21.27<br>17.41<br>27.35<br>13.68<br>51.05<br>40.841<br>21.49<br>31.41<br>25.52<br>38.15<br>34.34<br>21.46<br>12.49<br>38.15<br>34.34<br>21.46<br>12.49<br>38.15<br>34.341<br>21.46<br>12.49<br>38.15<br>34.341<br>21.46<br>12.080<br>33.79<br>18.02<br>34.64<br>21.46<br>12.03<br>33.79<br>18.02<br>32.06<br>24.66<br>20.04<br>16.88<br>22.23<br>27.78 | -6.43<br>-4.92<br>-2.60<br>-1.09<br>-4.43<br>-2.60<br>-1.09<br>-4.43<br>-2.00<br>-1.09<br>-2.02<br>-1.20<br>-0.579<br>-1.20<br>-0.47<br>-1.175<br>-0.43<br>-2.02<br>-0.579<br>-1.75<br>-1.40<br>-0.43<br>-2.02<br>-0.43<br>-1.20<br>-0.43<br>-2.02<br>-1.20<br>-0.43<br>-2.02<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>- | H(mm)<br>26.67<br>25.64<br>21.64<br>18.16<br>15.44<br>28.35<br>26.76<br>22.42<br>19.00<br>15.60<br>22.27<br>17.98<br>14.89<br>12.60<br>18.87<br>16.29<br>13.34<br>11.17<br>14.61<br>18.08<br>12.10<br>10.22<br>17.27<br>14.35<br>21.30<br>12.39<br>25.78<br>25.09<br>22.17<br>19.32<br>16.91<br>22.00<br>21.38<br>16.37<br>19.00<br>21.38<br>16.37<br>19.00<br>21.38<br>16.37<br>19.00<br>21.38<br>16.37<br>19.00<br>21.38<br>16.37<br>19.00<br>21.38<br>16.37<br>19.00<br>21.38<br>16.37<br>19.00<br>21.38<br>16.37<br>19.00<br>21.38<br>16.37<br>19.00<br>21.38<br>16.37<br>19.00<br>21.38<br>16.37<br>17.30<br>20.35<br>13.84 | 25.50<br>25.40<br>20.67<br>14.37<br>25.60<br>24.80<br>20.87<br>14.30<br>23.67<br>15.50<br>12.93<br>15.50<br>12.93<br>17.03<br>12.70<br>12.47<br>20.80<br>25.30<br>25.30<br>25.30<br>25.30<br>25.30<br>23.47<br>16.13<br>25.50<br>12.47<br>20.80<br>25.30<br>25.30<br>25.30<br>25.50<br>15.57<br>12.47<br>20.80<br>25.30<br>25.30<br>23.47<br>16.13<br>25.50<br>12.47<br>20.63<br>15.57<br>13.97<br>13.97<br>15.50<br>12.47<br>20.63<br>15.57<br>13.97<br>13.97<br>13.97<br>13.97<br>13.97<br>13.97<br>13.97<br>13.97<br>13.97<br>13.60<br>18.70<br>15.53<br>13.03<br>15.60<br>18.70<br>15.53<br>13.03<br>15.60<br>18.70<br>15.53<br>13.03<br>15.60<br>18.70<br>15.53<br>13.03<br>15.60<br>18.70<br>15.53<br>15.60<br>18.70<br>15.53<br>15.60<br>18.70<br>15.53<br>15.60<br>18.70<br>15.53<br>15.60<br>18.70<br>15.53<br>15.60<br>18.70<br>15.53<br>15.60<br>18.70<br>15.53<br>15.60<br>18.70<br>15.53<br>15.60<br>18.70<br>15.53<br>15.60<br>18.70<br>15.50<br>15.53<br>15.60<br>18.70<br>15.60<br>11.80<br>15.80<br>15.80<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.60<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>15.80<br>1 | $\begin{array}{c} 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\$ | 89.1<br>89.1<br>89.1<br>111777788888<br>8999999999999999999999999 |

| No.                                                                                                                                                                                       | $C_{^{1}}Hw$                                                                                                                                                                                    | C <sub>2</sub> Ha                                                                                                                                                                                                                                 | $C_3 H_1$                                                                                                                                                                                                                                                            | $\hat{H}(mm)$                                                                                                                                                                                              | H(mm)                                                                                                                                                                                                                               | Pw (%)                                                                                                                                                                   | Pa (%)                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No.<br>088<br>089<br>090<br>091<br>092<br>093<br>094<br>095<br>096<br>097<br>098<br>099<br>100<br>101<br>102<br>103<br>104<br>105<br>106<br>107<br>108<br>109<br>110<br>111<br>112<br>113 | $C_1HW$<br>1.96<br>1.60<br>1.36<br>1.19<br>0.91<br>0.72<br>0.53<br>0.24<br>0.28<br>0.45<br>0.86<br>1.33<br>1.60<br>1.81<br>1.45<br>1.21<br>1.42<br>0.99<br>0.51<br>0.64<br>0.47<br>0.37<br>0.22 | C <sub>2</sub> Ha<br>14.82<br>18.63<br>16.36<br>14.63<br>11.76<br>9.69<br>7.50<br>5.37<br>3.84<br>4.94<br>7.49<br>13.00<br>18.76<br>21.68<br>24.04<br>19.22<br>16.02<br>17.94<br>22.43<br>16.54<br>13.23<br>9.07<br>11.33<br>8.76<br>7.01<br>4.31 | $\begin{array}{c} -0.70\\ -0.72\\ -0.54\\ -0.42\\ -0.26\\ -0.17\\ -0.10\\ -0.05\\ -0.02\\ -0.03\\ -0.03\\ -0.08\\ -0.27\\ -0.60\\ -0.84\\ -1.05\\ -0.67\\ -0.47\\ -0.49\\ -0.77\\ -0.49\\ -0.77\\ -0.40\\ -0.25\\ -0.11\\ -0.18\\ -0.10\\ -0.06\\ -0.02 \end{array}$ |                                                                                                                                                                                                            | H(mm)<br>9.17<br>17.47<br>14.52<br>13.14<br>10.52<br>9.02<br>6.83<br>4.09<br>2.54<br>2.65<br>5.06<br>10.84<br>16.13<br>19.01<br>20.89<br>16.73<br>14.44<br>15.54<br>18.51<br>13.34<br>11.21<br>7.77<br>9.11<br>6.78<br>5.47<br>3.01 | Pw (%)<br>11.7<br>7.9<br>7.7<br>7.5<br>7.1<br>6.9<br>5.2<br>5.3<br>5.6<br>5.3<br>5.6<br>5.3<br>5.6<br>5.3<br>5.3<br>5.3<br>5.3<br>5.3<br>5.3<br>5.3<br>5.3<br>5.3<br>5.3 | Pa (%)<br>88.3<br>92.1<br>92.2<br>92.5<br>93.1<br>93.5<br>93.8<br>94.2<br>94.4<br>93.8<br>93.4<br>93.4<br>93.4<br>93.0<br>93.0<br>93.0<br>93.0<br>93.0<br>94.1<br>94.4<br>94.7<br>94.9<br>94.7<br>94.9<br>95.2 |
| $\begin{array}{c} 113\\ 114\\ 115\\ 116\\ 117\\ 118\\ 119\\ 120\\ 121\\ 122\\ 123\\ 124\\ 125\\ 126\\ 127\\ 128\\ 129\\ 130\\ 131\\ 132\\ 133\\ 134\\ 135\\ 136\\ 137\end{array}$         | 0.22<br>0.27<br>0.16<br>0.13<br>2.02<br>1.94<br>1.89<br>1.78<br>1.74<br>1.69<br>1.66<br>1.65<br>1.65<br>1.65<br>0.98<br>0.95<br>0.92<br>0.82<br>0.74<br>0.72<br>0.70<br>0.67                    | 4.31<br>5.39<br>3.31<br>2.64<br>4.25<br>10.45<br>13.76<br>17.01<br>19.36<br>20.87<br>22.61<br>23.30<br>23.66<br>24.02<br>4.04<br>6.20<br>8.25<br>10.33<br>11.72<br>12.53<br>12.98<br>13.13<br>13.26<br>13.28                                      | -0.02<br>-0.01<br>-0.01<br>-0.21<br>-0.49<br>-0.63<br>-0.75<br>-0.83<br>-0.92<br>-0.93<br>-0.94<br>-0.94<br>-0.10<br>-0.14<br>-0.18<br>-0.22<br>-0.23<br>-0.23<br>-0.23<br>-0.23<br>-0.22<br>-0.23<br>-0.22                                                          | 3.42<br>1.31<br>0.63<br>3.40<br>8.50<br>11.25<br>13.98<br>15.99<br>17.30<br>18.82<br>19.75<br>19.77<br>20.09<br>2.57<br>4.53<br>6.39<br>8.30<br>9.59<br>10.35<br>10.76<br>10.91<br>10.99<br>11.04<br>11.06 | 3.79<br>1.18<br>1.30<br>3.10<br>8.16<br>10.93<br>13.64<br>15.46<br>16.77<br>17.41<br>17.55<br>17.53<br>17.18<br>2.22<br>3.87<br>5.87<br>8.15<br>9.30<br>10.33<br>10.15<br>10.30<br>10.45<br>10.06<br>9.84                           | $\begin{array}{c} 4.8\\ 4.5\\ 4.5\\ 32.2\\ 15.7\\ 12.1\\ 9.7\\ 8.4\\ 7.7\\ 6.5\\ 6.4\\ 19.3\\ 10.8\\ 6.8\\ 5.4\\ 5.2\\ 13.0\\ 7.6\\ 8.4\\ 2.1\\ 9.8\\ 4.8\end{array}$    | 95.2<br>95.5<br>95.5<br>84.3<br>90.3<br>91.6<br>92.3<br>93.6<br>93.3<br>93.6<br>93.3<br>93.6<br>93.3<br>93.6<br>93.6                                                                                           |

| No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $C_{1}Hw$                                                                            | $C_{2}Ha$                                                                                     | $C_3 H_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\hat{\mathrm{H}}(mm)$                                                                                | H(mm)                                                                                        | Pw (%)                                                                             | Pa (%)                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                      |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                       |                                                                                              |                                                                                    |                                                                                              |
| $138 \\ 139 \\ 140 \\ 141 \\ 142 \\ 143 \\ 144 \\ 145 \\ 146 \\ 147 \\ 148 \\ 149 \\ 149 \\ 149 \\ 149 \\ 149 \\ 149 \\ 149 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 $ | 0.67<br>0.55<br>0.52<br>0.48<br>0.45<br>0.42<br>0.40<br>0.39<br>0.38<br>0.36<br>0.35 | 13.28<br>2.84<br>4.28<br>5.69<br>6.81<br>7.38<br>7.66<br>7.73<br>7.75<br>7.73<br>7.69<br>7.64 | -0.21<br>-0.04<br>-0.07<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.08<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.08<br>-0.08<br>-0.08<br>-0.07<br>-0.08<br>-0.07<br>-0.08<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>- | 11.06<br>1.15<br>2.52<br>3.84<br>4.90<br>5.43<br>5.69<br>5.76<br>5.76<br>5.77<br>5.74<br>5.70<br>5.65 | 9.80<br>0.82<br>1.58<br>2.62<br>3.77<br>4.59<br>4.99<br>5.20<br>5.35<br>5.40<br>5.36<br>5.49 | 4.8<br>16.7<br>11.3<br>8.3<br>6.6<br>5.7<br>5.2<br>5.0<br>4.8<br>4.6<br>4.5<br>4.4 | 95.2<br>83.3<br>88.7<br>91.7<br>93.4<br>94.3<br>94.8<br>95.0<br>95.2<br>95.4<br>95.5<br>95.6 |
| 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.35                                                                                 | 7.61                                                                                          | -0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.61                                                                                                  | 5.52                                                                                         | 4.3                                                                                | 95.7                                                                                         |

### Database 7 The Predicted Velocity Distribution ( Steel AISI 1810, Size of Abrasive = 80 mesh )

| No.        | Ma/Mw          | Vsw        | Vcw        | Va         | Vcw/Vsw        | Va/Vsw         | Va/Vcw         | H(mm)          |
|------------|----------------|------------|------------|------------|----------------|----------------|----------------|----------------|
|            |                |            |            |            |                |                |                |                |
| 001        | 0.235          | 796        | 645        | 400        | 0.81           | 0.502          | 0.62           | 16.83          |
| 002        | 0.235          | 796        | 645        | 400        | 0.81           | 0.502          | 0.62           | 13.50          |
| 003        | 0.235          | 796        | 645        | 400        | 0.81           | 0.502          | 0.62           | 10.55          |
| 004        | 0.235          | 796        | 645        | 400        | 0.81           | 0.502          | 0.62           | 8.77           |
| 005        | 0.294          | 796        | 615        | 355        | 0.773          | 0.446          | 0.578          | 12.94          |
| 006        | 0.294          | 796        | 615        | 355        | 0.773          | 0.446          | 0.578          | 10.59          |
| 007        | 0.249          | 796        | 615        | 355        | 0.773          | 0.446          | 0.578          | 8.78           |
| 008        | 0.148          | 796        | 694        | 490        | 0.871          | 0.616          | 0.707          | 20.94          |
| 009        | 0.148          | 796        | 694        | 490        | 0.871          | 0.616          | 0.707          | 17.10          |
| 010        | 0.148          | 796        | 694        | 490        | 0.871          | 0.616          | 0.707          | 13.43          |
| 011        | 0.148          | 796        | 694        | 490        | 0.871          | 0.616          | 0.707          | 11.55          |
| 012        | 0.189          | 796        | 670        | 443        | 0.841          | 0.557          | 0.662          | 23.70          |
| 013        | 0.189          | 796        | 670        | 443        | 0.841          | 0.557          | 0.662          | 19.05          |
| 014        | 0.189          | 796        | 670        | 443        | 0.841          | 0.557          | 0.662          | 14.21          |
| 015        | 0.189          | 796        | 670        | 443        | 0.841          | 0.557          | 0.662          | 12.39          |
| 016        | 0.087          | 796        | 732        | 582        | 0.92           | 0.731          | 0.795          | 25.60          |
| 017        | 0.087          | 796        | 732        | 582        | 0.92           | 0.731          | 0.795          | 25.22          |
| 018        | 0.087          | 796        | 732        | 582        | 0.92           | 0.731          | 0.795          | 23.82          |
| 019        | 0.087          | 796        | 732        | 582        | 0.92           | 0.731          | 0.795          | 19.16          |
| 020        | 0.087          | 796<br>796 | 732        | 582        | 0.92           | 0.731          | 0.795          | 16.17          |
| 021<br>022 | 0.087          | 796<br>796 | 732        | 582        | 0.92           | 0.731          | 0.795          | 14.68          |
| 022        | 0.106<br>0.106 | 796<br>796 | 720<br>720 | 551<br>551 | 0.904<br>0.904 | 0.692<br>0.692 | 0.765<br>0.765 | 22.83<br>18.97 |
| 023        | 0.106          | 796<br>796 | 720        | 551        | 0.904<br>0.904 | 0.692          | 0.765          | 15.85          |
| 024        | 0.106          | 796<br>796 | 720        | 551        | 0.904<br>0.904 | 0.692          | 0.765          | 13.55          |
| 025        | 0.108          | 796        | 733        | 584        | 0.904<br>0.921 | 0.092          | 0.705          | 16.80          |
| 020        | 0.086          | 796        | 733        | 584        | 0.921          | 0.733          | 0.796          | 14.31          |
| 028        | 0.086          | 796        | 733        | 584        | 0.921          | 0.733          | 0.796          | 12.65          |
| 029        | 0.108          | 796        | 718        | 547        | 0.902          | 0.687          | 0.761          | 13.79          |
| 030        | 0.108          | 796        | 718        | 547        | 0.902          | 0.687          | 0.761          | 15.60          |
| 031        | 0.108          | 796        | 718        | 547        | 0.902          | 0.687          | 0.761          | 12.16          |
| 032        | 0.108          | 796        | 718        | 547        | 0.902          | 0.687          | 0.761          | 12.00          |
| 033        | 0.108          | 796        | 718        | 547        | 0.902          | 0.687          | 0.761          | 14.51          |
| 034        | 0.108          | 796        | 718        | 547        | 0.902          | 0.687          | 0.761          | 17.80          |
| 035        | 0.108          | 796        | 718        | 547        | 0.902          | 0.687          | 0.761          | 9.27           |
| 036        | 0.122          | 796        | 710        | 526        | 0.891          | 0.661          | 0.741          | 18.80          |
| 037        | 0.122          | 796        | 710        | 526        | 0.891          | 0.661          | 0.741          | 14.58          |
| 038        | 0.122          | 796        | 710        | 526        | 0.891          | 0.661          | 0.741          | 11.41          |
| 039        | 0.060          | 796        | 710        | 526        | 0.891          | 0.661          | 0.741          | 8.97           |
| 040        | 0.060          | 796        | 751        | 636        | 0.944          | 0.799          | 0.847          | 25.50          |
| 041        | 0.060          | 796        | 751        | 636        | 0.944          | 0.799          | 0.847          | 25.40          |
| 042        | 0.060          | 796        | 751        | 636        | 0.944          | 0.799          | 0.847          | 20.67          |

| No.                                                                                                          | Ma/Mw                                                                                                                                                          | Vsw                                                                | Vcw                                                                                                   | Va                                                                                 | Vcw/Vsw                                                                                                                                                                                            | Va/Vsw                                                                                                                                                                  | Va/Vcw                                                                                                                                                                           | H(mm)                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 043<br>044<br>045<br>046<br>047<br>048<br>050<br>051<br>052<br>055<br>055<br>055<br>055<br>055<br>055<br>059 | 0.060<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.077<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.059<br>0.059<br>0.059<br>0.059<br>0.059<br>0.059 | 796<br>796<br>7966<br>7966<br>7966<br>7966<br>7966<br>7966<br>7    | 751<br>759<br>739<br>739<br>739<br>739<br>739<br>739<br>739<br>739<br>752<br>752<br>752<br>752<br>752 | 636<br>631<br>601<br>6001<br>5999<br>538<br>638<br>638<br>638<br>638<br>638<br>638 | 0.944<br>0.944<br>0.928<br>0.928<br>0.928<br>0.928<br>0.928<br>0.928<br>0.928<br>0.928<br>0.928<br>0.928<br>0.928<br>0.928<br>0.928<br>0.928<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944 | 0.799<br>0.799<br>0.754<br>0.754<br>0.754<br>0.754<br>0.754<br>0.752<br>0.752<br>0.752<br>0.752<br>0.752<br>0.752<br>0.801<br>0.801<br>0.801<br>0.801<br>0.801<br>0.801 | 0.847<br>0.847<br>0.813<br>0.813<br>0.813<br>0.813<br>0.813<br>0.813<br>0.811<br>0.811<br>0.811<br>0.811<br>0.811<br>0.811<br>0.848<br>0.848<br>0.848<br>0.848<br>0.848<br>0.848 | 16.57<br>14.37<br>25.60<br>24.80<br>20.87<br>16.47<br>14.30<br>23.67<br>19.50<br>15.50<br>12.93<br>18.97<br>17.03<br>12.70<br>10.70<br>14.03<br>18.23 |
| 060<br>061<br>062<br>063<br>064<br>065<br>066<br>066<br>066<br>068<br>069<br>070<br>071                      | 0.059<br>0.059<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.057<br>0.057<br>0.057<br>0.057<br>0.057                                                       | 796<br>796<br>796<br>796<br>796<br>796<br>796<br>796<br>796<br>796 | 752<br>752<br>739<br>739<br>739<br>735<br>735<br>735<br>735<br>735<br>735<br>735                      | 638<br>638<br>600<br>600<br>600<br>642<br>642<br>642<br>642<br>642<br>642          | 0.944<br>0.944<br>0.928<br>0.928<br>0.928<br>0.928<br>0.928<br>0.946<br>0.946<br>0.946<br>0.946<br>0.946<br>0.946<br>0.946                                                                         | 0.801<br>0.801<br>0.753<br>0.753<br>0.753<br>0.753<br>0.753<br>0.807<br>0.807<br>0.807<br>0.807<br>0.807<br>0.807                                                       | 0.848<br>0.848<br>0.812<br>0.812<br>0.812<br>0.812<br>0.812<br>0.853<br>0.853<br>0.853<br>0.853<br>0.853<br>0.853<br>0.853                                                       | 9.87<br>7.73<br>17.00<br>12.47<br>20.80<br>8.80<br>25.40<br>25.30<br>24.60<br>23.47<br>18.97<br>16.13                                                 |
| 072<br>073<br>074<br>075<br>076<br>077<br>078<br>079<br>080<br>081<br>082                                    | 0.044<br>0.044<br>0.044<br>0.044<br>0.044<br>0.044<br>0.044<br>0.044<br>0.044<br>0.056<br>0.056                                                                | 796<br>796<br>796<br>796<br>796<br>796<br>796<br>796<br>796<br>796 | 763<br>763<br>763<br>763<br>763<br>763<br>763<br>763<br>763<br>754<br>754                             | 672<br>672<br>672<br>672<br>673<br>673<br>673<br>673<br>644<br>644                 | 0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958                                                                                                    | 0.844<br>0.844<br>0.844<br>0.844<br>0.845<br>0.845<br>0.845<br>0.845<br>0.845<br>0.845<br>0.845<br>0.809<br>0.809                                                       | 0.881<br>0.881<br>0.881<br>0.881<br>0.882<br>0.882<br>0.882<br>0.882<br>0.882<br>0.882<br>0.882<br>0.854<br>0.854                                                                | 25.50<br>23.10<br>18.73<br>15.70<br>12.47<br>20.63<br>16.07<br>23.37<br>13.97<br>23.57<br>19.02                                                       |
| 083<br>084<br>085<br>086<br>087<br>088<br>089<br>090<br>091                                                  | 0.056<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.100<br>0.105<br>0.110                                                                                  | 796<br>796<br>796<br>796<br>796<br>796<br>796<br>756<br>724        | 754<br>755<br>755<br>755<br>755<br>724<br>684<br>652                                                  | 644<br>647<br>647<br>647<br>647<br>560<br>524<br>495                               | 0.947<br>0.947<br>0.948<br>0.948<br>0.948<br>0.948<br>0.948<br>0.909<br>0.905<br>0.901                                                                                                             | 0.809<br>0.813<br>0.813<br>0.813<br>0.813<br>0.813<br>0.704<br>0.693<br>0.683                                                                                           | 0.854<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.857<br>0.774<br>0.766<br>0.758                                                                                           | 15.53 $13.03$ $15.60$ $18.70$ $11.80$ $9.17$ $17.47$ $14.52$ $13.14$                                                                                  |

| 092<br>093<br>094                                                                                                                                                                                                     | 0.120<br>0.128<br>0.141                                                                                                                                                                                                                                                                                                                           | 665                                                                      | 504                                                                         |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 095<br>096<br>097<br>098<br>099<br>100<br>101<br>102<br>103<br>104<br>105<br>106<br>107<br>108<br>109<br>110<br>111<br>112<br>113<br>114<br>115<br>116<br>117<br>118<br>119<br>120<br>121<br>122<br>123<br>124<br>125 | 0.16<br>0.181<br>0.226<br>0.195<br>0.160<br>0.140<br>0.130<br>0.125<br>0.125<br>0.125<br>0.125<br>0.125<br>0.125<br>0.125<br>0.125<br>0.125<br>0.125<br>0.125<br>0.218<br>0.218<br>0.246<br>0.248<br>0.246<br>0.248<br>0.246<br>0.248<br>0.292<br>0.343<br>0.343<br>0.012<br>0.034<br>0.050<br>0.071<br>0.090<br>0.105<br>0.127<br>0.138<br>0.145 | 6544400<br>5244400<br>52146666698332227788844427777777777777777777777777 | 554433456677766666554433337777777669<br>99112277088899966777055566708411695 | $\begin{array}{c} 442\\ 403\\ 598\\ 2502287\\ 255445221\\ 52217556644477333282222733967482834\\ 551834322223333967482834\\ 5518343322223333967482834\\ 55183433433333333333333$ | 0.862<br>0.847<br>0.815<br>0.836<br>0.862<br>0.878<br>0.889<br>0.889<br>0.889<br>0.889<br>0.889<br>0.854<br>0.854<br>0.821<br>0.821<br>0.821<br>0.801<br>0.744<br>0.744<br>0.744<br>0.744<br>0.744<br>0.744<br>0.989<br>0.967<br>0.918<br>0.905<br>0.878<br>0.873<br>0.873 | 0.665<br>0.649<br>0.597<br>0.568<br>0.512<br>0.548<br>0.597<br>0.630<br>0.646<br>0.655<br>0.655<br>0.655<br>0.581<br>0.554<br>0.554<br>0.554<br>0.554<br>0.554<br>0.554<br>0.554<br>0.5521<br>0.521<br>0.489<br>0.448<br>0.448<br>0.448<br>0.448<br>0.448<br>0.448<br>0.448<br>0.449<br>0.448<br>0.448<br>0.448<br>0.448<br>0.449<br>0.554<br>0.521<br>0.521<br>0.521<br>0.521<br>0.521<br>0.521<br>0.5521<br>0.5521<br>0.5521<br>0.5521<br>0.5521<br>0.5521<br>0.5521<br>0.5521<br>0.5521<br>0.5221<br>0.5221<br>0.5221<br>0.5221<br>0.5221<br>0.632<br>0.693<br>0.651<br>0.632<br>0.631<br>0.632 | 0.744<br>0.733<br>0.715<br>0.693<br>0.670<br>0.628<br>0.655<br>0.737<br>0.737<br>0.737<br>0.737<br>0.680<br>0.660<br>0.660<br>0.660<br>0.634<br>0.610<br>0.634<br>0.610<br>0.579<br>0.549<br>0.549<br>0.549<br>0.549<br>0.549<br>0.549<br>0.549<br>0.549<br>0.549<br>0.549<br>0.549<br>0.549<br>0.549<br>0.549<br>0.549<br>0.549<br>0.549<br>0.549<br>0.549<br>0.549<br>0.549<br>0.549<br>0.549<br>0.549<br>0.549<br>0.549<br>0.549<br>0.549<br>0.549<br>0.549<br>0.549<br>0.734<br>0.734<br>0.719<br>0.711 | 10.52<br>9.02<br>6.83<br>4.09<br>2.54<br>2.65<br>5.06<br>10.84<br>16.13<br>19.01<br>20.89<br>16.73<br>14.44<br>15.54<br>13.34<br>11.21<br>7.77<br>9.11<br>6.78<br>5.47<br>3.01<br>3.79<br>1.81<br>1.30<br>8.16<br>10.93<br>15.46<br>16.77<br>17.41<br>17.55<br>17.53 |
|                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                   |                                                                          |                                                                             |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                      |
| 131<br>132<br>133<br>134<br>135<br>136<br>137<br>138<br>139                                                                                                                                                           | 0.139<br>0.176<br>0.212<br>0.233<br>0.251<br>0.269<br>0.286<br>0.296<br>0.030                                                                                                                                                                                                                                                                     | 814<br>814<br>814<br>814<br>814<br>814<br>814<br>814<br>814<br>814       | 714<br>692<br>671<br>660<br>650<br>641<br>633<br>628<br>609                 | 513<br>467<br>429<br>410<br>395<br>381<br>369<br>362<br>557                                                                                                                     | 0.878<br>0.850<br>0.825<br>0.811<br>0.799<br>0.788<br>0.778<br>0.772<br>0.971                                                                                                                                                                                              | 0.631<br>0.573<br>0.528<br>0.504<br>0.486<br>0.469<br>0.454<br>0.445<br>0.887                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.718<br>0.675<br>0.640<br>0.622<br>0.608<br>0.595<br>0.583<br>0.577<br>0.914                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.30<br>10.33<br>10.15<br>10.30<br>10.45<br>10.06<br>9.84<br>9.80<br>0.82                                                                                                                                                                                            |

| No.                                                                | Ma/Mw                                                                         | Vsw                                                                | Vcw                                                                | Va                                                                 | Vcw/Vsw                                                                               | Va/Vsw                                                                                          | Va/Vcw                                                                                 | H (mm)                                                                       |
|--------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 141<br>142<br>143<br>144<br>145<br>146<br>147<br>148<br>149<br>150 | 0.088<br>0.136<br>0.230<br>0.262<br>0.296<br>0.321<br>0.346<br>0.369<br>0.384 | 628<br>628<br>628<br>628<br>628<br>628<br>628<br>628<br>628<br>628 | 577<br>553<br>531<br>510<br>497<br>484<br>475<br>466<br>458<br>453 | 457<br>399<br>355<br>319<br>298<br>279<br>267<br>255<br>246<br>240 | 0.919<br>0.88<br>0.846<br>0.813<br>0.792<br>0.772<br>0.757<br>0.743<br>0.730<br>0.722 | 0.728<br>0.636<br>0.565<br>0.508<br>0.475<br>0.445<br>0.425<br>0.425<br>0.407<br>0.391<br>0.382 | 0.793<br>0.722<br>0.669<br>0.625<br>0.600<br>0.577<br>0.562<br>0.547<br>0.536<br>0.528 | 2.62<br>3.77<br>4.59<br>4.99<br>5.20<br>5.35<br>5.40<br>5.36<br>5.49<br>5.52 |

### The Predicted Velocity Distribution ( Steel AISI 1810, Size of Abrasive = 50 mesh )

| No.                                                                                                                              | Ma/Mw                                                                                                                                                                                                                                                                                        | Vw                                                                                                                 | Vcw                                                                      | Va                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Vcw/Vw                                                                                                                                                                                                                                                             | Va/Vw                                                                                                                                                                                                                                                                      | Va/Vcw                                                                                                                                                                                                                                                    | H(mm)                                                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No.<br>01<br>02<br>03<br>04<br>05<br>06<br>07<br>08<br>09<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>9<br>20<br>21 | Ma/Mw<br>0.081<br>0.081<br>0.081<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.112<br>0.044<br>0.044<br>0.044<br>0.044<br>0.044<br>0.044<br>0.056<br>0.056<br>0.056<br>0.056<br>0.056<br>0.056<br>0.056<br>0.056<br>0.056<br>0.056<br>0.056<br>0.056<br>0.072<br>0.072<br>0.072<br>0.094 | Vw<br>781<br>781<br>781<br>781<br>781<br>781<br>796<br>796<br>796<br>796<br>796<br>796<br>796<br>796<br>796<br>796 | Vcw<br>722<br>722<br>722<br>722<br>722<br>722<br>722<br>722<br>722<br>72 | Va<br>582<br>582<br>531<br>531<br>531<br>531<br>671<br>671<br>671<br>643<br>643<br>643<br>643<br>610<br>610<br>610<br>570                                                                                                                                                                                                                                                                                                                                                                                                                               | Vcw/Vw<br>0.925<br>0.925<br>0.925<br>0.925<br>0.900<br>0.900<br>0.900<br>0.900<br>0.900<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.947<br>0.947<br>0.947<br>0.947<br>0.947<br>0.947<br>0.947<br>0.933<br>0.933<br>0.933<br>0.933<br>0.914 | Va/Vw<br>0.745<br>0.745<br>0.745<br>0.745<br>0.680<br>0.680<br>0.680<br>0.680<br>0.680<br>0.680<br>0.843<br>0.843<br>0.843<br>0.843<br>0.843<br>0.843<br>0.843<br>0.843<br>0.843<br>0.843<br>0.843<br>0.808<br>0.808<br>0.808<br>0.808<br>0.766<br>0.766<br>0.766<br>0.716 | Va/Vcw<br>0.805<br>0.805<br>0.805<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.880<br>0.880<br>0.880<br>0.880<br>0.880<br>0.853<br>0.853<br>0.853<br>0.853<br>0.853<br>0.853<br>0.853<br>0.853<br>0.822<br>0.822<br>0.822<br>0.822<br>0.822<br>0.822 | H (mm)<br>22.27<br>12.12<br>16.58<br>8.84<br>23.45<br>19.72<br>14.11<br>10.84<br>19.63<br>15.47<br>12.43<br>9.94<br>22.53<br>16.53<br>13.90<br>11.81<br>19.35<br>16.33<br>11.40<br>10.04<br>22.97 |
| 21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>34<br>35<br>34<br>35<br>36<br>37<br>38                   | 0.094<br>0.094<br>0.094<br>0.094<br>0.094<br>0.094<br>0.094<br>0.094<br>0.094<br>0.094<br>0.094<br>0.094<br>0.094<br>0.094<br>0.074<br>0.074<br>0.074<br>0.086<br>0.086<br>0.086                                                                                                             | 796<br>796<br>796<br>796<br>796<br>796<br>796<br>796<br>796<br>796                                                 | 728<br>728<br>728<br>728<br>728<br>728<br>728<br>728<br>728<br>728       | 570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>570<br>584<br>584<br>584 | 0.914<br>0.914<br>0.914<br>0.914<br>0.914<br>0.914<br>0.914<br>0.914<br>0.914<br>0.914<br>0.931<br>0.931<br>0.931<br>0.931<br>0.921<br>0.921<br>0.921                                                                                                              | 0.716<br>0.716<br>0.716<br>0.716<br>0.716<br>0.716<br>0.716<br>0.716<br>0.716<br>0.761<br>0.761<br>0.761<br>0.761<br>0.761<br>0.761<br>0.763<br>0.733<br>0.733<br>0.733                                                                                                    | 0.783<br>0.783<br>0.783<br>0.783<br>0.783<br>0.783<br>0.783<br>0.783<br>0.783<br>0.783<br>0.783<br>0.783<br>0.818<br>0.818<br>0.818<br>0.818<br>0.818<br>0.818<br>0.796<br>0.796<br>0.796<br>0.796                                                        | 22.97<br>20.29<br>16.80<br>14.03<br>11.62<br>22.39<br>20.17<br>17.00<br>14.79<br>13.13<br>20.36<br>16.54<br>14.10<br>10.84<br>12.44<br>17.09<br>8.67<br>7.01                                      |

### Database 9 The Predicted Velocity Distribution ( Steel AISI 1810,Size of Abrasive = 220 mesh )

| No. | Ma/Mw | Vw  | Vcw | Va  | Vcw/Vw | Va/Vw | Va/Vcw | H(mm)  |
|-----|-------|-----|-----|-----|--------|-------|--------|--------|
|     |       |     |     |     |        |       |        |        |
| 01  | 0.055 | 796 | 755 | 647 | 0.948  | 0.813 | 0.857  | 22.48  |
| 02  | 0.055 | 796 | 755 | 647 | 0.948  | 0.813 | 0.857  | 18.41  |
| 03  | 0.055 | 796 | 755 | 647 | 0.948  | 0.813 | 0.587  | 14.83  |
| 04  | 0.055 | 796 | 755 | 647 | 0.948  | 0.813 | 0.587  | 13.32  |
| 05  | 0.064 | 796 | 748 | 627 | 0.940  | 0.787 | 0.838  | 21.25  |
| 06  | 0.064 | 796 | 748 | 627 | 0.940  | 0.787 | 0.838  | 17.94  |
| 07  | 0.064 | 796 | 748 | 627 | 0.940  | 0.787 | 0.838  | 14.48  |
| 08  | 0.064 | 796 | 748 | 627 | 0.940  | 0.787 | 0.838  | 11.86  |
| 09  | 0.081 | 796 | 737 | 594 | 0.925  | 0.747 | 0.807  | 21.45  |
| 10  | 0.081 | 796 | 737 | 594 | 0.925  | 0.747 | 0.807  | 15.96  |
| 11  | 0.081 | 796 | 737 | 594 | 0.925  | 0.747 | 0.807  | 14.45  |
| 12  | 0.081 | 796 | 737 | 594 | 0.925  | 0.747 | 0.807  | 12.31  |
| 13  | 0.034 | 796 | 770 | 698 | 0.968  | 0.876 | 0.905  | 18.50  |
| 14  | 0.034 | 796 | 770 | 698 | 0.968  | 0.876 | 0.905  | 15.17  |
| 15  | 0.034 | 796 | 770 | 698 | 0.968  | 0.876 | 0.905  | 12.89  |
| 16  | 0.034 | 796 | 770 | 698 | 0.968  | 0.876 | 0.905  | 11.00  |
| 17  | 0.041 | 796 | 765 | 679 | 0.961  | 0.852 | 0.887  | 21.35  |
| 18  | 0.041 | 796 | 765 | 679 | 0.961  | 0.852 | 0.887  | 17.61  |
| 19  | 0.041 | 796 | 765 | 679 | 0.961  | 0.852 | 0.887  | 14.38  |
| 20  | 0.041 | 796 | 765 | 679 | 0.961  | 0.852 | 0.887  | 13.13  |
| 21  | 0.048 | 796 | 760 | 662 | 0.954  | 0.832 | 0.872  | .23.49 |
| 22  | 0.048 | 796 | 760 | 662 | 0.954  | 0.832 | 0.872  | 19.91  |
| 23  | 0.048 | 796 | 760 | 662 | 0.954  | 0.832 | 0.872  | 16.19  |
| 24  | 0.048 | 796 | 760 | 662 | 0.954  | 0.832 | 0.872  | 14.23  |

#### WORKS CITED

- 1. Ohya, H. and M. Hoshina. "Research and Development into Ultra-high Pressure Jet Boring Machine" *Proceedings of the 10th International Symposium on Jet Cutting Technology*. Amsterdam (1990).
- 2. Geskin, E.S., W.L. Chen and W.Z. Lee. "Glass Shaping by the Use of Abrasive Waterjet." *Glass Digest*. November, 1989, pp. 60-64.
- Vora, A. "Investigation of the Characteristics of the Kerf and the Surface Generated in the Course of Cutting Titanium with Abrasive Waterjet" *Master's Thesis*. New Jersey Institute of Technology, May 1988.
- 4. Hashish, M. "Application of Abrasive Waterjet to Metal Cutting". Proceedings of Conference on Nontraditional Machining. 1986, pp. 1-11.
- 5. Hashish, M., "Turning, Milling and Drilling with Abrasive-Waterjet (AWJ)". Proceedings of the 9th International Symposium on Jet Cutting Technology. October, 1988, pp. 113-132.
- 6. Hu, F., Y. Yang, E,S. Geskin and Y. Chung. "Characterization of Material Removal in the Course of Abrasive Waterjet Machining". *Proceedings of the 6th American Water Jet Conference*. Houston (1990), pp. 17-29.
- 7. Hu, F. "Investigation of Material Erosion by Abrasive Water Cutting". *Master's Thesis*. New Jersey Institute of Technology, May 1990.
- Hashish, M. "Prediction Equations Relating High Velocity Jet Cutting Performance to Stand Off Distance and Multipasses". Journal of Engineering Industry. August 1979, Vol. 101, pp.311-318.
- Shih, L.Y. "Development of Technology for Glass Shaping by the Use of Abrasive Water-jet". *Master's Thesis*. New Jersey Institute of Technology. September 1991.
- I. Finnie, A. Levy, and D.H. Mcfadden, "Fundamental Mechanisms of Erosive Wear of Ductile Metals by Solid Particles". *Erosion: Prevention and Useful Applications*. ASTM Stp 664, 1979, pp.36-58.
- 11. Bitter, J. G. A., "A Study of Erosion Phenomena Part I" Wear, Vol 6, 1963, pp.5-21.

- 12. Bitter, J. G. A., "A Study of Erosion Phenomena Part II" Wear, Vol 6, 1963, pp.169-190.
- 13. G. P. Tilly, "A Two Stage Mechanism of Ductile Erosion", Wear, Vol. 23, 1973, pp87-96.
- J. Maji and G. L. Sheldon, "Mechanisms of Erosion of a Ductile Material by Solid Particles", Erosion: Prevention and Useful Applications, ASTM Stp 664, 1979, pp. 136-147.
- 15. I. M. Hutchings, "Mechanisms of the Erosion of Metal by Solid Particles", *Erosion: Prevention and Useful Applications*, ASTM Stp 664, 1979, pp. 59-76.
- C. E. Smeltzer, M. E. Gulden, W. A. Compton, "Mechanism of Metal Removal by Impacting Dust Particles", *Journal of Basic Engineering*, Sept, 1970, pp. 639-654.
- 17. Ambrish Misra, Iain Finnie, "On the Size Effect in Abrasive Waterjet", Wear, Vol. 65, 1981, pp. 359-373.
- 18. Hashish. M, "A Modeling Study of Metal Cutting with Abrasive Waterjet", Journal of Engineering Material and Technology, Vol. 106, Jan. 1984, pp. 88-100.
- 19. Donald D. Davis, Nontraditional Manufacturing Process, Jossey-Bass, 1980, pp157-193
- 20. Finnie, I. "Erosion of Surfaces By Solid Particles". Wear. Vol. 3, 1960, pp. 87-103.
- 21. Bitter, J.G.A. "A Study of Erosion Phenomena Part I and Part II". Wear. Vol. 6, 1963, pp. 169-190.
- 22. Neilson, J.H. and A. Gilchrist. "Erosion by a Stream of Solid Particles". Wear. Vol.II, 1968, pp.111-122.
- 23. Preece, C., ed., Erosion, Vol. 16 Academic Press, New York, 1979, pp.69-126.
- 24. Engel, P., *Impact Wear of Materials*, Elsevier Scientific Publishing Co., Amsterdam-Oxford, New York, 1976, pp.104-158.
- 25. T. J. Labus. "A Comparison of Pulsed Jets Versus Mechanical Breakers". the Sixth International Symposium on Jet Cutting, 1983. pp. 229-238.
- 26. Hashish, M. "A Model for Abrasive-Waterjet (AWJ) Machining". ASME Journal of Engineering Materials and Technology. Apr. 1989, Vol. 111, pp.154-162.

- Y, Chung. "Development of Prediction Technique for the Geometry of the Abrasive Waterjet Generated Kerf". Master Thesis. New Jersey Institute of Technology, May, 1992.
- 28. Finnie, I., "Erosion by Solid Particle in a Fluid Stream", ASTM Technical Publication 307, 1961
- 29. Soo, S. L., Fluid Dynamics of Multiphase System, Waltham, Mass., Blaisdell Pub. Co., 1967.
- 30. Sheldon, G. L. and Finnie, I., "The Mechanism of Material Removal in the Erosive Cutting of Brittle Material", *Journal of Engineering for Industry*, Nov. 1966.
- 31. Finnie, I., Wolak J. and Kabil, Y. "Erosion of Metals by Solid Particles", Journal of Materials, 1967.
- 33. Tilly, G.P., "Erosion Caused by Airborne Particles", Wear 14, 1969.
- 34. Sheldon, G. L. and Kanhere, A., "An Investigation of Impingement Erosion Using Single Particle", Wear 21, 1972.
- 35. Young, J. P. and Ruff, A. W., "Particle Erosion Measurements on Metals", Journal of Engineering Materials and Technology, April, 1977.
- 36. Benchaita, M. T., Griffith, P. and Rabinowicz, E., "Erosion of Metallic Plate by Solid Particles Entrained in a Liquid Jet", *Journal of Engineering for Industry*, August, 1983.
- 37. Verma, A.P. and Lal, G.K., "An Experimental Study of Abrasive Machining", Int. J. Mach. Tools Des. Res., Vol. 24, 1984.
- 38. Verma, A.P. and Lal, G.K., "Basic Mechanics of Abrasive Jet Machining", IE (I) Journal-PE, 1985.
- 39. Michaelides, E.E., "Motion of Particles in Gases: Average Velocity and Pressure Loss", *Transactions of the ASME*, Vol. 109, June, 1987.
- 40. Hinze, J.O., Turbulence, McGraw-Hill Book Company, Inc., 1959.
- 41. Tchen, C.M., "Mean Values and Correlation Problems Connected with the Motion of Small Particles", *Ph.D. Thesis*, Delft, 1947.
- 42. Hjelmfelt, A.T., Jr. and Mockros, L.F., "Motion of Discrete Particles in a Turbulent Fluid" Appl. Sci. Res., 1965.

- 43. Danon, H., Wolfshtein, M. and Hetsroni, G., "Numerical Calculation of Two-Phase Turbulent Round Jet", Int. J. Multiphase Flow, Vol.. 3, 1977, pp. 223-234.
- 44. Melville, W.K. and bray, K.N.C., " A Model of the Two-Phase Turbulent Jet ", Int. J. Heat Mass Transfer, Vol. 22, 1979.
- 45. Maxey, M.R., and Riley, J.J., " Equation of Motion for a Small Rigid Sphere in a Non uniform Flow ", *Phys. Fluids*, 26(4), April 1983.
- 46. Situ, M. and Schetz, J.A., "Numerical Calculations of the Breakup of Highly Loaded Slurry Jets", *Journal of Fluids Engineering*, Sep. 1987.
- 47. Givler, R.C. and Mikatarian, R.R., "Numerical Simulation of Fluid-Particle Flows: Geothermal Drilling Applications", Journal of Fluids Engineering, Sep., 1987.
- Ahmadi, G. and Ounis, H., "Dispersion of Small Rigid Spheres in a Turbulent Flow Field", Proceedings of International Conference on Mechanics of Two-Phase Flow, June, 1989.
- 49. Hashish, M., "On the Modeling of Abrasive-waterjet Cutting", Proceedings of 7th International Symposium on Jet Cutting Technology, 1984, pp. 249-265.
- Isobe, T., Yoshida, H. and Nishi, K., "Distribution of Abrasive Particles in Abrasive Water Jet and Acceleration Mechanism ", Proceedings of 9th International Symposium on Jet Cutting Technology, 1988.
- 51. Chen, W.L. "Correlation Between Particles Velocities and Conditions of Abrasive Waterjet Formation", Ph.D. Dissertation. New Jersey Institute of Technology, January, 1990.
- 52. J. Wesley Barnes, Statistical Analysis for Engineers, Prentice Hall Inc. 1988.
- 53. O. J. Dunn, V. A. Clark, Applied Statistics: Analysis of Variance and Regression, J.Wiley & Sons, pp. 221-306.
- 54. K. A. Brownlee, Statistical Theory and Methodology in Science and Engineering, Wiley, pp. 334-554.