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ABSTRACT

Development of a
Thermal Modulator for

On-Line Monitoring Volatile Organic Compounds

by

Yun Chen

A thermal desorption modulator is made from a short segment of thin tubing

containing an adsorbent or a chromatographic stationary phase. A carrier gas containing

the analyte is introduced into the analytical column through the modulator which acts as

a sample trap. Rapid electrical heating of the modulator releases a "concentration

pulse" of the analyte and this serves as an injection similar to that from an injection

valve. The modulator also acts as a sample preconcentrator and can be used to make

repetitive injections every few seconds. In this research, the mechanism of thermal

desorption modulator was studied and was used in continuously monitoring volatile

organic pollutants.
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CHAPTER 1

INTRODUCTION

1.1 Background

In order to achieve higher productivity, lower environmental emissions and waste

reduction, a subdiscipline of analytical chemistry - process analytical chemistry (PAC)

has emerged. The goal of PAC is to continuously provide quantitative and qualitative

information about a chemical process. Such information is also important in monitoring

environmental emissions, and meeting regulatory requirements (1).

In a traditional industrial environment, samples are taken from a process or waste

stream, and transported to a central laboratory for analysis. On the contrary, PAC

analyzers are located in or right next to the process. They attempt real-time (or near

real-time) chemical analysis. Analytical results are critical for monitoring and

regulating environmental emission as well. In traditional methods, analysis is done

hours, or often days after a sample is collected. PAC analyzers are designed to

eliminate the delay between sampling and analysis. Usually, PAC involves two critical

steps: (1) the measurement of process parameters and (2) the conversion of the

measurement data to process information. This information is then used to document,

correct, and improve process performance. In general, PAC provides higher quality

information very rapidly about what is going in the process or what kind of pollutants

are being released on a continuous basis.

A variety of analytical instruments are used in PAC, including spectroscopic and

chromatographic techniques. Among spectroscopic instruments, process infra-red

spectrophotometers have found wide applicability. Previous IR analyzers were

nondispersive, dual-cell correlation devices with microphone detectors. Recently, the

Fourier transform infrared (FT-IR) has been modified to serve as continuous on-line

analyzer. Commercial manufactures have begun to offer instruments designed

1
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specifically for on-line process analysis. Another trend that has enhanced the on-line

use of FT-IR is the development of improved methods for continuous sampling (2). In

addition, the use of FT-IR has become more attractive with the advent of personal

computers that allow near real-time data analysis. Although, the process is highly

sensitive and selective, still, it does not generate information rapidly enough for

feedback control.

In the ultraviolet-visible (UV-vis) area, technological developments have made

scanning versions of these instruments far more rugged and reliable. Three key

developments are the adaptation of single-beam techniques are the use stored baselines

rather than mechanically switching between reference and sample compartments; the

use of concave holographic grating that yield acceptable stray light rejection in a single

monochromator and eliminate the need for collimating mirrors; and the introduction of

photodiode array that eliminate mechanical scanning of the grating (2). The current

generation of UV-vis spectrometers based on these principles are quite cost-effective

and reliable. These advancement in UV-vis has made it possible to be used in

continuous on-line analysis.

Mass spectrometers (MS) are also becoming more widely used instruments in

continuous on-line analysis (3). For instance, applications for mass spectrometers

include: ratio control for production of ethylene oxide, ammonia or methanol; material-

balance control in various processes; distillation column optimizations; monitoring of

trace impurities in chemicals, industrial gases, and semiconductor products;

atmospheric monitoring in nuclear plants. The nature of mass spectrometry makes it

possible to provide a definitive analysis very fast.

Also, photometers can be applied for continuous on-line analysis such as

measurement of chlorine or fluorine in air, phenol in water, and NOx and SO2 in

fluegas. The instrument compares the intensities at the two wavelengths, and from this

calculates the concentration of the specific chemical.



3

On the other hand, although the liquid chromatographs (LCs) are not as popular as

GC, they are useful in the analysis of high-boiling point compound polymers. The

examples are the measure of styrenes, nitrated aromatic, organic acids etc. The

stationary phase may be an adsorbent packing, a gel, an ion-exchange resin, or another

liquid. IR, UV and MS can be used as detectors.

1.2 Continuous Monitoring of VOCs

It is well known that volatile organic compounds (VOCs) such as aromatic and

halogenated organics are toxic, mutagenic, and carcinogenic. Therefore, in recent days,

much efforts have been made to sample and analyze trace levels of these compounds

(part per billion to parts per million). Sampling and analysis of VOCs in air are done

either using whole air samplers or sorbent tubes. In the whole air sampling devices,

such as tedlar bags and canisters (EPA method T014), a couple of liters of the sample

are collected and then brought back to the lab for analysis. In the sorbent based

method, (EPA method T01, EPA method 5) the sample is passed through a cartridge

containing of one or more adsorbents, where the VOCs are trapped. The VOCs are

recovered by thermal desorption or solvent extraction for analysis.

The above mentioned methods are effective in VOCs measurement, but can not be

used in continuous on-line analysis. Although micro-sensor technology has provided

some possibilities for real-time monitoring, specific sensors are not available to identify

and quantitate the wide range of compounds. One has to rely on chromatographic

separation techniques because compound specific sensors to analyze the wide range of

VOCs are unavailable. Recently, automated GC systems have been designed for air

analysis and semi-continuous basis. However, in all these devices the sample should

flow through a sorbent tube for a period of time and then the sorbent tube is thermally

desorbed for GC analysis (4)(5). Usually, a cycle time of several hours is encountered.
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Continuous on-line GC analysis is important to make injection automatically and

repeatedly. In chemical industries, sample valves have been used in process gas

chromatography where injections from a sample stream can be made intermittently onto

a GC column. Sample valves withdraw just a small amount of sample from the sample

stream for GC injection, usually between a few microliters to a couple of milliliters.

The sensitivity is low because a small injection results in a small detector signal.

Excessive band broad and poor chromatographic resolution occurs if larger sample

quantity is injected. Therefore, in environmental monitoring, it is difficult to analyze

the low VOCs concentrations. In order to develop effective continuous monitoring

device, we not only need an automated injection device, but also a sample

preconcentrator.



CHAPTER 2

RESEARCH OBJECTIVE

The object of this research is to develop a gas chromatography system for continuous

monitoring of volatile organic compounds(VOCs). The system need to be able to

monitor trace concentration levels commonly encountered in air samples. In this

research a thermal desorption modulator will be used as an injection devices. The

modulator will also be used as a sample concentrator and its characteristic will be

investigated.

5



CHAPTER 3

LITERATURE REVIEW

In conventional chromatography a sample is injected once for analysis, however, in

some applications it is necessary to make many repetitive injections (6). A typical

example is in process gas chromatography where injections are made intermittently to

analyze a process stream. Other applications include pyrolysis GC and correlation (or

multiplex) chromatography. Sample valves have been used exclusively in these

application, because they can be automated to make repetitive injections. Recently

thermal desorption modulators have emerged as an alternate injection device and a few

papers have been published in this field.

A modulator is made from a short length of thin tubing containing an adsorbent or a

chromatographic stationary phase. A short segment of a fused silica capillary column

can also be made into a modulator by coating it externally with an electrically

conductive paint. The construction of a fused silica modulator is shown Figure I.

Modulator is designed in such away that it can be heated and cooled rapidly by a sharp

pulse of electric current either through the walls of metallic tubing or through a coat of

electrical paint. The carrier gas containing the sample can be introduced into column

through the modulator. This is show in Figure 2. As the stream containing the sample

flows into the modulator, the sample components are adsorbed onto the stationary

phase. When the electric current is switched on, the adsorbed components are released

as a "concentration pulse" which act as injection or modulation. The column and the

detector treats the "concentration pulse" just like an injection from an injection port or

a valve and a chromatogram can be obtained corresponding to the modulation. The

modulator is somewhat similar to an adsorbent or a cryogenic trap (7) used in various

chromatography applications. While a modulation makes a series of injections (or

modulations), a conventional cryogenic/sorbent trap normally preconcentrates a sample

6



Figure 1. Construction of fused silica modulator.



Figure 2. Schematic diagram of the modulation system
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or sharpens an injection. However, a modulator needs to trap only a part of the sample

flowing through it to make an injection (8). By modulating the temperature of the

modulator, its capacity factor is modulated, which in turn modulates the concentration

of the sample flowing through it. The modulator is operated by a computer or an

electronic switch. The duration of electrical heating as well as the interval between

modulation are controlled. It is important that each modulation drives out all the sample

from the modulator and no sample should accumulated within it. So enough energy

should be supplied to the modulator to desorb all the sample. The time for which the

modulator is heated (pulse duration) along with the current through the modulator

controls the energy input.

3.1 Mechanism of Thermal Desorption Modulator

The mechanism of a modulator has been published by Mitra and Phillips (9). The

modulator may be conceptualized as a short GC column. So, the velocity v, at which a

sample migrates through a modulator is given by:

where u is the mobile phase velocity, k is capacity factor. The capacity factor is

defined as the ratio of the number of sample molecules in the stationary phase to that in

the mobile phase (9). A typical modulation has a positive part and a negative part (10).

A positive peak is due to the desorption of sample when modulator is heated. A

negative peaks results from the reabsorption when modulator is cool. When the

modulator is hot, the capacity factor is close to zero and sample migrates at the speed

of mobile phase. So, the time required to produce the positive part is t+:
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where b is the length of the modulator. The negative part is generated when the

modulator is cold and the capacity factor is greater than zero. So the sample migrates

slowly and the time required to produce the negative part t_ is:

It is evident from Equation 3.3 that t_ is larger than t+. From Equation 3.2 and

Equation 3.3, the ratio of the peak height of the negative part to that of the positive

part is given as follows:

where h.. and h+ are the height of the negative and the positive peak. From the

Equation 3.4, it is seen that as the capacity factor of the modulator increases, the ratio

of the height of the negative part to that positive part decreases. The effect of capacity

factor on peak shape is presented in Figure 3(a-c). It is seen that with increases in

capacity factor, the negative part become relatively shallower and eventually merges

with the base line. At this point. the peak shape resembles that of a normal

chromatogram.

The rate of sample migration (Equation 3.1) is inversely proportional to (k+ 1) of

the sample in the modulator. So the sample residence time increases with capacity

factor and the modulator traps sample for a larger period of time t... Consequently,

larger the t_ larger is the amount of sample that can be accumulated in the modulator,

and the larger is the signal obtained at the detector from each modulation

The modulator is designed to make an injection at a certain interval. The

modulation efficiency is defined as the ratio of modulated sample to total sample

passing through it (9). Let 4, be the time interval between two injections. A previous

paper by Liu and Phillip (11) predicted modulation efficiency as follows. If ti > t_ the

modulation efficiency was expressed as:
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Figure 3. Response of Supelcowax modulator at different capacity factor
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where th is the time period during which the modulator is too hot to retain the sample.

Minimizing the heating time such that th=t+ and substituting Equation 3.2 into

Equation 3.6, the Equation 3.6 was rewritten as follows:

thus in this region modulation efficiency is independent of capacity factor, although t_

did depend upon capacity factor. When ti=t_, the modulation efficiency was expressed

as follows:

If th = t+, by substituting Equation 3.2 and Equation 3.3 into Equation 3.8:

in this case, the modulation efficiency increases with capacity factor.

When ti > t_, the modulation efficiency can be expressed as:

Let th=t+, and by substituting Equation 3.2 and Equation 3.3 into Equation 3.10, then

Here, the modulation efficiency is inversely proportional to the time interval

between electric pulses. The modulator should be designed for the highest modulation

efficiency. The situation described in Equation 3.11 should be avoided (11).

3.2 Other Types of Modulators

Thermal desorption modulators do not work in HPLC because the retention depends

upon the strength of the mobile phase. However, TDM developed for Supercritical

Fluid Chromatography(SFC) are quite interesting (12). Compared to GC, the

mechanism of supercritical fluid modulator is more complicated. In SFC, the capacity

factor varies with pressure (or density) and temperature (12-15). Retention in SFC is

expressed as (14):
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where k is the capacity factor, Hs and Hm are the heats of solution of the solute in the

stationary and mobile phase respectively, T is the absolute temperature, B is the ratio of

the volume of mobile phase to the volume of the stationary phase, and R is the

universal gas constant. For a nonswelling stationary phase, Hs remains constant with

temperature and Hm is directly proportional to density at a given temperature.

At higher temperature and constant pressure, retention in SFC is similar to GC,

i.e., when the temperature increases the capacity factor decreases. The first two term of

Equation 3.12 play an important part in this GC-like behavior. On the other hand, at

lower temperatures, retention in SFC is similar to LC, i.e., the capacity factor

decreases with the increase of the solvent strength. Since increasing the temperature,

decreases the density, the solvent strength decreases and the capacity factor increases.

Last term in Equation 3.12 contribute toward this LC-like behavior.

The GC-like and LC-like behavior is reflected in the modulator operation and are

demonstrated in Figure 4(a-c). At 150°C (Figure 4a), the response of the SFC

modulator is similar to that of a GC, i.e., as the modulator is heated, the capacity

factor drops to zero and the sample desorbs to produce a positive peak. As the

modulator current is turned off, the capacity factor increases, the sample readsorbs onto

the stationary phase and a negative peak is obtained.

At low temperature(t < 108°C), the opposite phenomena is observed. As the

modulator is heated, the density of the supercritical phase drops and the solvent

strength decreases. As a result, the capacity factor increases, the analytes transfer to the

stationary phase and a negative peak is seen at the detector. When the modulator cools

down, the density of mobile phase increases, so that the analytes retransfer to the

mobile phase, this is seen as a positive peak at the detector. A modulation peak in this

region resembles Figure 4b.

Figure 4c shown the peak shape in the region where there is a transition from the

LC-like to GC-like behavior. In this example, temperature is between 105 and 110°C.



(a). modulator and column at 150°C.
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(b). modulator and column at 75°C.

(c). modulator and column at 108°C

Figure 4. Response of SFC modulator at different temperature. five consecutive
modulations were made at intervals of 2.5 min., Mx (x=1-5) represents
the modulations and Px(x =1-5) represents the corresponding peaks.
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A small peak first resulted from thermal desorption. This was followed by a large

negative peak with contributions from both sample readsorption and sample transfer to

the stationary phase due to the increased capacity factor. The area of the negative peak

also roughly equalled that of the positive peak. The peak shape here is a combination of

Figure 4a and 4b.

Some other types of modulators have also been reported. A photochemical

modulator that can modulate photochemically reactive components in a sample stream

has been reported (16). Photochemical mechanisms include photodesorption,

photodecomposition. photochemical reactions of the sample. A source of visible light

causes photochemical reaction to occur within the modulator. Yet other modulators

depend upon the chemical properties of both the samples passing through and the

modulator packing. A thermal decomposition modulator (17) operates like a TDM,

except by modulating the temperature of the modulator a thermally labile substance is

decomposed and this is seen as a vacancy (or a negative peak) at the detector. A

chemical modulator that selectively modulates methanol in a stream of hydrocarbons

also has been developed (18). An Electrochemical modulators (19) that modulate the

potential of an electrochemical cell placed at the head of a LC column have been

developed for electroactive compounds. In general, the purpose of some of the specific

modulators is to remove the required sample signal from other signals present in the

sample.

3.3 Application of Thermal Desorption Modulators

3.3.1 Thermal Desorption Modulator as an Injection Device

A properly designed thermal desorption modulator acts as an excellent injection device.

It can make reproducible injections, it is rugged and it exhibits long term stability (10).

It has several advantages over a valve. Unlike an injection valve, it acts as a sample

preconcentrator, thus much lower detection limits are obtained using modulators than
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valves. Moreover, there is no dead volume or moving parts in a modulator, so

precision and fast response time are obtained.

3.3.2 Using of Modulators in On-Line Analysis

Most on-line GC techniques adopt intermittent sampling using a sample valve to make

injections into the GC (21). A thermal desorption modulation can be used in process

gas chromatography instead of a sample valve (20,22). The equivalent of an injection is

made internally by modulating the temperature of the modulator. Modulators can be

used for sample introduction into a GC form a process stream and can provide

unattended GC operation. This method has the potential advantage over sample valves

in term of faster operation, smaller band width and lower detection limit.

An on-line analysis technique using TDM (thermal desorption modulation) has been

reported for monitoring H2S produced in a hydrodesulfurization reaction (20). In a

typical experiment, a few milligrams of a organo-sulfur compound was

hydrodesulfurized by linearly increasing the temperature of the reactor. The evolving

H2S was analyzed using the modulator and a GC with thermal conductivity detector. A

typical profile of H2S evolution from a hydrodesulfurization reaction is given in Figure

5. In this case, the modulations were made at a regular intervals and corresponding to

each modulation, H2S peak was seen at the detector. The peak area was directly

proportional to the average concentration of H2S in the reactor effluent stream. It can

be seen that first sign of H2S was seen at 488K. As the temperature increased, the rate

of H2S evolution increased due to the increase in reaction rate. H5 is maximum peak

after which the rate of H2S evolution began to decrease as the sample in the reactor

was consumed. The modulator in this case was made from a 0.2 mm I.D. tubing with

chromosorb stationary phase.

The reproducibility of the modulator was evaluated using a standard containing 100

ppm H2S in He. For 20 modulations, the relative standard deviation was less than



Figure 5. H2S evolution profile from the hydrodesulfurization. Mx (x=1-7) represent
the modulations and Hx (x=1-7) are the resulting H2S peak.
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+1%. The peaks which resulted from these pulses were identical in duration and peak

shape.

3.3.3 Application in Fast Chromatography

Gas chromatography is probably the fastest known separation method. Nevertheless, a

single GC separation normally requires several minutes or more, the cycle time for a

multipoint sample may easily exceed an hour. This type of apparatus is not suitable for

applications where real time, or near real-time monitoring is required.

If the gas chromatographic system is optimized for speed rather than resolution, it is

possible to achieve relatively simple separations in as little as a few seconds. The

theory was first demonstrated by Desty (23), who in 1965, showed that it was possible

to separate 15 components in 2 sec. Since Desty's initial work, several publications

have discussed both the theoretical and practical aspects of fast gas chromatography

(24-30).

The the theoretical potential of capillary column for high-speed analysis is well

known. Separation efficiency and speed of analysis can be significantly improved by

decrearing the capillary column diameter (31,32). Generally speaking, the height

equivalent to a theoretical plate (HETP) is directly proportional to the column diameter.

Thus, the required number of plates can be achieved by using a shorter column and

consequently number of plates per second. This in turn can significantly reduce analysis

time (33,34).

The major barrier preventing application of high-speed techniques has been a lack

of a suitable injection technique. For fast GC to be successful, the peak widths must be

kept as narrow as possible. In particular, extra-column band broadening caused by the

injector, detector, and connectors must be minimized. The importance of preventing

band broadening is illustrated by a comparison of final peak widths in conventional

GC, peak widths usually are measured in seconds or tens of seconds. In fast GC, peaks
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are much narrower, often 50 msec or less. In order to produce a final peak this narrow,

the initial band width produced by the inlet should be no more than about 20 msec (35).

Conventional GC inlets that use a syringe for injection and a splitter typically

produce initial band width of 50 to 100 msec, and are clearly inadequate for high-speed

separation. Gas injection systems, using a rotary valve and sample loop, are likely to

produce even wider injection bands, often measuring 1 to 10 sec. and more. However,

A decrease in the column diameter from 250 p.m to 50 4m requires that the injection

volume be reduced by more than two orders of magnitude and the input band should be

of the order of a few milliseconds for narrow-bore column(100 µm-5 µm) application.

The requirements of very small injection (nanoliter to picoliter) and sharp input band

are difficult to meet for most conventional injection devices and often result in sample

loss and poor reproducibility.

On-column thermal desorption modulator has been used as a sample introduction

device for narrow-bore, high-speed gas chromatography (11,36-38). The modulator is

an integral part of the column so that the generated concentration pulse are compatible

with the column diameter. By using on-column thermal desorption modulator and

narrow-bore column, the chromatograms have been generated in a few seconds.

Figure 6(a) shows a series of chromatograms monitoring a simulated process stream

subjected to a sudden disturbance. The five hydrocarbons are separated within 30s. A

40-sec repetition period is usually appropriate. The first three chromatograms in Figure

6(a) are identical because the stream was not disturbed by any external causes during

that time period of time. After the elution of the third chromatogram, nonane and

decane were introduced to the stream through the injection port. The concentration

changes for these two components were immediately noticeable after their introduction

[chromatogram 4 in figure 6(a)].

Figure 6(b) shows a series of high-speed chromatograms monitoring a simulated

process stream. Five components are monitored with a repetition period of 4s. A 1.00m



Figure 6. High speed chromatogram
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long and 50 p.m i.d. column which had a separating power of a 5m and 0.25 mm i.d.

column was used in the analysis.

Using thermal modulation for sample introduction allows a smaller diameter column

to be used in process stream analysis. Smaller diameter columns are shorter and faster

than larger diameter columns resulting in higher speed and resolution.

3.3.4 Application in Correlation or Multi-input Chromatography

In conventional chromatography, sample is injected into the head of column in the GC

(same as HPLC or SFC) column and the different sample compounds separate as they

migrate down the column. To prevent overloading of the stationary phase and to obtain

good resolution only a small volume (few microliters to 2 ml) is usually injected. A

large amount of analyte is wasted when it is present in a large volume of gas or liquid.

e.g. only .02% of the sample is actually used when 1µ1 is injected from a 5 ml solution

of the analyte. The signal generated is proportional to the amount of analyte that

passes through detector. Therefore, a loss of sample is equivalent to decrease in signal

to noise (S/N) ratio and this would lead to poor sensitivity.

Multi-input chromatography is a variation of conventional chromatography

(9,10,39-42). Limited work has been published on MIC and it is referred to as

correlation chromatography (39-42) or multiplex chromatography (9,10). Unlike

conventional chromatography, here, a series of injection are made into the column in

rapid succession. Corresponding to each injection, a chromatogram is obtained. The

peaks from different chromatograms overlap at the detector such that the detector

output cannot be directly interpreted. However. using mathematical techniques such as

Cross-Correlation or Fourier Transform the chromatogram can be elucidated from the

detector output.

The difference between conventional chromatography and MIC is similar to that

between scanning IR and FTIR. The convoluted detector output in multiplex
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chromatography is analogous to the time domain spectra (or interferogeam) in FTIR

from which the IR spectrum is computed. Analogously, in MIC the chromatogram is

recovered from the convoluted output.

The advantage of MIC is to increase signal to noise ratio. Since injections are made

so frequently, sample passes through the detector almost continuously. As a result,

quantity of sample that passed through the detector per unit time is much larger than in

conventional chromatography. This is equivalent to a higher sample throughput, which

results in a higher signal to noise ratio(S/N).

Sample valves have been used for making injection in the past. Modulators have

proven to be excellent injection devices for multiplex chromatography. They are much

faster than valves and exhibit lower sensitivity.

3.3.5 Application in Multidimensional Chromatography

Separation capability of a chromatographic system increases when two columns of

different characteristic placed in series. This is known as two-dimensional gas

chromatography. Coupled columns can either have different polarities in stationary

phases or work at different temperatures. Usually, only required parts of eluent leaving

the first column are transferred into the second column. The first column just provides

with a rough separation, while the second column provides samples with major

separation. It has been proved that this heart cutting technique has some limitation in

applications where the analysis of the entire sample is required.

Recently, a different and significant more powerful technique, i.e., a

comprehensive two-dimensional gas chromatography technique, has been developed for

making the second column fast enough to produce at least one complete

chromatography each signal peak elutes from the first column. The key point of this

technique is that a high-speed separation in the second dimension is needed. As

mentioned before, the on-line thermal desorption modulator is a simple and excellent
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injection device for high-speed gas chromatography. Liu et al. (43) have used a thermal

desorption modulator to inject the eluent from the first column onto the second one. In

this case the two columns have different stationary phases. The components that cannot

be separated on the first column can be separated on the second column. An example of

a two dimensional chromatogram is presented in Figure 7. Figure 7 shows a contour

plot of 14 component mixture separated with the two dimensional gas chromatography.

The vertical axis is retention time on the first column and the horizontal axis is

retention time on the secondary column. The pair of substances, p-xylene and

cyclohexyl chlororide, provide a clear example of improved resolution due to two-

dimensional operation. These two components of the sample have identical retention on

the first column (tR =89s), but are almost base-line separated on the second column.

On the second column, nonane, cyclohexyl chloride, o-xylene, and styrene overlap

significantly but are separated on the first column before entering the second.

Over the entire first column elution time of 154 seconds, 77 chromatograms were

generated from the second column. Many more peaks can fit into this chromatogram

than could be fit into a one-dimensional chromatogram generated on either column

individually. The measured peak capacity was 15.3 for the first column and 15.2 for

the second column. The theoretical two-dimensional peak capacity in Figure 7 is thus

233, the product of peak capacities on the two dimensions.

These results shows that speed two dimensional gas chromatography closely

resembles GC/MS. This method has many advantage, such as high speed, high power

to separate complex mixtures, and more reliable identification of substances through

two independent retention time. With the application of a thermal desorption modulator

the experiments could be done in an automated manner.



Figure 7. The two dimensional gas chromatogram.

24



CHAPTER 4

EXPERIMENTAL

4.1 Instruments

The experimental system used is shown in Figure 8. The VOCs stream was generated

by entraining the analytes from a diffusion tube onto a flow of nitrogen. A Hewlett -

Packard 5890 series 2 gas chromatography equipped with an FID was used in this

study. Typical flowrates for FID were: air 400 ml/min, hydrogen 30 ml/min and

nitrogen make up gas 25 ml/min. the detector temperature was 2500C. The carrier gas

was nitrogen. A 0.53 mm i.d. and 30m long fused silica column from J & W scientific

with a 3.0 4m thick stationary phase (Duraboned-624) was used in these experiments.

In same experiments, a spit / splitless injection port was also used. The split ratio was

100 to 1 and injection port temperature was 2500C.

Modulators were made with fused silica as well as stainless steal tube. The stainless

steel modulator were made from a short length of thin stainless steel tube (23 gauge,

0.33 mm i.d., from Hamilton Inc., Reno, NV) containing an absorbent e.g. Carbotrap

C, Chromosorb 100/120, Carboseive 3, Chromosorb 60/80 (purchased from Supelco

Inc.). Length of stainless steel modulator was 13 cm. The other type of modulator was

constructed from a pieces of 0.53 I.D. deactivated fused silica capillary tubing using

one of the above an absorbents. The external conductive layer in the fused silica

modulator was made by painting with an electrically conductive paint (Loctite

Corporation). A stable conductive layer was obtained by applying multiple layers of the

paint on the modulator and drying it with a heat gun after each application. The

electrical resistance of the modulator was between 1-3 ohm. Length of fused silica

modulator was 6-6.5 cm. To make electrical contact, two pieces of wire tightly

wrapped at the end points of the modulator. The construction of fused silica modulator

is shown in Figure 1. This modulator was heated by passing current through the
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Figure 8. Schematic diagram of the experiment system.
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electrical paint. The stainless steal modulators was heated by passing current directly

through the wall of the tubing. The thin walled, small diameter tubes have low thermal

mass and can be heated and cooled very rapidly.

The modulation efficiency and t_ of the modulator depended upon the temperature

of the modulator. The modulator was cooled to sub-zero temperature to attain higher

modulation efficiency and L . For low temperature operation, the modulator was placed

on the oven and connected to detector using deactivated fused silica. Modulator was

cooled to the required temperature using cryogenic coolant hardware for operation with

liquid nitrogen. Extra care was taken to make sure that there was no unheated portion

of the modulator with stationary phase inside.

A Variac was used as the power supply, and two 10 ohm parallelly connected

power resistors were placed in series with the modulator to control the current through

it. A microprocessor controlled electronic switch (built in-house) that could turn on the

modulator current at a prespecified intervals for a fixed period of time was used to turn

the current on. The interval between injections was any where between 5 sec to 300

sec. The duration for which the current was turned on was between 100 to 1000 msec.

The injection were also controlled by the personal computer (IBM compatible).

This computer was interfaced to the GC through analog to digital converter (DAS8-

PGA, Metrabyte Corp., Elmwood Park, NJ). Computer programs were written in

Quick Basic. The interval between the pulses and the duration of the pulse could be

changed by adjusting particular variables in the program.

The data acquisition was done using HP 3396A integrator or a Das - 8PGA Analog

to Digital Converter (Metra Byte Corp.) and an IBM compatible personal computer.

4.2 Sampling

Analytical grade hexane, p-xylene, benzene etc. were used in this study. A steady

stream containing VOCs was generated by diffusing a controlled amount of these
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analytes from a diffusion capillary into a flow of N2 (44). The schematic diagram of

the diffusion cell is shown in Figure 9.

The liquid was placed in a melting point capillary of 0.165 mm diameter. A smaller

diameter fused silica capillary(diameter 0.25 mm, 0.050 mm, 0.025 mm) was

connected on top of it to reduce the effective diffusion cross-sectional area. The sample

diffused up the capillary tube onto a flow of N2 . The diffusion rate depends upon the

cross sectional area of the capillary and the height from the liquid surface to the top of

the capillary. The rate of diffusion of the sample into the gas stream at any given time

can be calculated by the Equation 4.1 (44):

where S is rate of diffusion, in grams/sec. X is a constant for the liquid at the given

temperature and has a unit of cm2/sec, p is density of liquid. A is cross section area of

the capillary in cm 2 and L is depth of the liquid meniscus below the capillary mouth,

(cm). The value of X was experimentally determined for each compound and at each

temperature. This was done by running N2 through the diffusion cell and measuring L

periodically. A plot of L2 vs. time give a straight line with X as the slope.

4.3 Reagents

Analytical standards of hexane, benzene, ethanol, toluene, p-xylene from Fischer

Scientific were used as samples for the experiments. Carrier gas was pre-purified N2

and for the flame ionization detector, prepurified H2 and breathing quality air were

used.



Figure 9. Diffusion dilution cell
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CHAPTER 5

RESULTS AND DISCUSSION

Automatic sample introduction is the most important feature in on-line chromatographic

techniques. When using modulator, the equivalent of an injection is made internally by

modulating the temperature of the modulator, and hence the modulator can be used for

sample introduction into the GC from a process stream. Modulator can be a substitute

for automatic valves, that are commonly used in process gas chromatography. Faster

operation, lower detection limit and shorter band width are some of the advantageous a

modulator has over a sampling valve.

Since signal generated by the modulator is directly proportional to the amount of

the analyte flowing through, it ought to be applicable in quantitative analysis.

The modulator is the central operating component in the analytical system. Several

operating parameters, such as modulator temperature, pulse duration (for how long the

modulator current is turned on), modulation interval (i.e. at what frequency the

modulation are made) need to be optimized for proper functioning of the modulator.

5.1 Modulation Efficiency

A modulator operation may be compared to a sorbent trap which tend to hold all of the

analysis from a sample. However, a modulator traps only a fraction of the sample for

short period of time in proportion to the concentration of the sample flowing through it.

In effect, the modulator modulates the concentration of the analytes flowing through it

rather than trapping the sample. In order to obtain a large signal at the detector, the

modulator should accumulate as much sample as possible before making an injection.

Another reason for doing this is that the entrapped sample breaks through the

modulator and contributes to the background at the detector.

30



31

Trapping or modulation efficiency of the modulator is defined as the fraction of the

incoming sample retained by the modulator before an modulation is made:

The retention mechanism in a modulator is similar to that of a GC column. There is

an equilibrium between the concentration of the sample in the stationary and the mobile

phase. The modulations are normally made at fixed intervals of time (referred to as

modulation interval). So modulation efficiency can be written as:

where, c s is the amount of sample in the stationary phase, c t is the amount of the

sample flowing into the modulator, ti is modulation interval, and t_ is time required for

the sample to migrate through the modulator. When a sample enters the modulator, it

distributes between the stationary and mobile phase. So, Equation 5.2 may be written

as:

here, cm is the amount of sample in the mobile phase. The above equation can be

rearranged to:

where K is the capacity factor defined as the ratio of the moles of a solute in the

stationary phase to the moles in the mobile phase. If the modulations are made very

frequently such that ti<t_, then the modulator accumulates sample only for ti and

equation 5.4 becomes:

Thus in this case m depends only upon K and does not change with the modulation

interval ti. Equation 5.5 indicates that a greater sample capacity factor results in a
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higher modulator efficiency. If modulation interval is large and ti > t_ then modulation

efficiency is given by equation 5.4 and m is inversely proportional to ti.

The modulation efficiency can be computed from the modulator response such as in

Figure 10. The sample retained by the modulator is proportional to the area under

curve AED. The total sample flowing into the detector is equal to the area ABCD. So,

the modulation efficiency is:

The modulation efficiency as a function of modulation interval is presented in

Figure 11(The data of Figure 11 are shown in table 1). These experiments were

performed at 35°C and 15°C and using hexane as the sample and t_ of 36 sec and 110

sec were obtained at these temperature. From Figure 11, it is seen that when

modulation interval is less than t_, as predicted by Equation 5.5, the modulation

efficiency is constant and is at its highest value(74% at 35°C and 86% at 15°C). When

the interval is further increased and higher than t_, the modulation efficiency begins to

drop exponentially.

5.2 Factors Effecting the Modulator Response

t is an important characteristic for a modulator which is given in by Equation 5.3. For

a specific analyte and a stationary phase of modulator, the value of t_ depends upon

capacity factor which depends upon temperature, . Maximum modulation efficiency

(corresponding to the flat portion of Figure 11) and t_ are plotted as a function of

temperature in Figure 12(The data of Figure 12 are shown in table 2). The experiments

in Figure 12 was performed using a Carbotrap C fused silica modulator and hexane as

the sample. It is found that as temperature increased, the modulation efficiency

decreases as well as t_ decreased. This is expected because according to Equation 5.5

modulator efficiency is proportional to t_. The decrease in modulation efficiency and t_
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Figure 10. Typical modulator response



Figure 11. Variation in modulation efficiency as function of modulation interval. A
6 cm long fused silica modulator was used with hexane as the sample.



Figure 12. Variation in modulation efficiency and t_ as function of modulation
temperature. Hexane was used as sample and a 6 cm long fused
silica modulator was used.
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with temperature may be approximated by linear relationship. When modulator

temperature was at -40 0C, the modulator efficiency was almost 100%.

5.2.1. Effect of Pulse Duration and Energy Input to the Modulator

In order to desorb the sample from the absorbent in the modulator, relatively high

temperatures are needed. It is very difficult measure the actual temperature in the

modulator and no attempts were made to do so. Current passing through the modulator

and the pulse duration determines the total energy input. The time for which the power

is to be delivered depends on the pulse duration while the ohmic heating rate depends

on the current. The period of time for which the modulator is held hot (and the capacity

of the modulator is zero) is another important factor that is also controlled by the pulse

duration. The current through the modulator is controlled by controlling the voltage of

the power supply, and by putting resistances in series with the modulator. Once these

factors are set, the energy input depends solely on pulse duration.

Typical variation of modulator response with pulse duration is shown in Figure 13.

Ethanol was used as sample. Peak height increased with increase in pulse duration until

it reached a maximum beyond which it remained constant. At this point, enough energy

was applied to desorb all the absorbed sample. For this particular modulator, 0.51 sec.

is necessary for complete desorption of ethanol and 37 voltage power supply is used.

Similarly, if the pulse duration and the resistance are fixed, the energy input can be

controlled by controlling the voltage across the modulator. Figure 14 shows

relationship between modulator response and applied voltage. As the voltage was

increased. signal amplitude was increased until it reached a maxima beyond which it

remained constant.

5.2.2 Modulation Interval



Figure 13. Response of Carbotrap C modulator as function of pulse duration when
the applied voltage was 37.



Figure 14. Response of Carbotrap C modulator as function of applied voltage at
pulse interval of 0.51 sec.
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At what frequency the modulator should be operated is an important factor to be taken

into consideration. Making injections very often offers the advantage of obtaining

informations more often, but may have other disadvantages such as lower sansitity and

not enough time for chromatographic separation. By operating modulator in the

different modulation intervals, one can investigate the trapping characteristics of

modulator. Typical response of the modulator as a function of modulator interval is

presented in Figure 15. Here, ethanol was used as the sample. It is seen that the

modulator response increased with modulation interval up to a point beyond which the

response stayed constant. This maximum is obtained at a modulation interval equal to

t_. Beyond t_, the sample begins to breakthrough and the response cannot be increased

further by increasing the modulation interval. In the rising part of curve, the size of the

modulation peak is directly proportional to the modulation interval. The maximum time

for which the modulator can accumulate sample is the time required for the sample to

migrate through the modulator, i.e. t_.

5.2.3 The Effect of Modulator Temperature

As mentional before, a lower modulator temperature results in a higher modulation

efficiency and longer t_. The results is are in both Figure 12 and 16(The data of figure

16 are shown in table 3). Higher modulation efficiency results in a larger fraction of

the sample being trapped and consequently a larger desorption peak when the

modulator is heated, i.e., higher sensitivity. For example, at modulation interval of 50

sec, the modulator response at -10 0C is 2.1 times that at 35°C. Lowering temperature

also has advantage of increasing t_, i.e., we can trap sample for a longer period of

time. For a continuously flowing sample, this means a larger sample accumulation in

the modulator resulting in higher sensitivity and lower detection limit. Because of the

above mentional reasons, the maximum attainable response at -10 0C is 6 times higher



Figure 15. Response of Carbotrap C modulator as function of modulation interval



Figure 16. Variation of detector output as a function of modulation interval
in difference temperature. Hexane was used as the analyte and
a 5.5 cm long fused silica modulator was used.
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than that at 35 0C. In short, the increase in sensitivity at lower modulator temperature is

observed whether the modulation interval is longer or shorter than t_.

Lowering the temperature to very low values may cause the components to adsorb

irreversibly in the modulator, and this may be a limitation. The modulator temperature

should be optimized for the analytes of interest. For example in Figure 9, 23°C was

appropriate temperature for the analyte of interest and subambient cooling was not

required. However, sensitivity can be increased and detector limit can be decreased by

subambient cooling of the modulator. Since the change in temperature results in a

change in sensitivity, the modulator temperature shoule be controlled carefully. A

change in modulator temperature would require recalibration of the system during

extended periods of continuous operation.

5.2.4 On-Line Analysis

The operation of the continuous analysis system is demonstrated by continuously

monitoring a stream containing benzene, toluene and p-xylene. The injection from a

modulator was similar to that from an injection port or an injection valve. Figure 17

shows a series of chromatogram generated by making modulation every 150-s. The

modulator here was a 6.5 cm long fused silica modulator packed with Carbotrap C

modulator. Some of the characteristics of the chromatograms are presented in table 4.

These results are an average of five measurements. An injection of the same standard

was also made using the split injection port and the comparative results at the same

retention time are also presented in table 4.

The relative standard deviation for retention time was 0.23 % in modulator and

0.17% for the injection port. The peak height reproducibility from the modulator had a

relative standard deviation 1.19%, which was better than that obtaining by injection

port (about 2 %RSD). The terminal band length is measure as the length of the solute

band emerging from the end of the column is expressed as:



Figure 17. Continuous on-line analysis. A 6.5 cm long fused silica modulator was
used and ppvb levels of benzene, toluene and xylene were used as the
samples



Table 4. Comparision of Modulator with Injection Port

Modulator Injection port

Compounds Benzene Toluene p-Xylene Benzene Toluene p-Xylene

Retention Time (sec) 57.38 61.85 68.41 56.27 62.22 70.97

% RSD of Retention Time 0.22 0.23 0.20 0.13 0.17 0.16

% RSD of Peak Height 1.14 0.97 1.46 1.60 1.50 2.90

Band Duration *(sec) 0.76 0.78 1.12 0.80 1.00 1.20

Terminal Band Length*
(mm)

385.09 365.74 475.62 411.30 467.02 490.38

*Measured at Half-Height.

%RSD - Percent Relative Standard Deviation
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where b is terminal band lengths, L is the column length, Wb is peak width measured

at half height, and tR is the retention time. The terminal band length is a useful

measure of separating power because it is a real entity that is easily understood and is

directly related to the column's band broad ening process (45). At the same retention

time, terminal band length of the peak genenated by modulator was same what shorter

than that from the injection port. This is to be expected, because the modulator has not

only the same flow pattern as the column but also no dead volume. In previous fast

chromatography studies (11) modulator were used to produce injection bands as short

as 20-50 cosec. The cooling and heating cycle of the modulator is very small and the

frequency of injection in limited by the time require for separation in the column.

Hence, in the optimized column conditions, we prefer to optimize the speed rather

efficiency.

5.2.5 Calibration Curves Using The Modulator

The linearity of the calibration curve is one of the important factors in on-line analysis.

Concept of partition chromatography has been used in previous sections to explain the

retention characteristics of modulators. The amount of sample trapped by the modulator

depends upon the concentration of sample coming into the modulator. So a linear

modulator response is expected. Calibration curve for hexane are shown in Figure 18

(the data are shown in table 5). Calibrating at two different modulator intervals, 40 sec

( < ti and 400 sec (> t__). Linear relationships between concentration and detector

response was obtained in both cases. When t_ was above 40 sec, lesser amount of

sample was trapped in the modulator and the sensitivity of analysis was lower although

information was obtained more often. When modulation interval was 400 sec, more

sample was accumulated for a longer time which increased the sensitivity. However,

the maximum response was reached at modulation interval 59 sec (i.e. ti and the
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Figure 18. Plot of modulator response as a function of concentration. Hexane
was used analyte and a 13 cm long stainless steel modulator at 23 0C
was used
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sensitivity could not be improved by raising the modulator interval from 59 sec to 400

sec. What is interesting is that linear relationship for calibration curves were obtained

in the region ti> t_ and in the region ti < t_. This is important in analysis of multi-

component samples which have components of widely differing volatility that are

expected to have fifferent t_ value. In that case, irrespective of t_ value, it is possible

to obtain linear calibration curve for each compounds.

It is evident from the data presented so far that ppb v levels of VOCs can be

effectively analyzed using modulators. In the calibration curve of Figure 18, at 20 ppb v

the detector response was approximately 6000 uamps. A more than two order of

magnitude lower signal can be easily measured by the detector. So it is anticipated that

VOC stream with sub ppb v concentration levels can analyzed using this method.



CHAPTER 6

CONCLUSION

In this research, thermal desorption modulator has been applied for real-time, on-line

analysis of VOCs. The modulator parameters such as modulation interval, pulse

duration, modulator temperature have been optimized. The modulator has proved to be

effective in providing completely automated on-line analysis.

The thermal desorption modulator coupled with GC plays an important parts in

continuous monitoring of trace levels VOC. The thermal desorption modulator not only

serves as an automatic injection device but also as a sample preconcentrator. As a

result, it can be used for analyzing low ppbv levels of VOCs. A modulator is a very

fast and responsive device because of its low thermal mass and the absence of any

moving part, and capable of making injection very frequency.

Since the sample flow through the modulator is continuous, it can be termed as a

continuous analysis device. On the other hand, in a classical injection valve the

sampling is performed at discrete points in time, for example, every couple of minutes.

If a large increase in concentration take place within this time, the valve may not be

able to detect it. However, a modulator would integrate the sample for the two minutes

and would produce a time averaged response.

In this research we investigated the characteristics of a thermal desorption

modulator. Modulation efficiency of the modulator decreased with increase in

modulator temperature and its decrease closely paralleled that of t_. A lower

temperature, longer is t_, and higher modulation efficiency were encount. Modulation

efficiency was also studied as a function of modulation interval. When modulation

interval was less than t_, the modulation efficiency was maximum value. As a result,

the modulator sensitivity could be increased by lowing the temperature. When

modulation interval is higher than t_, it decreased exponentially.
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APPENDIX

Table 1. Variation in Modulation Efficiency as Function of Modulation Interval

Modulation Interval Modulation Efficiency(%)

15°C 35°C

15 71.15

25 73.51

32 73.23

40 85.93 66.62

50 86.99

60 86.55 40.05

75 86.92

80 30.18

95 86.22

109 85.71

120 19.57

130 77.72

160 64.06

200 50.25
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Table 2. Variation in Modulation Efficiency and t_ as Function of Temperature

Temperature t_(sec) Modulation Efficiency

-40 534 95.38

-20 420 92.2

0 276 82.2

15 101 78.27

30 41 70.46

50 15 60.03
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Table 3. Variation of Detector Output as a Function of Modulation Interval in Different
Temperature

Modulation Interval Detector output

35ºC -100C

30 14000 38000

40 18000

45 24000

50 26000 50000

70 7400

75 3700

95 3700

350 220000

400 220000



Table 5. Concentration of Hexane vs. Detector Output

Concentration(ppbv) Detector Output

Modulation Interval 400 sec. Modulation Interval 40 sec

20 35000 9100

1980 59000 18000

11600 77000 21000
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