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ABSTRACT

The "Design" Thing

A Study of Design in Practice and Theory

by
Magd Dania

The main purpose of this study was to present an overview of design

practices and theories in different domains that would enrich the perspective

of architectural design. To achieve this purpose, the study presented the

initial purpose of architectural design which is providing an adequate shelter

for different human activities. Positive and negative aspects of shelter were

briefly discussed to trace the evolution of the concept of shelter. Change, as an

essential aspect of design was presented in the context of problem

formulation and problem resolution.

A presentation of design practices followed. It started by presenting

design practices that are generally based on hierarchy. Two examples in

architectural design illustrated two different styles of the design process in

architecture were presented and discussed. They were followed by another

two examples of computer—aided design systems in architecture; one is more

concerned with the problem of knowledge representation while the other is

an attempt to automate an existing design activity. Practices in engineering

and organization design were then presented. Those practices were chosen

because they do not follow the traditional functional hierarchical approach to

design, but rather follow a system approach to the design process. Following

the logic of the study the theoretical principles of the systems approach were

presented with a hint to the importance of cybernetics as the control

mechanism of large systems.
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CHAPTER 1

INTRODUCTION

Design is thought to be the cornerstone of engineering and architecture. Yet,

in both domains, it is a most debatable issue. Domain related definitions for

design, or even design processes, do not exist. Design concepts are instead

empirically developed. This is especially true for architects. Concepts are based

on architects experience and are, in most cases, highly subjective. Each

concept is valid for only a small group of architects. It is therefore highly

debatable among other groups of architects.

One characteristic, common to design concepts in architecture, is that

they approach design process from a narrow point of view negligent of many

aspects of the building's environment and technology. An obvious example is

the International Style. Reaching its peak during the fifties and sixties,

buildings were considered as prototypes that can be built anywhere with little

or no adaptation. This resulted in buildings that in many cases failed to be

what they were meant to be, and manifested the failure of the design concepts

behind the artifacts.

One might argue that these design concepts were made for a certain place

and time, and therefore, should not be expected to perform equally well

under different circumstances. This argument can be disputed with what C.

West Churchman states as one of the characteristics of the design process:

"There is a fourth characteristic of design behavior.... This is the goal of

generality, or as many would put it , methodology; the designer strives to

avoid the necessity of repeating the thought process when faced with the

1
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same goal attainment problem by delineating the steps in the process of

producing a design.

"In a sense, this design goal consists in communicating with another

designing mind faced with similar problems. Once the designer has had

some success in this effort, he can say that he can tell why a design is

good,... The broader the class of 	 nethodolo can

be used to solve, the deeper 	 explanation of the design." [Churchman

1971].

In the light of Churchman's articulation, most current design

methodologies in architecture would be characterized by being shallow,

which was noted by Buckminster Fuller:

"The International Style of simplification was then seen as only

superficial. It was seen to only peel off yesterday's exterior

embellishments, and instead put on formalized novelties of quasi-

simplicity as permitted by the same hidden structural elements of

modern alloys that had permitted the discarded Beaux-Arts

ornamentation." [Banham 1980]

This apparent shallowness, besides the fact that architecture has been

(and still is) slow to incorporate new technologies in design, has caused a

decline in the architecture profession, as Renzo Piano points out:

"... architecture is on the decline, at least in terms of which its work has

hitherto been conceived. It is no longer sufficient to update the catalogue

of expressive tricks or renew the style code; it is the architect himself that

needs to be redesigned. At the most delicate moment, on the brink of

entering the microelectronics village, he finds the ground removed from
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beneath him. He is no longer able to build or invent.. Art, though

mannered, becomes his refuge and often deteriorates into pure slight of

hand, formal arabesques lacking substance...the architects role today is of

no use to anyone or anything. He may just as well bow out." [Dini 1984]

Architecture, today, is in bad need to adapt to the change in its

environment. New technologies are emerging and the demand on efficient

building design is greater than ever. Global economics are providing new

challenges for better building performance at a lesser cost. It is clear that the

current design methodologies that are used in practice cannot meet those

challenges. A broader, more general, concept has to be adopted. The design

process needs to be perceived as a system design process, rather than an

isolated case of designing a building or a group of buildings that does not need

to be generalized or made aware of its environment.

This thesis shows the potential of a system—oriented design process in

architecture through a study of design concepts in practice and theory. To

achieve this purpose, chapter two starts with a brief discussion of design

evolution that stresses how the concept of shelter, the initial purpose of

architecture, has changed from a negative concept to shield and protect from

nature uncertainties, to a positive one that inspires the creation of new

human activities and interactions. This changing concept of shelter, creates a

demand on architectural design to react to change as well as to produce

change. Therefore change, as a necessary aspect of design is discussed in the

context of problem formulation and problem resolution.

Chapter three presents some practices that are used in different domains.

They are arranged in two logical groups. The first group contains examples of
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design concepts used in architecture and computer—aided design systems that

are generally base on hierarchy. Each example is followed by a discussion that

points out some of the problems associated with this approach. The second

group contains examples of design practices in engineering and organization

design that follow a systems—approach to design instead of the traditional

hierarchical approach.

Arguing that a systems—approach to architectural design can be

successful as it has proved to be in engineering and organization design, some

theoretical principles of the systems approach are presented in chapter four. It

is then followed by a conclusion that summarizes the context of this thesis

and points out some of the inherit problem in architecture that stands in the

way of a system—oriented design process in architecture.



CHAPTER 2

DESIGN EVOLUTION

2.1 Conceptualization of Shelter

Half a million years ago, when some of our ancestors took refuge in a cave,

they established the concept of shelter from nature uncertainties. They

gradually became familiar with two basic aspects of shelter; the negative and

the positive aspects.

It is believed that the negative aspects were what necessitated the concept

of shelter. According to Krissdottir and Simon: "The very word shelter, if we

explore it gives us a clue to the stage at which people began to feel a house

was necessary. The English word shelter comes from the old Anglo-Saxon

word scyldtrum. This means, literally, "shield-troop"---a body of men

protected by interlocking shields. In its most basic sense, then, shelter means

shielding. The dictionary has two-part definition: a) something that covers,

protects, or defends, as from the elements, danger, etc. a place of refuge; b) the

state of being covered, protected or defended. The shielding is both physical

and psychological. It is a material something that protects, but it is also a

mental thing, a state of mind, a conviction that we are being covered and

defended." [Krissdottir 1977, p.7].

Gradually people came to realize the positive aspects of shelter. Its

contribution to the quality of life and to people's social habits and behavior.

The shelter became a place where people can live, work, perform their

activities in a better way, or even invent new activities. The concept of shelter

5
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was not confined anymore to shielding and protection and people became

more demanding: "... the ideal shelter might be considered a built

environment that promotes, or at least does not prevent, the full

development of the whole person—the body, the mind, and the emotions."

[Krissdottir 1977, p.3].

Architecture became the framework to create a shelter with its positive

and negative aspects. The more the two aspect are integrated the more

successful the shelter is. For example, HVAC systems can be considered as

negative elements to protect from unsuitable weather. These systems can act

as positive elements as well if they can be integrated within the shelter design

to be esthetically pleasing. In other words the more the design process is

integrated within a system, the more it is capable of providing a complete

implementation.

2.2 Design and Change

2.2.1 Design as a Response for Change

Design is architecture's tool for creation. For that it is sometimes necessary to

explore the origins of design and how we arrived to the present formulations

of if in order not to lose track of what design is supposed to do.

There are numerous definitions and formulations for design, but they

all share the property that a design should produce a change. In the "Design

Argument", Frederick Ferré traced the development of the design argument

1 	 Ferré 1974.
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in theology. The two schools of thought2 mentioned in his study disputed

over the source of change—what produces change. There was no dispute,

however, that a change is a necessary product of design.

Whether design is done by humans, computers or a combination of

both, the common denominator is the necessasity of accounting for change

and the ability to produce it as well. A change that could help improve the

product being designed whether it is a building, a city or a car. This change can

either be a contribution towards solving some of the inherit problems in the

design process, or just preventing the decline of the current practice by

keeping up with new demands and technology innovations. The authors of

"Change" describe the latter type of change:

"In other words, change becomes necessary to re-establish the norm, both

for comfort and survival. The desired change is applied through

applying the opposite of what produced the defiance ..." [Watzlawick et al

1974 p.31].

2.2.2 Types of Change

According to Watzlawick et al (1974), there are two different types of change

that may happen in a system. First-order change which occurs in a given

system which itself remains unchanged. This type of change is a change in the

internal structure of the system but the overall system behavior remains the

same, i.e. the system input and output remains unchanged. The other type of

2 According to Ferréé, there are two main schools of though. Plato and Newton argued for
the presence of an intelligent being who is the cosmic designer and produces the change necessary to
maintain the stability of the universe (William Paley belongs to the same school of thought although there
are some variations among the three concerning the nature of that being). The other school of thought was
pioneered by Aristotle, then Darwin developed its argument in the 19th century. This school argues that
design and creation is evolutionary—produced by the natural beings themselves in a random manner
according to the need for survival and adaptation.
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change is second-order change whose occurrence changes the system itself. In

this case the system behavior will change and either its input or its output or

both will be changed.

2.2.3 Problems of Change

In the attempt to make a change, however, design can contribute to the

formation of the problem rather than to the solution. According to

Watzlawick et al (1974) this contribution can happen in three ways:

1. Over-simplification of the problem which would result in

neglecting important details. In this case, design will provide a

solution to a simplified problem which, when applied to the real

problem, can complicate the existing problem rather than solve it.

2. Setting unrealistic goals,  described as "The Utopia Syndrome"

[Watzlawick et. al. 1974, p.471. This may occur by attempting to solve

a problem that is practically unsolvable, by seeking an ideal solution

that cannot be practically achieved or by attempting to solve

nonexistent problems that results in the waste of time and effort

and the possibility of creating new problems.

3. Seeking contradictory goals that would result in a paradox. This

may happen when trying to find a solution to several problems

within certain boundaries when the solution can only be found by

changing the boundaries themselves. "A system which may run

through all its possible internal changes (no matter how many there

are without affecting a systemic change, i.e., second order change, is

said to be caught in a Game Without End. It cannot generate from
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within itself the conditions for its own change; it cannot produce

the rules for the change of its own rules." [Watzlawick et. al. 1974, p.

22]. In other words the system will not be able to produce a solution

on its own.

2.2.3 Managing Dilemmas in Change

In order to avoid a change that contributes to the problem, a four step

procedure to create a purposeful change is articulated in Watzlawick et. al.

(1974). Those steps are:

1. A clear definition of the problem in concrete terms.  This step

involves stating the problem in concrete terms that permits the

separation of problems from pseudo-problems, i.e. problems that

occur as a result of another problem. It also involves recognizing

the complexity of problems, and whether or not they can be solved.

2. An investigation of the solution attempted so far,  which would

show the kinds of change that should not be attempted. At the same

time it reveals the reasons that keep the situation unchanged. A

small manageable problem can turn into a much complicated one

by applying "more of the same" solution that does not contribute to

the resolution of the problem.

3. A clear definition of the change to be achieved.  Following the

identification of the problems and the unfeasible solutions, the

desired change can then be identified. The desired change however,

has to defined in concrete and detailed terms that would make it
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possible to apply. It should also be in the form of realistic and

reachable goals in order not to fall into "The Utopia Syndrome".

4. The formulation and implementation of a plan to produce this 

change. This is the decision-making step where action is applied to

produce a change. Although the previous three steps are research-

oriented and can be accomplished rather quickly, they are of crucial

importance to the success of the fourth step.



CHAPTER 3

DESIGN CONCEPTS USED IN PRACTICE

This chapter will present some design concepts used in practice in

architecture, engineering, organization and CAD systems design. The ability

of those design concepts to produce change will be discussed in the light of the

principles presented in the previous chapter. The presentation of these design

concepts serves three purposes. First, it illustrates the impact of using a

systems approach to different design problems. This impact is shown in its

ability to integrate design activities into one system that is more than the sum

of these activities. Second, it provides a look into design problems addressed

in multiple domains that can enrich the architectural design perspective.

Finally, it offers an insight into disciplines characterized by a high degree of

complexity, which is increasingly becoming an important aspect that needs to

be addressed by architectural design.

It is important to note that the discussion of the design concepts

presented in this section should by no means be interpreted as design

criticism. The purpose of this discussion is to evaluate the design process in

terms of its ability to fulfill the initial goals of the designer and contribute to

the resolution of the design problem.

3.1 Architectural Design Concepts

Architecture lacks a formal definition of a design process that is in the form of

a step—by—step technique. Instead the design process in architecture can be

described as separate styles of decision making [Rowe 1991]. On some

11
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occasions the design process is strongly determined by the architects personal

attitude and passion toward things like social concepts or a certain form of

technology. On other occasions the process seem to be more influenced by

problem constraints like the building context or "function". In most cases,

however, the process is driven by a mixture of both orientations.

The design process is often a two—way process in which architects move

back and forth between the problem and the design proposals in an early

design stage. More often the two—way process continues to even the design

implementation or construction stage which is due, in part, to the lack of an

organizing principle to the design process.

This section presents two examples of the design process in architecture

through the discussion of case studies of design work done by architects

[Rowe 1991]. These examples illustrate different "styles" of the design process

in architecture. The first is more concerned by the context of the design

problem where one idea seems to dominate and the design process can be

described as a serial one. In the second example, the conflict between two

ideas portray the process as a parallel one. These examples do not represent

all the "styles" by which architects conduct the design process. Instead they

provide a sense of the variation of the design process among architects.

3.1.1 Example 1: Design as a Serial Process

The problem in this case is designing a commercial complex on a suburban

site of an American city. The design process is described in terms of several
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stages with different goals associated with each stage 1 . Following is a

presentation of these stages.

Stage 1: Providing a corporate image: In this stage the main intention was to

provide a corporate image for the complex through the utilization of towers

(figure 3.1).

Figure 3.1 Stage 1.

Stage 2: Developing an urban form: The second goal was to develop an urban

form that preserve the natural amenity of the site and acknowledges the

public domain of the street, which resulted in creating a plaza along the street

boundary (figure 3.2).

I The description listed in this thesis is different from Rowe's. Rowe articulates the design process
as consisting of three stages. The first is early sketches, the second is exploration of design ideas and the
third is development of design ideas. Although this articulation follows a format that is well known among
architects, it implies that process is unidirectional moving from a preliminary stage to an intermediate stage
and ending with a development stage which rarely happens.
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Figure 3.2 Stage 2.

Stage 3: Designing office space: The goal in this stage was to design office and

commercial space for corporate tenants that would give each corporate some

sort of identity. Complex entries and the overall appearance of the complex

was addressed at that stage (figure 3.3).

Figure 3.3 Stage 3.

Stage 4: Site arrangement: The first decision was a linear arrangement

influenced by a desire to orchestrate public spaces starting from the major
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plaza on which each office building had an individual address and ending by

the street on which the complex had a common address. However the linear

arrangement was then seen to create some problems and rejected. Other

arrangements were explored but they seemed to backtrack towards the linear

arrangement (figure 3.4). The reason was that the problem was under

constrained and lacking a specific direction [Rowe 1991].

Figure 3.4 Development of site arrangement proposals

The designers then retreated to an early stage to evaluate the initial

design ideas like the public plaza. Although most initial ideas were reasserted,

the evaluation process provided a problem definition which Rowe noted to

be lacking. A proposal rejected earlier prevailed which added an informal

exterior space to the already established public plaza. With main guidelines

established, the attention was turned to other aspects like the entrances,

circulation elements and plaza design (figure 3.5).
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Figure 3.5 Selected proposal

Stage 5: Articulating the office towers:  This was the first stage that a

technological issue came into consideration; that is the structural design and

building erection technology. The decision was made to use steel framing for

the construction of the office towers because of the economic advantages of

speedy construction. Following the same line of reasoning, the decision was

made to use glazed fenestration and spandrel panels. This decision, however,

hindered the earlier goal of providing an individual identity to each tenant.

There was no attempt of discussing any other technological issues at this

stage.

When the attention was turned to issues not pursued until that point, it

was evident that some of the goals pursued earlier would not be achieved.

One of these goals was to preserve the natural amenity of the site which could

not be practically achieved because of the construction requirements of

parking that required excavations over much of the site. Another earlier goal,

the acknowledgment of the public domain, unable to be achieved because the

extension of the building base across the site resulted in a perimeter of

building mass that walled off the site along its boundaries.
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Stage 6: Final adjustments: The final adjustments included studies of the

vehicular and pedestrian circulation patterns and the scheme began to be

finalized (figure 3.6).

Figure 3.6 Final stage

3.1.2 Discussion

Problem definition: It is clear from the above description of the design

process that there was no concrete definition of the design problem especially

at early stages. This can be easily noted by the back and forth movement

between stages and proposals which was noted by Rowe as "Periods in which

the problem seemed under constrained to the designer were immedialty

followed by systematic reevaluation if his position and an assessment of the

potential outcome of various lines of reasoning" [Rowe 1991].

The lack of a concrete problem definition resulted in asserting several

design ideas and goals in an early stage that proved to be impractical in a later

stage when, for example, construction requirements were considered. It also

caused a lack of direction during some design stages. The most important
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disadvantage, however, was the inability of the designers to accomplish all

the initial design intentions. Instead, new goals and ideas were asserted and

retracted throughout the design stages, and even some ideas rejected earlier

were reasserted.

Response to the problem:  The problem resolution method employed in

this example, although inconsistent and ill defined, is considered the most

popular among architects. The emphasis was mainly on following a certain

procedure that will eventually produce a final design proposal whereas a little

attention was paid to the purpose of the design itself. This can be easily noted

by the changing goals in every stage and the failure of the final proposal to

incorporate some of the ideas that was established as desired goals. Even

Rowe's assessment that praised the process confirmed that "not all the initial

intentions were completely satisfied, however, particularly with regard to the

site's natural amenity" [Rowe 1991]. Although these initial intentions Rowe

describes as "well-chosen urban concepts", the fact that they did not

materialize in the final proposal was not seen as a major problem. It follows

that if these urban concepts were "ill-chosen" instead of being "well-chosen",

the outcome of the design process won't be much different because these

concepts were not the real emphasis of the solution.

Another important feature of the solution that follows is the

impracticality of the ideas that were established as goals. The main reason

behind its impracticality is that very little attention was paid to its

implementation with respect to the site constraints, the program and the

construction requirements and technology. Rowe describes the final proposal

as "a design scheme that developed from a few well-chosen urban concepts

that were more an interpretation of what the project might be like than
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pragmatic responses to prevailing site conditions and program" [Rowe 1991].

However the final proposal shows that design decisions were more

influenced by the site conditions and the program rather than by the urban

concepts (figure 3.7).

The design process was regarded as a series of relatively independent

stages rather than a system. The fragmentation of the design process resulted

in wasting time moving back and forth between proposals. The process did

not have a well defined start or a direction and its end is only marked by

reaching an "acceptable" proposal.

It is clear that the design process described in "Example 1" has suffered

from the three main problems of change described in the previous chapter:

over—simplification of the problem, setting unrealistic goals and setting

contradictory goals.

Figure 3.7 Conceptual ideas that could not be accomplished
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3.1.3 Example 2: Design as a Parallel Process

This example present the process of designing a world bibliographic center on

a waterfront site, adjacent to the downtown area of Chicago (figure 3.8, part 1).

The program requirements included a library, a computer and data processing

facility with telecommunication linkage with similar centers in other parts of

the world, and several theaters. The site was a potential point of symmetry

with Burnham's scheme for Chicago from the "City Beautiful Movement".

Stage 1: The initial themes: The process was characterized by a conflict

between two themes. One was the creation of a landmark at the point of

symmetry with Burnham's plan. The other was the development of a scheme

of a linear system of buildings and interstitial spaces that would thematically

extend the Chicago grid pattern out into the lake (figure 3.8, parts 2 & 3). The

program itself, which is the main reason for the center to be built, was not

discussed at all at that stage. Other experiments of building masses show some

references to the buildings of the Chicago Exposition (figure 3.8, parts 4, 5 & 6).

Figure 3.8 Stage 1 sketches.
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Stage 2: The linear scheme prevails:  At this stage the scheme became resolved

as a linear form, protruding into the lake for the purpose of extending the

Chicago grid (figure 3.9, parts 1 & 2). The grid terminated with a rotunda—like

structure similar to the building masses that were tested in the previous stage

(figure 3.9, part 3).

Stage 3: Linear scheme rejected:  After a programmatic evaluation, it was

discovered that the linear scheme would require more building facilities than

were available and would prove to be an inefficient arrangement for library

use. The decision then was to reject the linear structure and shift towards a

single—building scheme (figure 3.9, parts 4 & 5).

Figure 3.9 Stages 2 & 3 sketches.
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Stage 4: A dual composition scheme: A large number of compositional

possibilities were tested which resulted in the separation of the library from

the electronic media and transmission devices (figure 3.10, part 2).

Stage 5: Dual composition rejected: Following another programmatic

evaluation, the dual composition was rejected because the computing and

technical facilities building would be much bigger than the library building

and would hence be more dominant (figure 3.10, part 3).

Figure 3.10 Stages 4 & 5 sketches.
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Stage 6: Single—building scheme finalized:  At this stage the attention shifted

to the study of building proportions, entrances, circulation pattern and

accommodating the design requirements and the scheme was finalized.

3.1.4 Discussion

Problem definition: The design problem in this example was defined in

the context of the building form. The question was whether to have a single

building that acts as a potential point of symmetry with Burnham's plan for

Chicago, or to follow a linear arrangement of buildings that will extend the

Chicago grid into the lake. Both schemes had nothing to do with program

whether it was for a library, an office building or a commercial center. The

first time the program was discussed was after developing the linear scheme.

Inspite that Rowe presents the linear and single—building schemes as the

design schemes guiding the process, we find that, at a relatively late stage, a

dual—building scheme was employed which was later rejected. This shows

that the themes established at the early stages were not as influential as Rowe

suggests.

Response to the problem: The designer's response was aimed towards

the building form problem rather than the program. All the decisions taken

were to support one of the building form schemes and very little attention

was paid to ensure a high level of building performance. Even Rowe's

analysis is not concerned whether the process contributed to a successful

design in terms of the program requirements.

In the early stages, the design process was a parallel process in the sense

that there was two conflicting themes regarding the building form (figure
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3.11). In a later stage one of these themes finally prevailed because of program

requirements. It follows that if the program requirements were discussed in

early stages and were used as a design factor, the linear theme wouldn't have

been discussed in the first place and a lot of time would have been saved.

Figure 3.1 Conflicting themes in example 2.

3.1.5 Summary

• The problem definition was rather weak which caused the process to be a

"generate—and—test" process rather than a one that is directed by an

purpose or a goal.

• In both examples the emphasis was on the process rather then on the

design objectives which caused these objectives to change from one stage

to the other.

• The design process was not goal directed so that the solution reached is

the best solution possible.
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3.2 Computer Aided Architectural Design Systems Concepts

Several definitions exist for the term "computer aided architectural design".

One definition that explains the term is the "technique in which man and

machine are blended into a problem-solving team, intimately coupling the

best characteristics of each, so that this team works better than either alone,

and offering the possibility for integrated team-work using a multi-discipline

approach" [Vlienstra et al 1973]. It follows, from that definition, that the

purpose of building a computer-aided design system should not be restricted

to automating existing practices. Instead, it should extend to offering new

design methods that would lead to a better product quality and assure that

design goals are established.

The following section contains a description of the design concept

underlying two computer-aided design systems in architecture that are being

developed. One of these systems is focused on the problem of the

representation of design knowledge while the other is more concerned with

automating an existing design task done by architects. These systems by no

means represent the full scope of CAD systems in architecture that are being

developed. However they touch on some important problems facing CAD

systems in general. These problems are presented in the discussion that

follows the presentation of each system.

3.2.1 EDM: The problem of Knowledge Representation

A computer-aided design (CAD) system consists of two main parts: the

knowledge base (or database) and the problem solving technique. The

knowledge base is that part of the system that contains the necessary
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knowledge to solve a design problem. The problem solving technique uses

this knowledge to produce a feasible solution.

Knowledge representation techniques has been a major research topic in

artificial intelligence (AI). The Engineering Data Model (EDM) 2 is an

information modeling system dedicated to provide a representation of design

knowledge in architecture and construction that can be manipulated by the

problem solving strategies of CAD systems. This representation is in the form

of conceptual modeling tools that can be used to build intelligent CAD

systems, each dedicated for different aspects of architecture and construction.

For example, systems for construction types (lightweight steel, concrete, wood

frame), mechanical system design, exterior cladding, roofing and other aspects

of design.

Structure: The developers of EDM represent design knowledge as a multi-

dimensional matrix with many design alternatives existing in each

dimension. Examples of these dimensions include building type, construction

type and mechanical systems [Eastman et. al. 1992]. A building design is a

combination of a number of those dimensions like a steel girder framed

hospital, with cold air and hot water reheat, using concrete exterior panels.

Following the moral of the Swiss Watchmaker allegory 3 presented in

"Sciences of The Artificial" [Simon 1985], EDM is modularly structured.

According to [Eastman et. al. 1992]: "the solution to building design is the

2 EDM is being developed at the Graduate School of Architecture and Urban Planning at the
University of California, Los Angeles, by Charles Eastman, Scott Chase and others.

3 The Swiss watchmaker allegory is a story that compares the way two Swiss watchmakers build
their watches. One of them assembles his watches by adding one piece at a time incrementally until the
watch is complete, while the other assembles his watches using modules. Both watchmakers are frequently
interrupted. The one putting the watch together by adding one piece at a time to the overall watch must put
the watch down with the effect that many parts come apart, which he must redo after the interruption. The
other watchmaker to who uses modules would only put a module down when interrupted so he has only to
rebuild one module instead of rebuilding the whole watch.
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definition of modular domains of design knowledge, for example, for

different types of structural systems, different mechanical systems, external

cladding systems and different building types, and to provide the means to

integrate unique combinations of these packages into custom CAD

configurations. The designer links together knowledge modules as the design

proceeds, sometimes exploring alternative modules with different

performances".

The essence of this modular structure is to provide a considerable degree

of flexibility to accommodate changes in building technologies and design

requirements in general by adding modules or modifying existing ones

instead of changing the whole system 4 . For example, a definition of a wall

does not include its construction method. The desired construction method

module is connected later to the wall module (figure 3.12).

Figure 3.12 Adding a structural composition to a wall in EDM [Eastman et. al.
1992].

4 The problem of modifiability is presented as a two—horn dilemma. One of the horns is to have
an easy to modify system that is hierarchical, while the other is to have a non—hierarchical system that is
difficult to modify. A third alternative would be a non—hierarchical system that is easy to modify.
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The knowledge base is hierarchically structured with the building type

modules at the core or "kernel" and the other modules attached to it as add—

ons (figure 3.13). These modules are also hierarchically structured as shown

in figure 3.12.

Figure 3.13 The EDM knowledge base structure [Eastman et. al. 1992].

Knowledge representation: EDM is based on a small number of knowledge

structures to represent design information. These structures are defined using

sets and first—order logics. There are three types of primitives: domains (sets

of values corresponding to a simple type), aggregations (sets of domains) and

constraints which are general relations defined as logical predicates that may

evaluate to true or false.

These predicates are composed into three high level pre—defined forms:

functional entities (FE), accumulations and compositions. A functional entity

is the primary data object within EDM, consisting of an aggregation and

5 First order logic as a knowledge representation technique which is presented in the discussion
that follows.
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constraints. It also contains a set of FEs whose values and constraints it

inherits. FEs are grouped into sets representing design requirements like

furniture or activities. An accumulation is a one—to--many relation between

the properties of a composite object and the properties of its parts. It defines

performance relations among properties as well as rules that the composition

must satisfy to achieve that performance. A composition is a named structure

between one FE and a set that composes it (figure 3.14).

Figure 3.14 A sample set of layout requirements and their EDM
representation [Eastman & Siabiris 1992].
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3.2.2 Discussion

Structure: EDM follows a modular hierarchical structure for reasons of

providing flexibility and easier modifiability. However, as described in

Simons's Watchmaker allegory [Simon 1985], hierarchy can be an acceptable

approach for systems that produce a well—defined product which consists of

parts that follow a logical hierarchical structure.

In the case of CAD system in architecture, the product is a building

design which is usually characterized by a high degree of creativity, which

means that the product, in many cases, is not well—defined. In addition, the

modular structure does not allow for the integration of building systems. For

example, consider an integrated structure that is the external envelop of a

building. Some of its mullions are water supply elements, others are ducts for

the electrical system while others are structural elements. Its LCD glass panels

are windows, controlled lighting devices and climate control elements at the

same time. To define the module for such a structure the system will be

caught in a dilemma—whether to classify it as a wall, structural, electrical or a

mechanical module. Moreover, the system will never be able to construct

such a structure by combining its respective functional modules.

Knowledge representation: Knowledge is represented in EDM using "sets"

and "first order logic". A set is a group of objects that share some common

properties. Set representation is usually used to associate properties to a set

rather than to explicitly associate it with every element of the set [Rich et. al.

1991].
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First order logic is a monotonic 6 knowledge representation technique

that can derive new knowledge from old using mathematical deduction [Rich

1991]. It is a relatively easy to use knowledge representation technique with a

reasoning mechanism embedded within it. However first order logic has a

serious limitation which is its inability to handle uncertainty, assumptions

and qualitative reasoning which usually characterize design problems,

especially in architecture.

Uncertainty and assumptions can be handled by Dempster—Shafer

Theory which allows the use of probabilistic reasoning. This kind of

reasoning, however, has some disadvantages: It is very difficult to use and

modify and requires lots of very accurate statistics to produce reliable

probabilities.

On the other hand, qualitative reasoning can be handled by another

form of logic called "fuzzy logic" or reasoning. Approximate or fuzzy

reasoning is "the process by which a possibly imprecise conclusion is deduced

from a collection of imprecise premises. Such reasoning is, for the most part,

qualitative rather than quantitative in nature, and almost all of it falls outside

the domain of applicability of classical logic... Approximate reasoning

underlies the remarkable human ability to understand natural language,

decipher sloppy handwriting, play games requiring mental or physical skills

and, more generally, make rational decisions in complex and/or uncertain

environments" [Zadeh 1979].

6 In monotonic logic, if a condition is proved to exist or to be true, it could not be proven
otherwise in a later stage.
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While formal logic defines set membership as a Boolean predicate—the

value of which is either true or false, fuzzy logic allows us to present set

membership as a possibility distribution [Rich et. al. 1991]. For example it is

not possible to represent a quality such as "very" tall in formal logic because

the definition of tall is a Boolean one (figure 3.14 b). While, as shown in

figure 3.14 (a), fuzzy logic enables the representation of such quality—one's

tallness increase with one's height until the value (1) is reached. "Once set

membership has been redefined in this way, it is possible to define a

reasoning system based on techniques for combining distributions. Such

reasoners have been applied in control systems for devices as diverse as trains

and washing machines" [Rich 1991].

Despite of all its advantages, fuzzy reasoning received very little

attention within the branches of cognitive sciences "largely because it is not

constant with the deeply entrenched tradition of precise reasoning in science

and contravenes the widely held belief that precise, quantitative reasoning

has the ability to solve the extremely complex and ill-defined problems

which pervade the analysis of human systems" [Zadeh 1979]. Nevertheless,

fuzzy logic is a very promising knowledge representation technique that

deserves more attention, especially in architectural CAD systems.

Figure 3.15 Fuzzy membership versus conventional membership [Rich et.
al. 1991].
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3.2.3 LOOS: Design Automation

LOOS 7 is an architectural CAD system specialized in "layout synthesis".

Layout synthesis, or generation, systems are used to generate layouts or plans

of buildings given a certain layout problem. They are supposed to be useful in

the preliminary stages of the building design process where lots of design

alternatives are developed. The architect would then select the more feasible

alternatives and present them to the client to choose from.

The intent behind LOOS is to create a complement to human designers

in the form of a system able to produce solutions to layout problems

characterized by diverse and possibly conflicting criteria or constraints

[Flemming 1992]. One of the goals is to generate alternatives with intelligent

trade-offs in terms of these criteria. The architecture of LOOS reflects this goal

by using a hierarchical generate-and-test (HGT) approach as a problem

solving technique. HGT is a search technique described by (Stefik et al., 1983)

that uses intermediate evaluations to guide the search for solutions into

promising directions to avoid the inefficiencies associated with blind search.

LOOS constructs and evaluates layout configurations by using two types

of rules that work on these configurations. The first type is called

"Generation" rules which generate layouts from design elements by adding

one element (rectangle) at time, starting with one element in the layout.

Alternative layout structures are generated if more than one possibility of

adding a design element exist. The incremental nature of the layout

generation process allow for intermediate evaluations that can be used for

stopping the search.

7 LOOS is being developed at the Department of Architecture and Engineering Design Research
Center at Carnegie Mellon University, Pittsburgh, PA by U. Flemming and R. F. Coyne.
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Intermediate evaluations are made by applying "test" rules to the layout

configuration. Each of these rules checks if a certain constraint is satisfied. If a

constraint is violated, the "test" rules denotes the failure in an evaluation

record for the configuration. "Test" rules can also estimate how well the

configuration performs with respect to a certain criteria like, for example, the

minimum size of the overall area. Table 3.1 presents a layout problem that

was used to test the performance of LOOS in [Flemming 1992]. It calls for a

design of an efficiency apartment within an area that is accessed from the east

and receives natural light from the west. Elements of this layout are

arrangements of rectangles whose sides are parallel to the horizontal and

vertical directions in a two dimensional space. A complete trace of how LOOS

was able to solve the (Layout Problem) is presented in (figure 3.16). LOOS was

able to find 24 feasible solutions and generated 40 states to find them.

Table 3.1 Layout Problem Used for Testing the Preformance Of LOOS
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Figure 3.16 State space for Layout Problem generated by LOOS

3.2.4 Discussion

LOOS represents an area of CAD called design automation. Its goal is to build

systems that are capable of producing a behavior similar to that of the human

designer. It is not meant to introduce new design concepts but rather to

automate the existing ones. The main purpose of LOOS is to automate the

task of producing design alternatives at an early design stage. It works on very

simple layouts as it fails to solve complicated ones due to the enormous

amount of memory that the search requires.

There are two main drawbacks for design automation systems in general.

The first is translating certain tasks from the human environment into that

of the computer. In that attempt, design automation systems try to mimic

human behavior and usually express very little success when they don't

address the difference between the two environments. The human
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environment is characterized by a large amount of flexibility in making

choices and selecting reasoning techniques compared to that of the computer.

In addition, those design techniques were planned for the human mind and,

in most cases, are not readily suitable for computer implementation. The

result is usually CAD systems that are quite impractical due to their excessive

computer requirements and their inability to tackle real—life complex design

problems.

The second drawback is that the emphasis on automating existing

practices deludes to believing that automation is in itself the solution. In

many cases the result is either an automated chaos or an automated trivia.

Automation, by itself, does not provide the solution and can even contribute

to the problem by producing "more of the same" solution that doesn't works.

Another approach to design automation would be one that is more

concerned with the purpose rather than by the process itself.

3.2.5 Summary

• Knowledge representation techniques, in architectural CAD systems, are

generally based on formal logic which imposed limitations on

representing qualitative aspects of design.

• Hierarchical structure of CAD systems limits the ability of these systems

to accommodate integrated structures and generate new ones.

• Design automation cannot provide solutions if the automated process

itself is not working.

8 This point is manifested in the "Titeflex Company" example presented in a following section.
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3.3 Engineering Design Concepts

This section as well as the following one comprises a logical transition in

design concepts from the previous two sections. Whereas design concepts

presented in the first two sections were generally based on hierarchy, the

following two sections present non—hierarchical design concepts.

3.3.1 Ove Arup: Integrated Engineering Design

Ove Arup is one of the most successful architectural / engineering firms. Its is

known for its ingenious structural and mechanical systems designs of some

of the most famous buildings of this century. These buildings include Sydney

Opera House, the Hong Kong and Shanghai Bank, headquarters for Lloyds

Bank in London, and Centre Beaubourg—also known as Centre Pompidou.

All those buildings were only made possible through the ingenious

engineering design of Ove Arup (figure 3.17 describes the development of

Sydney Opera House from horn Utzon's competition scheme to the final

design).

Ove Arup who founded the firm in 1946 believed in "total design"

which he explains as: "the integration of the design and construction process

and the interdependence of all the professions involved; the creative nature

of engineering design; the value of ingenuity and invention and the social

purpose of design."

To achieve this goal the firm is organized laterally, rather than

hierarchically, into multi—disciplinary teams each under the guidance of a

project director. For example, "building engineering" comprises groups of

structural, mechanical, electrical and public health engineers and architects.
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The same thing applies for industrial, civil, geotechnical and transportation

engineering. This approach was established to remedy the failings of the

traditional approach to "service engineering", where services are linked to

the building after the architectural and structural elements have been fixed.

The method of team working employed by Ove Arup allows for considering

the engineering implications of architectural concepts from the outset and

thus identifying appropriate options at the earliest opportunity.

Figure 3.17 The development of Sydney Opera House scheme.

The emphasis of this approach is not on the "process", but on the
"product". As Ove Arup puts it: "In building, the entity we want to perfect is
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not the structure or the air-conditioning as such -although that as well- it is

the sum of all these parts... The search in this case is for a comprehensive

quality which is the sum of particular qualities, each measured with its own

particular yardstick, but modified to fit into a general pattern. The success of

the whole undertaking depends on the right allocation of priorities and

whether the resulting entity has this quality of wholeness and obvious

rightness which is the mark of a work of art." The underlined statements

show a strong implication to a systems approach to design problems.

3.3.2 Summary

• Successful engineering design can better be achieved through the

integration of building systems from the start and throughout the design

process.

• Successful design require an emphasis on design objectives and

continuing the search process until no better solution can be achieved.

3.4 Organization Design Concepts

The business world of the nineties is characterized by being decentralized and

"fickle" [Peters 1992]. The changes in global economics happens so fast that

when one of Japan's best foreign-exchange dealers consider "long-term"

factors in buying and selling, he is only referring to a period of ten minutes

[Volcker 1992]. This exhilarating rate of change is largely contributed to

innovations in information technologies and evolving marketing strategies.

Fashion became a part of almost any industry and profession [Peters 1992]; it is

no longer restricted to clothes and cosmetics.
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In such a world, only a decentralized and responsive organization can

survive. Big organizations with hierarchical structures are suffering, as

shown by their record losses, due to lack of flexibility and adaptation to a rapid

changing world. The most notable examples are IBM and GM. The big

organizations that are still in good shape are the ones which have been

divided into semi—autonomous independent units, like the Swedish

industrial giant ABB (Area Brown Bovery).

3.4.1 Going beyond Hierarchy

According to Harold Leavitt, an organization consists of task, structure,

information, control, people and an outside environment [Leavitt 19781. It is

believed that 50% of the success of any business organization comes from its

organizational structure [Peters 1992]. The 1970's hierarchical design model by

no means accommodates the required flexibility and dynamics of the 1990's.

The successful organizational design models of this decade will be the ones

who go beneath hierarchy towards flat structures. In such organizations,

strategy formulation and organization design are "more organic and bottom—

up than structured and top—down" [Peters 1992]. As a result, functional

barriers disappear. Instead of having specialized functional departments, like

finance and engineering, the organizational structure is composed of work

cells or units that contain people of different specializations. These work cells

are in fact project teams with a lot of decision making power who simply

work together to get the work done. In such cases the work becomes a series of

projects that enrich team members experience and provide them with a

wholistic perspective of how the overall organization operates. Every person

becomes a business person in the true sense of the expression.
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This form of organization can be perceived as a system. There are no

multiple levels of management, and the concepts of "who is the boss" and

"who reports to whom" only depends on the occasion and the task to be

accomplished. This is a necessary characteristic to have because "working as

equal partners is the only way that the talent of experts 9 can be correlated to

create more than the sum of the parts10" [Peters 1992, p. 191].

The advent of using the system approach in design of organizations is

that it makes the organization accountable to subtle changes in its

environment. The introduction of "Chaos" theory [Gleick 1987] has shown

that small changes in initial conditions can have enormous consequences,

contrary to the scientific belief that big effects were generally the result of big

causes. This kind of chain reaction is the one that happens in complicated

systems like the weather system and the stock market. In such complicated

systems, it has not been possible to arrive to good understandings of complex

behavior. As modern organizations become more complicated, it is not

feasible to pursue total understanding of them through centralized—control

schemes. The control process must be decentralized and embedded in the

building blocks of the organization.

The next section contains a case study that represents the effect of the

organization design on its performance taken from [Peters 1992, pp. 62-71].

The study compares the performance of the firm before and after changing its

organization design.

9 Inspite that the previous statement refers to "experts", the case study that follows later in this
section will show that this term is relative, and that "normal employees" can easily adapt to such structure.

10 From the definition of systems: The output of the system is more than the sum of its parts.
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3.4.2 A Practical Example

Before redesign: Titeflex is a Springfield, Massachusetts based manufacturer of

fluids and gas holding systems—high-tech industrial hoses. Until 1988, the

company was functionally and hierarchically structured into departments and

different levels of management. Operations were centrally controlled by the

MPR I computer system which would create paperwork for purchasing,

production schedules, the storeroom and the quality assurance department.

Other paperwork would be initiated by other departments. The whole process

generated a large number of meetings every day like engineering and quality

review, make-buy and purchasing meetings (figure 3.18). The typical elapsed

time for order entry was three to five weeks.

On the factory floor, part of the order went to the basic hose

manufacturing line, along by the paperwork generated through the previous

reviews. Another part of the order went to a factory group responsible for

fittings for the basic hose—a job that involves five different departments.

"After the hoses and the associated components were built, they went to

another department to be cleaned; then through at least three more

departments for final assembly; then to the 50-person quality-assurance

department; and, finally, to the shipping department.

Factory-floor "management" was overseen by a big production control

planning unit.... A typical order-in-progress went through the stockroom no

less than six times, as part of a three-quarter-mile voyage from initial order

to shipping dock. Production controllers were also forced to invent six

"expedite lists." They were necessary to override the formal systems. There

was a Hot list (angry customers), a Luke-Hot list (moderately angry



43

customers), and End—of—the—Month List (to assist in getting stuck orders out

the door so that they could be recorded for accounting purposes), and so on."

[Peters 1992, pp. 63-65].

Figure 3.18 Titeflex system until 1988 [Peters 1992 p. 64]



44

In addition to the three to five weeks for order entry, manufacturing

absorbed six weeks—for a total of nine to eleven weeks, if everything went

smoothly.

After redesign: In 1988, Jon Simpson, who was appointed as president of

Titeflex, conducted radical changes in the organization structure that was

reflected in the way the company operates. The hierarchical functional

structure of the company has been obliterated, layers of management

removed, old processes abandoned, then completely reinvented and even the

old computer system has been disconnected.

The hierarchical structure has been replaced by "cells" and "small

businesses". The placement of new orders is handled by an "administrative

cell" called a Genesis Team, "consisting of five people with their desks

arranged in tight circle. Among the players are (1) a contracts administrator,

the voice of Titeflex to the outside customer (discussing price, delivery dates

and setting up "master contracts" with in—house "small businesses"); (2)

applications engineers who immediately review each order from an engineer

stand point; (3) a quality engineer, who checks that quality requirements are

being met; (4) a draftsman, who draws up new designs if necessary; and (5) a

clerical support person" [Peters 1992, p 65]. Instead of the numerous inter-

departmental meetings that were imposed by the old functional structure, the

Genesis Team handle all the details themselves through informal

discussion—marginally supported by the MPR I system. The result has been

minimal paperwork (no more than a page), and whole processing time of 10

minutes for routine orders or two to five days for a new or special request.
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The factory has been organized into "small businesses" which are in fact

self sufficient "manufacturing cells" consisting of 6 to 10 people each. For

example, Business Development Teams (BDTs) are in-house small cells

which "sell" complete hose-and-fitting sets to the Genesis Team; Final

Assembly Teams are cells that handle ultimate construction. The

communication between the Genesis Team and a BDT often starts before the

order is released so that the BDTs begin manufacturing immediately once an

order is released. When the manufacturing is done, the components goes to

the stockroom, and from there to one of the Final Assembly Teams (figure

3.19). Total manufacturing time ranges from two days to one week. Crash

orders are handled by a special Rapid Development Team which can process

the orders from the order entry to the shipping dock in three or four hours.

To summarize the changes, the hierarchical structure of the organization

has been demolished as well as the functional departments. Layers of

management have been stripped out and some functional departments

replaced by Business Development Teams, while others simply removed. The

expedite lists vanished since virtually jobs are completed within a few days.

The results of the changes went beyond the improved organization

efficiency. Relationships between functions were revolutionized. Engineers

are now more seen on the shop floor than ever, checking out the feasibility of

doing different tasks and occasionally seeking worker's advice. Workers

routinely travel to visit customers like General Electric and suppliers like Du

Pont. Intercompany relations with customers and suppliers, now established

among a wide range of workers, has achieved a 50% reduction in the new-

product development cycle. Workers from Titeflex are allowed intimate



46

access into the Du Pont processes and operations and vice versa which was

difficult to imagine a couple of years before.

Figure 3.19 The Titeflex system after redesign [Peters 1992, p. 67]

3.4.3 Summary

• Functional integration is better achieved at a lower level.

• Lateral structure proved to be more successful than hierarchical

structure.

• Automation can contribute to the problem formation rather than to its

resolution, if the automated process itself is a failing one.
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3.5 Conclusion

The case studies presented in this chapter illustrate some of the different

design concepts used in practice in the fields of architectural, CAD,

engineering and organization design. Design concepts presented in

architecture and CAD are similar in being hierarchical—based and the

emphasis on the process rather than design objectives. Case studies presented

in these two fields suffer from the lack of a concrete problem definition and a

process that leads to the best possible solution to the design problem in hand.

The cases presented in engineering and organization design present

similar unconventional approaches to conventional problems. This approach

can be described as a system approach that provides a wholistic perception of

the problem at hand as well as a resolution that addresses all the aspects of the

problem.

The following chapter contains the principles of system design to serve

as a basis for regarding the design process in architecture as a whole system

rather than as a series of separate stages.



CHAPTER 4

DESIGN IN THEORY

In the previous chapter, it was shown that design practices that used a

wholistic approach to problem solving were more successful than those

which used a narrow approach that was inspired by a single idea or belief.

This wholistic approach has its roots in what Churchman describes as the

"system approach" [Churchman 1968].

The system approach evolved as a result of the significant success of the

teams of scientists that were assembled during World War II to help the

British Admiralty solve some pressing problems. These scientist used a wide

approach to problem solving that considered all possible aspects of the

problem in hand. They pointed out the weaknesses in assumptions made by

the military that were complicating problems rather than solving them. After

the war, this kind of problem solving approach developed _into a science

called "operations research" that was used to solve military as well as

nonmilitary problems.

Operations research continued to prosper through the fifties and early

sixties when things started to change. By that time, it was discovered that

operations research was more successful in solving problems that could be

modeled mathematically or quantitatively and, as a result, the focus of

operations research was turned to these problems. Gradually it became a

"domain—oriented" rather than a "market—oriented" profession, its scope

became narrower and it started to fade away. Today, operations research has

very little impact compared to what it used to have during the fifties and

early sixties.
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The diminishing role of operations research, however, does not reduce

the importance of the system approach to problem solving methods,

including design. In fact the decline of operations research, as a profession,

has been contributed to the shift from the wholistic approach that

characterizes system thinking to a narrower, more specialized one. The

decline of operations research sends a powerful message to architecture that

professions which get too specialized and adopt a narrow approach to solving

problems can easily become extinct. Instead of approaching architectural

design from a narrow perspective, like form follows function, less is more or

less is bore, the design process in architecture needs to be approached as a

system capable of producing a high quality product—that is a successful

design.

This chapter presents the theoretical principles of systems that can be

used to articulate a system oriented design process in architecture.

4.1 Principles of Systems

There are many definitions of a system. Aristotle described a system as the

whole that is "more than the sum of its parts". Other definitions for a system

also exist. This chapter presents Churchman's definition because of its

practical implications and because it represents the model that is becoming

increasingly popular in today's organizations. According to Churchman, there

are five basic aspects of any system [Churchman 1968]:
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4.1.1 The Total System Objective and the Performance Measures of the

Whole System

The objectives of the system represent the true purpose of the system and the

specific tasks it is supposed to accomplish. It is useful at this point to

investigate the objectives and not rely on any presumptions because "so

many mistakes may be made in subsequent thinking about the system once

one has ignored the true objectives of the whole" [Churchman 1968, p. 30].

To assure the achievement of the system objectives, there must exist

performance measures of the whole system. They indicate how the activities

that occur within the system contribute to the achievement of its objectives.

4.1.2 The System Environment: the Fixed Constraints

The environment is what lies outside the system and cannot be changed by

any means of system activity—fixed in the sense that they cannot be changed

by the system. Recognizing the environment is of significant importance. For

example, a design system that works in a computer environment should not

be expected to be the same as one that is operated by humans. These

differences can show in the logic and structure of the system if needed.

4.1.3 The Resources of the System

These are elements inside the system which are the means the system uses to

do its job. Contrary to the environment, the system can change its resources

and use them to its own advantage. An example of these resources in a design

system would be design knowledge and the system determines which kind of

knowledge is suitable to which task. It follows that the resources are the
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general reservoir out of which the specific actions of the system can be

shaped.

4.4.4 The Components of the System, their Activities, Goals and Measures of

Performance

"The reason for the separation of the system into components is to provide

the analyst with the kind of information he needs in order to tell whether the

system is operating properly and what should be done next" [Churchman

1968, p. 421. This means that systems do not have to be composed of modules

arranged in a hierarchy according to their function. The way these

components are classified should only be considered in association with the

system objectives. This means that the arrangement of those components and

the relationships between them is more important than the goal or activity of

the individual component. For example, in a design system, some design

elements can be classified as structural or mechanical elements depending on

the design activity being performed by the system—whether it is structural or

mechanical design.

The measure of the performance of the system components should only

be done in terms of the performance of the overall system. As Churchman

puts it: "One obvious desideratum is that as the measure of performance of a

component increases (all other things being equal), so should the measure of

performance of the total system. Otherwise the component is not truly

contributing to the system performance" [Churchman 1968, p. 43].

The measure of performance of a system component can be affected by

the introduction of a new member or the changes that occur in other

components due, for example, to some technological improvements. In this
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case the nature of activities required by other components might also change

and so does their measure of performance. For example, before mechanical

systems in buildings became reliable, the measure of performance of windows

and openings was affected by their ventilation abilities. Now that mechanical

HVAC systems are more reliable the measure of performance of windows

does not depend on ventilation as much.

4.1.5 The Management of the System

The management of the system deals with the generation of plans for the

system that consider the overall goals, the environment, the utilization of

resources and the components. The management also performs the "control"

activity which makes sure that those plans are be carried out in accordance

with the original ideas or objectives of the system. The most important aspect

of control, however, is to evaluate the plans and consequently change them

when necessary. This leads to one of the most critical aspects of management:

Planning for change of plans, because it is not practically possible to account

for all the objectives or changes that occur in the environment or any

unexpected situation. The management performs this activity by collecting

information that tell it when its concept of the system is erroneous and must

include steps that will provide for a change [Churchman 19681.

The control aspect or function of management was studied by Norbert

Wiener [Wiener 19651. He compared this function of the management of a

system to the steersman of a ship. The captain of the ship has the

responsibility of making sure that the ship goes to its destination within the

prescribed time limit of its schedule—"system objective". The "environment"

of the ship is the set of external conditions the ship must face: the weather,
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the direction the wind blows, the pattern of the waves, etc. The ship's

"resources" are its men and machinery, as these can be deployed in various

ways. The components of the ship are the engine—room mission, the

maintenance mission, the gallery mission, and so on. The captain of the ship

as the "manager" generates plans for the ship's operations and makes sure of

the implementation of his plans. He institutes various kinds of information

systems throughout the ship that inform him where a deviation from plan

has occurred, and his task is to determine why the deviation has occurred, to

evaluate the performance of the ship. Finally, if necessary, he changes his

plans if the information indicates the advisability of doing so. This may be

called the "cybernetic loop1" of the management function, because it is what

the steersman of a ship is supposed to accomplish.

To determine the transmission speed of the information within the

cybernetic loop, an information feed—back loop is required to permit the

management to react to the changes of the system environment in an

optimal manner. The introduction of the "Chaos" theory [Gleick 1987] has

shown the importance of feed—back to the system management. The feed-

back process has to attain a very high degree of sensitivity to account for the

subtle changes in the environment that can produce major effects on the

system performance.

Wiener and Ashby developed a theory of cybernetics which has mainly

been applied to the design of machinery. However it is a system oriented

theory of control that is getting increasing attention in economics and other

1 Cybernetics is derived by Wiener from the Greek word for "steersman".
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complex domains, and would certainly deserve some attention from

architects, especially the developers of CAD systems in architecture.



CHAPTER 5

CONCLUSION

The main purpose of this study was to present an overview of design

practices and theories in different domains that would enrich the perspective

of architectural design. To achieve this purpose, the study presented the

initial purpose of architectural design which is providing an adequate shelter

for different human activities. Positive and negative aspects of shelter were

briefly discussed to trace the evolution of the concept of shelter.

Change, as an essential aspect of design was presented in the context of

problem formulation and problem resolution. First and second order change

were presented as the types of change that can occur in systems. The ways

change can contribute to the formulation of a problem were presented as the

problems of change. These problems are:

• over-simplification of the problem,

• setting unrealistic goals (the "Utopia Syndrome), and

• seeking contradictory goals.

Another section followed that described how to manage these dilemmas

of change that design processes are usually trapped in. The way to manage

those dilemmas was presented in the following four step procedure:

• a clear definition of the problem in concrete terms,

• an investigation of the solution attempted so far,

• a clear definition of the change to be achieved, and

• the formulation and implementation of a plan to produce this change.
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A presentation of design practices followed. It started by presenting

design practices that are generally based on hierarchy. Two examples in

architectural design that illustrate two different types of the design process in

architecture were presented and discussed. They were followed by another

two examples of computer—aided design systems in architecture; one is more

concerned with the problem of knowledge representation while the other is

an attempt to automate an existing design activity. Each system was followed

by a discussion that pointed out some problems that existed in each system.

Practices in engineering and organization design were then presented.

The practices that were chosen do not follow the traditional functional

hierarchical approach to design, but rather follow a system approach to the

design process that proved to be much more successful than the examples

presented in architecture and CAD systems.

Following the logic of the study the theoretical principles of the systems

approach were presented following Churchman's articulation. A hint to the

importance of cybernetics as the control mechanism of large systems was also

included.

This study did not intend to articulate a system approach to architectural

design. Instead it just points out the possibility of using this approach in

architecture, as it has proved to be successful in other domains. The process of

articulating such an approach for architectural design is a monstrous one that

could not be attepted in such a study. It is not a common sense approach and

requires raising many questions especially about matters that are considered

well known, because, in many cases, they might turn out to be not.
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