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ABSTRACT 

Planning of Optimal Transit System Design 

by 

Yongning Liu 

This study presents a methodological approach for finding an optimal design of 

bus transit service in an urban transportation corridor with elastic demand and under 

various objective functions. Service design decision variables to be optimized include 

the route length, route density, headway, number of stops and stop spacing pattern. 

The objective functions that optimize the transit system design include: minimizing 

operator cost, maximizing profit, minimizing sum of operator and user costs and 

maximizing the users' net benefits. 

The analysis uses an elastic demand function wherein the number of trips are 

sensitive to the quality of service provided and price charged by the transit system. 

Several analytical models of transit service design are developed and presented in 

a form of case studies. Computer-aided optimization methods are used to derive the 

optimal solutions in each of the case studies. 
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LIST OF VARIABLES AND PARAMETERS 

Description Symbol Units Value 

Headway H Minutes * 

Route Spacing M Miles/Route * 

Route Length L Miles * 

Number of Stop N * 

Stop Spacing S Miles/stop * 

Length of The 
Served Area E Miles 5 

Width of The 
Served Area Y Miles 3 

Transit Speed V Miles/minute 0.167 

Access Speed G Miles/minute 0.05 

Supply Operating Cost C Cents/minute 50 

Average Travel Time 
Lost Per Stop d Minutes 

Capacity of Bus Cap Seats 45 

Bus Fare for 
Local Service f Cents 125 

Ratio of Expected 
User Wait Time to 
Headway 

k 0.4 

Value of Passenger 
In-vehicle Time Viv Cents 5 

Value of Passenger 
Waiting Time Vw Cents 15 

Value of Passenger 
Access Time Va Cents 15 



Demand Mode 
Choice Coefficients: 

Transit Constant al 0.38 

Wait and walk time a2 -0.0081 

Invehicle Travel 
Time a3 -0.0033 

Fare a4 -0.0014 

Auto Time and Cost a5 0.0328 

* To Be Optimized 



CHAPTER 1 

INTRODUCTION 

1.1 Problem Statement 

Determining an optimal service design of public transportation systems in an urban area 

is one of the major research fields in urban transportation. The main problem faced by 

transit planners in designing a transit system is to determine the system parameters such 

as route length, route density, headway, number of stops and consequently stop spacing 

patterns. Since these elements have significant impacts on transit operating cost as well 

as user travel time and thus costs, their values should be carefully determined. Thus, 

the main problem studied here is finding an optimal transit system service area 

coverage , usually the optimal combination of route length, route spacing, headway and 

stop spacing pattern for a particular transit network so that various design objectives 

are satisfied. The system design objectives include maximization of user benefits, 

maximization of operator profit, minimization of operator cost and minimization of 

total operator and user time costs. 

1.2 Objective of the Research 

The objective of this research is to develop a methodological framework for optimizing 

transit service design when demand is elastic (i.e., varies with the fares charged and 

service provided). In most past studies, demand has been assumed to be constant. This 

may be appropriate for some general studies, but, it cannot reflect the attraction of 

users to the transit service under certain level of service quality and fare charged. The 

demand used in this thesis is a function of headway, route length, route spacing, stop 

spacing and fare. It is elastic in the sense that it is sensitive to changes in service 

quality parameters and fare paid for travel. Within this framework both theoretical and 

practical mathematical models were developed for determining the optimal combination 



values of route length, route spacing, headway and stop spacing for a bus transit system 

serving a rectangular urban transportation corridor. Initially, theoretical analytical 

models were formulated on an idealized basis but they were unable to provide a closed 

form solution for design variables. A more realistic model can be formulated after 

some of the initial assumptions are relaxed. This model is incorporated within an 

efficient optimization algorithm and used to compute the optimal service design for 

particular case studies. Each case study reflected a particular service design objective 

function. While all of the case studies focus on the same urban corridor, and have the 

same input data for costs and user value of time parameters, they differ in the objective 

the service design variables must meet. As stated earlier, the objectives considered in 

this research are: minimizing operator cost, maximizing operator profit, maximizing 

user benefit and minimizing total operator and user costs. 

1.3 Scope 

This research focuses on the operation of a bus transit system along a rectangular 

shaped urban corridor. The underlying street network is our urban grid network (also 

referred to as iron or Manhattan grid). The demand is given as a linear mode share 

model which yields the probabilities of travelers in the service corridor choosing 

transit. The travel pattern is "many to one", wherein all passengers have their origin or 

destination at a common central point. This pattern is common for commuting from 

residential areas to the central business district (CBD). All transit vehicles are assumed 

to be uniform in type and capacity. The operating speed is the same for all transit 

vehicles at all locations. Walking was assumed to be the only access mode. 

1.4 Overview of Thesis 

This thesis is divided in six chapters. Chapter 2 reviews the literature in the area of 

transit service modeling. Chapter 3 shows the model development and objective design 



function formulation. Four different cases of transit design in an urban area are 

examined in Chapter 4. Chapter 5 presents the sensitivity analysis of the four cases 

Chapter 6 summarizes the results and recommendations for future research. 



CHAPTER 2 

LITERATURE SURVEY 

In the past 20 years, a number of attempts have been made to optimize various 

variables of transit system design. Most approaches have studied certain idealized 

problems by analytical methods. Their objective functions dealt generally with 

minimizing the transportation (sum of user and operator) costs and maximization of the 

transit system's profit. 

Byrne and Vuchic (1972) studied bus route locations and frequency of parallel bus 

routes serving a rectangular area from which passengers travel to and from the CBD. 

Their objective function minimized the total operator and user costs. Their 

assumptions were that the passengers would be taking the lowest cost route to the CBD 

and that the bus operating speeds on each route were equal. They found that each bus 

route should be positioned in such a manner so that the populations using it from each 

side are equal. 

Byrne (1976) extended the previous work by relaxing the assumption of equal bus 

operating speed to take into account different bus speeds on different routes. He 

concluded that when the high and low speed routes run in parallel in the same 

rectangular area, the lower speed routes will have to terminate at some distance from 

the CBD, otherwise all passengers would prefer to take the high speed routes. 

S.C. Wirasinghe and N.S. Ghoneim (1981) used continuum approximations and 

methods of calculus to optimize bus stop locations along a local bus-route with non-

uniform many-to-many travel demand. In their analysis daily demand was assumed to 

vary slowly with distance between stops. 

Kocur and Hendrickson (1982) analyzed bus service design for a transit system 

with three different objective functions, namely profit maximization, maximization of 

net user benefits and operator profit, and maximization of net user benefits subject to a 

deficit constraint. The decision variables were defined as the spacing between parallel 

routes, the route headway, and the fare. The service area had a rectangular grid street 

network. The difference between their research and previous work is that their demand 



was elastic (i.e, it was sensitive to the transit levels of service). They found that the 

optimal line spacing is proportional to headway for all their objective functions and 

constraints. 

Wirasinghe and Seneviratne (1986) also studied the rail line length in an urban 

transit corridor that would minimize the (user and operator) cost. In this analysis the 

"many to one" passenger demand travel pattern was assumed. The objective function 

included the cost of rail fleet, rail operating cost, bus operating cost and passenger time 

cost. The optimal value of line length, which minimizes the sum of user and supplier 

cost, was obtained by taking the partial derivative of the objective function with respect 

to line length and setting it equal to zero. They determined that, when the line cost is 

nonuniform, there could be several line lengths at which the total transit system cost is 

minimized or even maximized locally. When the cost per unit is uniform an optimal 

length exists only if the net gain in travel time and operating cost of transporting the 

total demand a unit distance by rail when compared to bus exceeds the marginal line 

and fleet cost per unit length. Closed form solutions for the line length were obtained 

for the cases of sectorial and rectangular corridor areas with uniformly distributed 

demand per unit area. They showed that the threshold demand and optimum line length 

are in fact related to the fleet cost. 

Spasovic (1986) developed a model of service coverage for an urban 

transportation corridor. He minimized the total cost of a transit system where the 

various operator and user cost components are formulated as functions of the decision 

variables. The important findings of his study were that: the optimal route length 

varies directly with corridor length, operating headway, transit speed, value of access 

time, route spacing and passenger density and that it varies inversely with supplier 

operating cost and access speed. The optimal headway varies inversely with supplier 

operating cost, length of transit route, number of stops and time lost per stop. It varies 

inversely with the square root of passenger density, value of waiting time, transit speed 

and route spacing. He also confirmed results obtained by several researches that for 

the total operator and user cost objective function, at optimum, the costs of operating 

the service, and waiting costs are equalized. 



A classification of the previously mentioned and other pertinent analytic models 

according to the type of service design elements to be optimized, and the objective 

function was made and is shown in Table 2.1. 

In conclusion, the majority of the reviewed papers optimized the transit system 

design by finding an optimal headway (or frequency) and route spacing. All papers but 

one assumed that demand for service was constant. In marked contrast, this thesis will 

derive not only the headway and route spacing, but also the optimal route length and 

stop spacing pattern assuming variable (elastic) demand for service for four different 

objective functions. 



Table 2.1 Summary of Pertinent Transit Design 
Analytic Models 

Decision 
Variable 

Objective Transit 
Function Mode 

Network 
Geometry 

Passenger 
Demand 

Authors 

location 
headways 

min. user bus 
& operator 
cost 

rectan- 
gular 
grid 

uniform 
inelastic 

Byrne & 
Vuchic 
1972 

route 
length 
headway 

min. user bus & 
& operator rail 
cost 

rectan- 
gular 
grid 

uniform 
inelastic 

Byrne 
1976 

number of 
zones and 
headway 

min. user bus 
& operator 
cost 

linear uniform 
inelastic 

Tsao & 
Schonfeld 
1983 

route 
length 
headway 

min. user bus 
& operator 
cost 

rectan- 
gular 
grid 

uniform 
inelastic 

Tsao & 
Schonfeld 
1983 

vehicle 
size 

min. user bus 
& operator 
cost 

rectan- 
gular 
grid 

uniform 
inelastic 

Jansson 
1980 

route 
space 
headway 
fare 

max. profit bus 
max. benefit 
max. profit 
& benefit 

rectan- 
gular 
grid 

elastic Kocur & 
Hendrick-
son 
1982 

headway min user bus 
time 

linear 
uniform 

 
Wirasinghe 1982 

headway 
stops 

min. user bus 
time 

linear uniform 
inelastic 

Kikuchi 
1985 

route 
length 
headway 

min user bus 
& operator 
cost 

rectan- 
gular 
grid 

uniform Spaso- 
vic 
1986 

line 
length 

min. user rail 
& operator 
cost 

rectan- 
gular 
grid 

inelastic Wirasing- 
he & sen- 
eviratne 
1986 

stops min. user bus 
cost 

linear uniform Kuah & 
Perl 1988 

headway min. system rail 
cost 

linear uniform Keaton 
1989 

headway min. user bus 
cost 

linear uniform Abkowitz 
1990 



CHAPTER 3 

METHODOLOGICAL FRAMEWORK FOR BUS TRANSIT SERVICE 

PLANNING AND DESIGN 

In the transportation services planning and designing in general, a supplier of the 

transportation service must select the level of service (LOS) characteristics that to be 

offered to the users (passengers or shippers of freight) and the rate (price) to be 

charged. Usually, the service characteristics are chosen in such a fashion so that they 

satisfy certain pre-specified service design objectives. The design objectives could 

range from maximizing service market penetration (e.g., market share), maximizing 

profit (or minimizing cost), and maximizing public benefit, to name a few. 

In the public transit service planning process in particular, the supplier of the 

service must choose various LOS characteristics. Namely, how far to extend the transit 

route in a service area, how frequently to operate the vehicles, where, and how apart, 

the routes should be locate, how many stops (stations) will be on the route, and how 

far apart the stops will be located. In public transit, often the supplier of services is a 

local authority that provides equipment (i.e., buses) and grants operating rights to an 

operator who actually provides the service. Often the authority sets service 

characteristics externally, because it is actually the customer who "pays" for the 

service, rather than by the service operator. The authority usually specifies values of 

LOS characteristics that must be provided, thus ensuring that the riders are offered a 

minimum service. 

The bus transit service planning process is presented schematically in Figure 3.1. 

This process relates the resources and cost required to provide the service to its 

operating characteristics. 

In planning bus service planning, one must choose values for the following 

service characteristics, i.e., design variables: 



Figure 3.1 Methodological Framework For Bus Service 



the length of route 

headway (or its inverse, the frequency) 

route spacing (i.e., route density) 

number of stops on the route 

stop spacing pattern must be chosen. 

In providing the service, the operator must ensure that the regulatory measures that 

designate the minimum acceptable values imposed by the supplier are satisfied. The 

values of these variables will impact the cost of operation. 

Passengers are sensitive to the values of service design variables. For example, the 

more frequent service is provided, the more passengers will use it. Therefore, the 

service variables impact the demand for service. The demand will in turn impact the 

service characteristics because certain frequency of buses will have to be provided on a 

route in order for the route capacity to meet demand. This in turn will impact the 

operating cost. Also, each passenger pays a fare for using the service. The total 

revenue obtained is equal to the number of passengers using the service multiplied by 

the individual fare per passenger. The total revenue collected from fares is called fare 

box revenue. 

The service that is provided could be evaluated using several evaluation criteria. 

For example, the operating profit defined as a difference between the fare box revenue 

and operating cost -- could be one of the criteria. In reality, the majority of transit 

systems do not recover the operating cost from fare box moneys and need to be 

subsidized from additional external revenue sources. In this case, minimization of 

operating cost subject to the minimum LOS to be provided on the route becomes the 

relevant design criterion. The number of passengers attracted and transported via bus 

could be another criterion. 

It should be mentioned that often there is a conflict between the operator's and 

users' objectives. The users would prefer to have short access to the route (e.g., 



frequent stops and longer routes) and little waiting time (i.e., frequent service). On 

the other hand, the operator would prefer to have very long headway and shorter, 

sparsely located routes with few stops so that cost is minimized. In order to take into 

account this conflict in operator's and users' objectives, the sum of operator and user 

cost is often used as a suitable criterion in designing the service. The operator cost is 

self-explanatory, while the user cost is defined as a time cost the user spends using the 

service (i.e., access, wait, in-vehicle riding, and egress times) multiplied by the 

perceived value of user time. 

In summary, the service planning problem could be formulate as an optimization 

problem wherein the levels of various service characteristics must be chosen in such a 

fashion so as to improve (e.g., minimize or maximize) certain criteria in the form of 

service performance or design functions. Therefore, the service planning framework 

will be used to determine the optimal service design of a simplified bus transit system 

under various criteria or objective functions. The results of these case studies will be 

compared in order to evaluate the trade-offs between the values of design variables 

under various criteria. 

3.1 Introduction to Analytic Approach 

Optimal transit service design variables are derived in this thesis for four design 

functions presented in a form of case studies. The four design or objective functions 

are: minimization of operator cost, maximization of operator profit, minimization of 

total operator and user cost, and maximization of user benefits. The objective functions 

are formulated as a continuous function of design variables. The design variables are 

line length, line spacing, headway and stop spacing pattern. The optimal value of the 

design variables are found by solving the partial derivatives of the objective function 

with respect to the particular decision variables. Vehicle size constraints and certain 

minimum level of transit service quality (e.g., maximum acceptable walking distance) 

are considered in this study. 



3.2 Model Assumptions 

The following assumptions are made for all cases and models that are developed and 

analyzed in this thesis: 

1. The service area is an urban transportation corridor of length E and width Y. 

2. There is a many-to-one trip travel pattern. All trips either originate or terminate at 

the central business district (CBD). 

3. The transit users (i.e., their trip origins) are uniformly distributed over the service 

area. 

4. The transit demand is elastic, (i.e., sensitive to the change in price and quality of 

service). 

5. A rectangular grid pattern street network (e.g., Manhattan grid) exists in the 

service area. 

6. The area is served by a set of transit routes of length (L), the optimal number of 

which is to be determined. The routes extend from the CBD radially outbound. 

7. Walking is assumed to be the only access mode. 

8. Transit users always choose the shortest path to access the route. If the distance 

between routes is M, and stop spacing is S, passengers originating along the route walk 

an average distance of (M+S)/4. Passengers originating from the area beyond the last 

stop on the route, the average access distance is (E-L)/2+M/4. Average walking 

distance are shown in Figure 3.2. 

9. The average transit speed (V) is assumed to be constant. Therefore, vehicles on the 

routes are operating with uniform headways. 

10.Average waiting time is assumed to equal to one half of the headway. The headway 

is uniform along the route, as well as for all parallel routes. 

11.The passenger access speed (G) is constant. 

Figure 3.2 shows the corridor and the route configuration. 



Figure 3.2 Transit Corridor Configuration 



3.3 Model Formulation 

3.3.1 Operator Cost 

The operator or supplier cost usually includes labor expenses, fuel, maintenance cost 

and vehicle depreciation cost. In this study, we assume that all these expenses are 

included in the operator hourly cost (C). Thus, the total operator cost is equal to the 

product of the hourly transit cost (C) and fleet size: 

Operator Cost = Vehicle Cost x Fleet Size 

[$/hr] = [$Iveh-hr] [vehicles] 

The fleet size is equal to the number of transit vehicles required to provide the service 

on one route. That is: 

Fleet Size = (Round Trip Time)/Headway. 

In addition to the fleet size, the operator cost depends on the number of stations along 

the route. The vehicle stops to pick up or discharge passengers thus incurring additional 

cost due to the lost time and additional wear and tear of braking equipment. The time 

lost per stop (d) is considered in deriving operator cost. It is a combination of the time 

spent during deceleration and acceleration (given as a constant, a) and the time loss due 

to passengers' boarding the vehicle. The second component represents the time loss due 

to passenger volume at the stop. It is the product of the number of passengers waiting 

to board the vehicle Ps, multiplied by the boarding time per passenger. Using the 

notation introduced in List of Variables, the operator's cost can be written as: 



3.3.2 User Cost 

The hourly user cost (Cu) consists of user access (Ca), wait (Cw) and in-vehicle 

(riding) cost (Civ). The user cost is equal to the value of time multiplied by the total 

time spent on each portion of the trip. The access cost Ca consist of three parts: 

access parallel to the route for passenger beyond the route, Cal 

access perpendicular to the route, Ca2 

access in the area between the CBD and the route terminus, Ca3, 

which is given by (an access speed G and the value of access time Va): 

Cal = 2P(a 1 + a2(1(11+ (M + S)/ 4G) + (a3/ 2G + a5/ 2)L + a5f)YVa(E-L)/2G(E-L). 

Ca2 =2P(al +a2(1di + (M + S)/ 4G) + (a3/2G + a5/ 2)L + a5f)YVaF(M/ 4G) 

Ca3 =2P(al + a2(1(11+ (M+ S)/ 4G) + (a3/2G + a5/2)L+a5f)YVaL(S/ 4G) (3.2) 

Given the average wait time is one half of the headway (Assumption 10), we can derive 

the total waiting time as: 

2P(a 1 + a2(kH + (M + S)/ 4G) + (a3/ 2G + a5 / 2)L + a5f)(H/2)EY 

Then the total waiting cost equals the value of waiting time (Vw), times total waiting 

time: 

Cw =Vw(H/2)2P(al +a2(kH+ (M+ S)/ 4G) + (a3/2G+a5/2)L+a5f)EY. (3.3) 

The average travel time to the CBD for people originating in the area beyond the 

end of the transit line equals the average distance traveled divided by the operating 

speed of the transit vehicle: t, =L/2V. For passengers originating from a zone beyond 

the end of the transit line the distance traveled is L, so the average riding time is: 

t2 =L/V. The total user in-vehicle cost is then: 

Civ =2P(al +a2(kH+ (M+S)/4G)+(a3/2G +a5/2)L+a5OLYViv(L/2V +dL/2S) 

+2P(al +a2(kH+ (M+S)/4G) + (a3/2G +a5/2)L+ a5f)(E-L)YVivL/V +dL/S. 

(3.4) 



3.3.3 Service Constraints 

The service constraints applied in this thesis ensure that the operator provides certain 

level of service (e.g., route spacing should be constrained by a maximum passenger 

access distance). In a case when passengers are distributed uniformly over the service 

area, an average passenger walks a distance of M/4 perpendicularly to the routes, and a 

distance of S/4 along the route he/she reaches a station. The passengers who are 

originating from the area beyond the last station walk an average distance of (E-L)/2. 

Assuming a maximum acceptable walking distance of 1 mile, the following service 

quality constraints can be derived: 

In addition, there is a constraint that the capacity of the bus satisfies the demand 

(number of passengers) on the route during the headway. 

3.3.4 Demand Function 

The demand function used in this thesis is that of Kocur and Hendrickson (1982). It is 

elastic because it varies with the values of route length, route density (route spacing), 

transit headway, station spacing and fare. This demand function is actually a mode 

choice function and is defined as the sum of the probability of individuals in the service 

area choosing the transit service. The measure of the perceived difference in "quality" 

between the two alternatives namely auto and transit is given as: 

al + a2[kH + (M + S)/ 4G] + a3 (L/2v) + a4f + a5 (L/2) . 

where: 

al = A constant reflecting variables excluded from the model and biases 

in preferences for auto and transit. 



a2 = The coefficient for the waiting and walking tune. 

a3 = The mode choice coefficient for the utility of transit travel time. 

a4 = The mode choice coefficient of transit fare. 

a5 = The mode choice coefficient of the time and cost characteristics of the 

competing auto. 

kH= the expected waiting time for bus 

(M+S)/4= the expected walking distance to reach a stop 

L/2 = the average travel length for passenger to the destination 

L/2v = the average travel time of passengers. 

All individual passenger trip origins are assumed to be uniformly distributed over the 

service area. 



CHAPTER 4 

CASE STUDIES 

4.1 Case 1: Minimizing Transit Operating Cost 

The purpose of this case study is to develop an optimal transit network service design 

that will minimize the cost of operating the service. It is obvious that the transit 

operator will minimize its cost (i.e., have zero cost) by providing no service. Clearly 

this is not acceptable because the people in the service area demand service of certain 

quality. Therefore, certain minimum level of service quality must be set externally, 

usually by an authority that authorizes the operator to provide the service. This 

minimum service quality may specify minimum headway, the length of passengers 

access to the route, etc. This minimum level of service will ensure that the capacity of 

the route will meet demand as well as that the location of route and stations do not 

exceed the maximum allowable access distance. Constraints on the capacity of transit 

vehicles and on access distance are included in this Case. Therefore, this case 

investigates the optimal value of headway, transit length, space between transit route 

and stop spacing (actually the number of stops) that should be chosen to minimize 

operator cost. This problem is structured in the form of a constrained optimization 

problem, where the operator's cost is minimized subject to the service quality 

constraints. The problem is written as: 

Minimize : Total operating cost 

subject to: Route capacity meets demand, average longitudinal and perpendicular 

access distance to route does not exceed maximum acceptable 

distance. 

That is: 

Minimize 2CLY(1/V+d/S)/MH 

subject to: 

EMPH[a 1 + a2(kH + (M + S)/ 4G) + a3(L/2v) + a4f + a5 (L/2) < =cap; 



This problem is a non-linear programming problem with a non-linear objective 

function and linear constraints. In order to solve this problem, we will use the penalty 

function method. The penalty function method transforms a constrained problem into 

an unconstrained problem by pricing the inequality out of the constraint set and placing 

them into the objective function with a penalty. This penalty penalizes the violation of 

the constraints. The objective function can be rewritten as: 

Minimize: Q = 2CLY(1 /v + d/S)/11M + u 1 I[EMPvH(a 1 + a2(kH + (M + S)/ 4G) 

+ a3 (L/2 v) + a4f+ a5 (L/2)] -cap12  + u2[M + S-4W]2  + u3 [2 (E-L) +M-41A/]2  

where: 

ui =penalty attached with i-th constraints, for i=1,2,3. All u's must be non-

negative. 

From looking at the penalty function, we see that the optimal solution to this 

problem must have the second, third, and fourth term close to zero, otherwise a large 

penalty will be incurred. An optimization algorithm, shown in Figure 4.1, was 

developed to solve this problem. The algorithm searches feasible values of design 

variables L,H,M,S for certain "u"s, which have varying ranges of value. The iterations 

are repeated until the total operating cost has no obvious difference compared to the 

value of the penalty function Q. The resulting values of L,H,M,S are the optimal for 

certain "u"s . The Appendix A explains in detail the penalty function method and 

contains the code that was used to solve this case. 

Due to the unavailability of numerical optimization software, calculus was used to 

compute the partial derivatives of the objective function with respect to L,H,M & S in 

order to speed up the process of computing the optimal values of the decision variables. 



Figure 4.1 Optimization Algorithm 



The partial derivatives of the penalty function with respect to L,H,M,S, are shown 

below 

dQ/dL=2CY(1 /v +d/S)/HM + 2u 1 {EMPH[a 1 + a2(kH + (M + S)/ 4G) +a3(L/2v) 

+a4f+a5(L/2)]-capl*EMPH(a3/2v+a5/2)-4u3[2(E-L)/2+M-4W]; (4.2) 

dQ/cill = -2CLY(1 /v +d/S)/H2M + 2u 1 {EMHP[a 1 +a2(kH + (M +S)/4G) 

+a3(L/2v)+a4f+a5(L/2)]-capl*EMP[al+a2(2kH+(M+S)/4G) 

+ a3(L/2v) + a4f + a5(L/ 2)] ; (4.3) 

dQ/dM = -2CLY(1 /v +d/S)/H1\42  + 2u 1 {EMTIP[a 1 +a2(kH + (M + S)/4G) 

+a3(1/ 2v) + a4f+ a5 (L/ 2)]-capl -EHP[a 1 + a2(kH + (2M + S)/ 4G) + a3(L/ 2v) 

+ a4f+ a5 (L/2)] + 2u2 [(M + S)-4'W] + 2u3[2(E-L) +M-4W] ; (4.4) 

dQ'dS = -2CLYd/S2HAI + 2u{EMPH[a 1 + a2(kH + (M + S)/ 4G) +a3(L/2v) 

+a4f+a5(L/2)]-capl -EMPH(a2/ 4G) +2u2[(M + S)-4W] ; (4.5) 

The optimal expression for the line length is obtained by setting the partial 

deriNative of the cost function with respect to L (Eq. 4.2) equal to zero: 

L-  = {2CY(1 /v + d/S)/HM + 2u 1 [EMPH(a 1 + a2(kH + (M + S)/ 4G) + a40- 

caprEMPH(a3/ 2v + a5/2)-4u3 (E + M-4W)14-2u 1 (EMPH(a3/ 2v 

+a3/2))2-8u3]. (4.6) 

Given the initial conditions for the optimal M-, H-, S-, Eq.(4.6) is used within the 

algorithm to compute the optimal route length. Once the optimal route length is 

obtained, it is used in Eqs(4.3-4.5) to compute the optimal values of M, H, S, using 

the search methods to obtain numerical solutions. 

4.1.1 Number of Stops and Stop Location 

In order to determine the stop location, the corridor was partitioned into a finite 

number of small areas and scaned from its end toward the CBD. At any point along 

the route at X distance away from the CBD, and for a small increment x (e.g., 0.1 

mile) the number of people in the increment computed as well as the cumulative 



mile) the number of people in the increment computed as well as the cumulative 

number of people (from the end of the corridor to X) aboard the vehicle. The trade-off 

used was between the operator and passenger delay cost of stopping the vehicle at the 

stop, and the access cost along the route to compute the increments of stop locations 

within the increments. The components of the total cost function that actually affect the 

number of stops and their location are the operator delay cost, user access cost (only 

longitudinal Component), and user in-vehicle delay cost. The partial cost function at 

any point X along the service area is: 

The optimal stop spacing is: 

Eq.(4.8) is used to compute the stop increment in an area i. i.e., Ni* 

The number of stops is determined for each increment. For small increments the 

number is considerably less than 1.0. The stops are summed up for successive 

increments. When an integer number of stops is reached a "true" stop is established. 

Delay is considered in the objective function. The time lost per stop is a function 

of demand. 

delay =a+demand* x(passenger boarding time)*H; (4.10) 

that is: 

d =10 + P[a 1 + a2[kH + (M + S)/4G] +a3(L/2v) + a4f+ a5(1,/2)]*2*H. (4.11) 



The passenger boarding time here is set to be 2 seconds. The parameter "a" is a 

constant which represents the time spent during deceleration and acceleration. It is set 

to be 10 seconds. Now that optimal number of stops (or stop spacing) and route length 

are obtained they are input into Eqs.4.3 and 4.4 to colculate optimal M and H. 

As an example the approach outlined above is used to optimize transit service in 

an urban transportation corridor characterized by the following: 

The length of a corridor E is 5 miles. The width of the corridor Y is 3 miles. The 

passenger density is 3.59 passengers/mile2  per minute per direction. The vehicle 

operating speed is assumed to be 0.167 mile/min., and the bus fare is assumed to be 

125 cents. The value of operator cost is 50 cents/min. For access speed, normal human 

walk of 0.05 mile/min was assumed. The maximum acceptable access distance W is 1 

mile. The capacity of the transit vehicle was assumed to be 45 seats. 

Table 4.1 shows the optimal route length, spacing, headway, stop spacing and 

minimized operator cost obtained after run time of 45 minutes. Table 4.1 shows that 

the cost is minimized when the route length is 3.78 miles, route spacing 1.78 miles 

with 7 stations along the route and vehicle operating headway of 22 minutes. The 

optimal stop location and spacing pattern is shown in Figure 4.2. 

4.2 Case 2: Maximizing Operator Profit 

In this case, we will determine a bus transit network service area coverage, namely 

optimal route length, headway, route spacing and number of stops and their location 

(i.e., stop spacing pattern) that maximize operator profit. The operator's profit is 

defined as the difference between the total fare box revenue and the cost of operating 

service. The fare box revenue equals the total number of passengers multiplied by the 

fare each passenger pays for the service. The operating cost is expressed as the total 

number of hours of operation multiplied by the cost per vehicle hour. In addition to the 

line cost, the operating cost includes vehicle delay costs due to the stopping of vehicles 

to pick up and drop off passengers. 



Table 4.1 Results of Case 1 

I II III IV V 

Route Length(mile) 3.93 3.85 3.78 3.81 3.81 

Route Spacing(mile) 1.78 1.78 1.78 1.74 1.74 

Route Stops 6.58 6.42 6.01 5.84 5.73 

Transit Headway(min) 22.2 22.0 21.8 21.7 21.8 

Operating Cost(cent/min 193.6 191.7 189.9 196.6 195.8 

Transit Demand(trips/hr 203.3 205.7 207.4 214.3 213.2 

Profit(cent/min) 229.9 235.8 242.4 249.2 248.3 

User In-vehicle Cost 263.6 263.0 264.3 273.9 272.7 

User Access Cost 744.5 751.2 758.7 771.2 767.3 

User Waiting Cost 565.9 565.7 565.5 581.6 581.5 



Figure 4.2 Transit Route Configuration And Stop Location for Case I 



From the service design point of view, there are several constraints imposed on 

the operation. These constraints ensure that a certain minimum level of service is 

provided to the public. They ensure that the service design parameters such as route 

length, stop spacing and route spacing are selected in such a way that there is a 

minimum access distance for the average passenger. In addition, the analysis considers 

two situations. First, it is assumed that there is no constraint imposed on vehicle size. 

This means that the capacity on routes might not meet demand, (i.e., there might not 

be a sufficient capacity to accommodate all passengers). In the second case, a vehicle 

size constraint is imposed. Hence this transit service design problem can be structured 

as an optimization problem in the following form: 

Maximize Operator Profit 

subject to : 

maximum access distance to the route 

The constraint represents a convenience to passengers accessing the route from their 

origins to the stations along the route. 

Max : [al +a2(1c11+(M+S)/4G)+a3(L/2v)+a4f+a5(L/2)]EYP*f 

-2CLY(1/V+d/S)/Hlvi ; 

This problem does not consider the vehicle size constraint. The problem with the 

vehicle size constraints will be discussed later. 

The demand used here is the same function as in the previous case: 

[al + a2 OM + (M+ S)/ 4G) + a3 (L/2v) + a4f+ a5(L/2)]EIVIPH. 

The problem is a constrained non-liner programming problem and is solved using 

the penalty function method (explained in detail in the Appendix). The constraints are 

priced out of the constraint set via a penalty parameter and put into the objective 

function. The whole objective function is then transformed to: 

Q = [al +a2(1(11+(M+S)/4G)+a3(L/2v)+a4f+a5(L/2)]EYPf 

-2CLY( 1 /v +d/S)/HM + u 1 [4W-2(E-L) +M]2  + u2[4W-(M + S)]2 (4.14) 



The partial derivatives of the penalty objective function with respect to L,H,M,S 

are as follows: 

dQ/dL=(a3/2v+a5/2)EYPf-2CY/HM(1/v+d/S)+4u1[4W-2(E-L)-M] (4.15) 

dQ/dS=a2EMPHf/4G+(2CLYd/lEvIS2)-2u2[4W-(M+S)] (4.16); 

dQ/dM=EYPFa2/4G+2CLY(1/v+d/S)/HM2 +2u1[4W-2(E-L)-M] 

+u2[4W-(M+S)] (4.17); 

dQ/dH=EYPfa2+2CLY(1/v+d/S)/H2M (4.18); 

The optimal value of L* is obtained by setting the partial derivative of the penalty 

function dQ/dL equal to zero, and solving the equation with respect to L. 

L* = -[(a3/2v + a5/2)EYPf-2CY(1/v + d/S)/HM + 4u1(4W-2E-M)]/(8u1) (4.19); 

The algorithm used in Case 1 is used to determine the optimal route length L*, 

route density Mt, headway H*, and the optimal average stop spacing S*. A "scanning" 

technique is used to derive the optimal number of stops and their actual location along 

the route 

The input data are the same as for Case 1. The results of the optimization 

procedure are shown in Table 4.2. The optimal solution that maximizes the operator 

profit has route length of 4.31 miles, route density of 1.36 miles per route, headway of 

16.6 minutes and 6 stations along the route. The transit route configuration and station 

spacing pattern are shown in Figure 4.3. 

As mentioned earlier the problem was solved with no vehicle size constraint. 

Using the data from Table 4.2, the demand (expressed as number of passengers) per 

vehicle can be compute as followes: 

369.1/1.36/(60/19.2) = 48 passengers. 

Since we assumed that the bus can only accommodate 45 passengers, it is obvious that 

the demand exceeds capacity. 

Next, the problem that includes the vehicle size constraint is considered. To 

accomplish this, the following constraint is added to the previous problem statement: 

[al + a2(1cH + (M + S)/4G) + a3 (L/2v) + a4f + a5(1/2)]EMPH-cap < =0 ; 

The problem is then written as: 



Table 4.2 Results of Case 2 (Without Vehicle Size Constraint) 

I II III IV V 

Route Length(Mile) 4.58 4.64 4.65 4.31 4.27 

Route Space(Mile/Route) 1.63 1.62 1.61 1.36 1.30 

Route Stops 6.2 6.2 6.4 5.7 5.8 

Transit Headway(min) 26.3 26.2 26.3 16.6 17.9 

Transit Demand(trip/Hr) 233.8 238.8 238.8 369.9 367.8 

Operating Cost(Cent/Min 229.9 234.1 235.3 404.3 399.7 

Profit(cents/Min) 260.3 262.2 262.4 366.1 365.6 

User In-vehicle Cost 347.3 353.0 354.0 534.1 365.7 

User Access Cost 772.2 780.9 785.7 767.5 745.3 

User Waiting Cost 634.2 639.9 638.2 864.6 762.5 



Figure 4.3 Transit Route Configuration And Stop Location for Case 2 
(Without The Vehicle Size Constraint) 



Max : [al +a2(kH+(m+s)/4G)+a3(1/2v)+a4f+a5(1/2)]EYP*f 

- 2CLY(1/V+d/S)/HM ; 

[al +a2(kH+(M+S)/4G)+a3(L/2v)+a4f+a5(1/2)11IMPH-cap< =0 

S,M,H,L > 0 (4.21); 

The problem is solved using the penalty function method, with the following 

penalty function: 

Max Q = [al +a2(kH+(M+S)/4G)+a3(L/2v)+a4f+a5(L/2)]EYPf 

-2CLY(1/v + d/S)/HM + u 1 {cap-[al +a2(kH+ (M+S)/4G)+a3(L/2v) 

+a4f+a5(L/2)]EMPHI2 +u2(4W-2(E-L)-M)2 +u3[4W-(M+S)]2; 

(4.22); 

The partial derivatives of the objective function with respect to L,H,M,S are: 

dQ/dL=(a3/2v+a5/2)EYPf-2CY/HM(1/v+d/S)-2u1{capjal+a2(kH+ 

(M+S)/4G)+a3(L/2v)+a4f+a5(L/2)}132v1PHI[EIVIPH(a3/2v+a5/2)] 

+4u2(4W-2(E-L)-M) (4.23); 

dQ/dS =a2EYPf/4G+(2CLYd/HMS2)-2u1{capjal +a2(kH+(M+S)/4G) 

+a3(L/2v)+a4f+a5(L/2)]EiV1HPIEMPHa2/4G-2u3[4W-(M+S)] 

(4.24); 

dQ/c1M=a2EYPf/4G+2CLYd(1/V+d/S)/M2H-2u1{captal+a2(1cH 

+(M+S)/4G)+a3(L/2v)+a4f+a5(L/2)]EMPHIEPH[al+a2(1cH 

+(2M+S)/4G)+a4f+a3(L/2V)+a5L/21-2u2(4W-2(E-L)-M) 

-2u3[W-(M+S)] (4.25); 

dQ/dH=a21cEYPf+2CLY(1/v+d/S)/MH2-2u1{cap-[al +a2(1cH+(M+S)) 

+a3(L/2v)+a4f+a5(L/2)WMPH}[al +a2(2kH+(M+S)/4G 

+a3(L/2V)+a5L/2+a4f]ElvIP (4.26); 

The optimal value of the L* is obtained by setting dQ/dL equal to zero. 

L* = {(a3/2v +a5/2)EYPf-2CY(1/v +d/S)/HM-2u1[cap-(al +a2(1cH+(M+S)/4G) 

+a4DEMPH][EMPH(a3/2v+a5/2)]+4u2(4W-2E-M)}/{-2u1(a3/2v 



+a5/2)2(EMPH)2-8u2} (4.27); 

The optimal values of decision variables that maximize operator profit for the case 

with the vehicle size constraint are shown in Table 4.3. The optimal solution has a 

route length of 4.15 miles, 6 stops, operating headway of 16.4 minutes, and spacing 

between routes of 1.30 miles. The resulting total demand is 351 trips per hour and the 

operating cost is $3.38 per minute. The demand (number of passengers) per headway is 

41.6 passengers which is less than the vehicle capacity. This implies that vehicles 

operate at maximum allowable capacity for the induced demand. The profit earned by 

the operator of the transit system is $3.94 per minute. The stop location and spacing 

pattern is shown in Figure 4.4. 

4.3 Case 3: Maximizing User Benefit 

The objective of this case is to maximize the net user's benefit subject to the acceptable 

level of services and a deficit constraint in the objective function. The concept of 

consumer surplus (net willingness-to-pay) is used to measure net user benefit. The 

consumer surplus represents the difference between what passengers are willing to pay 

and what are actually paying. The expression for consumers surplus or net benefit is 

given in Kocur and Hendrickson (1982): 

-YPE[al +a2(1c1-1+(M+S)/4G)+(a3/2V+a5/2)L+a4f12/2a4 (4.28); 

This expression is derived by summing the total amount users would be willing to 

pay (including fare and the value of travel time) for a service with given L, M, H and 

S less the total cost they actually pay. Equation(4.28) is derived by multiplying one- 

half(average) of the number of passengers in the area: 

0.5YPE[al +a2(1c11+ (M + S)/4G) + (a3/2V +a5/2)L+a4f] . 

times the utility of the transit system relative to auto, and dividing it by the coefficient 

of the transit fare(a4) to convert it into money units: 

-(1/a4)[al +a2(1c1-1+ (M + S)/4G) + (a3/2V + a5/2)L + a4f] . 

So, the problem of maximizing user benefit could be stated as: 

Max -YPE[a1+a2(1(1-1+(M+S)/4G)+(a3/2V+a5/2)L+a4fl2/2a4 



Table 4.3 Results of Case 2 (With Vehicle Size Constraint) 

I II III IV V 

Route Length(Mile) 4.10 4.15 4.09 3.96 4.10 

Route Space(Mile/Route) 1.66 1.32 1.65 1.30 1.65 

Route Stops 6.7 5.7 7.5 6.3 7.5 

Transit headway(Minute) 21.8 22.0 21.8 16.4 21.8 

Transit Demand(trip/Hr) 223.3 277.3 224.5 351.8 224.0 

Transit Operating Cost 220.5 280.5 223.8 338.8 221.2 

Profit(cents/Min) 246.4 297.7 247.5 394.1 247.4 

User In-vehicle Cost 290.8 366.8 292.3 462.2 292.5 

User Access Cost 788.2 812.9 789.9 725.2 790.0 

User Waiting Cost 608.7 763.9 612.1 950.6 612.3 



Figure 4.4 Transit Route Configuration And Stop Location for Case 2 
(With The Vehicle Size Constraint) 



2CYL(1/V+d/S)/MH 
 < 2 

YPEflal+a2(kH+(M+S)/4G)+(a3/2V+a5/2)L+a4f] 

E - L M 
+ — < = W ; 

2 4 

M + S 
 < = W ; 

4 

S,M,L,H > 0 (4.29); 

The deficit constraint: 

2CYL(1/V+d/S)/MH 
 < 2 

YPEf[al +a2(kH+(M+S)/4G)+(a3/2V+a5/2)L+a4f] 

implies that as a matter of the policy the operating cost can not exceed one half of the 

total revenue In order to compare the results of this case with other cases, the rest of 

the constraints are the same. The problem is also solved by the penalty function 

method. When the constraints are priced out of the constraint set and introduced into 

the objective function the following formulation is obtained: 

Q= -YPE[al +a2(kH+(M+S)/4G)+(a3/2V+a5/2)L+a442/2a4+ul {cap- 

EMPH[al +a2(kH+(M+S)/4G)+(a3/2V+a5/2)L+a4f112 +u2{2* 

[al +a2(kH+(M+S)/4G)+(a3/2V+a5/2)L+a4f]*EYPf-2CLY/HIVI(1/V 

+d/S)12 +u3[4W-2(E-L)-M]2  +u4[4W-(M+S)]2  . (4.30): 

The partial derivatives with respect to L, M, H, S are: 

dQ/dL=-YPE[al +a2(kH+(M+S)/4G)+(a3/2V+a5/2)L+a4f1(a3/2V+a5/2)/a4 

+2u1{cap-EMPH[al + a2(kH + (M+S)/4G)+ (a3/2V +a5/2)L+a4t11 

[-EMPH(a3/2V+a5/2))+2u2{2[al +a2(1c11+(M+S)/4G)+(a3/2V 

+a5/2)L+a411*EYPF-2CLY/HM(1/V+d/S)}[2(a3/2V+a5/2)EYPf 

-2CY(1/V+d/S)/HM]+4u3(4W-2(E-L)-M) (4.31); 

dQ/dS = -YPE[a 1 +a2(kH+ (M+S)/4G)+ (a3/2V +a5/2)L+a411(a2/4G)/a4 

+2u1 {cap-EMPH[al +a2(kH+(M+S)/4G)+(a3/2V+a5/2)L+a4fil 



[-EMPH(a2/4G)] +2u2{2[al +a2(kH + (M +S)/4G)+(a3/2V 

+ a5/2)L + a4frEYPF-2CLY/IIM(1/V +d/S)}[(2a2EYPf/4G)- 

2CLYd/HMS2]-2u4[W-(M + S)] (4.32): 

dQ/dH = -YPE[al +a2(kH + (M + S)/4G)+ (a3/2V + a5/2)L + a4f] (a2k)/a4 

-2u1{cap-EMPH[al +a2(21cH + (M + S)/4G) + (a3/2V +a5/2)L+a4f11 

[EMP(al +a2(kH+(2M+S)/4G)+(a3/2V+a5/2)L+a4f)]+2u2{2 

*[al +a2(kH+(M+S)/4G)+(a3/2V+a5/2)L+a4f]*EYPF-2CLY/H1v1 

(1/V +d/S)1[2a2kEYPf +2CLY/H2M(1/V +d/S)] (4.33). 

dQ/dM = -YPE[a 1 +a2(kH+ (M+S)/4G) + (a3/2V +a5/2)L+a4f](a2k)/a4 

-2u1lcap-EMPH[a 1 + a2(kH + (2M + S)/4G) + (a3/2V + a5/2)L+ a4f11 

[EHP(a 1 + a2(kH + (M + S)/4G) + (a3/2V + a5/2)L+ a4f)] + 2u212* 

[al + a2(kH + (M + S)/4G) + (a3/2V + a5/2)L+ a4fl*EYPF-2CLY/HM 

(1/V +d/S)1[2a2EYPf/4G-2CLY/M2H(1/V +d/S)]-2u3[4W- 

2(E-L)-M]-2u4[4W-(M + S)} . (4.34): 

Setting dQ/dL, dQ/dS, dQ/dH and dQ/dM equal to zero and using the same algorithm 

and input data used for the previous cases, an optimal solution was obtained which is 

presented in Table 4.4. The transit system that maximizes user benefits has a route 

length of 4.27 miles, route spacing of 1.26 miles 15.9 minute headways and 5 stops 

along the route. The optimal stop spacing pattern is shown on Figure 4.5. 

4.4 Case 4: Minimizing Total operator And User Cost 

The objective function of this case is minimizing the sum of user and operator cost. 

Supplier cost represents the cost of resources used by the supplier to provide the transit 

service. The formulation of the supplier cost is the same as the one encountered in Case 

1. That is: 

SC= 2LCY(1/V+d/S)/HM. 

The users' cost is given as: 



Table 4.4 Results of Case 3 

I II III IV V 

Route Length(mile) 4.32 4.21 4.13 4.11 4.27 

Route Spacing(mile) 1.36 1.40 1.86 1.35 1.26 

Route Stops 4.1 5.5 4.9 4.4 5.2 

Transit Headway(min) 18.6 17.1 13.3 17.0 15.9 

Transit Demand(trip/hr) 254.6 245 267.2 260.7 367.3 

User's Benefit(c/min) 198.6 210.2 189.7 218.8 248.3 

Transit Operating Cost 341.1 351.3 334.3 358.6 382.2 

Profit(cents/min) 189.7 159.1 222.4 184.5 383.2 

User's In-vehicle cost 447.6 456.9 432.2 464.7 448.5 

User's Access Cost 879.6 921.2 938.7 918.8 940.0 

User's Waiting Cost 763.6 722.3 533.3 732.6 730.1 



Figure 4.5 Transit Route Configuration And Stop Location for Case 3 



UC = Ca + Cw + Civ (4.35); 

where: 

Ca = Cal + Ca2 + Ca3 

Cal =P(al +a2(kH+(M+S)/4G)+(a3/2V+a5/2)L+a4f)YEVaM/4G 

Ca2=P(al+a2(kH+(M+S)/4G)+(a3/2V+a5/2)L+a4f)YLVaS/4G 

Ca3 =P(al +a2(kH+ (M+S)/4G)+(a3/2V+a5/2)L+a4f)YVa(E-L)2/2G (4.36); 

Cw =Vw(H/2)2P(al +a2(kH+(M+S)/4G)+(a3/2V+a5/2)L+a4f)EY (4.37); 

Ci‘ =P(al +a2(kH + (M + S)/4G)+(a3/2V+a5/2)L+a4OLYViv(L/2V +L(1/2S) 

+2P(al +a2(kH+(M +S)/4G)+(a3/2V+a5/2)L+a4f)(E-L)YViv(L/V +Ld/S). 

(4.38); 

The total cost is operator and user cost is: 

TC = SC + UC 

where: UC = Ca + Cw + Civ. 

The problem of minimizing the total system cost can be written in the following form: 

Min: 2LCY(1/V +d/S)/HM + (al +a2(kH+(M+S)/4G)+(a3/2V+a5/2)L 

+a4f)YVa(E-L)2/2G+P(al +a2(kH+(M+S)/4G)+(a3/2V+a5/2)L 

+a4f)YEVaM/4G+P(al +a2(kH+(M+S)/4G)+(a3/2V+a5/2)L 

+a4f)YLVaS/4G+P(al+a2(kH+(M+S)/4G)+(a3/2V+a5/2)L 

+a4f)YVa(E-L)2/2G+Vw(H/2)2P(al+a2(kH+(M+S)/4G)+(a3/2V 

+a4/2)L+a5f)EY+2P(al +a2(kH+(M+S)/4G)+(a3/2V+a5/2)L 

+a4f)LYViv(L/2V+L(1/2S)+2P(al +a2(kH+(M+S)/4G)+(a3/2V 

+a5/2)L+a4f)(E-L)YViv(L/V+dL/S). 

subject to: 

(al +a2(kH+(M+S)/4G)+(a3/2G+a5/2)L+a4f)EMPH < cap 

E - L M 
+ — < = W ; 

2 4 



M + S 
 < = W ; 

4 

S,M,L,H > 0 (4.39): 

The penalty function is written in the following form. 

Q=2LCY(1/V+d/S)/HM+(al +a2(kH+(M+S)/4G)+(a3/2V+a5/2)L 

+a4f)YVa(E-L)2/2G+P(al+a2(kH+(M+S)/4G)+(a3/2V+a5/2)L 

+a4f)YEVaM/4G+P(al+a2(kH+(M+S)/4G)+(a3/2V+a5/2)L 

+a4f)YLVaS/4G+P(al +a2(kH+(M+S)/4G)+(a3/2V+a5/2)L 

+a4f)YVa(E-L)2/2G+Vw(H/2)P(al +a2(kH+(M+S)/4G)+(a3/2V 

+a4/2)L+a4f)EY+P(al +a2(kH+(M+S)/4G)+(a3/2V+a5/2)L 

+a4OLYViv(L/2V +Ld/2S)+P(al +a2(kH+(M+S)/4G)+(a3/2V 

+a5/2)L+ a4f)(E-L)YViv(L/V + dL/S) +ul(a 1 +a2(kH+(M+S)/4G) 

+(a3/2V+a5/2)L+a4f-cap)2EMPH+u2(2(E-L)+M-4W)2  

+u3(M+S-4W)2 (4.40): 

The partial derivatives with respect to L, M, H, S are: 

dQ/dL=2CY(1/V+d/S)/HM+PVivY{(a3/2V+a5/2)[(L2/2V+L2d/2S) 

+ (E-L)(L/V +Ld/S)] +(al +a2(kH+(M+S)/4G)+(a3/2V+a5/2)L 

+a4f)[(L/V+Ld/S)-L(1/V+d/S)2(E-L)]I+VwH/2PEY(a3/2V 

+a5/2)+PYVa{(a3/2V+a5/2)[EM/4G+LS/4G+(E-L)2/2G)] 

+(al +a2(kH+(M+S)/4G)+(a3/2V+a5/2)L+a4f)[S/4G-(E- 

L)/G]}+2u1(al +a2(kH+(M+S)/4G)+(a3/2V+a5/2)L+a4f)EMPH 

-cap)EMPH(a3/2V+a5/2)-4u2(2(E-L)+M-4W) (4.41); 

dQ/dS=-2CLYd/(S2HM)+[PYVivL(L/2V+Ld/2S)+P(E-L)YViv(L/V 

+Ld/S)]a2/4G-[PL2YVivd/2S2 +P(E-L)YVivd/S2](a1+a2(kH 

+(M+S)/4G)+(a3/2V+a5/2)L+a4f)+VwH/2PEYa2/4G+PYVa 

*[a2/4G(EM/4G+LS/4G+(E-L)2/2G)+L/4G(al+a2(kH+(M+S)/4G) 

+(a3/2V+a5/2)L+a4f)]+2u1[(al +a2(kH+(M+S)/4G)+(a3/2V 



+a5/2)L+a4f)EMPH-cap]a2EMPH/4G+2u3[(M+S)-4W] (4 42): 

dQ/dH =-2CLY(1/V+d/S)/(H2M)+ [PLYViv(L/2V+Ld/2S)+P(E-L)YViV 

*(L/V+Ld/s)]a2k+VwPEY/2(al+a2(2kH+(M+S)/4G)+(a3/2V 

+a5/2)L+a4f)+PYVaka2[EM/4G+LS/4G+(E-L)2/2G]+u1[(a1 

+a2(kH+(M+S)/4G)+(a3/2V+a5/2)L+a4f)EMPH-capi(al 

+a2(21(11+(M+S)/4G)+(a3/2V+a5/2)L+a4f)EMP (4.43): 

dQ/dM=-2CLY(1/V+d/S)/(M2H)+PYVivL[(L/2V+Ld/2S)+(E-L)(1/V 

+d/S)]a2 /4G+VwH/2PEYa2/4G+PYVa[E/4G(al+a2(kH 

+ (M + S)/4G) + (a3/2V +a5/2)L+a4f)+ (EM/4G +LS/4G + (E-L)2) 

*a2 /2G]+ul[(al +a2(kH+(M+S)/4G)+(a3/2V+a5/2)L+a4f) 

-EMPH-cap](al+a2(kH+(2M+S)/4G)+(a3/2V+a5/2)L+a4f) 

-EHP+2u2[2(E-L)+M-4W} + 2u3(M + S -4W) (4.44). 

Using the same algorithm as for the previous cases, the results shown in Table 4.5 

was obtained. The transit service design that minimizes the total system cost has a route 

length of 4.84 miles, route spacing of 2.11 miles, 7 stops along the route and operating 

headway of 21.0 minutes. The route configuration, stop pattern location and spacing 

pattern is shown on Figure 4.6. 



Table 4.5 Results of Case 4 

I II III IV V 

Route Length(mile) 4.72 4.81 4.84 5.00 4.99 

Route Spacing(mile) 1.67 1.67 2.11 1.86 1.87 

Route Stops 6.49 6.95 6.39 5.73 5.92 

Transit headway(minute) 23.9 21.0 21.0 23.9 23.8 

Transit Demand(trip/hr) 185.1 183.1 181.5 157.5 150.0 

User's Cost (cent/min) 1532.3 1531.5 1492.7 1516 1520 

Transit Operating Cost 210.6 210.9 210.7 216.9 215.7 

Total Cost(cents/min) 1742.9 1742.5 1703.8 1732.9 1735 

Profit(cent/min) 175.0 171.8 167.5 111.2 96.8 

User's In-vehicle cost 254.6 249.8 243.2 244.7 250.1 

User's Access Cost 690.5 677.2 771.7 658.8 664.8 

User's Waiting Cost 586.1 604.6 477.3 612.3 604.4 



Figure 4.6 Transit Route Configuration And Stop Location for Case 4 



CHAPTER 5 

SENSITIVITY ANALYSIS 

5.1 Introduction 

Sensitivity analysis is performed to show the relations between design variables and 

various important exogenous parameters. Elasticities are used as measures of 

sensitivity. The elasticity of a variable Y with respect to a parameter X, Ex(Y), is 

defined as a percentage change in Y for a one percent change in X. For example, the 

elasticity of the route length (L) with respect to the corridor length (E) is then: 

E dL 
EE(L) = —  (5.1) 

L dE 

When the absolute value I Ex(Y) I < 1, Y is said to be inelastic with respect to X. 

When I Ex(Y) I > 1, Y is said to be elastic with respect to X. 

The graphical representation of elasticity is shown in Figure 5.1. The figure shows 

the arc elasticity of a transit line of length (L) with respect to changes in the corridor 

length. As corridor length changes for EO to Ea, route length changes for LO to La, the 

elasticity can be obtained as Equation 5.1. Sensitivity analysis is conducted for the four 

case studies, and the results are described in the following sections. 

5.2 Analysis Approach 

5.2.1 Case 1: Minimizing operator cost 

Table 5.1 shows the elasticities of route length, headway, route spacing and number of 

stops with respect to ten parameters, namely corridor length, passenger density, transit 

speed, access speed, supplier cost, value of riding time, value of access time, vehicle 

capacity, value of waiting time and transit fare. 

When the supplier cost or passenger density increase by 10%, the route length 

decreases by 4.2%. If the access speed increases by 10%, the route length will increase 

by 8.1%. The route length decreases by 7.3% if the bus fare is increased by 10%. 



Figure 5.1 Graphical Representation of the Elasticity Concept 



Table 5.1 Elasticities of Case 1. 

L H M N 

Corridor Length 1.5835 1.1617 -1.1183 0.8258 

Passenger Density 0.4245 0.0047 -0.3600 1.6480 

Transit Speed 1.3292 -0.6650 1.7320 0.7050 

Access Speed 0.8148 0.3851 0.0980 -2.2298 

Supplier Cost 0.4582 0.3717 0.0045 -1.1885 

Value of Riding Time 0.0000 0.0000 0.0000 1.5931 

Value of Access Time 0.0000 0.0000 0.0000 -1.7925 

Vehicle Capacity -0.1900 -2.8726 0.0000 -1.8844 

Value of Waiting 0.0000 0.0000 0.0000 0.0000 

Transit Fare -0.7308 -2.2958 2.3692 2.7599 



When the vehicle capacity increases by 10%, the route length will decrease by 1.9%. 

The change in waiting time cost and riding time will leave the route length unaltered, 

because these parameters do not appear in the objective function that minimizes only 

transit operating cost. The route length is elastic with respect to corridor length and the 

transit speed. 

A 10% increase in transit speed decreases the headway by 6.6%. When the 

passenger access speed is increased by 10%, the headway will increase 3.8%. The 

headway is elastic with respect to transit fare, corridor length and vehicle capacity (i.e., 

The absolute value of the elasticity exceeds 1.0). If operator costs are increased by 

10%, the value of headway will increase by 3.7%. Values of riding time, waiting time 

and access time leave the headway unaltered, because these parameters do not appear 

in the objective function. 

The corridor length, transit speed and transit fare are elastic with respect to the 

route spacing. Route spacing will increase by 0.98% if the access speed is increased by 

10%. If the operator cost is increased by 10%, the route spacing will decrease by 

0.04%. If the passenger density is increased by 10%, route spacing will decrease by 

3.6%. The route is insensitive to change in the rest of the parameters. 

The number of stops is elastic with respect to passenger density, access speed, 

supplier cost, vehicle capacity, transit fare, value of riding time and value of access 

time. If the corridor length is increased by 10 percent, the number of stops will 

increase by 8% and if the transit speed is increased by 10%, the number of stops will 

decrease 7%. The number of stops will increase by 7.5 % when the transit fare is 

increased by 10%. As the vehicle capacity increase 10% the number of stops will 

decrease by 18%. The number of stops is insensitive to changes in the cost of waiting 

time. 



Table 5.2 Elasticities of Case 2 

L H M N 

Corridor Length 0.4618 -2.0125 -1.8836 1.8693 

Passenger Density -0.0382 -0.3243 -0.2456 -1.0900 

Transit Speed 0.2328 0.0795 0.0047 -2.2954 

Access Speed 0.2362 -0.4903 0.9980 -0.2710 

Supplier Cost 0.4208 -1.5976 -2.0565 -0.2710 

Value of Riding Time 0.0000 0.0000 0.0000 0.4791 

Value of Access Time 0.0000 0.0000 0.0000 -0.4596 

Vehicle Capacity 0.3422 -1.8107 -2.5909 -1.5225 

Value of Waiting 0.0000 0.0000 0.0000 0.0000 

Transit Fare 0.3487 -2.3777 2.6351 -0.0266 



5.2.2 Case 2: Maximizing operator profit 

Table 5.2 presents the elasticities of route length, headway, route spacing and 

number of stops with respect to ten parameters, namely corridor length, passenger 

density, transit speed, access speed, supplier cost, value of riding time, value of access 

time, vehicle capacity, value of waiting time and transit fare for the case of maximizing 

operator profit. 

The route length is increased by 4.6% when corridor length is increased by 10 

percent. The route length will decrease 0.3% with an increase of 10 percent in the 

passenger density. When the transit speed and access speed increase by 10%, the route 

length will increase by 2.5%. If the supplier cost is increased by 10%, the route length 

will increase 0.3%. When transit fare is increased by 10%, the route length will 

increase by 3.4%. If vehicle capacity is increased by 10%, the route length will 

increase by 3.4%. A change in value of access time, value of riding time and value of 

waiting time leaves the route length unaltered because they do not appear in the 

objective function. 

With a 10 percent increase in the corridor length and passenger density, the 

headway will decrease by 20%. The headway will increase 0.79% when the transit 

speed is increased by 10%. As the access speed is increased by 10%, the headway 

decreases by 4.9%. An increase of 10 percent in transit fare will cause a 23 % decrease 

of the headway. If the supplier cost is increased by 10% the headway will decrease by 

0.17% and if vehicle capacity increases by 10% the headway will decrease 18%. The 

headway is elastic with respect to the corridor length, operator cost, vehicle capacity 

and transit fare. The headway is insensitive to changes in the value of riding time, 

value of access time and value of waiting time. 

The route spacing is elastic with respect to access speed, corridor length, operator 

cost, vehicle capacity and transit fare. When passenger density is increased by 10 



percent, route spacing increases 2.45%. Route spacing will increase 0.47% when the 

transit speed is increased by 10%. As transit fare is increased by 10%, the headway is 

decreases 26%. If operator cost increases by 10% route spacing will decrease by 20%. 

If vehicle capacity increases by 10% route spacing will decrease 25%. The headway is 

insensitive to change in the value of riding time, value of access time, value of waiting 

time and vehicle capacity. 

The number of stops is elastic with respect to corridor length, passenger density, 

transit speed, value of access time and vehicle capacity. A 10 percent increase in the 

value of riding time will cause a 4.7% increase in the number of stops. If the access 

speed or operator cost increases by 10%, the number of stops will decrease by 2.7%. 

Any change in the value of waiting time will leave the number of stops unaltered. 

5.2.4 Case 3: Maximizing user benefit 

Table 5.3 presents the elasticities of route length, headway, route spacing and 

number of stops with respect to ten parameters for the case of user benefit 

maximization. 

If the corridor length is increased by 10 percent the route length will increase by 

0.8%. If the passenger density increases by 10%, the route length will increase by 

0.08%. When transit speed and access speed is increased by 10 percent, the route 

length will increase by 6.4%. A 10% increase of the transit fare will decrease route 

length by 7.4%. If vehicle capacity increases by 10%, route length will increase by 

1.9%. The route length is elastic with respect to the operator cost. Changes in the 

value of riding time, value of access time or value of waiting time will leave the route 

length unaltered. 

Headway is elastic with respect to change in corridor length, passenger density, 

transit speed, access speed, operator cost, vehicle capacity or transit fare. The headway 

will increase 12% with a 10% increase in transit speed. When corridor length and 



Table 5.3 Elasticities of Case 3. 

L H M N 

Corridor Length 0.0799 2.0755 2.0769 2.6518 

Passenger Density 0.0087 -1.9485 2.2931 -1.1123 

Transit Speed 0.2403 1.2000 2.1928 1.7389 

Access Speed 0.8400 2.2025 0.7266 1.7772 

Supplier Cost -1.5672 1.6569 1.1351 2.8455 

Value of Riding Time 0.0000 0.0000 0.0000 -0.4695 

Value of Access Time 0.0000 0.0000 0.0000 1.8948 

Vehicle Capacity 0.1927 1.6400 1.0502 1.6188 

Value of Waiting 0.0000 0.0000 0.0000 0.0000 

Transit Fare -0.7554 2.4882 2.4185 1.6471 



passenger density increased by 10%, the headway will decrease by 20%. If vehicle 

capacity is increased by 10%, the headway will decrease by 16%. The headway will 

not change when the rest of the parameters change. 

Route spacing is elastic with respect to change in access speed, corridor length, 

passenger density, operator cost vehicle capacity or transit fare. If the corridor length, 

passenger density and transit speed are increased by 10%, a 20% increase will occur in 

route spacing. If operator cost increases by 10%, route spacing will increase by 11%. 

Route spacing will remain the same if the value of access time, riding time or waiting 

time for these parameters do not appear in the objective function. 

The number of stops is elastic with respect to corridor length, passenger density, 

access speed, supplier cost, value of access time, vehicle capacity and transit fare. The 

number of stops will decrease 5% if the transit speed and value of riding time are 

increased by 10%. A change in value of waiting time will leave the route length 

unaltered. 

5.2.4 Case 4: Minimizing Total supplier cost and user cost 

Table 5.4 shows the elasticities of route length, headway, route spacing and 

number of stops with respect to ten parameters for the case of minimizing the sum of 

operator cost and user costs. 

The route length is elastic with respect to the corridor length or transit fare. It will 

increase by 2.6% if passenger density is increased by 10%. When transit speed or value 

of waiting time increases by 10%, the route length will increase by 4.4%. With a 10 

percent increase in the value of access time, route length will decrease 2.1%. Route 

length will be reduced by 6.5% if the access speed is increased by 10%. When vehicle 

capacity is increased by 10%, the route length will increase by 7.4%. A 10% change in 

operator cost will cause the route length to be increased by 4.8%. 



Table 5.4 Elasticities of Case 4 

L H M N 

Corridor Length 1.2779 -0.5966 -2.2500 -0.1533 

Passenger Density 0.2687 -3.9485 2.2931 -1.1123 

Transit Speed 0.4440 -0.7200 -2.805 -0.3326 

Access Speed -0.6548 2.5624 0.3987 1.7786 

Supplier Cost 0.4873 -2.6087 -2.0851 -3.5737 

Value of Riding Time 0.5305 -2.0322 3.5735 -1.5478 

Value of Access Time -0.2293 0.5645 1.2727 -0.1354 

Vehicle Capacity 0.7437 -5.2000 3.8605 -1.8458 

Value of Waiting 0.4440 4.1067 0.0474 -1.8458 

Transit Fare 1.5457 -2.4066 -2.0500 1.1783 



If the corridor length is increased by 10 percent the headway will be decreased by 

5.9 percent. An increase of 10 percent in transit speed will decrease headway by 7.2%. 

When passenger access speed is increased by 10 percent, the headway will increase by 

20%. When supplier cost is increased by 10%, the headway will decrease by 26%. If 

the value of access time is increased by 10%, the headway will increase by 5.6%. The 

headway is elastic with respect to changes in passenger density, access speed, operator 

cost, value of riding time, vehicle capacity or transit fare. 

Route spacing is elastic with respect to corridor length, passenger density, transit 

speed, operator cost, value of riding time, value of access time, vehicle capacity or 

transit fare. With a 10% increase in passenger access speed, route spacing will increase 

by 3.9%, and it will increase by 0.47% with a 10% increase in the value of access 

time. 

The number of stops is elastic with respect to passenger density, value of riding 

time, access speed, value of waiting time, vehicle capacity and transit fare. If the 

passenger density is increased by 10 percent, the number of stops will decrease 11%. 

With a 10 percent increase in transit speed, the number of stops will decrease by 3.3%. 

The number of stops will decrease 1.5 % if the corridor length is increased by 10%. A 

10% increase in the value of access time results in a 1.3% increase in stops. 



CHAPTER 6 

CONCLUSIONS AND SUGGESTIONS 

6.1 Summary 

This thesis developed a methodology for optimal transit service planning and design. 

The key elements of service design that were optimized are the length of the transit 

routes, the spacing between parallel transit routes, operating headway, and stop 

location and spacing pattern. Four different objective functions were developed; 

operator cost minimization, profit maximization, welfare (user benefit) maximization 

subject to a deficit constraint and minimization of total operator and user cost. 

An efficient optimization algorithm was developed and used to generate the 

optimal solutions for each objective function. The transit design methodology and the 

efficient optimization algorithm are the main contributions of this thesis. 

6.2 Conclusions 

Table 6.1 shows the value of the optimal design variables and the objective function for 

all four design objectives. The column under the heading "Min. System Cost" contains 

the results of the model that minimizing the sum of user and operator costs. The 

comparison of optimal results reveals that for given input data and demand 

characteristics the results of minimization of operator cost with a minimum service 

quality constraint are almost superior to the results of minimization of operator and user 

cost. The operator cost minimization model generates more demand and profit with 

almost the same user costs as the minimization of system cost model. It appears that 

saving a negligible amount of waiting time for an average passenger, resulted in 

substantial reduction in passenger demand and profit. It should be noted that the system 

cost is sensitive to the value of passenger access time. It can be expected that if 



Table 6.1 Optimal Transit Design Under Various Objectives 

Min Op. 
Cost 

Max Op. 
Profit 

Max 
Walfare 

Min Sys-
tem Cost 

Route Length(miles) 3.78 3.96 4.27 4.84 

Route Spacing(miles) 1.78 1.30 1.26 2.11 

Route Stops 6.01 6.3 5.2 6.39 

Transit Headway(min) 21.8 16.4 15.9 21.0 

Operating Cost(cent/min 189.9 351.8 367.3 210.7 

Transit Demand(trips/hr 207.4 338.8 382.8 181.5 

Profit(cent/min) 242.4 394.1 383.2 167.5 

User In-vehicle Cost 264.3 462.2 448.5 243.2 

User Access Cost 758.7 950.6 940.0 771.7 

User Waiting Cost 565.5 725.0 730.1 477.3 

Total Cost 1778.4 2476.E 2501.3 1703.8 

User Benefit 248.1 



passenger access time increases the new trade-off between operator and user cost will 

result in a service design more advantagous for the passengers. 

The maximization of the operator profit is clearly superior in terms of demand 

generation to the minimization of operator and user cost. From both policy and 

operating stand point the small decrease in wait time is not worth the substantial loss in 

demand and, therefore, profit. 

In conclusion, the methodology presented in this thesis provides a good 

framework for deriving an optimal transit system design under various design 

objectives. It facilitates evaluation of the trade-offs in system design before the actual 

system design is implemented in real world applications. Also, it should be noted that 

the values of design variables are similar in some cases. It is clear that if similar service 

quality is provided to the public by two alternatives, the alternative with larger profit 

(or smaller operating deficit) should be preferred. 

6.3 Suggestion for Further tudy 

The validity of some assumptions should be re-exar ned. The transit corridor is 

assumed rectangular in this study. This could be relaxed  to take into account more 

realistic shapes such as wedge areas. Demand that variies with space and time may be 

also considered. 

The objective function may be modified to include additional elements which 

influence the transit service such as right-of-way cost so that the operation will 

represent the real world more realistically. 



APPENDIX 

A Penalty Function 

1.The Concept of Penalty Function 

The penalty function method transforms a constrained optimization problem in a form 

of a mathematical program into a single unconstrained problem or into a sequence of 

unconstrained problems. The constraints are placed into the objective function via a 

penalty parameter in such a way that any violation of constraints is penalised. Consider 

the following problem in which the objective function, f(x) is to be minimized subject 

to the constraints pi(x)=0 

Minimize f(x) 

subject to p,(x) = 0 ; (1) 

where: i = 1,2,...,m 

(xi,x2,...xm) 
The penalty function is then defined as: 

Minimize f(x) + u pi2(x) (2) 

where u is a large positive constant 

For sufficiently small "u" it can be reasoned that the solutions to problem (1) and 

(2) will be nearly equal. The term u pi2(x) is referred to as the penalty function since in 

effect it assigns a specific cost to violations of the constraints. 

Now consider the following problem with the inequality constraints 

Minimize f(x) 

subject to p,(x) < = 0 (3) 

It is clear that the form f(x)+u p,2(x) is not appropriate, since a penalty will be 

incurred whether p(x) < 0 or p(x) >0. Needless to say, a penalty is desired only if the 

point x is not feasible, that is, p(x) > 0. A suitable unconstrained problem is therefore 

given by 

Minimize f(x) + u maximum {0, pi(x)} 

where p(x) satisfy: 

(1) p(x) is continuous, 

(2) for any x En, have p(x) > = 0 , 

(3) if p(x) < = 0 then maximum {0,P(x)} =0. 



The of penalty function method is simple and effective, provided that suitable 

values of parameters u are chosen. The concept of a penalty function is demonstrated 

below via an example. 

Example: 

Consider the following problem: 

Minimize x12  + x22  

subject to xi + x2  - 1 =0 (4) 

The optimal solution lies at the point (xl,x2)= (1/2,1/2), and has the objective 

value of 1/2. Now consider the following penalty problem, where u >0 is a large 

number. 

Minimize x12  +x22  +u(xi + x2- 1)2  

subject to xi  ,x2  > = 0 (5) 

Note that for any u > =0, the objective function is zonvex. Thus, a necessary and 

sufficient condition for optimality is that the gradient ,-)f x1 2  + x22  + u(xi  +x2-1)2  is 

equal to zero, yielding 

xi  4- u(xi+x2-1)=0 

x2  + u(x1 +x2-1)=0 (6) 

Solving these two equations simultaneously yie ' xi +x2=u/(2u+ 1). Thus, the 

optimal solution of the penalty problem can be made )itrarily close to the solution of 

the original problem by choosing sufficiently large L Often u and thus x are chosen 

according to the certain set of rules and the whole pr edure is presented in a form of 

an algorithm below. 

2. Penalty Function Algorithm 

The algorithm operates as follows: 

Initialization Step: 

Let >0 be a termination scalar. Choose an initial point xk, a penalty parameter uk > 0, 

and a scalar B> 1. Let k= 1 and go to the main step. 

Main Step 

1 Starting with xk, solve the following problem: 

Minimize f(x) + uk  (x) 

Designate the resulting Xk to be an optimal solution, use it as xk+1, and go to step 
2. 



2 If uk(xk+1) <E stop; otherwise, let uk+i= uk, replace k by k+1, and go to step 1. 

Example 1: 

Minimize f(x) = (xl - 3)2 +(x2 - 2)2  

subject to h(x) = xl + x2 - 4 = 0 (7) 

For a given penalty parameter uk, the problem to be solved is: 

Minimize Q = (xl-3)2 +(x-2)2 +u(xl +x2-4)2  

dQ/dxl = 2(x1-3)+2u(xl +x2-4), 

dQ/dx2 = 2(x2-2)+2u(xl +x2-4), 

For dQ/dx1 =0, dQ/dx2 =0 we get: 

xl = (5u+ 3)/(2u + 1), x2 = (3u +2)/(2u+ 1), 

If u--> E , x* = lim x(u) = (5/2,3/2)1, then the minimum value is f(x) = 1/2 . 

Example 2: 

Minimize f(x) = (x1-3)2  + (x2-2)2  , 

subject to h(x) = xl + x2 -4 < = 0. 

Since it is a inequality constrained function, we have to consider 

0 for h(x) < =0 ; 

h(x) = 

h(x)2 for h(x) > 0 ; 

The above function transform to: 

MM Q = (x-3)2  + (x-2)2  + uh(x), 

2(x1-3)+2u(xl +x2-4), h(x) > 0 

dQ/dx1 = 

2(x1-3), h(x) < =0 

2(x2-2)+2u(xl +x2-4), h(x) > 0 

dQ/dx2 = 

2(x2-2), h(x) < =0. 

Consider when h(x) > 0: 

(x1-3) +u(xl +x2-4) = 0 

(x2-2)+u(xl +x2-4) = 0 

xl = (5u+3)/(2u+1) x2= (3u+2)/(2u+1) 

If u--> E , we have x* = lim x(u) = (5/2,3/2), h(xl< =0. The resulting optimal 

function was minimum value in x*, f(x*)=1/2. 



B Computer Programs 

Case 1 Minmizing Transit Operating Cost 

PROGRAM findout Casel(input, output); 
VAR 

a,k,l,s,h,m,c,y,v,p,d,e,sc3,g,cap : real ; 
scl,sc2,pnty,u1,u2,u3,x,n,nnl,viv,va,al,a2,a3,a4,f,a5 : real ; 
ha, hb , hc , hd , hy ,hx, hl , h2, hdd , hddl, mdd , mddl , sdd, sddl ,Idd, lddl : real ; 
ma,mb,mc,md,my,mx,ml,m2 : real • 
sa,sb,sc,sd,sp,sq,sr,detla,stt,sttl,sk:real; 
s1,11,pp,lk,lu,lv,w: real; 
so,xx,ub,hbe,lb,mbe,nb,h1c,tst,tstl,scb,sob,uv,ua,uw,vw : real ; 
j, jj,jjj,tt, kkkk, xl : integer ; 
found : boolean ; 
outfile,outfilel : text ; 

BEGIN 
assign(outfile,'Igot3.dat'); 
rewrite(outfile); 
viv: =5; 
va: =15; 
vw: =15; 
g: =0.05; 
y := 3 • 
c := ; 
p:= 3.59; 
cap := 45

'  
• 

v := 0.167 ; 
k : = 0.4 ; 
e := 5 ; 
f :=125; 
al := 0.38; 
a2 := -0.0081; 
a3 := -0.0033; 
a4 := -0.0014; 
a5 := 0.0328; 
sc2 := 10000 ; 
w : =1 ; 
h:= 20; 
hl :=100 ; 
s := 1 ; 
m : =1.0 ; 
1: = 4.5 ; 
tt := 0 ; 
tstl: =1.6; 
writeln(outfile,' L M H S N SC SO P UV UA 

UNV'); 
for jj : =3 to 15 do 
begin 
u2 :=jj; 

for j : =2 to 3 do 
begin 
ul :=exp(j*In(10)); 
for j.jj :=6 to 10 do 



begin 
u3 : =jjj; 

found := false ; 
while not found do 
begin 
hddl : =100000; 
for kkkk : =1 to 600 do 
begin 

h : = kklck/10 ; 
a : = 2*50*0.1; 
d := (1/360+a*h/60*2/3600)*60 ; 
hdd := -2*c*I*y/(m*h*h)*(1/v+d/s)+2*u1*((al +a2*(k*h+(m +s)/(4*g)) 

+(a3/(2*v)+a5/2)*1+a4*0*e*m*p*h-cap)*(al +a2*(2*k*h+(m+s)/(4*g)) 
+(a3/(2*v)+a5/2)*1+a4*f)*(e*m*p) ; 

if abs(hddl) > abs(hdd) then 
begin 
hddl : = hdd ; 
hl := h; 

end; 
end; 

h := hl ; 
writeln('h ',h:9:4); 
mddl: =100000; 
for kkkk := 1 to 300 do 

begin 
m : = kIckk/100 ; 
a : = 2*50*0.1; 
d : = (1/360+a*h/60*2/3600)*60 ; 
mdd := -2*c*1*y/(h*m*m)*(1/v +d/s)+2*u1*((al +a2*(k*h+ (m + s)/(4*g)) 

+ (a3/(2*v)+a5/2)*1+a4*1)*e*m*p*h-cap)*(al+a2*(k*h+ (2*m +s)/(4*g)) 
+(a3/(2*v)+a5/2)*1+a4*f)*(e*h*p)+2*u2*((m+s)-4*w)+2*u3*(2*(e-1) 
+m-4*w) ; 

if abs(mddl) > abs(mdd) then 
begin 
mddl := mdd ; 
ml : = m 

end; 
end; 

m : = ml ; 
writeln('m ',m:9:4); 
a := 2*50*0.1; 
d := (1/360+a*h/60*2/3600)*60 ; 
sddl : =100000; 
for kkkk : =1 to 300 do 
begin 
s : = Idckk/100; 
sdd : =-2*c*1*y*d/(s*s*h*m)+2*u1*((al +a2*(k*h+(m+s)/(4*g)) 

+(a3/(2*v)+a5/2)*1+a4*f)*e*m*h*p-cap)*a2*(e*m*h*p)/(4*g) 
+2*u2*((m+s)-4*w) ; 

if abs(sddl)>abs(sdd) then 
begin 
sddl := sdd ; 
sl := s 

end 



end; 
s := sl ; 

writeln('s ',s:8:3); 
1 : = (2*c*y*(1/v+d/s)/(h*m)+2*u1*((al +a2*(k*h+(m+s)/(4*g)) 
+a4*0*e*m*h*p-cap)*(a3/(2*v)+a5/2)*(e*m*h*p)-4*u3*(e+m-4*W)) 
/(-2*ul*sqr(e*m*p*h*(a3/(2*v)+a5/2))-8*u3) ; 

writeln(11= ',1:8:3); 
lk: =2*u1*((al +a2*(k*h + (m + s)/(4*g)) +a4*0*e*m*h*p-cap)*(a3/(2*v)+a5/2) 

*(e*m*h*p); 
lu : =2*c*y*(1/v+d/s)/(h*m); 
lv: =-2*ul*sqr(e*m*p*h*(a3/(2*v)+a5/2)); 

writeln('lkk=',1k:9:4,11uu=',1u:8:3,'lvv=1 ,1v:8:3,u1:6:2,u2:6:2,u3:6:2); 
scl : = 2*c*1*y*(1/v +d/s)/(h*m) +ul*sqr((al +a2*(k*h+(m+s)/(4*g)) 

+(a3/(2*v)+a5/2)*1+a4*0*e*m*h*p-cap)+u2*sqr(m+s-4*w) 
+u3*sqr(2*(e-1)+m-4*w); 

so : = 2*c*1*y*(1/v+d/s)/(h*m); 
pp: = (al +a2*(k*h+(m+s)/(4*g))+(a3/(2*v)+a5/2)*1+a4*0*e*m*h*p/h*60; 
writeln('scl ',sc1:9:3,'so ',so:9:3); 
if (scl/so <1.1) and (scl/so > 0.9) then 
begin 
found := true ; 

a : = 2*50*0.1; 
d : = (1/360+a*h/60*2/3600)*60 ; 
n: =0; 
for xl: =50 downto 0 do 
begin 
x: =x1/10 ; 
sttl : =1000000; 
for Iddck : =1 to 200 do 
begin 
sk : = kkkii100; 
stt : =-2*c*d/(sk*sk*h*m) + 2*va*p*(a 1 +a2*(k*h — (m +2*sk)/(4*g)) 

+(a3/(2*v)+a5/2)*1+a4*f)/(4*g)-2*viv*d*p*(,:-x)/sqr(sk)*(a1 
+a2*(k*h+m/(4*g))+(a3/(2*v)+a5/2)*1+a4*0 ; 

if abs(sttl) > abs(stt) then 
begin 
sttl := stt ; 
sl := sk; 

end 
end; 
nnl: =0.1/s1; 
n: =n+nnl; 

end; 
uv: =p*(al +a2*(k*h+(m+s)/(4*g))+(a3/(2*v) 

+a5/2)*1+a4*fry*viv*I*((1/(2*v) +1*d/(2*s))+ (e-1)*(1/v +d/s)); 

ua: =p*Y*va*(al +a2*(k*h+(m+s)/(4*g))+(a3/(2*v)+a5/2)*1+a4q)*(sqr(e-1) 
/(4*g)+m*e/(4*g)+s*1/(2*g)); 

uw: =vw*h/2*p*(al +a2*(k*h+(m+s)/(4*g))+(a3/(2*v)+a5/2)*1+a4*f)*e*y; 
writeln(s:8:3,n:10:3); 
writeln(outfile,1:6:2,m:6:2,h:8:2,s:8:2, 

n:8:2,sc1:8:2,so:8:2,pp:7:2,uv:6:1,ua:6:1,uw:6:1); 
end 



end; 
end; 

end; 
end; 

close(outfile) 
end. 

Case 2 Maximizing Operator profit 

PROGRAM findout Case2(input, output); 
VAR 

a,k,l,s,h,m,c,y,v,p,d,e,sc3,g,cap,w : real ; 
scl,sc2,pnty,ul,u2,u3,u4,x,n,nnl,viv,va,al,a2,a3,a4,f,a5 : real ; 
ha, hb, hc, hd, hy, hx, hl , h2, hdd, hddl , mdd, mddl , sdd, sddl ,Idd,Iddl : real ; 
ma,mb,mc,md,my,mx,m1,m2 : real ; 
sa,sb,sc,sd,sp,sq,sr,detla,pt:real; 
s1,11,pp,op,00,opp,stt,sttl,sk: real; 
so,xx,ub,hbe,lb,mbe,nb,hk,tst,tstl,scb,sob,ua,uv,uw,vw : real ; 
j, jj,jjj,jjjj,tt, kkkk, xl : integer ; 
found : boolean ; 
outfile,outfilel : text ; 

BEGIN 
assign(outftle,'Igot4.dat'); 
assign(outfilel,'Igot5.dat'); 
rewrite(outfilel); 
rewrite(outfile); 
viv: =5; 
va: =15; 
vw:=15 
g: =0.05; 
y : = 3 ; 
c : = 50 ; 
p : = 3.59 ; 
op : = 150; 
✓ : = 0.167 ; 
k : = 0.4 ; 
e := 5 ; 
f : =125; 
al : = 0.38; 
a2 : = -0.0081; 
a3 : = -0.0033; 
a4 := -0.0014; 
a5 := 0.0328; 
sc2 := 10000 ; 
h : = 20 ; 
w : = 1 ; 
hl : =100 ; 
s := 1 ; 
m : =1.0 ; 
cap: =45; 
1: = 4.5 ; 
tt : = 0; 



tstl: =1.6; 
writeln(outfile,' ul u2 u3 LM H S N SC SO P OP'); 

for j : =9 to 15 do 
begin 
ul : =j; 

for jj : =1 to 2 do 
begin 
u2 :=exp(jj*ln(10)); 

for lij: =0 to 1 do 
begin 
u3 :=exp(jjj*ln(10)); 
found := false ; 
while not found do 
begin 
hddl : =100000; 
writeln(u1:6:0,u2:6:0,u3:6:1); 
for kkkk : =1 to 600 do 
begin 

h : = kkkk/10 ; 
a : = 2*50*0.1; 
d := (1/360+a*h/60*2/3600)*60 ; 
hdd := e*y*p*f*a2*k+2*c*y*1*(1/v+d/s)/(h*h*m)-2*u1*(cap-(al 

+a2*(k*h+(m+s)/(4*g))+(a3/(2*v)+a5/2)*1+a4*fre*m*p*h) 
*(e*m*p*(al +a2*(2*k*h + (m +s)/(4*g))+(a3/(2*v)+a5/2)*1+a4*f)) ; 

if abs(hddl) > abs(hdd) then 
begin 
hddl : = hdd ; 
hl := h; 

end; 
end; 

h : = hl ; 
writeln('h ',h:9:4); 
mddl: =100000; 
for kkkk : = 1 to 500 do 

begin 
m := kldck/100 ; 
a : = 2*50*0.1; 
d := (1/360+a*h/60*2/3600)*60 ; 
mdd : =e*y*p*f*a2/(4*g)+2*c*y*1*(1/v+d/s)/(h*m*m)-2*u1*(cap-(al 

+a2*(k*h+(m+s)/(4*g))+(a3/(2*v)+a5/2)*1+a4*0*e*m*p*h) 
*(e*h*p*(al +a2*(k*h+(2*m+s)/(4*g))+(a3/(2*v)+a5/2)*1+a4*0) 
-2*u2*(4*w-2*(e-1)-m)-2*u3*(4*w-(m+S)) ; 

if abs(mddl) > abs(mdd) then 
begin 
mddl := mdd ; 
ml := m 

end; 
end; 

m : = ml ; 
writeln('m ',m:9:4); 
a : = 2*50*0.1; 
d := (1/360+a*h/60*2/3600)*60 ; 
sddl : =100000; 
for kkkk : =1 to 300 do 



begin 
s : = kkkk/100; 
sdd : =a2*e*y*p*f/(4*g)+2*c*l*y*d/(h*m*s*s)-2*u1*(cap-(al 

+a2*(k*h+(m+s)/(4*g))+(a3/(2*v)+a5/2)*1+a4*0*e*m*p*h) 
*e*m*p*h*a2/(4*g)-2*u3*(4*w-(m+s)) ; 

if abs(sddl)> abs(sdd) then 
begin 
sddl : = sdd ; 
sl : = s 

end 
end; 
s : = sl ; 

writeln('s ',s:8:3); 
1 : = (2*c*y*(1/v+d/s)/(h*m)-(a3/(2*v)+a5/2)*e*y*p*f+2*u1*(cap-(al 

+a2*(k*h+(m+s)/(4*g))+a4*0*e*m*p*h)*(a3/(2*v)+a5/2)*e*m*p*h 
-4*u2*(4*w-e*2-m))/(2*u1*sqr(a3/(2*v)+a5/2)*sqr(e*m*h*p)+u2*8) ; 

writeln(11= ',1:8:3); 
scl : = ((al +a2*(k*h+(m + s)/(4*g)) + (a3/(2*v) +a5/2)*1+ a4*fre*y*p*f 

-2*c*1*y/(h*m)*(1/v +d/s))+ul*sqr(cap-(al +a2*(k*h+(m+s)/(4*g)) 
+(a3/(2*v)+a5/2)*1+a4*0*e*m*p*h)+u2*sqr(4*w-2*(e-1)-M) 
+u3*sqr(4*w-(m+s)); 

so : = ((al +a2*(k*h+(m+s)/(4*g))+(a3/(2*v)+a5/2)*1+a4*0*e*y*p*f 
y)); 

00 : =al +a2*(k*h+(m+s)/(4*g))+(a3/(2*v)+a5/2)*1+a4q; 
pp: = (al +a2*(k*h+(m+s)/(4*g))+(a3/(2*v)+a5/2)*1+a4*0*e*m*60*p; 
opp: =2*c*l*y/(h*m)*(1/v+d/s); 
writeln('scl ',sc1:9:3,'so ',so:9:3,'oo=',00:9:3); 
if (scl/so < 1.1) and (scl/so > 0.9) then 
begin 
found : = true ; 

a: = 2*50*0.1; 
d : = (1/360+a*h/60*2/3600)*60 ; 
n: =0; 
for xl: =50 downto 1 do 
begin 
x: =x1/10 ; 
sttl : =1000000; 
for kkkk : =1 to 200 do 
begin 
sk : = kIckk/100; 
stt : =-2*c*d/(sk*sk*h*m)+2*va*p*(al +a2*(k*h+(m+2*sk)/(4*g)) 

+(a3/(2*v)+a5/2)*1+a4*0/(4*g)-2*viv*d*p*(e-x)/sqr(sk)*(al 
+a2*(k*h+m/(4*g))+(a3/(2*v)+a5/2)*1+a44) ; 

if abs(sttl) > abs(stt) then 
begin 
sttl : = stt ; 
sl := sk; 

end 
end; 
nnl:=0.1/s1; 
n: =n+nnl; 

end; 
uv: =p*(al +a2*(k*h+ (m+s)/(4*g)) +(a3/(2*v) 



+a5/2)*1+a4*fry*viv*1*(0/(2*v)+1*d/(2*s))+(e-1)*(1/v+d/s)); 

ua: =p*Y*va*(al +a2*(k*h+(m+s)/(4*g))+(a3/(2*v)+a5/2)*1+a4*0*(sqr(e-1) 
/(4*g)+m*e/(4*g)+s*1/(2*g)); 

uw: =vw*h/2*p*(al +a2*(k*h+(m+s)/(4*g))+(a3/(2*v)+a5/2)*1+a4*f)*e*y; 
writeln(s:8:3,n:10:3); 
writeln(outfile,1:6:1m:6:2,h:7:2,s:6:1,n:6:1,sc1:8:2,so:8:2,pp:7:2, 

opp:7:2,uv:6:1,ua:6:1,uw:6:1); 
end 

end; 
end; 

end; 
end; 
close(outfile) ; 
close(outfilel) 
end. 

Case 3 Maximizing User Benefit 

PROGRAM findout Case3(input, output); 
VAR 

a,k,l,s,h,m,c,y,v,p,d,e,sc3,g,cap,w : real ; 
scl,sc2,pnty,ul,u2,u3,u4,x,n,nnl,viv,va,al,a2,a3,a4,f,a5 : real; 
ha,hb,hc,hd,hy,lix,h1,h2,hdd,hddl,mdd,mddl,sdd,sddl,Idd,lddl : real ; 
ma,mb,mc,md,my,mx,ml,m2 : real ; 
sa,sb,sc,sd,sp,sq,sr,detla,pt,ff,00l:real; 
s1,11,pp,op,00,opp,stt,sttl,sk: real; 
so,xx,ub,hbe,lb,mbe,nb,hk,tst,tstl,scb,sob : real ; 
j, jj,jjj,jjjj,tt, kkkk, xl : integer ; 
found : boolean ; 
outfile,outfilel : text ; 

BEGIN 
assign(outfile,'lgot4.dat'); 
assign(outfilel,'lgot5.dat'); 
rewrite(outfilel); 
rewrite(outfile); 
viv: =5; 
va: =15; 
g: =0.05; 
y := 3 ; 
c : = 50 ; 
p := 3.59 ; 
op := 150; 
v := 0.167 ; 
k := 0.4 ; 
e := 5 ; 
f :=125; 
al := 0.38; 
a2 := -0.0081; 
a3 := -0.0033; 
a4 := -0.0014; 
a5 := 0.0328; 



sc2 : = 10000 ; 
h := 20 ; 
w : = 1 ; 
hl :=100 ; 
ff: =0.5; 
s : = 1 ; 
m : =1.0 ; 
cap: =45; 
1: = 4.5 ; 
U : = 0 ; 
tstl: =1.6; 
writeln(outfile,' ul u2 u3 u4 LM H S N SC SO P OP'); 

for j : =0 to 4 do 
begin 
ul : =exp(j*ln(10)); 
for jj : =1 to 3 do 
begin 
u2 : =jj; 
for jjj: =6 to 6 do 
begin 
u3 : -=jjj; 
for jijj : = 4 to 8 do 
begin 
u4: =jjjj; 

found : = false ; 
while not found do 
begin 
hddl : =100000; 
writeln(u1:6:0,u2:6:0,u3:6:1,u4:6:1); 
for kkkk : =1 to 600 do 
begin 

h : = lckkk/10 ; 
a : = 2*50*0.1; 
d : = (1/360+a*h/60*2/3600)*60 ; 
hdd : =-e*y*p/a4*(al +a2*(k*h+(m+s)/(4*g))+(a3/(2*v)+a5/2)*1+a4*f) 

*a2*k-2*u1*(cap-(al+a2*Oeh+(m+s)/(4*g))+(a3/(2*v)+a5/2)*1 
+a4*f)*e*m*p*h)*(e*m*p*(al +a2*(2*k*h+(m+s)/(4*g))+(a3/(2*v) 
+a5/2)*1+a4*0)+2*u2*(ff*((al +a2*(k*h+ (m+s)/(4*g))+ (a3/(2*v) 
+a5/2)*1+a4*0*e*y*p*f)-2*c*y*1/(h*m)*(1/v+d/s))*(ff*a2*k*e 
*y*p*f+2*c*1*y/(h*h*m)*(1/v+d/s)); 

if abs(hddl) > abs(hdd) then 
begin 
hddl := hdd ; 
hl := h; 

end; 
end; 

h : = hl ; 
writeln('h ',h:9:4); 
mddl: =1000000000; 
for kkkk : = 1 to 500 do 

begin 
m : = kkkk/100 ; 
a := 2*50*0.1; 
d : = (1/360+a*h/60*2/3600)*60 ; 



mdd : =-e*y*p/a4*(al +a2*(k*h+(m+s)/(4*g))+(a3/(2*v)+a5/2)*1+a4*0 
*a2/(4*g)-2*u1*(cap-(a1 +a2*(k*h + (m + s)/(4*g)) + (a3/(2*v)+a5/2)*1 
+a4*f)*e*m*p*h)*(e*h*p*(al +a2*(k*h + (2*m + s)/(4*g))+(a3/(2*v) 
+a5/2)*1+a4*f)) +2*u2*(ff*((al +a2*(k*h +(m + s)/(4*g)) +(a3/(2 *v) 
+a5/2)*1+a4*0*e*y*p*O-2*c*y*1/(h*m)*(1/v + d/s))*(ff*a2*e*y*p 
*f/(4*g)-2*c*1*y/(m*m*h)*(1/v +d/s))-2*u3*(4*w-2*(e-1)-m)-2*u4 
*(4*w-(m+s)); 

if abs(mddl) > abs(mdd) then 
begin 
mddl : = mdd ; 
ml := m; 

end; 
end; 
m : = ml ; 
writeln('m ',m:9:4); 
a : = 2*50*0.1; 
d : = (1/360+a*h/60*2/3600)*60 ; 
sddl : =1000000000; 
for kkkk : =1 to 300 do 
begin 
s : = Iddck/100; 
sdd : =-e*y*p/a4*(al +a2*(k*h+(m +s)/(4*g)) +(a3/(2*v) +a5/2)*1+ a4*0*a2 

/(4*g)-2*u1*(cap-(al + a2*(k*h + (m + s)/(4*g)) + (a3/(2*v) + a5/2) *I + a4*0 
*e*m*p*h)*e*m*p*h*a2/(4*g) +2*u2*(ff*((al +a2*(k*h+(m+s)/(4*g)) 
+(a3/(2*v)+a5/2)*1+a4*0*e*y*p*O-2*c*y*1/(h*m)*(1/v+d/s))*(ff* 
a2*e*y*p*f/(4*g)+2*c*1*y*d/(h*m*s*s))-2*u4*(w-(m+s)); 

if abs(sddl) > abs(sdd) then 
begin 
sddl : = sdd ; 
sl : = s 

end 
end; 
s : = sl ; 

wfiteln(' s ' , s: 8:3); 
a : = 2*50*0.1; 
d : = (1/360+a*h/60*2/3600)*60 ; 
lddl : =1000000000; 
for kkkk : =1 to 500 do 
begin 
1 : = lddck/100; 
ldd : =-e*y*p/a4*(al +a2*(k*h+(m+s)/(4*g))+(a3/(2*v)+a5/2)*1+a4*0*(a31 

(2*v)+a5/2)-2*u1*(cap-(al+a2*(k*h+(m+s)/(4*g))+(a3/(2*v)+a5/2) 
*1+a41)*e*m*p*h)*e*m*p*h*(a3/(2*v)+a5/2)+2*u2*(ff*((al +a2*(k*h 
+(m+s)/(4*g))+(a3/(2*v)+a5/2)*1+a4*fre*y*p*f)-2*c*y*1/(h*m) 
*(1/v + d/s))*(ff*(a3/(2*v) + a5/2)*e*y*p*f-2*c*y*(1/v +d/s)/(h*m)) 
+4*u3*(4*w-2*(e-1)-m) ; 

if abs(Iddl)> abs(ldd) then 
begin 
lddl : = ldd ; 
11 : = 1 
end 

end; 
1: = 11 ; 



writeln('l = ',1:8:3); 
scl : =-y*p*e*sqr(al +a2*(k*h+(m+s)/(4*g))+(a3/(2*v)+a5/2)*1+a4*f)/(2*a4) 

+ul*sqr(cap-(al+a2*(k*h+(m+s)/(4*g))+(a3/(2*v)+a5/2)*1+a4*0*e*m 
*p*h)+u2*sqr(ff*(al +a2*(k*h+(m+s)/(4*g))+(a3/(2*v)+a5/2)*1+a4*frf 
*e*y*p 
-2*c*y*1/(h*m)*(1/v+d/s))+u3*sqr(4*w-2*(e-1)-m)+u4*sqr(4*w-(m+s)) ; 

so := -y*p*e*sqr(al +a2*(k*h+(m+s)/(4*g))+(a3/(2*v)+a5/2)*1+a4*f)/(2*a4); 
00 : = (al +a2*(k*h+(m+s)/(4*g))+(a3/(2*v)+a5/2)*1+a4*0; 
ool: =u2*sqr(ff*(al +a2*(k*h+(m+s)/(4*g))+(a3/(2*v)+a5/2)*1+a4*0 

-2*c*y*1/(h*m)*(1/v+d/s)); 
pp: = (al +a2*(k*h+(m+s)/(4*g))+(a3/(2*v)+a5/2)*1+a41)*e*m*60*p; 
opp: =2*c*1*y/(h*m)*(1/v+d/s); 
writeln('scl ',sc1:9:3,'so ',so:9:3,'oo=',00:9:3,'ool',opp:9:3); 
if (scl/so < 1.20) and (scl/so > 0.80) then 
begin 
found : = true ; 

a: = 2*50*0.1; 
d : = (1/360+a*h/60*2/3600)*60 ; 
n: =0; 
for xl: =50 downto 1 do 
begin 
x: =x1/10 ; 
sttl : =1000000; 
for kkkk : =1 to 200 do 
begin 
sk : = kkkk/100; 
stt : =-2*c*(1/(sk*sk*h*m)+2*va*p*(al +a2*(k*h+(m+2*sk)/(4*g)) 

+(a3/(2*v)+a5/2)*1+a4q)/(4*g)-2*viv*d*p*(e-x)/sqr(sk)*(al 
+a2*(k*h+m/(4*g))+(a3/(2*v)+a5/2)*1+a4*f) ; 

if abs(sttl) > abs(stt) then 
begin 
sttl : = stt ; 
sl : = sk; 

end 
end; 
nnl: =0.1/s1; 
n: =n+nnl; 
writeln(outfilel,nn1:7:2); 

end; 
writeln(s:8:3,n:10:3); 
writeln(outfilel); 

writeln(outfile,u1:4:0,u2:4:0,u3:3:0,u4:3:0,1:6:2,m:6:2,h:7:2,s:6:2,n:6:1,sc1:8:2,so:8 
:2,pp:7:2,opp:7:2); 

end 
end; 
end; 
end; 

end; 
end; 
close(outfile) ; 
close(outfilel ) 
end. 



Case 4 Minimizing Total Supplier and User Cost 

PROGRAM fmdout(input, output); 
VAR 

a,k,l,s,h,m,c,y,v,p,d,e,sc3,g,cap : real ; 
scl,sc2,pnty,u1,u2,u3,x,n,nnl,viv,va,vw,al,a2,a3,a4,f,a5 : real ; 
ha,hb,hc,hd,hy,hx,hl,h2,hdd,hddl,mdd,mddl,sdd,sddl,ldd,lddl : real ; 
ma,mb,mc,md,my,mx,ml,m2,ua,uw,uv : real ; 
sa,sb,sc,sd,sp,sq,sr,detla,stt,sttl,sk:real; 
s1,11,pp,lk,lu,lv,w,op,uc: real; 
so,xx,ub,hbe,lb,mbe,nb,hk,tst,tstl,scb,sob : real ; 
j, jj,jjj,tt, kkkk, xl : integer ; 
found : boolean ; 
outfile,outfilel : text ; 

BEGIN 
assign(outfile,'Igot3.dat'); 
rewrite(outfile); 
assign(outfilel,'Igot5.dat'); 
rewrite(outfilel); 
viv: =5; 
vw : =15 ; 
va: =15; 
g: =0.05; 
y := 3 ; 
c := 50 ; 
p := 3.59 ; 
cap := 45 ; 
✓ := 0.167 ; 
k := 0.4 ; 
e := 5 ; 
f :=125; 
al : = 0.38; 
a2 := -0.0081; 
a3 := -0.0033; 
a4 := -0.0014; 
a5 := 0.0328; 
sc2 := 10000 ; 
w. =1; 
h := 20 ; 
hl : =100 ; 
s := 1 ; 
m : =1.0 ; 
1: = 4.5 ; 
tt := 0 ; 
tstl: =1.6; 
writeln(outfile,' L M H N SC SO P OP UC UA UV 

UW1 ); 
for jj : =4 to 9 do 
begin 
u2 :=jj; 

for j : =2 to 3 do 
begin 



ul : =exp(j*ln(10)); 
for jjj : =0 to 2 do 
begin 
u3 : =exp(jjj*ln(10)); 

found : = false ; 
while not found do 
begin 
hddl : =100000; 
for kkkk : =1 to 600 do 
begin 

h : = kkkk/10 ; 
a : = 2*50*0.1; 
d := (1/360+a*h/60*2/3600)*60 ; 
hdd := -2*c*l*y/(m*h*h)*(1/v+d/s)+(p*y*viv*1*(1/(2*v)+1*d/(2*s)) 

+p*(e-1)*y*viv*I/v+1*d/s)*a2*k+vw*p*e 
*y*(a 1 + a2*(2*k*h + (m + s)/(4*g)) + (a3/(2*v)+ a5/2)*1+a4*0 
+p*y*va/g*a2*k*(sqr(e-1)/2+m*e14+s*1/4)+2*u1*((al 
+a2*(1c*h+(m+s)/(4*g))+(a3/(2*v)+a5/2)*1+a4*0*e*m*p*h-cap) 
*(al +a2*(2*k*h+(m+s)/(4*g))+(a3/(2*v)+a5/2)*1+a4*0*(e*m*p) ; 

if abs(hddl) > abs(hdd) then 
begin 
hddl : = hdd ; 
hl : = h; 

end; 
end; 

h : = hl ; 
writeln('h ',h:9:4); 
mddl: =100000; 
for kkkk := 1 to 300 do 

begin 
m : = Idcick/100 ; 
a : = 2*50*0.1; 
d : = (1/360+a*h/60*2/3600)*60 ; 
mdd : = -2*c*1*y/(h*m*m)*(1/v +d/s) +p*y*viv*1*(1/(2*v) +1*d/(2*s) 

+(e-1)*(1/v+d/s))*a2/(4*g)+vw*h/2*p*e*y*a2/(4*g)+p*y*va*(e/(4*g) 
*(al +a2*(1c*h+(m+s)/(4*g))+(a3/(2*v)+a5/2)*1+a4*0+(sqr(e-1)/(2*g) 
+m*e/(4*g)+s*1/(4*g))*a2/(4*g))+2*u1*((al +a2*(k*h+(m+s)/(4*g)) 
+(a3/(2*v)+a5/2)*1+a4*f)*e*m*p*h-cap)*(al +a2*(1c*h+ (2*m +s)/(4*g)) 
+(a3/(2*v)+a5/2)*1+a4*f)*(e*h*p)+2*u2*(2*(e-1)+m-4*w)+2*u3*(m +s- 

4*w) ; 
if abs(mddl) > abs(mdd) then 
begin 
mddl := mdd ; 
ml : = m 

end; 
end; 

m : --= ml ; 
writeln('m ',m:9:4); 
a := 2*50*0.1; 
d := (1/360+a*h/60*2/3600)*60 ; 
sddl : =100000; 
for kkkk : =1 to 300 do 
begin 
s := Ickkk/100; 



sdd : = -2*c*l*y*d/(s*s*h*m) +(p*y*viv*1*(1/(2*v)+1*421/(2*s))+p*(e-1)*y*viv 
*(1/v +1*d/s))*a2/(4*g)-(p*1*1*y*viv/(2*s*s)+p*(e-1)*y*viv*d/(s*s)) 
*(al +a2*(k*h+ (m+ s)/(4*g))+(a3/(2*v) +a5/2)*1+a4*0 +vw*h/2*p*e*y*a2 
/(4*g)+p*y*va/g*(1/(4*G)*(al +a2*(k*h+ (m + s)/(4*g))+(a3/(2*v)+ a5/2) 
*1+ a4*f) + (sqr(e-1)/(2*g)+ m*e/(4*g) + s*1/ (4*g))*a2/(4*g)) 
+2*u1*((al + a2*(k*h+(m + s)/(4*g))+(a3/(2*v)+a5/2)*1+a4*0 
*e*m*h*p-capra2*(e*m*h*p)/(4*g)+2*u3*((m + s)-4*w) ; 

if abs(sddl) > abs(sdd) then 
begin 
sddl : = sdd ; 
sl : = s 

end 
end; 
s : = sl ; 

writeln(' s ',s:8:3); 
lddl : =100000; 
for kkkk : =1 to 500 do 
begin 
1 : = kkkk/100; 
ldd : =2*c*y/(h*m)*(1/v +d/s)+p*viv*y*((a3/(2*v) + a5/2)*((e-1)*(1/v 

+1*d/s)+ (1*1/(2*v)+1*1*d/(2*s)))+ (al + a2*(k*h+ (m +s)/(4*g)) 
+ (a3/(2*v)+a5/2)*1+ a4*0*((1/v +1*d/s)-1*(e-1)*sqr(l/v +d/s))) 
+vw*h/2*p*e*y*(a3/(2*v)+a5/2)+p*y*va*((a3/(2*v)+ a5/2) 
*(sqr(e-1)/(2*g) +m*e/(4*g) + s*1/(4*g)) + (al +a2*(k*h+(m + s)/ (4*g)) 
+ (a3/(2 *v) + a5/2)*1+a4*f)*(s/(4*g)-(e-1)/g)) 
+2*u1*((al + a2*(ksch + (m + s)/(4*g))+ (a3/(2*v)+ a5/2)*1+a4*f) 
*e*m*p*h-cap)*e*m*p*h*(a3/(2*v)+ a5/2)-4*u2*(2*(e-1)+m-4*w) ; 

if abs(ldd l) > abs(ldd) then 
begin 
lddl : = ldd ; 
11 : = 1 
end 

end; 
1 : = 11 ; 
writeln(11= ' ,1: 8:3) ; 
writeln(u1:6:2,u2:6:2,u3:6:2); 
scl : = 2*c*1*y*(1/v +d/s)/(h*m)+p*(al +a2*(k*h+ (m+ s)/(4*g))+(a3/(2*v) 

+ a5/2)*1+ a4q)*y*viv *1*((1/(2*v) +1*d/ (2*s)) + (e-1)*(1/v +d/s)) 
+vw*h/2*p*(al +a2*(k*h+(m+ s)/(4*g))+(a3/(2*v)+a5/2)*1+a4*0*e*y 
+p*Y*va*(al +a2*(k*h+ (m+ s)/(4*g))+ (a3/(2*v)+ a5/2)*1+a4q)*(sqr(e-1) 
/(4*g)+m*e/(4*g)+ s*1/(2*g))+ul*sqr((al +a2*(k*h 
+ (m + s)/(4*g))+ (a3/(2*v)+a5/2)*1+ a4*f)*e*m*h*p-cap)+u2*sqr(2*(e-1) 
+m-4*w)+u3*sqr(m+ s-4*w); 

so : = 2*c*1*y*(1/v +d/s)/(h*m)+p*(al +a2*(k*h+(m+s)/(4*g))+(a3/(2*v) 
+ a5/2)*1+a4q)*y*viv*1*(0/(2*v)+1*d/(2*s))+ (e-1)*(1/v +d/s)) 
+vw*h/2*p*(al +a2*(k*h+(m+s)/(4*g))+ (a3/(2*v) + a5/2)*1+ a4*fre*y 
+p*Y*va*(al +a2*(k*h+ (m+ s)/(4*g))+(a3/(2*v)+a5/2)*1+a4*f)*(sqr(e-1) 
/(4*g)+m*e/(4*g)+ s*1/(2*g)); 

op: =2*c*1*y*(1/v +d/s)/(h*m); 
uc: =p*(al + a2*(k*h+ (m + s)/(4*g))+ (a3/(2*v) 

+ a5/2)*1+ a4*f)*y*viv*1*(0/(2*v)+1*d/(2*s))+ (e-1)*(1/v +d/s)) 
+ vw*h/2*p*(al +a2*(k*h+ (m+ s)/(4*g))+ (a3/(2*v)+a5/2)*1+a4*f)*e*y 
+p*Y*va*(al +a2*(k*h +(m +s)/(4*g))+ (a3/(2*v)+ a5/2)*1+a4*0*(sqr(e-1) 



/(4*g)+m*e/(4*g)+s*1/(2*g)); 
pp: = (al +a2*(k*h+(m+s)/(4*g))+(a3/(2*v)+a5/2)*1+a41)*e*m*h*p/h*60; 
uv: =p*(al +a2*(k*h+(m+s)/(4*g))+(a3/(2*v) 

+a5/2)*1+a4*f)*y*viv*1*(0/(2*v)+1*d/(2*s))+(e-1)*(1/v+d/s)); 

ua: =p*Y*va*(al +a2*(k*h+(m+s)/(4*g))+(a3/(2*v)+a5/2)*1+a4*0*(sqr(e-1) 
/(4*g) +m*e/(4*g) +s*1/(2*g)); 

uw: =vw*h/2*p*(al +a2*(k*h+(m+s)/(4*g))+(a3/(2*v)+a5/2)*1+a4q)*e*y; 
writeln('scl ',sc1:9:3, 'so ',so:9:3, 'op',op:9:3); 
if (scl/so <1.1) and (scl/so >0.9) then 
begin 
found : = true ; 

a : = 2*50*0.1; 
d : =-- (1/360+a*h/60*2/3600)*60 ; 
n: =0; 
for xl: =50 downto 0 do 
begin 
x: =x1/10 ; 
sal : =1000000; 
for kkkk : =1 to 200 do 
begin 
sk : = kkkk/100; 
stt : =-2*c*d/(sk*sk*h*m)+2*va*p*(al +a2*(k*h+(m+2*sk)/(4*g)) 

+(a3/(2*v)+a5/2)*1+a4*f)/(4*g)-2*viv*d*p*(e-x)/sqr(sk)*(al 
+a2*(k*h+m/(4*g))+(a3/(2*v)+a5/2)*1+a4*0 ; 

if abs(sttl) > abs(stt) then 
begin 
sal : = stt ; 
sl := sk; 

end 
end; 
nnl:=----0.1/s1; 

n: =n+nnl; 
end; 
writeln(s:8:3,n:10:3); 
writeln(outfile,1:5:2,m:5:2,h:6:2,n:5:2,sc1:8:2, 

so:8:2,pp:7:2,op:7:2,uc:7:2,ua:6:2,uv:6:1,uw:6:1); 
end 

end; 
end; 

end; 
end; 
close(outfile) 
end. 
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