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ABSTRACT 
A New Method to Optimize 

the Satellite Broadcasting Schedules 
Using the Mean Field Annealing of A Neural Network 

by 
Youyi Yu 

This thesis reports a new method for optimizing satellite broadcasting schedules 

based on the Hopfield neural model in combination with the mean field annealing theory. A 

clamping technique is used with an associative matrix, thus reducing the dimensions of the 

solution space. A formula for estimating the critical temperature for the mean field 

annealing procedure is derived, hence enabling the updating of the mean field theory 

equations to be more economical. Several factors on the numerical implementation of the 

mean field equations using a straightforward iteration method that may cause divergence are 

discussed; methods to avoid this kind of divergence are also proposed. Excellent results are 

consistently found for problems of various sizes. 
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Chapter 1 
Introduction 

Optimization of large connectionist problems is a long-standing topic in various disciplines, 

with many different approaches and applications. The problem discussed here, optimization 

of the broadcasting time from a set of satellites to a set of ground terminals (the satellite 

broadcast scheduling (SBS) problem), is one of these categories that must be solved for 

satellite communication systems. In their papers [1],[2], Bourret et al solved this problem 

by using a neural network in which neurons are connected in a three-layer model. To find 

the optimum, a sequential search is used. The search is controlled by a competitive 

activation mechanism based on a dynamic prioritization of satellites. The sequential search, 

which is local in scope, is also very time-consuming. In addition, two additional premises 

(a set of distinct priorities of satellites and a set of suitable requests which are very difficult 

to determine for large problems) are also needed. Therefore, alternative efficient 

optimization methods are explored to solve this problem. 

In this thesis, a new method is presented to solve the SBS problem. The work is 

based on a Hopfield neural network [3] [4], where all neurons are completely connected, in 

combination with the mean field annealing theory (MFT) which was recently found to be 

an efficient method in solving large connectionist problems [5] [6]. The main advantage of 

using the MFT method lies in the fact that the search for optima is parallel in the global 

sense, and hence the execution time is shorter than other stochastic hill-climbing methods 

[7][8][9]. In contrast to the method mentioned in [1] [2] which requires the two premises 

mentioned above, they are not required for our method. Using our method, excellent 

solutions are consistently found for problems of various sizes. 

Instead of using a special neuron model (graded neuron) [10] to reduce the solution 

space and to avoid a destructive redundancy, a conventional neuron model clamped by an 



"associative matrix" is used in this work. This clamping technique is often applied in 

learning algorithms [11] [5] [12], resulting in a large decrease of the solution space. 

Due to the non-linearity of the sigmoid function, a so-called critical temperature Tc 

exists. Instead of using the "trial and error" approach to determine Tc, a formula for 

estimating Tc  is derived. Experiments show that the estimated values using this formula are 

within 10% from the experimental (trial & error approach) results. 

In this work , a type of divergence caused by the numerical implementation of the 

mean field equations is analyzed, and some schemes are suggested to avoid this kind of 

divergence. 

This thesis is organized as follows. In Chapter 2, we briefly describe the satellite 

broadcasting problem, and map it onto a neural network framework. This is followed, in 

Chapter 3, by a brief review on some recently proposed optimization methods with 

emphasis on the MFT. A set of mean field equations are also derived in this chapter to 

solve the SBS problem. In the next chapter, the algorithm of parameters and derivation of 

the formula for Tc  are presented. The numerical calculations and the comparison of the 

results are discussed in Chapter 5. Finally, conclusions are presented in Chapter 6. 



Chapter 2 
Mapping the SBS Problem onto a Neural Network 

2.1 Problem Statement 

The problem discussed here is related to a low level satellite communication system. As 

shown in Fig. 2.1, this system consists of a set of satellites and a set of ground terminals. 

Unlike the geostationary communication systems, the satellites here are usually located in a 

polar orbit with a rather low altitude and they always orbit around the earth. Hence, the 

ground terminals only need to employ low-power transmitters and portable antennas. The 

system can provide global communications coverage including the two polar regions 

which still cannot be achieved by the geostationary systems [13]. 

Our work is to maximize the broadcasting time for each satellite such that all the 

following constraints are met: 

1. A satellite cannot broadcast to more than one ground terminal at a time ; 

2. A ground terminal cannot receive information from more than one satellite at a time; 

3. A satellite must broadcast as much as possibly close to its requested time, and the system 

cannot allocate more time than requested unless the requests time for the rest of the 

satellites are completely satisfied; 

4. A satellite only broadcasts when it is visible from a ground terminal. 



Fig. 2.1. Orbiting Satellite Communication System. 

To solve this problem, we adopt the following notation. 

S is the set of satellites consisting of Ns  elements (satellites); 

S = { a, b, c, d, ... } = { 1, 2, 3, ..., i, ...,Ns } 

Here, a, b, c, d, ... denote the different satellites each of which can be indexed by an 

integer number, i, ranging from 1 to Ns.  

A is the set of ground terminals consisting of NA  elements (terminals); 

A = { z, y ,x ,w, ... } = { 1, 2, 3, ..., j, ..., NA} 

Here, z, y ,x ,w, ... are different ground terminals; each of which can also be indexed 

by an integer number, j, ranging from 1 to NA; 

T is the set of time slots consisting of NT  elements (time slots); each of which can be 

indexed by an integer number, k, ranging from 1 to NT; 



R is a vector denoting the set of requested number of time slots given by the problem. 

It consists of Ns  elements (time slots). 

R = (7 -1, r2, r3, ... rA 1 s iT 

Here, r1, r2, r3, ... , rN s , are the requested time slots for satellite 1, 2, 3, ..., N s, 

respectively. 

U is a vector denoting the set of maximum number of time slots for each satellite 

allocated by the system. It consists of N s  elements. 

U = [u1, u2, u3, ..., u N  dT  

Here u1, u2, u3, - . u Ns  are the number of time slots allocated for satellites 1,2, 3, 

... , Ns, respectively. 

Our goal is to find the optimal schedule satisfying the following two criteria 

simultaneously: 

(a) The schedule must be legal, that is, all constraints are fulfilled; 

(b) The distance between the vectors, U and R, must be minimized. 

2.2 Neuron Encoding 

In this thesis, we denote a neuron by Si./ k  . Each neuron is turned "on" or "off " 

depending on Whether or not satellite i is assigned to transmit to terminal j during time slot 

k. Thus, So k  is mathematically defined by 

if satellite i is assigned to 
terminal j during time slot k ; 

Si jk ={ 1 (2.1) 0  

otherwise. 



2.3 Associative Matrix A 

From the above definition of neurons, it is clear that some neurons are always fixed to zerc 

because of Constraint 4 mentioned in Section 2.1. This is due to the fact that no ground 

terminal is visible to the satellite even when all ground terminals are idle. Usually, the 

number of neurons which are nulled owing to Constraint 4 is large. We should reflect this 

constraint into the neural network by clamping those neurons which do not meet 

Constraint 4 to zero throughout the optimization. To do so, we define an associative 

matrix A with Ns  x NA  rows and NT  columns. 

A 

A = A 2 

— 
A Ns 

a111 a112 "• ••• a11NT 

a1NA 1 . a1NA2 '. • alNANT (2.2) 

— 
aNS NA 1 . .. aNSNANT — 

where A. is the sub-matrix associated with Constraint 4 imposed on satellite i ; 1 

a ijk takes zero or one according to: 



if satellite i is visible to 
terminal j at time slot k ; 

a - I 1 (2.3) ific - [ 0 

otherwise. 

From the definition of A and the problem constraints, two important relations are 

observed: 

(a) The maximum number of requested time slots r (1) for satellite i must be less 

than or equal to the number of nonzero columns of the sub-matrix A i  ; 

N 
T 

rmax( i ) I ("non-zero columns in A . " ) (2.4) 
i=1 

(b) The usable time slots u i  must be less than or equal to rmax(a) • 

A T 
u 1 . = - y, y, Sig  k r < rn ax(z ) (2.5) 

j k 

The above relations are useful since they can be used to check the illegality of a 

solution. 

2.4 Formalization of the Energy Function 

In optimization problems, one needs to formalize a particular objective function which is to 

be optimized. Our problem is a constrained optimization problem. In order to map a 

constrained optimization problem onto a Hopfield neural network [3][4], we have to 

embed the constraints onto one function known as the energy function which consists of 

two terms : the cost term and the constraint term. The cost term is the optimization cost ( 

objective) function that is independent of the constraint term. This constraint term is the 

penalty imposed on for violating the constraints. 



E = w x " cost " + w x " penalty " (2.6) 

where W and W are the Lagrange parameters [Lue84]. 

These two terms must counteract each other. In our case, the cost term is negative and the 

constraint term is positive. The optimization is then achieved by minimizing the energy 

function. Here the cost term or the energy due to the cost, E0, is defined by 

is AT 
E0 =-1 E E E Silk  • S k (2.7) 

j k 

which reflects the idea of maximizing the total broadcasting time. The negative sign implies 

that minimization is to be applied. 

The following penalty terms will be defined according to the four constraints, : 

(1) A satellite cannot broadcast to more than one ground terminal at a time. 

The statement implies that all of the following equations must be satisfied 

simultaneously because they represent all possible violations. 

STA A 
S .S.. k = 0 (2.8) 

i k j i j k 

STAA A 
i lk • S i j k ' S i k = 0 

i k J j2•11.1 

(2.9) 



S TAA A A 
II YE k •S ij,k •S ij,k • ••••S ijmk = 0 (2.10) 

k 

Obviously, when the total number of ground terminals increases, the number of equations 

required to impose this constraint increases. Fortunately, however, it can be shown that if 

the first equation is satisfied , the remaining equations are also satisfied simultaneously. 

Lemma 1: If Equation (2.8) is satisfied, Constraint (1) is met. 

Proof : Consider Equation (2.9) 

S TAA A 
XXII s •s i j k • S J, k J, k 
i k j ji #j ,12#j1 J 

S T A AA 
= Si), k S i k • S t k (2.11) 

i k j2 J1-g] j 
j 

By definition, each neuron takes on either 1 or 0. Thus, if Equation (2.8) is true, then 

every term in Equation (2.8) must be zero. 

S ijk • S 1] k = 0 V i, k,jl #j ( 2.12) , 

Substituting Equation (2.12) into Equation (2.9), we obtain the following: 

S TAA A 
El, El, ijk • S i ], k• S i J, k = 
i k j j2#j,#J 

By deduction, if Equation (2.8) is true, the remaining equations required to impose 

Constraint (1) are all satisfied simultaneously. Thus, only Equation (2.8) is needed to 

impose Constraint (1). Q.E.D. 

Hence, the penalty term for this constraint is: 



S TA A 

E1 = EE y y S •S.
.1
. i , k 

(2.13) 
i k j .j,j i j k 

2. A ground terminal cannot receive information from more than one satellite at a time. 

Constraint 2 is a dual to Constraint 1. This can be seen by simply replacing the 

z,y,x,w, with a, b, c, d in Equations (2.8) through (2.10) respectively.Thus, the 

penalty term for this constraint is similarly defined by: 

ATSS 
E2 =El5 ES • S (2.14) 

j k i ii i i j k 
tijk 

3. A satellite must broadcast as much as possibly close to its requested time slots, and the 

system cannot allocate more time than requested unless the requests for the rest of the 

satellites are completely satisfied; 

The first part of the statement implies that the distance between U and R should be 

minimized. Thus, the penalty term, E3  , corresponding to this statement is: 

S A T 
E3 = 1 (E  1 Sipc  .. — ri  ) 2  

1 j k 
S 

= E( Ui - ri  ) 2 (2.15) 
1 

where 
A T 

ui = y y S / . j k (2.16) 
j k 

{> 0 
The second part of the statement implies that ui  -ri 

< 0 V 
i . Note that this has 

been incorporated in the cost term E0. 

4. A satellite broadcasts only when it is visible from a ground terminal. 



This constraint is imposed by the clamping technique which will be discussed in 

Chapter 3. That is, neurons are forced to 0 ( complied to Constraint 4) by using the 

associative matrix. 

The total energy function for the SBS problem defined in the Hopfield framework 

becomes: 

E = w0-E0  + wi• E l  + w2• E2 + W3° E3 (2.17) 

where w0, w1, w2, w3 are the Lagrange parameters used to weight the significance of 

E0, E1, E2 and E3, respectively. 



Chapter 3 
The MFT Framework for the SBS Problem 

3.1 Review of MFT 

In the previous chapter, the SBS problem has been mapped onto the neural network 

framework, and the energy function has been formalized. The remaining task is to employ 

a robust method to minimize the energy function. Our problem is a large scale 

combinatorial optimization problem in which the energy function to be optimized is a 

function of discrete variables. A search for the optimal configuration is computationally 

expensive, if not impossible. 

Conventional methods such as gradient-based methods which are local in scope are 

not applicable. Recently, several robust methods such as simulated annealing [7] [15] and 

genetic algorithm [16] have been proposed to solve large scale problems. However, not 

every problem can be mapped onto the framework suitable for these methods. MFT[5] [6] 

[17] [18] is derived from the Stochasticly Simulated Annealing (SSA ) by incorporating the 

SSA mechanism with the Hopfield Energy function. It has been shown to be robust in 

solving large scale problems, and more efficient than SSA. 

The main difference between SSA and conventional methods is that SSA searches for 

the global minimum by using the gradient descent method in a stochastic manner. It allows, 

under certain conditions, the search to climb uphill, thus providing the SSA a mechanism to 

escape from local minima. 

In SSA, there are two conceptual operations involved: a thermostatic operation which 

schedules the decrease of the temperature (an algorithm parameter), and a random 

relaxation process which search for the equilibrium solution at each temperature. 



In MFT the two operations are still needed. The thermostatic operation is the same as 

in SSA. However, the relaxation process in searching for the equilibrium solution has been 

replaced by searching for the average (mean) value of the solutions. Equilibrium can be 

reached faster by using the mean [18], and thus the MFT speed up by several tens to 

hundreds times over the SSA. 

The remaining question is whether the two solutions obtained from the two 

respective relaxations are approximately equal to each other. It has been proved by Peterson 

[5] [6] that for large size problems which are really what we are interested in and also, by 

experiments, even for small size problems, the answer is true. 

3.2 Mean Field Equations for the SBS problem 

In this section, we first briefly review the general mean field equations: The notations are 

adopted from [5] [6] [10] in which the detailed derivation can be found. The relaxation in 

both SSA and MET are made according to the Boltzmann distribution [7] 

P ( S' ) = e-E(S')/T Z (3.1) 

where S' is any one of the possible configurations specified by the corresponding neuron 

set; 

E(S') is the energy of the corresponding configuration; 

T is the parameter called temperature; 

Z is the partition function given by 

Z = 
e

-E(S')/T (3.2) 
s 



and the summation covers all possible neuron configurations. 

In the mean field theory, instead of concerning the neuron variables directly, we shall 

investigate their means (average) by defining: 

vi = < s, > 

= l• N5;=1) + 0 • N5;=0) 

= PT(s=1) (3.3) 

and V' = < S' > (3.4) 

where Si is a neuron; 

Vi is the mean of neuron Si ; 

Ns i=i) and pT(S,=0) are the probabilities for S,=1 or Si=0, respectively; 

S' is any one of possible configurations; 

V' is the mean configuration corresponding to S' . 

Thus, in the mean field, Equation (3.1) becomes 

P (V')   = e-E(V)/T / Z , (3.5) 

and the discrete sum in Equation (3.2) can be replaced by multiple nested integrals over the 

continuous variables Vi and Ui [ 5] [6]: 

N 00 j00 
Z = C ri I dVi' f dUl' e

-F(V',V,T) (3.6) 
i=--/ ' _co _joo 

where C is a complex constant, 



U' = (U1, U2, U3, ... UN }; (3.7) 

F is called the effective energy given by 

F(V',U',T) = E( V' )/T + I,  U.  V - log ( I es, u, ) (3.8) 
i=i " +1 

s, = 4 

As has been indicated by Peterson [5] [6], by using a saddle point expansion of F, 

one could see that the partition function Z is actually dominated by the saddle point, i.e., 

Z _•-• C e-F(vo',u0',T) (3.9) 

where C is a constant, and ( Vo, U0) is the saddle point of Equation (3.7). 

Thus, the statistical mechanism of the MFT governed by Equation (3.5) are likewise 

determined by the mechanism of the saddle points. The saddle point can be obtained as 

follows: 

a(F)  
= 0 (3.10) 

a(Ui ) 

a(F)  

a(vi) = 0 
(3.11) 

Substituting Equation (3.8) into Equation (3.10) , 

a(F) = V. - ( s es ui  / I es 1.11  ) = 0 
a(ui) i S={0 

1 
 ,11 s 

we obtain 

,. = ( Is 
e
s ui) / l

e
s ui (3.12) " i s s 

-71-..,. e - In 1 1 



Substituting Equation (3.8) into Equation (3.11), 

a(F) a(E) 1 
. a(vi ) T + U/ = 0 , a(vi)   

we have 
a(E)  1 

i U = - (3.13) 
a(vi)  T 

Equation ( 3.11) and Equation ( 3.12) are known as the general MFT equations. 

For our SBS problem, replacing Sijk defined in Equation (2.1) by Vijk and substituting 

it into Equation (3.12) and then into Equation (3.13), we now get 

1 •e l 'u ' + 0 -e°•u' 
V ick  = 

1-u . o u e + e 

e u, 

1+ eth  

1 e u  ' 1 
=2 + 1+ eth  - 2 

1 2eu' - 1 -  eu'  = 2 
+ 2(1+ eth  ) 

1 1 e'`- 1 
= ± 

2 2 1+ eu' 

1 1 
= —

2 
+ —

2 tanh (Ui) 

=0.5 + 0.5 tanh ( - 2T ) (3.14) 
a (V(E) 13  k ) 



By incorporating the clamping technique discussed in Section 2.3, we obtain the MFT 

equations for the SBS problem as follows: 

a(E)  
vii k = aijk 0.5 + 0.5 tank ( - a(vt.

2T aijk)) (3.15) 

Fnnatinn CI 151 is denirted helnw in Fig 1 

Fig. 3.1. Depicting the Function of Vijk 



Chapter 4 
Algorithm Parameters 

Before solving the MFA equations, several parameters must be specified. They are the 

Lagrange parameters,wo, w1, w2, w3, the critical temperature Tc, the saturation temperature 

and the annealing schedule. These are discussed below. 

4.1 The Lagrange Parameters — w0, w1, w2, w3 

In general, good solutions can be obtained for a reasonably wide domain in the space of 

w0, w1,  w2, w3 • However, some guidelines are suggested here in order to assure that our 

choices of the parameters lie within this domain. 

In the mean field domain, all the energy functions E0, E1, E2, E3 become the 

functions of mean field variables as follows: 

ls A T 
E0 = - 2 E Vii k  ° V j k (4.1) 

j k 

STA A 
E1= XX V • V i j k (4.2) 

i k j j k ,  

ATSS 
E2 = I E V • V (4.3) 

j k i i j k i j k 

E34, ( Vi1  r.)2 jk (4.4) 
i j k 

Consider the derivative of the total energy function in the mean field domain: 



a (E) a (Eo) a(E ) 1 a(2)  a(E3)  
 = w  

a (v 1 j k ) ao +(v. ) +W1a(v. ) +w
2 a(v. ) W3 a(y..  ) • ijk ijk ijk Ijk 

(4.5) 

The parameter w0  governs the relative balance between the "cost" and" "constraint" terms. 

a (E ) i  
wi, w2, w3 reflect the relative importance among Constraints 1 through 3. Since 

a(Vi j k ) 
a (E ) 

and are similar in nature and much more important than the others, they are 
a (v 

2 

i j k )  

thus weighted equally, and are weighted heavier than the others. For example, we may 

choose: 

we"- 0.4; 

w1= 2.0; 

w2 = 2.0. 

Consider the effect of each individual parameter on any neuron. Note that, from Equations 

acE) 2  
a(E ) 

(4.2) and (4.3), and are always positive, and thus by Equation 
a (v 

1  

i j k ) a (v i j k ) 

(3.14), the value of neuron Vijk  due to E1  and E2 approaches "0".From Equation (4.1) 

a(E0) a(E3) 

a V . 
 is always negative, making neuron Vijk  approach "1". 

a V 
may be 

( i j k ) ( . 1 j k )  

positive or negative depending on whether the requested time slots have been satisfied, thus 

making the neuron approach "0" or "1," respectively. 

Since we have already determined w1  and w2, we are left to determine the relationship 

between wo and w3. In other words, we may now assume Constraints 1 and 2 are already 



a(Ei) 2  
a (E ) 

satisfied, i.e., E1=E2=0 = = 0. Consider the extreme case in 
a(viik) a (V ) / i  k 

which Viik takes on either 0 or 1. In this case, for each fixed i , if the number of neurons 

having values "1" are more than the requested time slots (see Equation (4.4)), this implies 

that the system tries to allocate more time slots than requested. Thus, we should try to force 
a(E0)  

the system to turn "off" a neuron. Note that the neuron Vijk that is "on" has . - 
a(V, k j) 

a(E3) 
1 (see Equation (4.1)), and  = 2 (see Equation (4.4)). To turn off this neuron a (V i i k ) 

(see Equation (4.5)), 

a(E)  >0 
a(viik)  

a(E0) a(E3) 
w0 a(viik)  + w3 a(viik) >o  

w0  (-1)+ 2w3 >0 

w3 > 0.5w0 (4.6) 

Now consider the other extreme case in which the number of time slots allocated by the 

network is less than the requested time slots. In this case, the network should try to turn on 
a(E0) a(E3) 

a neuron. Note that the neuron Vick  that is "off" has = 0; and  < 0. a ( V . ) a ( V . ) 
ijk ijk 

a ( E)  
Thus, < 0; and the neuron is turned "on" as long as w3 > 0. a (vi j k ) 

In conclusion, we may use the following rule of thumb: 

wo = 0.4 (4.7) 



wl= W2= 2 (4.8) 

wi  > w3  > 0.5w0 (4.9) 

4.2 The Critical Temperature, Tc 

In MFT, our task is to solve for the neuron value Vijk at different temperatures through a 

set of nonlinear equations Equation (3.14). For convenience, this equation is rewritten as 

follows: 

a ilk ) V 1  . j  . k a - 0.5 ..k ( 
a ( v = 0.5 tanh - (4.10) 

a( 

.

E) 
) 2T 

ijk 

In order to gain insight on the dynamics in obtaining a solution, consider Fig.4.1. In this 

figure, while the abscissa represents the neuron Vijk, the ordinate represents various 

functions of Vijk. On the other hand, while the ordinate represents an arbitrary variable X, 

the abscissa represents 0.5 tanh(-X12T). The straight line labeled by y 1 represents the 

left-hand side of Equation (4.10). Here we only need to consider the case when auk =1, 

otherwise, Vijk =0. The straight line labeled by y2 represents the function 
a(E)  

a (v . . ) 
if k 

Note that in our SBS problem, from Equations (4.1) through (4.5) , we obtain 

a(E)  
a ( v

iik
) 

= m (viik  - B ), 
. .  

where m and B are constants, which is a straight line. However, the discussion here is also 

applicable to the case when 
a( v 

is no longer a straight line. As mentioned above, the 
a( E) 

. ) ijk 



dashed curve represents the function ( 0.5 tanh(-X/2T)) in which the ordinate is X, and 

the abscissa is 0.5tanh(X/2T). It is readily seen from Equation (4.10) that we can map y2 

through the hyperbolic tangent function [i,e., 0.5 tanh (-y2/2T )] to obtain the curve 

labeled by y3. y3 corresponds the right-side of Equation (4.10). Fig. 4.2 shows an 

example of mapping a point on y2 to the corresponding point on y3 through the mapping, 

(1 i tnrail-1717T1 

Fig. 4.1. The Dynamics in Obtaining a Solution 



Fig. 4.2. Mapping a Point From y2  to y3  

Note that Curve y3 and line y2 intersect on the abscissa axis at a point labeled B. The 

value of B depends on the state of the network. Curve y3 and Line yl intersect at A which 

is the solution for Equation (4.10). The abscissa value of A is the neuron value of Vijk at 

temperature T. 

Fig. 4.3 shows the behavior of Curve y3 at different temperatures. Note that at high 

temperature, Curve y3 becomes a straight line with slope equal to approximately zero. 

Thus, the solution at high temperature is V1jk =0.5, i.e., the intersection point between yl 

and y3 is (0.5, 0). We thus have the following Lemma. 

Lemma 2 All neurons except those clamped by the associative matrix, have values 

of 0.5 at high temperature. 



Fig. 4.3. Solutions at High and Low Temperatures 

However, as the temperature is decreasing, the dash curve and therefore y3 is becoming a 

signum function as shown in Fig. 4.3. If B is greater than 1, it can be seen that in this case, 

the intersection which is the solution is (1, 0.5), i.e., Vijk =1. Similarly, it can be shown 

that if B is less than 0, the solution is Vijk =0. 

Our goal is to determine the temperature parameter known as the critical temperature at 

which a remarkable state transition takes place resulting in a deep drop of system energy. 

From Lemma 2 all neurons except those which are clamped have the same initial value of 

0.5, and thus the remarkable state transition likely occurs when neurons start acquiring a 

value of 1 or 0, at which case the neurons start competing for 1 or 0. We thus propose the 

following definition for the critical temperature. 



Definition: The critical temperature is the highest temperature at which at least one 

neuron Viik reaches 1 or 0 from its original trivial state,i.e., 0.5. 

Lemma 3 The critical temperature, Tc, for our SBS problem is approximately equal 

to : 

TC = m(2b -y-1)/4y (4.11) 

where m , B and y are derived from the following system of equations: 

2V i i k  - 1= y { 

(4.12) 

- (1/2T) m( V ijk - B) = y 

 

Proof: Expanding tanh (-x/2T) by a Taylor series at x=0, we have 

x /  3 tanh ( -x / (2T)) = - —2T - 24 T -x3 + - (4.13) 

If we only use the first order term to approximate tanh (- x/ (21)), the solution point 

A is obtained by solving the following system of equations: 

2V i  i k  - 1 = y { 

(4.14) 

- (1/2T) m( V iik - B) = y 

 

where we let x= = m ( Vijk - B) (4.15) 
a(v

a(E ) 

ijk 



a(E)  
a(a (v i j k )

) 

and m = a (V i  j k) 
= 2w3  - w0 (4.16) 

which is a constant . 

Solving Equation (4.14), the critical temperature 

Tc  = m(2B -y-1)/4y (4.17) 

where y is +1 or -1 because the remarkable transition occurs when the neuron reaches 1 or 

0 from its original trivial value; i.e., V,i k= 1 or 0 = y = ±1. Furthermore, as shown in 

Fig. 4.4, if B > 1 and m > 0, the solution V Uk =1 (y=1). Likewise, if B < 0 and m > 0, the 

solution Vijk  =0 (y=-1). Similarly, other conditions can be summarized below: 

B > 0.5 B < 0.5 

m > 0 +1 — 1 

m < 0 — 1 +1 (4.18) 

Strictly speaking, when 0<B<1, Vijk  does not take on 0 or 1. However, within a few 

iterations the particular Vijk  will converge to 1 or 0. 



Fig. 4.4. The two possible solutions of Equation 4.12. 

[ Example 4.1] Given the following conditions for which the solution will be 

discussed in Example 5.3 

w0 = 0.3, w1 = 2.00 , w2 = 2.00, w3 = 0.2 

Here, m = 2w3 - w0 

= 0.4 -.03 

= 0.1 > 0 

B = (0+0 +2 x 0.2 x (0.5 x 10 -8.0 ) / (-0.1) 

= 12 >0.5 

Since m > 0 and B > 0.5, then y = 1. 

Tc  = 0.5 x m x (B-1) 

= 0.55. 



The experimental result which will be discussed in Example 5.3 show that the critical 

temperature is 0.51. 

4.3 The Annealing Schedule 

We adopt the following linear annealing schedule starting from the critical temperature: 

T(n+1) = 0.9 T(n), 

where T(0) = Tc T. (4.19) 

The stopping criterion for the annealing procedure is defined by the temperature at which 

the network is saturated. The network is saturated if the following conditions are met. 

(1) All neuron values are within the range [0.0,0.2] or within the range of [0.8, 1.0] 

without any exception; 

S AT 
(2) In (s..k  )2 / N > 0.95 (4.20) 

i j k " 

where N is the number of neurons that have values within the range between 0.8 and 1.0. 



Chapter 5 
Numerical Implementation and Solutions 

5.1 Numerical Implementation 

When implementing the MFA algorithm numerically, the straightforward iteration 

method below is used at each temperature to obtain the steady state neuron values. 

a(E)  
v.. ,(n+1) = a. ( 0.5 ± 0.5 tanh ( - 2 )T a -  • ) (5.1) :pc i i k a(v(n)ijk ) k 

The superscript n indicates the iteration index. For each iteration, there are many neurons to 

be updated. We can either update all neurons synchronously or one after another 

asynchronously. In practice, it is found that asynchronous updating has a better 

performance. The procedure to schedule the satellite broadcasting times using MFT is 

summarized below: 

(1) For a given SBS problem, establish the associative matrix A described in Section 

2.3. 

(2) Set the coefficients w0, w1'  w2, w3 as discussed in Section 4.1; 

(3) Determine the critical temperature Tc  according to Equations (4.17) through (4.18); 

(4) Initialize neurons with random numbers as follows: 

Vtjk = { 0.5 + 0.001rand [ 1,-1 ] } a. ' (5.2) 

(5) Anneal the network until the network is saturated according to the saturation 

criterion defined by Equation (4.20) 

(6) At each temperature, iterate the MFT equations until the following convergence 



criterion is met . 

S A Ti 

i jk J
y, is• (n)- S 

k(n)I < 10 -3 Nn (5.3) 
i j k 

where Nn  is the number of non-zero neuron elements. That is, we require that the 

averaged difference of a neuron between two iterations to be within 10 -3. 

5.2 Convergence 

Divergence is one of the most difficult problems encountered in numerical calculations. 

There are several types of factors which lead the calculation to divergence. Next, we shall 

discuss the factors that will cause divergence in the straightforward iteration method used to 

solve the SBS problem. Rewriting the straightforward iteration described in Equation 

(5.1), we obtain 

a(E) 1 
V — 0.5 . = 0.5 tanh ( k aiik a(V 

)2T a j3 k) 
iik 

(5.4) 

Let the left -hand side and the right-hand side of Equation (5.4) be yi and y2, respectively. 

Yl = Viik- 0.5 aiik (5.5) 

a(E) 1 
Y2= 0.5 tanh (- a(v 2T a i j k) (5.6) 

Ijki 



The solution of Equation (5.4) is the intersecting point between Line y1 and Curve y2 as 

shown in Fig. 5.1. Consider the two following cases in which the slope of Y2 in the 

neighborhood of the solution are less than and greater than 1. 

Case 1. I the slope of Y2  I > 1 ; 

Case 2. I the slope of y2 I < 1 . 

Fig. 5.1. Slope of Y2 in the neighborhood of the solution is greater than 1 



Fig. 5.2. Slope of Y2  in the neighborhood of the solution is less than 1 

Fig. 5.1 depicts the condition corresponding to Case 1 and likewise, Fig. 5.2 to Case 2. 

These figures show how the solution evolves through the iteration procedure (Equation 

(5.4)), indicated by the arrows. Here A is the solution. The sequence of arrow a-b-c 

represents one iteration. As shown in Fig. 5.1, the iteration procedure diverges from 

solution A, while the procedure converges to solution A in Fig. 5.2. 



Fig.5.3. The intersection point B is outside the range [0,1] 

If y2 is moved such that the intersecting point B between y2 and the abscissa is outside 

the range [0,1], it can be shown (see Fig. 5.3) that the iterating procedure will converge to 

the solution. Unfortunately, the exact location of the intersection point B is unknown 

because it will move dynamically during the iterating process. In Case 2, the divergence 

caused by one iteration is called local divergence. Local divergence may not be a fatal 

divergence because the intersection point B may move out of the range [0,1] after a sweep 

of iterations (all neurons are updated once). If the intersection point B always lies within 

the range [0,1], then the local divergence becomes global. We shall avoid global 

divergence. 

In the previous section, we point out that asynchronous iteration is better than 

synchronous iteration. One reason is that the asychronous method has more chances for the 

intersection point B to jump out of the [0,1] range. 

To avoid global divergence, one may adjust some parameters such that the intersection 

point B is out of the range [0,1]. The following are a few suggestions: 



(a) Adjust wo, w1, w2, w3  ; 

(b) Simply increase Ti,. 

(c) Use other iteration methods. 

5.3 Solutions 

We have implemented the proposed method to solve the SBS problem of various sizes. We 

consider cases when the requested broadcasting time is less than the maximum capacity the 

network can allocate, as well as cases when the requested broadcasting time exceeds the 

maximum capacity of the network. Cases of first type are known as "small request" cases, 

and cases of second type are known as "large request" cases. 

[Example 5.1] Consider the SBS problem with four satellites, three ground terminals 
and nine time slots. Constraint 4 is defined by the Associate Matrix A 
and the requested broadcasting time for each satellite is defined by R as 
follows: 

1 1 0 1 0 1 1 0 1 
0 0 1 0 0 0 0 1 0 
1 0 0 1 1 1 1 1 0 
1 1 1 1 0 0 0 0 1 
0 0 1 0 0 0 1 1 0 

A= 0 0 0 1 0 1 0 0 1 
1 0 1 0 0 1 1 0 1 
0 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 1 1 0 
0 1 1 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 1 
1 0 0 1 0 0 0 1 1 

R= [ 2 2 2 2 1T 



SOLUTION 1 

w0 = 0.5, w1 = 2.00 , w2 = 2.00, w3 = 0.2 

SATELLITE 1 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 
0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 

SATELLITE 2 
0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 
0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000,  

SATELLITE 3 
0.000 0.000 0.000 0.000 0.000 1.000 1.000 0.000 0.000 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 

SATELLITE 4 
0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 
1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

U= [ 3 3 3 3 ] T  

Here U is the time slots allocated by the network. 

SOLUTION 2  

w0 = 0.3, w1 = 2.00 , w2 = 2.00, w3 = 0.2 

SATELLITE 1 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.000 0.000 0.999 0.000 0.000 0.000 0.000 0.000 0.000 
0.000 0.000 0.000 0.000 0.000 0.000 0.999 0.000 0.000 



SATELLITE 2 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.000 0.000 0.000 0.000 0.000 0.000 0.999 0.000 0.000 
0.000 0.000 0.000 0.002 0.000 0.999 0.000 0.000 0.000 
SATELLITE 3 
0.004 0.000 0.000 0.000 0.000 0.999 0.000 0.000 0.000 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.999 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

SATELLITE 4 
0.000 0.000 0.999 0.000 0.000 0.000 0.000 0.000 0.000 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.000 
0.999 0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.000 

U= [ 2 2 2 2 ]T 

Both solutions are legal, and sufficient to meet the requested time slots, i.e., 

U > R 

Solution 1 allocates more time slots than requested because wo is larger, i.e., more 

emphasis is placed to maximize the capacity. 

[Example 5.2] Consider the SBS problem with four satellites, three ground terminals 
and nine time slots. Constraint 4 is defined by the Associate Matrix A 
and the requested broadcasting time for each satellite is defined by R as 
follows: 

1 1 0 1 0 1 1 0 1 
0 0 1 0 0 0 0 1 0 
1 0 0 1 1 1 1 1 0 
1 1 1 1 0 0 0 0 1 
0 0 1 0 0 0 1 1 0 

A= 0 0 0 1 0 1 0 0 1 
1 0 1 0 0 1 1 0 1 
0 0 0 0 0 0 0 0 1 
0 0 0 0 1 1 1 1 0 
0 1 1 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 1 
1 0 0 1 0 0 0 1 1 



R= [ 9 8 7 6 1T 

w0 = 0.3, w1 = 2.00 , w2 = 2.00, w3 = 0.2 

SATELLITE 1 
0.000 1.000 0.000 1.000 0.000 1.000 1.000 0.000 1.000 
0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 

SATELLITE 2 
1.000 0.002 0.002 0.001 0.000 0.000 0.000 0.000 0.000 
0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 0.000 
0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 1.000 

SATELLITE 3 
0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 
0.000 0.000 0.000 0.000 1.000 0.000 1.000 1.000 0.000 

SATELLITE 4 
0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
1.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 

U= [ 6 5 4 3 ]T 

Fig. 5.4 System Energy at Different Temperatures 



In this example, the requested time slots are more than the system can allocate. Though the 

system cannot meet the request, it provides the maximum under the given constraints.Fig. 

5.4 shows the system energy at different temperatures. The experiment shows that the 

critical temperature is 0.51 at which a remarkable transition of system ( a deep drop of the 

system energy) takes place. 



Chapter 6 
Conclusions 

In this thesis, we have presented a new method to solve the satellite broadcast 

scheduling problem. The problem was first mapped onto a neural network from which an 

energy function is derived. Optimization is achieved by minimizing the energy by Mean 

Field Annealing. Our key contributions include : 

(1) Formalize an appropriate energy function. 

(2) Introduce the clamping technique, and thus reduce the computation. 

(3) Derive the estimated critical temperature of the algorithm. 

(4) Discuss and suggest alternatives to avoid the divergence of the numerical 

implementation of the proposed method. 

(5) Demonstrate the robustness of our method by having achieved good solutions for 

problems of various sizes. 

As compared to the previous method [1] [2], our method excels in the following ways: 

(1) Our method using MFT is parallel and global in scope, thus achieving good 

performance and computational efficiency. 

(2) Our method does not need to specify a set of distinct priorities for the satellites to 

broadcast, and no assumption is made on requiring a set of suitable requests. 

In conclusion, MFT has been demonstrated to be an effective and robust optimization 

technique in solving the SBS problem. 
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