

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

New Algorithms for Mid-Crack Codes in Image Processing

by
Wai-Tak Wong

The chain code is a widely-used description for a contour image. Recently, a mid-

crack code algorithm has been proposed as another more precise method for image

representation. New algorithms using this new mid-crack code for image representation,

restoration, and skeletonization are developed. The efficiency and accuracy can be

increased obviously.

Firstly, the conversion of a binary image with multiple regions into the mid-crack

codes is presented. A fast on-line implementation can be achieved using tables look-up.

The input binary image may contain several object regions and their mid-crack codes can

be extracted at the same time in a single-pass row-by-row scan. The perimeter and area

of each region can be obtained during the execution of the algorithm. The inclusion rela-

tionship among region boundaries also can be easily determined.

Secondly, a simple and fast algorithm for the restoration of binary images based on

mid-crack codes description is proposed. The algorithm developed has the advantages of

speed, simplicity, and less storage. The algorithm also can be applied to gray-scale

images with multiple regions efficiently.

Thirdly, it was observed that there exist four problems when running on some

images with an in-contour in the restoration algorithm by Chang and Leu. We present the

problems by a counterexample and propose simple improvements to modify the results

so that the modified algorithm will allow the robustness, flexibility and correctness of the

region filling and the complete reconstruction of an image. The idea of the improvement

is similar to that of the restoration from mid-crack code description.

Finally, a new thinning algorithm for binary images based on the safe-point testing

and mid-crack code tracing is established. Thinning is treated as the deletion of nonsafe

border pixels from contour to the center layer-by-layer. The deletion is determined by

masking a 3x3 weighted template and table look-up. The resulting skeleton does not

require cleaning or pruning. The skeleton obtained possesses single-pixel thickness and

preserves connectivity. The algorithm is very simple and efficient since only boundary

pixels in each iteration are processed and look-up tables are used.

New Algorithms for Mid-Crack Codes
in Image Processing

by
Wai-Tak Wong

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science
Department of Computer and Information Science

May, 1992

APPROVAL PAGE

New Algorithms for Mid-Crack Codes
in Image Processing

by
Wai-Tak Wong

Dr. Frank Y. Shih, Thesis Advisor
Assistant Professor of Computer and
Information Science Department, NJIT

BIOGRAPHICAL SKETCH

Author: Wai-Tak Wong

Degree: Master of Science in Computer Science

Date: May, 1992

Date of Birth:

Place of Birth:

Undergraduate and Graduate Education:

• Master of Science in Computer Science, New Jersey Institute of Technology,
Newark, NJ, 1992

• Bachelor of Science in Chemical Engineering, Nation Taiwan University, Taipei,
Taiwan, Republic of China, 1986

Major: Computer and Information Science

This thesis is dedicated to
our almighty GOD and Jesus Christ

ACKNOWLEDGEMENT

First, I would like to thank my GOD and Jesus Christ.

At this time, I would also like to thank my advisor Dr. Frank Y. Shih. Without his

help in finanical support and education, I think I cannot grow up as well as my present

status. Next, thanks the technical support from Yui-Liang Chen. At last, I am glad to

thank my wife and my parents for their endless love.

TABLE OF CONTENTS

Page

1. INTRODUCTION 1

2. LITERATURE REVIEW 4

2.1 Contour Representation 4

2.2 Region Filling 6

2.3 Thinning algorithm 6

3. MID-CRACK CODES EXTRACTION 8

3.1 Introduction 8

3.2 Methodology 9

3.2.1 The Look-up Table and Move Table 9

3.2.2 Mid-crack Codes Linking Procedure 12

3.2.3 Boundary Type and Inclusion Relationship 14

3.2.4 The Algorithm 17

3.2.5 Perimeter Computation and Area Adjustment 21

3.3 Experimental Results 22

3.4 Conclusions 25

4. RESTORATION USING MID-CRACK CODES DESCRIPTION 27

4.1 Introduction 27

4.2 Methodology 27

4.2.1 Mid-crack code description rules 27

4.2.2 Region filling algorithm 29

Page

4.3 Experimental Results 36

4.4 Multi-Region Filling Approach 42

4.4 Conclusion 45

5. RESTORATION USING CHAIN CODES DESCRIPTION 48

5.1 Introduction 48

5.2 Improvements and Results 50

5.3 Conclusions 53

6. THINNING USING MID_CRACK CODES TRACING 56

6.1 Introduction 56

6.2 Methodology 57

6.2.1 Definition of Safe-Point 57

6.2.2 Safe-Point Table and Mid-Crack Code Generation Table 60

6.2.3 Move Table and Coordinates Conversion Table 64

6.2.4 The Algorithm 65

6.3 Experimental Results 69

6.4 Conclusion 70

7. FUTURE WORK AND CONCLUSION 73

7.1 Future Work 73

7.2 Conclusion 73

Page

APPENDIX 74

BIBLIOGRAPHY 79

LIST OF TABLES

Table Page

1 The Look-Up Table 11

2 The Move Table 13

3 All the cases enumerated with their area adjustments 23

4 The Starting-Point Adjustment Table 34

5 The Move Table 35

6 The X-Coordinate Conversion Table 36

7 The Starting and Ending Pixels in Figure 15 39

8 The Result of Applying Algorithm on Contour 6 of Figure 15 41

9 The Mid-Crack Codes of Figure 16 42

10 The Combined List-Record of All Contours in Figure 15 46

11 The Final Result of Figure 16 by Applying Our Algorithm 47

12 Result of Applying Chang's Algorithm to the In-Contour
in Figure 18 50

13 Result of Applying Our Improvement to the In-Contour
in Figure 19 53

14 The Result of Figure 19 in Y-axis Partition 55

15 The Safe-Point Table 62

16 The Generated Code Table 63

17 The Move Table in the Chain-Code Coordinate System 65

18 The Conversion Table from Chain Code to Mid-Crack
Code Coordinate Systems 66

LIST OF FIGURES

Figure Page

1 Silhouette with the inside and outside chain coded contours and
the mid-crack coded contour 2

2 Freeman chain code and the mid-crack code on the vertical and the
horizontal cracks 5

3 Examples of five types of code-links initialized from the mid-cracks
around the central pixel 10

4 Headcode (dashed line) determination 12

5 Index value calculation in the window operation 12

6 The linked list in a connectedness structure array 14

7 The cases in the internal boundary 15

8 A five-object image with external and internal boundaries 16

9 The system flow-chart 18

10 A few examples of the area adjustment 23

11 An image contains an object with a hole 24

12 The cases of an object pixel being visited none, once, twice, three
times, or four times 30

13 The cases illustrate that the first number of the mid-crack code
description must be (a) 1, 2, 3 or 4 in an external boundary,
or (b) 3 or 4 in an internal boundary 38

14 The coordinate systems of (a) the chain code. (b) the mid-crack code 34

15 An image of eight contours with their mid-crack code description 38

16 A gray-scale image with multiple regions 44

17 The mid-crack contours of Figure 16 45

Figure Page

18 A counterexample of using Chang's Algorithm 49

19 An example of using the improved algorithm 52

20 An example illustrating how the four-way junction point is processed
in the improved algorithm. 54

21 The eight neighbors of the point pi 58

22 A few examples showing that the pi is a break point 58

23 A few examples showing that the pi is an excessive erosion point 59

24 A few examples illustrating how a new mid-crack code is generated
when a border pixel is deleted 60

25 An illustrative example of the conversion table 61

26a An input image with the symmetric shape 68

26b The result of applying Algorithm a to Figure 26a 69

26c The result of applying Algorithm 13 to Figure 26a 70

27a An input image with a hole and notches 71

27b The result of applying Algorithm a to Figure 27a 71

27c The result of applying Algorithm j3 to Figure 27a 72

CHAPTER 1

INTRODUCTION

The contour representation of a binary image is determined by specifying a starting point

and a sequence of moves around the borders of each region. Current methods of contour

tracing are based on the chain code or crack code concept [1,2,3]. The chain code moves

along a sequence of the center of border points, while the crack code moves along a

sequence of "cracks" between two adjacent border points. Typically, they are based on

the 4- or 8-connectivity of the segments, where the direction of each segment is encoded

by using a numbering scheme, such as 3-bit numbers { i | i = 0, 1, ..., 7} denoting an

angle of 45i° counter-clockwise from the positive x-axis for a chain code, or 2-bit

numbers (i | i = 0, 1, 2, 3} denoting an angle of 90i° for a crack code. The elementary

idea of the chain or crack coding algorithm is to trace the border-pixels or cracks and

sequentially generate codes by considering the neighborhood adjacency relationship.

The chain and the crack codes can be viewed as a connected sequence of straight

line segments with specified lengths and directions. An obvious disadvantage of the

chain code is observed when we use it to compute the area and perimeter of an object.

Referring to Fig. 1, the inside chain code appears to underestimate the area and perimeter

while the outside chain code overestimates them. The disadvantages in the crack code are

that much more codes are generated and the perimeter is much overestimated. The mid-

crack code [4], located in between, should make a more accurate computation of the

geometric features.

When the contours of multiple objects in an image are extracted, one of the most

common problems is to fill the region inside each contour. A region consists of a group

Fig. 1. Silhouette with the inside and outside chain coded contours (dashed lines) and the

mid-crack coded contour (solid line).

of adjacent, connected pixels. The task of filling primitives can be divided into two

parts: the decision of which pixels to fill and the easier decision of with what value to fill

them. If the image is binary, we assign the same value to each pixel lying on a scan line

running from the left edge to the right edge; i.e., fill each span from x min to xmax. Spans

exploit a primitive's spatial coherence: the fact that primitives often do not change from

pixel to pixel within a span or from scan-line to scan-line. We exploit coherence in gen-

eral by looking for only those pixels at which changes occur.

Skeletonization or thinning is a very important preprocessing step in pattern

analysis such as industrial parts inspection [5], fingerprint recognition [6], optical charac-

ter recognition [7], and biomedical diagnosis [8]. One advantage of skeletonization is the

reduction of memory space required for storing the essential structural information

presented in a pattern. Moreover, it simplifies the data structure required in pattern

analysis. Most of the skeletonization algorithms require iterative passes through the

whole image, or at least through each pixel of the object considered. At each pass, a rela-

tively complicated analysis over each pixel's neighborhood must be performed, that

makes the algorithms time-consuming.

In Chapter 2, a few relative literatures are reviewed. In Chapter 3, a new single-pass

algorithm for extracting the mid-crack codes of multiple regions is presented. In Chapter

4, a counterexample of a fast algorithm for restoration of images based on chain codes

description is described. In Chapter 5, a new algorithm for the restoration of binary and

gray-scale images by using contour mid-crack codes description is introduced. In

Chapter 6, a new safe-point thinning algorithm based on the mid-crack code tracing is

illustrated. In Chapter 7, future approach is proposed and we make a conclusion.

CHAPTER 2

LITERATURE REVIEW

2.1 Contour Representation

A method of using the run-length coding to generate the chain code was presented in [9].

But, the CODS and AB S-S tables must be produced in the first run-length step before

the chain code generation and linking phases start. They also suggested a useful concept

to deal with the inclusion relationship between boundaries. Besides, a RC-code (raster-

scan chain code) introducing the max-point and min-point concept, especially, a linking

concept of relation links was proposed in [10]. Another single-pass algorithm [11] for

generating the chain code adopts the use of a step-by-step concept, such as chain link

generation, a link segment data structure, and a junction of links.

The mid-crack code [4] is a variation and an improvement of the traditional tracing

methods between the chain code and the crack code. In contrast to Freeman chain code,

which moves along the center of pixels, the mid-crack code moves along the edge mid-

point of a pixel producing codes of links. For the horizontal and vertical moves, the

length of a move is 1, and for diagonal moves, it is -a/2. If the crack is located in

between two adjacent object pixels in the vertical direction, it is said to be on a vertical

crack. Similarly, if the crack is located in between two adjacent object pixels in the hor-

izontal direction, it is said to be on a horizontal crack.

Fig. 2 shows the Freeman chain code and the mid-crack code on the vertical and the

horizontal cracks. There are two restrictions on the moves in the mid-crack code. If the

move is from the vertical crack, the codes 0 and 4 are not allowed. Similarly, the codes 2

and 6 are not allowed in the moves from the horizontal crack. The experimental verifica-

tion of the mid-crack code in the area and perimeter computations is shown in [4,12,13]

where the mean perimeter error value is -0.074% and the mean area error is -0.006%.

Therefore the mid-crack code is a desirable alternative method in contour tracing with its

benefit in accuracy.

Fig. 2. The Freeman chain codes and the mid-crack codes on the vertical or horizontal

cracks.

It is possible to invert a closed mid-crack code sequence into its corresponding

silhouette. An internal boundary of the 8-connectedness object (or foreground) being

traced counter-clockwise can be reconstructed by treating it as the 4-connectedness back-

ground being traced clockwise. A disadvantage of the mid-crack code is that it is always

longer than the Freeman chain code. An algorithm of conversion between a mid-crack

code sequence and a chain code sequence is described in [4] to complement the defects

as a compression process.

2.2 Region Filling

There are several algorithms performing the region-filling based on chain codes [14] by

the technique of parity checking [15,16] or a method of seed growing [15,17]. The tech-

nique of parity checking is often-used because only a single scan is required instead of

the iterations required in the seed-growing method. However, it is possible to produce an

incorrect count of the number of intersections if points from two or more sides are

mapped on the identical pixel. Besides, a problem will arise if the test line is tangent to

the contour. A fast algorithm for the restoration of an image was presented by Chang and

Leu [18]. The algorithm uses the technique of parity checking based on contour direction

chain codes description [15,16,19]. The goal of the algorithm is to convert the chain

codes description (boundary representation) [1] into the y-axis partition (region represen-

tation) [20] because it is much easier to derive geometric properties for a shape from the

y-axis representation. Merrill changes the original boundary into an augmented boun-

dary, such that the extrema and inflections are repeatedly listed and require for condi-

tions checking.

2.3 Thinning Algorithm

A practical problem with the definition of skeleton is that circular neighborhoods cannot

be represented exactly on a discrete grid. The reasonable compromise is reached that the

generated skeleton must be essential to preserve the object's topology and to represent

informatively the pattern's shape. Many skeletonization algorithms are available in the

literature. Different algorithms produce slightly different skeletons. Rosenfeld et. al.

[21,22] classified skeletonization algorithms as being parallel or sequential. The parallel

algorithms, suited for parallel computers are usually simpler than the sequential ones.

However, a sequential algorithm will be faster than a parallel algorithm if they are

implemented on a serial computer.

A parallel skeletonization algorithm called "safe-point thinning algorithm" (SPTA)

[23] where the safe-point testing is conducted by examining a set of Boolean expressions

on eight neighbors of each edge-point to determine whether it is a safe or nonsafe point.

The nonsafe points are then removed by a two-scan algorithm. A decision tree is con-

structed to minimize the number of neighbors to be examined. Since the algorithm is per-

formed by scanning all object pixels at each iteration until no more nonsafe point exists,

it is inefficient compared with our algorithm.

Some thinning algorithms are based on the contour generation method [24,25,26].

The essential idea is first to convert the input image into chain codes for each closed con-

tour, and then to trace around the contour. If a boundary point is removed, the algorithm

will generate new chain codes to replace the old one. The new chain codes are generated

from two directional vectors, inward and outward, of each boundary point. All cases of

two directional vectors are tabulated as a look-up table. The contour tracing will process

each contour layer-by-layer iteratively until no further deletion is occurred. The algo-

rithm performs better since it can reduce the running time to only the processing of boun-

dary points.

CHAPTER 3

MID-CRACK CODES EXTRACTION

3.1 Introduction

In this chapter, a fast algorithm for extracting the mid-crack code in a single-pass raster-

scan fashion and an extension to parallel implementation are presented. The developed

algorithm needs only one phase to generate all the code sequences though a binary image

is composed of several objects. Two types of boundaries, external and internal, are also

considered, such that the inclusion relationship among region boundaries can be easily

determined using the same algorithm.

The method in [4] is based on the mid-crack following scheme, which has the disad-

vantage that it requires access to the points of the image in an arbitrary order, since a

border may be of any shape and size. Our method of constructing mid-crack codes of all

the borders in a single row-by-row scan of the image, allows completely parallel imple-

mentation. Besides, the move-length in [4] is only one mid-crack at a time. Our algo-

rithm, which can extract more than one mid-crack code determined from the codes link-

ing step, is more efficient. In addition, our algorithm can deal with an image containing

multiple objects with holes in still a single raster scan.

In Section 3.2.1, the look-up table and the move table for efficient accessibility are

described. In Section 3.2.2, the mid-crack codes linking procedure is presented. In Sec-

tion 3.2.3, the boundary type and inclusion relationship are discussed. In Section 3.2.4,

the algorithm is given. In Section 3.2.5, the perimeter computation and area adjustment

are included. In Section 3.3, experimental results are provided. In Section 3.4, a conclu-

sion is made.

3.2 Methodology

3.2.1 Look-up Table and Move Table

A set of 3x3 window masks containing every variety of mid-crack codelinks initialized

from the mid-cracks around a central pixel, is illustrated in Fig. 3. We could summarize

this into five following types of encoding based on the number of codelinks: no-code,

one-code, two-code, three-code and four-code links. Each codelink is associated with a

headcode which is illustrated in Fig. 4. Then, we set up a look-up table shown in Table

1. The mid-crack codes are based on 8-connectedness and counter-clockwise tracing for

the external boundary and clockwise tracing for the internal boundary. The index value is

discussed next. The index value 0 reflecting a single pixel which is treated as a noise.

The related information such as the total number of codelinks, all headcodes, and all

codelinks can be obtained from drawing the mid-crack codes surrounding the central

pixel, as illustrated in Fig. 3.

A 3x3 window, which is incorporated with different weights at each element

exploring the presence of eight neighboring locations, is shown in Fig. 5a. If an object

pixel occurs, the weighted window is convolved with the 3x3 neighborhood centered at

that pixel. Assume that the binary image has the object pixel "1" and the background

pixel "0." This convolution is performed to calculate the index value of the look-up

table. An example of the window operation is illustrated in Fig. 5b. The related informa-

tion with respect to the mid-crack codes surrounding a pixel in Table 1 can be retrieved

by the use of the index value. Then, a series of operations are applied to concatenate

these individual codelinks to their suitable boundary links.

From a codelink, we can determine the relative move in column and row with

respect to the current location. A move table listing the relative coordinates for all the

moves, is shown in Table 2. For example, the code 0 indicates one-pixel move in x-axis

Fig. 3. Examples of five types of code-links initialized from the mid-cracks around the

central pixel.

(or column), and no move in y-axis (or row). The destination of moves acts as an impor-

tant role as we search for a right link in the linking head or tail step which will be dis-

cussed next.

Table 1. The Look-Up Table

Index Number of
Codelinks Headcode Codelink

0 0 Nil Nil

1 1 7 3317

2 1 6 217

3 1 7 217

4 1 5 1175

5 2 5,0 117, 3

•

130 2 63 77, 2

131 2 7,3 77, 2

132 2 5,3 775, 1

133 3 7,5,3 77, 3,1

134 2 6,3 77, 1

... •...

251 0 Nil Nil

252 1 5 4

253 1 5 3

254 0 Nil Nil

255 0 Nil Nil

Fig. 4. Headcode (dashed line) determination.

Fig. 5. Index value calculation in the window operation.

3.2.2 Mid-Crack Codes Linking in the Raster Scan Algorithm

When the first object pixel is fetched, we quickly obtain its codelinks simply by a look-

up table. After that, we create a new linked list in the connectedness structure array

shown in Fig. 6. A list in the connectedness structure includes: head and tail coordinates,

codelinks, thead, perimeter computation, and area adjustment. A list-typed data structure

to store the temporary boundary links is employed in the representation. If the boundary

link is connected with the codelink, we will not only increase the code sequence, but also

change the coordinates of head and tail positions. Then in the process of scanning the

next pixel, its codelinks are joined into the existing links by checking the conditions in

the link-tail and link-head steps of the algorithm.

Table 2. The Move Table

Move Relative Coordinates
Column(dx) Row(dy)

0 +1 0

1 +1 -1

2 0 -1

3 -1 -1

4 -1 0

5 -1 +1

6 0 +1

7 +1 +1

If the current codes have connectivity with the neighboring codes, there are two

kinds of concatenation ways: head concatenation and tail concatenation. In the head con-

catenation case, we connect the codelink with the specific boundary link in Step 6 of the

algorithm presented in Section 5. In the tail concatenation case, we connect the specific

boundary link in Step 7 of the algorithm with the codelink. In the link-head step, we

check the coordinates of head and the first code of the searched boundary link in the con-

nectedness structure array. In the link-tail step, we check the coordinates of tail and

"thead" of the link. It is a condition that the thead can determine with which link to join

suitably. If none of the links satisfies the condition, we create a new link in the connect-

edness structure array to store this code information. After the object pixels are scanned

Fig. 6. The linked list in a connectedness structure array.

completely, each linked-list sequence in a block of the array represents the codes of an

internal or external contour of an object. After the whole image is scanned, the boundary

links of different objects exist in different blocks of the array. The external and internal

boundary links can be differentiated by an additional step discussed in the next section.

3.2.3 Boundary Type and Inclusion Relationship

After all the mid-crack codelinks are extracted, we can easily determine the tracking

direction. If a link is traced counter-clockwise, it is an external boundary; otherwise an

internal boundary. A quick method to determine the tracking direction is proposed. A

link tracking must be stopped at a pixel which is located in the lower-right corner. We

can observe that only two cases with the first two codes "45" and "35," shown in Fig.

7, could happen in an internal boundary when the tracing is completed. The other cases

belong to the external boundary.

Fig. 7. The cases in the internal boundary.

A further analysis is needed if we want to know the inclusion relationship between

boundaries. A five-object image with external and internal boundaries is shown in Fig. 8.

We can find the "nearest link" in the connectedness structure array by comparing the

difference between the (x,y)-coordinates of the ending pixel of the closed boundary link

and the head and tail coordinates of the tested boundary link. The tested link with the

least difference is the nearest link. For example, the link labeled Bound 2 is closed, its

nearest link Bound 3 is found. Hence, the link number, Bound 2, is recorded into the

field of Bound 3 in the connectedness structure array. Each time when the Bound 3 is

joined into other links, the marked Bound 2 is transferred accordingly. After knowing

the relationship of the different links, we can determine which object owns an internal

link or even an external link. In Fig. 8, the ending pixel 2 is contained in an external

boundary, Bound 2, and is bounded by an internal boundary, Bound 3. If Bound 3 is not

an internal boundary, Bound 2 will not be bounded by it. For example, the ending pixel 5

is a component of Bound 5, but it is not bounded by Bound 6 since the boundary types of

Bound 5 and 6 are the same as the external boundaries.

Ending Pixel Cord(Col,Row) Bounded by Head(Col,Row) Tail(Col,Row)

1 (9,3) None

2 (3,4) Bound 3 (5,4) (1,4)

3 (4,6) Bound 4 (4,6) (5,5)

4 (5,6) None

5 (9,9) Bound 6 (11,9) (7,9)

6 (11,11) None

Fig. 8. A five-object image with external and internal boundaries.

3.2.4 The Algorithm

A system flow-chart is described in Fig. 9. Given a binary image of n columns and m

rows, three two-dimensional arrays, named A[0][i], A[1][i] and A[2][i], are created to

represent three rows, where 0 5_ i .. n +1. Since the 3x3 window operation is applied

everywhere in an image including the image boundary, each array is extended to have

two more elements at 0 and n+1. Let three array-pointers, named P 0, P 1 and P 2, point to

the corresponding array: Po --> A[0][0], P 1 --> A[1][0] and P2 --> A[2][0]. Initially, let

A[0][i] be all zeros and A[1][0] = A[2][0] = A[1][n+1] = A[2][n+1] = 0. The first two

rows of the image are stored into A[1][k] and A[2][k], where 1 5_ k 5 n. The following

steps are performed:

1. Search for the object pixels in the middle row pointed by P 1. If the last pixel in this

row is reached, go to the pointer adjustment in Step 10.

2. Accumulate the total number of object pixels. Get the pixel's coordinates, such that

Col = i and Row = the current row in processing.

3. A 3x3 window shown in Fig. 5a is convolved with a 3x3 neighborhood centered at

this pixel to compute the index value used in Table 1.

4. From Table 1, we extract the number of codelinks, denoted by "c_num," and

respond according to the following cases. In the zero-code case, go back to Step 1.

In the one-code case, go to Step 5 once, and then back to Step 1. In the two-code

case, go to Step 5 twice; similarly, three times in the three-code case and four times

in the four-code case. After all codelinks are done, go back to Step 1.

5. In the linking step, first calculate the destination where the codelink goes to. Calcu-

late HCol and HRow using eqs. (1) and (2), where dx and dy are retrieved in the

move table shown in Table 2 corresponding to the first code of the codelink from

Step 4.

Fig. 9. The system flow-chart.

HCol = Col + dx, (1)

HRow = Row + dy, (2)

where

dx = move [table [index].codelink [q] [0]].column, (3)

dy = move [table [index].codelink [q][0]] .r ow , (4)

headcode = table [index].headcode [q] , (5)

tailcode = table [index].codelink [q][0], (6)

where q is the order number of codelinks and 0 .5_ q c_num — 1. The

codelink[q][0] is the first code of the qth codelink. In Fig. 8, the pixel (3,4) can be

described as: index = 2, c_num = 1, and q = 0. From Table 1 when q = 0,

table[2].codelink[0][0] = 2. Therefore, dx = move[2].column = 0 and dy =

move[2].row = -1.

Go to the check-head step 6 and the check-tail step 7, and get the return values of

the connected link number for the link-head and link-tail, respectively. The link-

head and link-tail are the link number in the connectedness structure array. If the

head and tail both are not connected, go to the create-link step 8. If only one of the

head and tail is connected, go to the concatenation step 9 accompanied with an indi-

cating symbol "HEAD" or "TAIL" correspondingly. If both head and tail are con-

nected, there are two cases. 1) If link-head is not equal to link-tail, go to the con-

catenation step 9 twice with the symbol "TAIL." 2) If link-head is equal to link-

tail, go to the concatenation step once with the symbol "HEAD." After Steps 8 and

9 are done, go back to Step 4.

6. In the check-head step, we check two conditions. First condition: Col and Row are

equal to the head coordinates of the searched boundary link in the connectedness

structure array. Second condition: the headcode is equal to the first code of the

boundary link. If both conditions are satisfied, we call the head of this codelink

connected; otherwise disconnected. Return the connected link number to Step 5.

7. In the check-tail step, we also check two conditions. First condition: HCol and

HRow are equal to the tail coordinates of the searched boundary link in the connect-

edness structure array. Second condition: the tailcode is equal to the thead of the

boundary link. If both conditions are satisfied, we called the tail of this codelink

connected; otherwise disconnected. Return the connected link number to Step 5.

8. In the create-link step, we search for the empty link, which is joined into another

link and will not be used any more in the connectedness structure array. If there is

no empty link available, a new link is created. Then we store the information

including head and tail coordinates, codelink, and thead into such a link. Return to

Step 5.

9. In the concatenation step, we have an indicating symbol, HEAD or TAIL, to deter-

mine the control flow. If the symbol is HEAD, we replace x- and y-coordinates of

the headcode by HCol and HRow computed by eqs. (1) and (2). Then, we concaten-

ate the codelink with the code sequence of the specified link in Step 6. If the symbol

is TAIL, we replace x- and y-coordinates of the tailcode and thead by the Col, Row

and headcode computed in Step 2 and eq. (5), respectively. Then we concatenate the

code sequence of the specified link in Step 7 to the codelink. A little difference is

seen in the case of both the head and tail being connected. If the link-head is equal

to the link-tail, then it means that the boundary link is closed by this codelink. In

this case, no matter how to concatenate them using the case "HEAD" or "TAIL,"

the resulting codes are the same. In our experiment, we concatenate them using the

case of HEAD. Otherwise, we perform the following two steps. First step: we con-

catenate the codelink to the code sequence of the link-tail. Second step: we con-

catenate the code sequence of link-head to the code sequence of link-tail, replace

tail coordinates and thead in the link-tail by tail coordinates and thead in the link-

head, and set the head coordinates to a negative value indicating an empty link

which can be reused in Step 8. Return to Step 5.

10. Up to now, We have completed one row of the input image. The array pointers are

then adjusted as: P 0 --> AU mod 3][0], P 1 --> A[(j+1) mod 3] [0], and P2 -4

A[(j+2) mod 3][0], where j is initialized as 0 and increased by 1 in each iteration.

For example in the second iteration, Po —4 A[1][0], P1 -+ A[2][0], and P2

—A[0][0]. The next row of the input image is then stored into the array A[(j+2)

mod 3] [k] . If j < m, the image is not yet scanned completely and must go back to

Step 1; otherwise, the scanning is over.

3.2.5 Perimeter Computation and Area Adjustment

The look-up table can be added two more items to deal with the perimeter computation

and area adjustment which are obtained simultaneously during the execution of mid-

crack codes. We know the moving length of the codes 1, 3, 5 and 7 is V2 /2 and of 0, 2, 4

and 6 is 1. For the simplicity of computation, the perimeter of an object region is

estimated by accumulating all the moving lengths of the codes. For example for an

object pixel with the index value 5 in the look-up table, it has two codelinks "117" and

"3." The perimeter of the first codelink is 3 X "‘If/ 2 and of the second codelink is -‘12- /2.

Therefore, we can add this information to the look-up table and extend the connectedness

structure array with a perimeter item. If the connectedness of the codelink occurs, we can

accumulate the perimeter value in the concatenation step.

The area of an object region is simply the number of points in the region. In Step 2

of the algorithm, the total number of object pixels is computed. However, as we men-

tioned previously, the enclosed area of mid-crack codes possesses more accurate value.

Therefore the area based on counting the number of pixels needs some adjustment. A

few examples of the area adjustment are illustrated in Fig. 10. The vertical moves, i.e.,

the codes 0, 2, 4 and 6, do not need the adjustment since they move along the cracks in

between two pixels. For diagonal moves, i.e., the codes 1, 3, 5 and 7, the area enclosed is

different from the digitized image area by ±1/8 of a unit-pixel square. All the cases

enumerated with their adjustments are given in Table 3. If an image contains only exter-

nal boundaries, the area adjustment can be achieved in parallel at the same time of the

algorithm execution. If any internal boundary is involved, the area adjustment requires

the knowledge of boundary types which can be determined by using the procedure

presented in Section 4, after the codes of a boundary are entirely obtained.

3.3 Experimental Results

Two results are shown. They are considered using 8-connectedness for the object

regions. The program was implemented in C on a Sun Sparc workstation. The CPU exe-

cution times for both results are less than 100 ms. In Fig. 11, we are concerned with an

image containing an object with a hole. The result is shown as follows:

The total number of pixels = 29.

(1) Starting pixel = (4,6).

Fig. 10. A few examples of the area adjustment.

Table 3. All the cases enumerated with their area adjustments.

Area Correction of Moves in Counter-clockwise Tracing

Move 0 1 2 3 4 5 6 7

Cross Object -1/8 -1/8 -1/8 -1/8

Cross
Background +1/8 +1/8 +1/8 +1/8

Along Cracks 0 0 0 0

Codes: 3571

Perimeter = 5.66, Area = 0.5, Boundary type: Internal

(2) Starting pixel = (8,8).

Codes:

3317711766712176711121076545555577711117555577775333355311333555775

33555531111333317777111333333

Perimeter = 70.26, Area = 29, Boundary type: External

Fig. 11. An image contains an object with a hole.

In Fig. 8, we are concerned with an image with multiple objects. The result is shown as

follows:

The total number of pixels = 43.

(1) Starting pixel = (9,2).

Codes: 2107665432

Perimeter = 8.83, Area = 5.5, Boundary type: External

(2) Starting pixel = (3,3).

Codes: 217653

Perimeter = 4.83, Area = 1.5, Boundary type: External

(3) Starting pixel = (3,6).

Codes: 45666700122234

Perimeter = 12.83, Area = 11.5, Boundary type: Internal

(4) Starting pixel = (5,5).

Codes: 2100007666665444432222

Perimeter = 20.83, Area = 18, Boundary type: External

(5) Starting pixel = (9,8).

Codes: 217653

Perimeter = 4.83, Area = 1.5, Boundary type: External

(6) Starting pixel = (11,10).

Codes: 21766667001222217666665444432222

Perimeter = 25.66, Area = 14.5, Boundary type: External

3.4 Conclusions

The paper describes an efficient algorithm for encoding a complex image into mid-crack

codes, which is a more precise method based on the subpixel measurement capabilities.

The algorithm only requires a single row-by-row scan of the image and uses a 3x3 win-

dow for the codelinks generation. Simultaneously, all the connected links of line seg-

ments are encoded and joined together into a data structure. Also, the algorithm has an

advantage in detecting the inclusion relationship between boundaries. Besides, the perim-

eter computation and area adjustment can be performed in parallel.

The algorithm is nearly memoryless, since it scans only three rows at a time and

does not store the entire image. If there are multiple objects in an image, such links exist

in the array after the encoding and linking processes. Therefore, the algorithm can extract

all mid-crack codes in a single scan. Our method is based on tables which are suited for

all various cases in an image. If the 4-connectedness for the foreground is dealt with

instead of 8-connectedness, the only change is to slightly adjust the look-up table. The

applications of the mid-crack code description are still an ongoing research.

CHAPTER 4

RESTORATION USING MID-CRACK CODE

DESCRIPTION

4.1 Introduction

In computer vision, image processing, and object recognition and inspection, the preci-

sion requirement of geometric properties is very important. By applying our region-

filling algorithm based on the mid-crack code representation, we convert the codes into

y-partition data structure from which the run-length codes and the formulas of geometric

features can be easily derived [3,16]. Our algorithm is significantly different from the

method proposed by Merrill [18] which exists three restrictions, such as a) the boundary

must be closed, b) it cannot handle the cases where the test line intersects the boundary

tangentially, and c) the closed boundary cannot loop back on itself. However, our

midcrack-code based algorithm does not have these restrictions. This chapter is organ-

ized as follows. In Section 4.2.1, the mid-crack code description rules are introduced. In

Section 4.2.2, the region-filling algorithm developed is described. In Section 4.2.3, the

algorithm applied to gray-scale images with multiple regions is presented. In Section

4.3, experimental results are illustrated. In Section 4.4, some conclusions are made.

4.2 Methodology

4.2.1 Mid-Crack Code Description Rules

In the contour description, the border points are represented in the form of a string of

eight moving-directional codes. The mid-crack code description can be seen as move-

ment along the mid-points of border cracks which produce codes of links. The codes

from 0 to 7 are assigned to indicate the eight moving directions of 0° to 315° in intervals

of 45°, as shown in Fig. 2. For the horizontal or vertical move, the length of a move is 1,

and for the diagonal move, it is VI/2. If the crack is located in between two adjacent pix-

els in the vertical direction, it is said to be on a vertical crack. Similarly, if the crack is

located in between two adjacent pixels in the horizontal direction, it is said to be on a

horizontal crack. There are two restrictions on the moves in the mid-crack code as illus-

trated in Fig. 2. If the move is from a vertical crack, the codes 0 and 4 are not allowed.

Similarly, the codes 2 and 6 are not allowed in the moves from a horizontal crack.

We use the tracking rule of 8-connectedness counterclockwise. Let us assume that

the description form of all m contours in a binary image is expressed as follows:

sx. 00y ood ood 01 donn e

sx coy cod iodic din, e

dio_i)dii

sxmoymod,041 dr„,.e#

where "#" is the end symbol of the description; "s" and "e" are the starting and ending

symbols for each contour, respectively; "x" and "y" are the coordinates of the starting

point; "d" is the directional code. The subscript of "4" indicates that d is the code in

the ith contour and the jth move. Each contour could be either an in-contour or an out-

contour. In mid-crack code description, since the starting and ending pixels in each con-

tour must be adjacent to each other, the opened curve occurred in the chain-code descrip-

tion should not exist here. Besides, there are four cracks surrounding a pixel. Therefore

the problems in the chain code description of no-code for an isolated point and redun-

dantly tracing a same pixel twice for a multi-way junction pixel will not again happen

here.

A simple example of the mid-crack code description for a single-object image is

illustrated in Fig. 1. The resulting mid-crack codes are:

s (6,5)1177117707654567753355433310134321 e#

Referring to Fig. 1, the starting pixel (e.g. (6,5)) is defined as the pixel which is pointed

by the link of the first mid-crack code located at the ending pixel (e.g. (5,6)) in a raster

scan. As mentioned above, the counterclockwise tracing indicated by the arrow direc-

tions is adopted. Since the mid-crack codes are generated based on pixel-by-pixel accord-

ing to a look-up table and then are concatenated using the code-linking from the head to

the tail of arrows, it is in nature that the generated sequences of the mid-crack code

description are in a clockwise direction.

3.2.1Region-filling algorithm of binary image

In the mid-crack code extraction algorithm [15], an object pixel may be visited at its four

cracks for none, once, twice, three times, or four times, as illustrated in Fig. 12. If an

object pixel is not visited on its vertical crack (e.g. the case in Fig. 12a), it must be com-

pletely surrounded in the horizontal direction by other object pixels. Hence, in our

region-filling algorithm the location of this pixel will not be stored. If an object pixel is

visited once on its vertical crack (e.g. the case in Fig. 12b), it will be either a starting

border or an ending border in the horizontal direction. Hence, the location of this pixel

will be stored once. If an object pixel is visited twice on its vertical crack (e.g., the cases

in Figs. 12c, 12d, and 12e), it must be one of the cases, such as a singular point, an iso-

lated point, or a multi-way junction point. No matter what case, the object pixel is always

a starting border as well as an ending border in the horizontal direction. Hence, the

Fig. 12.The cases of an object pixel being visited none, once, twice, three times, or four

times.

location of this pixel will be stored twice. By using this method, it is easy to extract the

starting border and the ending border in each horizontal direction in order to reconstruct

all the object pixels in an external boundary or an internal boundary.

There are two kinds of tracking directions: forward and backward, in the mid-crack

code description. Referring to Fig. 1, since the counterclockwise rule is used, the forward

and backward tracking is defined as the same direction or the reverse direction of the

contour tracking, respectively. In other words, the forward tracking approach visits the

mid-crack codes beginning with the last code (tail of link) of the code sequence, and the

backward tracking approach starts with the first code (head of link) of the code sequence.

In our region-filling algorithm, the forward tracking is chosen in order to maintain con-

sistency with the contour tracing direction.

In the mid-crack code description rules, the starting pixel is the pixel which is

pointed by the link of the first mid-crack code located at the ending pixel in the row-by-

row scan. We can easily observe that for an ending pixel in an external boundary must

be the form of

x x x
x 1 0
0 0 0

where x denotes "don't care". Hence there are totally 24 = 16 cases. If all x's are zeroes,

the pixel is an isolated point; its mid-crack codes will be obtained immediately as

"1357." For an ending pixel in an internal boundary, its 3 x 3 neighborhood must be the

form of

1 0 1
x 1 x
x x x

or

0 0 1
1 1 x
x x x

Hence, there are totally 25 + 24 = 48 cases. However, in Fig. 13 it is shown that the first

code in the mid-crack code description must be (a) 1, 2, 3, or 4 in an external boundary,

or (b) 3 or 4 in an internal boundary. The adjustment for a starting pixel from the mid-

crack coordinate system to the chain-code coordinate system will depend on the first

code, as described next.

Because the mid-crack code visits the mid-point of a crack, a unit-length in the

mid-crack code coordinate system is designed as equating a half-pixel in the normally-

used chain code coordinates, as shown in Fig. 14. The coordinate system used in extract-

ing the mid-crack codes is the chain code coordinate [15]. Hence, the (x,y) values of the

input mid-crack codes must be converted into new values in the mid-crack code coordi-

nate system by an adjustment table shown in Table 4. From a move sequence of the

mid-crack code, we can establish a move table to evaluate the location of the next code.

Accordingly, the move table in [15] also needs to be modified to fit in the mid-crack

code coordinate system, as shown in Table 5. When the location of a move is on the

vertical mid-crack (i.e., y is not an integer), it must be the starting or ending mid-crack

surrounding a horizontal region. Hence, its x- and y-coordinates are recorded by convert-

ing back to the chain code coordinate system for the purpose of region filling. The

reversed conversion is performed by truncating y into an integer and adjusting x accord-

ing to Table 6. The procedure is repeated until the last code is reached. The algorithm is

Fig. 13.The cases illustrate that the first number of the mid-crack code description must

be (a) 1, 2, 3 or 4 in an external boundary, or (b) 3 or 4 in an internal boundary.

quite efficient such that only three simple look-up tables are used. After all the codes of

a contour are processed, we can check the coordinates of the last point location. If it is

equal to the starting method, our algorithm is described as follows:

Fig. 14. The coordinate systems of (a) the chain code. (b) the mid-crack code.

Table 4. The Starting-Point Adjustment Table

First code X Adjustment Y Adjustment

1 +0.5 +1

2 +1 +0.5

3 +1 +0.5

4 +0.5 0

1. Read the starting pixel (xi0, yi0)•

2. Read the first direction code d10. Adjust the starting point (xi0, yi0) in the chain code

coordinates to be (X0, Y0) in the mid-crack code coordinates according to di0 and

Table 4.

Table 5. The Move Table

Code X Adjustment Y Adjustment

0 +1 0

1 +0.5 -0.5

2 0 -1

3 -0.5 -0.5

4 -1 0

5 -0.5 +0.5

6 0 1

7 +0.5 +0.5

3. Read the next direction code Di (beginning from the last code of the code sequence).

Evaluate the (X, Y) coordinates of the next location according to X0, Y0, D„ and

Table 5.

4. If the value of Y is not an integer, record (X, Y) by truncating Y into an integer and

adjusting X according to Table 6.

5. Let X=X0 , Y=Y0.

6. Do Step 3 and obtain the next location until the first code is reached.

7. Check whether the location of the last visited point is the same as the starting point in

Step 2. If it is the same, the contour is correct; otherwise, it is incorrect.

Table 6. The X-Coordinate Conversion Table

Code X Adjustment

1 -1

2 -1

3 -1

5 0

6 0

7 0

8. Repeat Steps 1 through 7 with another contour until the ending symbol "#" is

reached.

4.3 Experimental Results

Fig. 15 illustrates an image containing eight contours. Their starting and ending pixel

coordinates are shown in Table 7. Their mid-crack codes description is obtained as fol-

lows:

Contour 1: s (9,3)21767755533311e

Contour 2: s (4,6)4567001234e

Contour 3: s (12,5)356712e

Contour 4: s (6,8)457013e

Contour 5: s (2,10)4566701223e

Contour 6: s (5,9)110077766655677557754443333323333222107711e

Contour 7: s (10,9)3565570122e

Contour 8: s (12,9)21077766654565554322211211e#

As an example of the contour 6, behind the starting symbol "s" the "(5,9)" is the

coordinate of the ending pixel, and that "1", "1", "0", etc., are the directional codes.

We present the result of applying our algorithm to the above contour 6 in Table 8. We

can convert all the results into the following data structure of list-record:

Contour 1:

(1;9,9)

(2;8,10)

(3;9,9)

(4;9,9)

Contour 2:

(4;2,6)

(5;2,6)

Contour 3:

(4;12,14)

Fig. 15. An image of eight contours with their mid-crack code description.

(5;12,14)

Contour 4:

(7;5,8)

Contour 5:

(7;1,4)

(8;1,4)

(9;1,4)

Table 7. The Starting and Ending Pixels in Fig. 15

Contour Starting Pixel(Col,Row) Bounded by Ending Pixel(Col,Row)

1 (9,3) None (9,4)

2 (4,6) Bound 6 (5,6)

3 (12,5) Bound 8 (13,6)

4 (6,8) Bound 6 (7,8)

5 (2,10) Bound 6 (3,10)

6 (5,9) None (4,10)

7 (10,9) Bound 8 (11,10)

8 (12,9) None (12,10)

Contour 6:

(1;1,4)

(2;2,5)

(3;1,6)

(4;2,6)

(5;2,7)

(6;1,8)

(7;1,8)

(8;1,8)

(9;1,5,7,8)

(10;2,4)

Contour 7:

(7;10,13)

(8;10,12)

(9;10,12)

Contour 8:

(3;13,14)

(4;12,14)

(5;12,14)

(6;10,14)

(7;10,13)

(8;10,13)

(9;10,12)

(10;11,12)

where the first number is the y-coordinate, and then the x-coordinate of the starting and

ending pixels, and so forth. The combined list-record of all eight contours is described in

Table 9. According to this table, we can fill the pixels into the region. The precise

number for the area of three objects bounded by a mid-crack code description in Fig. 15

is 46, 51/2, and 201/2. The area of reconstruction using our algorithm is just to accumulate

the number of object pixels which is 45, 6, and 20, respectively.

Table 8. The Result of Applying Algorithm on Contour 6 of Fig. 15

Code in seq. Coordinate Recorded Coord. Code in seq. Coordinate Recorded Coord.

Starting location (5.5, 10) ••• 4 (1.5, 1) •••

1 (6, 9.5) (5, 9) 5 (1, 1.5) (1, 1)

1 (6, 9) ••• 7 (1.5, 2) •••

7 (7, 9.5) (7, 9) 7 (2, 2.5) (1, 2)

7 (7.5, 10) ••• 5 (1.5, 3) •••

0 (8.5, 10) ••• 5 (1, 3.5) (1, 3)

1 (9, 9.5) (8, 9) 7 (1.5, 4) •••

2 (9, 8.5) (8, 8) 7 (2, 4.5) (2, 4)

2 (9, 7.5) (8, 7) 6 (2, 5.5) (2, 5)

2 (9, 6.5) (8, 6) 5 (1.5, 6) •••

3 (8.5, 6) ••• 5 (1, 6.5) (1. 6)

3 (8, 5.5) (7, 5) 6 (1, 7.5) (l, 7)

3 (7.5, 5) ••• 6 (1, 8.5) (1, 8)

3 (7, 4.5) (6, 4) 6 (1, 9.5) (1, 9)

2 (7, 3.5) (6, 3) 7 (1.5, 10) •••

3 (6.5, 3) ••• 7 (2, 10.5) (2, 10)

3 (6, .5) (5, 2) 7 (2.5, 11) •••

3 (5.5, 2) ••• 0 (3.5, 11) •••

3 (5, l.5) (4, 1) 0 (4.5, 11) •••

3 (4.5, 1) ••• 1 (5, 10.5) (4, 10)

4 (3.5, 1) ••• 1 (5.5, 10) •••

4 (2.5, 1) ••• End symbol

Table 9. The Combined List-Record of All Contours in Fig. 15

Mow) X(Col)
1 1, 4, 9, 9

2 2, 5, 8, 10

3 1, 6, 9, 9, 13, 14

4 2, 2, 6, 6, 9, 9, 12, 12, 14, 14

5 2, 2, 6, 7, 12, 12, 14, 14

6 1, 8, 10, 14

7 1, 1, 4, 5, 8, 8, 10, 10, 13, 13

8 1, 1, 4 ,8, 10, 10, 12, 13

9 1, 1, 4, 5, 7, 8, 10, 10, 12, 12

10 2, 4, 11, 12

4.4 Multi-region Filling Approach

In the previous sections, we only discuss the restoration of a binary image with multiple

objects. Now, the same algorithm can be applied to a gray-scale (or color) image with

multiple regions. If a picture contains more than two types of regions, it may still be pos-

sible to segment it by applying several thresholds. For example, in pictures of white

blood cells the nucleus is generally darker than the cytoplasm, which is in turn darker

than the background. A gray-level term is added to a contour mid-crack code description

to represent the gray value of the region bounded by its contour. For example:

s (50)(6,5)1177117707654567753355433310134321e

The number "50" following the "s" denotes the gray level of the region.

The restoration of the whole image by filling each region with its corresponding

gray-value (or color) from its contour description is straightforward by applying the same

proposed algorithm. A critical problem is how to extract those contours in a very effi-

cient way. In an ordinary method multiple regions with different gray-levels are

extracted from dealing with one region at a time after thresholding. Therefore, the

extraction routine is repeated again and again. Referring to the algorithm for mid-crack

codes extraction [15], if the boundary between two regions shown in Fig. 16, is con-

sidered, we can assume that each region has its own boundary by viewing each region as

an independent object as shown in Fig. 17. Based on the assumption, we observe that two

contours may coexist in one boundary if two regions are neighboring to each other. The

mid-crack codes of Fig. 17 are shown in Table 10.

In Fig. 17 if a region contains no interior subregion, it produces an out-contour in

the mid-crack code description. If a region contains k regions inside, then it will need

k + 1 out-contours and k in-contours to represent the complicated region. Referring to the

masking step in the mid-crack code extraction algorithm [15], we process the 3x3 neigh-

borhood using the following criterion: the neighboring pixels having the same gray value

as the central pixel are assigned to be 1, otherwise 0, and then an index value is generated

to be used in the look-up table. In the create-link step, we assign a new gray value to dif-

ferentiate the created link from the links of other regions having the different gray level

in the linking step.

The mid-crack coding algorithm [15] can be used to obtain all the contours in an

Fig. 16. A gray-scale image with multiple regions.

image. Each contour is encoded with its gray level. According to our region-filling algo-

rithm, the result is shown in Table 11. Our region-filling algorithm is efficient in speed

since it applies the mid-crack coding which only requires a single-pass raster scan and

utilizes look-up tables.

Fig. 17. The mid-crack contours of Fig. 16.

4.5 Conclusion

In the mid-crack code contour description, we do not need to take care of any particular

pixel, such as a singular point, an isolated point, a multi-way junction point, etc. Instead

of considering the characteristics of the input and output codes of a point, we are con-

cerned with the coordinate of the cracks in the mid-crack code description. Since multi-

way junction points are easy to process in the mid-crack code, no additional operations

are used to solve this kind of problem, i.e., the chaining process passes through such a

point more than once. Our method also can convert the mid-crack code description into

the y-axis partition which is a region representation. Therefore, it is much easier to derive

the geometric properties for an object. The developed algorithm can be also applied to

gray-scale images with multiple regions very efficiently.

Table 10. The Mid-Crack Codes of Fig. 16

Bound Code Sequence

1 s(g i)(5,10)110077766655677557754432344322223432107711e

2 s(g 1)(2,9)35545667011122e

3 s(g 2)(7,7)21766667007544565323443100122e

4 s(g 3)(4,8)11766555432210e

5 s(g 1)(12,10)21077766654565554322221111e

6 s(g i)(11,10)45670123e

7 s(g3)(12,8)21076543e

(g 1 : gray level 1 g2 : gray level 2 g 3 : gray level 3)

Table 11. The Final Result of Fig. 16 by Applying Our Algorithm

Y(Row) X(Col)

1 (g 2; 7,7)

2 (g1; 1,3) (g2; 7,7)

3 (g 1; 2,3) (g2; 4,10)

4 (g1; 1,6) (g2; 7,7) (g 1 ; 13,14)

5 (g1; 2,6) (g2; 7,7) (g1; 12,14)

6 (g1; 2,3) (g3; 4,5) (g1; 6,6) (g2; 7,7) (g1; 12,14)

7 (g 1; 1,2) (g3; 3,5) (g 1; 6,6) (g2; 7,7) (g 1; 10,14)

8 (g 1 ; 1,2) (g 3 ; 3,5) (g 1; 6,6) (g 2; 7,7) (g1; 10,10) (g 3 ; 11,12) (g i ; 13,14)

9 (g 1; 1,2) (g3; 3,3) (g 1; 4,8,10,100g 3; 11,12) (g 1; 13,13)

10 (g 1; 1,5,7,8,10,12)

11 (g1; 2,4,11,12)

(g 1 : gray level 1 g2 : gray level 2 g 3: gray level 3)

CHAPTER 5

RESTORATION USING CHAIN CODES DESCRIPTION

5.1 Introduction

In [1], the object's connectivity of an image adopted is eight-connectedness, and the con-

tour tracing rule is counterclockwise for an out-contour (external boundary) and clock-

wise for an in-contour (internal boundary). We implemented the Chang's algorithm and

tested on numerous variant types of images. It was observed that there exist four prob-

lems when running on some images with an in-contour. A counterexample of using the

algorithm is given in Fig. 18. Its chain codes description is obtained as follows [7]:

s(1,1)666666666000000000222222222444444444e

s(3,2)0000075440776653365443221731431e$,

where "s" is the starting symbol and "e" is the ending symbol for each contour; two

numbers enclosed by a pair of parentheses are the x- and y-coordinates of the starting

point; "$" is the ending symbol of the description of an image.

The step-by-step results of applying the Chang's algorithm [1] to the in-contour of

Fig. 18 is tabulated in Table 12. For clear visualization, the resulting classification is

labeled along with the corresponding point in Fig. 18, where I, M, K, and U denote a

singular point, a marking point, a skipping point, and an unsuitable point, respectively.

By analyzing the results, the following four problems will arise:

(1) The listed chain codes description of the aforementioned out-contour and in-contour

of Fig. 18 is correct according to [7]. However, by Chang's algorithm there exists

an unsuitable point at (6,4) and by the quoted rule in [1] "the description is con-

sidered as wrong if an unsuitable point is visited," the in-contour chain codes

description is mistakenly determined as incorrect.

Figure 18. A counterexample of using Chang's Algorithm.

(2) The points at (4,4), (4,6) and (6,7) of Fig. 18 that are classified as skipping points

will disappear in the reconstructed image according to Chang's algorithm. Hence,

the algorithm does not ensure complete reconstruction.

(3) The fourth row of Fig. 18 cannot be reconstructed because there exist three marking

points at (3,4), (7,4) and (8,4) and an unsuitable point at (6,4), that violates the par-

ity checking rule.

(4) Disregarding the previous problems, the area of the reconstructed image is always

less than that of the original image because the in-contour's pixels are filled in by

the background value.

Table 12. Result of Applying Chang's Algorithm to the In-Contour in Figure 18.

Pixel
Coordinates

A
cal (j-i) dtj

Point Pixel
Coordinates di u -1) du

Point

Chang's Algorithm Chang's Algorithm

(4, 2) 0 0 Skipping (6, 7) 3 6 Skipping

(5, 2) 0 0 Skipping (6, 8) 6 5 Marking

(6, 2) 0 0 Skipping (5, 9) 5 4 Marking

(7, 2) 0 0 Skipping (4, 9) 4 4 Skipping

(8, 2) 0 7 Marking (3, 9) 4 3 Marking

(9, 3) 7 5 Marking (2, 8) 3 2 Marking

(8, 4) 5 4 Marking (2, 7) / 2 Marking

(7, 4) 4 4 Skipping (2, 6) 2 1 Marking

(6, 4) 4 0 Unsuitable (3, 5) 1 7 Singular

(7, 4) 0 7 Marking (4, 6) 7 3 Skipping

(8, 5) 7 7 Masking (3, 5) 3 1 Marking

(9, 6) 7 6 Marking (4. 4) 14 Skipping

(9, 7) 6 6 Marking (3, 4) 4 3 Marking

(9, 8) 6 5 Marking (2, 3) 3 1 Marking

(8, 9) 5 3 Singular (3, 2) 1 0 Marking

(7, 8) 3 3 Marking

The usefulness and accuracy of the algorithm in [1] are dubious due to the above

defects. An improved algorithm is proposed and discussed next.

5.2 Improvements and Results

Referring to the y-axis partition algorithm [5], the coordinates of all border pixels of an

image are sorted and partitioned into sets so that each set contains only points which

have the same y-coordinate. If an object is divided into row by row (y-axis partition), the

object pixels are bounded by the starting and ending border pixels in the horizontal direc-

tion. Once the coordinates of the two pixels are known, the precise object pixels of this

region can be filled in. If the object has internal boundaries (hole borders), the problem

can be solved by processing the internal and external boundaries together in the y-axis

partition step after the starting and ending border pixels in horizontal direction are

extracted. In other words, a couple of starting and ending border pixels will bound a

region without regard to what kind of border (i.e. external or internal) it is. Hence, the

originally separated internal and external y-axis partitions can be improved by merging

them together.

By carrying out the aforementioned concept, the two look-up tables in [1], one for

an out-contour and the other for an in-contour, are not necessarily needed. The procedure

in extracting the starting and ending border pixels for an in-contour is applied to be ident-

ical to that for an out-contour. An example of applying Chang's algorithm only with his

Table 12 to Fig. 18 is shown in Fig. 19, where I, M, K, represent the same meanings as

previously. The step-by-step results of the in-contour are tabulated in Table 13. It has to

be noted that the labels of an out-contour in Fig. 18 remains unchanged in Fig. 19, but

those of an in-contour are significantly modified.

By comparing the in-contour labels in Fig. 19 with those in Fig. 19, the unsuitable

point (labeled as U) in Fig. 18 disappears. Besides, the points at (4,4), (4,6) and (6,7) that

are no longer skipping points will be preserved in the reconstructed image. The fourth

row of Fig.19 that has even number of marking points will now comply with parity-

checking rule.

After all the starting and ending border pixels are extracted, they are sorted into

another data structure as the Merrill's y-axis partition [5] that is shown in Table 14. As

expected, the reconstructed image using Table 14 is exactly the same as the original

image.

One of the common problems in region filling is to allow complete reconstruction

Figure 19. An example of using the improved algorithm.

while dealing with multi-junction points by using the chain codes description [3]. An

example of a four-way junction point is given in Fig. 20. There are four pairs of links

jumping into and out of the central pixel. A problem of unconstructivity will arise by

applying Chang's algorithm if any pair of links is not in the same contour as the remain-

ing three pairs. By applying our improvements, the result shows that this four-way junc-

tion point is classified and counted twice as both a marking point and a skipping point, so

that the complete reconstruction of this type can be easily achieved. The other types such

as a three-way junction point and a two-way junction point can be similarly derived.

Table 13. Result of Applying Our Improvement to the In-Contour in Figure 19.

Pixel
Coordinates di (i -1) 611.i

Point pixel
Coordinates d d i

-
i(
- ---

1)
'-'

Point

Improved Algorithm Improved Algorithm

(4, 2) 0 0 Skipping (6, 7) 3 6 Singular

(5, 2) 0 0 Skipping (6, 8) 6 5 Marking

(6, 2) 0 0 Skipping (5, 9) 5 4 Skipping

(7, 2) 0 0 Skipping (4, 9) 4 4 Skipping

(8, 2) 0 7 Skipping (3, 9) 4 3 Skipping

(9, 3) 7 5 Marking (2, 8) 3 2 Marking

(8, 4) 5 4 Skipping (2, 7) 2 2 Marking

(7, 4) 4 4 Skipping (2, 6) 2 1 Marking

(6, 4) 4 0 Marking (3, 5) 1 7 Skipping

(7, 4) 0 7 Skipping (4, 6) 7 3 Singular

(8, 5) 7 7 Malang (3, 5) 3 1 Marking

(9, 6) 7 6 Marking (4, 4) 1 4 Marking

(9, 7) 6 6 Marking (3, 4) 4 3 Skipping

(9, 8) 6 5 Marking (2, 3) 3 1 Marking

(8, 9) 5 3 Skipping (3, 2) 1 0 Skipping

(7, 8) 3 3 Marking

5.3 Conclusion

The Chang's algorithm is very efficient and precise to process the out-contour.

Nevertheless, there exist four problems when it is applied to complicated image with an

in-contour. We have presented the problems by a counterexample and have proposed

simple improvements to modify the classification result. Hence, it is feasible to accom-

plish the robustness, flexibility, efficiency and correctness of the restoration of an image

by using the modified Chang's algorithm.

Fig. 20 An example illustrating how the four-way junction point is processed in the im-

proved algorithm.

Table 14. The Result of Figure 19 in Y-axis Partition.

Y(Row) X(Col)

1 1, 10

2 1, 10

3 1, 2, 9, 10

4 1, 4, 6, 10

5 1, 3, 8, 10

6 1, 2, 4, 4, 9, 10

7 1, 2, 6, 6, 9, 10

8 1, 2, 6, 7, 9, 10

9 1, 10

10 1, 10

CHAPTER 6

THINNING USING MID CRACK CODES TRACING

6.1 Introduction

This paper is intended to take the advantages of the safe-point thinning algorithm and the

contour tracing method. It will be improve the thinning speed and the skeletal shape. The

"safe-point test" is to determine the deletion of the boundary pixels and the contour trac-

ing is achieved by the mid-crack code. The contour tracing is first in a single scan and

the locations of all the contour pixels of the object are stored in buffers. Then in the fol-

lowing step, the pixels in the buffers are processed for the next iteration is generated by

look-up tables and set back to the buffers. This technique, compared with the conven-

tional implementation methods for which the repeated scans of the whole image must be

used to find the contour pixels, requires much less computation.

The proposed algorithm can perform skeletonization efficiently when processing

multiple objects in parallel. The solution we propose is first to retrieve the necessary

information during codes extraction, such as boundary-link, coordinates of starting pixel

and the first code of the codelink connected with the tail of a boundary-link, into a

corresponding object oriented data structure. Then, all the contours of multiple objects

are applied simultaneously by the proposed skeletonization algorithm as well as tables

look-up.

In Section 6.2.1, the definition of the safe-points and nonsafe points are described

clearly. In Section 6.2.2, we will present how to set up the "safe-point table" and the

"mid-crack code generation table". In Section 6.2.3, the "move table" and

"coordinates conversion table" are set up since the algorithm involves contour tracing

and coordinates conversion between chain code and mid-crack code. In Section 6.2.4, the

proposed algorithm is presented in detail. In Section 6.3, experimental results with the

performance are given. Lastly in Section 6.4, we make a conclusion of our algorithm.

6.2 Methodology

6.2.1 Definition of Safe-Point

A pixel in a binary image can be either a black point with the value "1" or a white point

with the value "0." Mostly the black point indicates foreground and the white point indi-

cates background. Let pi (i = 0, 1, m-1) denote the object's pixels, where m is the

total number of pixels in the object. The eight neighbors of p, shown in Fig. 21 are

denoted as ni (j = 0, 1,..., 7). The points n0 , n 2, n4, and n6 are considered as four

neighbors of pt . If all eight (or four) neighbors are considered while processing pi , then

the object is said to be eight-connected (or four-connected). In this paper, eight-

connectedness for the object is used.

The definitions of the border point, end point, break point, and excessive erosion

point are given as follows :

• A border point is an object point which has at least one of four neighbors exists in

the background.

• An end point is a border point which has only one eight-neighboring border point.

• A break point is a border point and its deletion will cause the loss of connectivity.

Eight examples of the break point p, are illustrated in Fig. 22.

• An excessive erosion point is a border point and its deletion will cause the loss of

the original objects shape. A few examples of the excessive erosion point pi are

illustrated in Fig. 23.

Fig. 21. The eight neighbors of the point p,.

Fig. 22. A few examples showing that the p, is a break point.

The thinned, single-pixel wide skeleton must preserve the connectedness and the

shape of the original object. In order to ensure the connectedness and shape preservation,

the safe-point must be kept. The safe-point is defined as one of the end point, the break

Fig. 23. A few examples showing that the pi is an excessive erosion point.

point, or the excessive erosion point. All possible permutations of safe and nonsafe points

in a local 3x3 window can be tabulated into a look-up table which will be presented in

Section 4.

An observation is made that if the excessive erosion pixels remain in the skeleton,

the unnecessary short skeletal branches would arise. Two types of resulting skeletons will

be illustrated in our experiments. With a simple deletion of excessive erosion pixel, the

generated skeleton will reflect the rough object's shape structure but the detail informa-

tion is disregarded. The skeleton will not require further cleaning or pruning and is useful

for generic shape recognition.

Fig. 24. A few examples illustrating how a new mid-crack code is generated when a

border pixel is deleted

6.2.2 Safe-Point Table and Mid-Crack Code Generation Table

All the variant moves of mid-crack codes can be sufficiently described in a local 3x3

window. A 3x3 template incorporated with different weights at different neighbors to

indicate the presence of eight neighboring pixels is shown in Fig. 5a. An object pixel and

its eight neighbors are then correlated with the 3x3 template. Note that the object pixel is

represented as "1" and the background pixel as "0." This correlation is performed to

obtain the index value for table look-up which will be described next. An example of the

index calculation is shown in Fig. 5b.

Let a codelink be a link of connected codes at the central pixel of a 3x3 window.

The information such as total number of codelinks, all the headcodes, all the theads, and

all the codelinks can be easily obtained by drawing the mid-crack codes surrounding a

Fig. 25. An illustrative example of the conversion table.

central pixel [11]. In this paper, counterclockwise direction is adopted in contour tracing.

Therefore, a look-up table is accordingly established in Table 1 and is used to retrieve

above information based on the computed index value.

Let "Algorithm a " denote the one preserves the excessive erosion points and

"Algorithm " denote the one deletes them. According to the safe-point definition, a

safe-point table using the same computed index value can be established as shown in

Table 15 to determine whether a border point is deleted or not. If a border point is

deleted, a new mid-crack code will be generated to keep track of the next border point. A

few examples illustrating how a new mid-crack code is produced when a border pixel is

deleted are shown in Fig. 24. Note that in Figs. 24a and 24c, the central pixel being an

excessive erosion point is preserved in algorithm a to produce "Nil" and is deleted in

algorithm β to produce new codes. All the permutations can be tabulated in Table 16.

With Tables 15 and 16, It is feasible and efficient to delete nonsafe points and to con-

tinuously trace the boundary at the same time.

Table 15. The Safe-Point Table

Index
Safe Point

Index
Safe Point

Algonthm α Algorithm ββ Algorithm α Algorithm β

0 1 1 43 0 0

1 1 1 ... ••• •••

2 1 1 95 Nil Nil

3 1 0 96 1 0

4 1 1 97 1 1

5 1 1 ••• ••• •••

6 1 0 142 1 1

7 1 0 143 1 1

8 1 1 144 1 0

9 1 0 ••• ••• •••

••• ••• ••• 191 0 0

20 1 0 192 1 0

21 1 1 193 1 1

22 0 0 ••• ••• •••

••• ••• ••• 252 0 0

40 1 0 253 0 0

41 1 0 254 Nil Nil

42 0 0 255 Nil Nil

Notations : 1 : Safe-point 0 : Nonsafe point Nil : Not exist

Table 16. The Generated Code Table

Index
Code Generated

Index
Code Generated

Algorithm α Algorithm β Algorithm α Algorithm β

0 Nil Nil 43 1 1

1 Nil Nil ••• ••• •••

2 Nil Nil 95 Nil Nil

3 Nil 0 96 Nil 4

4 Nil Nil 97 Nil Nil

5 Nil Nil ••• ••• •••

6 Nil 0 142 Nil Nil

7 Nil 0 143 Nil Nil

8 Nil Nil 144 Nil 6

9 Nil 2 ••• ••• •••

••• ••• ••• 191 6 6

20 Nil 6 192 Nil 4

21 Nil Nil 193 Nil Nil
22

7 7
••• ••• •••

••• • ••• ••• 252 3 3

40 Nil 2 253 2 2

41 Nil 2 254 Nil Nil

42 1 1 255 Nil Nil

Nil : No code being generated

6.2.3 Move Table and Coordinates Conversion Table

The chain codes move along the center of border pixels, while the mid-crack codes move

along cracks between two adjacent border pixels. Hence, the coordinate system of chain

codes is counted at the middle location between discrete grids and that of mid-crack

codes is counted at the location of discrete grids, as shown in Fig. 8. A move table listing

the relative coordinates in columns and rows for all the moves from pixel to pixel in the

chain code coordinate system is shown in Table 17. For instance, the code 0 indicates

one pixel move in x-axis (or in column) and no move in y-axis (or in row). Instead of

using mid-crack coded contour for thinning, the boundary pixels are traced whose coordi-

nates are the same as using the chain code coordinate system adjusted by the chain/mid-

crack codes coordinate conversion. Since the currently tracing location for thinning in

mid-crack code coordinate system is needed for next tracing selection, the chain code

coordinates must be converted into new values in the mid-crack code coordinate system.

All the conversions from chain code to mid-crack code coordinate systems varied with

respect to mid-crack codes from 0 to 7 are illustrated in Fig. 25. In the figure, all the

chain code coordinates (1,1) of the central pixel are added with the x- and y-adjustments

to be the mid-crack code coordinates of current tracing locations. Once the mid-crack

code coordinates are obtained, the current location is compared to the destination loca-

tion to determine whether the boundary tracing in this iteration is completed. These

conversions can be tabulated in a look-up table as shown in Table 18.

Table 17. The Move Table in the Chain-Code Coordinate System

Move Relative Coordinates
Coloumn Row

0 +1 0

1 +1 -1

2 0 -1

3 -1 -1

4 -1 0

5 -1 +1

6 0 +1

7 +1 +l

6.2.4 The Algorithm

A binary image is first applied by the mid-crack code extraction algorithm [11] to obtain

boundary links, starting pixel's coordinates and "headcodes" into an object-oriented

data structure, described in the Appendix. A boundary link is a link of connected

codelinks (defined in Section 4) for all the border pixels. The "headcode" is the first code of a

boundary link connected with the tail of a codelink. All boundary pixels of an object

including exterior and interior are processed by thinning algorithm iteratively layer-by-

layer until no more nonsafe point in a boundary is found. The algorithm will be ended

when all the objects in the image are completed.

As aforementioned, two algorithms a and 13 can be used. Algorithm a preserves the

excessive erosion points, however, algorithm 13 explores a cleaner skeleton by deleting

them. The difference of the two algorithms is that algorithm a treats the ending pixel

from the mid-crack code extraction as the last processed pixel in a layer (in the other

Table 18. The Conversion Table from Chain Code to Mid-Crack Code Coordinate

Systems

Code X Adjustment Y Adjustment

0 +0.5 +1.0

1 +0.5 +1.0

2 +1.0 +0.5

3 +1.0 +0.5

4 +0.5 0

5 +0.5 0

6 0 +0.5

7 0 +0.5

word, the starting pixel is the first processed pixel), but algorithm f treats it as the first

processed pixel. Therefore, the ending pixel can be preserved in algorithm a no matter it

is safe or not in the beginning. On the other hand, the ending pixel can be removed in

algorithm (3 if it is a nonsafe point in the beginning. The safe-point table given in Table

15 containing the situation of the two algorithms is used, The pseudo codes of the thin-

ning algorithm a is provided in the Appendix. The essential thinning algorithm a when

applying an image with a single boundary is described as follows:

1. The value of the current border pixel, destination pixel and headcode are initialized.

2. The current border pixel is correlated with a weighted 3x3 template to calculate the

index value for table look-up.

3. The first code of the codelink is extracted from Table 1 using the index and the

corresponding headcode.

4. The current pixel is examined to determine whether it is a safe or nonsafe point

from Table 15 using the index.

5. If it is nonsafe, replace its headcode by the generated mid-crack codes from Table

16 using the index from Step 1. The finish flag (Finish) is assigned to "False" and

the current pixel value is assigned to zero (a background pixel). Otherwise, replace

the headcode by the first code from Step 3.

6. Adjust the chain code and mid-crack code coordinates of the current pixel by the

first code from Step 3 and Tables 17 and 18.

7. If the mid-crack code coordinates of the current pixel are different from those of the

destination pixel, go to Step 2. Otherwise go to Step 8.

8. The current pixel is correlated with a weighted 3x3 template to obtain the index

value.

9. The first code of the codelink is extracted from Table 1 using the index and the

corresponding headcode.

10. The current pixel is examined to determine whether it is a safe or nonsafe point

from Table 15 using the index. If the current pixel is nonsafe, go to Step 11. Other-

wise go to Step 12.

11. The current pixel value is assigned to zero and set the finish flag to be "False".

12. The chain code coordinates of the current pixel are updated using Table17 and the

first code from Step 9. They are then adjusted by Table 18 to be the mid-crack code

coordinates of the destination point in the next layer. The code number of Table 18

is obtained from the generated mid-crack codes in Step 10.

13. The headcode is replaced by the generated mid-crack code from Table 16 using the

same index in Step 8. The updated current pixel is correlated with the 3x 3 tem-

plate, and the first code of the codelink is extracted from Table 1 using the

computed index value in Step 8.

14. The headcode in next layer is replaced by the first code, and the chain code coordi-

nates of the starting pixel in the next layer are updated by the current pixel coordi-

nates, Table 17 and the headcode. Go to Step 16.

15. The chain code coordinates of the current pixel are adjusted by Table 18 and the

headcode to be the mid-crack code coordinates of the destination point in the next

layer. The chain code coordinates of the starting pixel in the next layer are adjusted

by the current pixel coordinates, Table 17 and the headcode. The headcode in the

next layer is replaced by the first code. Go to Step 16.

16. If the finish flag is "False," go to Step 2 to process the next layer boundary; other-

wise, the algorithm is ended.

Fig. 26(a). An input image with the symmetric shape.

Fig. 26(b). The result of applying Algorithm a to Fig. 26(a).

6.3 Experimental Results

Two results are shown in Figs. 26 and 27. The eight-connectedness for foreground and

four-connectedness for background are used. In Fig. 26(a), an image with the symmetric

shape is shown. The results of applying algorithms a and 3 are shown in Figs. 26(b) and

26(c), respectively. In Fig. 27(a), an image with a hole and notches is shown. The results

of applying algorithms α and β are shown in Figs. 27(b) and 27(c), respectively. The

algorithms have been experimented with successfully on various images with several

holes in an object or arbitrary shaped objects. The algorithms are written in C language

and implemented on a SUN SPARC workstation under Unix environment. It takes less

than 100 ms of cpu time to produce the above resulting figures. A 64 x 64 image also is

tested and takes less than 700 ms of cpu time.

Fig. 26(c). The result of applying Algorithm β to Fig. 26(a).

6.4 Conclusion

The paper presents an efficient thinning algorithm for binary images based on the safe-

point testing and mid-crack code tracing. The developed algorithm only needs to process

the border pixels at each iteration. The established look-up tables are used to speed up the

processing. The algorithm can produce two slightly different results simply by different

look-up tables. One of the results which removes the excessive erosion points is a shrink

version of the original shape. The other is similar to the medial axis transformation[16].

Fig. 27(a). An input image with a hole and notches.

Fig. 27(b). The result of applying Algorithm a to Fig. 27(a).

Fig. 27(c). The result of applying Algorithm β to Fig. 27(a).

CHAPTER 7

FUTURE WORK AND CONCLUSION

7.1 Future Work

Until now, our developed algorithms are based on sequential methods. Our next stage

will turn to develop parallel algorithms to speed up the processing time. The other

approach is to implement the shape recognition by string matching based on mid-crack

code contour. However, there exist many applications which using chain codes descrip-

tion that can be replaced by this new mid-crack code approach to take the advantages as

we discussed above.

7.2 Conclusion

In this article, we have accomplished a few experiments from which, the results shown

that the mid-crack code can be extracted by a fast on-line algorithm accompanied with

look-up tables. Besides, a set of algorithms for restoration of binary and grayscale images

can be processed efficiently. Other approach in thinning based on mid-crack codes trac-

ing also has a good result. It is expected that the research result will lead to fundamental

advances in the precision measurement and recognition by use of the new code. In future

works, we will concentrate on algorithms used in parallel computers. So, the research

findings produced will also have substantial utility for advancing computer vision tech-

nologies.

APPENDIX

Pseudo codes of the thinning algorithm a :

typedef struct cooldinate_type{

int x;

int y;

}coordinate; /* Chain code coordinates */

typedef struct fcoordinate_type{

float fx;

float fy;

}fcoordinate; /* Mid-crack code coordinates */

typedef struct Boundary_type{

coordinate Start;

fcoordinate Fend;

char Headcode;

int finish_flag = False;

}Boundary_record; /* Object boundary record */

typedef struct Object_type{

Boundary_record Bound[MaxNumberl];

int finish_flag = False;

int Boundary_number;

} Object_record; /* Object record */

Object_record Object[MaxNumber2];

/* function ObjectThinning */

void ObjectThinning(Dataptr, ROW, COL)

int *Dataptr; /* Point to the input binary image */

int ROW, COL; /* Total row and column of the image */

I

int i, j;

for(i=0 ; i < Object_Number ; i++) { /* For each objects */

for(j=0 ; j < Object[i].Boundary_number ; j++){ /* For each boundaries */

Initialize(&Object[i].BoundW.Headcode, &Object[i].Bound[j].Start,

&Object[i].Bound[j].Fend);

}

}

for(i=0 ; i < Object_Number ; i++) {

while(Object[i]_fmish_flag == False){

Object[i] _finish_flag = True;

for(j=0 ; j < Object[i].Boundary_number ; j++){

while(Object[i].Bound[j].Boundary_finish_flag = False) {

BoundaryThinning(Dataptr, ROW, COL, &Object[i].Bound[j].Headcode,

&Object[i].Bound[j].Start, &Object[i].Bound[j].Fend

&Object[i].BoundW.fmish_flag);

)

if (Object[i].BoundUlfinish_flag = False)

Object[i]_finish_flag = False;

}

)

)

}

/* Algorithm a *1

int BoundaryThinning(dataptr, row, col, headcode, start, fend, Finish);

int *dataptr, row, col;

char *headcode;

coordinate *start;

fcoordinate *fend;

int *Finish;

{

int end point = False, table_number;

coordinate current;

fcoordinate fcurrent;

char firstcode;

current = *start;

*Finish = True;

while(end point == False){

table_number = MASKING(dataptr, current, col);

firstcode = FIND_FIRST_CODE(headcode, table_number);

if(SAFE_POINT_TABLE[table_number] != SAFE){

*headcode = ADJUST HEAD

(CODE_GENERATED_TABLE[table_number]);

SET_ZERO(dataptr, current);

*Finish = False;

}

else

*headcode = ADJUST_HEAD(firstcode);

current += MOVE(firstcode);

fcurrent = current + CONVERSION(firstcode);

if (fcurrent = *fend)

end point = True;

}

table_number = MASKING(dataptr, current, col);

firstcode = FIND_HRST_CODE(headcode, table_number);

if(SAFE_POINT_TABLE [t able_number] != SAFE) {

SET_ZERO(dataptr, current);

*Finish = False;

current += MOVE(firstcode);

*fend = current +

CONVERSION(CODE_GENERATED_TABLE[table_number]);

*headcode = ADJUST_HEAD(CODE_GENERATED_TABLE[table_number]);

table_number = MASKING(dataptr, current, col);

firstcode = HND_FIRST_CODE(headcode, table_number);

*headcode = ADJUST_HEAD(firstcode);

*start = current + MOVE(headcode);

}

else{

*fend = current + CONVERSION(headcode);

*start = current + MOVE(firstcode);

*headcode = ADJUST_HEAD(firstcode);

}

}

BIBLIOGRAPHY

1. Freeman, H. "Computer processing of line drawing images." Comput. Surveys, 6,
(1974): 1, 57-97.

2. Freeman, H., and J. M. Glass. "On the quantization of line-drawing data." IEEE
Trans. Syst. Man Cybern., 5, (1969): 70-79.

3. Rosenfeld, A., and A. C. Kak. Digital Picture Processing, Vol. 2, Academic Press,
1982.

4. Dunkelberger, K. A., and 0. R. Mitchell. "Contour tracing for precision measure-
ment." Proc. IEEE Inter. Conf. Robotics and Automation, St. Louis, (1985): 22-27.

5. Shih, F. Y., and 0. R. Mitchell. "Industrial parts recognition and inspection by
image morphology." Proc. IEEE Inter. Conf. Robotics and Automation, Philadel-
phia, PA., 3, (1988): 1764-1766.

6. Moayer, B. and K. S. Fu. "A tree system approach for fingerprint pattern recogni-
tion." IEEE Trans. Comput., 25, (1976): 3, 262-275.

7. Ogawa, H. and K. Taniguchi. "Thinning and stroke segmentation for handwritten
Chinese character recognition." Pattern Recognition, 15, (1982): 299-308.

8. Dill, A. R., Levine, M. D., and P. B. Noble. "Multiple resolution skeletons." IEEE
Trans. Pattern Anal. Mach. Intell., 9, (1987): 4, 495-504.

9. Kim, S.-D., Lee, J.-H., and J.-K. Kim "A new chain-coding algorithm for binary
images using run-length codes." Comput. Vision, Graphics, and Image Processing,
41, (1988): 114-128.

10. Cederberg, R. L. T. "Chain-link coding and segmentation for raster scan devices."
Comput. Graphics and Image Process., 10, (1979): 224-234.

11. Chakravarty, I. "A single-pass, chain generating algorithm for region boundaries."
Comput. Graphics and Image Process., 15, (1981): 182-193.

12. Koplowitz, J. "On the performance of chain codes for quantization of line draw-
ings." IEEE Trans. Pattern Anal. Mach. Intell., 3, (1981): 180-185.

13. Saghri, J. A., and H. Freeman. "Analysis of the precision of generalized chain

codes for the representation of planar curves." IEEE Trans. Pattern Anal. Mach.
Intell., 3, 1981, 5, 533-539.

14. Cai, Z. "Restoration of binary images using contour direction chain codes descrip-
tion." Computer Vision, Graphics, Image Processing, 41, (1988): 101-106.

15. Pavlidis, T. "Filling algorithms for raster graphics." Comput. Graphics Image Pro-
cess., 10, (1979): 126-141.

16. Ackland, B. D., and N. Weste. "The edge flag algorithm — a fill method for raster
scan display." IEEE Trans. Comput., 30, (1981): 41-47.

17. Shani, U. "Filling regions in binary raster images." SIGGRAPH, (1980): 321-327.

18. Chang, L.-W., and K.-L. Leu. "A fast algorithm for the restoration of images based
on chain codes description and its applications." Comput. Vision, Graphics, and
Image Processing, 50, (1990): 296-307.

19. Ali, S. M., and R. E. Burge. "A new algorithm for extracting the interior of
bounded regions based on chain coding.' Computer Vision, Graphics, Image Pro-
cessing, 43, (1988): 256-264.

20. Merrill, R. D. "Representation of Contours and Regions for efficient Computer
Search." Commun. of ACM 16, (1973): 2, 69-82.

21. Rosenfeld, A. and J. L. Pfaltz. "Sequential operations in digital picture process-
ing." J. ACM, 13, (1966): 4, 471-494.

22. Stefanelli, R. and A. Rosenfeld. "Some parallel thinning algorithms for digital pic-
tures." J. ACM, 18, (1971): 2, 255-264.

23. Naccache, N. J., and R. Shinghal. "SPTA : A proposed algorithm for thinning
binary patterns." IEEE Trans. Syst. Man Cybern., 14, (1984): 3, 409-418.

24. Kwok, P. C. K. "A thinning algorithm by contour generation." Comm. ACM, 31,
(1988): 11, 1314-1324.

25. Vossepoel, A. M., Buys, J. P., and G. Koelewijn. "Skeletons from chain-coded con-
tours" Proc. IEEE Inter. Conf. Pattern Recognition, Altantic City, NJ., (1980): 70-
73.

26. Xu, W., and C. Wang. "CGT : A fast thinning algorithm implemented on a sequen-
tial computer." IEEE Trans. Syst. Man Cybern., 17, (1987): 5, 847-851.

27. Shih, F. Y., and W.-T. Wong. "A new single-pass algorithm for extracting the
mid-crack codes of multiple regions." Journal of Visual Communication and Image
Representation, 3, (1992): 1.

28. Shih, F. Y., and W.-T. Wong. "Restoration of binary and gray-scale images using
contour mid-crack codes description." Journal of Visual Communication and Image
Representation, to be published(1992).

29. Shih, F. Y., and W.-T. Wong. "Restoration of binary and gray-scale images using
contour mid-crack codes description." Proc. IEEE Inter. Conf Pattern Recogni-
tion, Netherlands, to be published(1992).

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgement
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: Literature Review
	Chapter 3: Mid-Crack Codes Extraction
	Chapter 4: Restoration Using Mid-Crack Code Description
	Chapter 5: Restoration Using Chain Codes Description
	Chapter 6: Thinning Using Mid Crack Codes Tracing
	Chapter 7: Future Work and Conclusion
	Appendix
	Bibliography

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

