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ABSTRACT 

New Algorithms for Mid-Crack Codes in Image Processing 

by 
Wai-Tak Wong 

The chain code is a widely-used description for a contour image. Recently, a mid-

crack code algorithm has been proposed as another more precise method for image 

representation. New algorithms using this new mid-crack code for image representation, 

restoration, and skeletonization are developed. The efficiency and accuracy can be 

increased obviously. 

Firstly, the conversion of a binary image with multiple regions into the mid-crack 

codes is presented. A fast on-line implementation can be achieved using tables look-up. 

The input binary image may contain several object regions and their mid-crack codes can 

be extracted at the same time in a single-pass row-by-row scan. The perimeter and area 

of each region can be obtained during the execution of the algorithm. The inclusion rela-

tionship among region boundaries also can be easily determined. 

Secondly, a simple and fast algorithm for the restoration of binary images based on 

mid-crack codes description is proposed. The algorithm developed has the advantages of 

speed, simplicity, and less storage. The algorithm also can be applied to gray-scale 

images with multiple regions efficiently. 

Thirdly, it was observed that there exist four problems when running on some 

images with an in-contour in the restoration algorithm by Chang and Leu. We present the 

problems by a counterexample and propose simple improvements to modify the results 

so that the modified algorithm will allow the robustness, flexibility and correctness of the 

region filling and the complete reconstruction of an image. The idea of the improvement 

is similar to that of the restoration from mid-crack code description. 



Finally, a new thinning algorithm for binary images based on the safe-point testing 

and mid-crack code tracing is established. Thinning is treated as the deletion of nonsafe 

border pixels from contour to the center layer-by-layer. The deletion is determined by 

masking a 3x3 weighted template and table look-up. The resulting skeleton does not 

require cleaning or pruning. The skeleton obtained possesses single-pixel thickness and 

preserves connectivity. The algorithm is very simple and efficient since only boundary 

pixels in each iteration are processed and look-up tables are used. 
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CHAPTER 1 

INTRODUCTION 

The contour representation of a binary image is determined by specifying a starting point 

and a sequence of moves around the borders of each region. Current methods of contour 

tracing are based on the chain code or crack code concept [1,2,3]. The chain code moves 

along a sequence of the center of border points, while the crack code moves along a 

sequence of "cracks" between two adjacent border points. Typically, they are based on 

the 4- or 8-connectivity of the segments, where the direction of each segment is encoded 

by using a numbering scheme, such as 3-bit numbers { i |  i = 0, 1, ..., 7} denoting an 

angle of 45i° counter-clockwise from the positive x-axis for a chain code, or 2-bit 

numbers (i | i = 0, 1, 2, 3} denoting an angle of 90i° for a crack code. The elementary 

idea of the chain or crack coding algorithm is to trace the border-pixels or cracks and 

sequentially generate codes by considering the neighborhood adjacency relationship. 

The chain and the crack codes can be viewed as a connected sequence of straight 

line segments with specified lengths and directions. An obvious disadvantage of the 

chain code is observed when we use it to compute the area and perimeter of an object. 

Referring to Fig. 1, the inside chain code appears to underestimate the area and perimeter 

while the outside chain code overestimates them. The disadvantages in the crack code are 

that much more codes are generated and the perimeter is much overestimated. The mid-

crack code [4], located in between, should make a more accurate computation of the 

geometric features. 

When the contours of multiple objects in an image are extracted, one of the most 

common problems is to fill the region inside each contour. A region consists of a group 



Fig. 1. Silhouette with the inside and outside chain coded contours (dashed lines) and the 

mid-crack coded contour (solid line). 

of adjacent, connected pixels. The task of filling primitives can be divided into two 

parts: the decision of which pixels to fill and the easier decision of with what value to fill 

them. If the image is binary, we assign the same value to each pixel lying on a scan line 

running from the left edge to the right edge; i.e., fill each span from x min  to xmax. Spans 

exploit a primitive's spatial coherence: the fact that primitives often do not change from 

pixel to pixel within a span or from scan-line to scan-line. We exploit coherence in gen-

eral by looking for only those pixels at which changes occur. 

Skeletonization or thinning is a very important preprocessing step in pattern 

analysis such as industrial parts inspection [5], fingerprint recognition [6], optical charac-

ter recognition [7], and biomedical diagnosis [8]. One advantage of skeletonization is the 



reduction of memory space required for storing the essential structural information 

presented in a pattern. Moreover, it simplifies the data structure required in pattern 

analysis. Most of the skeletonization algorithms require iterative passes through the 

whole image, or at least through each pixel of the object considered. At each pass, a rela-

tively complicated analysis over each pixel's neighborhood must be performed, that 

makes the algorithms time-consuming. 

In Chapter 2, a few relative literatures are reviewed. In Chapter 3, a new single-pass 

algorithm for extracting the mid-crack codes of multiple regions is presented. In Chapter 

4, a counterexample of a fast algorithm for restoration of images based on chain codes 

description is described. In Chapter 5, a new algorithm for the restoration of binary and 

gray-scale images by using contour mid-crack codes description is introduced. In 

Chapter 6, a new safe-point thinning algorithm based on the mid-crack code tracing is 

illustrated. In Chapter 7, future approach is proposed and we make a conclusion. 



CHAPTER 2 

LITERATURE REVIEW 

2.1 Contour Representation 

A method of using the run-length coding to generate the chain code was presented in [9]. 

But, the CODS and AB S-S tables must be produced in the first run-length step before 

the chain code generation and linking phases start. They also suggested a useful concept 

to deal with the inclusion relationship between boundaries. Besides, a RC-code (raster-

scan chain code) introducing the max-point and min-point concept, especially, a linking 

concept of relation links was proposed in [10]. Another single-pass algorithm [11] for 

generating the chain code adopts the use of a step-by-step concept, such as chain link 

generation, a link segment data structure, and a junction of links. 

The mid-crack code [4] is a variation and an improvement of the traditional tracing 

methods between the chain code and the crack code. In contrast to Freeman chain code, 

which moves along the center of pixels, the mid-crack code moves along the edge mid-

point of a pixel producing codes of links. For the horizontal and vertical moves, the 

length of a move is 1, and for diagonal moves, it is -a/2. If the crack is located in 

between two adjacent object pixels in the vertical direction, it is said to be on a vertical 

crack. Similarly, if the crack is located in between two adjacent object pixels in the hor-

izontal direction, it is said to be on a horizontal crack. 

Fig. 2 shows the Freeman chain code and the mid-crack code on the vertical and the 

horizontal cracks. There are two restrictions on the moves in the mid-crack code. If the 

move is from the vertical crack, the codes 0 and 4 are not allowed. Similarly, the codes 2 



and 6 are not allowed in the moves from the horizontal crack. The experimental verifica-

tion of the mid-crack code in the area and perimeter computations is shown in [4,12,13] 

where the mean perimeter error value is -0.074% and the mean area error is -0.006%. 

Therefore the mid-crack code is a desirable alternative method in contour tracing with its 

benefit in accuracy. 

Fig. 2. The Freeman chain codes and the mid-crack codes on the vertical or horizontal 

cracks. 

It is possible to invert a closed mid-crack code sequence into its corresponding 

silhouette. An internal boundary of the 8-connectedness object (or foreground) being 

traced counter-clockwise can be reconstructed by treating it as the 4-connectedness back-

ground being traced clockwise. A disadvantage of the mid-crack code is that it is always 

longer than the Freeman chain code. An algorithm of conversion between a mid-crack 

code sequence and a chain code sequence is described in [4] to complement the defects 

as a compression process. 



2.2 Region Filling 

There are several algorithms performing the region-filling based on chain codes [14] by 

the technique of parity checking [15,16] or a method of seed growing [15,17]. The tech-

nique of parity checking is often-used because only a single scan is required instead of 

the iterations required in the seed-growing method. However, it is possible to produce an 

incorrect count of the number of intersections if points from two or more sides are 

mapped on the identical pixel. Besides, a problem will arise if the test line is tangent to 

the contour. A fast algorithm for the restoration of an image was presented by Chang and 

Leu [18]. The algorithm uses the technique of parity checking based on contour direction 

chain codes description [15,16,19]. The goal of the algorithm is to convert the chain 

codes description (boundary representation) [1] into the y-axis partition (region represen-

tation) [20] because it is much easier to derive geometric properties for a shape from the 

y-axis representation. Merrill changes the original boundary into an augmented boun-

dary, such that the extrema and inflections are repeatedly listed and require for condi-

tions checking. 

2.3 Thinning Algorithm 

A practical problem with the definition of skeleton is that circular neighborhoods cannot 

be represented exactly on a discrete grid. The reasonable compromise is reached that the 

generated skeleton must be essential to preserve the object's topology and to represent 

informatively the pattern's shape. Many skeletonization algorithms are available in the 

literature. Different algorithms produce slightly different skeletons. Rosenfeld et. al. 

[21,22] classified skeletonization algorithms as being parallel or sequential. The parallel 

algorithms, suited for parallel computers are usually simpler than the sequential ones. 

However, a sequential algorithm will be faster than a parallel algorithm if they are 



implemented on a serial computer. 

A parallel skeletonization algorithm called "safe-point thinning algorithm" (SPTA) 

[23] where the safe-point testing is conducted by examining a set of Boolean expressions 

on eight neighbors of each edge-point to determine whether it is a safe or nonsafe point. 

The nonsafe points are then removed by a two-scan algorithm. A decision tree is con-

structed to minimize the number of neighbors to be examined. Since the algorithm is per-

formed by scanning all object pixels at each iteration until no more nonsafe point exists, 

it is inefficient compared with our algorithm. 

Some thinning algorithms are based on the contour generation method [24,25,26]. 

The essential idea is first to convert the input image into chain codes for each closed con-

tour, and then to trace around the contour. If a boundary point is removed, the algorithm 

will generate new chain codes to replace the old one. The new chain codes are generated 

from two directional vectors, inward and outward, of each boundary point. All cases of 

two directional vectors are tabulated as a look-up table. The contour tracing will process 

each contour layer-by-layer iteratively until no further deletion is occurred. The algo-

rithm performs better since it can reduce the running time to only the processing of boun-

dary points. 



CHAPTER 3 

MID-CRACK CODES EXTRACTION 

3.1 Introduction 

In this chapter, a fast algorithm for extracting the mid-crack code in a single-pass raster-

scan fashion and an extension to parallel implementation are presented. The developed 

algorithm needs only one phase to generate all the code sequences though a binary image 

is composed of several objects. Two types of boundaries, external and internal, are also 

considered, such that the inclusion relationship among region boundaries can be easily 

determined using the same algorithm. 

The method in [4] is based on the mid-crack following scheme, which has the disad-

vantage that it requires access to the points of the image in an arbitrary order, since a 

border may be of any shape and size. Our method of constructing mid-crack codes of all 

the borders in a single row-by-row scan of the image, allows completely parallel imple-

mentation. Besides, the move-length in [4] is only one mid-crack at a time. Our algo-

rithm, which can extract more than one mid-crack code determined from the codes link-

ing step, is more efficient. In addition, our algorithm can deal with an image containing 

multiple objects with holes in still a single raster scan. 

In Section 3.2.1, the look-up table and the move table for efficient accessibility are 

described. In Section 3.2.2, the mid-crack codes linking procedure is presented. In Sec-

tion 3.2.3, the boundary type and inclusion relationship are discussed. In Section 3.2.4, 

the algorithm is given. In Section 3.2.5, the perimeter computation and area adjustment 

are included. In Section 3.3, experimental results are provided. In Section 3.4, a conclu-

sion is made. 



3.2 Methodology 

3.2.1 Look-up Table and Move Table 

A set of 3x3 window masks containing every variety of mid-crack codelinks initialized 

from the mid-cracks around a central pixel, is illustrated in Fig. 3. We could summarize 

this into five following types of encoding based on the number of codelinks: no-code, 

one-code, two-code, three-code and four-code links. Each codelink is associated with a 

headcode which is illustrated in Fig. 4. Then, we set up a look-up table shown in Table 

1. The mid-crack codes are based on 8-connectedness and counter-clockwise tracing for 

the external boundary and clockwise tracing for the internal boundary. The index value is 

discussed next. The index value 0 reflecting a single pixel which is treated as a noise. 

The related information such as the total number of codelinks, all headcodes, and all 

codelinks can be obtained from drawing the mid-crack codes surrounding the central 

pixel, as illustrated in Fig. 3. 

A 3x3 window, which is incorporated with different weights at each element 

exploring the presence of eight neighboring locations, is shown in Fig. 5a. If an object 

pixel occurs, the weighted window is convolved with the 3x3 neighborhood centered at 

that pixel. Assume that the binary image has the object pixel "1" and the background 

pixel "0." This convolution is performed to calculate the index value of the look-up 

table. An example of the window operation is illustrated in Fig. 5b. The related informa-

tion with respect to the mid-crack codes surrounding a pixel in Table 1 can be retrieved 

by the use of the index value. Then, a series of operations are applied to concatenate 

these individual codelinks to their suitable boundary links. 

From a codelink, we can determine the relative move in column and row with 

respect to the current location. A move table listing the relative coordinates for all the 

moves, is shown in Table 2. For example, the code 0 indicates one-pixel move in x-axis 



Fig. 3. Examples of five types of code-links initialized from the mid-cracks around the 

central pixel. 

(or column), and no move in y-axis (or row). The destination of moves acts as an impor-

tant role as we search for a right link in the linking head or tail step which will be dis-

cussed next. 



Table 1. The Look-Up Table 

Index Number of 
Codelinks Headcode Codelink 

0 0 Nil Nil 

1 1 7 3317 

2 1 6 217 

3 1 7 217 

4 1 5 1175 

5 2 5,0 117, 3 

• ... ... ... ... 

130 2 63 77, 2 

131 2 7,3 77, 2 

132 2 5,3 775, 1 

133 3 7,5,3 77, 3,1 

134 2 6,3 77, 1 

... ... ... •... 

251 0 Nil Nil 

252 1 5 4 

253 1 5 3 

254 0 Nil Nil 

255 0 Nil Nil 



Fig. 4. Headcode (dashed line) determination. 

Fig. 5. Index value calculation in the window operation. 

3.2.2 Mid-Crack Codes Linking in the Raster Scan Algorithm 

When the first object pixel is fetched, we quickly obtain its codelinks simply by a look-

up table. After that, we create a new linked list in the connectedness structure array 

shown in Fig. 6. A list in the connectedness structure includes: head and tail coordinates, 

codelinks, thead, perimeter computation, and area adjustment. A list-typed data structure 

to store the temporary boundary links is employed in the representation. If the boundary 

link is connected with the codelink, we will not only increase the code sequence, but also 



change the coordinates of head and tail positions. Then in the process of scanning the 

next pixel, its codelinks are joined into the existing links by checking the conditions in 

the link-tail and link-head steps of the algorithm. 

Table 2. The Move Table 

Move Relative Coordinates 
Column(dx) Row(dy) 

0 +1 0 

1 +1 -1 

2 0 -1 

3 -1 -1 

4 -1 0 

5 -1 +1 

6 0 +1 

7 +1 +1 

If the current codes have connectivity with the neighboring codes, there are two 

kinds of concatenation ways: head concatenation and tail concatenation. In the head con-

catenation case, we connect the codelink with the specific boundary link in Step 6 of the 

algorithm presented in Section 5. In the tail concatenation case, we connect the specific 

boundary link in Step 7 of the algorithm with the codelink. In the link-head step, we 

check the coordinates of head and the first code of the searched boundary link in the con-

nectedness structure array. In the link-tail step, we check the coordinates of tail and 

"thead" of the link. It is a condition that the thead can determine with which link to join 

suitably. If none of the links satisfies the condition, we create a new link in the connect-

edness structure array to store this code information. After the object pixels are scanned 



Fig. 6. The linked list in a connectedness structure array. 

completely, each linked-list sequence in a block of the array represents the codes of an 

internal or external contour of an object. After the whole image is scanned, the boundary 

links of different objects exist in different blocks of the array. The external and internal 

boundary links can be differentiated by an additional step discussed in the next section. 

3.2.3 Boundary Type and Inclusion Relationship 

After all the mid-crack codelinks are extracted, we can easily determine the tracking 

direction. If a link is traced counter-clockwise, it is an external boundary; otherwise an 

internal boundary. A quick method to determine the tracking direction is proposed. A 

link tracking must be stopped at a pixel which is located in the lower-right corner. We 

can observe that only two cases with the first two codes "45" and "35," shown in Fig. 

7, could happen in an internal boundary when the tracing is completed. The other cases 



belong to the external boundary. 

Fig. 7. The cases in the internal boundary. 

A further analysis is needed if we want to know the inclusion relationship between 

boundaries. A five-object image with external and internal boundaries is shown in Fig. 8. 

We can find the "nearest link" in the connectedness structure array by comparing the 

difference between the (x,y )-coordinates of the ending pixel of the closed boundary link 

and the head and tail coordinates of the tested boundary link. The tested link with the 

least difference is the nearest link. For example, the link labeled Bound 2 is closed, its 

nearest link Bound 3 is found. Hence, the link number, Bound 2, is recorded into the 

field of Bound 3 in the connectedness structure array. Each time when the Bound 3 is 

joined into other links, the marked Bound 2 is transferred accordingly. After knowing 

the relationship of the different links, we can determine which object owns an internal 

link or even an external link. In Fig. 8, the ending pixel 2 is contained in an external 

boundary, Bound 2, and is bounded by an internal boundary, Bound 3. If Bound 3 is not 

an internal boundary, Bound 2 will not be bounded by it. For example, the ending pixel 5 

is a component of Bound 5, but it is not bounded by Bound 6 since the boundary types of 

Bound 5 and 6 are the same as the external boundaries. 



Ending Pixel Cord(Col,Row) Bounded by Head(Col,Row) Tail(Col,Row) 

1 (9,3) None ... ... 

2 (3,4) Bound 3 (5,4) (1,4) 

3 (4,6) Bound 4 (4,6) (5,5) 

4 (5,6) None ... ... 

5 (9,9) Bound 6 (11,9) (7,9) 

6 (11,11) None ... ... 

Fig. 8. A five-object image with external and internal boundaries. 



3.2.4 The Algorithm 

A system flow-chart is described in Fig. 9. Given a binary image of n columns and m 

rows, three two-dimensional arrays, named A[0][i], A[1][i] and A[2][i], are created to 

represent three rows, where 0 5_ i .. n +1. Since the 3x3 window operation is applied 

everywhere in an image including the image boundary, each array is extended to have 

two more elements at 0 and n+1. Let three array-pointers, named P 0, P 1  and P 2, point to 

the corresponding array: Po --> A[0][0], P 1  --> A[1][0] and P2 --> A[2][0]. Initially, let 

A[0][i] be all zeros and A[1][0] = A[2][0] = A[1][n+1] = A[2][n+1] = 0. The first two 

rows of the image are stored into A[1][k] and A[2][k], where 1 5_ k 5 n. The following 

steps are performed: 

1. Search for the object pixels in the middle row pointed by P 1. If the last pixel in this 

row is reached, go to the pointer adjustment in Step 10. 

2. Accumulate the total number of object pixels. Get the pixel's coordinates, such that 

Col = i and Row = the current row in processing. 

3. A 3x3 window shown in Fig. 5a is convolved with a 3x3 neighborhood centered at 

this pixel to compute the index value used in Table 1. 

4. From Table 1, we extract the number of codelinks, denoted by "c_num," and 

respond according to the following cases. In the zero-code case, go back to Step 1. 

In the one-code case, go to Step 5 once, and then back to Step 1. In the two-code 

case, go to Step 5 twice; similarly, three times in the three-code case and four times 

in the four-code case. After all codelinks are done, go back to Step 1. 

5. In the linking step, first calculate the destination where the codelink goes to. Calcu-

late HCol and HRow using eqs. (1) and (2), where dx and dy are retrieved in the 

move table shown in Table 2 corresponding to the first code of the codelink from 

Step 4. 



Fig. 9. The system flow-chart. 



HCol = Col + dx, (1) 

HRow = Row + dy, (2) 

where 

dx = move [table [index ].codelink [q ] [0]].column, (3) 

dy = move [table [index ].codelink [q ][0]] .r ow , (4) 

headcode = table [index ].headcode [q ] , (5) 

tailcode = table [index ].codelink [q ][0], (6) 

where q is the order number of codelinks and 0 .5_ q c_num — 1. The 

codelink[q][0] is the first code of the qth codelink. In Fig. 8, the pixel (3,4) can be 

described as: index = 2, c_num = 1, and q = 0. From Table 1 when q = 0, 

table[2].codelink[0][0] = 2. Therefore, dx = move[2].column = 0 and dy = 

move[2].row = -1. 

Go to the check-head step 6 and the check-tail step 7, and get the return values of 

the connected link number for the link-head and link-tail, respectively. The link-

head and link-tail are the link number in the connectedness structure array. If the 

head and tail both are not connected, go to the create-link step 8. If only one of the 

head and tail is connected, go to the concatenation step 9 accompanied with an indi-

cating symbol "HEAD" or "TAIL" correspondingly. If both head and tail are con-

nected, there are two cases. 1) If link-head is not equal to link-tail, go to the con-

catenation step 9 twice with the symbol "TAIL." 2) If link-head is equal to link-

tail, go to the concatenation step once with the symbol "HEAD." After Steps 8 and 

9 are done, go back to Step 4. 



6. In the check-head step, we check two conditions. First condition: Col and Row are 

equal to the head coordinates of the searched boundary link in the connectedness 

structure array. Second condition: the headcode is equal to the first code of the 

boundary link. If both conditions are satisfied, we call the head of this codelink 

connected; otherwise disconnected. Return the connected link number to Step 5. 

7. In the check-tail step, we also check two conditions. First condition: HCol and 

HRow are equal to the tail coordinates of the searched boundary link in the connect-

edness structure array. Second condition: the tailcode is equal to the thead of the 

boundary link. If both conditions are satisfied, we called the tail of this codelink 

connected; otherwise disconnected. Return the connected link number to Step 5. 

8. In the create-link step, we search for the empty link, which is joined into another 

link and will not be used any more in the connectedness structure array. If there is 

no empty link available, a new link is created. Then we store the information 

including head and tail coordinates, codelink, and thead into such a link. Return to 

Step 5. 

9. In the concatenation step, we have an indicating symbol, HEAD or TAIL, to deter-

mine the control flow. If the symbol is HEAD, we replace x- and y-coordinates of 

the headcode by HCol and HRow computed by eqs. (1) and (2). Then, we concaten-

ate the codelink with the code sequence of the specified link in Step 6. If the symbol 

is TAIL, we replace x- and y-coordinates of the tailcode and thead by the Col, Row 

and headcode computed in Step 2 and eq. (5), respectively. Then we concatenate the 

code sequence of the specified link in Step 7 to the codelink. A little difference is 

seen in the case of both the head and tail being connected. If the link-head is equal 

to the link-tail, then it means that the boundary link is closed by this codelink. In 

this case, no matter how to concatenate them using the case "HEAD" or "TAIL," 

the resulting codes are the same. In our experiment, we concatenate them using the 



case of HEAD. Otherwise, we perform the following two steps. First step: we con-

catenate the codelink to the code sequence of the link-tail. Second step: we con-

catenate the code sequence of link-head to the code sequence of link-tail, replace 

tail coordinates and thead in the link-tail by tail coordinates and thead in the link-

head, and set the head coordinates to a negative value indicating an empty link 

which can be reused in Step 8. Return to Step 5. 

10. Up to now, We have completed one row of the input image. The array pointers are 

then adjusted as: P 0  --> AU mod 3][0], P 1  --> A[(j+1) mod 3] [0], and P2 -4 

A[(j+2) mod 3][0], where j is initialized as 0 and increased by 1 in each iteration. 

For example in the second iteration, Po  —4 A[1][0], P1  -+ A[2][0], and P2 

—A[0][0]. The next row of the input image is then stored into the array A[(j+2) 

mod 3] [k] . If j < m, the image is not yet scanned completely and must go back to 

Step 1; otherwise, the scanning is over. 

3.2.5 Perimeter Computation and Area Adjustment 

The look-up table can be added two more items to deal with the perimeter computation 

and area adjustment which are obtained simultaneously during the execution of mid-

crack codes. We know the moving length of the codes 1, 3, 5 and 7 is V2 /2 and of 0, 2, 4 

and 6 is 1. For the simplicity of computation, the perimeter of an object region is 

estimated by accumulating all the moving lengths of the codes. For example for an 

object pixel with the index value 5 in the look-up table, it has two codelinks "117" and 

"3." The perimeter of the first codelink is 3 X "‘If/ 2 and of the second codelink is -‘12-  /2. 



Therefore, we can add this information to the look-up table and extend the connectedness 

structure array with a perimeter item. If the connectedness of the codelink occurs, we can 

accumulate the perimeter value in the concatenation step. 

The area of an object region is simply the number of points in the region. In Step 2 

of the algorithm, the total number of object pixels is computed. However, as we men-

tioned previously, the enclosed area of mid-crack codes possesses more accurate value. 

Therefore the area based on counting the number of pixels needs some adjustment. A 

few examples of the area adjustment are illustrated in Fig. 10. The vertical moves, i.e., 

the codes 0, 2, 4 and 6, do not need the adjustment since they move along the cracks in 

between two pixels. For diagonal moves, i.e., the codes 1, 3, 5 and 7, the area enclosed is 

different from the digitized image area by ±1/8 of a unit-pixel square. All the cases 

enumerated with their adjustments are given in Table 3. If an image contains only exter-

nal boundaries, the area adjustment can be achieved in parallel at the same time of the 

algorithm execution. If any internal boundary is involved, the area adjustment requires 

the knowledge of boundary types which can be determined by using the procedure 

presented in Section 4, after the codes of a boundary are entirely obtained. 

3.3 Experimental Results 

Two results are shown. They are considered using 8-connectedness for the object 

regions. The program was implemented in C on a Sun Sparc workstation. The CPU exe-

cution times for both results are less than 100 ms. In Fig. 11, we are concerned with an 

image containing an object with a hole. The result is shown as follows: 

The total number of pixels = 29. 

(1) Starting pixel = (4,6). 



Fig. 10. A few examples of the area adjustment. 

Table 3. All the cases enumerated with their area adjustments. 

Area Correction of Moves in Counter-clockwise Tracing 

Move 0 1 2 3 4 5 6 7 

Cross Object -1/8 -1/8 -1/8 -1/8 

Cross 
Background +1/8 +1/8 +1/8 +1/8 

Along Cracks 0 0 0 0 

Codes: 3571 

Perimeter = 5.66, Area = 0.5, Boundary type: Internal 

(2) Starting pixel = (8,8). 

Codes: 



3317711766712176711121076545555577711117555577775333355311333555775 

33555531111333317777111333333 

Perimeter = 70.26, Area = 29, Boundary type: External 

Fig. 11. An image contains an object with a hole. 

In Fig. 8, we are concerned with an image with multiple objects. The result is shown as 

follows: 

The total number of pixels = 43. 

(1) Starting pixel = (9,2). 

Codes: 2107665432 

Perimeter = 8.83, Area = 5.5, Boundary type: External 

(2) Starting pixel = (3,3). 



Codes: 217653 

Perimeter = 4.83, Area = 1.5, Boundary type: External 

(3) Starting pixel = (3,6). 

Codes: 45666700122234 

Perimeter = 12.83, Area = 11.5, Boundary type: Internal 

(4) Starting pixel = (5,5). 

Codes: 2100007666665444432222 

Perimeter = 20.83, Area = 18, Boundary type: External 

(5) Starting pixel = (9,8). 

Codes: 217653 

Perimeter = 4.83, Area = 1.5, Boundary type: External 

(6) Starting pixel = (11,10). 

Codes: 21766667001222217666665444432222 

Perimeter = 25.66, Area = 14.5, Boundary type: External 

3.4 Conclusions 

The paper describes an efficient algorithm for encoding a complex image into mid-crack 

codes, which is a more precise method based on the subpixel measurement capabilities. 

The algorithm only requires a single row-by-row scan of the image and uses a 3x3 win-

dow for the codelinks generation. Simultaneously, all the connected links of line seg-

ments are encoded and joined together into a data structure. Also, the algorithm has an 

advantage in detecting the inclusion relationship between boundaries. Besides, the perim-

eter computation and area adjustment can be performed in parallel. 

The algorithm is nearly memoryless, since it scans only three rows at a time and 



does not store the entire image. If there are multiple objects in an image, such links exist 

in the array after the encoding and linking processes. Therefore, the algorithm can extract 

all mid-crack codes in a single scan. Our method is based on tables which are suited for 

all various cases in an image. If the 4-connectedness for the foreground is dealt with 

instead of 8-connectedness, the only change is to slightly adjust the look-up table. The 

applications of the mid-crack code description are still an ongoing research. 



CHAPTER 4 

RESTORATION USING MID-CRACK CODE 

DESCRIPTION 

4.1 Introduction 

In computer vision, image processing, and object recognition and inspection, the preci-

sion requirement of geometric properties is very important. By applying our region-

filling algorithm based on the mid-crack code representation, we convert the codes into 

y-partition data structure from which the run-length codes and the formulas of geometric 

features can be easily derived [3,16]. Our algorithm is significantly different from the 

method proposed by Merrill [18] which exists three restrictions, such as a) the boundary 

must be closed, b) it cannot handle the cases where the test line intersects the boundary 

tangentially, and c) the closed boundary cannot loop back on itself. However, our 

midcrack-code based algorithm does not have these restrictions. This chapter is organ-

ized as follows. In Section 4.2.1, the mid-crack code description rules are introduced. In 

Section 4.2.2, the region-filling algorithm developed is described. In Section 4.2.3, the 

algorithm applied to gray-scale images with multiple regions is presented. In Section 

4.3, experimental results are illustrated. In Section 4.4, some conclusions are made. 

4.2 Methodology 

4.2.1 Mid-Crack Code Description Rules 

In the contour description, the border points are represented in the form of a string of 

eight moving-directional codes. The mid-crack code description can be seen as move-

ment along the mid-points of border cracks which produce codes of links. The codes 

from 0 to 7 are assigned to indicate the eight moving directions of 0° to 315° in intervals 



of 45°, as shown in Fig. 2. For the horizontal or vertical move, the length of a move is 1, 

and for the diagonal move, it is VI/2. If the crack is located in between two adjacent pix-

els in the vertical direction, it is said to be on a vertical crack. Similarly, if the crack is 

located in between two adjacent pixels in the horizontal direction, it is said to be on a 

horizontal crack. There are two restrictions on the moves in the mid-crack code as illus-

trated in Fig. 2. If the move is from a vertical crack, the codes 0 and 4 are not allowed. 

Similarly, the codes 2 and 6 are not allowed in the moves from a horizontal crack. 

We use the tracking rule of 8-connectedness counterclockwise. Let us assume that 

the description form of all m contours in a binary image is expressed as follows: 

sx. 00y ood ood 01 donn e 

sx coy cod iodic din, e 

dio_i)dii  

sxmoymod,041 dr„,.e# 

where "#" is the end symbol of the description; "s" and "e" are the starting and ending 

symbols for each contour, respectively; "x" and "y" are the coordinates of the starting 

point; "d" is the directional code. The subscript of "4" indicates that d is the code in 

the ith contour and the jth move. Each contour could be either an in-contour or an out-

contour. In mid-crack code description, since the starting and ending pixels in each con-

tour must be adjacent to each other, the opened curve occurred in the chain-code descrip-

tion should not exist here. Besides, there are four cracks surrounding a pixel. Therefore 

the problems in the chain code description of no-code for an isolated point and redun-

dantly tracing a same pixel twice for a multi-way junction pixel will not again happen 



here. 

A simple example of the mid-crack code description for a single-object image is 

illustrated in Fig. 1. The resulting mid-crack codes are: 

s (6,5)1177117707654567753355433310134321 e# 

Referring to Fig. 1, the starting pixel (e.g. (6,5)) is defined as the pixel which is pointed 

by the link of the first mid-crack code located at the ending pixel (e.g. (5,6)) in a raster 

scan. As mentioned above, the counterclockwise tracing indicated by the arrow direc-

tions is adopted. Since the mid-crack codes are generated based on pixel-by-pixel accord-

ing to a look-up table and then are concatenated using the code-linking from the head to 

the tail of arrows, it is in nature that the generated sequences of the mid-crack code 

description are in a clockwise direction. 

3.2.1Region-filling algorithm of binary image 

In the mid-crack code extraction algorithm [15], an object pixel may be visited at its four 

cracks for none, once, twice, three times, or four times, as illustrated in Fig. 12. If an 

object pixel is not visited on its vertical crack (e.g. the case in Fig. 12a), it must be com-

pletely surrounded in the horizontal direction by other object pixels. Hence, in our 

region-filling algorithm the location of this pixel will not be stored. If an object pixel is 

visited once on its vertical crack (e.g. the case in Fig. 12b), it will be either a starting 

border or an ending border in the horizontal direction. Hence, the location of this pixel 

will be stored once. If an object pixel is visited twice on its vertical crack (e.g., the cases 

in Figs. 12c, 12d, and 12e), it must be one of the cases, such as a singular point, an iso-

lated point, or a multi-way junction point. No matter what case, the object pixel is always 

a starting border as well as an ending border in the horizontal direction. Hence, the 



Fig. 12.The cases of an object pixel being visited none, once, twice, three times, or four 

times. 



location of this pixel will be stored twice. By using this method, it is easy to extract the 

starting border and the ending border in each horizontal direction in order to reconstruct 

all the object pixels in an external boundary or an internal boundary. 

There are two kinds of tracking directions: forward and backward, in the mid-crack 

code description. Referring to Fig. 1, since the counterclockwise rule is used, the forward 

and backward tracking is defined as the same direction or the reverse direction of the 

contour tracking, respectively. In other words, the forward tracking approach visits the 

mid-crack codes beginning with the last code (tail of link) of the code sequence, and the 

backward tracking approach starts with the first code (head of link) of the code sequence. 

In our region-filling algorithm, the forward tracking is chosen in order to maintain con-

sistency with the contour tracing direction. 

In the mid-crack code description rules, the starting pixel is the pixel which is 

pointed by the link of the first mid-crack code located at the ending pixel in the row-by-

row scan. We can easily observe that for an ending pixel in an external boundary must 

be the form of 

x x x 
x 1 0 
0 0 0 

where x denotes "don't care". Hence there are totally 24  = 16 cases. If all x's are zeroes, 

the pixel is an isolated point; its mid-crack codes will be obtained immediately as 

"1357." For an ending pixel in an internal boundary, its 3 x 3 neighborhood must be the 



form of 

1 0 1 
x 1 x 
x x x 

or 

0 0 1 
1 1 x 
x x x 

Hence, there are totally 25  + 24  = 48 cases. However, in Fig. 13 it is shown that the first 

code in the mid-crack code description must be (a) 1, 2, 3, or 4 in an external boundary, 

or (b) 3 or 4 in an internal boundary. The adjustment for a starting pixel from the mid-

crack coordinate system to the chain-code coordinate system will depend on the first 

code, as described next. 

Because the mid-crack code visits the mid-point of a crack, a unit-length in the 

mid-crack code coordinate system is designed as equating a half-pixel in the normally-

used chain code coordinates, as shown in Fig. 14. The coordinate system used in extract-

ing the mid-crack codes is the chain code coordinate [15]. Hence, the (x,y) values of the 

input mid-crack codes must be converted into new values in the mid-crack code coordi-

nate system by an adjustment table shown in Table 4. From a move sequence of the 

mid-crack code, we can establish a move table to evaluate the location of the next code. 

Accordingly, the move table in [15] also needs to be modified to fit in the mid-crack 

code coordinate system, as shown in Table 5. When the location of a move is on the 

vertical mid-crack (i.e., y is not an integer), it must be the starting or ending mid-crack 

surrounding a horizontal region. Hence, its x- and y-coordinates are recorded by convert-

ing back to the chain code coordinate system for the purpose of region filling. The 

reversed conversion is performed by truncating y into an integer and adjusting x accord-

ing to Table 6. The procedure is repeated until the last code is reached. The algorithm is 



Fig. 13.The cases illustrate that the first number of the mid-crack code description must 

be (a) 1, 2, 3 or 4 in an external boundary, or (b) 3 or 4 in an internal boundary. 

quite efficient such that only three simple look-up tables are used. After all the codes of 

a contour are processed, we can check the coordinates of the last point location. If it is 

equal to the starting method, our algorithm is described as follows: 



Fig. 14. The coordinate systems of (a) the chain code. (b) the mid-crack code. 

Table 4. The Starting-Point Adjustment Table 

First code X Adjustment Y Adjustment 

1 +0.5 +1 

2 +1 +0.5 

3 +1 +0.5 

4 +0.5 0 

1. Read the starting pixel (xi0, yi0)• 

2. Read the first direction code d10. Adjust the starting point (xi0, yi0) in the chain code 

coordinates to be (X0, Y0) in the mid-crack code coordinates according to di0 and 

Table 4. 



Table 5. The Move Table 

Code X Adjustment Y Adjustment 

0 +1 0 

1 +0.5 -0.5 

2 0 -1 

3 -0.5 -0.5 

4 -1 0 

5 -0.5 +0.5 

6 0 1 

7 +0.5 +0.5 

3. Read the next direction code Di  (beginning from the last code of the code sequence). 

Evaluate the (X, Y) coordinates of the next location according to X0, Y0, D„ and 

Table 5. 

4. If the value of Y is not an integer, record (X, Y) by truncating Y into an integer and 

adjusting X according to Table 6. 

5. Let X=X0 , Y=Y0. 

6. Do Step 3 and obtain the next location until the first code is reached. 

7. Check whether the location of the last visited point is the same as the starting point in 

Step 2. If it is the same, the contour is correct; otherwise, it is incorrect. 



Table 6. The X-Coordinate Conversion Table 

Code X Adjustment 

1 -1 

2 -1 

3 -1 

5 0 

6 0 

7 0 

8. Repeat Steps 1 through 7 with another contour until the ending symbol "#" is 

reached. 

4.3 Experimental Results 

Fig. 15 illustrates an image containing eight contours. Their starting and ending pixel 

coordinates are shown in Table 7. Their mid-crack codes description is obtained as fol-

lows: 



Contour 1: s (9,3)21767755533311e 

Contour 2: s (4,6)4567001234e 

Contour 3: s (12,5)356712e 

Contour 4: s (6,8)457013e 

Contour 5: s (2,10)4566701223e 

Contour 6: s (5,9)110077766655677557754443333323333222107711e 

Contour 7: s (10,9)3565570122e 

Contour 8: s (12,9)21077766654565554322211211e# 

As an example of the contour 6, behind the starting symbol "s" the "(5,9)" is the 

coordinate of the ending pixel, and that "1", "1", "0", etc., are the directional codes. 

We present the result of applying our algorithm to the above contour 6 in Table 8. We 

can convert all the results into the following data structure of list-record: 

Contour 1: 

(1;9,9) 

(2;8,10) 

(3;9,9) 

(4;9,9) 

Contour 2: 

(4;2,6) 

(5;2,6) 

Contour 3: 

(4;12,14) 



Fig. 15. An image of eight contours with their mid-crack code description. 

(5;12,14) 

Contour 4: 

(7;5,8) 

Contour 5: 

(7;1,4) 

(8;1,4) 

(9;1,4) 



Table 7. The Starting and Ending Pixels in Fig. 15 

Contour Starting Pixel(Col,Row) Bounded by Ending Pixel(Col,Row) 

1 (9,3) None (9,4) 

2 (4,6) Bound 6 (5,6) 

3 (12,5) Bound 8 (13,6) 

4 (6,8) Bound 6 (7,8) 

5 (2,10) Bound 6 (3,10) 

6 (5,9) None (4,10) 

7 (10,9) Bound 8 (11,10) 

8 (12,9) None (12,10) 

Contour 6: 

(1;1,4) 

(2;2,5) 

(3;1,6) 

(4;2,6) 

(5;2,7) 

(6;1,8) 

(7;1,8) 

(8;1,8) 

(9;1,5,7,8) 

(10;2,4) 



Contour 7: 

(7;10,13) 

(8;10,12) 

(9;10,12) 

Contour 8: 

(3;13,14) 

(4;12,14) 

(5;12,14) 

(6;10,14) 

(7;10,13) 

(8;10,13) 

(9;10,12) 

(10;11,12) 

where the first number is the y-coordinate, and then the x-coordinate of the starting and 

ending pixels, and so forth. The combined list-record of all eight contours is described in 

Table 9. According to this table, we can fill the pixels into the region. The precise 

number for the area of three objects bounded by a mid-crack code description in Fig. 15 

is 46, 51/2, and 201/2. The area of reconstruction using our algorithm is just to accumulate 

the number of object pixels which is 45, 6, and 20, respectively. 



Table 8. The Result of Applying Algorithm on Contour 6 of Fig. 15 

Code in seq. Coordinate Recorded Coord. Code in seq. Coordinate Recorded Coord. 

Starting location (5.5, 10) ••• 4 (1.5, 1) ••• 

1 (6, 9.5) (5, 9) 5 (1, 1.5) (1, 1) 

1 (6, 9) ••• 7 (1.5, 2) ••• 

7 (7, 9.5) (7, 9) 7 (2, 2.5) (1, 2) 

7 (7.5, 10) ••• 5 (1.5, 3) ••• 

0 (8.5, 10) ••• 5 (1, 3.5) (1, 3) 

1 (9, 9.5) (8, 9) 7 (1.5, 4) ••• 

2 (9, 8.5) (8, 8) 7 (2, 4.5) (2, 4) 

2 (9, 7.5) (8, 7) 6 (2, 5.5) (2, 5) 

2 (9, 6.5) (8, 6) 5 (1.5, 6) ••• 

3 (8.5, 6) ••• 5 (1, 6.5) (1. 6) 

3 (8, 5.5) (7, 5) 6 (1, 7.5) (l, 7) 

3 (7.5, 5) ••• 6 (1, 8.5) (1, 8) 

3 (7, 4.5) (6, 4) 6 (1, 9.5) (1, 9) 

2 (7, 3.5) (6, 3) 7 (1.5, 10) ••• 

3 (6.5, 3) ••• 7 (2, 10.5) (2, 10) 

3 (6, .5) (5, 2) 7 (2.5, 11) ••• 

3 (5.5, 2) ••• 0 (3.5, 11) ••• 

3 (5, l.5) (4, 1) 0 (4.5, 11) ••• 

3 (4.5, 1) ••• 1 (5, 10.5) (4, 10) 

4 (3.5, 1) ••• 1 (5.5, 10) ••• 

4 (2.5, 1) ••• End symbol 



Table 9. The Combined List-Record of All Contours in Fig. 15 

Mow) X(Col) 
1 1, 4, 9, 9 

2 2, 5, 8, 10 

3 1, 6, 9, 9, 13, 14 

4 2, 2, 6, 6, 9, 9, 12, 12, 14, 14 

5 2, 2, 6, 7, 12, 12, 14, 14 

6 1, 8, 10, 14 

7 1, 1, 4, 5, 8, 8, 10, 10, 13, 13 

8 1, 1, 4 ,8, 10, 10, 12, 13 

9 1, 1, 4, 5, 7, 8, 10, 10, 12, 12 

10 2, 4, 11, 12 

4.4 Multi-region Filling Approach 

In the previous sections, we only discuss the restoration of a binary image with multiple 

objects. Now, the same algorithm can be applied to a gray-scale (or color) image with 

multiple regions. If a picture contains more than two types of regions, it may still be pos-

sible to segment it by applying several thresholds. For example, in pictures of white 

blood cells the nucleus is generally darker than the cytoplasm, which is in turn darker 

than the background. A gray-level term is added to a contour mid-crack code description 



to represent the gray value of the region bounded by its contour. For example: 

s (50)(6,5)1177117707654567753355433310134321e 

The number "50" following the "s" denotes the gray level of the region. 

The restoration of the whole image by filling each region with its corresponding 

gray-value (or color) from its contour description is straightforward by applying the same 

proposed algorithm. A critical problem is how to extract those contours in a very effi-

cient way. In an ordinary method multiple regions with different gray-levels are 

extracted from dealing with one region at a time after thresholding. Therefore, the 

extraction routine is repeated again and again. Referring to the algorithm for mid-crack 

codes extraction [15], if the boundary between two regions shown in Fig. 16, is con-

sidered, we can assume that each region has its own boundary by viewing each region as 

an independent object as shown in Fig. 17. Based on the assumption, we observe that two 

contours may coexist in one boundary if two regions are neighboring to each other. The 

mid-crack codes of Fig. 17 are shown in Table 10. 

In Fig. 17 if a region contains no interior subregion, it produces an out-contour in 

the mid-crack code description. If a region contains k regions inside, then it will need 

k + 1 out-contours and k in-contours to represent the complicated region. Referring to the 

masking step in the mid-crack code extraction algorithm [15], we process the 3x3 neigh-

borhood using the following criterion: the neighboring pixels having the same gray value 

as the central pixel are assigned to be 1, otherwise 0, and then an index value is generated 

to be used in the look-up table. In the create-link step, we assign a new gray value to dif-

ferentiate the created link from the links of other regions having the different gray level 

in the linking step. 

The mid-crack coding algorithm [15] can be used to obtain all the contours in an 



Fig. 16. A gray-scale image with multiple regions. 

image. Each contour is encoded with its gray level. According to our region-filling algo-

rithm, the result is shown in Table 11. Our region-filling algorithm is efficient in speed 

since it applies the mid-crack coding which only requires a single-pass raster scan and 

utilizes look-up tables. 



Fig. 17. The mid-crack contours of Fig. 16. 

4.5 Conclusion 

In the mid-crack code contour description, we do not need to take care of any particular 

pixel, such as a singular point, an isolated point, a multi-way junction point, etc. Instead 

of considering the characteristics of the input and output codes of a point, we are con-

cerned with the coordinate of the cracks in the mid-crack code description. Since multi-

way junction points are easy to process in the mid-crack code, no additional operations 

are used to solve this kind of problem, i.e., the chaining process passes through such a 

point more than once. Our method also can convert the mid-crack code description into 



the y-axis partition which is a region representation. Therefore, it is much easier to derive 

the geometric properties for an object. The developed algorithm can be also applied to 

gray-scale images with multiple regions very efficiently. 

Table 10. The Mid-Crack Codes of Fig. 16 

Bound Code Sequence 

1 s(g i )(5,10)110077766655677557754432344322223432107711e 

2 s(g 1 )(2,9)35545667011122e 

3 s(g 2)(7,7)21766667007544565323443100122e 

4 s(g 3 )(4,8)11766555432210e 

5 s(g 1)(12,10)21077766654565554322221111e 

6 s(g i )(11,10)45670123e 

7 s(g3)(12,8)21076543e 

(g 1  : gray level 1 g2  : gray level 2 g 3 : gray level 3) 



Table 11. The Final Result of Fig. 16 by Applying Our Algorithm 

Y(Row) X(Col) 

1 (g 2; 7,7) 

2 (g1; 1,3)  (g2; 7,7) 

3 (g 1; 2,3) (g2;  4,10) 

4 (g1; 1,6) (g2; 7,7) (g 1  ; 13,14) 

5 (g1; 2,6) (g2; 7,7) (g1; 12,14) 

6 (g1; 2,3)  (g3;  4,5) (g1; 6,6) (g2; 7,7) (g1; 12,14) 

7 (g 1; 1,2) (g3;  3,5) (g 1; 6,6) (g2; 7,7) (g 1; 10,14) 

8 (g 1 ; 1,2) (g 3 ; 3,5) (g 1; 6,6) (g 2; 7,7) (g1; 10,10) (g 3 ; 11,12) (g i ; 13,14) 

9 (g 1; 1,2) (g3;  3,3) (g 1; 4,8,10,100g 3; 11,12) (g 1; 13,13) 

10 (g 1; 1,5,7,8,10,12) 

11 (g1; 2,4,11,12) 

(g 1  : gray level 1 g2  : gray level 2 g 3: gray level 3) 



CHAPTER 5 

RESTORATION USING CHAIN CODES DESCRIPTION 

5.1 Introduction 

In [1], the object's connectivity of an image adopted is eight-connectedness, and the con-

tour tracing rule is counterclockwise for an out-contour (external boundary) and clock-

wise for an in-contour (internal boundary). We implemented the Chang's algorithm and 

tested on numerous variant types of images. It was observed that there exist four prob-

lems when running on some images with an in-contour. A counterexample of using the 

algorithm is given in Fig. 18. Its chain codes description is obtained as follows [7]: 

s(1,1)666666666000000000222222222444444444e 

s(3,2)0000075440776653365443221731431e$, 

where "s" is the starting symbol and "e" is the ending symbol for each contour; two 

numbers enclosed by a pair of parentheses are the x- and y-coordinates of the starting 

point; "$" is the ending symbol of the description of an image. 

The step-by-step results of applying the Chang's algorithm [1] to the in-contour of 

Fig. 18 is tabulated in Table 12. For clear visualization, the resulting classification is 

labeled along with the corresponding point in Fig. 18, where I, M, K, and U denote a 

singular point, a marking point, a skipping point, and an unsuitable point, respectively. 

By analyzing the results, the following four problems will arise: 

(1) The listed chain codes description of the aforementioned out-contour and in-contour 

of Fig. 18 is correct according to [7]. However, by Chang's algorithm there exists 

an unsuitable point at (6,4) and by the quoted rule in [1] "the description is con-

sidered as wrong if an unsuitable point is visited," the in-contour chain codes 

description is mistakenly determined as incorrect. 



Figure 18. A counterexample of using Chang's Algorithm. 

(2) The points at (4,4), (4,6) and (6,7) of Fig. 18 that are classified as skipping points 

will disappear in the reconstructed image according to Chang's algorithm. Hence, 

the algorithm does not ensure complete reconstruction. 

(3) The fourth row of Fig. 18 cannot be reconstructed because there exist three marking 

points at (3,4), (7,4) and (8,4) and an unsuitable point at (6,4), that violates the par-

ity checking rule. 

(4) Disregarding the previous problems, the area of the reconstructed image is always 

less than that of the original image because the in-contour's pixels are filled in by 

the background value. 



Table 12. Result of Applying Chang's Algorithm to the In-Contour in Figure 18. 

Pixel 
Coordinates 

A  
cal (j-i) dtj 

Point Pixel 
Coordinates di u -1) du 

Point 

Chang's Algorithm  Chang's Algorithm 

(4, 2) 0 0 Skipping (6, 7) 3 6 Skipping 

(5, 2) 0 0 Skipping (6, 8) 6 5 Marking 

(6, 2) 0 0 Skipping (5, 9) 5 4 Marking 

(7, 2) 0 0 Skipping (4, 9) 4 4 Skipping 

(8, 2) 0 7 Marking (3, 9) 4 3 Marking 

(9, 3) 7 5 Marking (2, 8) 3 2 Marking 

(8, 4) 5 4 Marking (2, 7) / 2 Marking 

(7, 4) 4 4 Skipping (2, 6) 2 1 Marking 

(6, 4) 4 0 Unsuitable (3, 5) 1 7 Singular 

(7, 4) 0 7 Marking (4, 6) 7 3 Skipping 

(8, 5) 7 7 Masking (3, 5) 3 1 Marking 

(9, 6) 7 6 Marking (4. 4) 14 Skipping 

(9, 7) 6 6 Marking (3, 4) 4 3 Marking 

(9, 8) 6 5 Marking (2, 3) 3 1 Marking 

(8, 9) 5 3 Singular (3, 2) 1 0 Marking 

(7, 8) 3 3 Marking 

The usefulness and accuracy of the algorithm in [1] are dubious due to the above 

defects. An improved algorithm is proposed and discussed next. 

5.2 Improvements and Results 

Referring to the y-axis partition algorithm [5], the coordinates of all border pixels of an 

image are sorted and partitioned into sets so that each set contains only points which 

have the same y-coordinate. If an object is divided into row by row (y-axis partition), the 

object pixels are bounded by the starting and ending border pixels in the horizontal direc-

tion. Once the coordinates of the two pixels are known, the precise object pixels of this 



region can be filled in. If the object has internal boundaries (hole borders), the problem 

can be solved by processing the internal and external boundaries together in the y-axis 

partition step after the starting and ending border pixels in horizontal direction are 

extracted. In other words, a couple of starting and ending border pixels will bound a 

region without regard to what kind of border (i.e. external or internal) it is. Hence, the 

originally separated internal and external y-axis partitions can be improved by merging 

them together. 

By carrying out the aforementioned concept, the two look-up tables in [1], one for 

an out-contour and the other for an in-contour, are not necessarily needed. The procedure 

in extracting the starting and ending border pixels for an in-contour is applied to be ident-

ical to that for an out-contour. An example of applying Chang's algorithm only with his 

Table 12 to Fig. 18 is shown in Fig. 19, where I, M, K, represent the same meanings as 

previously. The step-by-step results of the in-contour are tabulated in Table 13. It has to 

be noted that the labels of an out-contour in Fig. 18 remains unchanged in Fig. 19, but 

those of an in-contour are significantly modified. 

By comparing the in-contour labels in Fig. 19 with those in Fig. 19, the unsuitable 

point (labeled as U) in Fig. 18 disappears. Besides, the points at (4,4), (4,6) and (6,7) that 

are no longer skipping points will be preserved in the reconstructed image. The fourth 

row of Fig.19 that has even number of marking points will now comply with parity-

checking rule. 

After all the starting and ending border pixels are extracted, they are sorted into 

another data structure as the Merrill's y-axis partition [5] that is shown in Table 14. As 

expected, the reconstructed image using Table 14 is exactly the same as the original 

image. 

One of the common problems in region filling is to allow complete reconstruction 



Figure 19. An example of using the improved algorithm. 

while dealing with multi-junction points by using the chain codes description [3]. An 

example of a four-way junction point is given in Fig. 20. There are four pairs of links 

jumping into and out of the central pixel. A problem of unconstructivity will arise by 

applying Chang's algorithm if any pair of links is not in the same contour as the remain-

ing three pairs. By applying our improvements, the result shows that this four-way junc-

tion point is classified and counted twice as both a marking point and a skipping point, so 

that the complete reconstruction of this type can be easily achieved. The other types such 

as a three-way junction point and a two-way junction point can be similarly derived. 



Table 13. Result of Applying Our Improvement to the In-Contour in Figure 19. 

Pixel 
Coordinates di (i -1) 611.i 

Point pixel 
Coordinates d d i 

-
i( 
- --- 

1) 
'-' 

Point 

Improved Algorithm Improved Algorithm 

(4, 2) 0 0 Skipping (6, 7) 3 6 Singular 

(5, 2) 0 0 Skipping (6, 8) 6 5 Marking 

(6, 2) 0 0 Skipping (5, 9) 5 4 Skipping 

(7, 2) 0 0 Skipping (4, 9) 4 4 Skipping 

(8, 2) 0 7 Skipping (3, 9) 4 3 Skipping 

(9, 3) 7 5 Marking (2, 8) 3 2 Marking 

(8, 4) 5 4 Skipping (2, 7) 2 2 Marking 

(7, 4) 4 4 Skipping (2, 6) 2 1 Marking 

(6, 4) 4 0 Marking (3, 5) 1 7 Skipping 

(7, 4) 0 7 Skipping (4, 6) 7 3 Singular 

(8, 5) 7 7 Malang (3, 5) 3 1 Marking 

(9, 6) 7 6 Marking (4, 4) 1 4 Marking 

(9, 7) 6 6 Marking (3, 4) 4 3 Skipping 

(9, 8) 6 5 Marking (2, 3) 3 1 Marking 

(8, 9) 5 3 Skipping (3, 2) 1 0 Skipping 

(7, 8) 3 3 Marking 

5.3 Conclusion 

The Chang's algorithm is very efficient and precise to process the out-contour. 

Nevertheless, there exist four problems when it is applied to complicated image with an 

in-contour. We have presented the problems by a counterexample and have proposed 

simple improvements to modify the classification result. Hence, it is feasible to accom-

plish the robustness, flexibility, efficiency and correctness of the restoration of an image 

by using the modified Chang's algorithm. 



Fig. 20 An example illustrating how the four-way junction point is processed in the im-

proved algorithm. 



Table 14. The Result of Figure 19 in Y-axis Partition. 

Y(Row) X(Col) 

1 1, 10 

2 1, 10 

3 1, 2, 9, 10 

4 1, 4, 6, 10 

5 1, 3, 8, 10 

6 1, 2, 4, 4, 9, 10 

7 1, 2, 6, 6, 9, 10 

8 1, 2, 6, 7, 9, 10 

9 1, 10 

10 1, 10 



CHAPTER 6 

THINNING USING MID CRACK CODES TRACING 

6.1 Introduction 

This paper is intended to take the advantages of the safe-point thinning algorithm and the 

contour tracing method. It will be improve the thinning speed and the skeletal shape. The 

"safe-point test" is to determine the deletion of the boundary pixels and the contour trac-

ing is achieved by the mid-crack code. The contour tracing is first in a single scan and 

the locations of all the contour pixels of the object are stored in buffers. Then in the fol-

lowing step, the pixels in the buffers are processed for the next iteration is generated by 

look-up tables and set back to the buffers. This technique, compared with the conven-

tional implementation methods for which the repeated scans of the whole image must be 

used to find the contour pixels, requires much less computation. 

The proposed algorithm can perform skeletonization efficiently when processing 

multiple objects in parallel. The solution we propose is first to retrieve the necessary 

information during codes extraction, such as boundary-link, coordinates of starting pixel 

and the first code of the codelink connected with the tail of a boundary-link, into a 

corresponding object oriented data structure. Then, all the contours of multiple objects 

are applied simultaneously by the proposed skeletonization algorithm as well as tables 

look-up. 

In Section 6.2.1, the definition of the safe-points and nonsafe points are described 

clearly. In Section 6.2.2, we will present how to set up the "safe-point table" and the 

"mid-crack code generation table". In Section 6.2.3, the "move table" and 



"coordinates conversion table" are set up since the algorithm involves contour tracing 

and coordinates conversion between chain code and mid-crack code. In Section 6.2.4, the 

proposed algorithm is presented in detail. In Section 6.3, experimental results with the 

performance are given. Lastly in Section 6.4, we make a conclusion of our algorithm. 

6.2 Methodology 

6.2.1 Definition of Safe-Point 

A pixel in a binary image can be either a black point with the value "1" or a white point 

with the value "0." Mostly the black point indicates foreground and the white point indi- 

cates background. Let pi  (i = 0, 1, m-1) denote the object's pixels, where m is the 

total number of pixels in the object. The eight neighbors of p, shown in Fig. 21 are 

denoted as ni (j = 0, 1,..., 7). The points n0 , n 2, n4, and n6  are considered as four 

neighbors of pt . If all eight (or four) neighbors are considered while processing pi  , then 

the object is said to be eight-connected (or four-connected). In this paper, eight-

connectedness for the object is used. 

The definitions of the border point, end point, break point, and excessive erosion 

point are given as follows : 

• A border point is an object point which has at least one of four neighbors exists in 

the background. 

• An end point is a border point which has only one eight-neighboring border point. 

• A break point is a border point and its deletion will cause the loss of connectivity. 

Eight examples of the break point p, are illustrated in Fig. 22. 

• An excessive erosion point is a border point and its deletion will cause the loss of 

the original objects shape. A few examples of the excessive erosion point pi  are 



illustrated in Fig. 23. 

Fig. 21. The eight neighbors of the point p,. 

Fig. 22. A few examples showing that the p, is a break point. 

The thinned, single-pixel wide skeleton must preserve the connectedness and the 

shape of the original object. In order to ensure the connectedness and shape preservation, 

the safe-point must be kept. The safe-point is defined as one of the end point, the break 



Fig. 23. A few examples showing that the pi  is an excessive erosion point. 

point, or the excessive erosion point. All possible permutations of safe and nonsafe points 

in a local 3x3 window can be tabulated into a look-up table which will be presented in 

Section 4. 

An observation is made that if the excessive erosion pixels remain in the skeleton, 

the unnecessary short skeletal branches would arise. Two types of resulting skeletons will 

be illustrated in our experiments. With a simple deletion of excessive erosion pixel, the 

generated skeleton will reflect the rough object's shape structure but the detail informa-

tion is disregarded. The skeleton will not require further cleaning or pruning and is useful 

for generic shape recognition. 



Fig. 24. A few examples illustrating how a new mid-crack code is generated when a 

border pixel is deleted 

6.2.2 Safe-Point Table and Mid-Crack Code Generation Table 

All the variant moves of mid-crack codes can be sufficiently described in a local 3x3 

window. A 3x3 template incorporated with different weights at different neighbors to 

indicate the presence of eight neighboring pixels is shown in Fig. 5a. An object pixel and 

its eight neighbors are then correlated with the 3x3 template. Note that the object pixel is 

represented as "1" and the background pixel as "0." This correlation is performed to 

obtain the index value for table look-up which will be described next. An example of the 

index calculation is shown in Fig. 5b. 

Let a codelink be a link of connected codes at the central pixel of a 3x3 window. 

The information such as total number of codelinks, all the headcodes, all the theads, and 

all the codelinks can be easily obtained by drawing the mid-crack codes surrounding a 



Fig. 25. An illustrative example of the conversion table. 

central pixel [11]. In this paper, counterclockwise direction is adopted in contour tracing. 

Therefore, a look-up table is accordingly established in Table 1 and is used to retrieve 

above information based on the computed index value. 

Let "Algorithm a " denote the one preserves the excessive erosion points and 

"Algorithm " denote the one deletes them. According to the safe-point definition, a 

safe-point table using the same computed index value can be established as shown in 

Table 15 to determine whether a border point is deleted or not. If a border point is 

deleted, a new mid-crack code will be generated to keep track of the next border point. A 

few examples illustrating how a new mid-crack code is produced when a border pixel is 

deleted are shown in Fig. 24. Note that in Figs. 24a and 24c, the central pixel being an 

excessive erosion point is preserved in algorithm a to produce "Nil" and is deleted in 

algorithm β to produce new codes. All the permutations can be tabulated in Table 16. 

With Tables 15 and 16, It is feasible and efficient to delete nonsafe points and to con-

tinuously trace the boundary at the same time. 



Table 15. The Safe-Point Table 

Index 
Safe Point 

Index 
Safe Point 

Algonthm α  Algorithm ββ  Algorithm α Algorithm β 

0 1 1 43 0 0 

1 1 1 ... ••• ••• 

2 1 1 95 Nil Nil 

3 1 0 96 1 0 

4 1 1 97 1 1 

5 1 1 ••• ••• ••• 

6 1 0 142 1 1 

7 1 0 143 1 1 

8 1 1 144 1 0 

9 1 0 ••• ••• ••• 

••• ••• ••• 191 0 0 

20 1 0 192 1 0 

21 1 1 193 1 1 

22 0 0 ••• ••• ••• 

••• ••• ••• 252 0 0 

40 1 0 253 0 0 

41 1 0 254 Nil Nil 

42 0 0 255 Nil Nil 

Notations : 1 : Safe-point 0 : Nonsafe point Nil : Not exist 



Table 16. The Generated Code Table 

Index 
Code Generated 

Index 
Code Generated 

Algorithm α  Algorithm β  Algorithm α Algorithm β  

0 Nil Nil 43 1 1 

1 Nil Nil ••• ••• ••• 

2 Nil Nil 95 Nil Nil 

3 Nil 0 96 Nil 4 

4 Nil Nil 97 Nil Nil 

5 Nil Nil ••• ••• ••• 

6 Nil 0 142 Nil Nil 

7 Nil 0 143 Nil Nil 

8 Nil Nil 144 Nil 6 

9 Nil 2 ••• ••• ••• 

••• ••• ••• 191 6 6 

20 Nil 6 192 Nil 4 

21 Nil Nil 193 Nil Nil 
22 

7 7 
••• ••• ••• 

••• • ••• ••• 252 3 3 

40 Nil 2 253 2 2 

41 Nil 2 254 Nil Nil 

42 1 1 255 Nil Nil 

Nil : No code being generated 



6.2.3 Move Table and Coordinates Conversion Table 

The chain codes move along the center of border pixels, while the mid-crack codes move 

along cracks between two adjacent border pixels. Hence, the coordinate system of chain 

codes is counted at the middle location between discrete grids and that of mid-crack 

codes is counted at the location of discrete grids, as shown in Fig. 8. A move table listing 

the relative coordinates in columns and rows for all the moves from pixel to pixel in the 

chain code coordinate system is shown in Table 17. For instance, the code 0 indicates 

one pixel move in x-axis (or in column) and no move in y-axis (or in row). Instead of 

using mid-crack coded contour for thinning, the boundary pixels are traced whose coordi-

nates are the same as using the chain code coordinate system adjusted by the chain/mid-

crack codes coordinate conversion. Since the currently tracing location for thinning in 

mid-crack code coordinate system is needed for next tracing selection, the chain code 

coordinates must be converted into new values in the mid-crack code coordinate system. 

All the conversions from chain code to mid-crack code coordinate systems varied with 

respect to mid-crack codes from 0 to 7 are illustrated in Fig. 25. In the figure, all the 

chain code coordinates (1,1) of the central pixel are added with the x- and y-adjustments 

to be the mid-crack code coordinates of current tracing locations. Once the mid-crack 

code coordinates are obtained, the current location is compared to the destination loca-

tion to determine whether the boundary tracing in this iteration is completed. These 

conversions can be tabulated in a look-up table as shown in Table 18. 



Table 17. The Move Table in the Chain-Code Coordinate System 

Move Relative Coordinates 
Coloumn Row 

0 +1 0 

1 +1 -1 

2 0 -1 

3 -1 -1 

4 -1 0 

5 -1 +1 

6 0 +1 

7 +1 +l 

6.2.4 The Algorithm 

A binary image is first applied by the mid-crack code extraction algorithm [11] to obtain 

boundary links, starting pixel's coordinates and "headcodes" into an object-oriented 

data structure, described in the Appendix. A boundary link is a link of connected 

codelinks (defined in Section 4) for all the border pixels. The "headcode" is the first code of a 

boundary link connected with the tail of a codelink. All boundary pixels of an object 

including exterior and interior are processed by thinning algorithm iteratively layer-by-

layer until no more nonsafe point in a boundary is found. The algorithm will be ended 

when all the objects in the image are completed. 

As aforementioned, two algorithms a and 13 can be used. Algorithm a preserves the 

excessive erosion points, however, algorithm 13 explores a cleaner skeleton by deleting 

them. The difference of the two algorithms is that algorithm a treats the ending pixel 

from the mid-crack code extraction as the last processed pixel in a layer (in the other 



Table 18. The Conversion Table from Chain Code to Mid-Crack Code Coordinate 

Systems 

Code X Adjustment Y Adjustment 

0 +0.5 +1.0 

1 +0.5 +1.0 

2 +1.0 +0.5 

3 +1.0 +0.5 

4 +0.5 0 

5 +0.5 0 

6 0 +0.5 

7 0 +0.5 

word, the starting pixel is the first processed pixel), but algorithm f treats it as the first 

processed pixel. Therefore, the ending pixel can be preserved in algorithm a no matter it 

is safe or not in the beginning. On the other hand, the ending pixel can be removed in 

algorithm (3 if it is a nonsafe point in the beginning. The safe-point table given in Table 

15 containing the situation of the two algorithms is used, The pseudo codes of the thin-

ning algorithm a is provided in the Appendix. The essential thinning algorithm a when 

applying an image with a single boundary is described as follows: 

1. The value of the current border pixel, destination pixel and headcode are initialized. 

2. The current border pixel is correlated with a weighted 3x3 template to calculate the 

index value for table look-up. 

3. The first code of the codelink is extracted from Table 1 using the index and the 

corresponding headcode. 



4. The current pixel is examined to determine whether it is a safe or nonsafe point 

from Table 15 using the index. 

5. If it is nonsafe, replace its headcode by the generated mid-crack codes from Table 

16 using the index from Step 1. The finish flag (Finish) is assigned to "False" and 

the current pixel value is assigned to zero (a background pixel). Otherwise, replace 

the headcode by the first code from Step 3. 

6. Adjust the chain code and mid-crack code coordinates of the current pixel by the 

first code from Step 3 and Tables 17 and 18. 

7. If the mid-crack code coordinates of the current pixel are different from those of the 

destination pixel, go to Step 2. Otherwise go to Step 8. 

8. The current pixel is correlated with a weighted 3x3 template to obtain the index 

value. 

9. The first code of the codelink is extracted from Table 1 using the index and the 

corresponding headcode. 

10. The current pixel is examined to determine whether it is a safe or nonsafe point 

from Table 15 using the index. If the current pixel is nonsafe, go to Step 11. Other-

wise go to Step 12. 

11. The current pixel value is assigned to zero and set the finish flag to be "False". 

12. The chain code coordinates of the current pixel are updated using Table17 and the 

first code from Step 9. They are then adjusted by Table 18 to be the mid-crack code 

coordinates of the destination point in the next layer. The code number of Table 18 

is obtained from the generated mid-crack codes in Step 10. 

13. The headcode is replaced by the generated mid-crack code from Table 16 using the 

same index in Step 8. The updated current pixel is correlated with the 3x 3 tem-

plate, and the first code of the codelink is extracted from Table 1 using the 



computed index value in Step 8. 

14. The headcode in next layer is replaced by the first code, and the chain code coordi-

nates of the starting pixel in the next layer are updated by the current pixel coordi-

nates, Table 17 and the headcode. Go to Step 16. 

15. The chain code coordinates of the current pixel are adjusted by Table 18 and the 

headcode to be the mid-crack code coordinates of the destination point in the next 

layer. The chain code coordinates of the starting pixel in the next layer are adjusted 

by the current pixel coordinates, Table 17 and the headcode. The headcode in the 

next layer is replaced by the first code. Go to Step 16. 

16. If the finish flag is "False," go to Step 2 to process the next layer boundary; other-

wise, the algorithm is ended. 

Fig. 26(a). An input image with the symmetric shape. 



Fig. 26(b). The result of applying Algorithm a to Fig. 26(a). 

6.3 Experimental Results 

Two results are shown in Figs. 26 and 27. The eight-connectedness for foreground and 

four-connectedness for background are used. In Fig. 26(a), an image with the symmetric 

shape is shown. The results of applying algorithms a and 3 are shown in Figs. 26(b) and 

26(c), respectively. In Fig. 27(a), an image with a hole and notches is shown. The results 

of applying algorithms α and β are shown in Figs. 27(b) and 27(c), respectively. The 

algorithms have been experimented with successfully on various images with several 

holes in an object or arbitrary shaped objects. The algorithms are written in C language 

and implemented on a SUN SPARC workstation under Unix environment. It takes less 

than 100 ms of cpu time to produce the above resulting figures. A 64 x 64 image also is 

tested and takes less than 700 ms of cpu time. 



Fig. 26(c). The result of applying Algorithm β to Fig. 26(a). 

6.4 Conclusion 

The paper presents an efficient thinning algorithm for binary images based on the safe-

point testing and mid-crack code tracing. The developed algorithm only needs to process 

the border pixels at each iteration. The established look-up tables are used to speed up the 

processing. The algorithm can produce two slightly different results simply by different 

look-up tables. One of the results which removes the excessive erosion points is a shrink 

version of the original shape. The other is similar to the medial axis transformation[16]. 



Fig. 27(a). An input image with a hole and notches. 

Fig. 27(b). The result of applying Algorithm a to Fig. 27(a). 



Fig. 27(c). The result of applying Algorithm β  to Fig. 27(a). 



CHAPTER 7 

FUTURE WORK AND CONCLUSION 

7.1 Future Work 

Until now, our developed algorithms are based on sequential methods. Our next stage 

will turn to develop parallel algorithms to speed up the processing time. The other 

approach is to implement the shape recognition by string matching based on mid-crack 

code contour. However, there exist many applications which using chain codes descrip-

tion that can be replaced by this new mid-crack code approach to take the advantages as 

we discussed above. 

7.2 Conclusion 

In this article, we have accomplished a few experiments from which, the results shown 

that the mid-crack code can be extracted by a fast on-line algorithm accompanied with 

look-up tables. Besides, a set of algorithms for restoration of binary and grayscale images 

can be processed efficiently. Other approach in thinning based on mid-crack codes trac-

ing also has a good result. It is expected that the research result will lead to fundamental 

advances in the precision measurement and recognition by use of the new code. In future 

works, we will concentrate on algorithms used in parallel computers. So, the research 

findings produced will also have substantial utility for advancing computer vision tech-

nologies. 



APPENDIX 

Pseudo codes of the thinning algorithm a : 

typedef struct cooldinate_type{ 

int x; 

int y; 

}coordinate; /* Chain code coordinates */ 

typedef struct fcoordinate_type{ 

float fx; 

float fy; 

}fcoordinate; /* Mid-crack code coordinates */ 

typedef struct Boundary_type{ 

coordinate Start; 

fcoordinate Fend; 

char Headcode; 

int finish_flag = False; 

}Boundary_record; /* Object boundary record */ 

typedef struct Object_type{ 

Boundary_record Bound[MaxNumberl]; 

int finish_flag = False; 

int Boundary_number; 

} Object_record; /* Object record */ 

Object_record Object[MaxNumber2]; 



/* function ObjectThinning */ 

void ObjectThinning(Dataptr, ROW, COL) 

int *Dataptr; /* Point to the input binary image */ 

int ROW, COL; /* Total row and column of the image */ 

I 

int i, j; 

for(i=0 ; i < Object_Number ; i++) { /* For each objects */ 

for(j=0 ; j < Object[i].Boundary_number ; j++){ /* For each boundaries */ 

Initialize(&Object[i].BoundW.Headcode, &Object[i].Bound[j].Start, 

&Object[i].Bound[j].Fend); 

} 

} 

for(i=0 ; i < Object_Number ; i++) { 

while(Object[i]_fmish_flag == False){ 

Object[i] _finish_flag = True; 

for(j=0 ; j < Object[i].Boundary_number ; j++){ 

while(Object[i].Bound[j].Boundary_finish_flag = False) { 

BoundaryThinning(Dataptr, ROW, COL, &Object[i].Bound[j].Headcode, 

&Object[i].Bound[j].Start, &Object[i].Bound[j].Fend 

&Object[i].BoundW.fmish_flag); 

) 

if (Object[i].BoundUlfinish_flag = False) 

Object[i]_finish_flag = False; 



} 

) 

) 

} 

/* Algorithm a *1 

int BoundaryThinning(dataptr, row, col, headcode, start, fend, Finish); 

int *dataptr, row, col; 

char *headcode; 

coordinate *start; 

fcoordinate *fend; 

int *Finish; 

{ 

int end point = False, table_number; 

coordinate current; 

fcoordinate fcurrent; 

char firstcode; 

current = *start; 

*Finish = True; 

while(end point == False){ 

table_number = MASKING(dataptr, current, col); 

firstcode = FIND_FIRST_CODE(headcode, table_number); 

if(SAFE_POINT_TABLE[table_number] != SAFE){ 



*headcode = ADJUST HEAD 

(CODE_GENERATED_TABLE[table_number]); 

SET_ZERO(dataptr, current);  

*Finish = False; 

} 

else 

*headcode = ADJUST_HEAD(firstcode); 

current += MOVE(firstcode); 

fcurrent = current + CONVERSION(firstcode); 

if (fcurrent = *fend) 

end point = True; 

} 

table_number = MASKING(dataptr, current, col); 

firstcode = FIND_HRST_CODE(headcode, table_number); 

if( SAFE_POINT_TABLE [t able_number] != SAFE) { 

SET_ZERO(dataptr, current); 

*Finish = False; 

current += MOVE(firstcode); 

*fend = current + 

CONVERSION(CODE_GENERATED_TABLE[table_number]); 

*headcode = ADJUST_HEAD(CODE_GENERATED_TABLE[table_number]); 

table_number = MASKING(dataptr, current, col); 

firstcode = HND_FIRST_CODE(headcode, table_number); 



*headcode = ADJUST_HEAD(firstcode); 

*start = current + MOVE(headcode); 

} 

else{ 

*fend = current + CONVERSION(headcode); 

*start = current + MOVE(firstcode); 

*headcode = ADJUST_HEAD(firstcode); 

} 

} 
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