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ABSTRACT 

Two approaches to find orthogonal states of neural network are presented in the 

paper. The first approach is a recursive one, it builds N orthogonal vectors based on 

N /2 orthogonal vectors. The second approach is a formula approach, in which orthogo-

nal vectors can be obtained using a formula. Using these approaches, orthogonal states 

of neural network are found. Some properties of the neural network built on these 

orthogonal vectors are presented in Appendix A and some examples are given in 

Appendix B. 
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Chapter 1 

Introduction 

A neural network is a distributed information processing structure consisting of 

neurons interconnected by synaptic connections. The neurons can possess local 

memory and can carry out localized information processing operation. The function of 

neural networks is primarily determined by the connection topology between the neu-

rons, the connection strengths and the type of processing formed at the computing ele-

ments. The complete system can conduct functions such as classification, optimization 

and associative memory. 

Consider a interconnected network of n neurons, the state of the system is u, 

which is a set of binary states of each neuron. In the M—P model, the new state of 

neuron i is 

where L is a threshold level, it is a n-tuple vector which stands for the state of the 

associative memory of the network, ul is the state of neuron i and wij is the weight of 

the synaptic connection between neurons i and j. 

In the Hopfield—Little model [9] of associative memory, the neurons have binary 

states with threshold value assumed to be zero. The weight matrix of the memory can 



be made of the sum of the outer product of each desired vector. That is 

Wij  = Esl(k)s j(k). The network is fully connected and symmetric, on which the Hebb 

rule applys. Once the weights are determined, the neural network can produce the 

desired output. When the input vector is corrupted, partially incorrect or incomplete, it 

still has the ability to converge the desired one. The neural states at these minima 

represent the memories of the system. 

Therefore, it is crucial to determine what kind of prototypes to be selected and 

how to construct the associative memory. 

The Hebb's law and the projection rule serve as the classical solutions to provide 

prototype vectors or fixed points of a neural network with synaptic matrix W. The 

former solution differs from the latter in that the prototype vectors (V's) in the Hebb's 

law must be orthogonal to each other and the synaptic matrix can be constructed as 

the sum of outer products of these orthogonal vectors, i.e., the prototypes. The con-

struction rule for the synaptic matrix is: 

where the superscript T stands for transpose, n is the total number of prototype vec-

tors and '*' indicates the outer product. When they are not orthogonal to each other, 

the Hebb's law cannot guarantee the perfect retrieval of the prototypes. 

It was mentioned in [10] that for orthogonal feature vectors, the capacity is 100% 

in comparison with the tradeoff between the memory capacity and the degree of fault-

tolerance which has been estimated to be about 15% of B bits in Hopfield—Little 

Model [9]. 



In order to achieve good error recovery, it is desirable that these orthogonal pro-

totype vectors are equally spaced apart in terms of the Hamming Distance . Further, 

this Hamming Distance should be as large as possible. For a N -neuron network, the 

largest Hamming Distance between any two orthogonal vectors is N/2, if they are 

equally spaced apart. A neural network constructed from such a set of prototype vec-

tors should demonstrate a better retrieval capability which in turn results in a network 

with higher memory capacity. The Hamming Distance between any two of orthogonal 

vectors constructed by the proposed technique is N /2. 

This paper presents two techniques to search for N orthogonal vectors of a N - 

neuron network. Some properties of the neural network built upon these orthogonal 

vectors are presented in the appendix. Due to the generality of these rules, some pro-

perties exhibited by low order neural networks can be extended to the networks with 

large number of neurons. 



Chapter 2 

Methods to Find 

Orthogonal States of A N-neuron Network 

2.1 Introduction 

There are various approaches to find out orthogonal vectors. One is to use those 

sinusoidal function and the other is to use those non-sinusoidal series. In the latter, 

there are some well-known functions: Walsh function, Harr function and 

Ramemacher function. Both Walsh function and Harr function can form a complete 

orthogonal set while Ramemacher function provided another set of two-level orthogo- 

nal functions which are incomplete but true subset of the Walsh function. In this 

paper, we present a unique recursive approach and a formula approach to find orthogo- 

nal vectors. 

In the recursive approach, the 2N orthogonal vectors for a 2N -neuron network 

can be constructed based on the N orthogonal vectors of a N neural network with N 

neurons. The above N orthogonal vectors can be constructed in a similar fashion based 

on the N/2 orthogonal vectors of a neural network with N/2 neuron, ... and this alter-

native has the disadvantage of the necessity of constructing for all neural networks 

N 
with — neurons, k = 0, 1, 2, ... logN — 1. The formula approach circumvents this 

2k  

drawback by calculating the N components of each of the N orthogonal vectors based 

on a formula. The resulting orthogonal vectors are identical to those constructed using 



the recursive alternative. 

2.2. Recursive Procedure 

Consider a N-neuron network with N = 2k  where k is a positive integer. The fol-

lowing lemma is obvious. 

Lemma 1: The distance between any two orthogonal neuron vectors is N 12. 

Proof : Let V1  and V2  be the two orthogonal vectors. Then E vu v 2, = 0, which 
I = 1, . ,N 

indicates that half of the components in V1  and V?  have different signs. Hence the 

distance between them is N/2. 0 

Let V1  = [1 1 .. 1] T. In order for V2  to be orthogonal to V1, V2  must have 

equal number () of l's and -1's. Choose those V2's as 
2 

Or 

It is easy to see that V 1 V2  = 0. Notice that the two V2's are not orthogonal to each 

other and there are two blocks in V2: one with all l's (denoted by the + block) and 

the other with all -1's (denoted by the - block). 

To find V3, we divide each block of V2  into one + block and one - block. Since 

there are two blocks in V2, there are four possible V3's, 



We call the above vectors with `+/-' components +/- equivalent vectors. To 

evaluate the inner product between two +/- equivalent vectors, we substitute '1' for 

'+' and '-1' for '-'. The following theorem states that one can test whether two vec-

tors are orthogonal to each other using the +/- equivalent vectors. 

Theorem 2.1: If V, and Vj  have identical number of blocks, each block has identical 

number of components, and Vi  V1  = 0, then VieVie = 0, where V,e and VI are the +/-

equivalent vectors of V1  and V,. 

Proof : This theorem follows from that fact that the inner product between any two 

blocks has the same magnitude. CI 

It is easy to see that all these four possible V3's are orthogonal to both V1  and 

V,. Notice that these four V3's are not orthogonal to each other. Pick as many as 

possible so that they are orthogonal to each other. Theorem 2.1 helps because it is 

easier to test the orthogonality between +/- equivalent vectors whose dimensions are 

reduced by a factor of k. Thus, we search the four +/- vectors of V3 for the largest set 

of orthogonal vectors. A further transformation is possible on these +/- vectors by 



replacing each block of "+-" with '1' and "-+" with '-1'. The resulting vectors are: 

11] T, [1-1 T, -11 T, -1-1 T, which is complete in the sense that it includes all 

vectors of dimension 2 whose components are 1 or -1. Thus there are two orthogonal 

vectors out of these four vectors. 

Select V 3 = [+ — + ] T  and V,e1  = [ + — — + T which are orthogonal to each 

other. Correspondingly v3 = [1 1 .. 1 -1 -1 ... -1 1 1 .. 1 -1 -1 -1] T and 

V4  = 1 1 ... 1 —1 —1 ... —1 —1 —1 ... —1 1 1 ... 1 T. 

So far, we have generated four orthogonal vectors: one at each of the first two 

steps and two at the third step. In the next step, divide, as before, each of the four 

blocks of V4 or V3 into two subblocks which can be "+-" or "-+". Since each block 

has two possible divisions, there are 24  combinations. Although these vectors are 

orthogonal to the four vectors previously found, they are not orthogonal to each other. 

Again select as many orthogonal vectors as possible. These 24  vectors form a com-

plete set of vectors of dimension 4. Hence there are 4 orthogonal vectors in this step. 

We can recursively perform this division to acquire new orthogonal vectors until the 

block consists of only one component. By induction, we have the following lemma. 

Lemma: For all i, Vi±i  has equal number of "+"s and "-"s, 

Lemma: There are 2n subblocks after the n—th step and there are 22' 1  possible vec-

tors. 

n-1 
and we have 1 + E 2k = 2'. 

k =0 



For each block, there are two possible divisions: [ + i or [ +— I . Denote 

+ 
i as 1 and [ I" ] as -1. For n blocks, there are thus 2"  possible combinations 

of divisions. 

For instance, 

- , 
1 

Va  = 11 --> V'a  = [ 1 i , 

—1 , 

and 

, 
1 
1 — Vb = _... 1 —> V'b =[ 21] 

1 , 

It is easy to see that Va .Vb =Va .V'b = 0. This is true for the general case as 

stated in the following lemma: 

Lemma: Let Va , Vb  be two generated vectors and V'a  , V'b  the corresponding vec- 

tors by the substitution of [ + I --) [ 11 , and 
s. I

" ] --- [-1) , then V, Vb  = 0, iff 

V'a .V'b  = 0. 

Theorem 2.2: Let V1  be any one orthogonal vector generated earlier, Vj  a vector 

among all the 22" at the k —th step, then V1  Vj  = 0. 

T 
Proof : Let V, = vl1  v12  ... vtk where vl1  is the first block where components are [ 

all "1"s or all "-1"s, vl2  is the second such component, and so on. Let 

T 
Vi =H11 Vj2 ...V id where vji  corresponds to vl1, vj2  to v12, and so on. 



By the nature of the procedure, there are equal number of "1"s and "-1"s in each 

Vie , e =1, ..., k . Thus, for all e e [l, 2, ... ,k], vle v je = 0, which in turn leads to 

VI  V j = 0. ri 

Theorem 2.3: The number of division steps to obtain N orthogonal vectors is 

P = logN. 

Note that after the k —th step, the total number of vectors generated from step 0 

to step k is 2k  and the corresponding total number of orthogonal vectors is k . At the 

+ _ 
(k+l)th step, there are 2k  blocks. With the substitutions of 1 for and -1 for — + ' 

these 2k  blocks forms a complete k -dimension vector space, denoted as S I . Note the 

total vectors generated from step 0 to k also forms a k -dimension space, denoted as 

S2. Thus, the k orthogonal vectors for S 1  can be found in a similar way to those in 

S2. 

2.3 Formula Approach 

Another recursive procedure is to construct the N orthogonal vectors based on the 

N /2 orthogonal vectors for a N /2-neuron network. The first N /2 orthogonal vectors of 

a N-neuron network are constructed in the same manner to that for a N /2-neuron net-

work except that the N components of each of these N 12 orthogonal vectors can be 

1 —1 1 
decomposed into N/2 blocks of 1 —1 . 1 or With the substitutions of 1 for and 

—1 
-1 for , these first N/2 orthogonal vectors become the N 12 orthogonal vectors for —I 



... ._ 
1 —1 

a N/2-neuron network. Applying the division procedure to and —1 , they 

1 —1 1 —I 
become —1 1 —1 i 

and respectively. Consider as 1 and , as -1, the last 

N/2 orthogonal vectors can be constructed in exactly the same manner as that for a 

N/2-neuron network and it is obvious that the resulting vectors are orthogonal to each 

other. 

Therefore, the above algorithm of constructing N orthogonal vectors based on 

N/2 orthogonal vectors is concluded as follows: 

1 —1 
1) For the first N 12 vectors of N-neuron network, substitute 1  for 1 and for —1  

- - 

—1 in the N/2 vectors of N/2-neuron network. 

1 —1 
2) For the second N/2 vectors of N-neuron network, substitute for 1 and —1 1 

for —1 in the N/2 vectors of N/2-neuron network. 

The following theorem presents a formula approach and the resulting vectors are 

proved to be orthogonal each other by using the above algorithm. 

Theorem 2.4: Suppose N = 2k , k is an integer constant, vectors V, and component 

k-1 
v1 j, where i,j E (0,1, ..., N-1). Suppose i = I in,* 2"' , in., E (0,11, that is binary 

in =0 

representation of i in binary digits im . Then the j th component of vector V, is 



In expression 

the notation Lx] stands for the integer part of the number x. 

Proof : 

It can be proved by induction. — It is easy to see that the theorem holds for 

N = 2. 

When k = 1, N = 2 = 21, we have i,j E {0,1}. 

When i = 0, i o  = i i  = 0, from (2.1) 

we have v oo  = 1, v01 = 1. 

When i = 1, 10  = 1 and l i  = 0, from (2.1) 

we have v10  = 1,   v 11 = —1 • 
_ 

1 1 
Therefore, V0  = , and V1  = _, and they are orthogonal each other. 1 1_ 

Assuming the theorem holds for N = 2P, that is, from the formula (2.1) and 

p-1 
E im  ( L j2"1 

N 
j mod 2 ), we can obtain those N orthogonal vectors, which are the 

In =0 

same as those generated from the above algorithm. 

Now we need to prove that the theorem also holds for N' = 2(1'1 ) = 2N and gen-

erates 2N orthogonal vectors which have 2N components each. Let 



P , 2m +1  
i Let's consider I m  ( L J N 

' j mod 2 ), j' E (0,1, ..., 2N-1), the dimension 
m=0 

of the vectors is expanded by 2, also the total number of orthogonal vectors generated 

will doubled. We denote the first half of the 2(P+1) orthogonal vectors S1  and the 

second half S7. The most significant bit of the binary representation of S1  is 0. Since 

in (2.2), the m is ranging from 0 to p instead of ranging from 0 to p —1. The binary 

representation of i has one more bit ip  and for those i < N , its ip  is 0 while for those 

N i <2N 1  ip is 1. 

In S i, the set of the first half, i p  = 0. So we have 

where 0 _5_ j' < 2P +1. And for all components of Vl ', we can use 2] and 2j+1 (j E 

(0,1, ..., N-1)) instead of j' in the space of j' E {0,1, ..., 2N-1}. The equation of 

(2.4) can be separated into the following (2.4.1) and (2.4.2). 

Since 0 5_ in < p, we have 2 < 2'1  5 2P , dividing all the the three expression in this 

inequality, we obtain 



1 7 az +1 
, <  < 1 . 

2p -1 2p 

71n+1 1 1 1  
and the value of - 

2 4 ' 2-1 
can be (1, . }. Therefore the value of 

1 2m +1 1 1 
can be ( —

2 ' 
—
4 ' 

• -LI. 
2 2 2P 

1 2'1 2m+1 1 2m+1 2m+1i 
Then we have L (j+ 

2 
) 2 J = i 

2P 
+ 2 2P i =L i 2P j , and j is integer. 

1 2m+1 
L (j+ 

2 
) 

2 
j mod 2 = L 

j2m+1 
 i mod 2. 

2 

From (2.4.2), we have 

E jai (L (21+1) 2N 

2m-1-1 
J mod 2 ) = E im  ( L 12m+

N 
 1 

 J mod 2) (2.4.3) 
m=0 m=0 

Therefore, in the first half of the vectors, when j' = 2j or J' = 21+1, from equation 

(2.4.1) and (2.4.3), 

P , 2m+1 p-1 

E im  (L j i mod 2) = E 4,, ( L j 
N 

2m+1 

N ' 
j mod 2 

m=0 m=0 

1 
Frome (2.1), we have 1/1 (241' = Vl (2j+11' = V,J , that is the substitutions of 1 for 1 and 

-1 
for -1 in the assumed N orthogonal vectors. 

-1  

In S 2, the set of the second half, ip  = 1. One more item is added to S 1 . 

P  2"1  
E lm (L J  N '  i mod 2 ) 

In =0 

p-1 7m+1 2p+1 

= E im  ( L j' 
2N 

J mod 2) + L j
, 

 2+1 i 
mod 2 = X + j' mod 2. 

m=0 



Again this can be separated into the following (2.5.1) and (2.5.2). 

p -1 
in, ( L 2j 

2'1 
2N 

j mod 2 ) + (2j) mod 2 
ni=o 

p -1 

= E ( L J
2m+1 

 ] mod 2 ) = X (2.5.1) 
m =o 

and 

p --1 
lm ( L (2J+1) 

2'1  
2N 

j mod 2 ) + ( 2j + 1) mod 2 (2.5.2) 
m=0 

p -1 

= E ( L
2'1 

 j mod 2)+1=X+1 
m=o 

In the last situation (2.5.2), those odd in formula (2.1) will change into even and 

even will change into odd. 17,(2j )' =Vij  while V, (2J+1)' = —V 1j , that is the substitu- 

1 —1 
tions of —1 1 for 1 and for -1 in the assumed N orthogonal vectors. 

We can see that the way we proof the result above is exactly the procedure of 

producing the orthogonal vectors in the algorithm described at the beginning the sec-

tion. 2N orthogonal vectors can be constructed based on N orthogonal vectors with the 

dimension expanded by 2. 0 

From this procedure, we can see that the set of resulting 2N orthogonal vectors is 

constructed from the N orthogonal vectors and the number of components is doubled. 

For each V1  in S 1  there is a V2  in S2  such that i (s 2) = I (s i ) + 2P and V2  = T [V 1 ], 

1 1 —1 —1 
where T stands for the substitutions of 1 by _, and _, by , . And V1  is 

L_ 

1 —1 
constructed by substitution of 1 for 1 and by substitution of _, for -1 in the N 



components' vector. Note that V1  and V2 differ in the even components. 

The following helps to explain the above theorem. From the following table, we can 

understand the formula constructing rule. 

For example: 

Index Orthogonal Vector Binary Vector 

00 1 1 1 1 0 0 0 0 

01 1 1 -1 -1 0 0 1 1 

10 1-1 1-1 0 1 0 1 

11 1 -1 -1 1 0 1 1 0 

Denote Base Vectors as those vectors (orthogonal or index or binary) whose 

Index Vector has one and only one component of 1. With the substitutions of -1 by 1 

and 1 by 0, an Orthogonal Vector in the second column becomes a Binary Vector in 

the third column, linear combinations of base vectors in the above table generate non-

base vectors. 

For instance, the Index Vector 0011 is composed of Base Vectors 0001 and 

0010. That is, 0011 = 0001 + 0010. And the corresponding Binary Vectors of 

Index Vectors 0001 and 0010 are 0011 and 0101. And addition rules are: 

1 + 1 = 0, 1 + 0 = 0 + 1 = 1, and 0 + 0 = 0. 

Note that there are no carries in the above additions. 

Add the two Binary Vectors, we have 0011 + 0101 = 0110 whose Orthogonal Vector 

is [ 1 —1 —1 1 [. 

For the orthogonal vectors obtained from those two approaches, we have the fol-

lowing theorem. 



Theorem 2.5: Let V1, V2, ..., VN  be the generated N orthogonal vectors, and v1j  the 

j-th component of v1 , 

(1) For all 1, vi  1 = 1, and 

N 
(2) IVii = 0, j # 1 

i=1 

Proof : It is easy to see (1). 

(2) It can be proved by induction. 

Let N=2. The two orthogonal vectors are [ 1 I and [ 11 ' and (2) is - , 

satisfied. 

Assume (2) holds for N=2m-1. The theorem can be proved by showing that (2) 

also holds for N=2', there are m division steps. 

After the (m -1)-th division, there are 2m-1  orthogonal vectors; the rest 2m-1  

orthogonal vectors are to be generated in the m-th division. Each of the first 2-1 
1 

orthogonal vectors has (m-1) subblocks; each subblock is of the form 1 or 

-1 2"'-' 
. By the assumption, it is easy to see that E v1  = 0, j#1. It remains to be 

-1  - 1=1 
, 

2- I 1 ' —1 
seen that E v1i  = 0, j#1. At the m-th division i and -1 both become 

i =2"--J--1 1 , 

, , 
1 -1 

-1 Or 1 . By making the same substitution as mentioned earlier 

, 
1 -1 

-1 1 and 1 -1, the number of components of each vector .--  --> gen- 

erated in the m-th division reduces from 2m to 2m-1. Let the corresponding vectors 



be V'2,,,-1±1, ... ,V'2„„ By the assumption that (2) holds for N=211-1, E v',j  = 0. 
=2"' -1+t 

This implies that [ 11 , and [ 11 ] appear equally often for each subblock j#1 - 

2"' 
among all V's. Thus E vlj  = 0, j=2, 3 , ..., 2m. 111 

t =2"'-1+1 

Property: Consider a matrix M,M =( V1  V2  . . . VN  ), Vi  is the orthogonal vectors 

constructed using the above approaches, then M is a symmetric matrix. Notice that the 

order of the vectors store in the matrix M. 

Let N = 8, we have a symmetric matrix 

1 1 
1 1 

1 
1 

1 
1 

1 
-1 

1 
-1 

1 
-1 

1 
-1 

1 1 -1 -1 1 1 -1 -1 
1 1 -1 -1 -1 -1 1 1 
1 -1 1 -1 1 -1 1 -1 
1 -1 1 -1 -1 1 -1 1 
1 -1 -1 1 1 -1 -1 1 
1 -1 -1 1 -1 1 1 -1 

The columns of the matrix are those orthogonal vectors and V1  = 1, and 

8 
I, Vij = 0, j #1. 
l=-1 



Chapter 3 

Conclusion 

Two approaches to find out orthogonal vectors were presented. The formula 

approach is an efficient one in compare with those recursive approaches. A neural net-

work constructed using those orthogonal vectors will demonstrate some special abilities 

and properties such as non-increasing energy and performance of convergence. And 

some properties of the neural network are presented in Appendix. 
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APPENDIX A: 

Some Properties of the Associative Memory built on Orthogonal Vec-

tors. 

Base on these orthogonal vectors, the synaptic matrices for autoassociative and 

heteroassociative neural networks can be constructed. 

Considering the autoassociative memory, let the synaptic matrix W be the sum of 

outer product of V, as follow, 

k 
W = Vi* V 1+ V? * V 2+ • • . Vk * Vk = EV1 * Vi , 

1=1 

where 0 < k 5.. N and N = 2P , p is a integer integer. And we call this method as 

"C—Method". If a normalization is required for the W, then it is 

1 k W = — EVl  * VI  = —1 X .X T  
k i=.1 k 

The memory is made of outer-product of prescribed state vector, with some ability for 

recall and error correction and we will see that the neural network constructed using 

this method has the ability of fault tolerance. For the synaptic matrix W. we have the 

following theorem and lemma. 

Theorem a.1: Let V1, V2, ..., 1/N  be the constructed orthogonal vectors, then 

W = —
1

(V i *V i +V2*V2+...+VN *I/N ) = /, 
N 

where I is an NxN identity matnx and N =2P , p is a integer constant. 

Proof : Let w1j be a element of the matrix W, 



1 N 
w

u 
 = E vki  .vk, , 

N k=1 

When z = j, 

1 N N , 
Wu 

N 
= — E V ki  'V ki  = — 

N 
i = . 

k=1 

for all i # j, wij  can be proven by induction to be zero. 

It also can be proved from the property in section II. Since the matrix M whose 

elements are made of orthogonal vectors is symmetric, the expression 

1 N 1 x-,AI  
W11 = --N E Vla .VkiWIj = N z.,Vik .Vik 

k=1 k=l 

that is, 

1 ,, , 1, if i = j 

WI] = —kv I .vi ) = 
N 0, if i # j 

Lemma: Let W be a synaptic matrix generated from the sum of outer products of a set 

of (N-1) orthogonal neuron vectors, 

W = E v * v L 1 
N-1 vectors 

then we have wl  = 1 or —1 ,Vi,j i !=j. 

Proof : The lemma is a extension of the theorem above. 

Suppose the vector not picked up is V., then V. * V. is a NxN matrix having 

1 N 
the elements —1 or +1. WI]  = Z.a vki Vki N i

=l 

N N 
When i #j, Nwij  = E vki  vk, +v,,, v,,,, = 0, E vki  vkj  = —vni, Vmj 

k=1,k#m k=1,k ~m 



vvij  = — v,„ vmj  = ±1 

Theorem a.2: Let the initial state be which differs from V 1  only in the j—th com- 

ponent, i.e., v = —v 

(1) = N -2, 

(2) Vk .V = —2V kiV 1 j , and 

(3) (147  T'i )k  = N V 1k  — 2v v jk  v 1 j , k=1,2,...,N ,W = EV,* V,. 
1=1 

(4) In order to converge to V I , P < . 
2 

Proof : 

N N 
(1) V 1.17 1 = Ev ii v li  = E v ii v ii  +v,,v,i  =N 

N 
V i.V' Y V V 11 lt 11 1 j (-1)  13 ) 

i =1,t #J  

V i.V — V 1.V'1  = 2V 1J V 1J = 2. 

Hence, 

V I = N —2. 

N N 
(2) Vk .V 1 = 0 = Evkivit = E vbvi, + VkJVIJ 

1=1,l# j  

N 
Vk •V'i  = via vh vkf(—ViJ )  

t=1,l ./  

Vk .V'i  — Vk .V = —2Vki V 1i . 

Hence, 

Vk V'l  = —21;ki V 

(3) (147•V'i) = (EV, * 
t=1 



P 
(W .V ' 1) = V 1-(V i.V ' 1) + EV , • (V , .1/ ' 1) 

c=2 

P 
(W .W 1) = (N —2)V 1 + E(-2vij v ij )Vi 

1=2 

P 
(W •V ' i)k = (N —2)v ik + E(-2v1, v ovik  

i.2 
P 

(W .V '1)k = N V 1k — 2 V ikV if Vii + E(-2Vii  Vik )V ij 
1=2 

P 
(W .V ' i)k = N V 1k + I (-2vi, viov u  = N v ik — 2 wik  v 1 j  

1=1 

P 
(4) (W•V'i )j  = (N —2)v 1J +E(-2v ,j  v 1 j )v1j  

l=2 
P 

(W WO./ = (N —2)v li  + E(-2)v 1J 
1=2 

= [1\1 — 2P] v 1j  

In order that sgn (14/ -V ' 1) = V 1, k=1, ... , N, N —2P > 0. That is, 

sgn ( (N —2)1 / 3  ) = —v 1 j  . 

Hence P < —
N

. El 
2 

Lemma: (WW).1  = Nvj — 2vk wkj  

Proof : This lemma is a straight forward extension of Theorem a. 2. 

Theorem a.3: Let W be a synaptic matrix generated from the sum of outer products of 

a set of orthogonal neuron vectors. W is not normalized and N is the number of neu-

rons. w max  = max (w/j , i, j = 1,...,N }. A corrupted pattern with one bit error can be 

recovered (i.e., distance of 1) if N/2 > wmax. 



Proof : Let V be a pattern neural vector and Vi its corrupted version with k—th bit in 

error. From Lemma above, (WV')j  = Nvj  — 2vk  wki , which must have the same sign 

as vj  in order for the network to converge to V in one step. Thus (MP)]  vj  must be 

greater than 0. The corresponding sufficient condition is N/2 > w max. El 

In general, a corrupted pattern with m bits of error can be recovered if 

N/2m > w.. 

Corollary: Let M be the set of indexes of erroneous bits, still V' is the corrupted vec-

tor of V. We have 

(WV')j  = Nvj  — 2vk  E wkj 
k cm 

Proof : This lemma is a straight forward extension of Theorem a 3. 

Theorem a.4: If N/2m > w max, then the neural network can be recovered from m bits 

of errors. • 

Proof : From corollary above, (WV )j  = Nv j  — 2vk  E wo , which must have the same 
k cM 

sign as vj  in order for the network to converge to V in one step. Thus (WV )j  vj  must 

be greater than 0. The corresponding sufficient condition is N/2m > w max. Ell 

One can see that the smaller the entry values of the synaptic matrix, the better the 

error recovery capability. 

It was mentioned in [101 that for orthogonal feature vectors, the capacity is 100% 

in comparing with the tradeoff between the memory capacity and the degree of fault-

tolerance which has been estimated to be about 15% of B bits in Hopfteld—Little 



Model [9]. 

There are some proposition for the symmetric matrix which can be applied for the 

scheme base on the sum of outer product. 

Theorem a.5 [6]: The trajectories in the state space follow contours of non-increasing 

energy in the above associative memory. 

Proof : 

W is symmetric and has non-negative diagonal elements when the mode of operation 

is asynchronous. And the detail of prove is referred to [6]. 0 

Consider sgn ( W -LI ), = U i  i=1, ..., k. k ..n. , It is obvious that the memory U, 

are true eigenvectors of the weight matrix W. 

Theorem a.6 : Global energy minima are formed at the memories for the k -fold 

degenerate spectral scheme. 

proof : 

The synaptic matrix constructed above is by summing of outer product as 

W= E x XT 
k vectors 

and the energy function is 

1  
E (x) = --

2
X

7 
WX 

It is positive definite on the set of ( -1, 0, 1 r and the eigenvalues are the same, so it 

is k-fold degenerated. The detail proof can be found in [6]. 

Theorem a.7 [1]: The recursive network is free of cycles for synchronous updating. 

Hebb's law as well as the project rule guarantee the absence of cycles for syn- 



chronous operation. 

Theorem a.8: Parasitic points cannot be formed by linear combinations of prototype 

vectors generated by the C -method. 

Proof : This theorem can be proved by induction. 

For a 2-neuron network, the two prototype vectors are [1 1]T  and [1 —1]T , whose 

linear combination is 

a [1 if" + 13 [1 —11T  = [-1 —1] or 1-1 11 

where a and 13 are nonzero integers. Thus, a + 13 = -1 and a - 13 = -1 or 1 No solu-

tions exist such that both a and p are nonzero integers. 

Now assume the theorem holds for N1  = 2P  , we want to prove that it also holds 

for N2 = 2P+1 = 2N. The first N1  vectors of the 2N1  prototype vectors can be 

transformed into the N1  prototype vectors of the N1-neuron network by the [1 1]->1 

and [-1 -1]-> -1 substitutions. Hence linear combinations of any of these first N1  vec-

tors would not produce any parasitic points. By the same token, the last N1  com-

ponents of the 2N1  prototype vectors can be transformed into the N 1  prototype vector 

of the N 1- neuron network by the [1 -1]-> 1 and [-1 1]-> -1 substitutions. Hence linear 

combinations of any of these last N1  vectors would not produce any parasitic points. 

We have checked the first two cases of linear combinations of vectors from the 2N1  

prototype vectors. The only case remained to be checked is that part of vectors in the 

combination come from the first N 1  vectors and the rest come from the last N 1  vec-

tors. 

Then V=Vl + E , Let Q = i i ,...,iq  
1 e Q 



E(V) = -1/2 VWV 

= -1/2 (171 + Y k)W(Vi + E y,,) 
HEQ pLEQ 

= -1/2 V, WV, —1/2 E E WYt  —1/2V, W E Y m.-1/2 E 
s E Qt EQ usQ uEQ 

= -1/2 + 1/2(4q) - 1/2 E E 4yst  Va  Wst  
E Qt EQ 

Hence if h (V ,V1 )<4,(SE ),11,1>0 and V always converge to V,. El 

Lemma: V, W E 1/ t  
EQ 

=( Yil)WV, 
P,EQ 

= -2q 

proof : 

Vi WY 

=VV  (W 4 4ti, . . WN dT  (-2V!µ) 

=V1 ( IletVe (-2Voi) 
eEM 

= -217, py, 

= -2 

=}7iVi = -2V p.V1 

=-2 

Hence V, W( Yd=( YdWV, = —2q ❑ 

P-EQ PEQ 

Lemma: rs. WYt  = 4Wst  Vis  Va 



proof : 

YsWYr = Ys(Wit,...Wm)r(-2V,t) --=4Wst Vis VII 0 

For the heteroassociative memory, we present a procedure to synthesize a neural 

network which has limit cycles with length less than the number of neurons and the 

states of the limit cycle are orthogonal to each other. 

Let V I, V2, ... , Vn  be a set of orthogonal states with N components. The follow- 

ing theorem describes a synaptic matrix which results in a limit cycle whose states are 

V1 V2, . . . , Vn . 

Theorem a.9: The neural network with the synaptic matrix W' which is 

IV = V2*V1+V3*V2+V4*V3+ - • . +Vn *Vpi--1±1/  t*Vn 

(the sum of outer products) has a limit cycle of V1 —>V2-31/ 3, - - • --Wt., —>V i . 

Proof : It is easy to see that sgn(W' V1) = V2, sgn(W' V 2) = V3, ... 

sgn(117 ' V,i _i )= Vn , and sgn(W' Vn ) = V 1 El=1 

Remark: V1  *Vj  is an N xN matrix with entry value of aim  = vl1 1) jm . 

Using the orthogonal vectors to synthesize a neural network with a limit cycle of 

length m (less than n), just pick any m vectors from V1, V2, . Vn  . Let these m 

vectors be V . • 11, V  12, V  1„, and the synaptic matrix be 

W = V *V +V *V +...+V /2 /I /3 12 1,*V i„,• 

Then sgn(WVii) = V12, sgn(WV,2)= Vi 3, ... sgn(WV,m )= V1 1. Thus the limit cycle 

is 1711 —Wl2--) . . . —>Vim ---Nl , with length m. 



The above are some properties and theorem found in those recursive network 

with orthogonal states. Examples and application of the associate memory constructing 

on the orthogonal vectors are presented in the next section. 



APPENDIX B: Examples 

Example 1: 

For N = 4, let 

1 
1 

V1 = 1 . 

1 

There are two possible choices of V2: 

—1 1 
—1 1 1 or  

1 —1_ 

Only one of them can be selected because they are not orthogonal to each other. Pick 

1 
1 V 2a V2  = = 

2b 
I/ 
v 

—1 - - 

1 1 where V2, = [ ] and V2b  = [_] and V 1 V2  = 0. Now divide 172, and V2b  into two 

subblocks: 

[ 1 and [ —1] . 

That is V2a , V ,?b, -4 [
+1

1
] 

or [+1]. Thus there are four possible choices of V3: 

_ 
+1 +1 —1 —1 
—1 —1 +1 +1 
+1 ' —1 ' +1 and-1 • 

_-1_ +1_ _-1_ _+1_ 

They are all orthogonal to V1  and V2. 0 



Example 2: 

For N = 8, using the formula approach, the following orthogonal vectors can be 

obtained, 

1 1 1 1 1 1 1 1 
1 1 1 1 —1 —1 —1 —1 
1 1 —1 —1 1 1 —1 —1 
1 1 —1 —1 —1 —1 1 1 
1 —1 1 —1 1 —1 1 —1 
1 —1 1 —1 —1 1 —1 1 
1 —1 —1 1 1 —1 —1 1 
1_ _ -1_ _ -1  1 —1 1 1 —1  

Picking up the vectors Vo, V 1  and V6 from the the above orthogonal vectors, we can 

construct a weight-matrix by applying Strategy 1: 

W = (V o*V 0+V i*V i+V 6*V 6), 

or using the normalization factor 1—, ensures that —1 wu  -1-1. 
p 

1 w = 
3 
- * (Vo*Vo+V i *V1+V6*V 6) 

where 

1 1 1 
1 1 —1 
1 1 —1 
1 u  1 , 1 Vo  — 1 v 1 - _1 v 6 = 1 . 

1 -1 -I. 
1 --1 -1 
1 --1. 1 

the matrix: 



3 1 1 3 1 —1 —1 1 
1 3 3 1 —1 1 1 —1 

1 3 3 1 —1 1 1 —1 

3 1 1 3 1 —1 —1 1 

1 —1 —1 1 3 1 1 3 

—1 1 1 —1 1 3 3 1 

—1 1 1 —1 1 3 3 1 

1 —1 —1 1 3 1 1 3 

or the normalized one. 

3 1 1 3 1 —1 —1 1 

1 3 3 1 —1 1 1 —1 

1 3 3 1 —1 1 1 —1 

3 1 1 3 1 —1 —1 1 1 * 
1 —1 —1 1 3 1 1 3 3  
-1 1 1 -1 1 3 3 1 
—1 1 1 —1 1 3 3 1 

1 —1 —1 1 3 1 1 3 i 

The synaptic matrix is symmetric and the positive definite. By computing the 

energy E ( 
2 

v) = -- 1 V 
1

V
T

. •V , following the slope of the energy function, it may go to 

the local minima. The local minima can be found in the following states, 

1 1 —1 —1 1 1 —I 
1 —1 1 —1 1 —1 —1 
1 —1 1 —1 1 —1 —1 
1 1 —1 —1 1 1 —I 
1 1 1 1 1 1 1 
1 1 1 1 —1 —1 —1 
1 1 1 1 —1 —1 —1 
1 1 1 1 1 1 1  



1 —1 —1 1 1 —1 —1 
1 1 —1 1 —1 1 —1 
1 1 —1 1 —1 1 —1 
1 —1 —1 1 1 —1 —1 

—1 —1 —1 —1 —1 —1 —1 
1 1 1 —1 —1 —1 —1 
1 1 1 —1 —1 —1 —1 

—1 —1 —1 —1 —1 —1 —1  

and global minima are 

1 —1 1 —1 1 —1 
1 —1 —1 1 1 —1 
1 —1 —1 1 1 —1 
1 —1 1 —1 1 —1 
1 1 1 —1 —1 —1 
1 1 —1 1 —1 —1 
1 1 —1 1 —1 —1 
1 1 1 —1 —1 —1  

which are Vo, V1, V6, -V6, -V1 and —V o. Note that there are no spurious states. 

If there is 1 bit corrupted in vector V6, and new vector is named as V'6, 

1 1 _  
—1 —1 
—1 —1 

V/6 = 11 and V6 = 1 1 

—1 —1 
—1 —1 
1 1 

Applying the weight matrix, V'6 can go back to V6 through one step. 

sgn(W * V'6) = V6 

That is the result from Theorem a. 3, and one bit error can be recovered. 



Example 3: 

When N = 16, using those approaches, we can get 16 orthogonal vectors. Still let 

W = V i*Vi  + . . . + Vk * Vk, let k = 3, pick the vectors Vo, V13  and V2, 

1/ 70' = [ +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 ], 

4 = [ +1 +1 +1 +1 —1 —1 —1 —1 +1 +1 +1 +1 —1 —1 —1 —1 ], 

Vf3  = [ +1 —1 —1 +1 +1 —1 —1 +1 —1 +1 +1 —1 —1 +1 +1 —1 ]. 

constructing the synaptic matrix using the outer product scheme, the weight matrix is 

as following: 

3 1 1 3 1 —1 —1 1 1 3 3 1 —1 1 1 —1 
1 3 3 1 —1 1 1 —1 3 1 1 3 1 —1 —1 1 
1 3 3 1 —1 1 1 —1 3 1 1 3 1 —1 —1 1 
3 1 1 3 1 —1 —1 1 1 3 3 1 —1 1 1 —1 
1 —1 —1 1 3 1 1 3 —1 1 1 —1 1 3 3 1 

—1 1 1 —1 1 3 3 1 1 —1 —1 1 3 1 1 3 
—1 1 1 —1 1 3 3 1 1 —1 —1 1 3 1 1 3 
1 —1 —1 1 3 1 1 3 —1 1 1 —1 1 3 3 1 
1 3 3 1 —1 1 1 —1 3 1 1 3 1 —1 —1 1 
3 1 1 3 1 —1 —1 1 1 3 3 1 —1 1 1 —1 
3 1 1 3 1 —1 —1 1 1 3 3 1 —1 1 1 —1 
1 3 3 1 —1 1 1 —1 3 1 1 3 1 —1 —1 1 

—1 1 1 —1 1 3 3 1 1 —1 —1 1 3 1 1 3 
1 —1 —1 1 3 1 1 3 —1 1 1 —1 1 3 3 1 
1 —1 —1 1 3 1 1 3 —1 1 1 —1 1 3 3 1 

—1 1 1 —1 1 3 3 1 1 —1 —1 1 3 1 1 3 



Vo, V2  and V13  are the fix point of the memory. Suppose there two bits in V13  

are corrupted, or suppose another state V 13' near V13  whose Hamming Distance is 2. 

V13' = [ 1 —1 —1 1 1 —1 —1 1 —1 1 —1 —1 1 1 1 —1 ] and it is obvious that the 

different bits are the # 11 and # 13. By applying sgn (W X), the state V 13' will con-

verge to the fixed point V13  through one step. 

sgn ( W .1 7 13' ) = V13  

That is what stated in the Theorem a. 4, where w max  = 3, N = 16 and number of 

the corrupted bit is m = 2, 
N 

> w max. 2m 



Example 4: 

We have four orthogonal vectors in example 1, 

1 1 +1 +1 
1 -1 -1 V1  = 1 V2  = 1 _1 V3  = +1 and V4  = _i 

1 -1 --i 4-1_ 

To construct a heteroassociative memory described in Section III, the corresponding 

synaptic matrix is 

- - 
4 0 0 0 

0 0 0 4 
W = V2*V 1  + V3*V2  + V4*V3  + V i*V4  = 0 0 -4 0 

0 -4 0 0 _ - 

It is straightforward to see that 

sgn(WV 1)= V2, 

sgn(WV 2)= V3, 

sgn(WV 3) = V4,  

and 

sgn(WV 4). V1. 

Hence the limit cycle is V 1  --)V2-417 3-->V 4-->V 1. It is easy to see that 

-V1-4-V2-->-V3-4-V4—>-V1  is another limit cycle. It is interesting to see whether the 

rest of 8 vectors are also on certain limit cycles. 

Let 

V5  = [1 1 1 -11T  

then 



sgn (WV 5) = [1 -1 -1 -1]T  = V6, 

sgn (WV 6) = [ 1 -1 1 1]T  = V 7, 

sgn (WV 7) = [1 1 -1 UT  = V 8, 

and 

sgn (WV 8) = [1 1 1 -1]T  = V5, 

Thus there is a limit cycle: V5-->V6-41/ 7—>V8-->V5. -V5-4-V6--->-V7---*--V8.--->-V5  is 

also a limit cycle. Thus every state is in some limit cycle and the memory capacity is 

greatly increased. 

A neural network constructed using those orthogonal vectors is introduced and we 

demonstrated the ability and properties of the neural network and some advantages 

comparing to those other models, the advantages are especially as no spurious states, 

energy non-increasing and performance of convergence to fix point. 
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