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ABSTRACT 
Comparing Techniques 

of Mapping Pyramid Algorithms onto the 

Hypercube: A Case Study for the Connection Machine 

by 

Muhammad Ali Siddiqui 

The pyramid structure is most widely used for low-level and intermediate-level 

image processing and computer vision because of its efficient support of both local and 

global operations. However, the cost of pyramid computers (PC) may be very high. 

They also do not support the efficient implementation of the majority of the scientific 

algorithms. In contrast, the hypercube network has widely been used in the field of 

parallel processing because it offers a high degree of fault tolerance, a small diameter 

and rich interconnection structure that permits fast communication at a reasonable 

cost. Thus, several algorithms have been developed for the efficient simulation of 

pyramids on hypercubes. Stout [2], Lai and White [3], and Patel and Ziavras [14] have 

proposed four different algorithms that map pyramids onto the hypercube. This thesis 

carries out a comparative analysis that involves all these algorithms. The comparison 

is based on results derived with the application of analytical techniques and actual 

program runs. A Connection Machine CM-2 system containing 16K processors was 

used to derive the latter type of results. Stout's algorithm is cost effective, as it 

requires a hypercube with a number of PEs which is equal to the total number of 

nodes in the base of the pyramid. Thus. it needs a 2n-dimensional hypercube to map 

a pyramid with n + 1 levels. Lai and White have proposed two mapping algorithms. 

They require double the number of PEs used by Stouts algorithm. Finally, the 

algorithm proposed by Patel and Ziavras requires the same number of PEs as Stout's 

algorithm but allows the simultaneous simulation of multiple levels. as long as the 



leaf level is not included in the set of the levels required to be active at the same 

time. A comparative analysis is carried out for all four mapping algorithms through 

the incorporation of analytical techniques and results obtained on the Connection 

Machine system CM-2 for some important image processing algorithms. 
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CHAPTER 1 

INTRODUCTION 

1.1 Requirements of Image Processing 

One of the most important, difficult, and computationally intensive problems in 

scientific computing is image processing and computer vision. Computer systems 

used for image processing range from microprocessor devices to computer systems 

capable of performing computationally intensive functions on large image arrays. 

Image processing and computer vision algorithms employ a very broad spectrum 

of techniques from several areas such as signal processing, advanced mathematics, 

graph theory, and artificial intelligence. The computational requirements to per-

form algorithms from these fields are tremendous when executed individually, and 

when they need to be integrated in a meaningful way to perform a broader func-

tion in a reasonable amount of time, the computation becomes almost intractable 

[23]. 

The principal parameters influencing the structure of a computer are the in-

tended application and the required data throughput. Therefore, the question 

arising here as what kind of architecture can provide the tremendous amount 

of processing power required by image processing and computer vision. Parallel 

processing, which has progressed tremendously in the past decade, seems to be 

1 



2 

the consensus approach to providing the necessary computational power. Parallel 

processing holds the potential for computational speeds that surpass by far those 

achievable by technological advances in sequential computers. This potential is 

predicated on two assumptions, namely. that many computations can take place 

concurrently and the time spent in data exchanges between these computations 

is small. In order to meet these assumptions. algorithms must be partitioned 

into computational blocks that can execute in parallel and have communication 

requirements efficiently supported by the target parallel computer. Fortunately, 

most image processing algorithms are characterized by massive parallelism, so 

spatial decomposition of an image provides a natural way of generating low-level 

parallel tasks. For higher level analysis operations, parallelization may be based 

on other image characteristics and may be data dependent. 

Another important requirement of image processing is real-time processing of 

image data. It is useful to consider why parallel architectures are so important 

for image processing. Clearly any algorithm can be implemented on a sequential 

computer. So. why is a powerful minicomputer or mainframe not adequate? The 

answer is that the general-purpose computers can not easily exploit the parallelism 

in an arbitrary algorithm and can not process the algorithm in real-time. The 

whole essence of using parallel architecture for image processing is to exploit the 

special forms of parallelism found in the image data and to process them in real-

time. Parallel architectures can not only out-perform powerful minicomputers and 

mainframes but they can do so at a much lower cost. 

1.2 Pyramid Structure 

The pyrarmid structure is composed of successive layers of mesh-connected two-

dimensional arrays. where the size of the arrays decreases with the increase of the 
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level number (assuming that the base corresponds to level 0). In addition, each 

node at any level. except for nodes at the lowest level. is directly connected to 

four children located at the immediately lower level (i.e., the reduction between 

pairs of neighboring levels is 2 x 2. and the size of each array is 1/4 the size of 

the array at the immediately lower level [15]). The pyramid structure is appro-

priate for low-level and intermediate-level computer vision algorithms because of 

its efficient support of both local and global operations [2, 9. 10, 15]. It is well 

known that low-level and intermediate-level image processing and computer vi-

sion are characterized by local and global operations. with the majority of them 

being local. In addition, this structure is capable of supporting the efficient imple-

mentation of multilevel solvers which involve local processing on different scales 

with various inter-scale interactions [19]; such solvers are used in the solution of 

partial differential equations, constrained optimization. image reconstruction [18], 

multivariate interpolation, etc. 

In the rest of the discussion Pr, denotes a standard pyramid with 2n x 2n nodes 

at its base. Such a pyramid has n 1 levels. Fig. 1.1 shows the P2 pyramid. 

1.3 Pyramid Algorithms 

The pyramid architecture provides straight forward implementation of divide-and-

conquer techniques and efficiently carries out both local and global operations. 

However, the effectiveness and performance of the pyramid architecture is lim-

ited to applications that use such techniques and/or operations. Low-level and 

intermediate-level image processing and computer vision are candidate application 

domains [23]. 
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Figure 1.1. The two-level (P2) pyramid. 
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Several image processing algorithms have been proposed for implementation on 

the pyramid structure. A brief discussion of various pyramid algorithms follows. 

The Counting algorithm: The counting of connected regions is needed for object 

recognition tasks. Euler. the mathematician. developed an algorithm that can 

characterize any polygon. This algorithm is used to identify the connected regions 

within an image. The image is loaded into the base of the pyramid and some logical 

functions are performed on the vertices and edges of the object to recognize the 

connected regions [24]. 

Image Smoothing algorithm: One of the most common operations performed on 

images is to blur or smooth the image brightness values. Smoothing enhances an 

image by reducing the effect of noise so that subsequent processing is simplified 

and regularized. In addition. the amount of smoothing can be adjusted so as to 

optimally set the resolution at which to locate image features (e.g.. edges and 

textures) which naturally occur at a variety of spatial scales [24]. The Gaussian 

pyramid may be used for image smoothing: each level of the Gaussian pyramid 

represents a smoothed version of the original image. 

Object Segmentation: Segmentation as used here means to separate connected 

regions of a binary image into separate memory planes. so  that each region can be 

analyzed individually. One frequently used algorithm for segmentation is region-

filling; that is. an expansion that starts at a randomly chosen object pixel and 

continues until the whole region has been filled. When this idea is applied to a 

pyramid structure. the timing is logarithmic for images with large blobs. 

1.4 Motivations and Objectives 

The hypercube is a general purpose topology which can very efficiently simulate 

other frequently used structures. like the mesh. tree. pyramid. etc. As a conse- 
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quence, hypercube-based machines have become commercially available. such as 

the Intel iSPC, .CUBE, Connection Machine. etc. In contrast. powerful pyramid 

machines are not cost-effective. are difficult to build with the current technolo-

gy, and have very special and limited applications. Therefore. several algorithms 

to map the pyramid onto the hypercube have been developed. Such algorithms 

have been presented by Stout [2], Patel-Ziavras [14], and Lai-White [3]. These 

algorithms are characterized by different costs and performances. The algorithms 

proposed by Stout and Patel-Ziavras require an 112, hypercube to simulate a P, 

pyramid with 2' x 2n  PEs at its base. In contrast, two algorithms proposed by 

Lai and White require a H2n+1 hypercube to simulate the same pyramid. How-

ever, Stout's algorithm does not allow more than one level of the pyramid to be 

active at the same time. On the other hand, Patel-Ziavras algorithm allows all of 

the levels, except the leaf level, to he active at the same time. Lai-White's both 

algorithms allow all of the pyramid levels to be active at the same time but they 

require twice as many PEs as required by Stout's and Patel-Ziavras' algorithms. 

The implementation of these mapping techniques on a real hypercube system 

under various conditions becomes absolutely necessary for a comparative analysis. 

The main objective of this research is to implement these mapping algorithms 

on a real system and then run some representative image processing applications to 

measure their performance. A Connection Machine CM-2 system containing 16K 

processors will be used to derive results. Results are obtained for three important 

image processing algorithms: finding the perimeter of an object. convolution and 

segmentation. 
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1.5 Thesis Outline 

This thesis is organized as follows. Chapter 2 presents the hypercube 

topology and relevant applications. Detailed description of the Connection Ma-

chine system. which is used to derive the results for these algorithms. is also 

included. Chapter 3 discusses the four mapping algorithms in detail. It also 

introduces several performance measures which are important for performance 

analysis techniques. Comparative analysis for all these algorithms is also carried 

out in Chapter 4 using Connection Machine results. Finally. Chapter 5 presents 

conclusions. 



CHAPTER 2 

THE HYPERCUBE 
STRUCTURE 

Various parallel processor structures have been used in parallel systems. In re-

cent years, hypercube computers have become popular parallel computers for a 

variety of applications due to their powerful network which is characterized by a 

small diameter, regularity and high degree of fault _tolerance. Most of the other 

important topologies like the linear array, mesh, ring and pyramid can efficiently 

be mapped onto the hypercube [22]. Therefore, most of the applications for these 

structures can be implemented on the hypercube very efficiently. Formally, an 

n-dimensional hypercube contains 2n nodes. Nodes are connected directly with 

each other if and only if their binary addresses differ by a single bit. Hypercubes 

of zero, one, two and three dimensions are shown in Figure 2.1. 

Hypercube computers are loosely coupled parallel processor systems based on 

the binary n-cube network. also known as cosmic cube. n-cube. binary n-cube, 

Boolean n-cube. etc. Various parallel computers have been developed using this 

structure. The Connection Machine system. which is used to derive the results 

in this thesis, is one of the most well known systems and is manufactured by 

Thinking Machine Corporation. It operates in the SIMD mode and may contain 
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up to 65.336 PEs. The topological properties of the hypercube and the Connection 

Machine architecture are piesented in the following sections of this chapter. 

2.1 Topology 

In the d-dimensional hypercube or d-cube 11,7 , each processor is directly connected 

with d neighboring processors. Each processor has a unique d— bit binary address 

in the interval 0 to 24-1. In a hypercube computer. PEs are placed at each 

vertex of the hvpercube and the edges of the hypercube represent communication 

links between PEs. Each PE has its local memory, which makes every PE an 

independent unit. In the SIMD mode, this memory only contains data whereas 

in the MIMD mode this memory also contains instructions. Hypercube PEs are 

homogeneous because all the nodes can be treated equally: any hypercube can he 

mapped onto itself by mapping a node to any other. When a node 1 is mapped 

onto another node .7, the addresses of all nodes are changed and the new address 

of a node is found by taking the XOR of its previous address and the address of 

node i. 

The communication time between two PEs of the hvpercube depends on the 

number of links between them. The maximum communication time between any 

two PEs in the d— dimensional hypercube is 0(d) because the maximum number 

of intermediate links is d. The total number of is in the XOR between the binary 

addresses of two PEs gives the maximum number of communication links between 

these PEs. If PE V is connected with PE X in its rth dimension. then the addresses 

of X and V will differ only in the /th bit position. 

The hvpercube can be partitioned into smaller dimensional hypercubes and a 

d-dimensional hypercube can be constructed recursively from lower dimensional 

hypercubes: for example if two (d — 1) — dunt nsicwo/ hypeicubes are combined. 
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Figure 2.1. Hypercubes of different dimensions. 
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they produce a d — dimension hypercube. Consider two identical (d — 1) — 

dr me on al hypercubes with labels from 0 to 2d-1  — 1: by joining vertices with 

the same addresses. a d — dimensional hvpercube is formed. Figure 2.2 shows 

how two 3-cubes are combined to produce a 4-cube. 

To summarize: 

1. Any d — cube can be tiered in d possible ways into two (d — 1) — subcubes.. 

2. There are d! x 2d  ways of numbering the 2d  nodes of the d — cube. 

3. The maximum distance between any two nodes in the d — cube is equal to d, 

which is also called the diameter of the hypercube. 

4. Any two processors in the d-cube can communicate with each other. In order 

to communicate, data has to travel at least a distance which is equal to the num-

ber of Is in the XOR between the addresses of these PEs (this is known as the 

Hamming distance H(X,Y) between PEs X and Y). 

2.2 Applications 

Various topologies can be mapped efficiently onto the hvpercube. There are basi-

cally two reasons for the importance of such a mapping. 

1. Some algorithms may be developed for some other topology for which they fit 

perfectly. Then, one might wish to implement the same algorithm on the hyper-

cube with little programming effort. If the original architecture can efficiently be 

mapped onto the hvpercube then this will be achieved easily. 

2. A given problem may have a well defined structure. which requires a particular 

pattern of communication. Mapping that pattern onto a hypercube may result in 

short communication time. 



Figure 2.2. A 4-cube formed from two 3-cubes. 
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Some important mappings are discussed in the following section. 

2.2.1 Mapping Rings onto the Hypercube 

Consider a ring structure containing 2d  PEs. Also consider a target d-dimensional 

hypercube. The ring can be mapped onto the hvpercube in such a way that the 

proximity property is preserved (i.e., any two adjacent vertices of the ring map 

onto two neighboring nodes of the hvpercube). Another way of visualizing this 

problem is that we are seeking a string of length N = 2d  that crosses each node 

of the hypercube once and only once. 

According to the definition of the hvpercube network. any two adjacent nodes 

have binary addresses that differ only by one bit. This means that the hypercube 

addresses should be represented by a sequence of d— bit binary numbers such that 

any two successive numbers have only one different bit. A binary sequence with 

such a property is the reflected Gray code. 

The mapping of the 8-node ring onto the 3-dimensional hypercube is shown in 

Fig. 2.3. This figure shows the linear array with the extra connections which are 

present in the hypercube. 

2.2.2 Mapping the Mesh onto the Hypercube 

One of the most important reasons that the hypercube is popular is that meshes 

can easily be mapped onto hvpercubes. Consider a n-dimensional mesh that has 

size in, in each dimension which is a power of 2 (i.e.. m, = 2P?). 

Now consider the d — diin(n.sioncil hypercube on which this mesh is to be 

mapped. Let d = pi  + p, + ..+ pa . where 2d  is the total number of processors in 

the n-dimensional grid. which is also the total number of nodes in the hvpercube. 



Figure 2.3. A linear array mapped onto the 3-cube. 



Figure 2.4. Mapping of an 8 x 4 mesh. 
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In order to perfectly map the mesh onto the hvpercube. neighboring nodes in 

the mesh must be assigned to neighboring nodes in the hvpercube. In the previous 

section. the mapping of the one-dimensional mesh (I.e.. the linear array of ring) 

was discussed. The mapping of higher dimension meshes is done as follows. The 

nodes in each dimension are numbered sequentially using the respective reflected 

Gray code. A node of the mesh is mapped onto the node in the hypercube whose 

address is obtained by concatenating the numbers of the particular node for all 

the dimensions. For example. Fig. 2.4 shows a two-dimensional 8 x 4 mesh and 

the appropriate Giay codes 

2.3 The Connection Machine 

The Connection Machine is a data parallel computing system. Data parallel 

computing associates one processor with each data element. This computing style 

exploits the natural computational parallelism inherent in many data-intensive 

problems. 

The Connection Machine is an integrated system of hardware and software. 

The hardware elements of the system include front-end computers that provide 

development and execution environment for the user's software. a parallel process-

ing unit of up to 64K processors (PEs) that execute data parallel operations in 

the SIMD mode. and a high performance data parallel I/O system. Each PE has 

its own local memory of 8-kilobytes which is bit-addressable and its word length 

is one bit. The hypercube is the dominant topology in the system. More specifi-

cally. a 10-dimensional hypercube is the backbone (router) of the communication 

network. Each vertex of this hvpercube contains a router node (communication 

processor) to which sixteen PEs are attached [161. The largest Connection Ma-

chine CM-2 system contains 64K PEs and router nodes ale located at the vertices 
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of a 12-dimensional hvpercube. In addition. the CM-2 hardware includes specific 

communications hardware. the router and the NEWS grid. These communication 

techniques are discussed in detail in the following sections. 

Message passing is implemented in parallel: algorithmically selected subsets of 

PEs are allowed to simultaneously send data into the local memories of other PEs 

or fetch data from the local memories of other PEs into their own. The communi-

cations hardware is also capable of combining multiple messages going to the same 

destination PE by applying some arithmetic or logical combining (i.e.. reduction) 

operation. The destination PE then receives the result The router nodes forward 

messages and also perform some dynamic load balancing. Processing of messages 

by the router is divided into stages which are called petit cycles. A petit cycle is 

just enough to process all the bits of a destination address and a message. This is 

also true for a message that traverses all twelve or ten dimensions of a 64K or a 

16K machine respectively. Therefore. a petit cycle consists of multiple ALU/route 

cycles. A single communication pattern may consume a single petit cycle if only a 

small number of PEs aie involved. In contrast. if almost all of the PEs are active. 

then many petit cycles may be consumed. 

The following sections describe these two communication techniques in more 

detail. 

2.3.1 The Router 

The most general communication mechanism of CM-2 is the router. which allows 

any processor to communicate with any other processor. One may think of the 

router as allowing every processor to send a message to any other processor. with 

all messages being sent and delivered at the same time. Alternatively. one may 

think of the router as allowing every processor to access any memory location 

within the parallel 0 unit with all processors making memory accesses at the same 
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time. 

Each CM-2 processor chip contains one router node. which serves 16 data 

processors on the chip. The router nodes on all the processors are wired together 

to form the complete router network. Each message travels from one router node 

to another until it reaches the chip containing the destination processor. The 

router nodes automatically forward messages and perform some dynamic load 

balancing. It is, possible for a message to traverse many dimensions, possibly 

all twelve, in a single petit cycle. provided that contention does not cause it to 

be blocked. The message data is forwarded through multiple router nodes in a 

pipelined fashion. A message that cannot be delivered by the end of a petit cycle 

is buffered in whatever router node it happens to have reached, and continues its 

journey during the next petit cycle. 

2.3.2 The NEWS Grid 

Communication operations between processors that are nearest neighbors within a 

Cartesian grid are much more efficient than the general router mechanism because 

they exploit three different transfer methods. two of which have special hardware 

support [16]. 

212 The fully configured CM-2 system (with 64k PEs) has processor chips 

with connecting wires forming a Boolean 12-cube: these are the same physical 

wires that serve the general router mechanism. A subset of these wires can be 

chosen so that they connect the 212  chips as a two-dimensional grid of shape. The 

hardware is flexible enough to accommodate any shape. For example the per-chip 

permutation circuit can organize its 16 physical processors as S x 2. or 1 x 16. or 

4 x 2 x 2. or 2 x 2 x 2 x 2. and so on. Due to this specialized hardware support. 

the NEWS grid of any shape or number of dimensions can be handled with great 

peed and efficiency. 



CHAPTER 3 

MAPPING PYRAMIDS ONTO 
HYPERCUBES 

A first level comparison of various embedding is enabled by the introduction of 

three measures of the cost of graph embeddings; namely expansion, dilation, and 

congestion. Before we discuss the mapping algorithms, these performance mea-

sures are presented. 

3.1 Performance Measures 

Let the function h : G -- G' represent the mapping of the source graph G onto the 

target graph G'. It is a mapping of the vertices of G to the vertices of G' in a one-

to-one or many-to-one fashion. The three measures are then defined as follows [3]. 

Expansion: The expansion of h is the ratio ilvv(GG)It, where V(G) and V(G') are 

the vertex sets of G and G' respectively, and IV(G)I and 11/(G')1 are the numbers 

of elements in those sets. When 1V(G')1 _> 1V(G)1, the expansion measures how 

much of the target graph G' is not assigned nodes from the source graph G. The 

closer the value of this measure to one, the smaller is the portion of unused re-

sources in G'. 

19 
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Dilation: When two neighboring nodes from G are mapped onto two distinct 

nodes in G'. the dilation of the edge connecting the two nodes in C is the length 

of the corresponding path in C'. The maximum dilation is the maximum length 

of such a path in G'. The dilation measures the increase of the communication 

overhead when compared to one-hop transfers in the source graph. Of course, 

the smaller the value of the dilation is. the lower the communication overhead 

associated with the mapping h. 

Congestion: The congestion is the number of edges in G with the same image 

in G'. The maximum number of edges in G with the same image in G' is the 

maximum value of the congestion for the chosen mapping h. The smaller the 

value of the congestion, the less amount of time that messages will have to wait 

in the queues of intermediate target PEs for communication channels to become 

available. 

3.2 Stout's Algorithm 

The mapping algorithm which was presented by Stout [2] embeds the Pn  pyramid 

into the H2  hypercube. Therefore, the total number of nodes in the hypercube 

is equal to the number of nodes in the base of the pyramid. Since a pyramid with 

a base of size 2n x 2n contains a total of L22 3+1)1 nodes. the expansion is less 

than 1. A one-to-one mapping of nodes from the base of the pyramid onto PEs of 

the hypercube is accomplished as follows. The 17-bit reflected Gray code is used 

to encode separately the rows and columns of the base. The binary addresses 

of the corresponding PEs in the hypercube are found by either interleaving or 

concatenating the bits of the encoded row and column numbers. This process 
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produces a perfect mapping for the base of the pyramid: that is. all three measures 

associated with the cost of the base's mapping are optimal (i.e.. they are equal to 

I ). Every node at the immediately higher level of the pyramid (i.e.. level 1) has 

four children at the leaf level (i.e.. level 0). and as a consequence one PE from each 

square of four PEs is chosen to simulate the parent node. PEs having the least 

significant bit of their encoded row and column numbers equal to 0 are chosen to 

represent level 1 nodes of the pyramid. In general. PEs having the lower k bits of 

their encoded row and column numbers equal to 0 will simulate nodes from level 

k of the pyramid. Thus. one of the children will use two communication links 

when sending data to its parent (i.e.. the dilation of such a data transfer is equal 

to two). Fig. 3.1 shows the mapping of the P3 pyramid onto the H6 hypercuhe: 

the numbers within the squares represent level numbers. This way. the dilation 

of all lateral edges in the pyramid is equal to one for all of the levels. However. 

the maximum dilation of this mapping is equal to two and corresponds to edges 

connecting pails of parents and children as discussed above. 

The two significant advantages of this mapping are the smallest possible re-

sultant dilation and the relatively small number of PEs in the hvpercube (more 

specifically. the total number of PEs in the target hvpercube is smaller than the 

total number of nodes in the source pyramid). The maximum congestion of this 

mapping is equal to three. 

Since a single hypercube PE may be used to simulate a number of pyramid 

nodes from different levels (for example. the PE with row number U and column 

number 0 is used to simulate nodes from all levels of the pyramid). the hypercube is 

not capable of simulating multiple levels of the pyramid at the same time. In fact. 

if many levels of the pyramid need to be active simultaneously. a hypercube PE 

will not only be incapable of simulating nodes from several levels of the pyramid 

simultaneously hut may spend some extra time in switching from one simulation to 
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111 U 0 U 0 0 0 0 0 
101 U U 0 U 0 U U U 
100 0.1.2 0 0 0.1 0.1 U U 0.1.2 

Figure :3.1: Mapping the P3 pyramid onto the H6  hypercube with Stouts Algo-
rithm . (RGC: 3-bit Reflected Gray Code.) 

the next one; in addition, the storage space needed to store data for the simulated 

nodes may become prohibitively large. 

Algorithms that keep active all, or a large subset. of the pyramid's levels most 

of the time are common; for example, algorithms that implement pipelining fall 

into this category [13]. However, this mapping of the pyramid does not consume 

prohibitively long time if the pyramid algorithm proceeds level by level: as dis-

cussed earlier. the only delay occurs during the communication of values between 

parents and one of their children. 

3.3 Patel-Ziavras' Algorithm 

Similar to Stout's algorithm. the mapping algorithm proposed by Patel and Zi-

avras [Li] maps the P„ pyramid onto the H), hypercube. However. in contrast 

to Stouts Algorithm. this algorithm allows multiple levels of the pyramid to be 

active simultaneously. More specifically. it allows any subset of levels. excluding 

the leaf level. to be active at a time. The simulation of the leaf level excludes the 

simultaneous simulation of any other level in the pyramid because the total num- 
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ber of leaf nodes is the same as the number of PEs in the hvpercnbe The mapping 

algorithm operates as follows. Similarly to Stout's algorithm. the reflected Gear 

code is used to independently encode the row and column numbers of the leaf 

level. A perfect mapping is then produced for this level by either concatenating 

or interleaving the hits of the encoded row and column numbers of the nodes in 

order to find the addresses of the corresponding target PEs in the hvpercube. The 

mapping of level 1 nodes is also similar to the mapping produced by Stout. More 

specifically. the PEs of the hvpercube chosen to simulate parents of leaf nodes 

correspond to encoded row and column numbers that have then least significant 

bit equal to O. For each set of four PEs representing sibling nodes at level 1 of 

the pyramid which have a common parent at level 2. a PE is again chosen to 

represent their parent. The PE chosen to serve as the parent is neighbor to one 

of the PEs representing the children and all parent PEs for level 2 form mirror 

images in squares outlined by their children. This procedure is repeated until the 

apex of the pyramid is reached. For example. as shown in Fig. :3.2. the leaf level 

nodes of the P3  pyramid are simulated by all 2' PEs of the hvpercube i using 

a one-to-one assignment Theme are sixteen groups ( squares of 2 x 2 PEs at the 

leaf level that have a common parent at level 1. The parent at the next higher 

level (i.e.. level 1) of the children in such a square is simulated by the PE marked 

with 1 in the square. These PEs marked with 1 are again grouped into groups 

of four PEs that have a common parent. Parents at the next higher level are 

simulated by the PEs marked with 2. Finally. the parent at the next higher level 

(i.e.. level 3) of the children marked with 2 is simulated by the PE marked with 

3. Thus. PEs marked with 0. 1. 2 and 3 simulate nodes from levels O. 1. 2 and 

3 respectively of the P?, pyramid. since PEs that simulate different levels of the 

pyramid, except for the leaf level. are distinct. any subset of pyramid levels that 

does not include the leaf level can be simulated simultaneously 
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Figure 3.2: Mapping the P3  pyramid onto the H,, hypercube with Patel-Ziavras 
algorithm. (RGC. 3-bit Reflected Gray Code.) 

The maximum dilation of the mapping for an edge connecting a parent at 

level 1 and one of its children at level 0 is two (as in Stout's algorithm). However. 

the maximum dilation for higher levels is equal to three. In general. both the 

maximum dilation and the maximum congestion associated with this mapping 

algorithm are equal to three 

3.4 Lai-White's Algorithm I 

Two algorithms suggested by Lai and White 13] for mapping a pyramid onto a 

hypercube map distinct nodes of the pyramid onto distinct PEs of the hypercube 

while maintaining minimal expansion. More specifically. they require an H2„+1 

hypercube for the mapping of the Pr, pyramid (this is the smallest allowable hy-

percube size if distinct nodes of the pyramid need to be mapped onto distinct 

PEs of the hypercube). This subsection and the next one describe these two map-

ping algorithms. Their first mapping- algorithm is recursive and yields maximum 

congestion two and maximum dilation three. It starts by defining an embedding 

function for the two-level 0 with apex (a. 0.0I: the elements of the triplet repre- 
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sent the level number. the row position. and the column position respectively of 

the node. It then applies a recur-Ave function in order to derive the mapping of 

lower level 0 until the base is reached. This technique results in the mapping of 

the leaf nodes. The mapping of higher level nodes is then achieved with the ap-

plication of a bottom-up approach. Before we briefly present the algorithm, some 

definitions become pertinent. In addition, we need to emphasize that contrary to 

our up to this point notation. for the sake of simplicity the following description 

assumes that the apex is level 0 while the base of the pyramid is level n (i.e.. the 

numbering of levels starts from the top). The embedding A : Pl  1--4 H3 of the 

two-level subpyramid. as illustrated in Fig 3.3, is first defined as: 

• A(0, 0,0) = 000, 

• 8(1.0,0) = 010, 

• 6(1,0,1) = 110, 

• (1. 1, 0) = 011. and 

• 6(1.1.1) ,  111. 

where the triplets represent the addresses of nodes in the source pyramid and the 

binary numbers on the 1 side of the equations are the binary addresses of PEs in 

the target cube. This process maps all four children of the apex onto a side of the 

cube which is opposite from the side containing the apex. Then. three additional 

embeddings are defined through vertical. horizontal, and diagonal exchanges of 

children on the cube side suggested by A. The new embeddings are called the 

reflections of 8 and are denoted by fly . fH. and fill respectively. 
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Figure 3.3. Embedding of two level sub-pyramid. 
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These embeddings are generalized as follows. Let Ph _ i  (1. 1 . 1. 2 ) denote the 

subpyramid of Ph. containing levels and having as apex the node (1..r1„12 ). 

Define (1)1_ /  : Pk _ i  so that node (1.5.1 .5r 2 ) E V(Ph _ i ) is mapped onto 

(r.11.2` — ,r)— 1). In addition, define (1)/A:i  1  : Pk _ i  so that is 

mapped onto (1.2z — — 1.x2 ). The three additional embeddings of Pk-1  into 

H)k _ i  are: 

• fA-11 - 

• =  A ,T,H -1 1 . 

• fPf = VA--101ki  

For any pair of binary numbers b1  and b2, define the prefix function h b2b1  : 

so that hb2 b1 (x) = b2 bi x and h b,bi (x,x') = (b2b1x,b2bi x') for any 

vertex x and edge (x. x') in 11,k_1. Then. define -1112 Pk-1(1- xl• x2) 1—* Pk-1 

so that tx1 x2 (i•4.4) = — 1. zi — .r1  x — x 2  x 2') for any node 

in P2 _ 1 (1. 11.s2 ) and t,,(u, c) = (t,,„(u), tyix,(r)) for any edge (u, r) 

in Pk _1 (1, x1. a )). 

These reflection are illustrated in Fig 3.4 . 

The algorithm is as follows: 

Algorithm 

1 For k = 1. embed P1  into H 3  using 

2. For k > 1. use fk _1  to define i. Embed the subpyramid P1 (0.0.0) into 

a three-dimensional subcube of 1/2h±1. as follows: 

• (0. O. 0) = 00 3. 
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1  Figure 3.4 The image of P1  under f1 , fl vii  , fi 
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• lk  (1. 0.0) = 00o A( 1. 0. 1) = 10o, 

• .f.A.( 1. _L. 0 ) = 01 . A( 1. 1. 1 ) = 110 

• .fk( (0. 0. 0). (1. 0. 0)) = (00 3. 00o ), 

• .fa(0,0.0). (1.0,1)) = (003.10/3,10a). 

• fk ((0.0.0).(1.1.0)) = (00 3.01,5,01a). 

• A((0,0.0),(1.1,1)) = (00 3.103.113,11o). 

ii. For each node (1, x 2 ). embed PA _1(1, a'1. 2 ) into the (2k — 1)-dimensional 

subcube x2x1H2k-1  of H2k+1  using the reflections of A-1: 

• huo,fk-ltrl r2 • if x l  = ,r2 = 

• buil' l f rlr2 , if xl  = 1 and x2  = 0, 

• if xi  = 0 and x, = 1. and 

• if xi = 1 and x2  = 1. 

The mapping algorithm is illustrated in Fig. 3.5 . 

3.5 Lai-White's Algorithm II 

The embedding algorithm of the previous section has optimal expansion. but its 

maximum dilation. although small. is not optimal. In this section. a substantially 

more complex algorithm that embeds the pyramid into the hypercube with optimal 

expansion. maximum dilation two. and maximum congestion three is presented. 
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Figure 3.5. The recursive definition of fk. 
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The second mapping algorithm proposed by Lai and White has maximum dila-

tion two and maximum congestion three. Like their first algorithm. this algorithm 

also requires an _a 2„+1 cube for the mapping of the Pn pviannd and maps 

distinct nodes of the pyramid onto distinct PEs of the hvpercube. This algorithm 

is also recursive, but in contrast to previous algorithm. it applies a top-down ap-

proach: i.e., pyramid nodes are mapped onto the target hypercube starting with 

the apex and the mapping process proceeds with the mapping of lower level nodes. 

This recursive process is much more complex than that of their first algorithm. 

The algorithm is as follows. 

Let a = (k — 1. x1. .r,) be a node at level k — 1, and b = -I2)• 

c = (k.2xi d = (k. 2a.1 .2.7. 2  + 1). and e = (k.2xi  + 1.2a 2  + 1) be 

its children at level k. Let also P1  (k —1. x i ..r 2 ) denote this subpyramid of Pk with 

height one and apex (k — L x 1. x2 ). For E il(H2k+i ) and 1 < p. q. r < 2k 1. 

let H3 ( c: p.(7.1 ) be the 3-dimensional 1 of H2A .+4  containing the set of nodes 

{ r. cP. rq . rqr t 1'1 where the one. two. or three terms in the expo- 

nent show the position of the bits that must be complemented in r (one. two. 

and three hits iespectivelv). Four embeddings of P1(k — a are proposed. 

as shown below: 

• Ili (a) = gi(h) = • q1(c) = gi(d) = ri, and q1 ( e) = c/".  

• !A (c/) = m . = t C I = . (4( 01 ) = rqr, and gi'( = 

• 9H( = t'. .4( = d/  d) = Or. [if :1(d) = . and fAl(d ) = 

• ch = 1 
H hi ( p, g

i
vH( = ,/11/(d) = l'" . and ul  11(( = i. .  
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H V VH 
Figure 3.6. Pi  (k — 1, x i , x 2) and its images under gi,gi-  , g1 , Th. • 
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Figure 3.7. g2(P2). 
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Foi U < (1.1) < rrr — 1. we define {a}„, : t mod in = and 

= a}„, U {1)},, 

These embedding', and reflections are shown in figure 3 6 A pvi amid vv ith two 

levels (P)). mapped on a 5-dimensional hypercube (HK) is shown in Fig, 3.7. The 

recursive algorithm for the embedding gk  : Pti 1—> H2h+1 is as follows: 

_4/y0r/thin 

1. For k = 1. use 9i  to embed PI, into H2k+i • 

2. For k > 1. use gh _ i  to define gk : i. Embed the top Pd _ i  subpyramid 

of Pk into H2A. 1  using hgk _i . where h : H2k _i  H H2k+1. such that h(r) = 

00x. ii. For each node u = (k — 1. x 1. x 2 ). embed the subpyramid P1 ( a) into 

H3( 00gk _i  (u): 2k — 1.2k. 2k -f 1) using the mapping: 

• g1. 

• gi  . 

• gi 

• g 1l'H 

E {0}2- 

if .r i  E 012- X2 E {1}2 . 

if xi  E {1}2. x 2  E {O}2 . and 

if ,r1 . r 2  E {1}2 



CHAPTER 4 

COMPARATIVE ANALYSIS 

This chapter carries out a comparative analysis that involves all four mapping 

algorithms of the previous chapter. This analysis is based on analytical techniques 

and actual runs on a Connection Machine CM-2 system consisting of 16K PEs. 

4.1 Analytical Techniques 

Patel-Ziavras-  algorithm has maximum dilation three and maximum congestion 

two, while these measures for Stouts algorithm are equal to two. Both algorithms 

need an H2, hypercube to embed the Pr, pyramid. Thus. Patel-Ziavras' algorithm 

will be inferior to Stouts algorithm with respect to communication overheads since 

the maximum dilation is increased by one. Nevertheless, if several levels of the 

pyramid are required to be active simultaneously. then Patel-Ziavras' algorithm 

will be superior to Stout's algorithm with respect to reduced execution times 

and high utilization of the target hypercube's resources. This is because Stout's 

algorithm can not support simultaneous simulation of multiple pyramid levels. In 

contrast. the only type of concurrency not allowed by Patel-Ziavras' algorithm is 

the simultaneous simulation of the leaf level along with other higher levels. 

Lai-White's algorithms I and II have maximum dilation three and two respec- 

.) 3 
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lively, and maximum congestion two and three respectively. In addition. they re-

quire double the numbei of PEs required by Pat el-Ziavras' and Stout's algorithms, 

so their cost is much higher. This is because distinct nodes of the pyramid are 

mapped onto distinct PEs of the hvpercube in order to allow the simultaneous 

simulation of any subset of pyramid levels. Therefore. Patel-Ziavras' algorithm is 

a compromise between Stout's algorithm and the pair of Lai-White's algorithms 

with respect to cost and performance for applications that require simultaneous 

simulation of multiple levels of the pyramid. 

Patel-Ziavras' algorithm should be expected to yield lower performance than 

Lai-White's both algorithms if there is a need for simultaneous simulation of the 

leaf level along with other higher levels of the pyramid. However, when compared 

to Stout's algorithm, the communication delay in Lai-White's algorithms due to 

the increased dilation may prohibitively increase the communications overhead 

for application algorithms that do not require the simultaneous simulation of 

multiple pyramid levels. In addition. Stout's algorithm implements in the latter 

case smaller amounts of vertical data transfers. 

4.2 Connection Machine Results 

This subsection presents and analyzes results obtained from actual runs of some 

image processing algorithms on a Connection Machine CM-2 system consisting of 

16K PEs. 

We must emphasize that the results presented here aie not always indicative 

of the performance of pure hvpercube systems because of two reasons. Firstly. the 

routers become the bottlenecks for communication intensive operations because 

any single router node is shared by sixteen PEs. To alleviate this problem, the 

majority of the results presented here use one PE per 'outer node. Secondly. 
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for algorithms where many-to-one communication operations are followed by the 

application of associative ( ieduction) operations on the received data. the Con-

nection Machine routers implement the reduction on the tiv.-  thus t.educing the 

amount of traffic going to distant PEs. In the presentation of the results below. 

the influence of both issues on the Connection Machine's performance is discussed. 

Results are presented for three image processing algorithms. The first algo-

rithm finds the perimeter of objects in images. the second algorithm performs 

2-dimensional convolution and the third algorithm performs image segmentation. 

4.2.1 Finding the Perimeter of Objects 

This application algorithm assumes the assignment of a single pixel to each node 

at the base of the pyramid and, for the sake of simplicity. the existence of a single 

object in the image Assuming that the boundary pixels are known. a bottom-

up process is applied to count the total number of boundary pixels. More detail 

follows. Nodes at the base of the pyramid that contain a boundary pixel send 1 to 

their parent at level I. while base level nodes that do not contain a boundary pixel 

send 0 to their patent. Nodes at level 1 add the four values sent by their children 

and send the result to their parent at level 2. To reduce the overall communication 

overhead. the latter addition is performed as a reduction operation. where router 

nodes add the values on the fly before they reach their destination. This process 

continues with higher levels until the apex is reached. The addition of the values 

received by the apex is the perimeter of the object. 

Results were obtained for two cases. In the first case. all sixteen PEs attached 

to any single router node are used. for a total of 16K -active-  PEs. Therefore. the 

base of the pyramid assumed by stout's and Patel-Ziavras' algorithms is 2' x 2' 

(i.e.. eight levels,. while the base of the pyramid assumed by Lai-White's algo-

rithms is 2' x _ (i.e.. seven levels). In the second case. in order to reduce the 
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communication overhead for a "pure" hypercube network. only one PE per router 

node is used. for a total of 1K -active-  PEs. Therefore. the base of the pyramid 

assumed by Stout's and Patel-Ziavras.  algorithms is now 2' x 2' (i.e.. six levels). 

while the base of the pyramid assumed by Lai-White's algorithms is 24  x 2 (i.e.. 

five levels). Average times calculated over several runs are presented here. 

Table 4.1 shows results for the algorithm that finds the perimeter of an object 

when using all 16K PEs in the system. Base represents the amount of time it takes 

to send data from the base level to the parents at level 1. This process takes a 

relatively large amount of time because all PEs are active and share router nodes 

in groups of sixteen. We also need to emphasize that all data transfers in our 

implementation involve integer variables: this was chosen for uniformity reasons. 

because several algorithms in image processing have a lot of similarities with the 

perimeter counting algorithm but they deal with integer variables. Top represents 

the amount of time it takes the level located immediately below the highest level 

to send data to the topmost level and for the topmost level to process the received 

data. Total represents the total amount of time taken by the algorithm. Table 

4.1 shows that Lai-White's algorithm II is associated with the worst performance. 

This can be explained as follows. While all 16K PEs of the system are initially 

used. PEs involved in the simulation of higher levels of the pyramid do not share 

router nodes for Stout's. Patel-Ziavras' and Lai-White's algorithm I. In contrast. 

Lai-White's algorithm II is such that for the simulation of higher levels of the pyra-

mid. multiple PEs attached to the same router node become -active.-  Therefore. 

the communication overhead is tremendously increased for Lai-White's algorithm 

II. In addition. we may observe that first three algorithms are characterized by 

almost similar performance for this image processing problem. 

As it can be observed from earlier paragraphs. the relatively small value of the 

dilation in these algorithms does not have a very critical influence here due to CM- 
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Algorithm, Base Top Total Levels 
Stout 1.89 0.56 5 53 

Patel-Ziavras I 1.53 0.46 4.99 

Lai-White I 1.11 0.54 3.66 

Lai White II 2.52 0.31 10.66 

Table 4.1. Finding the perimeter of an object: one level active at a time. 16 PEs 
per router node. Times in cosec for CM-2.) 

Algorithms Base Top Total Levels 
Stout 0.59 0.55 2.84 6 

Patel-Ziavras 0.64 0.55 2.86 6 

Lai-White I 0.64 0.55 2.35 5 

Lai-White II 0.59 0.51 2.13 5 

Table 4.2: Finding the perimeter of an object: one level active at a time. 1 PE 
per router node. (Times in msec for CM-2.) 

2's reduction operations and the implementation of petit cycles for transfers of 

data. In addition. the congestion is-  not a critical factor here due to the L;IAID mode 

of computation and the simulation of one level at a time. Finally. Lai-White's 

algorithm I and. more importantly. Lai-White's algorithm II produce -irregular 

embeddings that may increase the overhead resulting from the control structure of 

application algorithms. We have dramatically reduced this overhead by generating 

pointers to parents. children and lateral neighbors during initialization. 

Table 4.2 shows results when only one PE per router node is initially active. As 

expected. all four mapping algorithms are characterized by almost similar perfor-

mance because of the special architecture of the Connection Machine. as discussed 

before. and the fact that at no point during the execution of the algorithm does 

any router node serve multiple PEs. 



Algorithms Base Other Levels Tot al Levels 
Pat el-Ziavras 
Lai-White I 
Lai-White II 

0.69 0.68 1.37 
0.67 
0.87 

6 
5 
:5 

Table 4.3: Finding the perimeter of multiple objects: pipelining I PE pei router 
node. (Times in cosec for CM-2.) 

Table 4.3 shows steady state results for the same image processing algorithm, 

assuming that pipelining is applied and that the number of active PEs attached 

to a single router node is initially one. More specifically. we assume that either 

multiple images are processed. where each image contains a single object. or a 

single image that contains multiple objects is processed. Results are not shown for 

the Stout algorithm as it can not be pipelined for the reasons discussed earlier. In 

spite of the limitations imposed by the SIMD mode of computation implemented 

on the Connection Machine. pipelining for this image processing algorithm is 

feasible clue to the fact that all of the operations carried out at different levels, or 

a subset of the operations for the base and the apex. are identical. Total in Table 

4.3 represents the amount of time it takes to produce a single output in steady 

state (i.e., all stages of the pipeline are full). Patel-Ziavras' algorithm yields the 

lowest performance of the three algorithms clue to the fact that the base level can 

not be simulated along with other levels. In fact. Table 4.3 shows that the time 

taken by the base level for Patel-Ziavras' algorithm is approximately half of the 

total time. In contrast. all of the pyramid's levels may be active simultaneously 

when Lai-White's algorithms are used. 

40 
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4.2.2 2D Convolution 

'Iwo-dimensional coin olut ion using t he pyramid stiuctuie was the second im-

age pi ocessing algorithm that we iniplemented on I he Connect ion Machine. The 

convolution algontlini convolve, akxk window of weighting coefficients with a 

x 2" image matrix. Let X = {.r, and IV = {ai,,,} he the image matrix and 

the window respectively. The goal is to compute I -  = {y, where 

with 0 < r. s < — At. This algorithm is very frequently applied in image 

processing. 

The convolution algorithm for the source pyramid structure is as follows. We 

assume the assignment of a single pixel per node in the base of the R)ramid. The 

smallest integer -; is then found for which 2' > k. Then the base of the pyramid 

is partitioned into square blocks of size 2' x 2'. Each such partition contains the 

leaves of a subpvramid whose apex is at level The weighting coefficients are then 

loaded into the upper leftmost part of each partition. This can be implemented on 

a pyramid machine using a top down process. assuming that the coefficients are 

contained in the apex 117]. On the Connection Machine, the coefficients are loaded 

using k2  broadcasting operations with appropriate sets of PEs selected each time. 

This part was not included in the total execution time of the presented results. 

The rest of the PEs in each partition receive a zero as the weighting coefficient 

if the window' size is smaller than the partition size. The PEs then multiply the 

weighting coefficient with the pixel value they contain and send the result to their 

parent. Patents at level 1 add the values they receive from their children and 

send the result to their patent. This process continues until the apexes of the 

subpviamids are readied. Each apex at level -; adds the values it receives horn 

its children and sends the result. through the necessary intermediat e PEs at lower 
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levels. to the leaf PE in the -impel leftmost corner of its partition. Each window at 

the base that contains the weighting coefficients is then shifted to the right once, 

multiplications are performed as above, the results are shifted to the left once, 

and the values are sent to the parents at level 1. The bottom-up and top-down 

processes described earlier are then applied, with the result now stored in the PE 

with offset (0,1) in the partition. To conclude, the convolution algorithm involves 

lateral shifts and multiplications at the base. bottom-up addition of numbers, and 

finally top-down transmission of final results. These steps are repeated 22-' times, 

which is equal to the total number of PEs in each partition. 

Results are presented in Table 4.4 for windows with k from 2 to 8. Note that 

the number of levels in the pyramids is not shown. This is because only levels 

0 through -y are involved in the algorithm. The results in Table 4 indicate that 

there are not any significant differences among the timings of the four mapping 

algorithms. Therefore. this observation suggests that Stout's and Patel-Ziavras' 

algorithms are more appropriate than Lai-White's algorithms due to the lower 

cost of the system that the former two algorithms require. The same table also 

shows the total time for lateral data transfers at level 0. 

Then an attempt was made to pipeline the convolution process. The only 

part of the entire process which can be pipelined is the bottom-up and top-down 

communication phases, while the weighting coefficients are multiplied with pixel 

values concurrently within each partition. 

The sequence of operations for this process is entirely different from the pre-

vious one. All the weighting coefficients are loaded in each partition from the 

front end as previously defined. Next all these coefficients are multiplied with the 

pixel values and the results are stored in an array within each PE. The window is 

laterally shifted to the right and the whole precess is repeated for PE(0.1) within 

each partition. This entire shifting and multiplication process is completed and no 
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! Lai-White I 
1 Lai-White II 

.3.3b 
3.36 

5.21 
4.82 

17.61 
17.89  
90.94 
21.90 

 

II 
j 2 x 2 

1 

, 1 Stout ! 
I[ Patel-Ziavras 

1
1 

Lai-White I j 
i Lai-White II j 

19.7S 
12.53 
18 55 
18.01 

109.81 

105.89 
116.51 
107 % 

 'I 
! 

II

I 

Stout ' 

I 

Patel-Ziavras I 
Lai-White I 
Lai-White II 1 

19.66 
12.66 
18.58 
18.01 

104.38 
103.56 
114.49 
106.17 

i Stout 
1 Patel-Ziavras 
! 1 Lai-White I ! 

Lai-White II 1 

46.69 
45.96 
69.38 
67.64 

577.16 
547.88 
593.91 
547.67 

.5 x 5 

1 Stout , 
Patel-Ziavras i 

I 
! Lai-White 1 1 

Lai-White II 1 

47.06 
45.81 
69.27 
67.48 

558.76 
518.26 
594 09 
54.7.67 {II  

b x 6 
!! 

Stout 
! Patel-Ziavras I 
II Lai-White I I 

Lai-White II 

 46.28 
46.82 1  
70.01 
67.66 ' 

554.14 
550.76 

I 599.93 
1 551.07  

,, 
1 I, 

Stout I 
, 

!, Patel-Ziavra,. 
1 - I 
1 ! Lai-White I ! 1 
jj Lai-White II !! 

49.21 
4.5.83 1 
69.26 1 
67 33 1 

! 343.16 
544.38 
584.81 
541.15 

 
8 x* 

II 
11 

Table 4.4: 2D convolution. 1 PE per router node. (Times in cosec for CM-2.1 
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bottom-up or top-clown communication takes place during this operation. Then 

all these results are sent to the coordinator PEs at level -, in a pipelined fashion. 

These values are loaded into an array at level 1. Finally. all the coordinator PEs 

at level ''t send all these values back to the leaf level PEs and these values are 

loaded within each partition in correct PE. This top-down communication phase 

is also pipelined. 

Execution times are improved for Lai-White's algorithms about 40 to 45 per-

cent. Results are much improved for larger window sizes (greater than 4). For 

window size 2 x 2, execution time is slightly increased. This is due to a different 

control structure in the main program. 

For Patel-Ziavras' algorithm, results are not much improved as compared to 

non-pipelined results. Pipelining is not implemented for window size less than 5 

because the benefit of the pipelining can not be obtained due to the fact that the 

base can not be active simultaneously with the other levels of the pyramid. 

Implementation of pipelining for this algorithm is similar to that of the Lai-

White's except that the bottom-up and top-down communication phases take two 

cycles. All the results are sent from the base to level 1 and then from level 1 to 

level -i . The same procedure is repeated for top-down communication. Control 

structure for this two-step pipelining procedure does not allow to take much ad-

vantage of pipelining. However, the results of the pipelining will be much improved 

for large window sizes. when level .-) will be at much higher level as compared to 

window sizes 5 to 8. Results are shown in Table 4.5 . 

4.2.3 Segmentation 

Segmentation is the process which partitions the image into regions with more or 

less homogeneous properties. A cooperative. iterative approach to segmentation 



Algorithms Total A x A. 

Patel-Ziavras 2 X 2 
Lai-White I 24.41 
Lai-White II 24.35 

Patel-Ziavras 3 x 3 
Lai-White I 83.68 
Lai White II 79.56 

Patel-Ziavras 4 x 4 
Lai-White I 83.57 

Lai-White II 79.03 

Patel-Ziavras 482.10 5 x 5 
Lai-White I 322.20 
Lai-White II :307.69 

' Patel-Ziavras 493.404 6 x 6 
Lai-White I 321.36 
Lai-White II 309.17 

Patel-Ziavras 500.56 - 7 
Lai-White I 329.:36 
Lai-White II 308.11 
Patel-Ziavras 481.65 8 x 8 
Lai-White I :320.83 
Lai-White II 307.59 

Table 4.5: Pipelining 2D convolution. 1 PE per router node. (Times in msec for 
CM-2.) 
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in which each process at a given iteration is used to adjust the other process at 

the next iteration is used here [21]. This approach uses an overlapped pyramid 

that implements 50 percent overlapping in each direction. Thus each node has 

foul parents and 16 children. A son-father relationship is defined between nodes 

in adjacent layers, but unlike other pyramids. this relationship is not fixed and 

may be redefined at each iteration. 

There are four time dependent variables associated with each node (PE): 

• c[7. j, 1][1] : the value of the local image property; 

• a[i . j, l] [t] : the area over which the property was computed; 

• p[i j, l][t] : a pointer to the node's father at the next higher level; 

• 6[i. J,  l][1] : the segment property, the average value for the entire segment 

containing the node. 

t is the iteration number. The value of c at each leaf level node is set equal to the 

corresponding image sample value. while the c value for each lower level node is 

the average of all 16 of the node's candidate sons. Iterations following the initial-

ization (t > 0) are divided into three phases. 

Phase.1: Son-father links are established for all nodes below the top of the pyra-

mid according to the following condition: 

If d[m] < d[n] for all 11 in. then p[i. I][t] = in. where d[u] is the absolute dif- 

ference between the c value of node [i. j. I] and its W I' candidate father. If two or 

mole of the candidate fathers are equally likely. then decision is made at random. 

Phase ?: The c and a values are computed bottom up on the basis of the new 

son-father links. 

For I = L. . j. l][t] = 1. c[i l][t] = image sample value I ( . a ). where L is the 
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Object Stout Patel-Ziavras Lai-White I Lai-White II Iterations 
I 246.68 255.78 919.76 212.04 5 
II 947.97 253.81 222.45 212.17 5 
III 352.78 351.65 310.76 322.55 
IV 353.57 353.56 309.29 321.74 8 
V 349.92 351.02 311.18 399.65 8 

Table 4.6: Image segmentation for five different objects. 1 PE per router node. 
(Times in msec for CM-2.) 

leaf level. 

For 1 > L.a[1.1,1](t]. sum of the areas of the linked children. 

c[7,j,/][t] = sum of the c values of linked children, a[i, j, l][t]. 

Phase 3: Segment values are assigned in a top down fashion. At the topmost 

level, the segment value of each node is set equal to its local property value 

s[i, j, /] [t] = c[z. d, lift]. 

For higher levels, each node's value is just that of its father. 

At the end of phase 3, the highest level segment values represent the current state 

for the smoothing-segmentation process. Any change in pointers in a given it-

eration will result in changes in the values of local image properties associated 

with pyramid nodes. These changes may alter the nearest father relationship and 

necessitate a further adjustment to pointers in the next iteration. Changes al-

ways shift the boundaries of segments in a direction which makes their contents 

more homogeneous. so  convergence is guaranteed. The iterative process is con-

tinued until no changes occur from one iteration to the next. The results for the _ 

segmentation problem are shown in Table 4.6. 

Results for all four mapping algorithms are almost the same The execution 

time for Stout's and Patel-Ziavras.  algorithms are higher than that of Lai-White's 

algorithms. This is clue to an extra pyramid level for Stout's and Patel-Ziavras' 
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algorithms. Five different objects are used for the segmentation and estimation 

of image region properties. All links become stable after 5 or 8 iterations. These 

results suggest the use of Stouts and Patel-Ziavias' algorithms for such apphca-

lions because they require a smaller dimension hvpercube (i.e.. H2„) as compared 

to the hvpercube required for Lai-White's (i.e., H2n+1)• 



CHAPTER 5 

CONCLUSIONS 

This thesis has carried out a comparative analysis of algorithms that map pyra-

mids onto hypercubes. The comparative analysis incorporates both analytical 

techniques and actual runs on a Connection Machine CM-2 system composed of 

16K processors. The results show that while Stout's and Patel-Ziavras' algorithms 

require target systems with approximately half the cost of those required by Lai-

White's algorithms, Stout's algorithm is not capable of simulating multiple levels 

of the pyramid simultaneously. Since a wide variety of pyramid algorithms can 

take advantage of concurrent multilevel computations, this restriction is a major 

drawback of Stout's algorithm. However, Stout's algorithm has the lowest dilation 

and congestion which result in the lowest communication times between adjacent 

levels. 

In contrast, Patel-Ziavras' algorithm does not impose this restriction. For con-

current multilevel computations, the results on the Connection Machine indicate 

that this algorithm achieves very good performance when compared to Lai-White's 

algorithms, at half the cost. 

When one level of the pyramid is considered to be active at a time. Patel-

Ziavras' and Lai-White's algorithms perform almost the same because of very 

similar communication times between adjacent levels. Therefore, Patel-Ziavras' 
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algorithm is a compromise between the pair of Lai-White's algorithms and Stout's 

algorithm with respect to cost and performance. 

The performance of Patel-Ziavras' and Lai-White's algorithms is also inves-

tigated for pipelined processing. Stout's algorithm can not implement pipelin-

ing because a subset of PEs simulate all the levels of the pyramid. Lai-White's 

algorithms perform better than Patel-Ziavras' algorithm when it is required to 

simulate a pyramid with all of its levels active at the same time. Patel-Ziavras' 

algorithm imposes a restriction on the base of the pyramid which can not be active 

simultaneously with the other levels. Therefore, two pipelined stages are required 

for Patel-Ziavras' algorithm. One stage works between the base and the next 

higher level, while the other stage works for all of the remaining levels, except 

the base. Good performance of pipelined processing can be obtained for Patel-

Ziavras' algorithm if a large pyramid structure is used, i.e., the apex is at a very 

high level. 
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