Copyright Warning \& Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page \# to: last page \#" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

COMPARING TECHNIQUES OF MAPPING PYRAMID ALGORITHMS ONTO THE HYPERCUBE: A CASE STUDY FOR THE CONNECTION MACHINE

by
Muhammad Ali Siddiqui

1 Thesis
Submitted to the Faculty of
New Jersey Institute of Technology 11 partial fulfillment of the requirements tor the degree of
Naster of Science in Electrical Engineering
May 1992

APPROVAL PAGE

Comparing Techniques
of Mapping Pyramid Algorithms onto the
Hypercube: A Case Study for the Connection Machine
by
Muhammad Ali Siddiqui

Dr. Sotirios G. Ziavras. Adviser
Assistant Professor of Electrical and Computer
Engineering, NJIT

Dr. John Carpinelli, Committee Member
Assistant Professor of Electrical and Computer
Engineering, NJIT

[^0]
ABSTRACT
 Comparing Techniques
 of Mapping Pyramid Algorithms onto the Hypercube: A Case Study for the Connection Machine by
 Muhammad Ali Siddiqui

The pyramid structure is most widely used for low-level and intermediate-level image processing and computer vision because of its efficient support of both local and global operations. However, the cost of pyramid computers (PC) may be very high. They also do not support the efficient implementation of the majority of the scientific algorithms. In contrast, the hypercube network has widely been used in the field of parallel processing because it offers a high degree of fault tolerance, a small diameter and rich interconnection structure that permits fast communication at a reasonable cost. Thus, several algorithms have been developed for the efficient simulation of pyramids on hypercubes. Stout [2], Lai and White [3], and Patel and Ziavras [14] have proposed four different algorithms that map pyramids onto the hypercube. This thesis carries out a comparative analysis that involves all these algorithms. The comparison is based on results derived with the application of analytical techniques and actual program runs. A Connection Machine CM-2 system containing 16 K processors was used to derive the latter type of results. Stout's algorithm is cost effective, as it requires a hypercube with a number of PEs which is equal to the total number of nodes in the base of the pyramid. Thus. it needs a $2 n$-dimensional hypercube to map a pyramid with $n+1$ levels. Lai and White have proposed two mapping algorithms. They require douole the number of PEs used by Stout's algorithm. Finally, the algorithm proposed by Patel and Ziavras requires the same number of PEs as Stout's algorithm but allows the simultaneous simulation of multiple levels. as long as the
leaf level is not included in the set of the levels required to be active at the same time. A comparative analysis is carried out for all four mapping algorithms through the incorporation of analytical techniques and results obtained on the Connection Machine system CM-2 for some important image processing algorithms.

BIOGRAPHICAL SKETCH

Author: Muhammad Ali Siddiqui
Degree: Master of Science in Electrical Engineering

Date: May, 1992

Undergraduate and Graduate Education:

- Master of Science in Electrical Engineering, New Jersey Institute of Technology, Newark. NJ. 1992
- Bachelor of Science in Electronics Engineerıng, NED University of Engneering and technology, Karachi, Pakistan, 1988

Major: Electrical Engıneerıng

Positions Held:
5/91-Research Assistant. Electrical and Computeı Engmeering. New Jersey Instıtute of Technology, Newark NJ.
9/91-Graduate Assistant. Computer Maintenance Facility. New Jersey Institute of Technology, Newark, NJ.
1/92-CO-OP Engıneer. Glatt Air Techniques. Ramsey. N.J.

> This thesis is dedicated to my parents
> whose love and inspiration instilled in me the belief that what I set out to accomplish I can.

ACKNOWLEDGEMENT

I wish to express my sincere appreciation and deep gratitude to my academic advisor Dr. Sotirios G. Ziavras, Chairman of the graduate committee, for his helpful suggestions and constructive criticism.

Special thanks to Dr. John Carpinelli and Dr. Edwin Hou for serving in my thesis committee and for their valuable suggestions.

I would also like to thank Dr. Larry S. Davis, Director of the University of Maryland Institute for Advanced Computer Studies (UMIACS) for his permission to access the Connection Machine CM-2 System in UMIACS.

I wish to thank Nayyar for her continuous help, encouragement and sacrifices she made for me, without which this work would never have been possible.

And finally, a thank you to Ashraf Siddiqui for his support, inspiration and valuable suggestions.

TABLE OF CONTENTS

1 INTRODUCTION 1
1.1 Requirements of Image Processing 1
1.2 Pyramid Structure 2
1.3 Pyramid Algorithms 3
1.4 Motivation and Objectives 5
1.5 Thesis Outline 7
2 THE HYPERCUBE STRUCTURE 8
2.1 Topology 9
2.2 Applications 11
2.3 The Connection Machine 16
3 MAPPING PYRAMIDS ONTO HYPERCUBES 19
3.1 Performance Measures 19
3.2 Stout's Algorithm 20
3.3 Patel and Ziavras Algorithm 22
3.4 Lai-Thites Algorithm I 24
3.5 Lai-Whites Algorithm II 29
\pm COMPARATIVE ANALYSIS 3.5
4.1 Analytical Techniques 3.5
4.2 Connection Machine Results 36
5 CONCLLESIONS 49
6 APPENDIX 31
7 BIBLIOGRAPHY 71

LIST OF TABLES

Table Page
4.1 Finding the permmeter of an object: one level actuve at a tume. 16 PE/Router 39
4.2 Finding the perimeter of an object: one level active at a time. 1 PE/Router 39
4.3 Finding the perimeter of multiple objects: pipelining. $1 \mathrm{PE} /$ Router. 40
4.4 2D Convolution. 1 PE/Router. 43
4.5 Pipelinig 2D Convolution. 1 PE/Router. 45
4.6 Image segmentation for five different objects. 1 PE/Router. 48

LIST OF FIGURES

Figure Page
1.1 The two-level pyramid 4
2.1 Hypercubes of different dimensions 10
2.2 A 4-cube formed from two 3-cubes 12
2.3 A linear array mapped onto the 3 -cube 14
2.4 Mapping of an 8×4 mesh 15
3.1 Mapping the P_{3} pyramid onto the H_{6} hypercube with Stout Algo- rithm 22
3.2 Mapping the P_{3} pyramid onto the H_{6} hypercube with Patel-Ziavras Algorithm 24
3.3 Embedding of two level subpyramid 26
3.4 The image of P_{1} under $f_{1}^{1^{\top}} \cdot f_{1}^{H} \cdot f_{1}^{\mathrm{I}^{\mathrm{j}} H}$ 28
3.5 The recursive definition of f_{k}. 30
3.6 $\quad P_{1}\left(k-1 . x_{1} . x_{2}\right)$ and its images under $g_{1} \cdot g_{1}^{H} \cdot g_{1}^{\mathrm{V}} \cdot g_{1}^{\mathrm{I}^{\prime} H}$ 32
3.7 Mapping of Lai-White's algorithm II 33

CHAPTER 1

INTRODUCTION

1.1 Requirements of Image Processing

One of the most important, difficult, and computationally intensive problems in scientific computing is image processing and computer vision. Computer systems used for image processing range from microprocessor devices to computer systems capable of performing computationally intensive functions on large image arrays. Image processing and computer vision algorithms employ a very broad spectrum of techniques from several areas such as signal processing, advanced mathematics, graph theory, and artificial intelligence. The computational requirements to perform algorithms from these fields are tremendous when executed individually, and when they need to be integrated in a meaningful way to perform a broader function in a reasonable amount of time, the computation becomes almost intractable [23].

The principal parameters influencing the structure of a computer are the intended application and the required data throughput. Therefore, the question arising here as what kind of architecture can provide the tremendous amount of processing power required by image processing and computer vision. Parallel processing, which has progressed tremendously in the past decade, seems to be
the consensus approach to proriding the necessary computational power. Parallel processing holds the potential for computational speeds that surpass by far those achievable by technological adrances in sequental computers. This potential is predicated on two assumptions, namely. that many computations can take place concurrently and the time spent in data exchanges between these computations is small. In order to meet these assumptions, algorithms must be partitioned into computational blocks that can execute in parallel and have communication requirements efficiently supported by the target parallel computer. Fortunately, most image processing algorithms are characterized by massive parallelism, so spatial decomposition of an image provides a natural way of generating low-level parallel tasks. For higher level analysis operations, parallelization may be based on other image characteristics and may be data dependent.

Another important requirement of image processing is real-time processing of image data. It is useful to consider why parallel architectures are so important for image processing. Clearly any algorithm can be implemented on a sequential computer. So. why is a porverful minicomputer or mainframe not adequate? The answer is that the general-purpose computers can not easily exploit the parallelism in an arbitrary algorithm and can not process the algorithm in real-time. The whole essence of using parallel architecture for image processing is to exploit the special forms of parallelism found in the image data and to process them in realtime. Parallel architectures can not only out-perform powerful minicomputers and mainframes but they can do so at a much lower cost.

1.2 Pyramid Structure

The pyramid structure is composed of successive lavers of mesh-connected twodimensional arrars. where the size of the arrays decreases with the increase of the
level number (assuming that the base corresponds to level 0). In addition, each node at any level. except for nodes at the lowest level. is directly connected to four children located at the immediately lower level (i.e., the reduction between pairs of neighboring levels is 2×2. and the size of each array is $1 / 4$ the size of the array at the immediately lower level [15]). The pyramid structure is appropriate for low-level and intermediate-level computer vision algorithms because of its efficient support of both local and global operations [2, 9. 10, 15]. It is well known that low-level and intermediate-level image processing and computer vision are characterized by local and global operations, with the majority of them being local. In addition, this structure is capable of supporting the efficient implementation of multilevel solvers which involve local processing on different scales with various inter-scale interactions [19]; such solvers are used in the solution of partial differential equations, constrained optimization, image reconstruction [18], multivariate interpolation, etc.

In the rest of the discussion P_{n} denotes a standard pyramid with $2^{n} \times 2^{n}$ nodes at its base. Such a prramid has $n+1$ levels. Fig. 1.1 shows the P_{2} pyramid.

1.3 Pyramid Algorithms

The pyramid architecture provides straight forward implementation of divide-andconquer techniques and efficiently carries out both local and global operations. However. the effectireness and performance of the pyramid architecture is limited to applications that use such techniques and/or operations. Low-level and intermediate-level image processing and computer vision are candidate application domains [23].

Figure 1.1. The two-level $\left(P_{2}\right)$ pyramid.

Several image processing algorithms have been proposed for implementation on the pyramid structure. A brief discussion of various pyramid algorithms follows. The Counting algorithm: The counting of connected regions is needed for object recognition tasks. Euler. the mathematician. developed an algorithm that can characterize any polygon. This algorithm is used to identify the connected regions within an image. The image is loaded into the base of the prramid and some logical functions are performed on the vertices and edges of the object to recognize the connected regions [24].

Image Smoothing algorithm: One of the most common operations performed on images is to blur or smooth the image brightness values. Smoothing enhances an image by reducing the effect of noise so that subsequent processing is simplified and regularized. In addition. the amount of smoothing can be adjusted so as to optimally set the resolution at which to locate image features (e.g.. edges and textures) which naturally occur at a variety of spatial scales [24]. The Gaussian pyramid may be used for image smoothing: each level of the Gaussian pyramid represents a smoothed version of the original image.

Object Segmentation: Segmentation as used here means to separate connected regions of a binary image into separate memory planes. so that each region can be analyzed individually. One frequently used algorithm for segmentation is regionfilling; that is. an expansion that starts at a randomly chosen object pixel and continues until the whole region has been filled. When this idea is applied to a pyramid structure. the timing is logarithmic for images with large blobs.

1.4 Motivations and Objectives

The hypercube is a general purpose topology which can very efficiently simulate other frequently used structures. like the mesh. tree. pyramid. etc. As a conse-
quence, hypercube-hased machines have become commercially available. such as the Intel iSPC', NCL'BE. Comection Machine. etc. In contrast. powerful pyramid machines are not cost-effective. are difficult to build with the current technology, and have very special and limited applications. Therefore. several algorithms to map the pyramid onto the hypercube have been developed. Such algorithms have been presented by Stout [2], Patel-Ziavras [14], and Lai-White [3]. These algorithms are characterized by different costs and performances. The algorithms proposed by Stout and Patel-Ziavras require an $H_{2 n}$ hypercube to simulate a P_{n} pyramid with $2^{n} \times 2^{n}$ PEs at its base. In contrast. two algorithms proposed by Lai and White require a $H_{2 n+1}$ hypercube to simulate the same pyramid. However, Stout's algorithm does not allow more than one level of the pyramid to be active at the same time. On the other hand. Patel-Ziavras algorithm allows all of the levels, except the leaf level, to be active at the same time. Lai-White's both algorithms allow all of the prramid levels to be active at the same time but they require twice as many PEs as required by Stout's and Patel-Ziarras` algorithms.

The implementation of these mapping techniques on a real hypercube system under various conditions becomes absolutely necessary for a comparative analysis.

The main objective of this research is to implement these mapping algorithms on a real system and then run some representative image processing applications to measure their performance. A Connection Machine C \backslash - 2 system containing 16 K processors will be used to derive results. Results are obtained for three important image processing algorithms: finding the perimeter of an object. convolution and segmentation.

1.5 Thesis Outline

This thesis is organized as follows. Chapter 2 presents the hypercube topology and relevant applications. Detailed description of the Connection Machine system, which is used to derive the results for these algorithms. is also included. Chapter 3 discusses the four mapping algorithms in detail. It also introduces several performance measures which are important for performance analysis techniques. Comparative analysis for all these algorithms is also carried out in Chapter 4 using Connection Machine results. Finally. Chapter 5 presents conclusions.

CHAPTER 2

THE HYPERCUBE STRUCTURE

Various parallel processor structures have been used in parallel systems. In recent years, hypercube computers have become popular parallel computers for a variety of applications due to their powerful network which is characterized by a small diameter, regularity and high degree of fault tolerance. Most of the other important topologies like the linear array, mesh, ring and pyramid can efficiently be mapped onto the hypercube [22]. Therefore, most of the applications for these structures can be implemented on the hypercube very efficiently. Formally, an n-dimensional hypercube contains 2^{n} nodes. Nodes are connected directly with each other if and only if their binary addresses differ by a single bit. Hypercubes of zero, one, two and three dimensions are shown in Figure 2.1.

Hypercube computers are loosely coupled parallel processor systems based on the binary n-cube network, also known as cosmic cube, n-cube. binary n-cube. Boolean n-cube. etc. Various parallel computers have been developed using this structure. The Connection Machine system, which is used to derive the results in this thesis, $1 s$ one of the most well known systems and is manufactured by Thinking Machne Corporation. It operates in the SIMD mode and may contain
up to 65.536 PEs. The topological properties of the hypercube and the Comection Machine architecture are presented in the following sections of this chapter.

2.1 Topology

In the d-dimensional hypercube or d-cube H_{d}, each processor is directly connected with d neighboring processors. Each processor has a unique $d-b y t$ binary address in the interval 0 to $2^{d}-1$. In a hypercube computer. PEs are placed at each vertex of the hypercube and the edges of the hypercube represent communication links between PEs. Each PE has its local memory: which makes every PE an independent unit. In the SIMD mode. this memory only contains data whereas in the MIMD mode this memory also contains instructions. Hypercube PEs are homogeneous because all the nodes can be treated equally: any hypercube can be mapped onto itself by mapping a node to any other. When a node 1 is mapped onto another node \jmath, the addresses of all nodes are changed and the new address of a node is found by taking the XOR of its prerious address and the address of node.

The communication time between two PEs of the hypercube depends on the number of links between them. The maximum communcation time between any two PEs in the d-dimensional hypercube is $O(d)$ because the maximum number of intermediate links is d. The total number of 1 s in the NOR between the binary addresses of two PEs gives the maximum number of communication links between these PEs. If PE I is connected with PE X in its, th dimension. then the addresses of I and Y will differ only in the ath bit position.

The hypercube can be partitioned into smaller dimensional hypercubes and a d-dimensional hypercube can be constructed recursirely from lower dimensional hypercubes: for example if two $(d-1)$ - dimensional hrpeicubes are combined.

0 Dimension

1 Dimension

Figure 2.1. Hypercubes of different dimensions.
they produce a d-dintensional hypercube. Consider two identical ($d-1$) demenszonal hypercubes with labels from 0 to $2^{d-1}-1$: by joining vertices with the same addresses. a $d-d$ mensional hypercube is formed. Figure 2.2 shows how two 3 -cubes are combined to produce a 4 -cube.

To summarize:

1. Any d - cubt can be tiered in d possible ways into two $(d-1)$ - nubcubts.
2. There are $d!\times 2^{d}$ ways of numbering the 2^{d} nodes of the $d-c u b \in$.
3. The maximum distance between any two nodes in the $d-c u b \in$ is equal to d. which is also called the diameter of the hypercube.
4. Any two processors in the d-cube can communicate with each other. In order to communicate, data has to travel at least a distance which is equal to the number of 1 s in the XOR between the addresses of these PEs (this is known as the Hamming distance $\mathrm{H}(\mathrm{X}, \mathrm{Y})$ between PEs X and $Y)$.

2.2 Applications

Various topologies can be mapped efficiently onto the hypercube. There are basically two reasons for the importance of such a mapping.

1. Some algorithms may be developed for some other topology for which they fit perfectly. Then. one might wish to implement the same algorithm on the hypercube with little programming effort. If the original architecture can efficiently be mapped onto the hypercube then this will be achiered easily.
2. A given problem may hare a well defined structure. which requires a particular pattern of communication. Mapping that pattern onto a hypercube may result in bhort communication time.

Figure 2.2. A 4 -cube formed from two 3 -cubes.

Some important mappings are discussed in the following section.

2.2.1 Mapping Rings onto the Hypercube

Consider a ring structure containing 2^{d} PEs. Also consider a target d-dimensional hypercube. The ring can be mapped onto the hypercube in such a way that the proximity property is preserved (i.e., any two adjacent vertices of the ring map onto two neighboring nodes of the hypercube). Another way of risualizing this problem is that we are seeking a string of length $N=2^{d}$ that crosses each node of the hypercube once and only once.

According to the definition of the hypercube network. any two adjacent nodes have binary addresses that differ only by one bit. This means that the hypercube addresses should be represented by a sequence of $d-b_{t} t$ binary numbers such that any two successive numbers have only one different bit. A binary sequence with such a property is the reflected Gray code.

The mapping of the 8 -node ring onto the 3 -dimensional hypercube is shown in Fig. 2.3. This figure shows the linear array with the extra connections which are present in the hypercube.

2.2.2 Mapping the Mesh onto the Hypercube

One of the most important reasons that the hypercube is popular is that meshes can easily be mapped onto hypercubes. Consider a n-dimensional mesh that has cize m_{2} in each dimension which is a power of 2 (i.e.. $m_{t}=2^{\rho} \imath$).

Now consider the d-dmensional hypercube on which this mesh is to be mapped. Let $d=p_{1}+p_{2}+\ldots+p_{n}$. where 2^{d} is the total number of processors in the n-dimensonal grid. which in also the total number of nodes in the hrpercube.

Figure 2.3. A linear array mapped onto the 3 -cube.

Figure 2.4. Mapping of an 8×4 mesh.

In order to perfectly map the mesh onto the hypercube. neighboring nodes in the mesh must be assigned to nemghboing noden in the hrpercube. In the previous section. the mapping of the one-dmensional mesh (i.e.. the hnear array or ring) was discussed. The mapping of higher dimenson meshes is done as follows. The nodes in each dimension are numbered sequentally using the respective reflected Gray code. A node of the mesh is mapped onto the node in the hypercube whose address is obtamed br concatenating the numbers of the particular node for all the dimensions. For example. Fig. 2.4 shows a two-dimensional 8×4 mesh and the appropriate Giay codes

2.3 The Connection Machine

The Connection Machine is a data parallel computing system. Data parallel computing associates one processor with each chata element. This computing strle exploits the natural computational parallelism inherent in many data-intensive problems.

The Comection Machme 14 an integrated srstem of hardware and softwate. The hardware elements of the sristem include front-end computers that provide development and execution enviromment for the user's software. a parallel processing unit of up to 64 K processors (PEs) that execute data parallel operations in the SIMD mode. and a high performance data parallel I/O srstem. Each PE has its own local memory of 8 -kilobytes which is bit-addressable and its word length is one bit. The hypercube is the dommant topology in the srstem. More specificalls: a 10-dimensional hrpercube is the backbone (router) of the communication network. Each rertex of this hepercube contans a router node (commumication processor) to which sixteen PEs are attached [16]. The largest Connection Machine CM-2 system contans $64 \mathrm{~K}^{\circ}$ PEs and router nodes are located at the rertices
of a 12-dimensional hrpercube. In addition. the C'M-2 hardwate moludes specific communications hardware the router and the NETS grid. These communication techmques are discussed in detail in the following sections.

Message passing is implemented in parallel: algorithmically selected subsets of PEs are allowed to simultaneousli send data into the local memories of other PEs or fetch data from the local memores of other PEs into their own. The communications hardware is also capable of combining multiple messages gong to the same destination PE br applying some arıthmetic or logical combining (1.e.. reduction) operation. The destination PE then recelres the result The router nodes forward messages and also perform some drnamic load balancing. Processing of messages by the router is divided into stages which are called petit cycles. A petit crole is just enough to process all the bits of a destmation address and a message. This is also true for a message that traverses all twelve or ten dimensions of a 64 K or a 16 K machine respectively. Therefore a petit cvcle consists of multiple ALC/route cycles. A single communication pattern may consume a single petit cycle if only a small number of PE are inrolved. In contrast. if almost all of the PEs are actire. then many petit cycles may be consumed.

The following sections describe these two communication technques in more detanl.

2.3.1 The Router

The most general communication mechansm of CM-2 is the router. which allows any processor to communicate with anv other processor. One mav think of the router as allowing every processor to send a message to any other processor. with all messages being sent and delivered at the same time. Alternativelr: one may think of the router as allowing every processor to access anv memory location within the parallel 0 unit with all processors making memory accesses at the same
time.
Each ($\mathrm{M}-2$ processor chip contams one router node. which serves 16 data processors on the chip. The router nodes on all the processors are wired together to torm the complete router network. Each message travels from one router node to another until it reaches the chip containng the destination processor. The router nodes automatically forward messages and perform some dynamic load balancing. It is possible for a message to traverse many dimensions, possibly all twelve. in a single petit cycle. prorided that contention does not cause it to be blocked. The message data is forwarded through multiple router nodes in a pipelined fashion. A message that cannot be delivered by the end of a petit cycle is buffered in whatever router node it happens to have reached. and continues its journey during the next petit cycle.

2.3.2 The NEWS Grid

Communication operations between processors that are nearest neighbors within a Cartesian grid are much more efficient than the general router mechanism because ther exploit three different transfer methods. two of which have special hardware support[16].

The fully configured C'M-2 system (with 64 k PEs) has 2^{12} processor chips with connecting wires forming a boolean 12-cube: these are the same physical wires that serve the general router mechanism. A subset of these wires can be chosen so that ther connect the 2^{12} chips as a two-dimensional grid of shape. The hardware is flexible enough to accommodate any shape. For example the per-chip permutation circuit can organize its 16 phesical processors as 8×2. or 1×16. or $4 \times 2 \times 2$. or $2 \times 2 \times 2 \times 2$. and so on. Due to this specialized hardware support. the JEWS grid of any hape or number of dimensions can be handled with great -peed and efficiencr:

CHAPTER 3

MAPPING PYRAMIDS ONTO HYPERCUBES

A first level comparison of various embedding is enabled by the introduction of three measures of the cost of graph embeddings; namely expansion, dilation, and congestion. Before we discuss the mapping algorithms, these performance measures are presented.

3.1 Performance Measures

Let the function $h: G \rightarrow G^{\prime}$ represent the mapping of the source graph G onto the target graph G^{\prime}. It is a mapping of the vertices of G to the vertices of G^{\prime} in a one-to-one or many-to-one fashion. The three measures are then defined as follows [3].

Expansion: The expansion of h is the ratio $\frac{\left|V\left(G^{\prime}\right)\right|}{|V(G)|}$, where $V(G)$ and $V\left(G^{\prime}\right)$ are the vertex sets of G and G^{\prime} respectively, and $|V(G)|$ and $\left|V\left(G^{\prime}\right)\right|$ are the numbers of elements in those sets. When $\left|V\left(G^{\prime}\right)\right| \geq|V(G)|$, the expansion measures how much of the target graph G^{\prime} is not assigned nodes from the source graph G. The closer the value of this measure to one, the smaller is the portion of unused resources in G^{\prime}.

Dilatom: When two neighboring nodes from G ate mapped onto two distinct nodes in $G^{\prime \prime}$. the dilation of the edge comecting the two noder in $(i$ is the length of the corresponding path in $G^{\prime \prime}$. The maximum dilation is the maximum length of such a path in $G^{\prime \prime}$. The dilation measures the increase of the communcation overhead when compared to one-hop transfers in the source graph. Of course. the smaller the value of the dilation is the lower the communication overhead associated with the mapping h.

Congestion: The congestion is the number of edges in G with the same image in G^{\prime}. The maximum number of edges in G with the same image in G^{\prime} is the maximum value of the congestion for the chosen mapping h. The smaller the value of the congestion, the less amount of time that messages will have to wait in the queues of intermediate target PEs for communication channels to become available.

3.2 Stout's Algorithm

The mapping algorithm which was presented by Stout [2] embeds the P_{n} pyramid into the $H_{2 n}$ hypercube. Therefore the total number of nodes in the hypercube is equal to the number of nodes in the base of the prramid. Since a prramid with a base of size $2^{n} \times 2^{n}$ contains a total of $\left\lfloor\frac{2^{2(n+1)}}{3}\right\rfloor$ nodes. the expansion is less than 1. A one-to-one mapping of nodes from the base of the prramid onto PEs of the hypercube is accomplished as follows. The n-bit reflected Gray code is used to encode separately the rows and columns of the base. The binary addresses of the corresponding PEs in the hypercube are found br either interlearing or concatenating the bits of the encoded row and column numbers. This process
produces a perfect mapping for the base of the prramd: that is. all three measures associated with the cost of the base's mapping are optimal (i.e.. ther are equal to 1). Every node at the mmediately higher level of the pyramid (i.e.. level 1) has four children at the leaf level (i.e. level 0). and as a consequence one $P E$ from each square of four PEs is chosen to simulate the parent node. PEs having the least significant bit of their encoded row and column numbers equal to 0 are chosen to represent level 1 nodes of the pyramid. In general. PEs haring the lower k bits of therr encoded row and column numbers equal to 0 will simulate nodes from level k of the pyramid. Thus. one of the children will use two communication links when sending data to 1ts parent (i.e.. the dilation of such a data transfer is equal to two). Fig. 3.1 shows the mapping of the P_{3} prramid onto the H_{6} hypercube: the numbers within the squares represent level numbers. This way. the dilation of all lateral edges in the prramid is equal to one for all of the levels. However. the maximum dilation of this mapping is equal to two and corresponds to edges connecting pairs of parents and children as discussed above.

The two significant adrantages of this mapping are the smallest possible resultant dilation and the relatively small number of PE in the hrpercube (more specificall: the total number of PEs in the target hrpercube is smaller than the total number of nodes in the source pyramid). The maximum congestion of this mapping is equal to three.

Since a single hypercube PE may be used to simulate a number of pyramid nodes from different levels (for example. the PE with row number 0 and column number 0 is used to simulate nodes from all levels of the prramid). the hypercube is not capable of simulating multiple levels of the prramid at the same time. In fact. if many levels of the prramid need to be active simultaneously. a hypercube PE will not only be incapable of simulating nodes from several lerels of the prramid simultaneously but may spend some extra time in switching from one simulation to

RGC	000	001	011	010	110	111	101	100
0000	0.1 .2 .3	0	0	0.1	0.1	0	0	0.1 .2
001	0	0	0	0	0	0	0	0
011	0	0	0	0	0	0	0	0
010	0.1	0	0	0.1	0.1	0	0	0.1
110	0.1	0	0	0.1	0.1	0	0	0.1
111	0	0	0	0	0	0	0	0
101	0	0	0	0	0	0	0	0
100	0.1 .2	0	0	0.1	0.1	0	0	0.1 .2

Figure 3.1: Mapping the P_{3} prramid onto the H_{6} hypercube with Stout's Algorithm. (RGC : 3-bit Reflected Gray ('ode.)
the next one: in addition. the storage space needed to store data for the simulated nodes may become prohibitively large.

Algorithms that keep active all. or a large subset. of the pyramid's levels most of the time are common; for example, algorithms that implement pipelining fall into this category [13]. However, this mapping of the prramid does not consume prohibitively long time if the prramid algorithm proceeds level by level: as discussed earlier. the only delay occurs during the communication of values between parents and one of their children.

3.3 Patel-Ziavras' Algorithm

Similar to Stout's algorithm. the mapping algorithm proposed by Patel and Ziarras [14] maps the P_{n} prramid onto the $H_{2 n}$ hypercube. Howerer. in contrast to Stout's Algorithm, this algorithm allows multiple levels of the prramid to be active simultaneously. More specifically. it allows any subset of levels. excluding the leaf lerel. to be active at a time. The simulation of the leaf level excludes the simultaneous simulation of any other level in the prramid because the total num-
ber of leat nories in the same as the number of PEs in the hrpercube The mapping algorithm operaten as follows. Smmarly to btout algonthm. the refiected Giar code 19 used to mdependently encode the row and column numbers of the leat level. A perfect mapping 14 then produced for this level br either concatenating or mterlearing the bits of the encoded row and column numbers of the nodes 1 m order to find the addresses of the corresponding target PEs in the hrperculue. The mapping of level 1 nodes 1 also smilar to the mapping produced br ctout. More specifically: the PE s of the hrpercube chosen to cimulate parents of leat nodes correspond to encoded row and column numbers that have then least ugnincant bit equal to 0 . For each set of four PEs representing sibhng nodes at level 1 of the prramed which have a common parent at level 2 . a $P E$ is again chosen to represent their parent. The PE chosen to serve as the parent is neighbor to one of the PEs representing the children and all parent PEs for level 2 form mirror images in squares outhed by their children. This procedure is repeated until the apex of the prramid is reached. For example. as shown in Fig. 3.2. the leaf lerel nodes of the P_{3} prramd are smulated br all $\underline{2}^{n}$ PEs of the H_{5}, hrpercube iusing a one-to-one asbgment, There are sxteen groups (squares! of 2×2 PEs at the leaf level that have a common parent at level 1. The parent at the next hoher level (i.e.. level 1) of the children in such a square 15 smulated br the PE marked with 1 in the square. These PEs marked with 1 are again grouped into groups of four PEs that have a common parent. Parents at the next higher level are simulated by the PEs marked with 2. Finalls. the parent at the next higher level (i.e.. level 3) of the rhildren marked with 2 is smmulated br the PE marked with 3. Thus. PEs marked with 0.1.2 and 3 simulate nodes from levels 0.1 .2 and 3 respectirely of the P_{3} prramid. Eince PEs that simulate different levels of the prramid. except for the leaf level. are distinct. any subset of prramid levels that does not include the leaf lerel can be smulated simultaneously

RGC	000	001	011	010	110	111	101	100
000	0.1	0.2	0.3	0.1	0.1	0	0.2	0.1
001	0	0	0	0	0	0	0	0
011	0	0	0	0	0	0	0	0
010	0.1	0	0	0.1	0.1	0	0	0.1
110	0.1	0	0	0.1	0.1	0	0	0.1
111	0	0	0	0	0	0	0	0
101	0	0	0	0	0	0	0	0
100	0.1	0.2	0	0.1	0.1	0	0.2	0.1

Figure 3.2: Mapping the P_{3} prramid onto the H_{6} hypercube with Patel-Ziarras algorithm. (RG C. 3-bit Reflected Gray C'ode.

The maximum dilation of the mapping for an edge connecting a parent at level 1 and one of its children at level 0 is two (as in Stout's algorithm). However. the maximum dilation for higher levels is equal to three. In general. both the maxımum dilation and the maximum congestion associated with this mapping algorithm are equal to three

3.4 Lai-White's Algorithm I

Two algorithms uggested br Lai and White [3] for mapping a pyramid onto a hypercube map distinct nodes of the pyramid onto distinct PEs of the hypercube while maintainng mınmal expansion. More specifically: ther requre an $H_{2 n+1}$ hypercube for the mapping of the P_{n} prramid (this is the smallest allowable hypercube size if distinct nodes of the pyramid need to be mapped onto distinct PEs of the hypercube). This subsection and the next one describe these two mapping algorithms. Their first mapping algorithm is recursive and yields maximum congestion two and maximum dilation three. It starts by definme an embedding function for the two-level 0 with apex (2.0 .01 : the elements of the triplet repre-
sent the level number. the row position, and the column position respectrely of the node. It then applies a recurcme function in order to derive the mapping of lower level 0 until the base is reached. This technique results in the mapping of the leaf nodes. The mapping of higher level nodes is then achiered with the application of a bottom-up approach. Before we briefly present the algorithm. some definitions become pertinent. In addition. we need to emphasize that contrary to our up to this point notation. for the sake of simplicity the following description assumes that the apex is level 0 while the base of the pyramid is level n (i.e.. the numbering of levels starts from the top). The embedding $f_{1}: P_{1} \mapsto H_{3}$ of the two-level subpyramid. as illustrated in Fig 3.3, is first defined as:

- $f_{1}(0,0,0)=000$,
- $f_{1}(1.0 .0)=010$,
- $f_{1}(1,0.1)=110$.
- $f_{1}(1.1,0)=011$. and
- $f_{1}(1.1 .1)=111$.
where the triplets represent the addresses of nodes in the source pyramid and the binary numbers on the 1 side of the equations are the binary addresses of PEs in the target cube. This process maps all four children of the apex onto a side of the cube which is opposite from the side containing the apex. Then. three additional embeddings are defined through vertical. horizontal, and diagonal exchanges of children on the cube side suggested by f_{1}. The new embeddings are called the reflections of f_{1} and are denoted by $f_{1}^{\mathrm{V}} . f_{1}^{H}$. and $f_{1}^{\text {VH }}$ respectively:

Figure 3.3. Embedding of two level sub-pyramid.

These embeddings are generalized as follows. Let $P_{h-1}\left(1 . a_{1}, r_{2}\right)$ denote the subprramod of P_{k} containing k levels and haring as aper the node ($1 . x_{1}, x_{2}$). Define $\Phi_{h-1}^{V}: P_{k-1} \mapsto P_{k-1}$ so that node $\left(1 . x_{1} . x_{2}\right) \in I\left(P_{h-1}\right)$ is mapped onto ($2 . x_{1} \cdot 2^{\prime}-x_{2}-1$). In addition, define $\Phi_{k-1}^{H}: P_{k-1} \mapsto P_{k-1}$ so that ($2 . x_{1}, x_{2}$) is mapped onto ($1.2^{2}-x_{1}-1 . x_{2}$). The three additional embeddings of P_{k-1} into $H_{2 k-1}$ are:

- $f_{k-1}^{V}=f_{k-1} \Phi_{k-1}^{V^{r}}$.
- $f_{k-1}^{H}=f_{k-1} \Phi_{k-1}^{H}$.
- $f_{k-1}^{\mathrm{V} H}=f_{k-1} \Phi_{h-1}^{\mathrm{V}} \Phi_{k-1}^{H}$.

For any pair of binary numbers b_{1} and b_{2}, define the prefix function $h_{b_{2} b_{1}}$: $H_{2 k-1} \mapsto H_{2 k+1}$ so that $h_{b_{2} b_{1}}(x)=b_{2} b_{1} x$ and $h_{b_{2} b_{1}}\left(x, x^{\prime}\right)=\left(b_{2} b_{1} x, b_{2} b_{1} x^{\prime}\right)$ for any rertex x and edge $\left(x . x^{\prime}\right)$ in $H_{2 k-1}$. Then. define $t_{x_{1} x_{2}}: P_{k-1}\left(1 . x_{1}, x_{2}\right) \mapsto P_{k-1}$ so that $t_{x_{1} x_{2}}\left(i \cdot x_{1}^{\prime} \cdot x_{2}^{\prime}\right)=\left(i-1 . x_{1}^{\prime}-x_{1} \times 2^{i-1} \cdot x_{2}^{\prime}-x_{2} \times 2^{i-1}\right)$ for any node $\left(\imath, x_{1}^{\prime} \cdot x_{2}^{\prime}\right)$ in $P_{h-1}\left(1, x_{1}, x_{2}\right)$ and $t_{r_{1} x_{2}}(u, v)=\left(t_{r_{1} r_{2}}(u), t_{r_{1} r_{2}}(v)\right)$ for any edge $\left(u, v^{\prime}\right)$ in $P_{k-1}\left(1, x_{1}, x_{2}\right)$.

These reflection are illustrated in Fig 3.4 .
The algorithm is as follows:

Algorithm

1 For $k=1$. embed P_{1} into H_{3} using f_{1}.
2. For $k>1$. use f_{k-1} to define f_{k} : i. Embed the subprramid $P_{1}(0.0 .0)$ into a three-dimensional subcube of $H_{2 h+1}$. as follows:

- $f_{h}(0.0 .0)=003$.

Figure 3.4 The image of P_{1} under $f_{1}^{V}, f_{1}^{H}, f_{1}^{V H}$.

- $f_{k}(1.0 .0)=00 a, f_{k}(1.0 .1)=10 a$,
- $f_{k}(1.1 .0)=01 a \cdot f_{k}(1.1 .1)=110$
- $f_{k}((0.0 .0) .(1.0 .0))=(003.00 a)$.
- $f_{k}((0,0,0) \cdot(1.0,1))=(003.10 \beta, 10 a)$.
- $f_{k}((0.0 .0) .(1.1 .0))=(003.013 .01 a)$.
- $f_{k}((0,0.0),(1.1,1))=(003.103 .113 .11 a)$.
ii. For each node (1, x_{1}, x_{2}) embed $P_{h-1}\left(1, x_{1}, x_{2}\right)$ into the $(2 k-1)$-dimensional subcube $x_{2} x_{1} H_{2 k-1}$ of $H_{2 k+1}$ using the reflections of f_{k-1} :
- $h_{\mathrm{UO}} f_{k-1} t_{x_{1} x_{2}}$. if $x_{1}=x_{2}=0$,
- $h_{10} f_{h-1}^{H} t_{x_{1} x_{2}}$, if $x_{1}=1$ and $x_{2}=0$,
- $h_{01} f_{k-1}^{\mathrm{V}} t_{r_{1} r_{2}}$. if $x_{1}=0$ and $x_{2}=1$. and
- $h_{11} f_{k-1}^{V H} t_{r_{1} r_{2}}$. if $x_{1}=1$ and $x_{2}=1$.

The mapping algorithm is illustrated in Fig. 3.5.

3.5 Lai-White's Algorithm II

The embedding algorithm of the previous section has optimal expansion. but its maximum clilation. although small. is not optimal. In this section. a substantially more complex algorithm that embeds the pyramd into the hypercube with optimal expansın. maxumum dilation two. and maximum congestion three is presented.

Figure 3.5. The recursive definition of f_{k}.

The second mappung algorntim proposed b be Lai and White has maximum dilafien two and maxmmen conestion thee. Like their first algorithm. this algornthm aloo requiren an $H_{2 n+1}$ brjeetcube for the mapping of the P_{n} priamd and maps distinct nodes of the prramid onto distinct PEs of the hypercube. This algonthm is also recursive. but in contrast to previous algorithm. it applies a top-down approach: i.e., pyramid nodes are mapped onto the target hypercube starting with the apex and the mapping process proceeds with the mapping of lower level nodes. This recursive process is much more complex than that of their first algorithm.

The algorithm is as follows.

Let $a=\left(k-1 . x_{1}, x_{2}\right)$ be a node at level $k-1$, and $b=\left(k \cdot 2 x_{1} \cdot 2 x_{2}\right)$, $c=\left(k .2 x_{1}+1.2 x_{2}\right) \cdot d=\left(k .2 x_{1} \cdot 2 x_{2}+1\right)$. and $\epsilon=\left(k \cdot 2 x_{1}+1.2 x_{2}+1\right)$ be its children at level k. Let also $P_{1}\left(k-1 . x_{1} . x_{2}\right)$ denote this subpyramid of P_{k} with height one and apex $\left(k-1 . x_{1} \cdot x_{2}\right)$. For $v \in I\left(H_{2 k+1}\right)$ and $1 \leq p \cdot q . r \leq 2 k+1$. let $H_{3}(c: p . q .1)$ be the 3 -dimensional 1 of $H_{2 k+1}$ containing the set of nodes $\left\{c \cdot v^{p} \cdot v^{q} \cdot v^{r} \cdot v^{p q} \cdot i^{p h} \cdot v^{q r} \cdot v^{r^{\prime r}}\right\}$. Where the one two. or three terms in the exponent show the position of the bits that must be complemented in r (one. two. and three bits respectivelr). Four embeddings of $P_{1}\left(k-1 . x_{1} . x_{2}\right)$ are proposed. as shown below:

- $g_{1}(a)=r \cdot g_{1}(b)=r^{q r} \cdot g_{1}(c)=r^{r q} \cdot g_{1}(d)=r^{r}$. and $g_{1}(t)=r^{r r}$.
- $g_{1}^{\mathrm{r}}(a)=r^{r} \cdot g_{1}^{\mathrm{r}}(b)=r^{\prime} \cdot g_{1}^{\mathrm{I}}(c)=r^{p^{r}} \cdot g_{1}^{\mathrm{I}^{\prime}}(a)=r^{q r}$. and $g_{1}^{\mathrm{I}}(\epsilon)=r^{\prime \prime}$.
- $g_{1}^{H}(a)=r \cdot g_{1}^{H}(b)=r^{r^{\prime} q} \cdot q_{1}^{H}(a)=r^{q r} \cdot g_{1}^{H}(d)=r^{\prime \prime}$. and $g_{1}^{H}(t)=v$

Figure 3.6. $P_{1}\left(k-1, x_{1}, x_{2}\right)$ and its images under $g_{1}, g_{1}^{H}, g_{1}^{V}, g_{1}^{V H}$.

Figure 3.7. $g_{2}\left(P_{2}\right)$.

> For $0 \leq a \cdot b \leq m-1$. we define $\{a\}_{m}=\{x:$: mod $m=a\}$. and $\{a \cdot b\}_{m}=\{1\}_{m} \cup\{b\}_{m}$.

These emberdings and reflections are hown in figure 36 . 1 priand "ith two levels $\left(P_{2}\right)$. mapped on a j-dimensional hyperculse (H_{5}) is hown wn 「ig 3.7. The recunsure algonthm for the embedding $g_{k}: P_{h} \mapsto H_{2 h+1}$ is as follows:

Algorthm

1. For $k=1$. use g_{1} to embed P_{k} into $H_{2 k+1}$.
2. For $k>1$. use g_{k-1} to define g_{k} : i. Embed the top P_{h-1} subprramid of P_{k} into $H_{2 k+1}$ using $h g_{k-1}$. where $h: H_{2 k-1} \mapsto H_{2 k+1}$, uch that $h(r)=$ $00 x$. ii. For each node $u=\left(k-1 . x_{1} . x_{2}\right)$. embed the subpyramid $P_{1}(u)$ into $H_{3}\left(00 g_{k-1}(u): 2 k-1.2 k, 2 k+1\right)$ using the mapping:

- g_{1}. if $x_{1}, x_{2} \in\{0\}_{2}$.
- g_{1}^{r}. if $x_{1} \in\{0\}_{2} . \quad x_{2} \in\{1\}_{2}$.
- g_{1}^{H}, \quad if $x_{1} \in\{1\}_{2} . x_{2} \in\{0\}_{2}$. and
- $g_{1}^{\text {「 } H} . \quad$ if $x_{1} \cdot r_{2} \in\{1\}_{2}$

CHAPTER 4

COMPARATIVE ANALYSIS

This chapter carries out a comparative analysis that involves all four mapping algorithms of the previous chapter. This analysis is based on analytical techniques and actual runs on a Connection Machine CM-2 system consisting of 16 K PEs.

4.1 Analytical Techniques

Patel-Ziayras algorithm has maximum dilation three and maximum congestion two. while these measures for Stout's algorithm are equal to two. Both algorithms need an $H_{2 n}$ hypercube to embed the P_{n} pyramid. Thus. Patel-Ziavras algorithm will be inferior to Stout's algorithm with respect to communication overheads since the maximum dilation is increased by one. Nevertheless, if several levels of the pyramid are required to be active simultaneously. then Patel-Ziarras' algorithm will be superior to Stout's algorithm with respect to reduced execution times and high utilization of the target hypercube's resources. This is because Stout's algorithm can not support simultaneous simulation of multiple pyramid levels. In contrast. the only type of concurrency not allowed by Patel-Ziarras algorithm is the simultaneous simulation of the leaf level along with other higher levels.

Lai-Whites algorthms I and II have maxmum dilation three and two respec-
tively. and maximum congestion two and three respectively. In addition. they require double the number of PEs required by Patel-Ziarras and Stout's algorithms, so their cost 15 much higher. This is because distinct nodes of the prramid are mapped onto distinct PEs of the hrpercube in order to allow the simultaneous simulation of any subset of pyramid levels. Therefore. Patel-Ziavras algorithm is a compromise between Stout's algorithm and the pair of Lai-White's algorithms with respect to cost and performance for applications that require simultaneous simulation of multiple levels of the pyramid.

Patel-Ziavras algorithm should be expected to yield lower performance than Lai-White"s both algorithms if there is a need for simultaneous simulation of the leaf level along with other higher levels of the pyramid. However, when compared to Stout's algorithm, the communication delay in Lai-White's algorithms due to the increased dilation may prohibitively increase the communications overhead for application algorithms that do not require the simultaneous simulation of multiple pyramid levels. In addition. Stout's algorithm implements in the latter case smaller amounts of rertical data transfers.

4.2 Connection Machine Results

This subsection presents and analyzes results obtained from actual runs of some image processing algorithms on a Connection Machine ('\1-2 system consisting of 16K PEs.

We must emphasize that the results presented here are not alwars indicative of the performance of pure hypercube systems because of two reasons. Firstly: the routers become the bottlenecks for communication intensire operations because anr single router node is shared by sixteen PEs. To alleriate this problem, the majority of the results presented here use one PE per router node. Secondly.
for algorithms where manr-to-one communcation operations are followed br the application of dwociative (ieduction) operations on the peceived data. the Connection Machme routers mplement the reduction "on the H :.". thus zeducing the amount of traffic gomg to distant PEs. In the presentation of the results below. the influence of both issues on the Connection Machmés performance in discussed.

Results are presented for three image processing algorithms. The first algorithm finds the permeter of objects in images. the eecond algorithm performs 2-dimensional convolution and the third algorthm performs mage segmentation.

4.2.1 Finding the Perimeter of Objects

This application algorithm assumes the assignment of a single pixel to each node at the base of the prramid and. for the sake of smplicitr. the existence of a sugle object in the mage Assumng that the boundary pixels are known. a bottomup process is applied to count the total number of boundary pixels. More detail follows. Nodes at the base of the prramid that contan a boundarr pixel send 1 to therr parent at level 1. while base level nodes that do not contain a boundary pixel send 0 to them parent. Vodes at level 1 add the four values sent br ther children and send the sesult to then parent at level 2 . To reduce the orerall communication overhead. the latter addition is performed as a reduction operation. where router nodes add the ralues on the fly before they reach their destunation. This process continues with higher levels until the aper is reached. The addition of the values recerved by the aper is the permeter of the object.

Results were ontaned for two cases. In the first case. all sixteen PEs attached to any single ronter node are used. for a total of 16 K "active" PEs. Therefore. the base of the pyramul assumed br Stout's and Patel-Ziarras algonthms is $2^{-7} \times 2^{-1}$ (1.e.. elght levels). while the base of the pyramid assumed by Lai-White's algorithms is $2^{2 h} \times 2^{6}$ (1.e.. seven levels). In the second case. in order to reduce the
communication overhead for a "pure" hypercube network. only one PE per router node is used. for a total of 1 K "active" PEs. Therefore the base of the pyramid assumed by Stout's and Patel-Ziavras algorithms is now $2^{5} \times 2^{5}$ (i.e.. six levels). while the base of the pyramid assumed by Lai-Whites algorithms is $2^{4} \times 2^{4}$ (i.e.. five levels). Average times calculated over several runs are presented here.

Table 4.1 shows results for the algorithm that finds the perimeter of an object when using all 16 K PEs in the system. Base represents the amount of time it takes to send data from the base level to the parents at level 1 . This process takes a relatively large amount of time because all PEs are active and share router nodes in groups of sixteen. We also need to emphasize that all data transfers in our implementation involve integer variables: this was chosen for uniformity reasons. because several algorithms in image processing have a lot of similarities with the perimeter counting algorithm but they deal with integer variables. Top represents the amount of time it takes the level located immediately below the highest level to send data to the topmost level and for the topmost level to process the received data. Total represents the total amount of time taken by the algorithm. Table 4.1 shows that Lai-Whites algorithm II is associated with the worst performance. This can be explained as follows. While all 16 K PEs of the system are intially used. PEs involved in the simulation of higher levels of the pyramid do not share router nodes for Stout`s. Patel-Ziavras' and Lai-White`s algorithm I. In contrast. Lai-White"s algorithm II is such that for the simulation of higher levels of the pyramid. multiple PEs attached to the same router node become "active." Therefore. the communication overhead is tremendously increased for Lai-White"s algorithm II. In addition. we may observe that first three algorithms are characterized by almost similar performance for this image processing problem.

As it can be observed from earlier paragraphs. the relatively small value of the dilation in these algorithms does not have a very critical influence here due to CM-

Algormhmi	Base	Top	Total	Levels
Stout	1.89	0.36	553	8
Patel-Ziarras	1.53	0.46	4.99	8
Lai-White I	1.11	0.54	3.66	7
Lal-White II	2.52	0.31	10.66	7

Table 4.1. Finding the permmeter of an object: one level active at a tıme. 16 PEs per router node. (Times in msec for ('M-2.)

Algorithms	Base	Top	Total	Levels
Stout	0.59	0.5	2.84	6
Patel-Ziavras	0.64	0.55	2.86	6
Lai-White I	0.64	0.55	2.35	5
Lai-White II	0.59	0.51	2.13	5

Table 4.2: Finding the perimeter of an object: one level active at a time. 1 PE per router node. (Times in msec for CMI-2.)

2 's reduction operations and the implementation of petit croles for transfers of data. In addition. the congestion is not a critical factor here due to the SMID mode of computation and the simulation of one level at a time. Finalls. Laı-IVhite's algorithm I and. more importantlr. Laı-Whites algorithm II pioduce "irregular" embeddings that may increase the overhead resulting from the control structure of application algorithms. We have dramatically reduced this overhead br generating pointers to parents. children and lateral neighbors during mitiahzation.

Table 4.2 shows results when onlr one PE per router node is mitially active. As expected. all four mapping algorithms are characterized br almost similar performance because of the special architecture of the Connection Machne. as discussed before. and the fact that at no point during the execution of the algorithm does any router node 4 erve multiple PEs.

Algorithms	Base	Other Levels	Total	Levels
Patel-Ziarras	0.69	0.68	1.37	6
Lai-White I			0.67	3
Lai-White II			0.87	5

Table 4.3: Finding the permeter of multiple objects; pipelining 1 PE per router node. (Times in msec for ('M-2.)

Table 4.3 shows steady state results for the same image processing algorithm, assuming that pipelinng is applied and that the number of active PEs attached to a single router node is mitially one. More specifically. we assume that either multiple images are processed. where each image contains a single object. or a single image that contains multiple objects is processed. Results are not shown for the Stout algorithm as it can not be pipelined for the reasons discussed earlier. In spite of the limitations imposed by the SIMD mode of computation implemented on the Connection Machine. pipelining for this image processing algorithm is feasible due to the fact that all of the operations carried out at different levels. or a subset of the operations for the base and the apex. are identical. Total in Table 4.3 represents the amount of time it takes to produce a single output in steady state (i.e., all stages of the pipeline are full). Patel-Ziarras algorithm rields the lowest performance of the three algorithms due to the fact that the base lerel can not be simulated along with other levels. In fact. Table 4.3 shows that the time taken br the base level for Patel-Ziarras algorithm is approximatelv half of the total time. In contrast. all of the prramid's levels mar be active smultaneousls when Lai-White", algorithms are used.

4.2.2 2D Convolution

Two-dimensonal conolution ming the pramid thature was the serond image poressing algonthm that we mplemented on the Comection Nachne. The convolution algonthms convolve a $k \times h$ wndow of wenghtmg coefficients whth a $\because^{\prime \prime} \times 2^{n}$ image matrix. Let $\mathcal{I}=\left\{x_{2}\right\}$ and $W^{\prime}=\left\{w_{1,1}\right\}$ be the mage matrix and the window respectively. The goal in to compute $I=\{y, s\}$ where

$$
y_{i s}=\sum_{i=0}^{h-1} \sum_{i=0}^{k-1} w_{i}, \times 2_{1,+1}+j
$$

wth $0 \leq r . \leq \leq 2^{n}-k$. This algorithm wery trequently applied in mage plocessing.

The convolution algorithm for the source prramid structure is as follows. We assume the assignment of a smgle pixel per node in the base of the py ramid. The smallest integer $\}$ is then found for which $2^{\prime} \geq k$. Then the base of the pyramid is partitioned into square blocks of size $2^{\prime} \times 2^{9}$. Each such partition contains the leares of a subprramd whose apex is at level \Rightarrow. The weighting coefficients are then loaded into the upper leftmont part of each partition. This can be implemented on a pyramid machine using a top down process. assuming that the coefficients are contaned in the apex [17]. On the Comnection Machme, the coefficients are loaded using k^{2} broadcasting operations with approprrate sets of PEs celected each time. This part was not included in the total execution time of the presented recults. The rest of the PEs in each partition receive a zero as the werghting coefficuent If the window cuze is smaller than the partition size. The PEs then multiply the weighting coefficient with the pisel value ther contan and send the result to therr parent. Pdenits at level 1 add the values ther receive from their children and eend the result to their patent. This procens continmes until the apexen of the uhbriamids are reached. Each aper at level a adrlh the ralnes it receiven from its children and sends the reult. through the necosary intemediate P Es at lower
levels. to the leaf PE in the upper leftmost corner of its partition. Each window at the base that contains the weighting coefficients is then shifted to the right once. multiplications are performed as above, the results are shifted to the left once, and the values are sent to the parents at level 1 . The bottom-up and top-down processes described earlier are then applied, with the result now stored in the PE with offset (0.1) in the partition. To conclude, the convolution algorithm involves lateral shifts and multiplications at the base bottom-up addition of numbers, and finally top-down transmission of final results. These steps are repeated $2^{2 \gamma}$ times, which is equal to the total number of PEs in each partition.

Results are presented in Table 4.4 for windows with k from 2 to 8 . Note that the number of levels in the pyramids is not shown. This is because only levels 0 through γ are involved in the algorithm. The results in Table 4 indicate that there are not any significant differences among the timings of the four mapping algorithms. Therefore this observation suggests that Stout's and Patel-Ziavras' algorithms are more appropriate than Lai-White's algorithms due to the lower cost of the system that the former two algorithms require. The same table also shows the total time for lateral data transfers at level 0 .

Then an attempt was made to pipeline the convolution process. The only part of the entire process which can be pipelined is the bottom-up and top-down communication phases, while the weighting coefficients are multiplied wth pixel values concurrently within each partition.

The sequence of operations for this process is entirely different from the previous one. All the weighting coefficients are loaded in each partition from the front end as previously defined. Next all these coefficients are multiplied with the pixel ralues and the results are stored in an array within each PE. The wndow is laterally shifted to the right and the whole precess is repeated for $\mathrm{PE}(0.1)$ within each partition. This entire shifting and multiplication process is completed and no

Algorithm	Lateral	Total	$h \times h$
Stout	3.36	17.61	
Patel-Ziarras	3.36	17. N_{2}	2×2
Lai-White I	5.21	20.24	
Lat-White II	4.82	21.90	
Stout	12.5	109.81	
Patel-Ziarras	12.53	10.5 .84	3×3
Lai-Whte I	18.55	116.51	
Lai-Whate II	18.01	10786	
Stoat	12.66	104.38	
Patel-Zıaras	12.66	103.56	$\pm \times \pm$
Lar-White I	18.58	114.44	
Lar-White II	18.01	106.17	
Stout	46.69	5.7 .10	
Patel-Ziarras	4.5 .96	547.88	$5 \times .5$
Lai-IThite I	69.38	593.91	
Lai-Whrte II	6.64	547.67	
Stout	47.06	358.76	
Patel-Ziarras	45.81	318.26	0×6
Lar-White I	69.27	59409	
Lar-White II	67.48	i47.67	
Stout	16.28	5.54.14	
Patel-Ziarras	46.82	5,50.76	$7 \times$
Lai-White I	70.01	399.93	
Lai-White II	67.66	351.07	
Stout	49.21	543.16	
Patel-Ziarras	45.83	54.38	sx
Lai-White I	69.26	384.81	
Las-White II	6733	i41.15	

Table 4.4: 2 D convolution. 1 PE per router node. (Times in msec for ($\mathrm{M}-2$.)
bottom-up or top-down communication takes place during this operation. Then all these results are sent to the coordinator PEs at level f in a pipelined fashion. These values are loaded into an array at level γ. Finally. all the coordinator PEs at level γ send all these values back to the leaf level PEs and these values are loaded within each partition in correct PE. This top-down communication phase is also pipelined.

Execution times are improved for Lai-White's algorithms about 40 to 45 percent. Results are much improved for larger window sizes (greater than 4). For window size 2×2. execution time is slightly increased. This is due to a different control structure in the main program.

For Patel-Ziavras^ algorithm, results are not much improved as compared to non-pipelined results. Pipelining is not implemented for window size less than 5 because the benefit of the pipelining can not be obtained due to the fact that the base can not be active simultaneously with the other levels of the pyramid.

Implementation of pipelining for this algorithm is similar to that of the LaiWhites except that the bottom-up and top-down communication phases take two cycles. All the results are sent from the base to level 1 and then from level 1 to level 7. The same procedure is repeated for top-down communication. Control structure for this two-step pipelining procedure does not allow to take much advantage of pipelining. Howerer, the results of the pipelining will be much improved for large window sizes. when lerel $\hat{\jmath}$ will be at much higher level as compared to window sizes 5 to 8. Results are shown in Table 4.5.

4.2.3 Segmentation

Segmentation is the process which partitions the image into regions with more or less homogeneous properties. A cooperative. iterative approach to segmentation

Algorithms	Total	h $\times k$
Patel-Ziavras	-	2×2
Lai-White I	24.41	
Lai-White II	24.3 .5	
Patel-Ziarras	-	3×3
Lai-White I	83.68	
Lar-White II	79.56	
Patel-Ziarras	-	4×4
Lai-White I	83.57	
Lai-Whte II	79.03	
Patel-Ziarras	482.10	5×5
Lai-White I	322.20	
Lai-White II	307.69	
Patel-Ziarras	493.404	6×6
Lai-White I	321.36	
Lai-White II	309.17	
Patel-Ziarras	500.56	7×7
Lai-White I	329.36	
Lai-White II	308.11	
Patel-Ziarras	481.65	8×8
Lai-White I	320.83	
Lai-White II	307.59	

Table 4.5: Pipehning 2D convolution. 1 PE per router node. (Iimes m msec for (M-2.)
in which each process at a given iteration is used to adjust the other process at the next iteration is used here [21]. This approach uses an orerlapped prramid that implements 50 percent overlapping m each direction. Thus each node has four parents and 16 children. A son-father relationship is defined between nodes in adjacent layers, but unlike other pyramids. this relationship is not fixed and may be redefined at each iteration.
There are four time dependent variables associated with each node (PE):

- $c[\imath . j, l][t]$: the value of the local image property:
- $a[i . \jmath, l][t]$: the area over which the property was computed:
- $p[i . j, l][t]$: a pointer to the nodes father at the next higher level;
- $s[i . J . l][t]:$ the segment property; the average value for the entire segment containing the node.
t is the iteration number. The value of c at each leaf level node is set equal to the corresponding image sample ralue. while the c value for each lower level node is the average of all 16 of the nodes candidate sons. Iterations following the initialization ($t>0$) are divided into three phases.
Phase 1: Son-father links are established for all nodes below the top of the pyramid according to the followng condition:
If $d[m]<d[n]$ for all $n \neq m$. then $p[i ., .],[t]=m$. where $d[n]$ is the absolute difference between the c value of node [1.J.7] and its $n n^{\text {th }}$ candidate tather. If two or more of the candidate fathers are equally likely then decision is made at random. Phast 2: The c and a values are computed bottom up on the basis of the new son-father links.
For $l=L . a[1) . l.][t]=1 . c[1 . J . l][t]=$ image sample value $I(2 . y)$. where L is the

Object	Stout	Patel-Ziarras	Lai-White I	Lai-IVhite II	Iterations
I	246.68	25.5 .78	212.76	212.04	5
II	247.27	2.53 .81	222.45	212.17	.5
III	352.78	3.51 .6 .5	310.76	322.5 .5	8
IV	353.57	353.56	309.29	321.74	8
V	349.92	351.02	311.18	322.65	8

Table 4.6: Image segmentation for five different objects. 1 PE per router node. (Times in msec for (M-2.)
leaf level.
For $l>L . a[2], l.][t]=$ sum of the areas of the linked children.
$c[2, j, l][t]=$ sum of the c values of linked children, $a[i, j, l][t]$.
Phase 3: Segment values are assigned in a top down fashion. At the topmost level, the segment value of each node is set equal to its local property value $s[i, j, l][t]=c[2, j, l][t]$.
For higher levels, each node’s value is just that of its father.
At the end of phase 3 , the highest level segment values represent the current state for the smoothing-segmentation process. Any change in pointers in a giren iteration will result in changes in the values of local image properties associated with pyramid nodes. These changes may alter the nearest father relationship and necessitate a further adjustment to pointers in the next iteration. Changes always shift the boundaries of segments in a direction which makes their contents more homogeneous. so convergence is guaranteed. The iterative process is contmued until no changes occur from one iteration to the next. The results for the segmentation problem are shown in Table 4.6.

Results for all four mapping algorithms are almost the same The execution time for Stout's and Patel-Ziarras algorithms are higher than that of Lai-White's algorithms. This is due to an extia prramid level for Stout's and Patel-Ziarras.
algorithms. Five different objects are used for the segmentation and estimation of image region properties. All links become stable after 5 or 8 iterations. These results suggest the use of Stout's and Patel-Ziavias algonthms for such applications because they require a smaller dimension hrpercube (i.e.. $H_{2 \mu}$) as compared to the hypercube required for Lai-White's (i.e., $H_{2 n+1}$).

CHAPTER 5

CONCLUSIONS

This thesis has carried out a comparative analysis of algorithms that map pyramids onto hypercubes. The comparative analysis incorporates both analytical techniques and actual runs on a Connection Machine CM-2 system composed of 16 K processors. The results show that while Stout's and Patel-Ziavras' algorithms require target systems with approximately half the cost of those required by LaiWhite's algorithms, Stout's algorithm is not capable of simulating multiple levels of the pyramid simultaneously. Since a wide variety of pyramid algorithms can take advantage of concurrent multilevel computations, this restriction is a major drawback of Stout's algorithm. However, Stout's algorithm has the lowest dilation and congestion which result in the lowest communication times between adjacent levels.

In contrast, Patel-Ziavras' algorithm does not impose this restriction. For concurrent multilevel computations, the results on the Connection Machine indicate that this algorithm achieves very good performance when compared to Lai-White's algorithms, at half the cost.

When one level of the pyramid is considered to be active at a time. PatelZiavras' and Lai-White's algorithms perform almost the same because of very similar communication times between adjacent levels. Therefore, Patel-Ziavras'
algorithm is a compromise between the pair of Lai-White's algorithms and Stout's algorithm with respect to cost and performance.

The performance of Patel-Ziavras' and Lai-White's algorithms is also investigated for pipelined processing. Stout's algorithm can not implement pipelining because a subset of PEs simulate all the levels of the pyramid. Lai-White's algorithms perform better than Patel-Ziavras algorithm when it is required to simulate a pyramid with all of its levels active at the same time. Patel-Ziavras' algorithm imposes a restriction on the base of the pyramid which can not be active simultaneously with the other levels. Therefore, two pipelined stages are required for Patel-Ziavras' algorithm. One stage works between the base and the next higher level, while the other stage works for all of the remaining levels, except the base. Good performance of pipelined processing can be obtained for PatelZiavras' algorithm if a large pyramid structure is used, i.e., the apex is at a very high level.

APPENDIX

decto gray ();
/* set the level number */
fol: $\mathbf{f o r}(\mathrm{k}=0 ; k<5 ; k++)$ (

phegxigy;
 cl-mk)

where (p-0) lavelt+;
r-q;
ql -r;
alg ();
printf("\n")

/*

for (row-0; row 12 ; ; rowt+)
for (colmo; col<32; colt+)

) /* with (base) loop ends here */
dec_to_gray ()
, $g x-x \gg 1$; $g x^{\wedge}-x$; $g y-y \gg 1$; $g y^{\wedge}-y$;
alg() /* first calculate the addresses of master pes and store in variables $X[n]$ and $Y[n]$ for each Pe. */
index $0-g x ;$ index1=gy;
index $0 \gg=1 ;$ index $0 \ll-1 ;$ index $1 \gg-1$; 1 ndex $1 \ll-1$; gray_to_dec (); $\quad x 0$-index $0 ; ~ y 0=i n d e x 1 ; ~ y 0 \ll=4 ;$
index0-gx; index1-gy;
gray to dec (); 1 ndex $1 \gg=2$; 1 ndex $1 \ll=2$;
index0mgx; inder1mgy;
index $0 \ggg-3$; index $0 \ll-3 ;$ index $1 \gg-3$; index $1 \ll-3$;
gray_to dec (); x2=index0; $y^{2-i n d e x 1 ; ~} y^{2 \ll=4 ; ~}$
index $0 \gg=4 ;$ index $0 \ll=4 ;$ index $1 \gg=4$; index $1 \ll=4$ gray to_dec (); x3-index0; $y^{3-i n d e x 1 ; ~ y 3 \ll=4 ; ~}$
index0-gx; index1-gy;
index $0 \gg=5$; index $0 \ll=5$; index $1 \gg-5$; inde $1 \lll 5$,
gray to dec () ; 4 -index $0 ; y$ mindexl; $y 4 \ll=4$
for (row=0; row< 512 ; rowt=16) | printf("\n row - 8d \n", row); for (col-0; col<32; col++) (

Now calculate the addreasea of each children (total 4) for each master pe and more in variable ch[n]x[k] */

where (level>-1)
(index0-x; indexl-y
ch1x1-index0; ohly 1 -index $; \quad / *$ mame child 1 . */
ch1y1<<-4;
undex 0 -gx;index $1-g y ;$ index01-1; gray to dec ()
ch2y1<<<4;
index0ma; indexi-gy; indexil-1; gray to dec();
ch 3×1 mindex $0 ; ~ c h 3 y 1$ child 3 at 1 y-axis distance. */
ch3y1<<-4;
index0-gx; index1-gy; index0l=1; index1|=1; gray to dec ();
ch4xl-index child 1 at 1 x-axis distance 14 y -aris-distance.*/ ch4yl<<-4;
where (level>-2)
(index $0=x$; 1ndex1-y
ch1 $\times 2$-index 0 ; ch1y2-index $1 ; \quad / *$ same child 1 . */
ch $1 \mathrm{y} 2 \ll=4 ;$
index $\mathrm{ch} 2 \times \mathrm{mx}$-index in :
ch $2 y^{2} 2<-\infty 4$;
index $0-g x$; index1-gy; index1i-2; gray to dec ();
ch 3×2-index 0 ; ${ }^{*}$ child 3 at 1 y-axim dietance. */
ch3x2-index0; ch3y2-1ndex1;
ch $3 \mathrm{y} 2 \ll-4$;
index0ma; indexlegy; indexol-2; index1|-2; gray to dec (); ch4x2-index $0 ;$ ch4y2-index1;
ch4y $2 \ll-4 ;$;
where (leval>-3)
(index $0=x$; index $1-y$
ch1x3-index0; chly3-index1; /* same child 1. */
ch1y3<<-4;
index0-gx;indexi-gy; index0|-4; gray to dec();
ch2x3-index0; oh2y $3-$ index $1 ;$; child 2 at 1 x-axie diatance.*/
ch $2 \mathrm{y} 3 \ll=4$;
index0-gx; indexi-gy; indexil-4; gray to dec ();
ch3x3-index0; ch3y ${ }^{\prime *}$ child ${ }^{3}$ at 1 y-axie distance. */
ch3x3-index0; ch3y3-indexl;
ch3y ${ }^{3 \ll=4 \text {; }}$
indexo-gx; indexl-gy; index0|-4; index1|-4; gray to decol);
ch4x3-index0; ch4y3-index1;
ch 4 y $3 \ll=4$;
where (level>-4)
(index0-x; index1-y;
ch1x4-index0; ch1y4-index1; /* same child 1. */
ch1y $4 \ll=4$;
index0-gx;index1-gy;indexOl-8;gray to dec();
ah2x4-index0; ch2y4nindex1;
ch2x4-indexo; ch2y4~index1; \boldsymbol{j}^{*} dhild 2 at 1 m-axis distanca.*/ $\operatorname{ch} 2 y 4 \ll-4$;
index0-gx; indexl-gy; index1l-3; gray to dec ();
ch3x4-index0; ch3y4-index1;
ch $3 \mathrm{y} 4 \ll-4$;
index0-gx; indexi-gy; index0l-8; indexil-9; gray to dec (); ch4x4-index0; chey4-inderl axis distance ch4y $4 \ll-4$; ${ }^{2}$; ch4y4-index
where (level.> 5)
(index $0-x ;$ index1-y;
chlx5-index0; chly $5=1 n d e x 1 ; ~ / *$ game child 1 */
ch1y5<<-4;
index0-gx; index1-gy;index0|-16; gray to dec()
ch 2×5-index 0 ; ch2y5=index1; /* child $\overline{2}$ at 1 x-ax.s distance * ch $2 y 5 \ll-4$;
index $0-\mathrm{gx}$; indexl-gy; indexil|-16; gray to dec (); \quad child 3 at 1 y-axis distance */
ch 3×5-index0; ch3y $5=$ index 1 ;
ch $3 y 5 \ll-4$;
index0-gx; index1-gy; index0|-16; index1|-16, gray to dec (); ch4x5-index0; ch4y5-index1; ch $4 \mathrm{y} 5 \ll-4$;
/* Children addresees calculation ends here. */
/* Now calculat parameters for lateral communication
where (level>=0) /* for base */
southx $=x$; southy $=(y+1)$;
cantx=(x+1); casty-y;
westz=(x-1); wastym;
where (northym-1) northym; where(west x-m-1) westy=0;

;outhy<<-4;
/*
for(row=0; row<64; rowt-16)(printf("\n row - 8d \n", row);
for (col=0; col<32; colt+)
 [row][col]northy]:
printf(" $\ln [83 \mathrm{~d}][83 \mathrm{~d}]$ southx $=$ 8d, southy $=8 \mathrm{~m}$ n, row, col,[row][col]southx
printf("\n[83d] [83d]eastx - \&d, easty - sd ", row, col, [rowl[col]eastx
row][colleasty);
rowl[col]westy);
*/
wind: printf("\n Your PYRAMID COMPUTER base 1832×32 (n"),
printf("\nfor $k x$ size window, Enter value of $k \backslash n "$);
canf("\%d", \&win_ize) ;

acanf("8d", \&n $) ;$
win val $[k]-n$
for (part_size-1; part_aize<win_size ; part_aize*-2);
m-32/part size;
printf("\n You entered Window aize zd x 8d ",win eize,win eize);
 art_size, part size);
if (parE size>wingizo) win_odd-1;
if (m--1交) ' where (lovel-m1) coord pen-1;
elae if (m-8) (whare (level-2) coord pe-2;)
(* coord pe shows the level number of coordinator PEs */
printf("\n coordinator pEa are at level od ", coord_pe;

* Now initialize each partition with ita own x y coorda */
where (x<part_size) px-x;
where ($y<$ part $81 z e$) py-y;
where (x>-part_size) px-xtpart_size;
where ($\mathrm{y}>$-part_size) ${ }^{-}$PY-ytpart_size;
where ($(x \% 3)-m)$ tent-0;
printf(" ${ }^{\prime \prime}$ n
/* ansign corresponding value of window lemente to parallel variable a */ am(win wixe * PY) px ;
con_val-win_val[a]; /* con_val gets the right value of ite own
if (win_odd--1) (where (px>-win size) con_valm; ; $\begin{gathered}\text { where (py>-wiñ ize) con_val=0; ; }\end{gathered}$
(* xepeat: printf("\n\n con procesa row*-8d col-\%d ", e,f); */ CMC timer start (1)
repeat: con result-con val*test
adjust for com ()
- \quad send ():

CMC timar_stop (2);
CMC timer atart (3);
CMC timer (fop (3) () :
CMC_timer etop (3);
if (counti-10) goto repeat
CMC_timex stop (1);
$[0][1] f c o n _r e s u l t-[0][4] f c o n _r e s u l t ~ ; ~$
1* for (row=0; row <32; row $+=16$) (

printf("\n [\%d][\%d]
[col]fcon result) ;
)) */
time val.-CMC timer_rad_cat buay (1)

print f ("\n***");
printf("\n\t Total time CM buay for Convolution is of ", time_val); printf("\n\t Total time to and valuen to coordinator ${ }^{\circ}$ n PEa
printf ${ }^{\prime \prime} \backslash n \backslash t$ total time $C M$ take to move the window is fir n, vall); printf("\n\n");
,
adjust for com()
$1 \quad / *$ send con val to top left corner of each partition */
f $(\mathrm{e}=-0$ \& $\& \mathrm{f}=0$) return; $/ * \theta=0$ and $\mathrm{f}=0$ means start of convolution */
alse !
if (e>0) ([westy][westx-a]con_result=con_result
/*
printf(")n [\%d][rd]con_rosult $=8 d n, f, 0,[0][0]$ con result),

$m=f-1 ;$
$a=f-1 ;$
$a-f-1 ;$
if $(f>0)$
if $(m>0) \quad: \ll-4 ; ~$

printf("\n [8d][8d]con_result $=8 d n, f, \theta,[0][0]$ con_result

if (win_oddmwi) (where ($p x>$ win_size) con result=0,
where (py>mwin_aze) con_result=0; ;
/* for (row-0; row<32; rowt-16) (
for (col-0; col<32; colt+)
printf("\n[zd][8d]con_val mod con_result -8d ", row, col, [row] [col]con_v
al, [fow][col]con result,);
*/
adjust_window
/* When the final value reaches within each partition, then the following routine puts the correct value within correct PE. Then it shifts the window (to calculate next convolution) */
1 where (py-w \&\& px-ee)fcon_result-con_result;
con result $=0 ; / *$ erase all convolved values now.* $/$
desti=0; dest $2=0$; dest3-0; dest 4mo; dest5=0;
/* Now shift the window for correct position */
if (e< (part_size)) [easty][eastx]con_val=con_val;
else

/*
[weaty][a]con val=con val; $f++; \quad 0=0$
printf("\n after to orig. position ")

printf("\n con-val = oqd ${ }^{\prime \prime}$, [01(1]con-val)

if (f>0 \&\& f<part_size) [southyl[southx]con_val-con_val;

1

for (row-0; row<48; row+-16) (printf("\n\nwindow values after shifting :");


```
al, [row][col]con_result,)
```

*/
send() /* This routine gende all valuen from base to the coordinators and then
send them back to the right partition. */f

t $2-\mathrm{rd} \mathrm{m}$ ([0] [0]dent 2$) ; * /$)

at 3 md m . $[0][0]$ dest 3); */]

switch (coord_pe) ;

where (level>-4) (
[ch1 $\left.Y^{4}\right]\left[\operatorname{ch} 1 x^{4}\right]$ dent $3-$ dent $4 ;$
[ch2y4][ch2x4]dest3-dent4;

case 3: where (level>-3) 1
[ch1y $\left.{ }^{3}\right][\operatorname{ch} 1 \times 3]$ dest $2=$ dest 3;
$[$ ch2y $31[\operatorname{ch} 2 x 3]$ dest $2=$ dest 3 ;
$\left[\right.$ ch $\left.3 y^{3}\right][$ ch3x3] dest $2=$ dest 3;
$[$ ch4y
case 2: where (level>-2)
[ch1y2][ch1x2]dest1-dest2;
[ch2y2] [ch2x2]dest1-dest2;

[ch4y2][ch4x2]dest1-dest2; \}
case 1: where(leval>-1)
[ch1y1][ch1x1]con reault-dest1;
[ch2y1][ch2x1]con-result=dest1;
$[$ ch $3 y 1][\operatorname{ch} 3 \times 1]$ con reneult $=$ dest 1
[ch4y1][ch4x1]con_result-desti; break;)
default: printf("\n Sorryl can not perform top down communication\n");
)
1
gray_to_dec ()
int kmo ;

```
```

```
where (index 0>1) ( b=1;
```

```
```

where (index 0>1) (b=1;

```
```

```
where (index 0>1) ( b=1;
```

```
```

where (index 0>1) (b=1;
for(k=0;k<7;k++)(,
for(k=0;k<7;k++)(,
for(k=0;k<7;k++)(,
for(k=0;k<7;k++)(,
where(bi-0) { b>>-1; dmb; b>>m1; c=b;
Where(bl-0) (b>>-1; dmb; b>>m1; cmb;)
where(cl-0); b^-Index0; b\&=c; d|-b; c>>-1; b>>-1;
where (index0>1) index0-d;
where (index0>1) index0-d;
where (index0>1) index0-d;
where (index0>1) index0-d;
b-0;c-0;d=0;
b-0;c-0;d=0;
b-0;c-0;d=0;
for (k=0;k<7;k++)
for (k=0;k<7;k++)
for (k=0;k<7;k++)
for (k=0;k<7;k++)
where(b<-Index1) b<<-1;
where(b<-Index1) b<<-1;
where(b<-Index1) b<<-1;
where(b<-Index1) b<<-1;
)
)
)
)
where(bl-0) { b>>-1; d-b; b>>-1; cmb, ,
for(k=0;k<l;kk++) (
for(k=0;k<l;kk++) (
for(k=0;k<l;kk++) (
for(k=0;k<l;kk++) (
Nhere (index1>1) index1md;
Nhere (index1>1) index1md;
Nhere (index1>1) index1md;
Nhere (index1>1) index1md;
b=0; c=0;d=0;

```
```

 b=0; c=0;d=0;
    ```
```

 b=0; c=0;d=0;
    ```
```

 b=0; c=0;d=0;
    ```
```


Finclude
Include <cstimer.h>

* 51 shape[512][32] bese;
/* Integer x and y contain decimal valuen of x and y coordinaten.
/* While gx and gy contain Reflexive Gray coden for each x and y
** coordinates.
/ index 0 and indexl contain x and y ocordinatas for onoh manter /* 'pe is active conly for level number for each Pr . level-0 meane /* PE is active only for base. level-7 meana this PE is aotive for /* b, c and dare used as temporary storage variablea.
 n_val-o, int:base result-0, ficon result=0, mul-0;
tatic int on $\quad \mathrm{f}=\mathrm{\sigma}$;
int row, col, $k=0$, clk tak-0,1,m,n, coord peo ;
int:base a=0,b=0, c=0,d=0, addr=0, mark=0;

$/ \star x^{0}$ to $x 7$ and yo to y^{7} variables atoren addrene of master PE for
contain the address of master PE $* /$
int-base ch1x1, ch1y1, ch $2 x 1$, ch $2 y 1$, ch 3×1, oh $3 y 1$, oh 4×1, ch $4 y 1$;
int:base ch 1×2, ch 1 y 2 , ch 2×2, ch 2 y 2 , ch $3 \times 2, \operatorname{ch} 3 \mathrm{y} 2, \operatorname{ch} 4 \times 2$, ch 4 Y 2 ;
nt: base ch1x3, ch1y $3, \operatorname{ch} 2 \times 3, \operatorname{ch} 2 y 3, \operatorname{ch} 3 \times 3, \operatorname{ch} 3 y 3$, ch 4×3, ch $4 y 3$

int:base southx, southy, northx, northy, *amt, easty,westix,westy;
int wan_aize-0, win odd=0, part_size-0, no_of part=0;
nt:basë win val [64]; /* max. window value Ia 8 x 8 *
int window val [64]; /* scalor array */
/* south , north, east, west variables are used for lateral comunication. */
/* chlxi means children 1, x-axis viluo, for level 1 */
/* xo to $x 7$ and yo to y 7 variablea storen address of master pr for */
/* each lovel of Pyramid.
lovale time_val, val, vall;
$\operatorname{main}()$
with (base) 1
xx-pcoord (1);

[1: $k+-1$;

$$
[\text { row }][\operatorname{col}] \mathrm{addr}-\mathrm{k} ; \text {) }
$$

a-OXOF; b=agaddr;
where ($b=-0$) $\{/ \star \quad b=0$, means those PE: whose 4LSBs -0 * $/$

```
for (row-0, row< \(\quad k=0\)
for (row-0; row \(<512\); rowt-16) if (row-m) kmo ; elee \(\mathrm{k}+=1\)
    for (col-0; col<32; colt+)
        [row] [col]x=col ; [row][col]y=k ;
where (mark=-1)
* mark-1 means only those PEs whose 4 LSBs are zero */
    dec to gray (); /* gives right values of \(g x\) and \(g y\) */
    level-0;
    \(\underset{\mathrm{b}-\mathrm{I} ;}{\mathrm{a} \text {; }} \mathrm{gy}\)
    ak-b; /* a=0 meana LSB in zero *
    where (a-m) level-1;
    a-3; and ab();
    here (a-m \(a \in b=0\) ) level-2;
    here (a-=3 \(\overline{\text { and }} \mathrm{b}=\mathrm{b}\) ) ) lavel-3;
    a-15; and \(a-b() ;\)
where \((a=-3 \bar{d} a b=1)\) level-4;
    [16][1]level-5; /* aper on 5th level.. 0 to 5) */
    addrese() ;
/*
for (rowm0; row<128; rowt+)
    for (col-0; col<32; colt+) (
if (k=-0
```



```
    1 /* where (mark-1) loop ends here */
    ) /* wath (base) loop ands here */
1 /* program main() loop ends here */
and_abl)
1 b-a\&gy; a-a\&gx;
address
address ()
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{where (level--1)} \\
\hline 1 & \[
\begin{aligned}
& \text { index1-gx; } \\
& \text { indexl|-1; }
\end{aligned}
\] & index1>>-2; & index \(1 \ll-2\); \\
\hline & index0-gy; & index \(0 \gg-2 ;\) & index \(0 \ll-2\); \\
\hline & gr & to dec (); & \\
\hline & x1-1ndex0; & y1"index1; & \(x 1 \ll-4 ;\) \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
1 \\
where (levelm=2)
\end{tabular}} \\
\hline \multirow[t]{5}{*}{} & index1-gx; & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{index \(1 \gg-3\); index \(1 \ll-3\),}} \\
\hline & index1|-3; & & \\
\hline & index 0 -gy; & index \(0 \gg-3 ;\) & index0<<m3 \\
\hline & & _to dac(); & \\
\hline & x1-index0; & y \(1=\) index1; & x \(1 \lll 4\); \\
\hline
\end{tabular}
```



```
l
a-gx; a>>=1; a<<<1; /* index0 and index1 contain addrass */
index0-a; /* of master PE for base only. */
a-gy; a>>-1; a<<<-1;
index1-a;
gray to dec(); x0mindex1; y0mindex0;
/***** Now calculat the addreasen of children' \(x\) and \(y\) values ror aach PE of each level. These valuen will be atored in each PE' variablea defined above Every PE will have a values (both \(x\) and \(y\) coordinates)
******/
```

```
as stout mlg. *
            /*For level 1 to level 0 communication valuse are same
            /*For level 1 to level 0 communication valuse are same
            (p-index0; q-index1 ; /* ame index 0 & 1 */
            index0-x; indexl-y; ,
            ch1x1-index0; ch1y1-index1; /* mame child 1. */
            ch1y1<<-4;
            index0mgx;index1mgy; indexol=1;gray to dec()
            ch2x1-index0; ch2y1-index1; /* child-2 at 1 x-axis distence*/
            index0-gx; index1mgy; index1}-1; gray to dec();
            index0=gx; indexlmgy; index1|-1; gray to deco);
            ch3x1-index0; ch3y1-index1;
    ch3y1<<=4; index1mgy; index0/-1; index1|-1; gray to dec();
    /* child 4 at 1 x-axia distance & 1 y-axim-distance.*/
    ch4x1-index0; ch4y1-index1;
    ch4yl<<<-4; inder1mq; }
where(levelu-2)
    (p-index0; q-index1; /* save index0 & 1 values */
    r>>-=1; r-gx;<-1
    r<<=1
    index0-r; index1m;; gray to dec();
    x-gX;s=gy;
    r>>-1; r<<=1; :|-2;
    index0-r; index1-a;; gray_to dec();
    ch2x2-index0 ; ch2y2-indexl ; ch2y2<<-4
    -gx ; s=gy;
    r>>-1; s=gy;
    indexo-r; index1-s; gray_to dec();
    ch3x2-index0; ch3y2-index 1 ; ch 3y2<<-4;
```

mgx ; magy;
$\begin{array}{lll}r \gg-1 ; & r \ll-1 ; & r \mid=2 ; \\ s \gg-1 ; & \mathrm{a} \ll-1 ; & \mathrm{sl\mid l} 2 ;\end{array}$
index0-r; index1-y; gray to dec ();
ch $4 \times 2-$ index 0 ; ch 4 y 2 -index 1 ; ch $4 y 2 \ll=4$;
index0-p; index1-p; /* reatore oringinal values */
,
where(level-m3)
p-index0; q-index1; /* aave indexo 1 values *
r-gx ; s-gy;
$\gg-2 ; \quad r \ll-2 ; \quad x \mid=$
ndex0-r; index1-s; gray to dec ()
chlx3-index 0 ; chly 3 -index 1 ; chly $3 \lll-4$;

index0-r; index $1-s ;$ gray_to dec ();
ch 2×3-index 0 ; ch $2 y 3-$ index 1 ; ch $2 y 3 \ll-4$,

$\gg-2 ; \quad r \ll-2 ; \quad r|=1 ; \quad \operatorname{s}|=4 ;$
ndex0-r; indexi=s; gray to dec().
ch3x3-index 0 ; ch3y 3 -index $1 ; \operatorname{ch} 3 y 3 \ll=4 ;$

ndex $0=r$; \quad <-3; $x|=5 ; \quad s|-4$;
ndex0=r; indexl-s; gray_to_dec () ;
h4x3-xndex $0 ;$ ch4y 3 -index 1 \bar{i} ch 4 y $3 \ll=4$;
index0m; indexi-p; /* restoxe oringinal values */
where (level-m4)
\{p=index0; q-indexl; /* save index0 \& 1 values */

index $0-r$; index $1-s ;$ gray to dec ()
ch1x4=index0 ; ch1y $4=$ index $1 ; \operatorname{ch1y4} 4 \ll=4$;
-gx ; $\mathrm{B}-\mathrm{gy}$;
s>>-1; $\quad \mathrm{s} \ll-1 ; \quad \mathrm{r} \mid-8$;
ndex-x; index1-a; gray to dec()
; ch2y4-ind $x^{4} 1$; ch2y4<<-4;
r-gx ; smg ;
>>-1; $\quad 3 \ll-1 ; \quad 31-8$;

ndex0-r; index
h4x4-index0 ; ch4y4-index̃ ; ch4y4<<-4;
index $0-\mathrm{p}$; index1-p; /* restore oringinal values */
whare (level-=5)
1
$\begin{array}{ll}\text { ch } 1 \times 5-x+1 ; & \operatorname{ch} 1 y 5-y ; \\ \text { ch } 2 \times 5-29 ; & \operatorname{ch} 2 y 5-y ; \\ \text { ch } 3 \times 5=x+1 ; & \text { ch } 3 y 5-464 ; \\ \text { ch } 4 \times 5=29 ; & \text { ch } 4 y 5-464 ;\end{array}$
/* Children addresges calculation ends here. */
/* Now calculate parameters for lateral communication. */

```
where(level>m0) /* for base */
        morthx-x; northy=(y-1);
        southx-x; southy-(y+1);
        eastx=(x+1); easty=y;
    There(northy--1) northym0; where(vestx-m-1) westx=0;
    whera(eastx--32) eastx=31; whera(zouthy=-32) southy=31;
    southy<<-4; northy<<<4; masty<<-4; westy<<-4;
```

/*

, [row] [col]northy);
, (row][col]southy);

 row][col]westy); ,
*/
print f ${ }^{n}$ पn Your PYRAMID COMPUTER base ia 32×32 \n");
wind: printf("\nkork xk size window, Enter value of $k \backslash_{n}$);
(win_izo);

od ", win_size*win_size; ((win_size*win_ize)-1));
for ($k=0$ printf("\nEntör window elemente by row: 7);

printf T" ${ }^{\text {n }}$ Enter element fod $\left.: n, k\right)$;
win vallk]-n ,
for (part aizem; part size<win_izo'; part_size*-2);
 printf("\n partition size-\%dx ord ", part oixá, part size) if (part ize);
if (mart size>win size) win odd-1;
else if (m-8) where (level-2; ${ }^{2}$) coord pem;
-lse if (m-4) (where (lovel-=3) coord_pen3;

* Now initialize aach partition with its own x y coords */
where (x<part_size) px-x;
where ($y<$ part size) PY-Y
where (x>-part_size) px-xipart_size;
where ($\mathrm{y}>$-part_size) Pymipart_aize;

printf("\n\n STARTING CONVOLUTION PROCESS....\n");
/* assign corresponding value of whaow olemente to parallel variable a/

con_val-win_val[a]; /* con val gets the raght value of its own if (win_odd--1) (where (px>-win_aize) con_val-0;

CMC tamer start (1) ;
repeat: con result~con val*test
adjüst for $\operatorname{com}()$:
CMC_timer start (2);
ach mend ()
CMC timer_stop (2);
CMC adjust window ()
1\& (count1=10)
if (count $1=10$) goto repeat;
CMC_timer_atop (1) ;
[0] [0] fcon_result-[0] [3] fcon_result
[0][1]fcon-result-[0][4]fcon-result
time valmcMc timer read cm būsy (1);
valmCMC timer_read cm busy (2);
for (row=0; row<16; row+-16)
for (col-0; col<32; coll+)
 [collficon_xenalt):
printf("
printf ("\n\t Total time CM busy for Convolution is \&f ", time val)
printf(" $\backslash n \backslash t$ Total time to aend values to coordinator n PEs an
d get the result back is if ${ }^{\prime \prime}$, Val);
printf("\n\t Total time CM takes to move the window 19 of ", vall)
printf(${ }^{\left(7 \backslash n \backslash n^{n}\right)}$;
,
adjust_for_com
/* send con val to top left corner of each partition */
olse!
$a=e-1$
if (e)

m-f-1;
a-f-1; if ($\mathrm{m}>0$) $\quad \mathrm{a} \ll-4$;
[northy-a] [northx] con result-con result;

printf(")n [8d][8d]con result = od ", f, e, [0][1]con_result];
printf(")n [8d][8d)con-result = 8d ${ }^{\prime \prime}$, f, ©, [0][2]con-rosult

if (win_odd--1) (where ($\mathrm{px}>$-win_size) con_result=0;
f(win_odd-w) (where (px>-win_size) con_result=0;
where (py>-win_size) con_result=0,
/* for (rowmor, row<32; row $+=16$)


```
al, [row][col]con_result,);
```

*/
adjust_window (*) When
/* When the final value reaches within each partition, then the
following routine puts the correct value within correct pe. Then
it shifta the window (to calculate next convolution) */
(* where (pym=f G\& px=-e) ficon_result-con_result;

et+;
con result=0; $/$ * erase all convolved values now.*/
dest1m0; dest2=0; dest 3mo; dest 4-0; dest5mo
/* Now shift the window for correct position */
df(o<(part_size)) [ansty][eantx]con_valmcon_val.
-1a@ (
$a=x-(p a r t, 1 z e-1) ;$
where (a-m-1) a-0; /* shift window to original poaition. */
[westy][a]con_val-con_val; $f++;=0$;
printf(" ${ }^{\prime \prime}$ n after to orig, position ${ }^{n}$)
printf("\n con_val = 8d n, [01(0)con_val);
printf("\n con_val =8d ", (0) (1]con_val)

if (f>0 \&\& f<part_sizo) [southy] [southx]con_val-aon_val;
ff(f-mpart size) (printf("\nNow fi* equal to partition size so returning f=
 for (row=0; rou<48; row+=16) (printf("\n\nwindow values after shifting ;"); for (col=0; col<32; colt+)
printf(")n[rd][\%d]con_val -rd con_result =\%d ",row, col, [row][col]con_v al, [row] [col]con result,);
*/
send() /* This routine sends all values from base to the coordinators and then

 ; */i

st 4 mbd n. [16] [2]dest 4); */

awitch (coord_pe) ;
case 5: where (level-5) (
[ch1y 5] [ch1x5] dent 4=dest5; [ch2y5] [ch2x5] dent4ments; [ch4y5] [ch4x5]dent4ment5;
case 4: where (level-4) (
[ch1y4] [ch1x4]dest 3=dest 4 [ch2y ${ }^{4}$] [ch2x4] dest 3-dest4; [ch4y4][ch4x4]dest 3mesent4; J
case 3: where (level-3)
[ch1y3][ch1x3]dest2-dest3;
ch $2 y$ 3] [ch 2×3] dest 2 -dest3; [ch $3 y 3$] [ch3x3] dest2-dest3; [ch4y3][ch4x3]dest2-dest3;)
anse 2: where (level- 2) (
[ch1 ${ }^{2}$] [ch1x2] dest1-dest2;
[ch2y2] $[\mathrm{ch} 2 \times 2]$ dest1-dest2; [ch $3 y^{2}$] [ch 3×2] deatimesest 2 ; [ch4y2][ch4x2]dest1=dest2;
case 1: where(level-m-1) (
[ch1y1][ch1x1]con reault-dest 1 ;
$[\mathrm{ch} 1 \mathrm{yl}][\mathrm{ch} 1 \times 1]$ con_result-dest1;
$[\mathrm{ch} 2 \mathrm{y} 1][\mathrm{ch} 2 \times 1]$ con-result-dest1;
[ch3y1] [ch3x1]con result-dest1;
[ch4y1)[ch4x1]con-result-dest1; break,
default: printf("\n Sorryt Can not perform top down communication\n");
dec_to_gray $($

gray_to_dec(
int $k=0$
where (1ndex0>1) ($b=1$
for $(k=0 ; k<9 ; k++) 1$
where $(b<-$ indez 0$) \quad b \ll-1$;
where(bi-0) | $b \gg-1$; $d-b ; b \gg-1$; $c-b$;
for ($k=0 ; k<7 ; k++$)
where(cl-0) ($b^{\wedge}-$ index0; $b \in m e ; d \mid-b ; c \gg-1 ; b \gg-1$;
where (index $0>1$) index $0 \mathrm{~m}_{\mathrm{i}}$
where (index $1>1$) \quad ($b=0 ; \mathrm{d}=0$
for ($k=0 ; k<9 ; k++$)
where $(b<-$ Index 1$) \quad b \ll=1$;
here
where ($b \mid=0$) ($b \gg-1$; $d-b ; b \gg-1 ; c-b$;
for ($k=0 ; k<7 ; k++$)
where($c!-0)\left(b^{\wedge}-1 . n d e x 1 ; b \& m ; d \mid-b ; c \gg-1 ; b \gg-1\right.$;
where (index $1>1$) indexi-d; $\mathrm{b}=0$; $\mathrm{c}=0$; $\mathrm{d}=0$;


```
    CONVOLIUTITON
```

\#include <ntdio.h>
shape[256] [32] base;
$/^{\star}$ integer x and y contain decimal values of x and y coordinates.
/* While ${ }^{\text {in }} x$ and y contain decimal values of x and y coordinate
/* coordinates
index0 holds address for fow of master PE and indexl holds
address for col of mastor PE for base only.
/* x1 contains row address for master PE of ali other lavela
/* except for base; mimilarly Yl contains col address for master
/* pE of all other levels except for base.

int:base test-1, indexo, indexi, denti, dest2, deot 3 , desti, dest5, con val-0, a

- 0 , fcon result $=0$, mul-o;
static int ano, $f=0$;
static int count=0;
int row, col, $k=0$, clk tck-0, $1, \mathrm{~m}, \mathrm{n}$, coord_peoo ;
nt:base a-0,bo, c-o,d-0, adar- markmo i

int:base ch1x2,ch1y2,ch2x2,ch2y2, ch3x2, ch3y2, ch 4×2, ch 4 y 2 .
int:base ch1x3, ch1y 3 , ch $2 x 3, \operatorname{ch} 2 y 3$, ch 3×3, ch $3 y 3$, ch 4×3, ch 4 y 3 ;
nt :base ch1x4, ch $1 y^{4}, \operatorname{ch} 2 x 4, \operatorname{ch} 2 x^{4}, \operatorname{ch} 3 x 4, \operatorname{ch} 3 y 4, \operatorname{ch} 4 \times 4, \operatorname{ch} 4 y^{4} ;$
int :base ch1x5, ch1y 5 , ch 2×5, ch 2 y 5 , ch 3×5, ch 3 y 5 , ch 4×5, ch 4 y 5 ;
int :base southx, southy, northx, northy, eastx, easty,westx, westy;
nt win_sizemo, win odd $=0$, part_size-0, no of part $=0$;
int windou vall[64]; ;* scalor mirray*
/* south, north, east, west variables are used for lateral communication. */
/* xo to $x 7$ and yo to y^{7} variable stores address of master pe for */f
** each level of Pyramid. val, vall
$\operatorname{main}()$
with (base) 1
xx-pcoord (1)

for (row $=0$; row 256 ; row+t)

elbe k+mi
[row][col]addr-k;),

$\mathrm{k}=0$;
for (rowm0; row<256; rowt=16) \quad if (row-=0) $k=0$; else $k+=1$;

```
for(col-0; col<32; col+t) (
    [row][col]x-col; [row][col|y-k;
```

where (mark-m1)
dec_to_gray ()
/* set level for anh PE */
level-10; /* initially lovel-10 for all unused base PE */
amgxs2; b-gx\&3;
where (a-m2 || b-3) level-0;
a-gxe7;
where (a--0) level-1;
a-gy\&3; b=gx\&7;

where (amm 1 \&\& $b-1$) levelw3;
a"gx\& $31 ; \quad$ b=gy
[96] [1] level-4;
/* index0 holds address for row of master PE and inderi holds */

* address for col of master PE
index0-gx; indexi-gy;
Where (level-0) (index0>>=3; index $0 \ll-3$;
where (level--1) (index $1 \gg-2$;index $1 \ll-2$; index $0 \mid=1$;
where (level-2) (index $0 \gg-4 ;$ index $0 \ll-4$; index 0 i-1;
where (level-m) (index $0-1$; index $1-80$;)/* gray 80 decimal 96 */

Now calculate the addresses of children for all PE and for
$48948 \% 8484 \% 4 \% 8 \%$

| a=7; | b-akgx; | |
| :---: | :---: | :---: |
| where (bu-3) | [index1][index0]ch1x1-x; | [Index1][1ndex: ${ }^{\text {ch }}$ chly ${ }^{\text {a }}$; |
| where (b-2) | [index ${ }^{\text {] [}}$ index 0] ch2x1-x; | [index1][index0)ch2y1-y; |
| where ($\mathrm{bmm}=6$) | [indexl] [index 0] ch3x1-x; | [index1][1ndex0]ch3yl-y; |
| where ($\mathrm{b}=-7$) | [indexll [index 0 chenxi-x; | [index1][1nder0]ch4y1-y; |

where (level-m 3)
f ch $1 \mathrm{y} 3 \ll-4$; ch $2 \mathrm{y} 3 \ll-4$; ch $3 \mathrm{y} 3 \ll-4$; ch $4 \mathrm{y} 3 \ll-4$;)
where (level-4)
[6] [1]ch1x4-1; [6] [1]ch $1 \mathrm{y} 4=1 ;$

$\begin{array}{ll}{[6][1] \operatorname{ch} 3 \times 4-14 ;} & {[6][1] \operatorname{ch} 3 y 4-1 ;} \\ {[6][1] \operatorname{ch} 4 \times 4=14 ;} & {[6][1] \operatorname{ch} 4 y 4-30 ;}\end{array}$
$[6][1] \operatorname{ch} 4 x 4-14 ;[6][1] \operatorname{ch} 4 y 4-30 ;$
ch $1 y 4 \ll-4 ; \operatorname{ch} 2 y 4 \ll-4 ; \operatorname{ch} 3 y 4 \ll-4 ;$ ch $4 y 4 \ll-4 ; \quad 1$
/***** children calculation ends here ******/

*\&\&

Now calculate paramters for lateral comunication.
11

```
where (level-0) /* for base */
northx-x; northy- \((y-1)\);
mouthx-x; southym \((y+1)\);
east.x-(x+1); easty-y;
```

nest $=(x-1)$; westy-y;
where (northy-w-1) northym; where (westxm-1) westx=0;
where (eastx-42) east $x-31$; where (southym-16) southy-15
where ($x=-5$ || $x=-13$ || $x-21$) eantxt-4;
southy<<-4; \quad northy<<-4; eanty $\ll-4$; westy<<-4;
)

nitialize base of PC with logical x, y coorda. namely bx and by
(111) $111111111111111111110111111111111111111111111111 \% *$

$$
k-0 ; n-1 ;
$$

for (rowm; row<256; rowt=16) if if (row-0) k=0; else $k+=1$;
for (col-0; col<32; colt+)
if (mow $[$ [COL $]$ level;
if ($\mathrm{m}=-0$) ($\mathrm{n}+\mathrm{t}$;
[row][col]bamsis; [row][col]bymk;
/****** logical coords. end here *******/
print f("\n Your PYRAMID COMPUTER base is 16×16 (n")
wind: printf("\nfor kx kize window, Enter value of $k \backslash n "$)
scanf("8d", inin_size);

printf("\n You've to enter total qd elemots; starting from 0 to
sd ", wan_size*win aize, ((win size*win size)-1));
for (k-0;k<(winsize*win.size); $k++$) (
printf("\n Enter ©lement (\%d :",k);
scanf(ngd", \&n);
for (part size-1; part_size<uin size; part size*-2)
printf("\n You entered Window size od x od ", win size, win size)

printf("\n PC base is divided into od partitions of size of x \%d n, m, p
art_size, part aize);
if (part aize win siza) win odimi;
if (m=-8) (where(Ievel-m1) coord pe-1;)
else if (m-w4) (where(level-2) coord pem2,
else if (m-2) (where (level--3) coord_pem,)
/* coord pe shows the level number of coordinator PEs. *
printf("\n coordinator PEs are at level sd ", coordjpe);
/* Now initialize each partition with its own x, y coords. namely px \& py */ where (bx<part size) px-bx; where (by<part size) py-by
Where (bx>-pare_size) px=bxspart size;
where (by>-part_size) py-byspart_size
where $((x 83)-=0)$ test $=0$;

/* maign coriosponding value of window elements to parallel variable a/ if (part_izen-2) iataxt; con_val-win_val[a];)

- leof (win
a-(wingize * py)+px; /* con_val gets the right value of its own
if (win_odd=-1) (where (px>-win_size) con val=0; where (py>-wiñ_size) con_valmo;)

CMC_tumer start (1);
repeat: con_result=con val*test;
adjust for $\operatorname{com}()$
- mand ();

CMC timer stop (2);
CMC_timer atart (3);
CMC_timer stop (3);
if(count $1-10$) goto repeat;
CMC_timer_stop (1):
/*
[by] [bx]fcon resultwin_val[1]+win_val[3];

time_val-CMC_timer_read_cmbuay (1);
val-C̄MC tumer read cm büsy (2)i
vall-CMC timer read cm busy (3);

printf("\n\t Total time to send values to coordinator $\backslash \mathrm{n}$,
d get the result back is $8 f$ ", val); 1) ;

${ }_{j}{ }^{\text {pri }}$
\}
)
doc_to_gray ()

gray to dec ()
int $k=0 ;$
where (index $0>1$) ($b=1 ;$ for $(k-0 ; k<9 ; k++)$ (
where ($b<-$ index 0$) ~$
$b \ll-1 ; ~$
for $(k-0 ;$
for $(k=0 ; k<7 ; k++)$)
Where $(a \mid=0)\left(b^{\wedge}-\right.$ index $\left.0 ; b \in=c ; d \mid=b ; c>-1 ; b \gg-1 ;\right)$)
where (index $0>1$) index $0=d$;
$\mathrm{b}=0$; $\mathrm{c}=0$; $\mathrm{d}-0$;
where (index $1>1$) $\mid b-1$; for $(k-0 ; k<9 ; k++)($
where (b<-indexi) b<<<-1; \}, ${ }^{2}$
where (bi-0) (b>>-1; d-b; b>>-1; $a=b$; ।
for $(k=0 ; k<7 ; k++) 1$
where $(c!m 0) 1$ b^-index $; b \in=c ; d \mid-b ; a \gg-1 ; b \gg-1 ; 11$ where (index1>1) index1-d;
$\mathrm{b}-0$; $\mathrm{c}=0$; $\mathrm{d}=0$;
1
send() /* This routine sends all values from base to the coordinators and then send them back to the right partition. */
1 l=coordpe;
 n) 1--1; if $(1>0)$ f where (level--1) [index1][index0]dent2t-dent1 ;/* printf

witch (coord pe)
case 5: where(level-m5)
[ch1y5][ch1x5] dest4-dent5;
[ch2y5] (ch2x5) dest4-dest5;
[ch3y5][ch3x5]dest4-dent5;
[ch3y5] [ch3x5] deat4-dest5;
[ch4y5] [ch4x5]dest4-dent5;
where (level-mi)
[ch1y4][ch1x4]dest3-dest4;
ch2y4][ch2x4]dest 3-dent4;
ch $\left.3 y^{4}\right][$ ch $3 x 4]$ dent $3-$ dest 4 ;
[ch4y4] [ch4x4]dost 3-dest4;
case 3:
[ch1y3][ch1x3)dent2-dent3;
(ch2y3] [ch1x3]dent 2-dent3;
[ch3y3] (ch3x3) dent2-dest3;
[ch4y3][ch4x3]dest2=dest3;
where (level-m2)
[ch1y2][ch1x2]dest1-dent2;
[ch2y2][ch2x2]dest1-deat2;
[ch3y2] [ch3x2] dent1-dent2;
[ch4y2] [ch4x2]dent1-dent2;
where (1evel- 1)
[ch1y1][ch1x1]con_reault-dent1;

[ch4y1][ch4x1]con-resultedest1; break; |
default: printf("\n SorxyT Can not perform top down communication\n");
1
adjust_for_com()
/* gend con val to top left corner of each partition */
if (e=-0 \&f $f-0)$ return; $/ * e=0$ and $f=0$ means mart of convolution */
olse !
if (e>0) ([westy][westx-a]con_result=con_result;
)
$\mathrm{m}=\mathrm{f}-1$; $; ~$
$-f-1 ;$ if $(m>0) \quad a \ll-4 ;$
(f (win) where (py>min_size)con_result=0;
1
)
adjust_window ()

* When the final value reaches within each partition, then the following routine put the correct value within correct PE. Then it shifts the window (to calculate next convolution) */
1

```
whre(pym=f && px=me)fcon_resultmcon_result;
e++;
```

/* Now mhift the window for correct position */
if (e< (part_size)) [easty] [eastx]con_val-con_val;
lee (
where (a-C-1) amo; 7^{*} shift window to original position */
[westy][a]con_valmcon_val; f+t; emo
if (f>0 \&\& f<part_size) [southy][southx]con_val=con_val;
1
if(f-mpart_size) (printf("\n returning fe 8d ",f); count=10; return;
 CONVOLUTION
finclude <stdio.h>
include <cstimer.h>
shape [8192] base;
/* Integer x and y contain decimal values of x and y coordinates /* While gx and gy contain Reflexive Gray codes for each x and y
/* indexo holds address for row of master pe and indexl holds
/* address for col of master PE.

 n_realtoo, faon result-0, mul-0
static int $=0, f=0$
tatic int count $=0$
int row, col, $k=0$, clk tckmo, $1, m, n$, coord pew 0

int :base south, north, asst, wost, mada;
int win size-0, win odd=0; part sixa=0, no of part=0;

int:base $a=0, b=0, c=0, d=0$, mark $=0, a d d r=0$;
int:base tempx1, tempx2,tempx3,tempx4,tempy1,tempy $2, t e m p y 3, t e m p y 4 ;$
/* These variables store temporary coordinate varlablea for comuniacation by each master PE . */
/* mouth, north, east, west variablea are ueed for lateral comuniantion. */ double time val, val, vall;
mainn()
where ($b=0$) mark $=1 ; 1 * b=0$ means those PEs whose 4 LSB -0 */ $\mathrm{k}=0$;
for (row-0, row<8192; rowt-16) (\quad if (xow-0) $k=0$;

where (mark-w1) (dec_to_gray ();
/* Set level for each pE
This routine staxts from apex and goes top down. it calculates children for each master PE and then update children a lovel communication purpose. Addreas of mastor Pe ls aved in memory variable m_add
level-9; /* set level to an arbitrary value initially. */
[0]level-4; [32]level-3; [96]level-3; [112]levelm3; [64]level-3;
or1-8; or $2-16$;or3-24; xor-4;
for ($k-3 ; k>0 ; k--)$
where (level-k)
(a-gx;pmor2la; q-or3la;an-xorirmalor1; amalor2;

index0-q; gray to dec (); index $0 \ll-4$; tempx $2-1 n d e x 0$
index $0=-8$; gray to dec (); index $0 \ll-4$; tempx4-indexo; tempxI] level-(k-1); [termpx1]m add=(x<<4) [tempx2] level-(k-1); [tempx2]madd-(x<<4);
[tempx3]level=(k-1); [terapx3]m_add-(x<<4);
[tempx4]level-(k-1); [tempx4]m_add-(x<<4);

/***** Above code has calculated both the parent PE addresses and 4 Children addrosaes. Since this routine goes top down So, now very body within the shape has both parent and children addresses and hence no calculation for children ie required like other
algorithms; which goes bottom up and required extra code for
hildren calculation
ompx1,tempx2,tempx3,tempx4 contain children addresses
m_- add contains parrent addresses $* * *$ /
$/ \star * *$ Now calculate parameters for lateral communication for base **/
data 0 ();
data-1 ();
data-3();
/**** Lateral communication parametre end here ******/
wind: printf("\n Your pyramid computer base 1816×16 (n"),
print ("\nFork xksi;
printf("\n wrong valūe : valid window sizes are $2,3,4,5,6,7,8$ \n"), goto wind;
d n printf("\n You've to enter total old elemets; starting from 0 to

for ($k=0$ printf (" k (winenter window olements by rows. ");

gcanf("8d",\&n) ;
win_val[k]-n ;
for (part_size-1; part_eize<win_size'; part_size*=2);

print ("n You entered window size od x od ", win size, win ilze)

art_size, part size ;

else if $\left(m^{-4}-4\right)$ (where (level-m 2) coord pe-2,
/* coord pe shows the level number of coordinator PEs. */

* prantf("\n Coordinator pes are at level on ", coordpe);
$/ *$ Now initialize each partition with its own x, y coords. namely $p \pi \bar{G} p y * /$ where (bx<part_siza) px-bx; here (by<part size) pymby
where (bx>-part_size) px-bxspart_size;
where (by>-part_gize) Pymbykpart_size;

printf("\n\n Starting convolution process....\n")
/* aseign corresponding value of window element to parallel variable a */

elsel

index for first convolution process */
if (win_oddmel) (whara (px>-win_size) con_val-0;

CMC timer start (1);
repēat: con result-con val*test;
adjust for_com? ;
CMC tamer start (2):
CMC timer stop $(2$
CMC_timer start (3);
CMC tameadjust window () :
CMC tumer (count i=10) goto repeat;
CMC timer_stop (1)
if (part_gize--2) (where (levelm-0) (

time val-CMC timer read_cm busy (1);
val-CMC timer read cm būsy (2);
vall-CMC_timer_read_cin_buay (3);

printf("\n\t Total time to send falues to coordinatorln
d get the result back is of n, val);
printf ("\n\n") :
printf("\n\n"):
1
send () /* This routine wends all valuen from bame to the coordinator and then send them back to the right partition. */
 0][0]dest1); */ (1>0) (where (level-m1) [maddjest2+-dest1 ;/* printf("\n dest
 2-8d ", [0][1]dest 2); */)

 t 4m8d "; [96][1]dest4); */ \}

$$
\begin{aligned}
& \text { cane 4: where(1avel-4) (} \\
& \text { [tempx1] dest 3-dest } 4 \\
& \text { [tempx 2) dest 3-dest 4; } \\
& \text { [tempx 3] dest 3-dest 4; }
\end{aligned}
$$

where (level-3) (
[tempx1]dest2-dest3;
case 2: where (levelme2)
[tempx1]dest1-dest 2;
[tempx2] dest1-dest2;
[tempx3] dest1-dest 2 ; [tempx4|dest1-dest2;]
case 1: where (level--1)
[tempri] con_result-dest 1 ;
[tempx2] con_result-dest1;
[tempx2] con_result-dest1;
[tempx3] con result-dest1;
[tempx4] con_result-desti; break;)
default: printf("\n Sorry! Can not perform top down communication\n");
adjust_for_com()
/*-gend con val to top left corner of each partation */
if (eme \& \& $\overline{\mathrm{f}}-\mathbf{0}$) return; $/ * a=0$ and $\mathrm{f}=0$ means start of convolution $* /$
else!
if (e>0) (, [west]con_result-con_result;

if (f>0) ([north]con_result-con_reault;)
if (win_odd--1) (where (px>-win size) con_result-0; where(py>min_size)con_result=0;

1
adjust_window ()

* When the final value reaches wathin each partition, then the following routine puta the correct value within correct pE. Then

1

at+;
con result=0; $/ *$ erase all convolvod values now.*/
destimo; dest2-0; dest3m0; dent4-0; dest 5=0;
/* Now shift the window for correct posi;
if (e人(part size)) [east]con_valmoon_val;
elá !
here (a=--1)-(part size-1);
where (a=-1) a-0; 7^{*} shift; window to origanal position */
[west]con_val-con_val; f++; a=0;
if(f) fif f(part_size) [south]con_val-con_val;
if(f--part_size) (printf("\n returning f- od ",f); count-10, return;)
1
decto_gray (1)
$g \mathrm{~g}-\mathrm{x} \gg 1$; $\mathrm{g} \mathrm{x}^{\wedge}-\mathrm{x}$; $\mathrm{gy}-\mathrm{y} \gg 1$; $\mathrm{gy}{ }^{\wedge}-\mathrm{y}$;
where (1ndex $0>1$) $\mid b-1$; for $(k-0 ; k<14 ; k++) \mid$

where $(b 1-0)$ i $b \gg-1 ; \mathrm{d}=\mathrm{b}$; $\mathrm{b} \gg-1$; $\mathrm{c}-\mathrm{b}$; for ($k=0 ; k<14 ; k+1$) 1
where(ci-0) (b^{\wedge}-index0; $\left.b s-c ; d \mid-b ; c \gg-1 ; b \gg-1 ;\right)$ b $-0 ; \mathrm{cmo} 0 \mathrm{~d}-0$;
${ }^{\text {data_o }} 0$

$[2880]$
$[6976]$
$[3904]$
$[8000]$
$[2992]$
$[7089]$
$[4016]$
$[8112]$
$[7944]$
$[7940]$
$[8968]$
$[2928]$
$[7024]$
$[3952]$
$[8048]$

1 ant $=6976$ -ant-3904; -azt-9000; -ast-2992; 921 089 aast $=4088$; 2112 $[7040$ -ast $=3969$; 80641 east $=29064$; [2928] $\begin{array}{r}{[7024} \\ {[3952} \\ \hline\end{array}$ [3952]east=8048;

$$
\begin{aligned}
& \text { 2880] west-2880; }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2992] weet-8000; } \\
& \text { [708B] west }=2992 \text {; } \\
& \begin{array}{l}
\text { [4016] wert=7088; } \\
\text { [8112] weat=4016; }
\end{array} \\
& \text { [2944] weat-8112; } \\
& \text { 7040] west=2944; } \\
& \text { [3966] west=7040; } \\
& \text { [8064] west=3968; } \\
& \begin{array}{l}
\text { 2928] } \\
\text { 7024t } \\
\text { we8064; }
\end{array} \\
& \begin{array}{l}
7024 \text {]west }=2928 \text {; } \\
3952 \text { \}west-m024; }
\end{array} \\
& \text { [8048] west-3952; }
\end{aligned}
$$

| 928 | north-2880; | | | 4928 | | | 928 ; |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 344 | north=6976; | $\left[\begin{array}{l} {[848]} \\ {[7344]} \end{array}\right.$ | south-7488; | 1834 | 5952 | [73 | 8 ; |
| 952 | northe3904; | [5952] | south-3760; | $[5952$ | -tm6320; | (5952) | vost-7344; |
| [6320] | north-8000; | [6320] | south-7856; | [6320] | aset-5040; | [6320] | west-5952; |
| [5040] | north-2992; | [5040] | south-3504; | [5040] | t-7232 | [5040] | 6320; |
| [7232] | north-7088; | [7232] | south-7600; | [7232] | anst-6064j | [7232 | t-5040; |
| [6064] | north-4016; | [6064] | south-3648; | [6064] | t-6208; | [6064] | t-7232; |
| [6208] | north=8112; | [6208 | south 6 -6848; | [6208] | at-4992; | [6208] | t=6064; |
| [4992] | north=2944; | [4992] | mouth=3456; | [4992] | -ast-7280; | [4992] | vest-6208; |
| [7280] | north=7040; | [7280] | south=7552; | [7280] | -ast-6016; | [7280] | cest-4992; |
| [6016] | north-3968; | [6016] | south-3696; | [6016 | - 6256 ; | [6016] | $t=7280 ;$ |
| [6256] | north=8064; | [6256] | south-7792; | $[6256$ | att-4976 | [6256 | at $=6016$; |
| [4976] | north-2928; | [4976] | south-3440; | $[4976$ | ast-7440; | $[4976$ | vest-6256; |
| [7440] | north=7024; | [7440] | south-7536; | [7440] | -ast=6000; | [7440] | cest-4976; |
| [6000] | northm3952; | [6000] | southm3712; | [6000] | -ast-6272; | [6000] | 40; |
| 272] | north-8048; | | Ch-7808; | [62 | 6272; | 62 | 00; |
| /**** row 3 of base ****/ | | | | | | | |
| [3392] | north-4928; | [3392] | south-5440 | [339 | -7498 | [3392] | -3392; |
| 488] | north-7344; | [7488) | mouth-6832; | [7488] | t-3760 | [7488] | -t-3392; |
| 7601 | north-5952; | [3760) | south-5808; | [3760] | -ast-7856; | [3760] | -t-7488; |
| 78561 | north-6320; | [7856] | south=6464; | [7856] | -1.Et-3504; | [7856] | rest-3760; |
| $3504]$ | north-5040; | [3504] | aouth-5552; | [3504] | -ast=7600; | [3504] | et-7856; |
| 7600] | north-7232; | [7600] | south-6720; | $[7600$ | ast-3648 | [7600 | st-3504; |
| [3648] | north-6064; | [3648] | southm5696; | [3648] | cant=6848; | [3648 | -st-7600; |
| 6848] | north-6208; | [6848] | mouth-6576; | [6848] | -ast-3456; | [6848] | cst-3648; |
| [3456] | north=4992; | [3456] | south-5504; | [3456] | -ast-7552; | [3456] | -6848; |
| [7552] | north-7280; | [7552] | south=6768; | [75 | asat=3696; | [7552] | -t-3456; |
| [3696] | northm6016; | [3696] | south-5744; | [3696] | at=7792 | [3696 | st-7552; |
| [7792] | north-6256; | [7792] | south-6528; | $[7792$ | ast-3440; | [7792 | -st-3696; |
| [3440] | north-4976; | [3440] | south-5488; | [3440] | -at-7536; | [3440] | vest-7792; |
| [7536] | noxthm7440; | [7536] | south-6784; | $[753$ | -ast-3712; | | -3440; |
| [3712] | north-6000; | [3712] | south-5760; | [3712 | t-7808 | [3712 | st=7536; |
| [7808) | rth-6272; | | -651 | | -780 | [780 | -3712; |
| /**** row 4 of base ****/ | | | | | | | |
| [5440] | north-3392; | [5440] | south-2752; | | t=6832; | [54 | ; |
| [6832] | northm7488; | [6832] | south-6848; | [6832] | -ast-5808; | [6832] | est-5440; |
| 081 | -3760; | [5808] | south-3776; | [5808] | -ast-6464; | [5808) | -st-6832; |
| 641 | north-7856; | [6464] | south-7872; | [6464] | -ast-5552; | [6464] | t=5808; |
| 52 | north-3504; | [5552] | southe 3008 ; | [5552] | -a $\mathrm{t}=6720$; | | 64; |
| 720 | north=7600; | 6720 | south=7104 | 6720] | | [6720] | |

| 928 | north-2880; | | | 4928 | | | 928 ; |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 344 | north=6976; | $\left[\begin{array}{l} {[848]} \\ {[7344]} \end{array}\right.$ | south-7488; | 1834 | 5952 | [73 | 8 ; |
| 952 | northe3904; | [5952] | south-3760; | $[5952$ | -tm6320; | (5952) | vost-7344; |
| [6320] | north-8000; | [6320] | south-7856; | [6320] | aset-5040; | [6320] | west-5952; |
| [5040] | north-2992; | [5040] | south-3504; | [5040] | t-7232 | [5040] | 6320; |
| [7232] | north-7088; | [7232] | south-7600; | [7232] | anst-6064j | [7232 | t-5040; |
| [6064] | north-4016; | [6064] | south-3648; | [6064] | t-6208; | [6064] | t-7232; |
| [6208] | north=8112; | [6208 | south 6 -6848; | [6208] | at-4992; | [6208] | t=6064; |
| [4992] | north=2944; | [4992] | mouth=3456; | [4992] | -ast-7280; | [4992] | vest-6208; |
| [7280] | north=7040; | [7280] | south=7552; | [7280] | -ast-6016; | [7280] | cest-4992; |
| [6016] | north-3968; | [6016] | south-3696; | [6016 | - 6256 ; | [6016] | $t=7280 ;$ |
| [6256] | north=8064; | [6256] | south-7792; | $[6256$ | att-4976 | [6256 | at $=6016$; |
| [4976] | north-2928; | [4976] | south-3440; | $[4976$ | ast-7440; | $[4976$ | vest-6256; |
| [7440] | north=7024; | [7440] | south-7536; | [7440] | -ast=6000; | [7440] | cest-4976; |
| [6000] | northm3952; | [6000] | southm3712; | [6000] | -ast-6272; | [6000] | 40; |
| 272] | north-8048; | | Ch-7808; | [62 | 6272; | 62 | 00; |
| /**** row 3 of base ****/ | | | | | | | |
| [3392] | north-4928; | [3392] | south-5440 | [339 | -7498 | [3392] | -3392; |
| 488] | north-7344; | [7488) | mouth-6832; | [7488] | t-3760 | [7488] | -t-3392; |
| 7601 | north-5952; | [3760) | south-5808; | [3760] | -ast-7856; | [3760] | -t-7488; |
| 78561 | north-6320; | [7856] | south=6464; | [7856] | -1.Et-3504; | [7856] | rest-3760; |
| $3504]$ | north-5040; | [3504] | aouth-5552; | [3504] | -ast=7600; | [3504] | et-7856; |
| 7600] | north-7232; | [7600] | south-6720; | $[7600$ | ast-3648 | [7600 | st-3504; |
| [3648] | north-6064; | [3648] | southm5696; | [3648] | cant=6848; | [3648 | -st-7600; |
| 6848] | north-6208; | [6848] | mouth-6576; | [6848] | -ast-3456; | [6848] | cst-3648; |
| [3456] | north=4992; | [3456] | south-5504; | [3456] | -ast-7552; | [3456] | -6848; |
| [7552] | north-7280; | [7552] | south=6768; | [75 | asat=3696; | [7552] | -t-3456; |
| [3696] | northm6016; | [3696] | south-5744; | [3696] | at=7792 | [3696 | st-7552; |
| [7792] | north-6256; | [7792] | south-6528; | $[7792$ | ast-3440; | [7792 | -st-3696; |
| [3440] | north-4976; | [3440] | south-5488; | [3440] | -at-7536; | [3440] | vest-7792; |
| [7536] | noxthm7440; | [7536] | south-6784; | $[753$ | -ast-3712; | | -3440; |
| [3712] | north-6000; | [3712] | south-5760; | [3712 | t-7808 | [3712 | st=7536; |
| [7808) | rth-6272; | | -651 | | -780 | [780 | -3712; |
| /**** row 4 of base ****/ | | | | | | | |
| [5440] | north-3392; | [5440] | south-2752; | | t=6832; | [54 | ; |
| [6832] | northm7488; | [6832] | south-6848; | [6832] | -ast-5808; | [6832] | est-5440; |
| 081 | -3760; | [5808] | south-3776; | [5808] | -ast-6464; | [5808) | -st-6832; |
| 641 | north-7856; | [6464] | south-7872; | [6464] | -ast-5552; | [6464] | t=5808; |
| 52 | north-3504; | [5552] | southe 3008 ; | [5552] | -a $\mathrm{t}=6720$; | | 64; |
| 720 | north=7600; | 6720 | south=7104 | 6720] | | [6720] | |

| 928 | northm2880; | | | 4928 | | | 928 ; |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 344 | north-6976; | $\left[\begin{array}{l} {[848]} \\ {[7344]} \end{array}\right.$ | south-7488; | 1834 | 5952 | [73 | 8 ; |
| 52 | northe3904; | [5952] | south-3760; | $[5952$ | -tm6320; | (5952) | vost-7344; |
| [6320] | north-8000; | [6320] | south-7856; | [6320] | aset-5040; | [6320] | west-5952; |
| [5040] | jnorth-2992; | [5040] | south-3504; | [5040] | t-7232 | [5040] | 6320; |
| [7232] |) north m -7088; | [7232] | south-7600; | [7232] | anst-6064j | [7232 | t-5040; |
| [6064] |) north-4016; | [6064] | mouth-3648; | [6064] | at-6208; | [6064] | E-7232; |
| [6208] | north=8112; | [6208 | south 6 -6848; | [6208] | ast=4992; | [6208] | t=6064; |
| [4992] | north=2944; | [4992] | mouth=3456; | [4992] | -ast-7280; | [4992] | vest-6208; |
| [7280] | north-7040; | [7280] | south=7552; | [7280] | -ast-6016; | [7280] | cest-4992; |
| [6016] | north-3968; | [6016] | south-3696; | [6016 | - 6256 ; | [6016] | t-7280; |
| [6256] | north-8064; | [6256] | south-7792; | $[6256$ | att-4976 | [6256 | at $=6016$; |
| [4976] | north-2928; | [4976] | outh-3440; | $[4976$ | ast-7440; | $[4976$ | vest-6256; |
| [7440] | north=7024; | [7440] | south-7536; | [7440] | -ast=6000; | [7440 | cest-4976; |
| [6000] | northm3952; | [6000] | southm3712; | [6000] | -ast-6272; | [6000] | \% |
| 272] | \|north-8048; | | Ch-7808; | [62 | 6272; | [62 | 00; |
| /**** row 3 of base ****/ | | | | | | | |
| [3392] | Inorth-4928; | [3392] | south-5440 | [339 | -7498 | [3392] | -3392; |
| 488] | \|north-7344; | [7488) | mouth-6832; | [7488] | t-3760; | [7488] | - 5 -3392; |
| 7601 | \|northm5952; | [3760) | south-5808; | [3760] | -ast-7856; | [3760] | -t-7488; |
| [7856] | \|north=6320; | [7856] | south-6464; | [7856] | -ant-3504; | [7856] | rest-3760; |
| $3504]$ | 1north=5040; | [3504] | aouth-5552; | [3504] | -ast=7600; | [3504 | et-7856; |
| 7600] |]north-7232; | [7600] | south-6720; | [7600] | at-3648 | [7600 | st-3504; |
| [3648] | north-6064; | [3648] | southm5696; | [3648] | cant=6848; | [3648 | t-7600; |
| 6848] | 1north-6208; | [6848 | mouth-6576; | [6848] | -ast-3456; | [6848] | cst-3648; |
| [3456] | \|north=4992; | [3456] | south-5504; | [3456] | -ast-7552; | [3456] | -6848; |
| [7552] | north-7280; | [7552] | south=6768; | $[7552$ | as=3696; | [7552 | t-3456; |
| 36961 | orthm6016; | [3696] | south-5744; | [3696] | t-7792 | [3696 | st-7552; |
| 77921 | north-6256; | [7792] | south-6528; | [7792] | 1-3440; | $[7792$ | -st-3696; |
| [3440] | \|north-4976; | [3440] | south-5488; | [3440] | -at-7536; | [3440] | vest-7792; |
| [7536] | noxth-7440; | [7536] | south-6784; | $[7536$ | -ast=3712; | [7536 | -3440; |
| [3712] |) north-6000; | [3712] | south-5760; | [3712 | t-7808 | [3712 | st=7536; |
| [7808) | rth-6272; | | -651 | | -780 | [780 | -3712; |
| /**** row 4 of base ****/ | | | | | | | |
| [5440] | north=3392; | [5440] | south-2752; | | -6832; | | ; |
| [6832] | \|northm7488; | [6832] | south-6848; | [6832] | -ast-5808; | [6832] | est-5440; |
| [5808] |]north=3760; | [5808] | south=3776; | [5808] | -ant=6464; | [5808] | 5t-6832; |
| 641 |]north-7856; | [6464] | south-7872; | [6464] | -ast-5552; | [6464] | $t=5808$; |
| 52) |) $\mathrm{north}=3504$; | [5552] | southe 3008 ; | [5552] | -a $\mathrm{t}=6720$; | | -6464; |
| 720 |] north=7600; | [6720] | south-7104; | [6720] | cast-5696; | [67 | west-5552; |

[

| 18 | [5696] east $=6576$; |
| :---: | :---: |
| 576] south-8128; | [6576] ast $=5504$; |
| 504]south=3056; | [5504]east=6768; |
| 768] south=7152; | [6768]east $=5744$; |
| 744) south=4080; | [5744]east=6528; |
| 528] south=8176; | [6528]east-5488; |
| 488) south-2800; | [5488] east=6784; |
| 784) south=6896; | [6784]east-5760; |
| 7601southm3824; | (5760)eamtm6512; |
| 512] a outh=7920; | [6512]eant=6512; |

[5696] west $=6720$ [6576] west $=5696$ (5504] west $=6576$; 6768] west $=5504$ 5744] west $=6768$ 6528] west-5744;
5488 west $=6528 ;$ 5488] west $=6528$
6784
lwest $=5488$ 5760 \} west -6784 [6512] west-5760;

${ }_{1}^{\text {data_10 }}$

| | | | |
| :---: | :---: | :---: | :---: |
| [2752]north-5440; | [2752]so | [2 |]west-2752; |
| [6848]north=6832; | [6848] south-7472; | [6848] eait=3776; | [6848]west-2752; |
| [3776]north-580日; | [3776] south=5824; | [3776] east-7872; | [3776]west-6848; |
| [7872]north-6464; | [7872]south=6448; | [7872] east=3008; | [7872)west-3776; |
| [3008]northe5552; | [3008] southe5056; | [3008] east-7104; | [3008]wast-7872; |
| [7104]northm6720; | [7104] southe7216; | [7104]east=4032; | [7104]west-3008; |
| [4032]north-5696; | [4032] south-6080; | [4032] east-8128; | [4032]west=7104; |
| [8128]north-6576; | [8128] southm5424; | [8128] ast-3056; | [8128]west-4032; |
| [3056]north-5504; | [3056] south-5104; | [3056] axt-7152; | [3056]west-8128; |
| [7152] north=6768; | [7152] south=7168; | [7152] east $=4080$; | [7152]west=3056; |
| [4080]north $=5744$; | [4080] south-6128; | [4080] east-8176; | [4080]west-7152; |
| [8176] north-6528; | [8176] south-6144; | [8176]east-2800; | [8176]west=4080; |
| [2800) north-5488; | [2800] south-4848; | [2800] -ast-6896; | [2800]west-8176; |
| [6896]north-6784; | [6896] south-7424; | [6896]east-3824; | [6896]west-2800; |
| [3824]north-5760; | [3824] Bouthm5872; | [3824] east-7920; | [3824]west=6896; |
| [7920]north=6512; | | - | 7920]west-3824; |
| /**** row 6 of base ****/ | | | |
| [4800] north=2752; | [4800] ${ }^{\text {c }}$ | [4800] | [4800] wast-4800; |
| [7472]north-6848; | [7472] south-7360; | [7472]east-5824; | [7472]west-4800; |
| [5824]north-3776; | [5924] southme3888; | [5824]east-6448; | [5824]west=7472; |
| [6448]noxthmi872; | [6448]south-7984; | [6448]-ast-5056; | [6448]womtm5824; |
| [5056]noxthe3008; | [5056] mouthm3520; | [5056] east-7216; | [5056]went-6448; |
| [7216]north-7104; | [7216] south-7616; | [7216] ast $=6090$; | [7216]west-5056; |
| [6080]north-4032; | [6080] south-3632; | [6080] ast-5424; | [6080) west=7216; |
| [5424]north-8128; | [5424] south-7728; | [5424] east-5104; | [5424]went=6080; |
| [5104]north-3056; | [5104] southe3568; | [5104] ant-7168; | (5104]Namt-5424; |
| [7168) northm7152; | [7168] southm7664; | [7168]-ast-6128; | [7168]west-5104; |
| [6128]northm4080; | [6129] mouthe3584; | [6128] exat=6144; | [6128]went-7168; |
| [6144]north-8176; | [6144] outh=7680; | [6144] east=4840; | [6144]west-6128; |
| [4848) ${ }^{\text {north-2800; }}$ | [4848) couth-3312; | [4848] ant-7424; | [4848]wast-6144; |
| [7424] north-6896; | [7424] south-7408; | [7424]eant-5872; | [7424]west=4848; |
| [5872]north-3624; | [5872] outh-3840; | [5872]*ant-6400; | [5872]west-7424; |
| [6400]north-7920; | [6400] outh-7936; | [6400] east=6400 | |
| /**** row 7 of base ****/ | | | |
| [3264] north-4800; | [3264] south-5312; | | |
| [7360]north-7472; | [7360] southe6960; | [7360] eant-3888; | [7360]west=3264; |
| [3888] noth-5824; | [3888] outh-5936; | [3888]east-7984; | [3888] west=7360; |
| [7984]north-6448; | [7984]south=6336; | [7984]east=3520; | [7984]west-3888; |
| [3520]north=5056; | [3520] south=5568; | [3520] -ast=7616 | [3520]west=7984; |
| [7616]noxthe7216; | [7616] south=6704; | (76161 east=3632; | [7616]west=3520; |
| [3632]northm6080; | [3632] south-5680; | [3632]eastm7728; | [3632]west-7616; |
| [7728) noxth-5424; | [7728) \%outh-6592; | [7728] east-3568; | [7729] wast-3632; |
| (3568)north-5104; | [3568] south-5616; | [3568] eact-7664; | (3568)wast-7728; |
| (7664)northa7168; | [7664]southw6656; | [7664]east-3584; | [7664]west-3568; |
| [3584)north-6128; | [3584] south-5632; | [3584] eazt $=7680$; | [3584]west=7664; |
| [7680) $\mathrm{north}=6144$; | [7680] south-6640; | [76801 -ast-3312; | [7680]west=3584; |
| [3312]north=4848; | [3312]southe5360; | [3312 least-7408; | [3312] west $=7680$; |
| [7408] north=7424; | [7408]south-6912; | [7408] east-3840; | [7408]west=3312; |
| [3840]north-5872; | [3840] south-5888; | [3840] east=7936; | [3840]wertu7408; |
| [7936]north-6400; | [7936] south $=6384$; | [7936] eamt-7936; | [7936]west-3840; |
| /**** row 8 of base ****/ | | | |
| [5312]north-3264; | [5312]south-2720; | [5312] east-6960; | [5312]west=5312; |
| [6960]northe7360; | [6960]south-6816; | [6960]exst-5936; | [6960]west-5312; |
| [5936] northe3888; | [59361 southe3744; | [5936] east-6336; | [5936]wert-6960; |
| [6336]north-7984; | [6336] south-7840; | [6336] east-5568; | [6336] west-5936; |
| [5568]northm3520; | [5568) south=2976; | [5568]eastm6704; | [5568]west=6336; |
| 704 jnorth-7616; | [6704] southm-7072; | [6704] exat=5680; | [6704]west-5568; |

| [5680) north=3632; | [5680] mouth 4000; | [5680] east $=6592$; | [5 | west=6704; |
| :---: | :---: | :---: | :---: | :---: |
| [6592]north=7728; | [6592]south-8096; | [6592] east-5616; | [6592] | west $=5680$; |
| [5616]north-3568; | [5616] south=3040; | [5616] east-6656; | [5616] | west=6592, |
| [6656]north=7664; | [6656] south=7136; | [6656]east=5632; | [6656] | west-5616 |
| [5632]nozth=3584; | [5632] mouth=4064; | [5632] exat=6640; | [5632] | west=6656; |
| [6640]north $=7680$; | [6640]south-8160; | [6540]east $=5360$; | [6640] | west-5632; |
| [5360] north-3312; | [5360]south=2784; | [5360] east=6912; | [5360) | west=664 |
| [6912]north-7408; | [6912] south=6880; | [6912]east-5888; | [6912] | st-5360 |
| [5888]northe3840; | [5888) Aouthme3808; | [5888]east-6384; | [5888] | |
| | | [6384] ea | 6384) | |

data_20
int:current north, south, east, west;
/**** row 9 of base $* * * *$
(2720

| | |
| :---: | :---: |
| 6960; | [6816] |
| 44]north-5936; | |
| 40]north-6336; | [7840] south-6480; |
| 76]north-5568 | [2976 |
| 072]north=6704 | $[7072$ |
| 4000] north-5680; | [4000 |
| 3096]north-6592; | [8096] south-6224 |
| 040) noxth-5616; | [3040 |
| 36]northm6656; | $[71$ |
| 064 \|nort hes632; | [4064 |
| 160 jnorth-6640; | [8160 |
| 784] north-5360; | [2784] south-4832; |
| 6880) north-6912; | [6880] south-7440; |
| north-5680; | |
| north-6384; | [7 |

**** row 10 of b

| [4768]northm2720; | [476 | south-3232; |
| :---: | :---: | :---: |
| [7504]north-6816; | [7504] | south=7328; |
| [5792]north-3744; | [5792] | south-3920; |
| [6480]north=7840; | [6480] | south-8016; |
| [5024]north-2976; | [5024] | south-3488; |
| [7248]north-7072; | [7248] | south-7584; |
| [6048] north-4000; | [6048] | southm3664; |
| [6224]north-8096; | [6224] | nouth-7760; |
| [5088]north=3040; | (5088) | south-3552; |
| [7184]north=7136; | [7184] | couth=7648; |
| [6112]northm4064; | [6112] | -outh-3600; |
| [6160) north-8160; | [6160] | mouth-7696; |
| [4832]north-2784; | [4832] | south-3296; |
| (74401north-6880; | [7440] | couth-7392; |
| [S856] northe3808; | [5856] | Bouth-3856; |
| | | |

6416]northm7904;
**** row 11 of base $* * * *$ |
32321 north 4768 ; 7328 jnorth h 7504; 3920]north-5792;
80161north-6480; $8016]$ north=6480;
3488 north $=5024 ;$ 7584]north-7248; 3664 |north=6048;
 3552]north-5088; 7648 inorth-7184; 3600|north=6112; 3296 jnorth=6832; 7392]north-7440; 3856]northm5856; 7952]north-6416;
**** 5280 lnorthm3232; 6992 Inort hm-7328; 5968]north-3920; 6304) north-8016; 7328 jnorth-7584;
(3232) south-5280; 7328] south-6992 3920] wouth 5968 ; $8016]$ south $=6304$
$3488]$ south 5536 7584] south 7328 3664] south 5712 7760) south=6560 35521 south-5600 7648] suth-6672 7600] AOUth $=5648$ 329 . south- 6324 7392) wouth 6928 [3856] mouth 5904 [7952] south-6368;
$\left[\begin{array}{l}{[5280] \text { Bouth-2848; }} \\ {[6992] \text { mouth-6944; }}\end{array}\right.$ 5968] south $\mathbf{6 8 7 2}$ 6304] south 7968 5536] south-3024 [7328] south=7120;

| | east-6816; | [2720] | west-2720 |
| :---: | :---: | :---: | :---: |
| | 4; | [6816 | vest-2720; |
| 3744) | 40; | [3744 | |
| 740] | 76; | [7840 | an=3744 |
| 9761 | 7072; | [2976 | |
| 7072 | eatt-4000; | [7072 | |
| 4000] | -ant-8096; | [4000 | we |
| 8096] | -at-3040; | 18096 | wast-4000; |
| 40] | -ant=7136; | $[3040$ | $8 \mathrm{t}=809$ |
| 36] | -atht=4064; | $[7136$ | t=3040 |
| 064] | at $=8160$; | [4064 | -7136 |
| 8160] | -at-2784; | [8160) | vest=4064; |
| 2784 | -aEt=6880; | [2784] | wert=8160 |
| | east-3808; | [6880 | |
| | 7904: | | |
| | | | |

| | | [4768) | |
| :---: | :---: | :---: | :---: |
| 04] | eat=5792; | [7504] | west=4768; |
| 57921 | -ast-6480; | [5792] | weat=7504; |
| [6480] | - 0 st-5024; | [6480] | west-5 |
| 5024] | -ant-7248; | [5024] | went-648 |
| 72481 | -a゙t-6048; | [7248) | west-5024 |
| [6048] | -ant-6224; | [6048] | w- |
| [6224] | castm5088; | [6224] | wes |
| [5088] | eant-7184; | [5088] | west-62 |
| [7184] | -ant-6112; | [7184]) | west-5088 |
| 6112 | exst-6160; | [6112) | went=7184 |
| 6160] | -xat-4832; | [6160] | west-6112 |
| [4832] | -ast-7440; | (4832) | west=6160 |
| [7440] | aast-5856; | [7440] | we=t-4832 |
| 856] | -ast=6416; | [5856] | 740 |
| | | | |

| 232]east-7328; | [3232 | west-3232; |
| :---: | :---: | :---: |
| [7328]east-3920; | [7328) | west-3232; |
| [3920]eant-8016; | [3920] | west-7328; |
| [8016]eastm3488; | [8016] | west-3920; |
| [3488]eant-7584; | [3488] | west-8016; |
| [7584]east-3664; | [7584 | west-3488; |
| [3664]east-7760; | [3664 | - t-7584; |
| [7760]eact-3552; | 17760 | west-3664; |
| [3552] enst-7648; | [3552] | wast-7760; |
| [7648] eant-3600; | [7648 | west-3552; |
| [3600] enet-7696; | [3600 | wast=7648; |
| [7696] exat-3296; | [7696] | west-3600; |
| [3296] eant-7392; | [3296] | west-7696; |
| [7392]east=3856; | [7392] | west-3296; |
| [3856] east-7952; | [3856] | rest-7392; |
| [7952]east-7952; | [7952 | est-3856; |

 6560]north=7760; 6672 jnorth=7648; 5648] north $=3600$; 6624 1north-7696; 5344]north-3296;
6928 north-7392; 5904 jorth-3892; 6368jnorth-7952;
$[5712]$ south=4048;
$[6560]$ south-8144;
$[5600]$ southm2960;
$[6672]$ south=7056;
$[5648]$ south=3984;
$(6624]$ southme8080;
$[5344]$ southm2912;
$[5928]$ south $7008 ;$
$[5904]$ southe $3936 ;$
(6368) south-8032
[5712] east $=6560$; 5600) east-6672; 6672) east -5648 ; [5648]east=6624; 6624]east-5344; 53441 ast -6928 ; 5904 east $=5904$; [6368]east $=6368$;
[5712] west $=7328$
6560 |west $=5712$ 5600 | west $=6560$ 6672 jwest $=5600$ 5648 1west $=6672$ 6624] west $=5648$ 5344 | west -6624 6928 5904 west $=5344$ (6368) west-5904

| $[5280]$ | east-6992; | | |
| :---: | :---: | :---: | :---: |
| | 5968 | | |
| 68] | 6304; | $[5968$ | west-6992 |
| 6304] | 5536; | $[6304$ | west-59 |
| 5536] | -amt-7328; | [5536 | wast-63 |
| 281 | -ant-5712; | [73 | |

[5664]north-3616; [5520]northh7712; [5520] north-3472 (6752) north-7568 [6544]north=7776 [5472] north-3424 [6800] northm7520; [5776) northe3728; [6496]north-7824

| $\text { \}ea }$ | |
| :---: | :---: |
| east=5520; | [6608] |
|) east=6752; | [5520] we |
| 2] east-5728; | [6752] west-5520 |
| 8) east=6544; | [5728] west $=6752$ |
| 4]east-5472; | [6544] ${ }^{\text {m }}$ |
| 2] east=6800; | [5472] |
| 0] east-5776; | [6800] west $=54$ |
| east-6496; | [5776] west=680 |
|]east-6496 | 649 |

BIBLIOGRAPHY

[1] Seitz. C.L.. "The Cosmic Cube." Communıcatıons of the ACM, Vol. 28. No. 1 (Jan. 1985), pp. 22-33.
[2] Stout, Q.F.. "Hypercubes and Pyramids." in Pyramidal Systems for Computtr V'isıon, Cantoni and S. Levialdi (Eds.), Spring-Verlag, Berlin. Heidelberg. Germany (1986), pp. T4-89.
[3] Lai, T.-H. and White, W.."Mapping Pyramid Algorithms into Hypercubes," Journal of Parallel and Distributed Computing, Vol. 9 (1990), pp. 42-54.
[4] Wu, A.Y.,"Embedding of Tree Networks into Hypercubes," Journal of Parallel and Distributed Computing, Vol. 2, No. 3 (Aug. 1985), pp. 238-249.
[5] Johnsson, S.L., "Dilation d Embedding of a Hyper-pyramid into a Hypercube," Communications of the ACM (1989), pp. 294-303.
[6] Ho, C.-T. and Johnsson. S.L.. "On the Embedding of Arbitrary Meshes in Boolean Cubes with Expansion Two Dilation Two," Proceedıngs of Internatıonal Conference on Parallel Processing. Vol. I, Chicago, IL (Aug. 1987), pp. 188-191.
[7] Bhatt. S.N. and Ipsen, I.F.. "How to Embed Trees in Hypercubes," Tech. Rep. YALEU/CSD/RR-443, Department of Computer Science., Yale University, New Haven, CT (Dec. 1985).
[8] Ho. C.-T. and Johnsson. S.L., "Spanning Balanced Trees in Boolean Cubes." SIA.M Journal on Scıentific and Statıstical Computing.. Vol. 10 . No. 4 (July 1989), pp. 607-630.
[9] Ziavras. S.G.. "Techniques for Mapping Deterministic Algorithms onto MultiLevel Systems." Proctedings of International Conference on Parallel Proctssing. Vol. I. Chicago. IL (Aug. 1990). pp. 226-233.
[10] Ziarras. S.G.. "On the Mapping Problem for Multi-Lerel Systems." Pıocfedmgn of Superomputing 89 Conferencf.. IEEE Computer Societr and ACM SIGiARCH. Reno. Nevada (Nor. 13-17). pp. 399-408.
[11] C'han. T.F. and Saad, Y.. "Multigrid Algorithms on the Hyperculse Multiprocessor." IEEE Tiansuctions on Computer:.. Vol. (-3.5. No. 11 (Aug. 1988). pp. 969-97T.
[12] Hillis. W.D.. The Connectıon Machine. MIT Press. Cambridge. MA (1985).
[13] Clermont. P. and Merigot. A.. "Real Time Synchronization in a Multi-SIMD Massively Parallel Machine." Proctedings of Architectures for Pattern Analysus and Machine Intelligence Conference. (1987). pp. 131-136.
[14] Patel. S.C. and Ziavras. S.G.. "Comparative Analysis of Techniques that Map Hierarchical Structures into Hypercubes," Procetdings of Parallel and Distributed Computing and Systems Conference., Washington, D.C. (Oct. 1991), pp. 295299.
[15] Cantoni. V. and Levialdi. S.. "Multiprocessor Computing for Images." IEEE Special Issue on Computer 「ïson. Vol. 76, No. 8 (Aug. 1988). pp. 959-969.
[16] Connection Machine Model CM-2 Technical Summary. Version 6.0. Thinking Machines Corporation. Cambridge. MA, Nov. 1990.
[17] Chang. J.H.. Ibarra. O.H.. Pong, T.-C'.. and Sohn, S.M.. -Two-Dimensional Conrolution on a Prramid Computer." IEEE Tiansaction, on Pattern Analyses and Machine Intelligencf.. Vol. 10. No. 4 (July 1988). pp. 590-59:3.
[18] Enkelmann. W.. "Inrestigations of Multigrid Algorithms for the Estimation of Optical Flow Fields in Image Sequences." Computer Iiaon. Cilaphos. and Imagf Procts.5ing. Vol. 43. Aug. 1988. pp. 1.50-17T.
[19] Brandt. A.. "Multilevel Computations: Reriew and Recent Developments." in Multigred Mfthods - Theovy. . Lpplications. and Supercomputing. S.F. McComick
(Ed.), Lecture Notes in Pure and Applied Mathematics. Marcel Dekker Inc.. New York. NY. 1988. pp. 35-62.
[20] Ziavras, S.G., "On the Problem of Expanding Hypercube-Based Systems." Journal of Parallel and Distributed Computing. May 1992.
[21] Burt, P.J. and Hong, T.H., "Segmentation and Estimation of Image region properties through cooperative hierarchical computation." IEEE Transactions on Systems, Man. and Cybernetics, vol. SMC 11, no.12. Dec. '81.
[22] Hwang, K. and Briggs. F.A.. "Computer Archtecture and Parallel Processing." McGraw Hill publication. 1984
[23] Choudhary, A.N. and Patel, H.J., "Parallel Architecture and Parallel Algorithms for Integrated Vision System," Kluwer Academic Publishers, 1990
[24] Uhr. L.,"Parallel Computer I'ision". Academic Press Inc. 1987

[^0]: Dr. Edwin Hou, Committee Member
 Assistant Professor of Electrical and Computer
 Engineering, NJIT

