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ABSTRACT

Comparing Techniques
of Mapping Pyramid Algorithms onto the
Hypercube: A Case Study for the Connection Machine
by
Muhammad Ali Siddiqui

The pyramid structure is most widely used for low-level and intermediate-level
image processing and computer vision because of its efficient support of both local and
global operations. However, the cost of pyramid computers (PC) may be very high.
They also do not support the efficient implementation of the majority of the scientific
algorithms. In contrast, the hypercube network has widely been used in the field of
parallel processing because it offers a high degree of fault tolerance, a small diameter
and rich interconnection structure that permits fast communication at a reasonable
cost. Thus, several algorithms have been developed for the efficient simulation of
pyramids on hypercubes. Stout [2], Lai and White [3], and Patel and Ziavras [14] have
proposed four different algorithms that map pyramids onto the hypercube. This thesis
carries out a comparative analysis that involves all these algorithms. The comparison
is based on results derived with the application of analytical techniques and actual
program runs. A Connection Machine CM-2 system containing 16K processors was
used to derive the latter type of results. Stout’s algorithm is cost effective, as it
requires a hypercube with a number of PEs which 1s equal to the total number of
nodes in the base of the pyramid. Thus. it needs a 2n-dimensional hypercube to map
a pyramid with n + 1 levels. Lai and White have proposed two mapping algorithms.
They require double the number of PEs used by Stout’s algorithm. Finally, the
algorithm proposed by Patel and Ziavras requires the same number of PEs as Stout’s

algorithm but allows the simultaneous simulation of multiple levels. as long as the



leaf level is not included in the set of the levels required to be active at the same
time. A comparative analysis is carried out for all four mapping algorithms through
the incorporation of analytical techniques and results obtained on the Connection

Machine system CM-2 for some important image processing algorithms.
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CHAPTER 1
INTRODUCTION

1.1 Requirements of Image Processing

One of the most important, difficult, and computationally intensive problems in
scientific computing is image processing and computer vision. Computer systems
used for image processing range from microprocessor devices to computer systems
capable of performing computationally intensive functions on large image arrays.
Image processing and computer vision algorithms employ a very broad spectrum
of techniques from several areas such as signal processing, advanced mathematics,
graph theory, and artificial intelligence. The computational requirements to per-
form algorithms from these fields are tremendous when executed individually, and
when they need to be integrated in a meaningful way to perform a broader func-
tion in a reasonable amount of time, the computation becomes almost intractable
[23].

The principal parameters influencing the structure of a computer are the in-
tended application and the required data throughput. Therefore, the question
arising here as what kind of architecture can provide the tremendous amount
of processing power required by image processing and computer vision. Parallel

processing, which has progressed tremendously in the past decade, seems to be



the consensus approach to providing the necessary computational power. Parallel
processing holds the potential for computational speeds that surpass by far those
achievable by technological advances in sequential computers. This potential is
predicated on two assumptions. namelv. that many computations can take place
concurrently and the time spent in data exchanges between these computations
is small. In order to meet these assumptions. algorithms must be partitioned
into computational blocks that can execute in parallel and have communication
requirements efficiently supported by the target parallel computer. Fortunately.
most image processing algorithms are characterized by massive parallelism. so
spatial decomposition of an image provides a natural way of generating low-level
parallel tasks. For higher level analysis operations, parallelization may be based
on other image characteristics and may be data dependent.

Another important requirement of image processing is real-time processing of
image data. It is useful to consider why parallel architectures are so important
for image processing. Clearly any algorithm can be implemented on a sequential
computer. So. why is a powerful minicomputer or mainframe not adequate? The
answer 1s that the general-purpose computers can not easily exploit the parallelism
in an arbitrary algorithm and can not process the algorithm in real-time. The
whole essence of using parallel architecture for image processing is to exploit the
special forms of parallelism found in the image data and to process them in real-
time. Parallel architectures can not only out-perform powerful minicomputers and

mainframes but they can do so at a much lower cost.

1.2 Pyramid Structure

The pyramid structure is composed of successive lavers of mesh-connected two-

dimensional arravs. where the size of the arravs decreases with the increase of the



level number (assuming that the base corresponds to level 0). In addition. each
node at any level. except for nodes at the lowest level. is directlv connected to
four children located at the immediately lower level (i.e., the reduction hetween
pairs of neighboring levels is 2 x 2. and the size of each array is 1/4 the size of
the array at the immediately lower level [15]). The pyramid structure is appro-
priate for low-level and intermediate-level computer vision algorithms because of
its efficient support of hoth local and global operations [2, 9. 10, 15]. It is well
known that low-level and intermediate-level image processing and computer vi-
sion are characterized by local and global operations. with the majority of them
being local. In addition. this structure is capable of supporting the efhcient imple-
mentation of multilevel solvers which involve local processing on different scales
with various inter-scale interactions [19]; such solvers are used in the solution of
partial differential equations. constrained optimization. image reconstruction [18],
multivariate interpolation, etc.

In the rest of the discussion P, denotes a standard pyramid with 27 x 2" nodes

at its base. Such a pyramid has n + 1 levels. Fig. 1.1 shows the P, pyramid.

1.3 Pyramid Algorithms

The pyramid architecture provides straight forward implementation of divide-and-
conquer techniques and efficiently carries out both local and global operations.
However. the effectiveness and performance of the pyramid architecture is lim-
ited to applications that use such techniques and/or operations. Low-level and
itermediate-level image processing and computer vision are candidate application

domains [23].
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Figure 1.1. The two-level (P;) pyramid.



Several image processing algorithms have been proposed for implementation on
the pvramid structure. A brief discussion of various pyramid algorithms foliows.
The Counting algorithm: The counting of connected regions 1s needed for object
recognition tasks. Euler. the mathematician. developed an algorithm that can
characterize any polvgon. This algorithm is used to identify the connected regions
within an image. The image is loaded into the base of the pyramid and some logical
functions are performed on the vertices and edges of the object to recognize the
connected regions [24].

Image Smoothing algorithm: One of the most common operations performed on
images is to blur or smooth the image brightness values. Smoothing enhances an
image by reducing the effect of noise so that subsequent processing is simplified
and regularized. In addition. the amount of smoothing can be adjusted so as to
optimally set the resolution at which to locate image features (e.g.. edges and
textures) which naturally occur at a variety of spatial scales [24]. The Gaussian
pvramid may be used for image smoothing: each level of the Gaussian pyramid
represents a smoothed version of the original image.

Object Segmentation: Segmentation as used here means to separate connected
regions of a binary image into separate memory planes. so that each region can be
analyzed individually. One frequently used algorithm for segmentation is region-
filling; that is. an expansion that starts at a randomly chosen object pixel and
continues until the whole region has been filled. When this idea is applied to a

pyramid structure. the timing is logarithmic for images with large blobs.

1.4 Motivations and Objectives

The hypercube is a general purpose topology which can very efficiently simulate

other frequently used structures. like the mesh. tree. pyramid. etc. As a conse-



quence, hypercube-hased machines have become commercially available. such as
the Intel iISPC', NCUBE. Connection Machine. etc. In contrast. powerful pyramid
machines are not cost-effective. are difficult to build with the current technolo-
gv. and have very special and limited applications. Therefore. several algorithms
to map the pyvramid onto the hypercube have been developed. Such algorithms
have been presented by Stout [2], Patel-Ziavras [14], and Lai-White [3]. These
algorithms are characterized by different costs and performances. The algorithms
proposed by Stout and Patel-Ziavras require an Hj, hypercube to simulate a P,
pyramid with 2" x 2" PEs at its base. In contrast. two algorithms proposed by
Lat and White require a Hj,4+1 hypercube to simulate the same pyramid. How-
ever, Stout’s algorithm does not allow more than one level of the pyramid to be
active at the same time. On the other hand. Patel-Ziavras algorithm allows all of
the levels, except the leaf level, to be active at the same time. Lai-White's both
algorithms allow all of the pyramid levels to be active at the same time but they

require twice as many PEs as required by Stout’s and Patel-Ziavras® algorithms.

The implementation of these mapping techniques on a real hypercube syvstem

under various conditions becomes absolutely necessary for a comparative analysis.

The main objective of this research is to implement these mapping algorithms
on areal system and then run some representative image processing applications to
measure their performance. A Connection Machine ('\-2 system containing 16K
processors will be used to derive results. Results are obtained for three important
image processing algorithms: finding the perimeter of an object. convolution and

segmentation.



1.5 Thesis Outline

This thesis is organized as follows. Chapter 2 presents the hypercube
topology and relevant applications. Detailed description of the Connection Ma-
chine system. which is used to derive the results for these algorithms. is also
included. Chapter 3 discusses the four mapping algorithms in detail. It also
introduces several performance measures which are important for performance
analysis techniques. Comparative analyvsis for all these algorithms 1s also carried
out in Chapter 4 using Connection Machine results. Finally. Chapter 5 presents

conclusions.



CHAPTER 2

THE HYPERCUBE
STRUCTURE

Various parallel processor structures have been used in parallel systems. In re-
cent years, hypercube computers have become popular parallel computers for a
variety of applications due to their powerful network which is characterized by a
small diameter, regularity and high degree of fault tolerance. Most of the other
important topologies like the linear array, mesh, ring and pyramid can efficiently
be mapped onto the hypercube {22]. Therefore, most of the applications for these
structures can be implemented on the hypercube very efficiently. Formally, an
n-dimensional hypercube contains 2" nodes. Nodes are connected directly with
each other if and only if their binary addresses differ by a single bit. Hypercubes
of zero, one, two and three dimensions are shown in Figure 2.1.

Hypercube computers are loosely coupled parallel processor systems based on
the binary n-cube network. also known as cosmic cube. n-cube. binary n-cube.
Boolean n-cube. etc. Various parallel computers have been developed using this
structure. The Connection Machine system. which is used to derive the results
in this thesis, 1s one of the most well known systems and is manufactured by

Thinking Machine Corporation. It operates in the SIMD mode and may contain

(g



up to 65.336 PEs. The topological properties of the hypercube anud the Connection

Machine architecture are presented in the [ollowing sections of this chapter.

2.1 Topology

In the d-dimensional hypercube or d-cube H,. each processor is directly connected
with d neighboring processors. Each processor has a unique d — hit binary address
in the interval 0 to 27-1. In a hypercube computer. PEs are placed at each
vertex of the hypercube and the edges of the hypercube represent communication
links between PEs. Each PE has its local memory. which makes every PE an
independent unit. In the SIMD mode. this memory only contains data whereas
in the MIMD mode this memory also contains instructions. Hypercube PEs are
homogeneous because all the nodes can be treated equally: any hvpercube can be
mapped onto itself by mapping a node to any other. When a node ¢ is mapped
onto another node j, the addresses of all nodes are changed and the new address
of a node is found by taking the NOR of its previous address and the address of
node .

The communication time between two PEs of the hypercube depends on the
number of links between them. The maximum communication time between any
two PEs in the d — dimensional hypercube is O(d) because the maximum number
of intermediate links is d. The total number of 1s in the XOR between the binary
addresses of two PEs gives the maximum number of communication links between
these PEs. If PE Y is connected with PE X in its «th dimension. then the addresses
of X and Y will differ only in the :th bit position.

The hypercube can be partitioned into smaller dimensional hypercubes and a
d-dimensional hypercube can be constructed recursively from lower dimensional

hypercubes: for example if two (d — 1) — dimensional hvpercubes are combined.
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Figure 2.1. Hypercubes of different dimensions.



11

they produce a d — drmensional hypercube. Consider two identical (d — 1) —
drmensional hvpercubes with labels from 0 to 2971 — 1: by joining vertices with
the same addresses. a d — dimensional hypercube is formed. Figure 2.2 shows

how two 3-cubes are combined to produce a i-cube.

To summarize:

I. Any d — cube can be tiered in d possible ways into two (d — 1) — subcubes.

A

. There are d! x 2¢ ways of numbering the 2¢ nodes of the d — cube.

3. The maximum distance between any two nodes in the d — cube is equal to d,
which is also called the diameter of the hypercube.

4. Any two processors in the d-cube can communicate with each other. In order
to communicate, data has to travel at least a distance which is equal to the num-
ber of 1s in the XOR between the addresses of these PEs (this is known as the
Hamming distance H(X,Y) between PEs X and Y).

2.2 Applications

Various topologies can be mapped efficiently onto the hypercube. There are basi-
cally two reasons for the importance of such a mapping.

1. Some algorithms mayv be developed for some other topology for which theyv fit
perfectly. Then. one might wish to implement the same algorithm on the hyper-
cube with little programming effort. If the original architecture can efficiently be
mapped onto the hypercube then this will be achieved easily.

2. A given problem may have a well defined structure. which requires a particular
pattern of communication. Mapping that pattern onto a hypercube mav result in

short communication time.
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Some important mappings are discussed in the following section.

2.2.1 Mapping Rings onto the Hypercube

Consider a ring structure containing 27 PEs. Also consider a target d-dimensional
hypercube. The ring can be mapped onto the hypercube in such a way that the
proximity property is preserved (i.e., any two adjacent vertices of the ring map
onto two neighboring nodes of the hypercube). Another way of visualizing this
problem is that we are seeking a string of length N = 2¢ that crosses each node
of the hypercube once and only once.

According to the definition of the hypercube network. any two adjacent nodes
have binary addresses that differ only by one bit. This means that the hypercube
addresses should be represented by a sequence of d — it binary numbers such that
any two successive numbers have only one different bit. A binary sequence with

such a property is the reflected Gray code.

The mapping of the 8-node ring onto the 3-dimensional hypercube is shown in
Fig. 2.3. This figure shows the linear array with the extra connections which are

present in the hypercube.

2.2.2 Mapping the Mesh onto the Hypercube

One of the most important reasons that the hypercube is popular is that meshes
can easily be mapped onto hypercubes. Consider a n-dimensional mesh that has

size m, 1 each dimension which 1s a power of 2 (i.e.. m, = 2").

Now cousider the d — dimensional hypeicube on which this mesh 15 to be
mapped. Let d = p; 4 p2 4. . + p,. where 27 is the total number of processors in

the n-dimensional grid. which is also the total number of nodes in the hvpercube.
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Figure 2.4. Mapping of an 8 x 4 mesh.
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[n order to perfectly map the mesh onto the hvpercube. neighboring nodes 1n
the mesh must be assigned to neighboiing nodes 1n the hvpercube. In the previous
section. the mapping of the one-dimensional mesh {1.e.. the linear array o1 ring)
was discussed. The mapping of higher dimension meshes is done as follows. The
nodes in each dimension are numbered sequentiallv using the respective reflected
Gray code. A node of the mesh is mapped onto the node in the hypercube whose
address 1s obtained bv concatenating the numbers of the particular node for all
the dimensions. For example. Fig. 2.4 shows a two-dimensional & x 4 mesh and

the appropriate Giay codes

2.3 The Connection Machine

The Connection Machine is a data parallel computing system. Data parallel
computing associates one processor with each data element. This computing stvle
exploits the natural computational parallelism inherent in many data-intensive
problems.

The Connecrion Machine 1< an integrated svstem of hardware and software.
The hardivare elements of the svstem include tront-end computers that provide
development and execution environment for the user’s software. a parallel process-
ing unit of up to 64K processors (PEs) that execute data parallel operations in
the SIMD mode. and a high performance data parallel [/O svstem. Each PE has
its own local memory ot 8-kilobytes which is bit-addressable and 1ts word length
1s one bit. The hypercube is the dominant topology in the svstem. \ore specifi-
callv. a 10-dimensional hypercube 1s the backbone (router) of the communication
network. Each vertex of this hypercube contains a router node (communication

processor) to which sixteen PEs are attached [16]. The largest Connection Ma-

chine CN-2 svstem contains 64k PEs and router nodes are located at the vertices
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of a 12-dimensional hvpercube. In addition. the ('M-2 hardwaie mcludes specific
communications hardware. the router and the NEWS grid. These communication
techniques are discussed 1 detail in the following sections.

Message passing 1s implemented in parallel: algorithmically selected subsets of
PEs are allowed to simultaneousiv <end data into the local memories of other PE<
or fetch data from the local memories of other PEs into their own. The communi-
cations hardware is also capable of combining multiple messages gomg to the same
destination PE bv applving some arithmetic or logical combining (1.e.. reduction)
operation. The destination PE then receives the result The router nodes forward
messages and also perform some dvnamic load balancing. Processing of messages
by the router 1s divided into stages which are called petit cvcles. A petit cvcle 1s
just enough to process all the bits of a destination address and a message. This 1s
also true for a message that traverses all twelve or ten dimensions of a 64k or a
16K machine respectively. Therefore. a petit cvcle consists of multiple ALU /route
cvcles. A single communication pattern may consume a single petit cvele if only a
small number of PE« aie involved. In contrast. if almost all of the PEs are active.
then many petit cveles may be consumed.

The following sections describe these two communication techniques 1 more

detail.

2.3.1 The Router

The most general communication mechanism of CN-2 is the router. which allows
any processor to communicate with anv other processor. One mav thmnk of the
router as allowing every processor to send a message to any other processor. with
all messages bemng sent and delhivered at the same time. Alternativelv. one may
think of the router as allowing everv processor to access anv memory location

within the parallel 0 unit with all processors making memory accesses at the same
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time.

Each CM-2 processor chip contains one router node. which serves 16 data
processors on the chip. The router nodes on all the processors are wired together
to form the complete router network. Each message travels from one router node
to another until it reaches the chip containing the destination processor. The
router nodes automatically forward messages and perform some dyvnamic load
balancing. It is possible for a message to traverse many dimensions. possibly
all twelve. in a single petit cyvcle. provided that contention does not cause it to
be blocked. The message data is forwarded through multiple router nodes in a
pipelined fashion. A message that cannot be delivered by the end of a petit cycle
is buffered in whatever router node it happens to have reached. and continues its

journey during the next petit cvcle.

2.3.2 The NEWS Grid

Communication operations between processors that are nearest neighbors within a
C'artesian grid are much more efficient than the general router mechanism because
thev exploit three different transfer methods. two of which have special hardware
support[16].

The fully configured CM-2 system (with 64k PEs) has 2! processor chips
with connecting wires forming a boolean 12-cube: these are the same physical
wires that serve the general router mechanism. A subset of these wires can be
chosen so that theyv connect the 2% chips as a two-dimensional grid of shape. The
hardware is flexible enough to accommodate any shape. For example the per-chip
permutation circuit can organize its 16 physical processors as 8 x 2. or 1 x 16. or
41X 2x2. 0r2x2x2x2 and so on. Due to this specialized hardware support.

the NEWS grid of anv shape or number of dimensions can be handled with great

<peed and efhciency.



CHAPTER 3

MAPPING PYRAMIDS ONTO
HYPERCUBES

A first level comparison of various embedding 1s enabled by the introduction of
three measures of the cost of graph embeddings; namely expansion, dilation, and
congestion. Before we discuss the mapping algorithms, these performance mea-

sures are presented.

3.1 Performance Measures

Let the function h : G — G’ represent the mapping of the source graph G onto the
target graph G'. It is a mapping of the vertices of G to the vertices of G’ in a one-

to-one or many-to-one fashion. The three measures are then defined as follows [3].

Ezpansion: The expansion of h is the ratio JTY‘;(%}#, where V(G) and V(G') are
the vertex sets of G and G’ respectively, and |V(G)| and |V(G")| are the numbers
of elements in those sets. When [V(G")| > |V(G)|, the expansion measures how
much of the target graph G’ is not assigned nodes from the source graph G. The
closer the value of this measure to one, the smaller is the portion of unused re-

sources 1 (.

19
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Diation: When two neighboring nodes from ' ate mapped onto two distinct
nodes in (. the dilation ol the edge connecting the two nodes i (i is the length
of the corresponding path in /. The maximum dilation is the maximum length
of such a path in '. The dilation measures the increase of the communication
overhead when compared to one-hop transfers in the source graph. Of course.
the smaller the value of the dilation is. the lower the communication overhead

associated with the mapping h.

Congestion: The congestion is the number of edges in G with the same image
in G'. The maximum number of edges in G with the same image in G’ is the
maximum value of the congestion for the chosen mapping h. The smaller the
value of the congestion. the less amount of time that messages will have to wait
in the queues of intermediate target PEs for communication channels to become

available.

3.2 Stout’s Algorithm

The mapping algorithm which was presented by Stout [2] embeds the P, pyramid
into the H,, hypercube. Therefore. the total number of nodes in the hypercube
is equal to the number of nodes in the base of the pyramid. Since a pyramid with

)2(n

+1) . .
+— | nodes. the expansion is less

a base of size 2" x 2" contains a total of |
than 1. A one-to-one mapping of nodes from the base of the pyranud onto PEs of
the hypercube is accomplished as follows. The n-bit reflected Grav code 1s used
to encode separately the rows and columns of the base. The binary addresses
of the corresponding PEs in the hypercube are found by either mterleaving or

concatenating the bits of the encoded row and column numbers. This process
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produces a perfect mapping for the base of the pyvramid: that 1s. all three measures
associated with the cost of the hase’s mapping are optimal (i.e.. thev are equal to
1). Every node at the immediatelv higher level of the pyramid (1.e.. level 1) has
four children at the leaf level (i.e.. level 0). and as a consequence one PE from each
square of four PEs is chosen to simulate the paient node. PLEs having the least
significant bit of their encoded row and column numbers equal to 0 are chosen to
represent level I nodes of the pyramid. In general. PEs having the lower & bits of
their encoded row and column numbers equal to 0 will simulate nodes from level
k of the pyramid. Thus. one of the children will use two communication links
when sending data to 1ts parent (i.e.. the dilation ot such a data transfer 1s equal
to two). Fig. 3.1 shows the mapping of the P; pyramid onto the Hg hypercube:
the numbers within the squares represent level numbers. This way. the dilation
of all lateral edges in the pyramid is equal to one for all of the levels. However.
the maximum dilation of this mapping 1s equal to two and corresponds to edges
connecting paits of parents and children as discussed above.

The two significant advantages of this mapping are the smallest possible re-
sultant dilation and the relativeiv small number of PEs 1in the hvpercube (more
specificallv. the total number of PEs in the target hvpercube 1s smaller than the
total number of nodes in the source pyvramid). The maximum congestion of this
mapping is equal to three.

Since a single hypercube PE may be used to simulate a number of pyramid
nodes from different levels (for example. the PE with row number 0 and column
number 0 1s used to simulate nodes from all levels of the pyramid). the hypercube is
not capable of simulating multiple levels of the prramid at the same time. In fact.
if many levels of the pyramid need to be active simultaneously. a hvpercube PE
will not only be incapable of simulating nodes from several levels of the pyramid

simultaneously but may spend some extra time 1n switching from one simulation to
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Figure 3.1: Mapping the P; pyramid onto the Hs hypercube with Stout’s Algo-

rithm . (RGC: 3-bit Reflected Grav Code.)

the next one; in addition. the storage space needed to store data for the simulated
nodes may become prohibitively large.

Algorithms that keep active all. or a large subset. of the pyramid’s levels most
of the time are common; for example. algorithms that implement pipelining fall
into this category [13]. However. this mapping of the pyramid does not consume
prohibitively long time if the pyramid algorithm proceeds level by level: as dis-
cussed earlier. the only delay occurs during the communication of values between

parents and one of their children.

3.3 Patel-Ziavras’ Algorithm

Similar to Stout’s algorithm. the mapping algorithm proposed by Patel and Zi-
avras [14] maps the P, pyramid onto the H,, hypercube. However. in contrast
to Stout’'s Algorithm. this algorithm allows multiple levels of the pyramid to be
active simultaneously. More specificallv. it allows any subset of levels. excluding
the leaf level. to be active at a time. The simulation of the leaf level excludes the

simultaneous simulation of anv other level in the pyramid because the total num-
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ber of leaf node« 1s the same as the nnmber of PEs 1 the hvpercube The mapping
algorithm operates as follows. Similarly to Stout's aleorithm. the reflected Giav
code 1s used to mdependently encode the row and column numbers of the leat
level. A perfect mappmg 1= then produced for this level bv either concatenating
or mterleaving the bits of the encoded row and column numbers of the nodes
order to find the addresses of the corresponding taiget PEs in the hvpercube. The
mapping of level 1 nodes 15 also sumilar to the mapping produced by Stout. More
spectficallv. the PEs of the hyvpercube chosen to <imulare parents of leat nodes
correspond to encoded row and column numbers that Lave then least significant
bit equal to U. For each set of four PEs representing sibling nodes at level 1 of
the pyramud which have a common parent at level 2. a PE 1s again chosen to
represent their parent. The PE chosen to serve as the parent 1s neighbor to one
of the PEs representing the children and all parent PEs for level 2 form mirror
images in squares outhned by their children. This procedure 1s repeated until the
apex of the pyramuid is reached. For example. as shown in Fig. 3.2. the leaf level
nodes of the P; pyvramud are simulated by all 2" PEs of the H,, hvpercube rusmg
a one-to-one assigument; Jliete are sixteen groups (squares) of 2 x 2 PEs at the
leaf level that have a common parent at level 1. The parent at the next higher
level (i.e.. level 1} of the children n such a square 1s simulated by the PE marked
with 1 in the square. These PEs marked with 1 are again grouped mto groups
of four PEs that Lave a common parent. Parents at the next Ingher level are
simulated by the PEs marked with 2. Finallv. the parent at the next higher level
(1.e.. level 3) of the children marked with 2 1s simulated bv the PE marked with
3. Thus. PEs marked with 0. 1. 2 and 3 simulate nodes from levels 0. 1. 2 and
3 respectively of the P pyramd. Since PEs that simulate different levels of the
pyramid. except for the jeaf lever. are distinct. any subset of pyramid levels that

does not include the leaf level can be simulated simultaneously
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Figure 3.2: Mapping the P, pvramid onto the H,, hypercube with Patel-Ziavras
algorithm. (RGC. 3-bit Reflected Grav Code.

The maximum dilation of the mapping for an edge connecting a parent at
level 1 and one of its children at level 0 is two (as in Stout’s algorithm ). However.
the maximum dilation for higher levels is equal to three. In general. both the
maximum dilation and the maximum congestion associated with this mapping

algorithm are equal to three

3.4 Lai-White’s Algorithm I

Two algorithms suggested by Lai and White 3] for mapping a pyramid onto a
hypercube map distinct nodes of the pvramid onto distinct PEs of the hypercube
while maintaining minimal expansion. More specifically. thev require an Hj, 41
hypercube for the mapping of the P, pyramid (this is the smallest allowable hy-
percube size 1f distinct nodes of the pyramid need to he mapped onto distinct
PEs of the hypercube). This subsection and the next one describe these two map-
ping algorithms. Their first mapping algorithm is recursive and vields maximum
congestion two and maximum dilation three. It starts by defiming an embedding

function for the two-level 0 with apex (n.0.0i: the elements of the triplet repre-
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sent the level number. the row position. and the column position respectivelv of
the node. It then applies a recursive {unction in order to derive the mapping of
Jower level 0 until the base is reached. This technique results in the mappmg of
the leaf nodes. The mapping of higher level nodes is then achieved with the ap-
plication of a hottom-up approach. Before we briefly present the algorithm, some
definitions hecome pertinent. In addition. we need to emphasize that contrary to
our up to this point notation. for the sake of simplicity the following description
assumes that the apex 1s level 0 while the base of the pyramid is level n (i.e.. the
numbering of levels starts from the top). The embedding f1 : A — H;3 of the

two-level subpyramid. as illustrated in Fig 3.3, is first defined as:

e £1(0.0,0) = 000,

f1(1.0.0) = 010,

.fl(l*o'l) - ]-loﬂ

e f1(1.1.0) = 011. and

fi(1.1.1) = 111.

where the triplets represent the addresses of nodes in the source pyramid and the
binary numbers on the 1 side of the equations are the binary addresses of PEs in
the target cube. This process maps all four children of the apex onto a side of the
cube which is opposite trom the side containing the apex. Then. three additional
embeddings are defined through vertical. horizontal. and diagonal exchanges of
children on the cube side suggested by f;. The new embeddings are called the

reflections of f; and are denoted by f} . fH. and f}'# respectively.



£1(0,0,0)=000

f1(101)=110

£1(1,0,1)=011 f1(1,1,1)=111

Figure 3.3. Embedding of two level sub-pyramid.



27

These embeddings are generalized as follows. Let FP,_y(1.24. r;) denote the
subpyvramid of Py containing & levels and having as apex the node (1..ry,2,).
Define @2_] : Piq +— Pi_q so that node (1.r1.03) € V(F-1) 15 mapped onto
(t..01.2° — x5, — 1). In addition, define @f_l : P._y = Pi_; so that (1.2q.2,) 1s
mapped onto (:.2* — r; — l.xy). The three additional embeddings of F._; into

H;_y are:

* f}}..l = fk—l(bjy_l-

o flLi=fia®f,.

® f/l—}{ = .fk-1®};1®f—1'

For any pair of binary numbers b, and b,, define the prefix function A, :
Hpq — Hypqq so that Ay, (1) = bybia and Ay, (2. 2") = (bybyr. byb27) for any
vertex r and edge (r.2') in Hy—y. Then. define ¢, ., : Pio1(l.21.22) = Pioy
so that t,,.,(i.2].2%) = (i — Lo} — oy x 2710, — 2, x 271 for anyv node

(eo2y.2%)in P (1. 2q.02) and ¢, 4, (wv0) = (t, 0 (u) by, (0)) for any edge (u.v)

i Pr_q(l,21.23).

These reflection are illustrated in Fig 3.4 .

The algorithm is as follows:

Algorithm

1 For & = 1. embed P, into H; using fi.

2. For k> 1. use fr_; to define f.: i. Embed the subpvramid £;(0.0.0) into

a three-dimensional subcube of Hy; ;. as follows:

o f(0.0.0) =007
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f, ¥(0,0,0=000 £,H(0,0,0)=000

101

£,%(1,0,0)

0)=110 £,Y(1,0,1)=010

101

£, H(0,0,0=000

RYLLO=IL V=0t £,7(1,1,0)=010 f1(1,1,=110

001

100

YOSTE £, VH1,0,1)=011

f;VH(1,1,00=110  £,VH(1,1,1)=010

v fH §VH
Figure 3.4 The image of Py under fi i h
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Fo(1.0.0) = 00a. fi(1.0.1) = 10a.
e f:(1.1.0) =0la. /(1.1.1) = lla

o [.((0.0.0).(1.0.0)) = (003.00a).

o f:((0.0.0).(1.0.1)) = (003.105.10a).
o £((0.0.0).(1.1.0)) = (003.013.01a).
o f1({0.0.0).(1.1,1)) = (003.103.113. 11a).

ii. For each node (1.x.z5). embed P;_q(1.x;.2;) into the (2k — 1)-dimensional

subcube rory Hop—q of Hypyq using the reflections of fi_;:

[ hUOfk-—lt.z‘lry if I =T9 = 0.

A hloffl_ﬂrlrz- ifr;=1and 29 =0,
[ hUIfly_lfJ'lfQ- if Iy = 0 and To = 1. and
¢ hllf}?‘iﬁfﬁw' ifry=1and ;= 1.

The mapping algorithm is illustrated in Fig. 3.5 .

3.5 Lai-White’s Algorithm II

The embedding algorithm of the previous section has optimal expansion. but its
maximum dilation. although small. is not optimal. In this section. a substantially
more complex algorithm that embeds the pyranud into the hypercube with optimal

expansion. maximum dilation two. and maximum congestion three is presented.



Figure 3.5. The recursive definition of fj.
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The second mapping algorithm proposed by Lai and White has maxinun dila-
tien two and maxnnum congestion three. Like theiwr first algorithni. this algorithm
also requires an H,, . lvpercube for the mapping of the P, pyviamnd aud maps
distinct nodes of the pyramid onto distinet PEs of the hypercube. This algorithm
is also recursive. but in contrast to previous algorithm. it applies a top-down ap-
proach: i.e.. pyramid nodes are mapped onto the target hypercube starting with
the apex and the mapping process proceeds with the mapping of lower level nodes.
This recursive process is much more complex than that of their first algorithm.

The algorithm is as follows.

Let « = (k — 1.27.2,) be a node at level F — 1, and b = (A.221.229).
¢ = (k.22; + 1.225). d = (k.227.227 + 1). and € = (k. 2xy + 1.2z + 1) be
its children at level k. Let also P;(k—1.xy.x2) denote this subpyramid of P, with
height one and apex (K — L.ry.2;). For v € ViHyyq) and 1 < pog.r < 2k + 1.
let Ha(v:p.g.1) be the 3-dimensional 1 of Hj .1 containing the set of nodes
{v vl et " ol el o8 07 where the one. two. or three terms in the expo-
nent show the position of the bits that must be complemented in ¢ (one. two.
and three bits 1espectivelv). Four embeddings of Pi(k — 1.21.22) are proposed.

as shown below:

o gi(u)=v.g1h) =¥ gi(c) = v gi(d) = v and ¢gle) = o,

\

o g (u)=v. gl (h) =gyt =0 gy (dy =07 and g} () = v+
o gilay=rv. ¢H (D) = v affve)y = v, giidy = et and gff(e) = o

o gl M ay=v. gl Piby =i gt i) = v o gy Py = vt and g oy = o,
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a=(k-1,x1,x9)

d=(k,2xy,2x7+1)

=(k,
2x1,2x9)

g1(@)=v g1’ (a)=v

c=(k,2xy+1,2x9)

glo=v"  gfle)=v

Figure 3.6. Py(k — 1,21, z2) and its images under gl.giHagY,%VH'
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For 0 < w.b < g — 1. we define {a},, = {ov ¢ mod m = a}. and
{(/_/)},,, = {l/},” U {])},,,.
These embeddings aud reflections are shown m hgure 36 A pyrammd with two
levels (Py). mapped on a 3-dimensional hypercube (Hx) 15 shown i I'ie 3.7, The

recursive algorithm for the embedding ¢ : Pi — Hjpp1 1s as {ollows:

Algordhm
L. For b = 1. use gy to embed P, into Hyjp1.

2. For & > 1. use ¢y to define gx: 1. Embed the top Fi_; subpyramid

of P into Hypsy using hgp—y. where h @ Hypoy — Hypyy. such that hiv) =

00x. 1. For each node u = (k — 1.21.2,). embed the subpyramid P,(v) into

Hs(00gp—y(w): 2k — 1.2k, 2k + 1) usmng the mapping:

1. lf 1.3 € {0}3

91‘ if Iy e {U}Q Iy & {1}3

g, ifrp e {1}, xy € {0}, and

o g1 if e, € {1},



CHAPTER 4
COMPARATIVE ANALYSIS

This chapter carries out a comparative analysis that involves all four mapping
algorithms of the previous chapter. This analysis is based on analytical techniques

and actual runs on a Connection Machine CM-2 system consisting of 16k PEs.

4.1 Analytical Techniques

Patel-Ziavras™ algorithm has maximum dilation three and maximum congestion
two. while these measures for Stout’s algorithm are equal to two. Both algorithms
need an H,, hypercube to embed the P, pyramid. Thus. Patel-Ziavras™ algorithm
will be inferior to Stout’s algorithm with respect to communication overheads since
the maximum dilation is increased by one. Nevertheless, if several levels of the
pvramid are required to be active simultaneously. then Patel-Ziavras™ algorithm
will be superior to Stout’s algorithm with respect to reduced execution times
and high utilization of the target hypercube’s resources. This is because Stout's
algorithm can not support simultaneous simulation of multiple pyramid levels. In
contrast. the only type of concurrency not allowed by Patel-Ziavras™ algorithm is
the simultaneous simulation of the leaf level along with other higher levels.

Lai-White's algorithms I and II have maximum dilation three and two respec-

i
(W1}
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tively. and maximum congestion two and three respectively. In addition. they re-
quire double the number of PEs required by Patel-Ziavras™ and Stout’s algorithms.
so their cost 1« much higher. This 1s because distinct nodes of the pyramid are
mapped onto distinct PEs of the hvpercube in order to allow the simultaneous
simulation of any subset of pyramid levels. Therefore. Patel-Ziavras™ algorithm is
a compromise between Stout’s algorithm and the pair of Lai-White's algorithms
with respect to cost and performance for applications that require simultaneous
simulation of multiple levels of the pyramid.

Patel-Ziavras™ algorithm should be expected to yield lower performance than
Lai-White's both algorithms if there is a need for simultaneous simulation of the
leaf level along with other higher levels of the pyramid. However, when compared
to Stout’s algorithm. the communication delay in Lai-White’s algorithms due to
the increased dilation may prohibitively increase the communications overhead
for application algorithms that do not require the simultaneous simulation of
multiple pyramid levels. In addition. Stout’s algorithm implements in the latter

case smaller amounts of vertical data transfers.

4.2 Connection Machine Results

This subsection presents and analyzes results obtained from actual runs of some
image processing algorithms on a Connection Machine C'\[-2 systemn consisting of
16K PEs.

We must emphasize that the results presented here aie not alwavs indicative
of the performance of pure hypercube systems because of two reasons. Firstly. the
routers become the Lottlenecks for communication intensive operations hecause
anv single router node is shared by sixteen PEs. To alleviate this problem. the

majority of the results presented lere use one PE per 1outer node. Secondly.
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tor algorithms where manv-to-one communication operations are followed hv the
application of associauve (1eduction) operations on the 1eceived data. the Con-
nection Machme routers impiement the reduction “on the fiv.” thus reducmg the
amount of traffic going to distant PEs. In the presentation of the results below.
the mfluence of hoth issues on the C'onnection Machine's performance 1s discussed.

Results are presented for three image processing algorithms. The first algo-
rithm finds the perumeter of objects in images. the second algorithm performs

2-dimensional convolution aud the third algorithm performs image segmentation.

4.2.1 Finding the Perimeter of Objects

This application algorithin assumes the assignment of a single pixel to each node
at the base of the pyramid and. for the sake of simplicity. the existence of a single
object 1n the 1mage Assuming that the boundary pixels are known. a bottom-
up process is applied to count the total number of boundary pixels. More detail
follows. Nodes at the base of the pvramid that contain a boundary pixel send 1 to
their parent at level 1. while base level nodes that do not contain & boundary pixel
send 0 to thewr parent. Node< at level | add the four values sent by theiwr childien
and send the 1esult to themr parent at level 2. To reduce the overall communication
overhead. the latter addition 1s performed as a reduction operation. where router
nodes add the values on the fly before they reach their destination. This process
continues with higher levels until the apex is reached. The addition of the values
recerved by the apex is the perimeter of the ohject.

Results were ontained for two cases. In the first case. all sixteen PEs attached
to any single router node are used. for a total of 16K ~active” PEs. Therefore. the
base of the pyramid assumed bv Stout’s and Patel-Ziavras™ algorithms 1s 27 x 27
(r.e.. exght levels). while the base of the pyramid assumed by Lai-White's algo-

rithms 1s 2° x 2" {1.e.. seven levels). In the <econd case. in order to reduce the



38

communication overhead for a “pure” hypercube network. only one PE per router
node is used. for a total of 1K “active” PEs. Therefore. the base of the pvramid
assumed by Stout’s and Patel-Ziavras™ algorithms is now 2° x 2° (i.e.. six levels).
while the base of the pyramid assumed by Lai-White's algorithms is 2* x 2* (i.e..
five levels). Average times calculated over several runs are presented here.

Table 4.1 shows results for the algorithm that finds the perimeter of an object
when using all 16K PEs in the system. Base represents the amount of time it takes
to send data from the base level to the parents at level 1. This process takes a
relatively large amount of time because all PEs are active and share router nodes
in groups of sixteen. We also need to emphasize that all data transfers in our
implementation involve integer variables: this was chosen for uniformity reasons.
because several algorithms in image processing have a lot of similarities with the
perimeter counting algorithm but they deal with integer variables. Top represents
the amount of time it takes the level located immediately below the highest level
to send data to the topmost level and for the topmost level to process the received
data. Total represents the total amount of time taken by the algorithm. Table
4.1 shows that Lai-White's algorithm II is associated with the worst performance.
This can be explained as follows. While all 16K PEs of the system are initially
used. PEs involved in the simulation of higher levels of the pyramid do not share
router nodes for Stout’s. Patel-Ziavras’ and Lai-White's algorithm I. In contrast.
Lai-White's algorithm II is such that for the simulation of higher levels of the pyra-
mid. multiple PEs attached to the same router node become “active.” Therefore.
the communication overhead is tremendously increased for Lai-White's algorithm
II. In addition. we may observe that first three algorithms are characterized by
almost similar performance for this image processing problem.

As it can be observed from earlier paragraphs. the relatively small value of the

dilation in these algorithms does not have a very critical influence here due to CM-
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i

} Algorithms !, Base [ Top ;| Total | Levels |
‘ Stout C 189 1056 1 553
’ Patel-Ziavras || 1.53 | 0.46 | 1.99

AR 4

Lai-White I || 1.11 [ 0.54 | 3.66

La-White IT || 2.52 | 0.31 | 10.66

-1 -1

Table 4.1. Finding the perimeter of an object: one level active at a time. 16 PEs
per router node. (Times in msec for C'N-2.)

Algorithms i Base | Top | Total Le\'eisj

Stout 059 1 0.53 ] 2.84 6
Patel-Ziavras ié 0.64 | 0.35 | 2.86 6 '
Lai-White I |l 0.64 | 0.35 ] 2.35 5
Lai-White 11 || 0.59 | 0.51 | 213 | 3

L

Table 4.2: Finding the perimeter of an object: one level active at a time. 1 PE
per router node. (Times in msec for CN-2.)

2’s reduction operations and the implementation of petit cvcles for transfers of
data. In addition. the congestion i< not a critical factor here due to the SINID mode
of computation and the simulation of one level at a time. Finallv. Lai-\White's
algorithm I and. more importantly. Lai-\White's algorithm II pioduce “irregular”
embeddings that may increase the overhead resulting from the control structure of
application algorithms. We have dramatically reduced this overhead bv generating
pointers to parents. children and lateral neighbors during nitialization.

Table 4.2 shows results when onlv one PE per router node is mitiallv active. As
expected. all four mapping algorithms are characterized by almost similar perfor-
mance because of the special architecture of the Connection Machine. as discussed
before. and the fact that at no point during the execution of the algorithm does

any router node serve multiple PEs.
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Algorithms || Base | Other Levels | Total | Levels
Patel-Ziavras || 0.69 0.68 137 0
Lai-\White I 0.67 5
Lai-White I1 0.87 5

Table 4.3: Finding the perimeter of multiple objects: pipelining | PE per router
node. (Times in msec for ('M-2.)

Table 4.3 shows steady state results for the same image processing algorithm,
assuming that pipeliming is applied and that the number of active PEs attached
to a single router node is mnitially one. More specifically. we assume that either
multiple images are processed. where each image contains a single object. or a
single image that contains multiple objects is processed. Results are not shown for
the Stout algorithm as it can not be pipelined for the reasons discussed earlier. In
spite of the limitations imposed by the SINMD mode of computation implemented
on the Connection Machine. pipelining for this image processmg algorithm is
feasible due to the fact that all of the operations carried out at different levels. or
a subset of the operations for the base and the apex. are identical. Total in Table
4.3 represents the amount of time it takes to produce a single output in steady
state (i.e.. all stages of the pipeline are full). Patel-Ziavras® algorithm vields the
lowest performance of the three algorithms due to the fact that the base level can
not be simulated along with other levels. In fact. Table 4.3 shows that the time
taken bv the hase level for Patel-Ziavras™ algorithm is approximatelv half of the
total time. In contrast. all of the pyramid’s levels mav be active simultaneously

when Lai-\White's algorithms are used.
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4.2.2 2D Convolution

Two-dimensional comvolution nsine the pyvrannud stiucture was the second im-
age processing algorthm that we implemented on the Connection Machime. The

convolution algonithm convolves a & x A window of weighting coefficients with a

2" X 2" image matrix. Let X' = {«,,} and 1" = {w,,} be the image matrix and
the window respectively. The goal 15 to compute Y = {y, ,} where
L=1h-1
Iy s = Z Z w, X U4y s+
=0 ;=0

with 0 < ros < 2" — & This algorithm 1c very frequently applied m 1mage
processing.

The convolution algorithm for the source pyramid structure 1s as follows. We
assume the assignment of a single pixel per node in the base of the pyramid. The
smallest integer ~ is then found for which 2° > k. Then the base of the pyramid
15 partitioned into square blocks of size 27 x 27. Each such partition contains the
leaves of a subpvramid whose apex 1s at level 5. The weighting coefficients are then
loaded into the upper leftmost part of each partition. This can be implemented on
a pyramid machine using a top down process. assuming that the coethcients are
contamed in the apex [17]. On the Connection Machime. the coethcients are loaded
nusing k< broadcasting operations with appropriate sets of PEs <elected each time.
This part was not included 1 the total execution time of the presented results.
The rest of the PEs in each partition receive a zero as the weighting coefficient
if the window «ize is smaller than the partition size. The PEs then multiply the
werghting coefficient with the pixel value thev contain and send the result to themr
parent. Parents at level 1 add the values thev receive {from their children and
send the result to their parent. This process continues until the apexes of the
subpvramids are reached. Each apex at level 5 adds the valnes it receives fiom

its children and <ends the result. through the necescary intermediate PEs at lower
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levels. to the leaf PE in the upper leftmost corner of its partition. Each window at
the base that contains the weighting coefficients is then shifted to the right once.
multiplications are performed as above, the results are shifted to tle left once,
and the values are sent to the parents at level 1. The hottom-up and top-down
processes described earlier are then applied, with the result now stored in the PE
with offset (0.1) in the partition. To conclude, the convolution algorithm involves
lateral shifts and multiplications at the base. bottom-up addition of numbers. and
finally top-down transmission of final results. These steps are repeated 2%” times,
which is equal to the total number of PEs in each partition.

Results are presented in Table 4.4 for windows with k from 2 to 8 Note that
the number of levels in the pyramids is not shown. This is because only levels
0 through < are involved in the algorithm. The results in Table 4 indicate that
there are not any significant differences among the timings of the four mapping
algorithms. Therefore. this observation suggests that Stout’s and Patel-Ziavras’
algorithms are more appropriate than Lai-White's algorithms due to the lower
cost of the system that the former two algorithms require. The same table also
shows the total time for lateral data transfers at level 0.

Then an attempt was made to pipeline the convolution process. The only
part of the entire process which can be pipelined is the bottom-up and top-down
communication phases, while the weighting coefficients are multiplied with pixel
values concurrently within each partition.

The sequence of operations for this process is entirely different from the pre-
vious one. All the weighting coefficients are loaded in each partition from the
front end as previously defined. Next all these coefficients are multiplied with the
pixel values and the results are stored in an array within each PE. The window is
laterally shifted to the right and the whole precess 1s repeated for PE(0.1) within

each partition. This entire shifting and multiplication process is completed and no
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Algorithms || Lateral | Total A x /4
‘ Stout 330 1 1161 E
Il Patel-Ziavras 3.36 ’ 1782 | 2x 2|
| Lai-White I 521 4 2024 | i
i Lai-White I 182 | 21.90 |
f]l Stout ’ 12,78, 109.81 | j
| Patel-Ziavras | 12.33 © 1[03.80 1 3 x 3 |
| Lai-White I 1 1833 . 116.31 | |
D La-White TT | 15,01 ' 10736 i
i Srout 1260, 1043 !
| Patel-Ziavras | 12.66 ; 103.56 | 4 x4 |
| La-White I || 1838 @ 11449 |
i La-White IT || 18.01 !]U().IT |
Stout 16.69 | 57710
|| Patel-Ziavras || 145.96 | 347.83 | 5 x5
| Lai-White I | 69.38 | 593.91 |
¢ Lai-White IT || 67.64 ; 547.67 1
| Stout 14706 0 33876 |
1 Patel-Ziavras || 43.81 | OIR26 ‘ O % 0
| Lai-\White 1 69.27 | 394 0Y ! “
. Lar-White II | 6748  347.67 |
I Stout | 4628 5344 ]
| Patel-Ziavras I 16.82 | 530.76 X |,‘
li Lai-White I || 70.01 | 399.93 | |
| Lai-White I1 | 67.66 ' 551.07 |
I ostour | 49.21 4 54306 |
’l Patel-Ziavras “ 15.83 | 3438 1 XXX |
¢ LaiWhite [ 6926 ISR i
| La-White IT || 6733 | 41.15 | I

Table 4.4: 2D convolution. 1 PE per router node. ( Times in msec for CM-2.)
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hottom-up or top-down communication takes place during this operation. Then
all these results are sent to the coordinator PEs at level 4 in a pipelined fashion.
These values are loaded into an array at level 4. Finally. all the coordinator PEs
at level 4 send all these values back to the leaf level PEs and these values are
loaded within each partition in correct PE. This top-down communication phase
is also pipelined.

Execution times are improved for Lai-White's algorithms about 40 to 15 per-
cent. Results are much improved for larger window sizes (greater than 4). For
window size 2 X 2. execution time is slightly increased. This is due to a different
control structure in the main program.

For Patel-Ziavras™ algorithm. results are not much improved as compared to
non-pipelined results. Pipelining is not implemented for window size less than 5
because the benefit of the pipelining can not be obtained due to the fact that the

base can not be active simultaneously with the other levels of the pvramid.

Implementation of pipelining for this algorithm is similar to that of the Lai-
White's except that the bottom-up and top-down communication phases take two
cvcles. All the results are sent from the base to level 1 and then from level 1 to
level 4. The same procedure is repeated for top-down communication. Control
structure for this two-step pipelining procedure does not allow to take much ad-
vantage of pipelining. However. the results of the pipelining will be much improved
for large window sizes. when level 4 will be at much higher level as compared to

window sizes 5 to 3. Results are shown in Table 4.5 .

4.2.3 Segmentation

Segmentation is the process which partitions the image into regions with more or

less homogeneous properties. A cooperative. iterative approach to segmentation



Algorithms Total | A xk
Patel-Ziavras - 2x2
Lai-White | 21.41
Lai-White IT | 24.35
Patel-Ziavras - 3x3
Lar-White I R3.68
Lai-White IT | 79.56
Patel-Ziavras - x4
Lai-White I 83.57
Lai-White IT | 79.03
Patel-Ziavras | 482.10
Lai-White I | 322.20
Lai-White IT | 307.69
Patel-Ziavras | 493.404 1 6 x 6
Lai-White I | 321.36
Lai-White IT | 309.17 |
Patel-Ziavras | 300.56 | ¥ x 7
Lai-\White I | 329.36
' Lai-White IT | 308.11
Patel-Ziavras | 481.65
Lai-White I | 320.83
| Lai-White IT | 307.59

Ot
X
W

o
X
o

Table 1.5: Pipeliming 2D convolution. 1 PE per router node. (Times in msec for

C'M-2.)
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in which each process at a given iteration is used to adjust the other process at
the next iteration 1s used here [21]. This approach uses an overlapped pvramid
that implements 50 percent overlapping i each direction. Thus each node has
fowr parents and 16 children. A son-father relationship is defined hetween nodes
in adjacent lavers. but uanlike other pvramids. this relationship is not fixed and
may be redefined at each iteration.

There are four time dependent variables associated with each node (PE):

o c[r.;.1][t] : the value of the local image property:
e afi.j,[][t] : the area over which the property was computed:
e pli.j,{][t] : a pointer to the node’s father at the next higher level;

o s[i.). 0][t] : the segment property, the average value for the entire segment

containing the node.

t is the iteration number. The value of ¢ at each leaf level node is set equal to the
corresponding image sample value. while the ¢ value for each lower level node is
the average of all 16 of the node’s candidate sons. Iterations following the initial-
1zation {f > 0) are divided into three phases.

Phase 1: Son-father links are established for all nodes below the top of the pyra-
mid according to the following condition:

If d[m] < d[n] for all n # m. then pl[i. ). /][t] = m. where d[n] is the absolute dif-

h candidate tather. If two or

ference between the ¢ value of node [+.).7] and its n'
mote of the candidate fathers are equally likely. then decision is made at random.
Phase 2: The ¢ and « values are computed bottom up on the basis of the new

son-father links.

For I = L.oale. ). N[t] = L.cfe. ). }[t] = image sample value T(1.y). where L is the

Y
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Object || Stout | Patel-Ziavras | Lai-White I { Lai-\White II | Iterations
I 246.68 25378 212.76 212.04 b)
11 247.2% 253.81 222.45 212.17 3
11 352.78 331.65 310.76 322.55 3
IV 353.57 353.36 309.29 321.74 8
\Y% 349.92 351.02 311.18 322.65 8

Table 4.6: Image segmentation for five different objects. 1 PE per router node.
(Times i1 msec for CM-2.)

leaf level.
For I > L.afi.3.1][t] = sum of the areas of the linked children.
c[2.7,1][t] = sum of the ¢ values of linked children, alt, j, [][t].
Phase 3: Segment values are assigned in a top down fashion. At the topmost
level. the segment value of each node is set equal to its local property value
s g, Q) = ey O]
For higher levels. each node’s value is just that of its father.
At the end of phase 3. the highest level segment values represent the current state
for the smoothing-segmentation process. Any change in pointers in a given it-
eration will result in changes in the values of local image properties associated
with pyramid nodes. These changes may alter the nearest father relationship and
necessitate a further adjustment to pointers in the next iteration. Changes al-
ways shift the boundaries of segments in a direction which makes their contents
more homogeneous. so convergence is guaranteed. The iterative process is con-
tinued until no changes occur from one iteration to the next. The results for the
segmentation problem are shown in Table 4.6.

Results for all four mapping algorithms are almost the same Tle execution
time for Stout’s and Patel-Ziavras™ algorithms are higher than that ot Lai-\White's

algorithms. This is due 1o an extia pyramid level for Stout’s and Patel-Ziavras’
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algorithms. Five different objects are used for the segmentation and estimation
of image region properties. All links become stable after 5 or & iterations. These
results suggest the use of Stout’s and Patel-Ziavias™ algorithms for such applca-
tions because theyv require a smaller dimension hvpercube (i.e.. H,,) as compared

to the hypercube required for Lai-White’s (i.e., Hynq1).



CHAPTER 5
CONCLUSIONS

This thesis has carried out a comparative analysis of algorithms that map pyra-
mids onto hypercubes. The comparative analysis incorporates both analytical
techniques and actual runs on a Connection Machine CM-2 system composed of
16K processors. The results show that while Stout’s and Patel-Ziavras’ algorithms
require target systems with approximately half the cost of those required by Lai-
White’s algorithms, Stout’s algorithm is not capable of simulating multiple levels
of the pyramid simultaneously. Since a wide variety of pyramid algorithms can
take advantage of concurrent multilevel computations, this restriction is a major
drawback of Stout’s algorithm. However, Stout’s algorithm has the lowest dilation
and congestion which result in the lowest communication times between adjacent
levels.

In contrast, Patel-Ziavras’ algorithm does not impose this restriction. For con-
current multilevel computations, the results on the Connection Machine indicate
that this algorithm achieves very good performance when compared to Lai-White’s
algorithms, at half the cost.

When one level of the pyramid is considered to be active at a time. Patel-
Ziavras’ and Lai-White's algorithms perform almost the same because of very

similar communication times between adjacent levels. Therefore, Patel-Ziavras’
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algorithm is a compromise between the pair of Lai-White’s algorithms and Stout’s
algorithm with respect to cost and performance.

The performance of Patel-Ziavras’ and Lai-White's algorithms is also inves-
tigated for pipelined processing. Stout’s algorithm can not implement pipelin-
ing because a subset of PEs simulate all the levels of the pyramid. Lai-White’s
algorithms perform better than Patel-Ziavras™ algorithm when it is required to
simulate a pyramid with all of its levels active at the same time. Patel-Ziavras’
algorithm imposes a restriction on the base of the pyramid which can not be active
simultaneously with the other levels. Therefore. two pipelined stages are required
for Patel-Ziavras’ algorithm. One stage works between the base and the next
higher level, while the other stage works for all of the remaining levels, except
the base. Good performance of pipelined processing can be obtained for Patel-
Ziavras’ algorithm if a large pyramid structure is used, i.e., the apex is at a very

high level.
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*k one PE / Router * %
*k CONVOLUTION *k

ﬁﬂ******i*tt***itﬁﬂﬁiﬁti****t*ﬁt**t**ﬁﬁ'*i*ﬁt*t**i***tﬁﬂ****t**ﬁ*t/

<stdio.h>
<cstimer.h>

#include
#include

shape[512] {32] base;
/* 512 / 16 =32; hence a ragular shape of 32x32 will be obtained
I

Integer x and y contain decimal values of x and y coordinates.

/* While gx and gy contain Reflexive Gray codes for each x and y

/* coordinates.

/* index0 and indexl contain x and y coordinates for each master Pe
/* ‘level’ contains the level number for each PE leval=0 means

/* PE is active only for base. levelw7 means this PE is active for
/* all levels. ‘dest’ stores the reslut of each level operation.

/* b,c and d are used as temporary storage variables.

int:base px,py, Xx,Y,XX,YY,9%,9Y, level=9, p=0, g«0 ,r=0;

*/

*/
*/
*/
*/
*/
*/
*/
*/

int:base test=l,index0,1indexl,destl,dest2,6 dest3, destd, dest5,con_val=0,co

n result=0, fcon result=0, mul=0;

- static int e=0, f=0;
static int count=~0;
int row, col, k=0, clk tck=0, l,m,n, coord pe=0 ;
int :base a=0,bw0,c=0,d=0, addr=0, mark=0 ;
int:base x0,y0,x1,y1l,x2, y2,x3,y3,x4,y4,x5,y5,x6,y6,x7,y7;
int :base chlxl,chlyl,ch2xl,ch2yl, ch3xl, ch3yl,chdxl, chdyl;
int :base chlx2,chly2,ch2x2,ch2y2, ch3x2, ch3y2, chdx2,chdy2;
int :base chlx3,chly3, ch2x3,ch2y3, ch3x3, ch3y3, chdx3, ch4y3;
int :base chlx4,chly4,ch2x4,ch2y4, ch3x4, ch3y4, ch4x4, chdys;
int:base chlx5,chly5,ch2x5,ch2y$5, ch3x5, ch3y5, chdxS, chdyS;
int:base southx, southy,northx,northy, eastx, easty, westx, vweasty;

int win_size=0, win odd=0, part msize=0, no_prpnrt-O;
int:base win_val([64T; /* max. window value 1s 8 x 8 */
int window_val[64]; /* scalor array */

south
chlxl means children 1, x-axis value, for level 1 */
x0 to x7 and y0 to y7 variables stores address of master PE for
each level of Pyramid.

double time_val, val, vall;

maaxin (}

with (basa) {

xx=pcoord(l);

yy=pcoord(0) ;
for (col=0; col<32;coltt)(

for (row=0;row<512; rowt+) {

if (row==0 && colw==() k=0;

else ki=1;

[row] [coljaddr=k; } }
a=(0x0F; b=a&addr;
where (b==0} ( /*

mark=1; }

bw0, means those PEs whose 4LSBs =0 */

k=0;
for (row=0; row<512;row+=16){ if (row==0) k=0; else kt=1;

north, east, west variables are used for lateral communication. */

*/
*/

/*

{
}

alg()
{

/*

for (col=0;

col<32;
[{row] [col])x=col ;

colt+) {
[row] [col]y=k
}od

where (mark==1) {

dec_to_gray (};
level~(;
/* set the level number */

q~l;
for (k=0;k<5; k++) {

p=gx|gy;
where (level==k) (

p=qs&p;
where (p==0) levelt+;

r=q;
r<<=1;
ql=x;

alg();
printf ("\n");
)

for (row=0; row<128; row++) {
for (col=0;

col<32; col++}{
k=[row] [col]b;

} /* with(base) loop ends here */

dec to_gray{)

gx=x>>1; gx“=x ; gy=y>>1l; gy =~y

’

printf ("\n [%d] {%d]level = %d\t y=%d \t gx=%d \t gy=%d ",row,col, [row][col]leve
lp[row][colly,[row][col]gx, frow] [collgy ), }}
s

;

/* first calculate the addresses of master PEs and store in
variables x[n] and y[n] for each Pe. */

indexO=gx; indexlw=gy;

index0>>=1; index(0<<=l; index1>>=1 ; 1indexl<<=l;
gray to dec(); x0=~index0; yO=indexl; y0<<=4;
index0=gx; indexl=gy;

index0>>=2, index0<<=2; 1indexl1>>=2 ; indexl<<=2;
gray to_dec(); xl=index0; yl=indexl; yl«<=4,
index0O=gx; indexl=~gy;

index0>>=3; index0<<=3; indexl1>>=3 ; 1ndexl1<<=3;

gray_to_dec(); x2=~index0;

index0wgx;
index0>>=4;

indexl=gy;
1ndex0<<=4;

1ndex1>>=4 ;

y2=indexl; y2<<=4;

indexl<<=4,

gray to_dec(); x3=index0; y3=indexl; y3<<=4;
index0=gx; 1indexl=gy;

index0>>=5; index0<<=5; index1>>=5 ; index1<<=5,
gray_to_dec(); x4=index0; y4=indexl; yd4<<=4;

for (row=0;row<512; rowt=16){ printf("\n row = %d \n",row);

for (col=0;col<32; col++) {
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printf ("\n[%3d] [$3d]x0=%d, yO~%d ", row, col, [row][col]x0, {row][col]y0 };
} o)

*/

/* Now calculate the addresses of each children { total 4)
for each master Pe and store in variable chin]lx[k] */

where (lavael>w=l)
{index0=x; indexl=y;
chlxl=index0; chlyl=indexl; /* same child 1. */
chlyl<<=4;
index0=gx;indexl=gy; index0|=1;gray to dec();
ch2xl=index0; ch2yl=indexl; /% child 2 at 1 x-axis distance.*/
ch2yl<<=4;
index0=gx; indexi~gy; indexl|=l; gray to dec();
/* child 3 at 1 y-axis distance. */
ch3xliw=index0; ch3yl=indexl;
ch3yl<<=4;
index0=gx; indexl=gy; index0|=1; indexl}w=l; gray to_dec(};
/* child 4 at 1 x-axis distance & 1 y-axis distance.*/
ch4xleindex0; chd4ylw=indexl;
chdyl<<=4; }

whaere (leval>=2)
{indexO=x; indexl=y;
chlx2=index0; chly2=indexl; /* same child 1. */
chly2<<=4;
index0=gx; indexl=qgy; index0|=2; gray to_dec();
ch2x2m=index0; ch2y2~=indexl; /* child 2 at 1 x-axis distance.*%/
ch2y2<<=4;
index0=gx; indexlwgy; indexlj=2; gray to dec{);
/* c¢hild 3 at ) y-axis distance. */
ch3x2=indexQ; ch3y2~indexl;
ch3y2<<=4;
index0=gx; indexlegy; index0|=2; indexl|=2; gray_to_dec();
/* child 4 at 1 x-axis distance & 1 y-aXis dintnnco.*/
ch4x2windex0; ch4y2=indexl;
chdy2<<=4; }

whera (level>=3)
{index0=x; indexlwy;
chlx3mindex0; chly3=indexl; /* same child 1. */
chly3<<=4;
index0=gx;1ndexl=gy;index0|=4; gray to_daec();
ch2x3=index0; ch2y3=indexl; /* child 2 at 1 x-axis distance.*/
ch2y3<<=y;
index0=gx; indexl=gy; 1ndex1|—4~ gray | to dec();
/* child 3 at 1 y-axis distance. %/
c¢h3x3=index0; ch3y3=indexl;
ch3y3<<=4;
indexO=gx; indexl=gy; index0j=4; indexl|~4; gray to_dec();
/* child 4 at 1 x-axis distance & 1 y-~axis distance.*/
ch4x3=index0; chdy3=indexl;
chdy3<<=4; }

where (level>=4)

{index0=x; indexl=y;

chlx4=index0; chly4=indexl; /* same child 1. */

chly4<<=4;

index0=gx;indexl=gy;index0|=8;gray to dec();
ch2x4=index0; ch2yd~indexl; /* child ™2 at 1 x-axis distance.*/
ch2y4<<=4;
index0=gx; indexlwgy; indexl|=B; gray to dec();

/% child 3 at 1 y-axIs distance. */

ch3x4=index0; ch3yd4=indexl;

ch3y4<<=4;
index0=gx; indexl=gy; index0|=8; indexl{=~8; gray_ to_dac{();
/* child 4 at 1 x-axis distance & 1 y-axis distance.*/
ch4ix4~index0; chdyd=~indexl;
chdyd<<=4; }

where (level>=5)

{index0=x; indexlwy;

chlx5=index0; chlyS=indexl; /* same child 1 */

chly5<<=4;

index0=gx;indexl=gy; index0|=16;gray to dec();

ch2x5=index0; ch2y5=indexl; /* child Z at 1 x-axis distance */
ch2y5<<~4;

index0=gx; indexl=gy; indexl|=16; gray to_dec();

/* child 3 at 1 y-axis distance */
ch3x5=index0; ch3y5=indexl;
ch3y5<<=4;
index0=gx; indexlw=gy; index0|=16; indexl|=~16, gray to_dac();
/* child 4 at 1 x-axis distance & 1 y-axis distance.*/

chdx5=index0; ch4yS5=indexl;
chdy5<<=4; }

/* Children addresses calculation ends here. */

/* Now calculate parameters for lateral communication */
where (level>=0) /* for base */

northx=x; northy=(y-1);

southx=x; southy=(y+1);

eastx=(x+l); easty=y;

westx=(x-1); westy=~y;
where (northy==-1) norxthy=o0; where (westxww-1) westx=0;
where (eastx==32) eastx=31; where(southy==32) gouthy=31;
southy<<=4; northy<<=4; easty<<=4; westy<<=4;
}

/*
for (row=0; row<64;rowt=16) { printf("\n row = %d \n",row);
for (col=0; col<32; col+t) {
printf ("\n[{%3d] [¥3d]northx = %d , northy = %d ", row, col, [row)[col]northx
, {row] [col])northy }:
printf("\n[%3d][%3d]southx = %d , southy = %d ", row, col,{row][col]southx
y [row] {col]southy );
printf("\n[%3d] [¥3d]eastx = %d , easty = %d ", row, col, [row][colleastx ,[
row} [coljeasty ;
printf ("\n{%3d) [¥3d]westx = %d , westy = %d \n", row, col, [row][col]jwestx |
row] [col]westy };
b}

*/
pxintf ("\n Your PYRAMID COMPUTER base 1s 32 x 32 \n"),
wind: printf ("\nFor k x k size window, Enter value of k\n");
scanf ("td", &win_size);
if(win_mize <=1 || win size>B) {

print£("\n wrong value : Valid window sizes are 2,3,4,5,6,7,8 \n"); goto wind;
)

printf("\n You’'ve to enter total %d elemets; starting from 0 to
%d ", win_size*win size, ((win_size*win size)-1));
printf ("\nEnter window elements by rows: ");
for (k=0; k< (win size*win mize); kt+)({
printf("\n Enter element #%d :",k);
scanf ("%d",&n  );
win val(k}]en ;

}
for (part_size=1; part_size<win size ; part aize*=2);

€¢




m-32/part Bize; { /* send con val to top left corner of each partition x/
printf ("\n You entered Window size %d x %*d ",win_size,win size); if (aw=0 && f==0) return; /*e~=0 and f=0 means start of convolution */
printf ("\n partition size = %d x %4 ", part size, part slze ), else {
printf ("\n PC base is divided into %d partitions of si1Ze %d x %d ", m,p a=e-1;
art_size, part_size )i if(e>0) { [westy] [westx-a]con_result=con_result,
if (part asize>win_size) win_odd~1; /*
if (m==18){ where{level==1) coord pe=l;} print£("\n (%d][%d]con_result = %d ",f,e, [0][0]con_result ),
elae if (me=8){ where (level==2) coord pe=2;} print£("\n {%d][%d}con result = %d ",f,e, [0][l]con result );
else if (me=4){ where(level==3) coord pe=3;} printf("\n [td][%d}con result = %d ",f,e, {0][2]con result );
/* coord pe shows the level number of coordinator PEs. */ printf£("\n [%d][%d]con “result = %d ",f,e, [0]{3]con result }; */
printf ("\n Coordinator PEs are at level %d ", coord pe }; } -
/* Now initialize each partition with its own x y coords */ m=£-1;
where (x<part size} px=x; a=f-1; 1f (m>0) =a<<=4;
vwhere (y<part_size) py=y; if (£50){ ([northy-a] [northx]con_ result=con_result;
where (x>=part size ) px=xtpart size; /* -
where (y>=part size ) pY=ytpart_size; printf("\n [%d][%¥d]con result = %d ",f,e, [0][0]con result ),
- printf ("\n {%d])[%d]con result = %d ",f,e, [0][1}con result );
JRRRARRIRR KRR RRRRRKK KRR KA KA RN KRR R AR RRARRNARARN KRR kRN ) printf("\n [%d}[%d)con:rggult = %d ",f,e, [0][2]con result });
where ( (x%3) ==0) test=0; print£("\n [%d][%d]con_result = %d ",f,e, [0][3]con result ), */
}
printf£("\n\n STARTING CONVOLUTION PROCESS....\n"); if (win_odd==1) {where (px>=win_size) con_result=o0,
/* assign corresponding value of window olemont- to parallel variable a */ whoro(py>-win size)con result=0 ; }
a~{win size * py)tpx;
con_val=win val(a}; /#* con val gets the right value of its own
- - index for first convolution process */ /* for (row=0; row<32; rowt=16) {
for (col=0;col<32; col++) {
if (win_odd==1) {where (px>=win_size) con_val=0; printf ("\n[%d] [¥d]con _val =%d con_result =%d ",row,col, [row]{col}lcon_v
where (py>=win_size)con val=0 ; ) al, (row][col]jcon result }); -
. } )
/* repeat: printf("\n\n con process rowf=3d col=%d ",e,f); */ }
CMC timer start(1l);
repeat: con result=con val*teat; adjust_window ()
adjust_for com(); /* When the final value reaches within each partition , then the
CMC_timer start(2), following routine puts the correct value within correct PE. Then
send () ; it shifts the window (to calculate next convolution} */
CMC timer stop(2); {
CMC timer atart (3); where (py==f && px==e )fcon_result=con_result;
adjust_window (}; ett; -
CMC_timer stop 13); con _result=0 ; /* erase all convolved values now.*/
if(countl-lO) goto repeat; destl=0; dest2=0;deat3=0;dest4w0; dest5=0;
CMC_timerxr stop(l);
{0][1] fcon_result={0][4]fcon_result ; /* Now shift the window for correct position */
/%
for (row=0; row<32; rowt=16) { if (e< (part size)) [easty] [eastx]con val=con val;
for (col=0; col<32; col++) { else { - -
printf ("\n [%d] [%¥d]test = %4 fcon resulit= %d ", row,col, [row] [col]ltest, [row] a=x- (part_gize-1);
[col] fcon result); - where (a==-1) a=0; /* shift window to original position */
- [westy] [a]jcon_val=con_val; f++; e=0;
by %/ /* —
printf("\n after to orig. position ");
time val=CMC_timer read cm busy(l); printf£("\n con _val - %d ", [0} [0]con_val};
val=CMC timeTr read cm buly"(Z), print£("\n con val = %d ", {0} [I]con val);
vall=CMC_timer read_cm_busy(3); printf£("\n con val = %d ", [0][2]con val);
print£("\n con val = %d ", [0][3]con_val);
printf("\n**i*i*i**ﬁﬁ****i*ﬁtﬁ*************i*i*****t***k*t*ﬁﬁﬁt") i/ -
printf("\n\t Total time CM busy for Convolution is %f ",time val); Lf(£>0 && f<part_size) [southy] [southx]con val=con_val;
printf£("\n\t Total time to send values to coordinator\n PEs an -
d get the result back is %f ", val); }
printf("\n\t Total time CM takes to move the window is &f ", vall);
print £ ("\n\n"); y 1f (f==part_size) {print£("\n returning f= %d ",f); count=10, return;}
*
! for (row=0; row<48; row+=16) { printf ("\n\nwindow values after shifting :"};
for (col=0;col<32; col++) {
adjust_for_ com() printf ("\n[%d] [3d}con_val =id con_result =%d ", row,col, [row] [col]con_v
e S ! HUO DU e e L . (W)
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al, [row][coljcon_result );

*/
}

send() /* This routine sends all values from base to the coordinators and then
send them back to the right partition. %/

{ l=coord pe;

where (lavel>=0) (y0][x0]destl4=con _result; /* printf("\n dest 1= %d ", [
0] [0]destl); */ -

1-=1; 1£(1>0) ( where (level>=1) {yl]{xl])dest2i=destl ;/* printf("\n des
t 2=%d ", [0][0]dest2);*/ }

1~m1l; 1£{1>0) { where (level>=2) [y2][x2]dest3t=dest2 ;/*
st 3=%d ", [0][0]dest3); */}

1-=1; if{1>0) { where (level>=3) [y3]([x3]dest4i=destld ; /*
est 4=%d ", [0][0]destd); */

1-=1; if(1>0) { where (level>=4) [y4][x4]destS5+=destq ;/*
at S=%d , 1 = %4 ", [0]{0}dest5,1) ; */ }

printf("\n de
prantf ("\n d

printf ("\n de

switch(coord pe) {
case 5: where(level>=5)
[chlyS5) [chlx5] dest 4=dest5;
{ch2y5) [ch2x5] dest4=dest5;
[ch3y5] [ch3x5] dest 4=dest5;
[ch4y5] {chd4x5)dest 4=dest5; |}

case

where (level>=4) {

[chly4d] [chlx4
[ch2y4] [¢h2x4
fch3y4d] {ch3x4

deast 3=destd;
dest3=destd;
dest3=dest4;

case

[ch4y4] [ch4x4]dest3=destd; )

where (level>=3) {
[chly3] [chlx3]dest2=dest3;

[ch2y3] [ch2x3
[¢h3y3] {ch3x3
{chd4y3] [chd4x3

dest2=dest3;
dest2=dest3;
dest2=dest3;

case 2: where(level>=2) (

[chly2] [¢hlx2
[ch2y2] [ch2x2
[ch3y2] [ch3x2

destl=dest2;
destl=dest2;
destli=dest2;

case

[ch4y2] [ch4x2]destl=dest2; }

where (level>=l) (

[chlyl] [chlxl]con_result=destl;
{ch2yl] [¢h2x1] con_result=destl;
[ch3yl] [ch3xl}con result=destl;
[ch4yl] {ch4xl]con result=destl;

break; }

default: printf("\n Sorryl! Can not perform top down communiocation\n");

}

gray to_dec ()
{

int k=0;

where (index0>1) { b=~l;
for (k=0;k<7;kt+) {
where (b<=index0) b<<=1;

}
where(bi=0) { b>>=1; dwb; b>>wl; c=b; }
for (k=0;k<7;k++) {
where(cl=0){ b*=index0; bé=c; d{=b; c>>=1; b>>=l1;
}

}
where (index0>1) indexO=d;
b=0; c=0;d=0;
where (indexl1>1) { bwi;
for (k=0;k<7; k++) {
where (b<=indexl) b<<=1;
}

}
where(bl=0) { b>>=1; d=b; b>>=l; c=b, }
for (k=0;k<7; k++) {
where (cl=0){ b*=indexl ; b&w=c; dj=b; c>>=1; b>>=l;
}

}
where (indexl1>1l) indexl=d;
b=0; cm=0;d=0;

9.
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#include <stdio.h>
#include <cstimer.h>

shape[512} [32] base;
/* 512 / 16 =32; hence a regular shape of 32x32 will be obtained */
/* Integer x and y contain decimal values of x and y coordinates. */
/* ¥While gx and gy contain Reflexive Gray codes for each x and y */
/* coordinates. */
/* index0 and indexl contain x and y coordinates for each master Pe */
/* ‘level’ contains the level number for each PE . level~0 means */
/* PE is active only for base. level=7 means this PE is active for */
/* all levels. ‘dest’ stores the reslut of each level operation. */
/* b,c and 4 are used as temporary storage variables. */

int:base px,py,x,y,%X,YY,9X,gy, level=9, p=0, g=0 ,r=0, s=0;

int:base test=1l,index0,index],destl=0,dest2=~0,dest3~0, destd=0, dest5=0,co
n val=0,con result=0, fcon result=0, mul=0;
- static int e=0, f=0;

static int count=0;

int row, col, k=0, clk tck=0,1,m,n, coord pe=0 ;

int:base a=0,b=0,c~0,d=0, addr=0, mark=0;

int:base x0,y0,x1,yl,x2,y2,x3,y3,x4,y4,x5,y5,x6,y6,x7,y7;
/* x0 to x7 and y0 to y7 variables stores address of master PE for

each level of Pyramid. For base level variables ‘index0’ and indexl’

contain the addrees of master PE */

int-base chlxl,chlyl,ch2xl,ch2yl, ch3xl, ch3dyl, chdxl, chdyl;

int :base chlx2,chly2,ch2x2,ch2y2,ch3x2,ch3y2,ch4x2,chdy2;

int:base chlx3, chly3,ch2x3,ch2y3, ch3x3, ch3y3, chdx3, chdy3;

int :base chlx4,chly4,ch2xd4, ch2y4,ch3x4,ch3y4, chdxd,chiyd;

int :base chlx5,chly5,ch2x5, ch2y5, ch3x5, ch3y5, chd4x5, chdyS;

int :base southx, southy,northx,northy, eastx, easty,westx, westy;

int win_saize=0, win odd=0, part_size~0, no_of part=0;
int:base winﬂval[GdT; /* max. window value Is 8 x 8 */
int window_val[64]; /* scalor array */

/* south , north, east, west variables are used for lateral communication. */
/* chlxl means children 1, x-axis value, for level 1 */
/* %0 to x7 and y0 to y7 variables stores address of master PE for */
/* each level of Pyramid. */
double time val, val, vall;

main ()
{
with (base) {
xx=pcoord(l) ;
yy=pcooxrd (0} ;
for (col=0; col<32;coltt)({
for (row=0;row<512;rowt+) {
if(rowe=0 && col==0) k=0;
alse kt=1;
[row] [coljaddr=k; } }

a=0x0F; be=a&addr;

where (b==0) { /* b=0, means those PEs whose 4LSBs =0 */
mark=l; }

k=0;

for (row=0; row<512; row+=16) { if (row==Q) kw0; else kt+=1;
for (col=0; co0l<32; col++t){

[row] [col]x=col ; [row]{col]jy=k ;
}

where (markmsl)

/*

/* mark=1 means only those PEs whose 4 LSBs are zero */

dec_to_gray(); /* gives right values of gx and gy */

level=0;
a=gx|gy;
b=1;

a&=b; /* a=0 meana LSB is zero */
where (a==0) level=l;

am3l; and_a_b();
where (a==1 && b==0) level=2;
a=7; and a b();

where (a==3 && b==0) lavel=3;

a=15; and a b();

where (a=~~3 && b=~l) level=~4;

[16][1)level=5; /* apex on 5th level .. 0 to 5

address();

for (row=0; row<128; rowt+) {
for (col=0; col<32; coltt)({

k=[row] (col}lavel ;

if (k==0 || k<5)printf("\n [%3d][%3d]gx = %d\t gy=%d \t

}

}

d", row, col,
}

} /* where (mark=l) loop ends here
} /* with(base) loop ends here v/

/* program main() loop ends here */

and_a b()

{
}

b=a&gy; a=a&gx;

address ()
{

where (level==1)
1ndexl=gx; indexl>>=2; indexl1<<=2;
indexl|=1;
index0=gy; index0>>=2; index0<<=2;
gray to_dec();
x1=1ndex0; yl=indexl; xl1<<=4;

where (lavel==2)
{ indexl=gx; indexl1>>=3; indexl<<=3,
indexl|=3;
index0O=gy; 1index0>>=3; index0<<=3;
gray to_dea();
xl=index0; ~yl=indexl; xl<<=4;

) >/

level=td x1=%d
[7ow][col]gx,[row][col]gy,[row}[col]level,[row][col}xl,(row][col]yl),
*

*/
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where (level==3)

{ indexl=gx; index1>>=4; indexl<<=4;

indexl |=3;

index0«gy; index0>>=4; Iindex0<<=4;

index0j=1;

gray to dec();

x1=index0; Yi=indexl; xl<<=4;
where (lavelw==i)
{ indexl=gx; indexl>>=5; indexl<<=5;

indexlj=1;

index0=gy; index0>>=5; index0<<=5;

index0|=1;

gray to _dec();

xl=index0; ~yl=indexl; x1<<=4;
}
a=gx; a>>=]; a<<=1; /* index0 and indexl contain address */
indexO=a; /* of master PE for base only. */
a=qy; a>>=l; a<<=l;
indexl=a;
gray to_dec();
indeX1<<=4; xOwindexl; yOmindex0;

Now calculats the addresses of children’s x and y values for each

PE of each lavel. These values will be stored in each PE’s variables
Every PE will have 8 values ( both x and y coordinates)

defined above.
for all 4 children

where (level==1)

as stout alg. %/

{p=index0; g=indexl ; /* save index 0 & 1 */
index0=x; indexley,;
chlxl=index0; chlyl=indexl;
chlyl<<=4;

index0=gx;indexl=qgy;index0|=1;gray to dec();

ch2x1l=index0; ch2yl=indexl;
ch2yl1<<=4;

index0=gx; indexl=~gy; indexl}=l; gray to dec();

/* child 3 at 1 y-axis distance. */
ch3xl=index0; chlyl=indexl;

ch3yl<<=4;

index0=gx; indexl=gy; index0|=l; indexl|=l; gray to dec();

/* same child 1. */

/* child 4 at 1 x-axis distance & 1 y-axis distance.*/

ch4xl=index0; chdyl=indexl;
chdyl<<=4;
index0=p; indexl=q; }

where (leval~=2)

{p~index0; q=indexl; /* save index0 & 1 values */
ragx ;s=gy;

>>wl; r<<=1;

index0=r; indexlw=s; gray to dec();
chlx2=index0 ; chly2=indexl ; chly2<<=4;
r=gx ;8=qgy;

r>>=1; r<<=1; 8|=2;

index0=r; indexl=s; gray to_dec();
ch2x2=index0 ; ch2y2=indexl ; ch2y2<<=4;
r=gx ;s=qgy;

>>=l; r<<=1; r|=2;

index0=r; indexl=s; gray to dec();

ch3x2=index0 ; ch3y2=indeXl ;7 ch3y2<<~=4;

/*For level 1 to level 0 communication valuse are same

/* child 2 at 1 x-axis distance.*/

—

I=gx ;s=qgy;:
r>>=1; r<
8>>=]; a<
indexO=r;
chdx2=index
indexO=p;

where (level~~3)
{p=index0;
I=gx ;}8=qy;
r>>wZ; r<
indexOw=r;
chlx3=index

I=gx ;s=gy;
>>=3; r<
indexO=r;

ch2x3=index

r=gx ;s=gy;
>>m2,; r<
indexO=r;

ch3x3=index

r=gx ;s=gy;
r>>=3; <
indexO=r;

<=1; r|=2;

<=1l; m|e2;

indexl=s; gray to dec();

0 ; chdy2=indexl ; chdy2<<=4;
indexl=p; /* restore oringinal values */
g=indexl; /* save index0 & 1 values */
<=2; rj=1;

indexlms; gray_to dec();

0 ; chly3=indexl ; chly3<<=4;

<=3; ©r|=5;

indexlws; gray to dec();

0 ; ch2y3=indexl ; ch2y3<<=4,

<w2;

indexlm=s;

o

<m=3;

indexli=s;

ch4x3=index0 ;

andexO=p;

)

where (level==4)
{p=index0;
I=gx ;a=gy;
8>>wml;
index0=x;

indexli=p;

r|=1; =8[=4;
gray_to_dec();

chiy3=indexl ; ch3y3<<=4;

ri=5; s|=4;

gray_to_dec();
chdy3=indexl ; chdy3<<=4;
/* restore oringinal values */

g=indexl; /* save index0 & 1 values */

B<<=]1;
indexl=s;

chlx4=index0 ;

r=gx ;B=gy;
a>>=l;
index0=x;

8<<=l;
indexl=s;

ch2x4=index0 ;

gray_to_dec();
chlyd=indexl ; chly4<<=4;

r|=8;
gray_to_dec();
ch2y4=indexl ; ch2yd<<=4;

r=gx j8=gy;
8>>=1; 8<<=l; s|=8;
index0=r; indexl=s; gray to dec();

ch3x4=index0 ;

ch3y4=indexl 7 ch3yd<<=4;

Ir=gx ;s=gy;
a>>=1; B8<<=1; a|=8; r|=8;
indexO=r; indexl=s; gray to dec();

chix4=index0 ;

index0=p;

where {level==5)

{
chlxS5=x+1;
ch2x5=29;
ch3xS5=x+1;
chix5=29;

}
/* Children addresses calculation ends here.

indexlep;

ch4y4=indeXl ; chdy4<<=4;

chlySey;
ch2ySey;
ch3y5=464;
chdy5=464;

*/

/* restore oringinal values */

LE




/* Now calculate parametasrs for lateral communication. */

where (lavel>=0) /* for bane */
{ northx=x; northy=(y-1);

southx=x; southy=(y+l);

eastx=(x+1l); easty=y;

weatx= (x-1); westy=y;
where (northy==-1) northy=0; where (westx==-1) westx=0;
where (eastxw=32) eastx=3l; where (southy==32) southy=31;
southy<<=4; northy<<«4; easty<<=4; weaty<<=4;
}

/*
for (row=0; row<64;rowt+=16} { printf("\n row = %d \n",row);
for (col=0; col<32; col+t) {

printf£("\n{%3d] {$3djnorthx = %d , northy =~ %d ", row, col,[row] [col}noxrthx
; [row} [col]lnorthy );

printf ("\n[%3d] [$3d]}southx = %d , southy = %d ", row, col,[row][col]southx
,[row] [col}scouthy );

printf ("\n[%3d} [$3d]eastx = %d , easty = %d ", row,

row} {coljeasty );
printf ("\n[%3d] [$3d]weatx = %d , westy = 3d \n",
row] [col]lwesty }:
bl

*/

printf ("\n Your PYRAMID COMPUTER base is 32 x 32 \n");
printf("\nFor k x k size window, Enter value of k\n');
scanf ("%d", &win size);
if(win size <=1 || win size>8) {
sizas are 2,3,4,5,6,7,8 \n"); goto wind;
printf ("\n You’ve to enter total %d elamets; starting from
%d ", win_size*win size, ((win_size*win size)-1));
printf ("\nEnter window elements by rows: ");
for (k=0; k< (win size*win size); ki+){
printf{"\n Enter element #%d
scanf("%d",&n );
win_val[k]=n H

wind:

printf("\n wrong value:

sv,k);

}

for (part sizew=l; part_ size<win size ; part_size*=2);

m-32/part size;
printf ("\n You entered Window size %d x %d ",win_size,win_size);
printf ("\n partition size = %d x %d ", part_| size, part size );
printf ("\n PC base is divided into

art_size, part_size ):

if (part_size>win size) win_ odd=1;
1if (m==1¢) { where{level==1) coord pe=l;}

else if (m==8){ where (levelw=2) coord pe=2;}

else if (m==4)( where (level==3) coord pe=3;}

/* coord_pe shows the level number of coordinator PEs. */
printf ("\n Coordinator PEs are at level 3%d ", coord pe });
/* Now 1initialize each partition with its own x y coords */
where (x<part smize) px=x;
where (y<part_size) py=y;
where (x>=part size ) px=xipart asize;
where (y>~part size ) py-ytpart size;

/*-ﬁ*t*twk*ﬁt*ﬁ***ttﬁt*****"tttﬁ*'ﬂﬁ*ﬁ*ﬂ*ﬁtiﬁ**ﬁ**ﬂtt*ii*ﬁ*
where ( (x$3) ==0) test=0;

*/

print£("\n\n STARTING CONVOLUTION PROCESS....\n");

/* assign corresponding value of window elements to parallel variable a */
a=(win_size * py)+px;

col, [row] [col]eanstx , [

row, col, [row][col]westx |

Valid

0 to

3d partitions of size %d x %4 ", m,p

con val=win val[a); /* con val gets the right value of 1its own
- - index for first convolution process */
if (win_odd==1) {where (px>=win_size) con val=0;
whare(py>-vin size)con val=0 ; }
;* repeat: praintf("\n\n con process rowf#=td col=%d ",e, £},
*
CMC taimer start(l);
rapeat: cdn_result=con val*taest;
adjust for com{);
MC_timer_start(2)7
send();
CMC_timer stop(2);
C t;uner “start (3);
adjust window();
CMC_timer atop{3);

if (count 1=10) goto repeat;
CMC_timex stop(l);

[0] [0] fcon result={[0]{3]fcon result;
[0] [1] fcon . rasult-(01[4)fcon ‘result;
time val=CMC timer read cm busy(l);
val=CMC timeT read cm busy({2);

, vall=CMC_timer read am_busy(3);

*
for (xow=0;row<l6; xow+=16)} {

for (col=0;col<32; col+t) (

prlzti("\n [%dl[%d]test - %d fcon_result= %d ", row,col, {row}{coljtest, [row]
co con result);
printf("\n*ﬂﬁﬁ*tﬁ**ﬁt**'ttﬁﬂﬁt***ﬁ*ﬁ**tt***ﬂktt****ﬂ*k*k*it*t**")
printf ("\n\t Total time CM busy for Convolution is %f " time val);
printf ("\n\t Total time to send values to coordinator\n PEs an
d get the result back is %f ", val);
print£("\n\t Total time CM takes to move the window 13 %f ", vall),
print € ("\n\n");
}
adjust_for com()
{ /* send con val to top left corner of each partition */
if (@==0 && Ff==0) return; /*e=0 and f=0 means start of convolution */
aloe |
a=ae-1;
if (e>0){ [westy] [westx-a]con_ result~con result,

/>

printf("\n [%d][%d]con result = %d ",f,e,
print£("\n [%d][%d]con result = %d ", f,e,
printf("\n [%d][%d]con:kOIult - %d ", f,e,
printf("\n [%d][%d]con_result = %d ",f, e,

[0} [0)}con result ),
[0} [1}con result );
[0) (2] con result ),
[0] [3) con_result );

*/ }

m=f-1;

a=f-1; if(m>0) a<<=4§;

1i£(£>0){ ([northy-a]{northx]con result=con result;
/* - -
printf("\n {%d)[%d]con _reeult = %d ",f,e, [0][0}con result },

printf("\n {%d][%d]con result = %d ", f,e,
print£("\n [%d][%d}con result = %d ", f e,
e;intf("\n [¥d] [td]con result = %d ", f, e,

)
[0} [1]con result };
[0) {2} con result });
[0} [3]con_result ),

if (win_oddw==1) (where (px>=win_size) con_result=0;
whero(py>-win size)con result=0 , }

)
/* for (row=0, row<32; rowt=16) {
for (col=0;col<32; col+t) {

printf(“\n[%d][%d]con_val wid con_result =%d ",row,col, {row] {col]jcon v

<t
o




al, [row][col]lcon result );

*/
}

adjust_window ()

- /* When the final value reaches within each partition , then the
following routine puts the correct value within correct PE. Then
it shifts the window (to calculate next convolution) */

{

/*

£<<=4; printf("For testing [%d][%d]con_result = %d \n",f,e,[f][o]coq_relult )2
£5>>m4;

*/

vwhere (py==f && px==e )fcon_ resultwcon result;

et+t;
con_result=0 ; /* erase all convolved values now.*/
destl=0; dest2=0;dast3=0;dest4=0; dest5~0;
/* Now shift the window for correct position */
if (e< (part_size)) [easty] [eastx]con valmcon val;
else -
a=x- (part size-1);
where (a~==-1) a=0; /* shift window to original position. */
[wasty] [a] con_val=con _val; f+i+; e=0;
/* - -
printf("\n after to orig. position ");
printf("\n con val = %d ", [0]{O]con val);
print£("\n con val = %4 ", [0] [1]con val);
printf("\n con_val = %d ", [0]{2]con val);
print£("\n con_val = %d ", [0][3]con_val);
*/ -

if (£>0 && f<part_size) [southy] [southx]con_val=con_val;

1f (fwmpart size) {printf("\nNow f is equal to partition size so returning f=
%d ", f); count=10; return; } /* return is remove from here inside bracket */
/i
for (row=0;row<48; rowt=16) { printf ("\n\nwindow values after shifting :");
for(col=0;col<32; col++) {
printf ("\n[%d] [$d]con_val =%d
al, [row][col]con result );

*/
}

con_result =%d ",row,col, [row] [col]con v

send{) /* This routine sends all values from base to the coordinators and then
send them back to the right partition. */
{ l=coord pe;/* printf("\n 1 in start of send routine is &d ",1); */

where (lavel>=0) {/* printf("\n con results before sending are 3d %d %d
%d ", [0][0)con_result, [0](1]con result, [16]}[0]Joon_result, [16](1]con_result )
*

i

vhere (level>=0){ [x0][yO]destl+=con result; |} /* printf("\n destl = %d.
......... ", [0]1[0]destl);*/

1-=1; if(1>0) { whera (level==1l)} [x1][yl]dest2+=destl ;/* printf("\n des
t 2=%d ", [0][1l]dest2);*/ }

1-=1; 1£(1>0) ( whare (level==2) [x1][yl)}dest3t=dest2 ; /* printf("\n de
st 3=%d ", [0][2]dest3);*/ )

1-=1; if(1>0) { where (level==3) ([x1][yl]destdi=destl ; /* printf("\n de
st 4=%d ", [16)[2]destd);*/ }

1-=1; if(1>0) { where (level==4) [x1][yl]destSt=destd ; /* printf("\n de
st 5=%d , 1 = %d ", [16][l}dest5,1) ; */ }

switch (coord pe) {

case 5: where (level==5) {
[chly5] [chlx5] dest 4=dest5;
[ch2yS] [ch2x5] dest 4=dest5;
[ch3y5] [ch3x5) dest4=dest5;
[ch4yS5] [ch4x5] dest4=dest5; )

case 4: where(levelw==4){
[chlyd4] [chlx4]dest3=dest4;
[¢h2y4] [ch2x4] dest3=desat4;
[ch3y4] [ch3x4)dest3=destd;
[chdy4] [chdx4]dest 3wdestd; )

case 3: where(level==3) {
[chiy3] [chlx3] dest2=dest3;
[ch2y3] [ch2x3] dest 2=dest3;
[ch3y3] [ch3x3] dest 2=~dest3;
[ch4y3] [chd4x3]dest2=dest3; }

case 2

where (level==2) {

[chly2] [chlx2])destl=dest2;
[ch2y2]) [ch2x2]) destl=dest2;
[ch3y2] [ch3x2]destl=dest2;
[ch4y2] [chd4x2]dest1l=dest2; }

case 1

where (levelw=l) {

[chlyl][chlxl}con _result=dastl;

[ch2yl] [ch2xl])con result=destl;

[ch3yl] {ch3xl] con result=destl;

[ch4yl] [ch4x1l]con” result=destl; break, )

default: printf("\n Sorry! Can not perform top down communication\n");

dec_to_gray ()
{

gx=x>>1; gx"=x ; gy=y>>l; gy*=y ;

gray_to_dec()
{
int k=0;
where (1ndex0>1) { b=1;
for (k=0;k<9; k++) {
where (b<=index0) b<<=1;
}

}
where(bi=0) { b>>=l; dwb; b>>=l; c=b; }
for (k=0; k<7; k++) {
where(cl=0) { b *=index0; b&~c; d|=b; c>>=1; bdd>=1;
}

}
where (index0>1) indexO=d;
b=0; c=0; d=0;
where (index1>1) { b=1;
for (k=0;k<9;k++) {
where (b<=indexl) b<<=1l;
}

}
where (bl=0) { b>>=1; d=b; b>>=l; c=b; }
for (k=0; k<7;k++) {
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where (ci=0) { b*=indexl ; b&w~c;

}

}
where (index1>1) indexl=d;
b=0; c=0;d=0;

dlmb; co>>=1;

b>>=1;
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* * [row] {col]lx=col; [row]} [col]y=k;
* de kW Ak ke ek deok ko ok ko K Lai & White Algorithm T hhhkThhhh kAR hhohdkohdh * } }
* one PE / Router »*
* CONVOLUTION * where (mark==1)
**i*************ﬁ**i’t*kﬁiﬁ**t***ti***ﬁi*'****tttﬁ**i***iﬁkiﬂi***kﬁ***iﬁ**/ (
dec_to_gray();
#include <stdio.h> /* BSet level # for each PL */
#include <ostimer.h>
level~10; /* initially level=10 for all unused base PE */
shape [256] [32] base; a=gx&2; b=gx&3;
where (a==2 || bw=3) level=0;
/* ainteger x and y contain decimal values of x and y coordinates. */ a=gx&7;
/* While gx and gy contain Reflexive Gray codes for each x and y */ where (a==0} leval=l;
/* coordinates. */ a=gy&3; b=gx&7;
/* index0 holds addresg for row of master PE and indexl holds */ where (a==0 && b==1) level=2;
/* address for col of master PE for base only... */ a=gy&7; b=gx&l5;
/* x1 contains row address for master PE of all other levels */ whare (a==1 && b==l) levelw3;
/* eaxcept for base; similarly yl contains col address for master */ awgx&3l; b=gy&l5;
/* PE of all other levels except for basa. */ [96][1]level=4;
int:base bx,by,px,py, X,¥,xx,Y¥,9%,9y, level=9, p-0, q~0 ,x=0; /* index0 holds address for row of master PE and indexl holds */
int:base test-l index0, indexl,destl, dest2, do-t3 destd, dasts con_val=0, co /* address for col of master PE */
n_raesult~0, fcon result-O mul-O' index0=gx; indexl=~gy;
static int ewo0, £—0 where (level==0) { index0>>=3; index0<<=3; )
static int count-o, where (level==1) {indexl>>=2;index1<<=2;index0}=1; )
int row, «col, k=0, clk tck~0, l,m,n, coord pe=D ; where (level==2) {index0>>=4;index0<<=4;index0|=1;
int:base a=0,b=0,c=0,d=0, addr=0, mark=0 ; index1>>=3; index1<<=3; indexl |~=1; }
int:base x0,y0,x1,yl,x2,y2,x3,y3,x4,y4,%x5,y5,x6,y6,x7,y7; where (lavel==3) { index0O=l; indexl=80; }/* gray 80= decimal 96 */
int :base chlxl,chlyl, ch2x1l,ch2yl, ch3xl, chlyl, chdxl, chdyl;
int :base chlx2,chly2,ch2x2,ch2y2, ch3x2, ch3y2, chdx2, chdy2; gray to dec(); /* convert all final values of index0 & 1 to dec. */
ant:base chlx3, chly3,ch2x3,ch2y3, ch3x3, ch3y3, chdx3, chdy3; Tindexl<<=4;
int:base chlx4,chlyd, ch2x4,ch2y4, ch3xd, chly4, chdx4, chdys;
int:base chlx5, chly5,ch2x5, ch2y5, ch3x5, ch3y5, chdx5, chdy5;
int :base southx, southy, northx,northy, eastx, easty, westx,westy; JHEREEBEETHFUEERRALBREFLEELAUBHALARLLLIILALLBLL LB LHIRBRSBEHT R 1%%%
int win_size=0, win odd=0, part_size=0, no_of part=0; Now calculate the addresses of children for all PE and for
int :base win_val[64]; /* max. window value Is 8 x 8 */ all levels.
int window_val[64], /* scalor array */ FAUELFIFIALLLHLHALLELTALTRURVILISIBLBLTHERALALLLLFITELHLIIBTLHEBBI43%%/
where (lavel==0)
/% south , north, east, west variables are used for lateral communication. */ { a=7; b=a&gx;
/* chlxl means children 1, x-axis value, for level 1 */ where (bw=3) { [indexl][index0]chlxlwx; [indexl][indexO]chlyl=y; }
/* xO to x7 and y0 to y7 variables stores address of mascer PE for */ where (b==2) { [indexl][indexO]ch2xl=x; [indexl][index0]jch2ylwy; }
/* each level of Pyramid. */ where (b==6) { [indexl]{index0]ch3xl=x; [indexl]{index0]ch3yl=y; }
double time val, val, vall; where (b==7) { [indexl]{index0}chéxl=x; [indexl}[index0]chdyl=~y; }
main{} where (level==1)
{ { a=3; b=atgy;
with(base) { vhere (b==0) { {indexl][index0jchlx2=x; [indexl}(index0jchly2=y; }
xx~pcoord(l); where (b==1) ( [indexl][index0]ch2x2=x; [indexl][index0]ch2y2=y; }
yy=pcoord (0) ; where (b==3) { [indexl] (index0])ch3x2=x; [indexl][index0]ch3y2=y; }
for (col=0;co0l<32; col++) | where (b==2} { [indexl] [index0}ch4x2=x; [indexl][index0]chd4y2=y, }
for {(row=0; row<256; rowtt){ chlyl<<=4; ch2yl<<=4; ch3yl<<=4; chdiyl<<=4 ;
1f (row==0 &£& colm=0) k=0;
else ki=1; where (level==2)
[row] [colladdr=k; ]} } { a=7; b=a&gy; a=15; c=a&gx;
where (b«=0 && c==1) {[indexl] {index0)chlx3=x, [indexl] {1ndex0]chly3=y;
a=0x0F; b=~ag&addr; vwhere (b==( && c==9) {[indexl] [index0]ch2x3=x; [indexl}[index0]}ch2y3=y;
where (b==0) markel; /* b=0, means those PEs whose 4 LSBs =0 */ where (b==4 && c==1) ([indexl][index0]ch3x3=x; [indexl] [index0]ch3y3=y;
where (b==4 && c==9) ([indexl] [index0]ch4x3=x; [indexl]} [index0]chd4y3=y;
k=0; chly2<<«4; ch2y2<<=4; ch3y2<<=4; chdy2<<~=4 ; }
for (row=0; row<256; rowt=16) { if (row==0) k=0; alse ki=1;
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where (levale=3)
{
chly3<<=4; ch2y3<<=~4; ch3y3<<=~4; chdy3d<<=4 ; }

whare (level==4)
{
[6]{1jchlixd=1;
[6] {1]ch2xd~1;
[6] [1]ch3x4=14; [6][1]}ch3yd=1;

[6] {1]chd4xd4=14; [6][1]chdy4=30;

chlyd<<=4; ch2yd4<<=4; ch3yd<<=4; chi4yd<<=~4§ ; }

[6) [1]chlyd=1;
[51 {1)ch2y4=30;

/*****% children calculation ends here *w¥wan/

[ LR EE G E L LG EEE AR LE L EEEELELAEEEEERLERRLEGEEE
Now calculate paramters for lateral communication,
[ R R A R R N N R R R R N R R RN R R R R RN N R R R R R AR R RN |
*/
where (level==0) /% for base */
northx=x; noxthy=(y-1);
southx=x; southyw(y+l);
eastx=(x+1); eastywy;
westx=(x-1); westy=y;
where (northy==-1) northy=0; where (Wegtxwe=-1) westx=0;

where (eastx==32) eastx=31; where(acuthy~=16) southy=15;
where (x==5 || x==13 || x==21 ) eastx+=d4;

where (x==10 || x==18 || x==26) westx—-=4;

southy<<=4; northy<<=4; esasty<<=4; westy<<=4;

)

A N N N N N A T A R A
Initialize base of PC with logical x,y coords. namely bx and by.

NNV INIININININ

k=0; n=-1;
for (row~0; row<256; rowit=16) { if (row==0) k=0; else kt=1;
for(col=0; co0l<32; col++) {
m={row] {col]lavel;
if (m==0) { nt+;
[row] [collbx=n%16; [row] [col]lby=k;
/**%xxx logical coorda. end herae ***Axxx/

printf ("\n Your PYRAMID COMPUTER base is 16 x 16 \n");

wind: printf ("\nfFor k x k size window, Enter value of k\n");
scanf("%d",&wiq_size);
if(win size <=l || win_size>8) {

print £ ("\n wrong valie : Valid window sizes are 2,3,4,5,6,7,8 \n"); goto wind;

)
printf ("\n You’ve to enter total %d elemets; starting from 0 to
%d ", win_size*win size, ((win_size*win sizae)-1));
printf ("\nEnter window elements by rowe: ");
for (k=0; k< (win_size*win size); k++)(
printf{"\n Enter element #3%d :",k);
scanf ("%d",&n );
win_vallk}=n i

}
for (part_size=l; part_: size<win size ; part _size¥m2);
m=16/part _size;
printf ("\n You entered Window size %d x %d ",win size,win _size);
printf("\n partition size = %d x %d ", part_size, part aize );
printf("\n PC base is divided into %d partitions of siZe %d x %d ", m,p
art_size, part size ):
if (part size>win size) win odd=l;

if (m==8}{ where (level==1l) Goord pe=l;)

else if (m==4){ where (levelw==2) coord pe=2,)
else if (m==2){ where (level==3) coord pe=3,}

/* coord _pe shows the level number of coordinmator PEs. */
printf ("\n Coordinator PEs are at level 3%d ", coord pe );

/* Now initialize each partition with its own x, y coords. namely px & py */
where (bx<part_size) px=bx;
where (by<part_ “size) py=by;
where (bx>=part size ) px=bxipart size;
whete(by>-part_slze ) py—by%part:aize;

/**i‘********i*******ﬁk****i**t*****************ﬁ*ﬁ***k**k*/
where ( (x%3) ~=0) teat=0;

print £ ("\n\n STARTING CONVOLUTION PROCESS....\n");

/* lslign corresponding value of window elements to parallel variable a */

if (part_size==2) { a=bx%4; con_val=win val[a];)

aluo(

a=(win_size * py)+px;

con_val=win valla]; } /* con_val gets the right value of its own

index for first convolution process */
if (wain _odd==1) {where (px>=win_size) con_val=0;
where (py>=win_size)con val=0 ; }

/> repeat: printf(”\n\n con process rowf=%d col=%d ",e,f), */
CMC_timer start(l);
repeat: con result=con val*test;
adjust_for_com();
MC_timer start(Z),
send () ;
CMC_timer stop (2);
e timor start(3),
adjust window();
CMC_timer stop(3);
if (count !=10) goto repeat;
CMC_timer stop{(l):

/*

[by] [bx] fcon_resultwwin val([l]+win val{3] ;

[by] [bx] fcon reasult=win_val[0]+win val[3]+win _val[l]+win_vall[2] ;
; [by] [bx]) fcon zesult=win - _val[0])4win  val[2] ;
*

time val=CMC timer read cm busy(l);

val=CMC timer read cm busy(Z),

vall=CMC timeT read cm busy(3);

printf (ank***T****Txﬁ'f***ttﬁt*t*********ttt**u**********t**vm* ")

print£ ("\n\t Total time CM busy for Convolution is %f ",time » val);

printf ("\n\t Total time to send values to coordinator\n PEs an
d get the result back is &%f ", val);

print £ ("\n\t Total time CM takes to move the window 13 %f ", vall);

printf ("\n\n"};

}

}
}
dec_to gray()
{

gx=x>>1; gx*=x ; gy=y>>1l; gy*=~y ;
}

gray to _dec ()
{ Int k=0;

69




where (index0>1) ( b=l; for (k=0;k<9;k++) {
where (b<=index0) b<<=1; } }
where(bi=0) { b>>=l; d=b; b>>=}i;
for (k=0;k<7; k++) {
where (c1=0) { b*=index0; b&=c; dj=b;
where (index0>1) index0=d;
b=0; a=0;d=0;

c=b;

)

e>>=l; b>>w=l;} }

where (indexl>1) { b=1; for (k=0;k<9;k++) {
where (b<=indexl) b<<=1; } }

where (bi=0) { b>>=l; dwb; b>>=1; awb; }
for (k=0;k<7; k++) {
where (¢!=0) { b*=indexl ; b&=c; d|=b; o>>=1; b>>=1l; |} }

where (indexl>1)indexl=d;
b=0; c=0;a~0;

send() /* This routine sends all values from base to the coordinators and then
send them back to the right partition. */

{ l=coord _pe;

where (lavel==0) [indexl][index0]destl+=con_result; /* printf("\n dest 1
= %d ", [0][O]destl); */

1-=1; if{(1>0) { where (level==1) [indexl][index0]dest2t=destl ;/* printf
("\n dest 2=%d ", [0][1l]dest2); */ }

l-=1; 1if(1>0) {( where (level==2) [indexl]{index0]dest3t=«dest2 ;/* print
£("\n dest 3=id ", [l6][1)dest3);*/ )

1-=1; if(1>0) print

{ whare (level==3) [indaxl][index0]destd+=dest3 ;/*
£("\n deat 4=3d ", [96][1]destd); */ }
awitch (coord pe) {

case 5: where(levele=5) |
[chly5]} [chlx5] destd=deat5;
[ch2y5] [ch2x5] dest i=dest5;
[ch3yS5] [ch3x5] dest 4=dest5;
[chd4y5]) {ch4x5] dest4=denst5;
where (level==4) {
{chly4] [chlx4]dest3I=deat4;
[ch2y4) [ch2x4]dest3=dest4;
[ch3y4] [ch3x4]dest 3=dest 4;
{chd4yd] [ch4x4] dest 3=dest4;
where (level==3) {
[chly3] [chlx3]dest2=dest3;
{ch2y3] {ch2x3]dest 2=dest3;
[ch3y3] [ch3x3] dest 2=dest3;
[ch4y3] [chd4x3] dest 2=dest3;
where (level=w2) {
[chly2] [chlx2] destl=dest2;
[ch2y2] [ch2x2] desti=dest2;
[ch3y2] [ch3x2]destl=dest2;
{ch4y2] (ch4x2]destl=dest2; }
where (lavel==1}) (
{chlyl] [chlxl]con result=destl;
fch2yl] {ch2x1] con” result=destl;
[ch3yl] [ch3xl] con _resultwdestl;
[ch4yl] [ch4x1l)con result=destl; break; }
dafault: printf("\n SOrryT Can not perform top down communication\n®);

}

case
casgse
Ccase

case

adjust for com()
T /* send con val to top left corner of each partition */
if (om=0 && T==0) return; /*e=0 and f=0 means start of convolution */

else |
a=e-1;
if (e>0) ( [westy] [westx-a]con_result=con_result;

}

meaf-1;
a=f-1; 1f (m>0) a<<=4;
i€(£>0){ {northy-a][northxjeon_result=con result;

}
if (win_odd==1) (where (px>=win_ size) con_result=0;
- where (py>=win_size)con result=0

;

}

}

adjust window ()
- /* When the final value reaches within each partition , then the
following routine puts the correct value within correct PE. Then
it shifts the window (to calculate next convolution) */

where (py==f
ett;

con result=0 /* erase all convolved values now.*/
destl=0; dest2=0;dest3=0; dest4=0; dest5~0;

&& px==e ) fcon_result=con_result;

;

/* Now shift the window for correct position */

if (e<(part_size)) [eaaty] [eastx]con_val=con_val;
else | -
a=bx- (part size-1);
where (a==-1) a=0; 7* shift window to original position
[westy] [ajcon_valwcon val; f++; e=0;

*/

if(£>0 && f<part_size)

}
if (f=wpart size)

[southy] [southx] con_val=con val;

{printf ("\n returning f= %d ", f); count=10; return;}
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* *
* *
* ona PE / Router *

* CONVOLUTTION *
AANEH AN I IR AR AR IR RARA RN RN I AR R RANAANNRRARRARN AR AR R A RN NI AR AR RN AR AR hhh [

LEE 2SR R SR JI *HANKARKIARANRAAN KR * kK

Lai & White Algorithm

<stdio.h>
<estimer.h>

#include
#include

shape [8192] bawse;

/* 1Integer x and y contain decimal values of x and y coordinates. */
/* wWhile gx and gy contain Reflexive Gray codes for each x and y */
/* coordinates. */
/* index0 holds address for row of master PE and indexl holds */
/* address for col of master PE. */

int:base bx,by,px,py, X,y,xx,YY,9X,qY, leveal=9, 6 p~=0, q=~0 ,r~0 ,s=0;

int:base test=1,index0,indexl,destl, dest2,dest3, destd, dest5, con val=0, co
n_result=0, fcon_result=0, mul=0; -

static int e=0,f=0;

static int count=0;

int row, «c¢ol, k=0, clk_tck=0, 1,m,n, coord pe=0 ;

int :base x0,y0,x1,yl,x2,y2,x3,y3,x4,y4,x5,y5,x6,y6,x7,y7;

int :base south north,east,west, m add;

int win_size=0, win odd=0, part size=0, no of

int:basa win val[647; /* max. window value Ig

int window val[64]; /* scalor array */

art=0;
8 x 8 %/

int:
int:

base a=0,b=0,c=0,d=0,mark=0,addr=0;
base tempxl,tempx2,tempx3,tempx4d,tempyl,tempy2, tempy3,tempy4;

/* These variables store temporary coordinate variables for communiacation
by each master PE. */
int orl,or2,or3,ord,xor,sh;
/* mouth , north, east, west variables are used for lateral communiocation.
double time_val, val, vall;

*/

main ()

with (basse) {
xx=pcoord {0},
aw0x0F; b=a&xx;

where (b==0) mark = 1; /* b=0 means those PEs whose 4 LSB =0 */

k=0;

for (row=0, row<8192; row+=16 ) {
1f {(xow==0)} k=0; else ki=1;
[row] x=k;

}

where (mark==1} {
dec_to gray({);

/* Set level # for each PE
This routine starts from apex and goes top down. It calculates
children for each master PE and then update children’s level
number and sends the address of master PE to its children for
communicatioon purpose. Address of master Pe is saved in memory
variable m_add *

level«9; /* get level to an arbitrary value initially. */

[0} level=4; [32]level=3; [96]level=3; [l112]level=~3; [64]level=3;

orl=8;o0r2=16;0r3=24; xor=4;
for (k=3;k>0;k~~-) {
where (level==k)
{ a=gx;p=or2ja;gq=or3la;a"=xor;r=alorl;s=ajorz;

index0O=p; gray to_dec();index0<<=4; tempxl=index0;
index0=g; gray‘po"dec();index0<<-4; tempx2=index0;
indexOmx; gray_to_dec();index0<<-4; tempx3=~1index0;
indexOw=s; gray to dec();index0<<=4; tempx4~index0;

[tempxT]lavel=(k~-1); [tempxl])m add=(x<<4);
[tempx2]level=(k-1); [tempxZ]m addw(x<<4);
ftempx3]level=(k-1); (tempx3]m addw=(x<<4);

{tempx4]level=(k-1}; [tempx4]q:add-(x<<4);

}
/*printf ("\n orl=%d , 2=~%d, 3=%d, xor=%d",orl,or2,or3,xor); */
Orl<<m2; or2<<=2;0r3<<=2;x0r<<m2;

)

/**x*x%x Above code has calculated both the parent PE addresses and 4
Children addresses. Since this routine goes top down So, now
every body within the shape has both parent and children addressaes
and hence no calculation for children is required like other
algorithms; which goes bottom up and required extra code for
children calculation.
tempxl, tempxZ, tempx3,tempx4 contain children addresses

m _add contains parrent addresses ***/
/*** Now calculate parameters for lateral communication for base **/
data 0();
data 1();
data_2():
data 3();

/**** Lateral communication parametrs end here **x&xk/

printf ("\n Your PYRAMID COMPUTER base 13 16 x 16 \n"),
printf ("\nFor k x k size window, Enter value of k\n");
scanf ("$d", win size);

if(win Bize <=1 || win size>8) (
printf ("\n wrong value : Valid window sizes are 2,3,4,5,6,7,8 \n"),

wind:

goto wind;

prlntf("\n You've to enter total %d elemets; starting from 0 to
%d ", win size*win size, {{win size*win size)-1));
- printf ("\nEnter window elements by rows. "};
for (k=0;k<(win size*win size); k++t)({
print£("\n Enter element #%d
scanf ("%d", &n );
win val[k]=n H

k)

i

for (part_size=1; part_size<win_size
m=16/part size;
printf("\n You entered Window size %d x %d ",win_size,win size);

printf("\n partition size = %d x %d ", part size, part_sIze )i

part_size*nz) ;

printf ("\n PC base is divided into #d partitions of size %d x %¥d ", m,p
art size, part size ):
- if (part size>win size) win_odd~1;
if (m==8} { where({level==1) coord pe=1;}
else if(m==4){ where(level==2) coord pe=2,}
alsa if (m==2){ where (level==3) coord pe=3;}
/™ coord pe shows the level number of coordinator PEs. */
printf ("\n Coordinator PEs are at level %d ", coord_pe });
/* Now initialize each partition with its own x, y coords. namely px & py */

where (bx<part_size) px=bx;
where (by<part_size) py=by;
where (bx>=part_size ) px=bxipart size;

[op)
Sy




where (by>=part_size ) py=bytpart_size;

/***ﬁk****k**k*‘k********ﬂ***kt***k*ﬁ**t**i'*i**iti*'*i*i**
where ( (x$3) ==0) test~0;
/*/
printf ("\n\n STARTING CONVOLUTION PROCESS....\n");
/* assign corresponding value of window elements to parallel variable a */
if(part sizew==2) { a=bx%4; con _val=win val{a];}
Talse( - -
a=(win size * py)+px;
con_val=win val{a]; } /* con_val gets the right value of its own
indeXx for first convolution process */
if (win_odd==~1) {where (px>=win_size) con val=0;
whcre(py>-w1n Iizo)con val=0 ; }
/* repezt: printf("\n\n con process row#=3d ocol=3d ",a, f); */
CMC_timer start(l);
repeat: con result=con val*test;
adjust_for_ com{);
CMC_taimer start(Z),
gend() ;
CMC timexr stop(2);
CMC timer start (3);
- adjust_window () ;
(MC_tamer stop(S),
if (count { =10} goto repeat;
$MC timer stop(l);
n
if (part_size==2) { where (level==0}{
[pbY] [bx] fcon_result=win val{l]+win_val(3] ;
{by] [bx] fcon _result=win val[0)+win vnl[3]+win val[l]+win val{2] ;
[by] (bx] fcon_  result=win v-1[0]+win val[2] ;
} }

*/
time val=CMC timer read cm busy(l};
val=CMC timer read cm busy (2):
vall=CMC timer read cm busy(3);

Printf (T\n A * ar ek R A KR A AEA I KRR IR IRIAIIRRNRNKR AR IR AKX AN KK RANAD) &
printf ("\n\t Total time CM busy for Convolution is %f ",time val);

printf ("\n\t Total time to mend values to coordinator\n PEs an
d get the result back is %f ", val);
print £ ("\n\t Total time CM takes to move the window is %f ", vall);

printf ("\n\n");
}
}
}
send({) /* This routine sends all values from bawe to the coordinators and then
send them back to the right partition. */
{ l=coord_pe;
where (lavel~==0)

[m_add]destlt=con_result; /*
0] [0]destl); */

print£("\n dest 1= %d ", [

1-=1; if (1>0) { where (level==l) [m addjdest2i=destl ;/* printf ("\n dest
2=%d ", [0][1])dest2); */ }
1-=1; if(1>0) ( where (level==2) [m add]dest3+=dest2 ;/* printf("\n des
t 3=3d ", [16][1]dest3);*/ -
1-«1; if(1>0) { where (level==3) [m addjdestdt=dest3 ;/* printf("\n des
t 4=%d ", [96][1l]destd); */ )
switch(coord pe) {

case 4: where(levalw=4) (
[tempxl] dest 3=dest 4;
[tempx2] dest 3=dest4;
[tempx3] dest 3=dest4;
[tempx4 ] dest 3=destd; }

case 3: where(level==3) (

[tempxl]dest2=dest3;

[tempx2] dest 2=dest 3;

[tempx3] dest 2=~dest 3;

{tempx4] dest 2=dest 3; }
case 2: where(level==2) {
[tempxl]destl=dest2;
{tempx2] destl=dest2;
[tempx3]destl=dest2;
[tempxd] destl=dest2; }
case 1: where (leval=w=l) {
{tempxl]con result=destl;
{tempx2] con_result=destl;
[tempx3] con result=destl;
[tsmpxd]con:rosult-d.-tl; break; }
default: printf("\n Sorry! Can not perform top down communication\n");

)

adjust_for com()
/* send con _val to top left corner of each partition */
if (e==0 && f==0) return; /*e=0 and f=0 means start of convolution */

else {
a=a-1;
if (e>0){ [west]con_result~con_result;
)
me=f-1;
amf-1; 1f(m>0) a<<=~4;
1£(£>0){ ([north)con_result=con_result; |}

if (win_odd==1) {where (px>=win_size) con_result=0;
where (py>=win_size)con result=0 ; }
}

}

adjust window ()
/* When the final value reaches within each partition , then the
following routine puts the correct value within correct FPE. Then
it shifts the window (to calculate next convolution) */

where (py==f
att;
con result=0 ; /* erase all convolved values now.*/
desti=0; dest2=0;dest3I=0;destd=0;dest5=0;

/* Now shift the window for correct position */

if (e<(part size)) [east]con val=con val;
else { - -

&& px==e ) fcon_result=con_result;

a=bx-~ (part size-1);
where (a==-1) a=0; 7* shift window to original position */
[(west])con _val=con val; f++; e=0;

if(£>0 && f<part_size) [south]con_val=con val;

if (f==part_size) {printf("\n returning f= %4 ",f); count=~10, return;}

dec_to_gray ()

(
gx=x>>1; gx*=x ; gy=y>>1l; gy*~y
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gray_to_dec ()
{ Int ke=0;
where (1ndex0>1) { b=1; for (k=0;k<14;k++){
where (b<=index0) b<<=1l; } }
where(bl=0) { b>>=l; deb; b>>=l; c=b;
for (k=0; k<14;k+t) (
where(ci=0){ b*=index0; b&=c; d|=b; c>>=1;
where (1ndex0>1)1ndex0=d;
b=0; c=0;d~0;

)

b>>=1; }

99



data_0()
{

int:current north, south, east, west;
/****% row 1 of base *¥k#%/

2880 )north=2880; [2880]}south=4928;
6976}north=6976; [6976] south=7344;
3904)noxrth=3904; [3904]south=5952;
8000 noxth=8000; [8000]south=6320;
2992]north=2992; {[2992]scuth=5040;
7088 north=7088; [7088]south=7232;
4016Inoxth=4016; [4016]}south=6064;
8112]north=8112; [8112]south=~6208;
2944)north=2944; [2944) south=4992;
[7040 jnoxrth=7040; {7040 ] south=7280;
3968)north=3968; [3968]) pouth=6016;
8064)north=8064; [BO64]south=6256;
2928 north=2928; [2928]south=4976;
7024]north=7024; [7024]80outh=7440;
3952 north=3952; [3952]scuth=6000;
8048 north=8048; [B8048}south=6272;
J**** row 2 of base **tx/
{4928 )noxth=2880; {4928])south=3392;
{7344 north=6976; [7344] south=7488;
[5952)noxth=3904; [5952] southw=3760;
[6320])noxrth=8000; [6320]) south=7856;
[5040)noxrth=2992; (5040] south=3504;
{7232]north=7088; [7232]south=7600;
[6064]north=4016; [6064]south=3648;
[6208}north=8112; [6208)scuth=6848;
(4992]north=2944; (4992]south=3456;
[7280)north=7040; [7280]socuth=~7552;
[6016]north=3968; [6016] south=3696;
[6256]north=8064; [6256]south=7792;
{4976 north=2928; {4976 south=3440;
[7440)north=7024; T440) south=7536;
[6000]north=3952; 6000] south=3712;
[6272]north=8048; 6272)south=7808;
/***% row 3 of base **wx/
[3392]north=~4928; 3392)south=5440;
[7488)north=7344; [7488]south=6832;
[3760inorth=5952; 3760} south=5808;
{7856 north=6320; [7856] south=6464;
[3504])noxrth=5040; [3504]s0uth=5552;
[7600]north=7232; [7600] mouth=6720;
{3648]north=6064; [3648) south=5696;
[6848]north=6208; 6848 ] south=6576;
[3456]north=4992; 3456 south=5504;
[7552}north=7280; 7552] south=6768;
[3696]noxth=6016; 3696] south=5744;
[7792)north=6256; 7792} south=6528;
[3440 ) north=4976; 3440) south=5488;
[7536]north=7440; 7536) south=6784;
[3712)north=6000; [3712} south=5760;
[780B]north=6272; [76808]south=6512;

/**** row 4 of bage *wxx/

[5440] north=3392;
[6832]north=7488;
(5808 ] north=3760;
[6464]) north=7856;
[5552} north=3504;
[6720]noxrth=7600;

[5440] south=2752;
[6832] south~6848;
[5808) south=3776;
[6464] south=7872;
{5552] south=3008;
{6720] south=7104;

2880
6976
3904
8000
2992
7089
4016

eant=6976;
eant=3904;
oast=8000;
aast=2992;
east=7088;
eust=4016;
eant=8112;
8112) eant=2944;
2944] east=7040;
7040} eant=3968;
3968} east=8064;
8064} east=2928;
2928)east=7024;
7024 st=3952;
3952] eant=B8048;
8048) east=8048;

4928
7344
5952
6320
5040
7232
6064
6208
4992
7280
6016
6256
14976
7440
6000
6272

east=7344;
sast=5952;
east=6320;
east=5040;
east=7232;
east=6064;
east=6208;
east=4992;
east=7280;
east=6016;
st~6256;
east=4976;
east=7440;
eagt=6000;
eanpt=6272;
eant=6272;

3392
7488
3760
7856
3504
7600
3648
6848
3456
7552
3696
7792

sast=7488;
east=3760;
east=78356;
east=3504;
eant=7600;
east=3648;
east=6848;
east=3456;
east=7552;

east=7792;
eaast=3440;
3440) east=7536;
7536] east=3712;
3712) east=7808;
[7808] east=~7808;

[5440] east=~6832;
[68632] east=5808;
[5808)east=6464;
[6464) east=5552;
[5552] eant=6720;
[6720] samt~5636;

2880} weat=2880;
6976 want=2860;
3904 ) west=6976;
8000 ) west~3904;
2992 ] west=8000;
7088lwest=2992;
4016 ) went=7088;
B8l12]}west=4016;
2944 |west=8112;
7040 ) west=2944;
3968} west=7040;
8064 ) went=3968;
[2928]weast=8064;
[7024)west=2928;
[3952)west=~T7024;
{8048 ] west=3952;

4928} weat=4928;
7344 west=4928;
5952 | wast=7344;
6320 ) west=5952;
5040 west=6320;
T7232)went=5040;
6064 ] west=7232;
6208] west=6064;
4992} west=6208;
7280 jwast=4992;
6016 weat=7280;
6256) west=6016;
4976)west=~6256;
7440 west=4976;
6000} west=7440;
6272 west=6000;

3392
7488
3760
7856
3504
7600
3648
6848
3456
7552
3696
7792
3440

west=3392;
west=3392;
west=7488;
weast=3760;
wastw7856;
west=3504;
west=7600;
west=3648;
west=6848;
west=3456;
westm=7552;
west=3696;
west=7792;
7536)wast=3440;
3712)west=7536;
[7608)}west=3712;

[5440] west=5440;
{6832 west=5440;
{5808 ] west=6832;
[6464 )} wenst=5808;
[5552]west=6464;
[6720) wast=5552;

{5696] north=3648;
[6576]noxrth=6848;
[5504 ) noxrth=3456;
[6768]north=7552;
[5744noxth=3696;
[6528] north=7792;
[5488]north=3440;
[6784] north=7536;
{5760 )north=3712;
(6512) north=7808;

}

[5696]) south=4032;
[6576] south=8128;
[5504] south=3056;
[6768] south=7152;
[5744]} south=4080;
[6528] south=8176;
[5488] south=2800;
[6784]) south=6896;
[5760] south=3824;
[6512] south=7920;

[5696] eanst=6576;
[6576) @ast=5504;
{5504] east=6768;
[6768)east=5744;
[5744}east=6528;
[6528) east=5488;
[S48B)east=6784;
[6784) east=5760;
[5760) eant~6512;
[{6512) eant=6512;

[5696] weat=6720;
[6576]west=5696;
{5504]wast=6576;
{6768 )west=5504;
[5744]weat=6768;
{6528 ) west=5744;
[5488]west=6528;
[6784]west=5488;
[5760) west=6784;
{6512 west=5760;
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data_1()
{

int.current north,south, east,

/**** row 5 of base *#*%x/

[2752)north=5440; [2752]south~4800;
[6848]noxrth=6832; [6848) south=7472;
[3776]north=5808; [3776]south=5824;
[7872])north=6464; [7872]south=6448;
[3008]noxrth=5552; [3008] south=5056;
[7104]north=6720; [7104]south=7216;
[4032]north=5696; ([4032]scuth=6080;
[8128)north=6576; [8128]south=5424;
[3056]noxrth=5504; [3056]scuth=5104;
{7152]north=6768; [7152]south=7168;
[4080]north=5744; [4080]south=6128;
{8176)north=6528; [8176]south=6144;
[2800}north=~5488; [2800]south=4848;
{6896} north=6784; [6896] south=~7424;
[3824]noxth=5760; [3824}s0uth=5872;
{7920}north=6512; [7920]}scuth=6400;
/*%xx* row 6 of base *k¥%/

{4800 noxrth=2752; [4800]south=3264;
{7472}noxrth=6848; [7472]south=7360;
[SB824}north=3776; {5824)south=3888;
[6448])noxrth=7872; [6448] south=7984;
[5056 ] noxrth=3008; {5056] south=3520;
[7216])north=7104; [7216]south=7616;
[6080}north=4032; [6080]scuth=3632;
{5424 )north=8128; [5424]south=7728;
[{5104])north=3056; 5104} south=3568;
[7168]north=7152; 7168] south=7664;
[6128])north=~4080; 6128 ) south=3584;
{6144}north=8176; 6144 ] south=7680;
{4848 north~2800; 4848)south=3312;
{7424 ]north=6896; 7424) south=7408;
[S872]north=3824; 5872) south=3840;
[6400]north=7920; [6400]south=7336;
/**** row 7 of base ***%/

[3264]noxth=4800; 3264] south=5312;
{7360}lnorth~7472; 7360] south=6960;
{3888} noxrth=5824; 3888)] south=~5936;
[7984Inorth=6448; [7984]south=6336;
[3520)north=5056; [3520]south=5568;
[7616]north=7216; [7616]south=6704;
[3632]north=6080; 3632] south=5680;
[7728]noxth=5424; 7728 ) south=6592;
[3568])noxth=5104; 3568 ) south=~5616;
{7664 Inorth=7168; 7664 ] south=6656;
{3584 )north=6128; [3584] south=5632;
[7680}north=6144; [7680]south=6640;
[3312]north=4848; 3312} south=5360;
[7408]north=7424; 7408} south=6912;
{3840 ]north=5872; 3840) south=5888;
[7936]noxth=6400; [7936]msouth=6384;
/***x% row 8 Of base **#*x/

[5312]north=3264; [5312]south=2720;
[6960]north=7360; [6960]scuth=6816;
{5936 north=3888; [5936) south=3744;
{6336]north=7984; [6336) south=7840;
{5568] north=3520; [5568)south=2976;
[6704]north=7616; [6704])south=7072;

west;

[2752
(6848
[3776
7872
3008
7104
4032
8128
3056
7152
4080
8176
2800
6896
3824
7920} east=7920;

east=6848;
east=3776;
eanst=7872;
eanst=3008;
east=7104;
east=4032;
east=8128;
east=3056;
east=7152;
east=4080;
east=8176;
east=2800;
east=6896;
east=3824;

[4800
7472
5824
6448
5056
7216
6080
5424
5104
7168
6128
6144
4848
7424
5872
[6400

east=7472;
east=5824;
east=6448;
east=5056;
east=7216;
east=6080;
east=5424;
east=5104;
tw7168;
east=6128;
east=6144;
east=48408;
east=T7424;
east=5872;
east=6400;
eant=6400;

3264l eant=7360;
7360) eant=3888;
3888 east=7984;
7984] east=3520;
3520) east=7616;
7616l east=3632;
3632) aast=7728;
7728) east=3568;
3568 eant=7664;
7664) east=3584;
3584 ] east=7680;
7680] east=3312;
3312} east=~7408;
7408)eant=3840;
3840]) aast=7936;
[7936] east~7936;

[5312] east=6960;
[6960] eant=~5936;
east=6336;

5936
6336
5568
€704

east=5680;

[2752]west=2752;
[6848]west=2752;
[3776])went=6848;
[7872)weast=3776;
[3008)wenst=7872;
(7104)west=3008;
[4032)west=7104;
[6128])west~4032;
[3056}west=8128;
7152} west=3056;
4080 ) vwest=7152;
8176]west=4080;
[2800]west=8176;
6896} wast=2800;
3824 west=6896;
7920 ] west=3824;

[4600}west=4800;
7472 ]weast=4800;
5824 )west=7472;
6448 went~5824;
5056 west=~6448;
7216} wenst=5056;
6080} west=T7216;
[5424 ) wast=6080;
5104 ) went=5424;
7168 west=5104;
6128 jwenst=7168;
6144 ) west=6128;
4848 west=~6144;
7424 jwast=4848;
5872]went=T7424;
[6400]west=5872;

[3264
[7360
[3888
7984
3520
7616
3632
7728

west=3264;
west=3264;
west=7360;
west=3888;
weBt=7984;
wast=3520;
west=7616;
west=3632;
3568 went=7728;
7664} went~3568;
3584 ]west=7664;
7680 )wast=~3584;
3312 ) west=7680;
7408 weast=3312;
{3840 west=7408;
{7936 wast=3840;

[5312)west=5312;
{6960 ) wast=5312;
[5936]west=6960;
[6336]west=5936;
[5568 ) wast=6336;
[6704)west=5568;

[5680])noxth=3632;
[6592)noxrth=7728;
[5616]north=3568;
[6656]noxrth=7664;
[5632]north=3584;
[6640 ] noxth=7680;
[5360]north=3312;
[6912]north=7408;
[5888]north=3840;
[6384] noxrth=7936;

[56B0] south=4000;
[6592] south=8096;
[5616] south=3040;
[6656] south=7136;
[5632]) south=4064;
[6640] south=8160;
[5360]south=2784;
[6912] south=6880;
{5888) south=3808;
[6384]}south=7904;

[{5680] east=6592;
[6592] east=5616;
[S616]east=6656;
[6656] enat=5632;
[5632] east=6640;
[6640]) @ast=5360;
[5360)east=6912;
{6912) east=5888;
{5888 east=6384;
[638B4] eanst=6384;

{5680 west=6704;
[6592 ] west=5680;
[5616)went=6592,
[6656]wast=5616;
[5632]west=6656;
[6640) west=5632;
(5360 west=6640;
{6912)west=5360;
[5888}weat=6912;
[6384)west=5888;




data_2()
{

int:current north,

south,

/*¥*** row 9 of base *¥*%/

{2720 north=5312; {2720} south=4768;
[6816]north=6960; [6816)south=7504;
[3744)north=5936; [3744]ecuth=5792;
[7840]noxrth=6336; [76840]aouth=~6480;
[2976}north=5568; [2976]south=5024;
[7072)noxrth=6704; 7072) south=7248;
[4000]noxrth=5680; 4000} south=6048;
[8096]north=6592; [8096]south=6224;
{3040}north=5616; 3040] south=5088;
{7136]north=~6656; [7136]south=7184;
[4064)north=5632; 4064} south=6112;
[8160])north=6640; 8160)south=6160;
{2784north=5360; 2784} south~4832;
[6880jnorth=6912; 6880] south=7440;
[3808])north=58886; 3808 ) south=5856;
{7904 north=6384; 7904] south=6416;
/**%% yow 10 of base ***xw/

[4768)noxth=2720; [4768]south=3232;
[7504]north=6816; [7504]south=7328;
[5792)north=3744; [5792]south=3920;
[6480]north=7840; ([6480]south=8016;
{5024 north=2976; {5024]) south=3488;
[7248])noxth=7072; [7248])south=7584;
[6048}noxrth=4000; [6048]south=3664;
{6224 north=8096; [6224])south=T7760;
[5088]north=3040; 50688) south=3552;
{7184 }north=7136; 7184 ) south=7648;
{6112]north=4064; [6112]south=3600;
[6160}north=8160; 6160) south=7696;
f4832]north=2784; 4832]s0outh=3296;
17440} noxrth=6880; 7440]) south=7392;
[5856]noxrth=3808; 5856] south=3856;
[6416)noxth=7904; 6416] south=~7952;
/*X*** row 11 of base ***x/

3232]north=4768; 3232} south=5280;
7328} noxth=7504; 7328) south=6992;
3920 noxrth=5792; 3920] south=5968;
[8016]north=6480; [8016]south=6304;
{3488]north=5024; 3488)south=5536;
{7584]noxrth=7248; 7584 south=7328;
[3664]north=6048; 3664)] south=5712;
7760jnoxrth=6224; {7760]south=6560;
3552 )north=5088; [3552]} south=5600;
7648]noxrth=7184; [7648]south=6672;
3600 )north=6112; [3600]south=5648;
7696]north=6160; 7696} south=6624;
32961 noxrth=4832; 329.;south=5344;
7392 north=7440; 7392 scuth=6928;
[3856] north=5856; 3856]) south=5904;
{7952} north=6416; [7952]south=6368;
J/X*%% row 12 of base ***x/

{5280}north=3232; [5280)ascuth=2848;
[6992]north=7328; [6992]scuth=6944;
[5968]north=3920; [5968])south=3872;
[6304}noxrth=8016; [6304] south=7968;
[5536]north=3488; {5536] Bouth=3024;
[7328)north=7584; [7328]south=7120;

east, west;

eant=6816;
{6816] east=3T744;
[3744]) enst=7840;
[{7840] east=2976;
{2976] eant=7072;
[7072) eant=4000;
[4000) east~B8096;
{8096] east=3040;
{3040 east=7136;
7136) eant=4064;
4064] east=8160;
8160} east=2764;
2784) east=6880;
6880) aast=3808;
3808) eant~7904;
T7904) east=~7904;

{2720

4768
7504
5792

east=7504;
east=5792;
sast=6480;
6480 east=5024;
5024 ) eant=7248;
7248} aast~6048;
6048 east=6224;
6224] eanst~5088;
[5088]) east=7184;
7184] eant=6112;
6112] east=6160;
6160]) eant=4832;
4832] east=7440;
T7440) eant=5856;
5856 east=6416;
6416)east=6416;

3232]east=7328;
7328] east=3920;
3920} eanst=8016;
8016]east=3488;
3488 eant=7584;
7584} east=3664;
3664 ) eant=7760;
7760} east=3352;
3552] eant=7648;
7646 eant=3600;
3600) ennt=7696;
7696} anst=3296;
3296] east=7392;
7392} east=3856;
3856] east=7952;
[7952] @ast=7952;

[5280]} east=~6992;
[{6992) eant=5968;
{5968} eant=6304;
[6304) east=5536;
[5536) east=7328;
[7328) east=5712;

2720)west=2720;
6816] wast=2720;
3744 west~6816;
7840 went=3744;
2976} west=7840;
7072 vwent=2976;
4000 west=7072;
8096 wast=4000;
3040} west=8096;
7136 west=3040;
4064 ) west=7136;
8160 ) west=4064;
{2784 ) west=B8160;
6880} west=2784;
3809 west=66880;
7904 | west=3808;

[4768] wegt=4768;
{7504} wast=4768;
5792 west=7504;
6480 weast=5792;
5024 went=6480;
7248 wast=5024;
6048 went~7248;
6224 )west=~6048;
5088 weast=6224;
7184} west=~5088;
6112 jwest=7184;
6160)wenst=6112;
4832 ) wast=6160;
7440 ) wast=4832;
5856]west=7440;
6416 weast=5856;

3232]west=3232;
7328 waenst=3232;
3920 ) west=7328;
8016 west=3920;
3488 )west=8016;
7584 | wast=3488;
3664 jwest=7584;
7760 | west=3664;
3552 jwast=7760;
7648 wenst=3552;
3600 jwanst=7648;
7696} west=3600;
3296 wast=7696;
7392 )west=3296;
3856 west=7392;
[7952]went=3856;

[5280]west=5280;
[6992]west=5280;
{5968 jwest=6992;
[6304] west=~5968;
[5536]wast=6304;
[7328jwest=5536;

[{5712)north=3664;
{6560 north=7760;
[5600}noxth=3552;
[6672]north=7648;
{5648 north=3600;
{6624 north=7696;
[5344)north=3296;
[6928]north=7392;
[5904]noxrth=3856;
{6368 noxrth=7952;

[5712] south=4048;
{6560] south=8144;
[5600) south=2960;
[6672] south=7056;
[5648] south=3984;
{6624} south=8080;
[5344] south=2912;
{6928} mouth=7008;
[5904] south=3936;
{6368]acouth=8032;

[5712] eanst=6560;
[{6560] east=5600;
{5600} east=6672;
[6672]) east=5648;
[5648]east~6624;
[6624] east=5344;
[5344] eaat=6928;
[6928]east=5904;
[5904] eanst~6368;
{6368} eant=6368;

[5712])west=7328;
[6560 ) west=5712;
[S5600] weBt=6560;
{6672 wast=5600;
[5648 ) west=6672;
[6624 | west=5648;
[5344jwest=6624;
[6928]went=5344;
{5904 )wast=6928;
[6368)west=5904;
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data 3()
{

int:current north, south, east, west;
/**** row 13 of base kkkw/

[284B}noxrth=5280;
{6944} north=6992;
{3872 north=5968;
[7968]noxrth=6304;
[3024]noxth=5536;
[7120])noxth=7328;
[4048]north=5712;
[8144}north=6560;
{2960} north=560C0;
{7056l north=~6672;
{3984 jnoxrth=5648;
[8080}noxrth=6624;
[2912]north~5344;
[7008]north=6928;
[3936)noxrth=5904;
[8032]north=6368;

[2848] south=4896;
[6944]) south=7376;
(3872} south=5920;
[7968)south=6352;
{3024} s0uth=5072;
[7120) south=7200;
{4048 ) scuth=6096;
[8144)south=6176;
[2960] mouth=5008;
{7056] sBouth=7264;
[3984]) south=6032;
[8080)south=6240;
[(2912) mouth=4690;
[7008}Bouth=7312;
[3936]} south=5984;
[8032]south=~6288;

/**%*% row 14 of base **x%/

[(4896]north=2848;
[7376])north=6944;
[5920]north=3872;
[6352)noxrth=7968;
[5072]noxrth=3024;
{7200}noxth=7120;
[6096])north=4048;
{6176]north=8144;
{5008])north=2960;
{7264}north=7056;
{6032}noxrth=3984;
[6240]north=8080;
{4690 north=2912;
[7312]noxrth=7008;
{5984 noxth=~3936;
[6288]north=8032;

[4896] south=3360;
(7376} south=7456;
(5920} south=3792;
{6352) south=7888;
{5072] south=3536;
[7200] south=7632;
[6096] south=3616;
[6176) south=7712;
[S008] south=3472;
[7264] south=7568;
[6032] south=3680;
[6240] south=7776;
4690] south=3424;
7312] south=7520;
5984 ] south=3728;
6288] south=7824;

/x*** row 15 of bame *#x¥/

[3360)noxrth=4896;
[7456]north=7376;
[3792]noxrth=~5920;
{7888 north=€6352;
[3536]north=5072;
[7632}north=7200;
[3616]north=~6096;
{7712)noxrth=6176;
[3472)north=5008;
[7568]north=7264;
[3680)north=6032;
{7776]north=6240;
[3424)noxrth=4690;
[7520]noxrth=7312;
[3728]noxrth=5984;
[7824]noxrth=-6288;

3360) south=5408;
7456 south=6864;
3792) south=5840;
[7888] south=6432;
3536] south=5584;
7632) msouth=6688;
3616) south=5664;
[7712] south=6608;
[3472) south=5520;
[7568]} south=6752;
[3680) south=5728;
[7776) south=6544;
[3424] s0uth=5472;
{7520} south=6800;
{3728 south=5776;
[7824 ] south=6496;

/%*** row 16 of base *k*%/

{5408jnorth=3360;
[6864)north=7456;
[5840]north=3792;
[6432)noxth=7888;
{5584 north=3536;
[6688]north=7632;

[5408] south=5408;
[6864] south=6864;
(5840} south=5840;
[6432]) south=6432;
[5584] south=5584;
[6688] south=6688;

2848)eant=6944;
6944)east~3872;
3872] east=7968;
7968 eant=3024;
3024] east=7120;
7120] east=4048;
4048} east=8144;
8l44)eant=2960;
2960] east=7056;
7056} aast=3984;
3984]east=38080;
8080) east=2912;
2912] east=7008;
[7008] east=3936;
[3936) east=8032;
[8032] east=8032;

4896) east~7376;
7376} east=5920;
5920} eant=6352;
6352]ennt=5072;
5072) east=7200;
7200) east=6096;
6096] eant~6176;
[6176] eant=5008;
5008} east=~7264;
7264) eant=6032;
6032] eant=6240;
6240) eaast=4690;
4690 east=7312;
7312} east=5984;
5984] east=6288;
6288) east=6288;

3360] east=7456;
7456} east=3792;
3792) eant=7888;
7888) east=3536;
3536} eant=7632;
7632) @ast=3616;
3616) east~7712;
[7712] east=3472;
3472] east=7568;
7568) east=3680;
3680) eant=7776;
7776 east=3424;
3424} erst=7520;
[7520}east=3728;
[3728)eant=7824;
[7824] eant=T7824;

[5408] east=6864;
(6864} aant=5840;
[5840) eant=6432;
[6432] east=5584;
[5584] eant=6688;
[6688] east=5664;

2848} west=2848;
6944 | weat=2848;
3872)west=6944;
7968 weast=3872;
3024} west=7968;
7120)west=3024;
4048 west=7120;
8144 )west=4048;
2960 west=0144;
7056 west=2960;
3984 west=T7056;
8080}west=3584;
[2912]west=8080;
[7008])west=2912;
[3936) west=7008;
[{8032]west=3936;

[4896) west=4896;
[{7376]west=4856;
{5920 west=7376;
[6352)wast=5920;
[5072)weast=6352;
[7200] wast=5072;
{60956 west=7200;
[6176]wast=6096;
[5008 ] west=6176;
7264)west=5008;
6032} west=7264;
6240 wenst=6032;
4690} wanstm=6240;
7312} west=4690;
5984 westw?7312;
6288 | west=5984;

3360} west=3360;
7456 ) wast=3360;
3792]west=7456;
7888 ) west=3792;
3536] west=7888;
7632} west=3536;
3616)west=7632;
7712)west=3616;
3472 ) west=7712;
7568 | want=~3472;
3680 ] west=7568;
7776} west=3680;
3424 ) vwest=7776;
7520 west=3424;
3728} weast=7520;
{7824} west~3728;

[5408 | west=5408;
(6864 ) west=5408;
{5840 ] wast=6864;
{6432} west=5840;
[5584 ) wast=6432;
[6668]) west=5584;

[S664}north=3616;
[6608]noxrth=7712;
[5520) noxth=3472;
[6752]noxrth=7568;
{5728]noxth=3680;
[6544 ] north=7776;
[5472]north=3424;
(6800] north=7520;
[S776)}noxth=3728;
[6496)north=7824;

)

[5664] south=5664;
[660B] Bouth=6608;
[5520] south=5520;
[6752]} mouth=6752;
[5728] south=5728;
[6544] south=6544;
{5472} south=5472;
{6800} south=6800;
[5776] south=5776;
[6496] mouth=6496;

[5664]east=6608;
[6608]@ast=5520;
[5520]}east=6752;
[6752) east=5728;
[5728) east=6544;
[6544] east=5472;
{5472] @ast=6800;
{6800] east=5776;
{5776} east=6496;
[6496]) east=6436;

[5664 | wast=6€688,
[6608]west=5664;
(5520} west=6608;
[6752)west=5520;
[5728)west=6752;
[{6544) weat=5728;
[5472)west=6544;
[6B800]west=5472;
[5776)west=6800;
[6496] west=5776;
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