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ABSTRACT 

Three-Dimensional Beam-Columns 

by 
Mohammad H. Shams 

This thesis explores several special cases of three-dimensional beam-

columns and suggests that the method of finite differences can be used when a 

solution of general case is required. The thesis begins with a review of the 

three-dimensional beam-column equations and then shows how these equations 

can be used to generate the member stiffness matrix for the nonlinear analysis 

of three-dimensional frames. Examples are included which discuss the 

differences between the analytical and numerical solutions. 
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CHAPTER 1 

INTRODUCTION 

Typically, the term beam-column implies a two-dimensional beam in 

which there is bending about a single axis. This thesis is concerned with a 

straight three-dimensional prismatic beam in which there is bending about two 

axes and torsion about the longitudinal axis. In beam-column problems the 

member stiffness matrix becomes a function of axial load (1), and becomes 

singular at the flexural buckling load. 

Three-dimensional beams have the potential of many complex beam-

column like interactions. It is the intention here to show how all possible 

interactions can be included in the member stiffness matrix for a beam element 

to be used in a general computer program for three-dimensional frame analysis. 

Of various interactions which can occur in three-dimensional beam 

problems, the best known is probably the phenomenon of torsional (lateral) 

buckling (2). In the most simple case, the presence of a bending moment about 

the strong axis of a beam weakens the effective stiffness about the weak axis 

(stress softening), leading eventually to lateral buckling. The presence of axial 

compression makes matters worse. Biot (3) in his classic book discusses 

another case of interaction in which axial tension increases torsional stiffness in 

a prismatic bar. 

In two-dimensional beam-columns, the softening effect of axial 
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compression upon member stiffness is obvious, while the softening effect of 

bending moment in lateral buckling problems in three-dimensional beam-

columns is less so. It will be shown here that the entire initial state of stress in 

a member can interact with the member stiffness matrix in a rather complex 

manner. Since any incremental analysis has its initial state of stress, which is 

not simply axial load, there is every reason to include the appropriate "beam-

column" effects. 

In general, in three-dimensional beam-column problems, computing the 

member stiffness matrix is so complicated that an analytical solution is 

impossible. This thesis describes a general approach which subsumes all the 

effects cited above. A procedure for computing the member stiffness matrix 

for three-dimensional beams is presented in which four coupled differential 

equations are solved numerically using the method of finite differences. In 

order to find the 6 x 6 member stiffness matrix, this system of equations must 

be solved six times. Several special cases are also discussed. 



CHAPTER 2 

THE EQUATIONS OF THREE-DIMENSIONAL 
BEAM-COLUMNS 

A perturbation method is used (4) to describe beam response. That is, a 

given straight beam in equilibrium under given forces is subjected to a small 

load perturbation. This approach produces the tangent stiffness now common 

in nonlinear analysis and describes buckling as the response to the load 

perturbation becomes singular. 

The interest here is primarily three-dimensional beams. While there is a 

good understanding of two-dimensional problems and even three-dimensional 

cable nets, three-dimensional beams are still the subject of some discussion (5). 

The analysis below is straightforward, if cumbersome. The starting point is 

undeformed, but prestressed equilibrium in the sense that the initial 

configuration has internal stress-resultants associated with it (6). A small 

deformation is then superimposed upon the initial configuration and zero- and 

first-order solutions constructed with products of small terms neglected. 

Assuming that the initial configuration is straight and undeformed, the first-

order solutions then return the expected theories for beam-column and torsional 

buckling (5) as special cases. 

Small parameter analysis: Given an arbitrary beam, its equilibrium in its 

initial (fig. 1) and perturbed configurations can be described as (4): 

3 



Figure 1 Typical three-dimensional beam segment. 

Initial Configuration Perturbed Configuration 

Here P and M are the usual force and moment stress-resultants, with p and m 

the applied forces and moments, the superscripts refer to the configuration, and 

the prime symbol refers to the differentiation with respect to arc length. The 

vector t is of course the unit tangent vector, which will also be referred to as i 

in the applications cited below. In component form 

and the base vectors i j k selected so that P, and Mx  represent thrust and 

torque, respectively. Going from the initial to the perturbed configuration, 

changes are indicated as 

4 
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where e is the anticipated small parameter and the bar is used to distinguish the 

perturbation term. The perturbed terms of Eq. (2) are now inserted into the 

equilibrium equations of the perturbed configuration given in Eq. (1). In 

component form these equations are 

In order to complete the analysis, it is simply a matter of inserting the 

definition of the perturbations (Eq. (3)) into Eqs. (4-5) and collecting terms in 

the coordinate directions. Before doing so, it is convenient to introduce 

displacements in the following manner. Let w represent the rotation vector 

associated with any beam element. If in the initial configuration the beam is 

straight and lies along the x axis, for the case of small rotations w can be 

written as 

where 6 is the torsional rotation, 8, is the z component of the beam 

displacement vector, Sy  is the y component of the beam displacement vector, 

and the comma is used to indicate differentiation. The rotation vector can, of 
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course, be used to determine the changes of the base vectors as 

Clearly 

After inserting Eqs. (7-8-9) in Eqs. (4-5), they can be written as 
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The first order equations are collected in Table 1 and will be discussed 

in the next chapter. The zero-order equations are assumed to be satisfied by 

equilibrium of the initial configuration and will not be discussed here. The 

equations of Table 1 are obtained by writing the equilibrium equations in the 

perturbed configuration and by keeping terms which are linear in the small 

parameter e. For convenience, this parameter can be set to be one in which 

case the terms indicated by bars Eq. (3) then represent the full perturbation (5). 

It should be noted that the assumptions of small displacement theory have 

been invoked above to allow arc length differentiation to be replaced by 

differentiation with respect to the space variable x (5). 
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Table 1. First-order equations. 

Force Equilibrium 

Moment Equilibrium 



CHAPTER 3 

THE MEMBER STIFFNESS MATRIX 

The interest here is how the equations of Table 1 might be used in a 

computer program for the nonlinear analysis of three-dimensional beams. From 

consideration of equilibrium it can be argued that the member stiffness matrix is 

a 6 x 6 matrix. Using Newton's method for nonlinear structural analysis, each 

step (iteration) of the nonlinear analysis becomes simply a linear analysis which 

uses the local tangent stiffness. Therefore the terms in the member stiffness 

matrix are "forces" due to unit "displacements." If the member forces are 

chosen properly the terms in the member stiffness matrix may be computed by 

introducing sequentially 6 discontinuities into the boundary conditions of the 

system of equations in Table 1: 

- A unit axial discontinuity 

- A unit torsional discontinuity 

- Four flexural discontinuities 

Note that the four flexural discontinuities are those which are used in moment 

distribution: a unit rotation about an axis of flexure is applied at one end of a 

beam while the other end is held fixed. Two beam ends and two axes of 

flexure then imply four flexural discontinuities. 

The next step will combine some of the equations in Table 1 to produce 

a system of four equations in the four displacements 8,08y,(5, and O. 

9 
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Furthermore, at this point all the member loads can be eliminated as not of 

interest. 

This implies that the initial axial thrust and torque, Px°, M° must be constant 

and that the initial bending moment, M1)::, M° can at most be linear functions. 

Inserting Eq. (12) in the equations in Table 1, the equations can be 

written as 

Force Eqs.: 

Moment Equilibrium: 

Equation (13-b) can be combined with Eq. (13-f) eliminating shear term Py ; 

similarly Eq. (13-c) can be combined with Eq. (13-e) eliminating shear term 

ii z . For eliminating isy , the differentiation of Eq. (13-f) will subtract from Eq. 
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(13-b), and the same procedure will be used for eliminating fiz  in Eqs. (13-c, 

13-e). Then: 

To complete the formulation, four constitutive equations are appended: 

Here the k 's are usual spring constants from considerations of strength of 

materials. 

The six equations (13-a to 13-f) then reduce to the following four 

equations. 

Some general comments on this system of equations can now be made: 

- The last three equations are coupled and must be solved 

simultaneously; then the first equation can be integrated to complete 

the solution. 

- The last two equations are fourth order in the beam displacements 



(like the linear elastic beam equations); the other two equations are 

second order. 

- The equations themselves are linear in x since the initial moment 

diagrams My°, M° may be linear in x. (Timoshenko (2) remarks that 

equations of this type may be solved using Bessel functions.) 

For computing the member stiffness matrix, this system of equations must be 

solved six times. 

12 



CHAPTER 4 

FINITE DIFFERENCE SOLUTIONS 

In general, there is not an analytical solution for Eqs. (16). This set of 

equations can be solved using the method of finite difference. As mentioned 

before, the last three equations (Eqs. (16-b, c, d)) are coupled and will be 

solved simultaneously. In this approach each beam is divided into a number of 

segments. The Eq. (16-c) and Eq. (16-d) are fourth order in displacement, then 

two fictitious points at each end are required. For any typical point "n", the 

displacements and their differentiations can be written as: 

13 
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Using Eq. (17) to Eq. (18), the set of Eq. (16) can be written as: 

In the computer program which is described in the next chapter, each 

beam is divided into 20 segments. With two fictitious points at each end, there 

exist 25 nodes on each beam. Then 75 simultaneous equations are to be solved 

on a PC for every case. 



CHAPTER 5 

A COMPUTER PROGRAM FOR THREE-DIMENSIONAL 
BEAM COLUMNS ANALYSIS 

This chapter lists the code of FORTRAN subroutine which will compute 

the 6 x 6 member stiffness matrix for a three-dimensional beam given the 

member force matrix and the appropriate stiffness coefficients. 

This subroutine divides each beam into 20 segments and then uses the 

method of central differences to compute the displacements at the resulting 

nodes. As described in Chapter 2, the displacements ex, by  and 8z  are 

coupled, then the set of Eq. (20) is first solved to obtain ex , by  and oz  at each 

node; then Eq. (16-a) is solved for 8x . In order to generate 6 x 6 member 

stiffness matrix, it is necessary to solve Eq. (20) six times. 

The input to the subroutine STIFF is the member force matrix and some 

stiffness parameter: 

ALEN - member length 

AKL - axial stiffness 

AKT - torsional stiffness 

AKY - y-axis bending stiffness 

AKZ - z-axis bending stiffness 

FORCE (1) - axial load 

FORCE (2) - torsion 

15 
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FORCE (3) - y-axis bending moment at +end of the member 

FORCE (4) - z-axis bending moment at +end of the member 

FORCE (5) - y-axis bending moment at -end of the member 

FORCE (6) - z-axis bending moment at -end of the member 

The subroutines return the 6 x 6 member stiffness matrix AK (I,J). 

The first part of the subroutine solves for O., 8, and 8), at each node 

point using Eq. (20) in the form of a linear system AX=b. The linear equation 

solver SIMQ form the IBM Scientific Subroutine Package (7) is being used for 

solving the above linear system. The order of the variables in the matrix is that 

just given, i.e., 

with 20 spaces (21 nodes) and 2 fictitious nodes at each end for boundary 

conditions, the system matrix A is 75 by 75. This implies an unused 

component Oxi  at each beam and since the torsional response is second order 
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while the bending response is fourth order. 

When generating the system matrix A, each term in the differential Eq. 

(16) puts corresponding terms in A in the program that is done by the PUT 

subroutines. For example, in order to introduce a unit torsional discontinuity, 

it is necessary to specify that: 

In terms of FORTRAN code, these conditions are given as 

The other boundary conditions follow in a similar fashion. 

After the node displacements are computed by the subroutine SIMQ, the 

subroutines TORQ, BEMDY, BEMDZ are called to find the torque and the 

bending moments. 

The axial response (Eq. (16-a)) is determined in a similar fashion. 

Finally, reactions are computed as elements of the member stiffness matrix. 

This, of course, requires corrections since the perturbation method gives results 

in the deformed coordinate system while the structural analysis program 



requires components in the member coordinate system. 

Appendix B represents a listing of FORTRAN code and output of two 

special cases. 
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CHAPTER 6 

ANALYTICAL SOLUTIONS FOR SPECIAL CASES 

In this chapter, some special cases will be solved using Eqs. (16). 

Two-dimensional beam-columns: In a classical example of a beam-column, a 

two-dimensional simply supported beam is subjected to an axial compression, 

Figure 2 Simply supported beam subjected to axial compression. 

In this case, P° = -P and 

Then the rest of Eq. (16) can be written as: 

This equation (Eq. (21)) is uncoupled and can be solved easily. 

Three-dimensional beam-columns: In three-dimensional beam-column 

problems, when only an axial load, P°, is present, Eq. (16) is again uncoupled. 

In this case, the y and z axis bending is controlled by the beam-column 
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equations: 

This is the case which is most commonly used in the nonlinear analysis of 

three-dimensional frames. 

Lateral buckling: If a constant initial moment, MI) , is added to the 

previous case, the member twist (ex) becomes coupled with 8z  while 8x  and 

8 remain uncoupled: 

The last equation is particularly interesting and can be thought of as a beam- 
02 

column
1,02 

column equation in which the constant ( --) is replaced by (P.o  - —)/ky. In 
kT 

these terms Gere's beam-column charts (1) can also be used in this case. 

A more complex case: If an initial constant moment (M°) is added to 

the problem, fig. (4), ex, 8y  and 8, become fully coupled and it is no longer 

possible to invoke charts for well-known solutions. In this case the equations 

take on the form: 

Figure 3 Three-dimensional beam-column subjected to biaxial bending. 
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The last three equations are coupled and must be solved simultaneously. These 

equations can be written as: 

For nontrivial solutions the determinant of Eq. (25) must be zero, then: 

Eq. (26) can be factorized as: 

If Eq. (27-b) is quadratic with respect to D, then the solution contains 30 

coefficients which must be determined, an unlikely choice to be carried out by 

hand. Appendix A discusses this case in more detail and compares the results 

with the numerical solution using the method of finite difference. 

The effect of axial torsion: The discussion of special cases has been 

motivated by practical applications and available solutions and therefore has 



22 

been dominated by the effect of axial load. An alternative would have been to 

start with the case of initial constant torsion, M. In this case the set of Eq. 

(16) takes on the form: 

The last two equations are coupled. These two equations will be solved 

simultaneously, and it is possible to solve the system of equations by hand. 

This case will be discussed in more detail in appendix A. 



CHAPTER 7 

CONCLUSION 

This thesis has explored several special cases of three-dimensional beam-

columns and suggests that the method of finite differences can be used when a 

solution of the general case is required. While not elegant, the method of finite 

differences has the added advantage of not being concerned with the signs of 

coefficients in the equations and thus including both stress hardening and 

softening in a single algorithm. 

The real driving force here is the need to construct a member stiffness 

matrix for the nonlinear analysis of three-dimensional frames. At the moment, 

many of the available computer programs and even theoretical discussions such 

as See and McConnel (8) use two-dimensional beam-column theory to construct 

such a member stiffness matrix. Clearly such an approach leaves out the effect 

of lateral buckling. As pointed out here, it also leaves out other possible three-

dimensional couplings of initial stress effects. 

The finite difference approach has the added advantage of being quite 

general and including all initial stress interactions. As the results show, the 

maximum error difference with analytical solutions is 3.4% for solved cases. 
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ANALYTICAL SOLUTION 

This appendix details the solution of the special case in which the initial 

and 8z  
state of stress is one of pure torsion. In this case the displacement 8y  

are coupled: 

Here D represents the derivative d/dx. If the determinant of the system is set 

to be zero, it follows that 

and that 8, and 8,, have the form 

with k2  = Affl(kk) . Coupling of their coefficients implies that 

and that 

Given the eight boundary conditions (flexure about two axes) of this system, the 

A's and B's can be computed explicitly by hand. 

One special case of interest is the case in which a unit y-axis rotation is 

applies at one end while keeping the other boundary conditions homogeneous. 

(This case produces the moment distribution member stiffness.) For this case, 

the eight boundary conditions are as follows: 
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The ten coefficients can be determined using these eight equations and Eq. (33). 

As a numerical example, let / =100, kr=10, ky =kz =100 and Mx  =0.5, then 

the values of A's and B's are as follows: 

Then 

This problem was also solved numerically by the computer using the 

method of finite differences. The results are compared in Table 2. 
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Table 2 Results I 

X 

8Y oz  

Analytical Numerical Analytical Numerical 

0 0.00 0.00 0.00 0.00 

20 0.31826 0.328771 3.17865 3.21370 

40 0.718169 0.732784 9.55834 9.60447 

60 0.719593 0.732786 14.35800 14.39558 

80 0.32311 0.328772 12.77260 12.78634 

100 0.00 0.00 0.00 0.00 

As indicated in Table 2, the maximum difference between analytical 

results and numerical results is 3.19%. 
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The next case is a beam subjected to an initial state of constant axial load 

and constant biaxial bending, M° and M. The first of Eq. (24) is trivial. The 

remaining equations can be written in operator form as 

The determinantal equation for this system is 

which is basically quadratic in D2  and thus should be regarded to be 
accessible. 

 

The solution of this system generally has the form 

where k1  and k2  are the root of the quadratic described above. Coupling of 

these coefficients requires that the polynomial terms of order quadratic and 

higher must vanish and also provides eight relationships between the 

coefficients of the trigonometric terms. The ten boundary conditions then 
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complete the problem statement. 

For one particular case where 1 =100, kr  =10, kz  =ky =100, P° =-0.03 

and M° =My°  =0.5, the solution of this system has been completed. In this case 

there was at most a 3.4% difference with a numerical solution generated using 

the finite difference method (Table 2). 



Table 3 Results II 

x 

ox 8z 8y 

Analytical Numerical Analytical Numerical Analytical Numerical 

0 0.00 0.00 0.00 0.00 0.00 0.00 

20 0.19529 0.19696 3.66379 3.69509 0.24090 0.24423 

40 0.58708 0.58956 11.01302 11.05138 0.72620 0.73984 

60 0.85278 0.85502 16.15949 16.18721 0.89259 0.91327 

80 0.70911 0.71022 13.71975 13.72970 0.45764 0.47483 

100 0.00 0.00 0.00 0.00 0.00 0.0 
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C Dummy main program to access subroutine 
DIMENSION FORCE(6),AK(6,6) 
OPEN(UNIT=6,FILE="BMGEN.OUT") 
READ(5,1) AKL,AKT,AKY,AKZ,ALEN,FORCE 
WRITE (6, 1) AKL, AKT, AKY, AKY, ALEN, FORCE 

1 FORMAT(5F5.0/6F5.2) 
CALL STIFF (ALEN, AKL, AKT, AKY, AKZ, FORCE, AK) 
WRITE(6,75)((AK(I,J),J=1,6),I=1,6) 

75 FORMAT(6E18.8) 
STOP 
END 

C 
SUBROUTINE STIFF(ALEN,AKL,AKT,AKY,AKZ,FORCE,AK) 

C GENERALIZED MEMBER STIFFNESS 
COMMON A,B,C,A1 
COMMON /PROP/ H 
DIMENSION A(75,75),B(75),C(25),A1(25,25),FORCE(6) 
1 ,AK(6,6),DISC(6) 
AMY0(X)=PZO *X-FORCE(5) 
AMZO(X)=-PY0 *X-FORCE(6) 
PY0=-(FORCE(4)+FORCE(6))/ALEN 
PZ0=(FORCE(3)+FORCE(5))/ALEN 
P=FORCE(1) 
TOR=FORCE(2) 
NSPACES=24 
N=NSPACES+1 
M=3*N 
N2=N-2 
H=ALEN/FLOAT(NSPACES-4) 
DO 22 I=1,6 

22 DISC(I)=0. 

Solve for bending and torsion 
DO 999 ICOL=1,6 
DISC(ICOL)=1. 
DO 1 I=1,m 
B(I)=0. 
DO 1 J=1,M 

1 A(I,J)=0. 
DO 2 I=3,N2 
X= (I-3) 
X=X*H 
CALL PUT4(I,3,3,AKZ) 
CALL PUT1(I,3,1,2.*PZO) 
CALL PUT3(I,3,2,TOR) 
CALL PUT2(I,3,1,AMY0(X)) 
CALL PUT2(I,3,3,-P) 
CALL PUT4(I,2,2,-AKY) 
CALL PUT1(I,2,1,2.*PY0) 
CALL PUT3(I,2,3,TOR) 
CALL PUT2(I,2,1,-AMZO(X)) 
CALL PUT2(I,2,2,P) 
CALL PUT2(I,1,1,AKT) 
CALL PUT1(I,1,3,-PZ0) 
CALL PUT1(I,1,2,PY0) 
CALL PUT2(I,1,3,-AMY0(X)) 
CALL PUT2(I,1,2,-AMZO(X)) 
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CALL PUT1 (I, 1,3, PZ0) 
CALL PUT1 (I, 1,2, -PY0) 

2 CONTINUE 
C BC FOR THX 

A(1, 1)=1. 
A(2,M-2)=1. 
A(3, 7)=1. 
A(4,M-8)=1. 
B (4) =DISC (2) 

C 
C BC FOR DZ 

A(5, 8)=1. 
A(6,M-7)=1. 
A(M, 11)=.5/H 
A (M, 5) —.5/H 
B (M) --DISC (5) 
A(M-1,M-4)=.5/H 
A(M-1,M-10)=-.5/H 
B (M-1) —DISC (3) 

C 
C BC FOR DY 

A (M-2,M-6) =1 . 
A (M-3,9 ) =1 . 
A (M-4,12 ) = .5/H 
A(M-4,6 )=-.5/H 
B (M-4) =DISC (6) 
A(M-5,M-3)=.5/H 
a (m-5,M-9) — . 5/H 
B (M-5) =DISC (4) 
CALL SIMQ (A, B, M, KS) 
CALL TORQ (AKT, 3,1, ATORM) 
CALL TORQ (AKT, N-2, 1 , ATORP) 
CALL BENDY (AKY, 3,2, AMYM1) 
AMYM1=-AMYM1 
CALL BENDZ (AKZ, 3,3, AMZM1) 
AMZM1=-AMZM1 
CALL BENDY (AKY, N-2,2, AMYP 1 ) 
CALL BENDZ (AKZ, N-2,3, AMZP 1) 
WRITE (6,66) (I, (B (3*I-3+J) , J=1, 3) , I=1,N) 

66 FORMAT (15,3E20.8) 
C 
C Solve for axial compression 

WRITE (6, 67) ATORM, ATORP, AMYM1, ANZM1, AMYP 1, AMZP 1 
67 FORMAT (6E20.8) 

DO 11 I=1,N 
C ( I) =0 . 
DO 11 J=1, N 

11 Al (I, J) =0 . 
DO 4 1=3, N2 
CALL PUT22 (I, 1,1, AKL) 
CALL GET2 (I, 3, VAL) 
C (I) =C (I) +VAL*PY0 
CALL GET2 (I, 2, VAL) 

4 C (I) =C (I) +VAL*PZO 
Al (1,1)=1. 
Al (N,N) =1 . 
Al (2,3)=1 . 



Al(N-1,N-2)=1. 
c(n-1)=DISC(1) 
CALL SIMQ(A1,C,N,KS) 
WRITE(6,69) (I,C(I),I=1,N) 

69 FORMAT(I5,E20.8) 
CALL THR(AKL,3,PM) 
CALL THR(AKL,N-2, PP) 
WRITE(6,68)PM,PP 

68 FORMAT(2E20.8) 
C 
C Components for stiffness matrix 
C Corrections for deformed geometry 

IF(ICOL.NE.2) GO TO 555 
AMYP1= AMYP1-FORCE(4) 
AMZP1= AMZP1+Force(3) 

555 CONTINUE 
IF(ICOL.NE.3) GO TO 556 
AMZP1=-FORCE(2)+AMZP1 
PP=PM 
ATORP=ATORM 

556 CONTINUE 
IF(ICOL.NE.4) GO TO 557 
AMYP1=AMYP1+FORCE(2) 
PP=PM 
ATORP=ATORM 

557 CONTINUE 
IF(ICOL.NE.5) GO TO 558 
AMZM1=AMZMl+FORCE(2) 

558 CONTINUE 
IF(ICOL.NE.6) GO TO 559 
AMYM1=AMYM1-FORCE(2) 

559 CONTINUE 
AK(1,ICOL)=PP 
AK(2,ICOL)=ATORP 
AK(3,ICOL)= AMYP1 
AK(4,ICOL)=AMZP1 
AK(5,ICOL)= AMYM1 
AK(6,ICOL)= AMZM1 
DISC(ICOL)=0. 

999 CONTINUE 
RETURN 
END 

SUBROUTINE PUT1(IROW,IEQ,IVAR,COEFF) 
COMMON A 
COMMON /PRO /H 
DIMENSION A(75,75) 
I=3*IROW-3+IEQ 
J=3*IROW-3+IVAR 
A(I,J+3)=A(I,J+3)+COEFF*.5/H 
A(I, J-3)=A(I, J-3)-COEFF*.5/H 
RETURN 
END 

SUBROUTINE PUT2(IROW,IEQ,IVAR,COEFF) 
COMMON A 
COMMON /PROP/ H 
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DIMENSION A(75,75) 
I=3*IROW-3+IEQ 
J=3*IROW-3+IVAR 
A(I, J+3)=A(I,J+3)+COEFF/H**2 
A(I,J-3)=A(I,J-3)+COEFF/H**2 
A(I,J )=A(I,J )-COEFF*2./H**2 
RETURN 
END 

SUBROUTINE PUT22(IROW,IEQ,IVAR,COEFF) 
COMMON A, B, C, Al 
COMMON /PROP/ H 
DIMENSION A(75,75),B(75),C(25),Al(25,25) 
I= IROW-l+IEQ 
J= IROW-l+IVAR 
Al(I,J+1)=A1(I,J+1)+COEFF/H**2 
Al(I,J-1)=A1(I,J-1)+COEFF/H**2 
A1(I,J )=A1(I,J )-COEFF*2./H**2 
RETURN 
END 

SUBROUTINE PUT3(IROW,IEQ,IVAR,COEFF) 
COMMON A 
COMMON /PROP/ H 
DIMENSION A(75,75) 
I=3*IROW-3+IEQ 
J=3*IROW-3+IVAR 
A(I,J+3)=A(I,J+3)-COEFF/H**3 
A(I,J-3)=A(I,J-3)+COEFF/H**3 
A(I,J+6)=A(I,J+6)+COEFF*.5/H**3 
A(I,J-6)=A(I,J-6)-COEFF*.5/H**3 
RETURN 
END 

SUBROUTINE PUT4(IROW,IEQ,IVAR,COEFF) 
COMMON A 
COMMON /PROP/ H 
DIMENSION A(75,75) 
I=3*IROW-3+IEQ 
J=3*IROW-3+IVAR 
A(I,J+3)=A(I,J+3)-COEFF*4./H**4 
A(I,J-3)=A(I,J-3)-COEFF*4./H**4 
A(I,J+6)=A(I,J+6)+COEFF /H**4 
A(I,J-6)=A(I,J-6)+COEFF /H**4 
A(I,J )=A(I,J )+COEFF*6./H**4 
RETURN 
END 

SUBROUTINE TORQ(AKT,NODE,IVAR,TOR) 
COMMON /PROP/H 
COMMON A,B 
DIMENSION A(75,75),B(75) 
I=3*NODE-3+IVAR 
TOR=AKT*(B(I+3)-B(I-3))*.5/H 
RETURN 
END 
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SUBROUTINE BENDY(AKY,NODE,IVAR,BEND) 
COMMON /PROP/H 
COMMON A,B 
DIMENSION A(75,75),B(75) 
I=3*NODE-3+IVAR 
BEND=-AKY*(B(I+3)+B(I-3)-2.*B(I))/H**2 
RETURN 
END 

SUBROUTINE BENDZ(AKZ,NODE,IVAR,BEND) 
COMMON /PROP/H 
COMMON A,B 
DIMENSION A(75,75),B(75) 
I=3*NODE-3+IVAR 
BEND=AKZ*(B(I+3)+B(I-3)-2.*B(I))/H**2 
RETURN 
END 

SUBROUTINE GET2(NODE,IVAR,VAL ) 
COMMON /PROP/H 
COMMON A,B 
DIMENSION A(75,75),B(75) 
I=3*NODE-3+IVAR 
VAL = (B(I+3)+B(I-3)-2.*B(I))/H**2 
RETURN 
END 

C 
SUBROUTINE THR(AKL,NODE,P) 
COMMON /PROP/H 
COMMON A,B,C 
DIMENSION A(75,75),B(75),C(25) 
I=NODE 
P =AKL*(C(I+1)-C(I-1))*.5/H 
RETURN 
END 

C 

SUBROUTINE SIMQ(A,B,N,KS) 
DIMENSION A(1),B(1) 

C 
C FORWARD SOLUTION 
C 

TOL=0.0 
KS=0 
JJ=-N 
DO 65 J=1,N 
JY=J+1 
JJ=JJ+N+1 
BIGA=0 
IT=JJ-J 
DO 30 I=Jf N 

C 
C SEARCH FOR MAXIMUM COEFFICIENT IN COLUMN 
C 

IJ=IT+I 
IF(ABS(BIGA)-ABS(A(IJ))) 20,30,30 

20 BIGA=A(IJ) 
IMAX=I 

30 CONTINUE 
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C TEST FOR PIVOT LESS THAN TOLERANCE (SINGULAR MATRIX) 
C 

IF(ABS(BIGA)-TOL) 35,35,40 
35 KS=1 

RETURN 
C 
C INTERCHANGE ROWS IF NECESSARY 
C 
40 I1=J+N*(J-2) 

IT=IMAX-J 
DO 50 K=J,N 
I1=I1+N 
I2=Il+IT 
SAVE=A(I1) 
A(I1)=A(I2) 
A(I2)=SAVE 

C 
C DIVIDE EQUATION BY LEADING COEFFICIENT 
C 
50 A(I1)=A(I1)/BIGA 

SAVE=B(IMAX) 
B(IMAX)=B(J) 
B(J)=SAVE/RIGA 

C 
C ELIMINATE NEXT VARIABLE 
C 

IF(J-N) 55,70,55 
55 IQS=N*(J-1) 
DO 65 IX=JY,N 

IXJ=IQS+IX 
IT=J-IX 
DO 60 JX=JY,N 
IXJX=N*(JX-1)+IX 
JJX=IXJX+IT 

60 A(IXJX)=A(IXJX)-(A(IXJ)*A(JJX)) 
65 B(IX)=B(IX)-(B(J)*A(IXJ)) 

C 
C BACK SOLUTION 
C 

70 NY=N-1 
IT=N*N 
DO 80 J=1,NY 
IA=IT-J 
IB=N-J 
IC=N 
DO 80 K=1,J 
B(IB)=B(IB)-A(IA) *B(IC) 
IA=IA-N 

80 IC=IC-1 
RETURN 
END 
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L Kt Ka Ky Kz 

100. 10. 100. 100. 100. 

F1 F2 F3 F4 F5 F6 

.00 .50 .00 .00 .00 .00 

TETA(x) DALTA(z) DALTA(y) 

1 .00000E+00 .00000E+00 .00000E+00 
2 .00000E+00 .00000E+00 .00000E+00 
3 .00000E+00 .00000E+00 .00000E+00 
4 .00000E+00 .00000E+00 .00000E+00 
5 .00000E+00 .00000E+00 .00000E+00 
6 .00000E+00 .00000E+00 .00000E+00 
7 .00000E+00 .00000E+00 .00000E+00 
8 .00000E+00 .00000E+00 .00000E+00 
9 .00000E+00 .00000E+00 .00000E+00 
10 .00000E+00 .00000E+00 .00000E+00 
11 .00000E+00 .00000E+00 .00000E+00 
12 .00000E+00 .00000E+00 .00000E+00 
13 .00000E+00 .00000E+00 .00000E+00 
14 .00000E+00 .00000E+00 .00000E+00 
15 .00000E+00 .00000E+00 .00000E+00 
16 .00000E+00 .00000E+00 .00000E+00 
17 .00000E+00 .00000E+00 .00000E+00 
18 .00000E+00 .00000E+00 .00000E+00 
19 .00000E+00 .00000E+00 .00000E+00 
20 .00000E+00 .00000E+00 .00000E+00 
21 .00000E+00 .00000E+00 .00000E+00 
22 .00000E+00 .00000E+00 .00000E+00 
23 .00000E+00 .00000E+00 .00000E+00 
24 .00000E+00 .00000E+00 .00000E+00 
25 .00000E+00 .00000E+00 .00000E+00 

.00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 

1 .00000E+00 
2 -.50000E-01 
3 .14901E-07 
4 .50000E-01 
5 .10000E+00 
6 .15000E+00 
7 .20000E+00 
8 .25000E+00 
9 .30000E+00 
10 .35000E+00 
11 .40000E+00 
12 .45000E+00 
13 .50000E+00 
14 .55000E+00 
15 .60000E+00 
16 .65000E+00 
17 .70000E+00 
18 .75000E+00 
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19 .80000E+00 
20 .85000E+00 
21 .90000E+00 
22 .95000E+00 
23 .10000E+01 
24 .10500E+01 
25 .00000E+00 

.10000E+01 .10000E+01 

1 .00000E+00 .00000E+00 .00000E+00 
2 -.50000E-01 .00000E+00 .00000E+00 
3 .00000E+00 .00000E+00 .00000E+00 
4 .50000E-01 .00000E+00 .00000E+00 
5 .10000E+00 .00000E+00 .00000E+00 
6 .15000E+00 .00000E+00 .00000E+00 
7 .20000E+00 .00000E+00 .00000E+00 
8 .25000E+00 .00000E+00 .00000E+00 
9 .30000E+00 .00000E+00 .00000E+00 

10 .35000E+00 .00000E+00 .00000E+00 
11 .40000E+00 .00000E+00 .00000E+00 
12 .45000E+00 .00000E+00 .00000E+00 
13 .50000E+00 .00000E+00 .00000E+00 
14 .55000E+00 .00000E+00 .00000E+00 
15 .60000E+00 .00000E+00 .00000E+00 
16 .65000E+00 .00000E+00 .00000E+00 
17 .70000E+00 .00000E+00 .00000E+00 
18 .75000E+00 .00000E+00 .00000E+00 
19 .80000E+00 .00000E+00 .00000E+00 
20 .85000E+00 .00000E+00 .00000E+00 
21 .90000E+00 .00000E+00 .00000E+00 
22 .95000E+00 .00000E+00 .00000E+00 
23 .10000E+01 .00000E+00 .00000E+00 
24 .10500E+01 .00000E+00 .00000E+00 
25 .00000E+00 .00000E+00 .00000E+00 

.10000E+00 .10000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 

1 .00000E+00 
2 .00000E+00 
3 .00000E+00 
4 .00000E+00 
5 .00000E+00 
6 .00000E+00 
7 .00000E+00 
8 .00000E+00 
9 .00000E+00 

10 .00000E+00 
11 .00000E+00 
12 .00000E+00 
13 .00000E+00 
14 .00000E+00 
15 .00000E+00 
16 .00000E+00 



17 .00000E+00 
18 .00000E+00 
19 .00000E+00 
20 .00000E+00 
21 .00000E+00 
22 .00000E+00 
23 .00000E+00 
24 .00000E+00 
25 .00000E+00 

.00000E+00 .00000E+00 

1 .00000E+00 .10589E+01 .14356E+00 
2 .00000E+00 .24660E+00 .31018E-01 
3 .00000E+00 .00000E+00 .00000E+00 
4 .00000E+00 .24660E+00 .31018E-01 
5 .00000E+00 .91342E+00 .10640E+00 
6 .00000E+00 .19271E+01 .21032E+00 
7 .00000E+00 .32137E+01 .32877E+00 
8 .00000E+00 .46993E+01 .44960E+00 
9 .00000E+00 .63094E+01 .56253E+00 

10 .00000E+00 .79694E+01 .65911E+00 
11 .00000E+00 .96045E+01 .73278E+00 
12 .00000E+00 .11140E+02 .77887E+00 
13 .00000E+00 .12500E+02 .79454E+00 
14 .00000E+00 .13610E+02 .77887E+00 
15 .00000E+00 .14396E+02 .73279E+00 
16 .00000E+00 .14781E+02 .65911E+00 
17 .00000E+00 .14691E+02 .56253E+00 
18 .00000E+00 .14051E+02 .44961E+00 
19 .00000E+00 .12786E+02 .32877E+00 
20 .00000E+00 .10823E+02 .21032E+00 
21 .00000E+00 .80866E+01 .10641E+00 
22 .00000E+00 .45034E+01 .31018E-01 
23 .00000E+00 .00000E+00 .00000E+00 
24 .00000E+00 -.54966E+01 .31018E-01 
25 .00000E+00 -.12059E+02 .14356E+00 

.00000E+00 .00000E+00 .19728E+01 -.24815E+00 .39728E+01 .24815E+00 

1 .00000E+00 
2 .00000E+00 
3 .00000E+00 
4 .00000E+00 
5 .00000E+00 
6 .00000E+00 
7 .00000E+00 
8 .00000E+00 
9 .00000E+00 

10 .00000E+00 
11 .00000E+00 
12 .00000E+00 
13 .00000E+00 
14 .00000E+00 
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15 .00000E+00 
16 .00000E+00 
17 .00000E+00 
18 .00000E+00 
19 .00000E+00 
20 .00000E+00 
21 .00000E+00 
22 .00000E+00 
23 .00000E+00 
24 .00000E+00 
25 .00000E+00 

.00000E+00 .00000E+00 

1 .00000E+00 .14356E+00 10590E+01 
2 .00000E+00 .31019E-01 24662E+00 
3 .00000E+00 .00000E+00 • 00000E+00 
4 .00000E+00 .31019E-01 24662E+00 
5 .00000E+00 .10641E+00 91349E+00 
6 .00000E+00 .21033E+00 19272E+01 
7 .00000E+00 .32878E+00 32139E+01 
8 .00000E+00 .44961E+00 46996E+01 
9 .00000E+00 .56253E+00 63098E+01 

10 .00000E+00 .65911E+00 79698E+01 
11 .00000E+00 .73278E+00 96050E+01 
12 .00000E+00 .77886E+00 11140E+02 
13 .00000E+00 .79453E+00 12501E+02 
14 .00000E+00 .77885E+00 13611E+02 
15 .00000E+00 .73277E+00 14396E+02 
16 .00000E+00 .65909E+00 14781E+02 
17 .00000E+00 .56251E+00 14691E+02 
18 .00000E+00 .44959E+00 14051E+02 
19 .00000E+00 .32876E+00 12787E+02 
20 .00000E+00 .21031E+00 • 10823E+02 
21 .00000E+00 .10640E+00 80866E+01 
22 .00000E+00 .31017E-01 45034E+01 
23 .00000E+00 .00000E+00 • 00000E+00 
24 .00000E+00 .31017E-01 • 54966E+01 
25 .00000E+00 .14355E+00 • 12059E+02 

.00000E+00 .00000E+00 .24815E+00 .19730E+01 -.24813E+00 .39727E+01 

1 .00000E+00 
2 .00000E+00 
3 .00000E+00 
4 .00000E+00 
5 .00000E+00 
6 .00000E+00 
7 .00000E+00 
8 .00000E+00 
9 .00000E+00 

10 .00000E+00 
11 .00000E+00 
12 .00000E+00 
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13 .00000E+00 
14 .00000E+00 
15 .00000E+00 
16 .00000E+00 
17 .00000E+00 
18 .00000E+00 
19 .00000E+00 
20 .00000E+00 
21 .00000E+00 
22 .00000E+00 
23 .00000E+00 
24 .00000E+00 
25 .00000E+00 

.00000E+00 .00000E+00 

1 .00000E+00 .12059E+02 .14356E+00 
2 .00000E+00 .54966E+01 .31019E-01 
3 .00000E+00 .00000E+00 .00000E+00 
4 .00000E+00 -.45034E+01 .31019E-01 
5 .00000E+00 -.80866E+01 .10641E+00 
6 .00000E+00 -.10823E+02 .21033E+00 
7 .00000E+00 -.12786E+02 .32878E+00 
8 .00000E+00 -.14051E+02 .44961E+00 
9 .00000E+00 -.14691E+02 .56254E+00 

10 .00000E+00 -.14781E+02 .65912E+00 
11 .00000E+00 -.14396E+02 .73280E+00 
12 .00000E+00 -.13610E+02 .77888E+00 
13 .00000E+00 -.12500E+02 .79456E+00 
14 .00000E+00 -.11140E+02 .77888E+00 
15 .00000E+00 -.96045E+01 .73280E+00 
16 .00000E+00 -.79694E+01 .65912E+00 
17 .00000E+00 -.63094E+01 .56254E+00 
18 .00000E+00 -.46993E+01 .44961E+00 
19 .00000E+00 -.32137E+01 .32878E+00 
20 .00000E+00 -.19271E+01 .21033E+00 
21 .00000E+00 -.91343E+00 .10641E+00 
22 .00000E+00 -.24660E+00 .31019E-01 
23 .00000E+00 .00000E+00 .00000E+00 
24 .00000E+00 -.24660E+00 .31019E-01 
25 .00000E+00 -.10589E+01 .14356E+00 

.00000E+00 .00000E+00 .39728E+01 -.24815E+00 .19728E+01 .24815E+00 

1 .00000E+00 
2 .00000E+00 
3 .00000E+00 
4 .00000E+00 
5 .00000E+00 
6 .00000E+00 
7 .00000E+00 
8 .00000E+00 
9 .00000E+00 

10 .00000E+00 
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11 .00000E+00 
12 .00000E+00 
13 .00000E+00 
14 .00000E+00 
15 .00000E+00 
16 .00000E+00 
17 .00000E+00 
18 .00000E+00 
19 .00000E+00 
20 .00000E+00 
21 .00000E+00 
22 .00000E+00 
23 .00000E+00 
24 .00000E+00 
25 .00000E+00 

.00000E+00 .00000E+00 

1 .00000E+00 .14356E+00 -.12059E+02 
2 .00000E+00 .31017E-01 -.54966E+01 
3 .00000E+00 .00000E+00 .00000E+00 
4 .00000E+00 .31017E-01 .45034E+01 
5 .00000E+00 .10640E+00 .80866E+01 
6 .00000E+00 .21032E+00 .10823E+02 
7 .00000E+00 .32876E+00 .12786E+02 
8 .00000E+00 .44959E+00 .14051E+02 
9 .00000E+00 .56251E+00 .14691E+02 

10 .00000E+00 .65909E+00 .14781E+02 
11 .00000E+00 .73277E+00 .14396E+02 
12 .00000E+00 .77885E+00 .13611E+02 
13 .00000E+00 .79453E+00 .12500E+02 
14 .00000E+00 .77886E+00 .11140E+02 
15 .00000E+00 .73278E+00 .96047E+01 
16 .00000E+00 .65910E+00 .79696E+01 
17 .00000E+00 .56252E+00 .63096E+01 
18 .00000E+00 .44960E+00 .46994E+01 
19 .00000E+00 .32877E+00 .32138E+01 
20 .00000E+00 .21032E+00 .19271E+01 
21 .00000E+00 .10641E+00 .91346E+00 
22 .00000E+00 .31019E-01 .24661E+00 
23 .00000E+00 .00000E+00 .00000E+00 
24 .00000E+00 .31019E-01 .24661E+00 
25 .00000E+00 .14356E+00 .10590E+01 

.00000E+00 .00000E+00 .24814E+00 .39728E+01 -.24815E+00 .19729E+01 

1 .00000E+00 
2 .00000E+00 
3 .00000E+00 
4 .00000E+00 
5 .00000E+00 
6 .00000E+00 
7 .00000E+00 
8 .00000E+00 
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9 .00000E+00 
10 .00000E+00 
11 .00000E+00 
12 .00000E+00 
13 .00000E+00 
14 .00000E+00 
15 .00000E+00 
16 .00000E+00 
17 .00000E+00 
18 .00000E+00 
19 .00000E+00 
20 .00000E+00 
21 .00000E+00 
22 .00000E+00 
23 .00000E+00 
24 .00000E+00 
25 .00000E+00 

.00000E+00 .00000E+00 

MEMBER STIFFNESS MATRIX 

.10000E+01 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 

.00000E+00 .10000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 

.00000E+00 .00000E+00 .39728E+01 .25187E+00 .19728E+01 -.24815E+00 

.00000E+00 .00000E+00 -.25185E+00 .39727E+01 .24815E+00 .19729E+01 

.00000E+00 .00000E+00 .19728E+01 .24815E+00 .39728E+01 -.25186E+00 

.00000E+00 .00000E+00 -.24815E+00 .19730E+01 .25185E+00 .39728E+01 
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