

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT
Modeling and Performance

of Token Bus LAN with Petri Nets

by
Zhenggang Pan

A token bus local area network (LAN) is analyzed by Generalized Stochastic Petri

Nets (GSPN). The GSPN models of both a single station and LAN for four types

of service schemes are obtained and their liveness property is proved. The network

performance parameters comprise throughput and delay. The performance analysis

for both symmetric and asymmetric single-service systems is conducted for varying

load. In order to analyze a token bus LAN with a large number of stations, an

approximation method is developed to resolve the .state space explosion problem. A

token bus LAN with twenty-one stations is used to show the approximation method.

The contributions of this thesis are 1) modeling token bus LAN using GSPN,

2) performance evaluation of five-station token bus with symmetric and asymmetric

service cases, and 3) approximate performance evaluation of a token bus LAN with

a large number of stations.

MODELING AND PERFORMANCE
OF TOKEN BUS LAN WITH PETRI NETS

by
Zhenggang Pan

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science
Department of Electrical and Computer Engineering

May 1992

APPROVAL PAGE

Modeling and Performance
of Token Bus LAN with Petri Nets

by
Zhenggang Pan

Dr. MengChu Zhou, Thesis Advisor
Assistant Professor
Department of Electrical and Computer Engineering, NJIT

Dr. Daniel Chao, Committee Member
Assistant Professor
Department of Computer and Information Science, NJIT

Dr. Anthony Robbi, Committee Member
Associate Professor
Department of Electrical and Computer Engineering, NJIT

BIOGRAPHICAL SKETCH

Author: Zhenggang Pan

Degree: Master of Science in Electrical Engineering

Date: May, 1992

Undergraduate and Graduate Education:

• Master of Science in Electrical Engineering, New Jersey Institute of Technology,
Newark, NJ, 1992

• Bachelor of Science in Electrical Engineering, Nanjing Institute of Posts and
Telecommunications, Nanjing, People's Republic of China, 1982

Major: Electrical Engineering

iv

This thesis is dedicated to

my mother

v

ACKNOWLEDGMENT

I wish to express my sincere gratitude to my thesis advisor Dr. MengChu Zhou for

his ingenious guidance and encouragement.

Special thanks to Dr. Daniel Chao and Dr. Anthony Robbi for serving as members

of the committee.

I would like to thank my wife for her love and support.

I also wish to thank my relatives, because of whom I was able to study in the

United States.

And finally, a thank you to my schoolmate Mr. J. M. Ma for his help.

vi

TABLE OF CONTENTS

Page

1 INTRODUCTION 1

2 PETRI NETS IN NETWORK MODELING AND ANALYSIS . 7

2.1 Generalized Stochastic Petri Nets 7

2.1.1 GSPN Definition and Properties 7

2.1.2 An Example of GSPN 9

2.2 Review of Petri Nets in Communications 12

3 TOKEN BUS LOCAL AREA NETWORK 14

3.1 Token Bus Principle 14

3.2 Protocol Description 16

3.2.1 MAC Sublayer Structure 16

3.2.2 Priority Mechanisms 19

3.2.3 Frame Format 19

3.3 Service Types 22

4 GSPN MODELING OF TOKEN BUS LAN 23

4.1 Modeling Method 23

4.2 Model Assumptions 23

4.3 GSPN Model Design 24

4.3.1 Modeling a Single Station 24

4.3.2 Modeling LAN 27

vii

5 PERFORMANCE ANALYSIS 34

5.1 Performance Variables 34

5.2 Experiment Parameters 35

5.3 Overview of Experiments 37

5.4 Results and Analysis 39

5.4.1 Throughput vs Offered Load 39

5.4.2 Delay vs Offered Load 44

6 APPROXIMATION METHODS 47

6.1 Presentation of the Problem 47

6.2 Reduction Method of GSPN 47

6.2.1 Reduction Definitions 49

6.2.2 Subnet Selection 49

6.2.3 Equivalent Net Construction 50

6.3 Procedure 50

6.4 Application Illustration 51

7 CONCLUSION AND FUTURE RESEARCH 58

APPENDIX 60

BIBLIOGRAPHY 80

viii

LIST OF TABLES

Table Page

1 Data for firing rates 39

2 State space vs number of stations and buffer size 48

ix

LIST OF FIGURES

Figure Page

1 OSI reference model for a communication system 3

2 IEEE 802 sublayer structure 4

3 2.1 Single-station GSPN model for limited service 10

4 A Token Bus LAN 15

5 Functional configuration of the MAC sublayer 18

6 IEEE 802.4 frame format 21

7 Single-station GSPN model for single service 25

8 Single-station GSPN model for exhaustive service 26

9 Single-station GSPN model for gated service 27

10 Single-station GSPN model for limited service 28

11 GSPN model for single-service (symmetric) token bus LAN 29

12 GSPN model for exhaustive-service token bus LAN 31

13 GSPN model for gated-service token bus LAN 32

14 GSPN model for limited-service token bus LAN 33

15 Reachability graph of single-service GSPN model with two stations 38

16 GSPN model for the asymmetric system 40

17 Throughput performance of the symmetric system 42

18 Throughput performance of the asymmetric system 43

19 Delay performance of the symmetric system 45

20 Delay performance of the asymmetric system 46

21 A p-t subset 50

/

x

22 Subnet of token bus LAN with twenty-one stations 53

23 Reduced GSPN model of 21-station token bus LAN 54

24 Throughput performance of the reduced model 55

25 Delay performance of the reduced model 56

xi

CHAPTER 1

INTRODUCTION

Over the past decade, complex and diverse computer communication networks have

been established. A computer communication network is a system of interconnected

computers and other devices capable of exchanging information. A generic network

component (i.e., computer or device) is refered to as a node or station. A station

belonging to a network is capable of communicating with any other station in the

same network. A local area network (LAN) is a computer communication network

within a small area, which is characterized by an interstation distance in the order of

magnitude of a few kilometers. Typically, a LAN is owned by a single organization

such as a hospital, a university, a manufacturing plant, or an office.

IEEE has produced several LAN standards collectively known as IEEE 802 which

include CSMA/CD, token bus, and token ring. These standards include the protocols

of the medium access control (MAC) sublayer based on ISO OSI (Open Systems

Interconnection) Reference Model as shown in Figure 1.1. This model is composed of

seven layers. The IEEE 802 standards only concern the lowest two layers (Data Link

layer and Physical layer). The structure of Data Link layer (layer 2) of OSI model is

shown in Figure 1.2. The MAC sublayer is located at the bottom of the Data Link

layer. The token bus standard is called IEEE standard 802.4 [1] published by IEEE

standards Committee in 1985. It has been widely implemented throughout industry,

including MAP (Manufacturing Automation Protocol) network architectures used in

the manufacturing industry. Actually, a MAP network is a broadband token bus LAN

[2].

The increasing computer communication networks pose challenging evaluation

problems due to their user requirements and complexity. Performance evaluation of

local area networks is an important topic, since it allows choices to be made in terms of

1

2

many factors affecting performance. It allows assessment of the different alternatives

available in local area network designs in order to optimize certain potential benefits,

while minimizing their associated costs. For example, a MAP network allows certain

options such as setting various timers and buffer size at the different layers of the OSI

reference model. Potential benefits (e.g., performance) include improved response

time, better serviceability, etc.

Network performance models usually belong to two major categories: analytical

and simulation.

Analytical methods are based on mathematical models that characterize the sys-

tem under study. The models are usually queueing models and Petri net models.

However, while queueing models have been used extensively for the evaluation of

computing system, their application to systems that exhibit concurrency, synchro-

nization, fault tolerance, and degradable performance is not straightforward. Fur-

thermore, queueing network cannot easily represent fault-related behavior, since the

probabilistic nature of their structures (e.g., branching probabilities) is fixed. The

analysis of asymmetric network is complicated and difficult by using queueing mod-

els [3]. On the other hand, Petri nets, especially generalized stochastic Petri nets

(GSPN) [4], thereof are much better suited to the modeling of systems which ex-

hibit such properties. In particular, the use of timed "transitions" with probabilistic

timing permits, via different interpretations of tokens, simultaneous representation of

characteristics related to both performance and reliability [5].

Some other advantages of modeling systems with the generalized stochastic Petri

net include the following: 1) the exact results can be easily obtained for the class

of systems with Poisson arrivals and exponentially distributed service time. These

results can be used to validate approximate solutions when these become available.

2) GSPN results can be obtained interactively, as opposed to simulation results that

take much longer time.

Stat ion A Layer number Station B

Figure 1.1 OSI reference model for a communication system

3

4

Figure 1.2 IEEE 802 sublayer structure

5

GSPN can be viewed as a way of specifying, generating, and solving Markov

models. As such, all the capabilities of Markov chains are available. However, the

state space of the resultant Markov model is generally large even for a small number

of stations. Thus, an approximate method of modeling networks is needed to obtain

a compact GSPN model to reduce the state space. This method is important for

a GSPN to model a LAN with a large number of stations. The computer-aided

analysis of GSPN models is useful to performance evaluation of networks. A stochastic

Petri net package called the SPNP [6] is utilized to automatically generate and solve

the Markov models. Besides obtaining the steady-solution, SPNP can also obtain

transient solutions and carry out parametric sensitivity analysis [7].

Simulation models are somewhat similar to analytical models. Analytical and

simulation models differ, in that simulation models include model extensions for ob-

taining the solution through the use of a computer program that behaves like the

system under study. By studying the performance of the program, one can infer the

performance of the simulated system.

This thesis is motivated by the increasing importance of Petri net theory's ap-

plication in the area of computer-communication networks and by the importance of

modeling and performance evaluation of token bus LAN.

Accordingly, the objectives of this thesis are as follows:

1. To provide basic concept of a local area network (LAN) and detail about the

token bus LAN;

2. To provide an introduction to generalized stochastic Petri nets (GSPN):

3. To model token bus LAN with generalized stochastic Petri nets;

4. To present and analyze the performance of the token bus LAN;

5. To present an approximation method and results for token bus LAN with a

large number of stations.

6

This thesis is organized as follows. The next chapter provides basic concepts

and properties of Petri nets, introduction to stochastic Petri nets and generalized

stochastic Petri nets, and Petri net applications in network modeling and analysis.

Chapter 3 provides a brief description of IEEE 802.4 protocol, token bus network and

its service types. Chapter 4 provides the GSPN models, modeling methods and detail

modeling procedure of token bus LAN. Chapter 5 provides the performance analysis

based on GSPN models of token bus LAN. In Chapter 6, an approximation method

is provided to reduce the state space requirement of GSPN for modeling token bus

LAN with a large number of stations. Finally, Chapter 7 provides a summary of the

major points discussed in the thesis.

CHAPTER 2
PETRI NETS IN NETWORK MODELING

AND ANALYSIS

2.1 Generalized Stochastic Petri Nets

Petri nets are formal graph models that are well suited for representing the flow

of information and control in systems that exhibit concurrency and synchronization

characteristics [8]. However, the concept of time is not explicitly given in the original

definition of Petri nets. For performance evaluation of dynamic systems, it is nec-

essary and useful to introduce time delays associated with transitions and/or places

in their net models. Such a Petri net model is known as a (deterministic) timed

Petri net if the delays are deterministically given, or as a stochastic Petri net (SPN)

if the delays are probabilistically specified with exponential distribution [9]. Based

on stochastic Petri net (SPN), generalized stochastic petri net (GSPN) is obtained

by allowing transitions to belong to two different classes: immediate transitions and

timed transitions with exponential distribution.

2.1.1 GPSN Definition and Properties

A GSPN can be defined as an eight-tuple [10]:

Z = (P,T, I , 0 , rn, H, F, Pr)

where

P = {Pi, P2, ...,p,i}, n > 0, and is a finite set of places;

T = {ti ,t 2,...,t8 }, s > 0, and is a finite set of transitions with PUT i 0, P nT = 0;

I: P x T —4 N and is an input function where N = {0,1, 2, ...};

0: P x T --► N and is an output function;

m: P —> N and is a marking whose ith component is the number of tokens in the

ith place. An initial marking is denoted by mo; and

7

8

H: P x T —+ N and is an inhibitor function;

F: T —4 (0, oo) is a vector whose it h component is the exponential firing rate if

the ith transition is timed or otherwise undefined or oo if the ith transition is

immediate.

Pr: P ---4 REPEPIP*I, such that EtEp.Pr(t) = 1 and Pr (t) > 0, Vp E P, where p* =

{t E p*: t is an immediate transition }, and I,' = {t E T : I(p,t) 0}.

In this definition, the first five tuples define an ordinary Petri net [11], [12]. Within

it, the places are represented by circles and the transitions are represented by bars.

A place may contain tokens (represented by dots). The marking of a place is the

number of tokens which the place contains. The marking of the Petri net is a vector

that specifies the marking of each place in the net. A place is defined to be an input

place of a transition if an arc exists from the place to the transition. Similarly, a place

is defined to be an output place of a transition if an arc exists from the transition

to the place. An integer d > 1 (default value 1), called its multiplicity, is associated

with each arc.

A transition is enabled if each of its input places contains as many tokens as the

multiplicity of the corresponding arc for an ordinary Petri net. An enabled transition

can fire. When a transition fires, a number of tokens are removed from each of its

input places equal to the multiplicity of the corresponding arc and it deposits in each

of its output places as many tokens as the multiplicity of the corresponding arc.

H is an inhibitor function from places to transitions. An inhibitor arc connects a

place to a transition, and is represented by a line terminating in a small circle rather

than an arrow head. It functions to prevent a transition from firing under certain

markings. Thus a transition may fire if each of its normal input places contains at

least as many tokens as the multiplicity of the connecting arc and each of its inhibitor

input places contains fewer tokens than its multiplicity. Each firing generates a new

9

marking of the net. The token number of inhibitor input place remains unchanged.

In a GSPN, there are two kinds of transitions. Immediate transitions fire in zero

time once they are enabled. Timed transitions fire after an exponentially distributed

random enabling time. In the figures in this thesis immediate transitions are repre-

sented by solid bar, and timed transitions by hollow bar.

If several immediate transitions have input arcs from the same place, these tran-

sitions must have different probabilities because they cannot fire at the same time.

Several immediate transitions can fire simultaneously if their input arcs from different

places.

The reachability set of a Petri net for a given initial marking is the set of all states

(or markings) that can be generated from the initial state by a sequence of transition

firings.

A GSPN has following behavioral properties which are the same as an ordinary

Petri net [13]:

Safeness A place in a Petri net is safe if the number of tokens in that place never

exceed one. A Petri net is safe if all of its places are safe.

Boundedness Boundedness is a generalization of safeness of a net with the situation

that the places can hold a particular number of tokens. A place is k-bounded,

if the number of tokens in that place cannot exceed an integer k. A Petri net is

defined to be k-bounded if every place in it is k-bounded.

Liveness A transition is live, if and only if for any number in the reachability set

there is a firing sequence whose firing enables the transition. A Petri net is live

if each of its transition is live. Liveness of a Petri net implies freedom from

deadlock.

2.1.2 An Example of GSPN

An example of a generalized stochastic Petri net is shown in Fig.2.1 to illustrate the

10

Figure 2.1 Single-station GSPN model for limited service

concept of GSPN. This GSPN model is a station model of token bus LAN with limited

service in which a station keeps sending packets until either the queue is emptied or

the number K of packets are sent.

In the Figure 2.1, eight tuples in GSPN definition are represented as follows.

A set of places: P P = {Pi, Ma, P.b, Mc, Ad };

A set of transitions:

An input function:

An output function:

An inhibitor function:

A marking:

A firing rate vector:

An arc probability vector

11

It is noticed that the immediate transitions tic and t 2d have input arcs from the

same place, pib, but these two transitions cannot fire at the same time. The immediate

transitions tic and tie fire simutanously, but the input arcs come from different places

pib and pid. Therefore, the probabilities of these three immediate transitions are equal

to one.

12

2.2 Review of Petri Nets in Communications

This section reviews various previous efforts to analyze communication system using

Petri nets. Previous research on Petri net application in the communication area falls

into two basic categories: protocol specification and verification; network modeling

and performance.

• Protocol specification and verification:

Diaz [14] presented Petri net models for each of the following protocols, and

verified their liveness.

1. Alternating bit protocol

2. Packet switching call establishment protocol

3. The subscribers and the CCITT No 7 protocol; Connection-Disconnection

of entities

4. The X.21 interface protocol

Sajkowski [15] presented a new approach to the verification of a communica-

tion protocol modelled as a discrete-event system. This approach is based on

the analysis of a communication protocol considered as a time-driven system.

The verification technique combines time constraints base projection and the

examination of the safeness of certain places in a timed Petri net model.

Diaz [16] surveyed the applicability of Petri nets for protocols, as well as for

service specification and validation. At the specification level, different classes

of nets are introduced, and emphasis is given to the modular specification of

a protocol layer. At the validation level, the analysis techniques implemented

in the CAD package OGIVE/OVIDE are used in order to prove safety and

progress properties of a protocol layer.

13

Juanole [17] concerned the formal specification of the gateway connecting a

LAN and a remote computer through ISDN, using Petri nets.

Mukherjee [18] investigated the performance of flow control and error control

protocols in computer communication using GSPN. The go-back-n and the se-

lective repeat protocols were considered for error recovery. The sliding-window

protocol was considered for flow control.

• Network modeling and performance

Gressier [19] presented a stochastic Petri net (SPN) model of Ethernet very

close to design specifications. This model, in spite of row stochastic approxima-

tions and assumptions gave accurate results for network loads less than 50% of

transmission medium capacity.

Marsan [20] used deterministic and stochastic Petri nets (DSPN) models to de-

velop models of several fiber optics local area network architectures which were

Expressnet, D-net, Fasnet, U-net and Token ring, and gave some comparative

results.

Marsan [21] developed two timed transition Petri net (TTPN) models of a six-

station LAN with linear topology, in which a finite number of stations located

randomly along the bus channel and access method based on a 1-persistent

CSMA/CD protocol. The first model contains a very detailed representation

of the LAN behavior, modeling each station individually, but the model is in-

tractable from an analytical point of view. Then the second model was a com-

pact model that is a DSPN, and hence permits an analytical approach to its

solution.

CHAPTER 3

TOKEN BUS LOCAL AREA NETWORK

This chapter is concerned with the detail of token bus local area network (LAN) and

its service types.

3.1 Token Bus Principle

As depicted in Figure 3.1 a physical bus interconnects stations using token bus scheme.

All stations connected to the bus cooperate in the use of the shared channel. The basic

idea behind the channel access mechanism involves the concept of the right to use

the channel. Basically, only the station having the right to use the channel is allowed

to send messages. The right to use the channel is referred to as the token which is a

special control frame. Each time a station acquires the token, it can transmit data

frames for a certain amount of time, then it must pass the token to the next station.

If the frames are short enough, several consecutive frames may be sent. If a station

has no data, it passes the token immediately to the next one upon receiving it. Since

only one station at a time holds the token, collisions do not occur.

The token is passed from station to station in a cyclic fashion, thus defining a

logical ring which is shown in Figure 3.1. Therefore, the logical ring determines the

sequence for passing the token from station to station. As far as the logical ring

is concerned, each station knows only the identity (i.e., the address) of the station

preceding it and the one following it. Naturally, a station must know the identity of

all remaining stations for the purpose of communicating with them, but it has no idea

about their physical location in the logical ring. Although any station is capable of

sending and receiving data, stations not included in the logical ring cannot send data,

since they are never given the token. These stations are called listen only stations

(e.g., station 6 and 7 in Figure 3.1), because they can receive data but cannot send

them [22].

14

Figure 3.1 A token bus LAN

15
0'

16

An important point to realize is that the physical order in which the stations

are connected to the cable is not important. The logical order is independent of

the physical order. Since the cable is inherently a broadcast medium, each station

receives each frame, discarding those not addressed to it. When a station passes

the token, it sends a token frame specifically addressed to its logical neighbor in the

ring, irrespective of where that station is physically located on the cable. That is,

during normal steady state operation, the right to access the medium passes from one

station to another. The medium access control (MAC) sublayer provides sequential

access to the shared bus medium in a logically circular fashion. This MAC sublayer

determines when a station has the right to access the shared medium by recognizing

and accepting the token from its predecessor station. For the physical layer, the token

bus uses the 75-ohm broadband coaxial cable used for cable television. Both single

and dual cable systems are allowed, with or without headends. Three different analog

modulation schemes are permitted: phase continuous frequency shift keying, phase

coherent frequency shift keying, and multilevel duobinary ampliude modulated phase

shift keying. Speeds of 1, 5, and 10 Mbps are possible [22], [23].

3.2 Protocol Description

Token bus protocol, IEEE standard 802.4, is one of IEEE 802 LAN standard series.

It is concerned with medium access control (MAC) sublayer [1].

3.2.1 MAC sublayer structure

As depicted in Figure 3.2, MAC sublayer is mainly composed of five elements:

1. Interface Machine (IFM)

2. Access Control Machine (ACM)

3. Receive Machine (RxM)

17

4. Transmit Machine (TxM)

5. Regenerative Repeater Machine (RRM)

The function of each machine is as follows:

• Interface Machine: This machine acts as an interface and buffer between the

LLC and MAC sublayer. It interprets all incoming service primitives from the

LLC sublayer and generates appropriate outgoing primitives. It handles the

queueing of service requests and performs the address recognition function.

• Access Control Machine: This machine cooperates with the ACM of all other

stations in the logical ring. As an option, the MAC handles messages with

priorities. The ACM is also responsible for initialization and maintenance of

the logical ring, including admission of new stations, failure detection, and

recovery, and handling other failures in the token bus network.

• Receive Machine: This machine accepts symbols from the physical layer, assem-

bles them into frames, performs frame validation, and passes the frames to the

ACM and IFM. The RxM accomplishes this by recognizing the delimiters for

the start of a frame (i.e., the start delimiter, SD) and the end of the frame (i.e.,

the end delimiter, ED), checking the frame check sequence (FCS), and validat-

ing the frame structure. The RxM also identifies and indicates the reception of

noise bursts, and bus quiet conditions.

• Transmit Machine: This machine accepts a data frame from the ACM and

transmits it as a sequence of symbols, in the proper format to the physical

layer. The TxM builds a MAC protocol data unit by prefacing each frame with

the required preamble and SD, and appending the FCS and ED.

• Regenerative Repeater Machine: This machine is an optional MAC component

present only in special repeater stations, e.g., in a broadband or a head-end

18

Figure 3.2 Functional configuration of the MAC sublayer

19

demodulator. In such stations the RRM repeats the incoming atomic symbol

stream, from the physical layer, back to the physical layer for retransmission.

Of all these five machines, the ACM is both the most critical and the most com-

plex. It is the key control mechanism for the token-bus method. The IFM and RxM

participate heavily in the operation of the MAC sublayer protocol.

3.2.2 Priority Mechanisms

The IEEE 802.4 standard provides an optional priority mechanism. The priority of

each frame is indicated when the LLC sublayer submits a data frame to be trans-

mitted to the MAC sublayer. The MAC sublayer offers four levels of priority classes,

called access classes. The access classes are named 0, 2, 4, and 6, with 6 corresponding

to the highest priority and 0 to the lowest.

The priority scheme works as follows: each station is internally being divided into

four substations, one at each priority level. As input comes into the MAC sublayer

from the above, the data are checked for priority and routed to one of the four

substations. Thus each substation maintains its timer with stipulated time known

as Target Rotation Counter (TRTC). When a station recieves the token it begins

transmitting the frames of priority class 6. When it is done, the token is passed

internally to the priority 4 substation, which may then transmit until its timer expires,

at which point the token is passed internally to priority 2 substation. This process is

repeated until all its frames have been sent or its timer has expired. Again, when the

station does not have any frames to send, it simply passes the token to its successor.

In this thesis, it is assumed that the protocol implements the highest priority

class (class 6) only. In another word, the model assumes a single priority for all data

packets.

3.2.3 Frame Format

The token bus frame format is shown in Figure 3.3. The function of each component

20

in the frame is following. Preamble is used to synchronize the receiver's clock.

Starting delimiter (SD) and Ending delimiter (ED) fields are used to mark the

frame boundaries. Both of these fields contain analog encoding of symbols other than

Os and ls, so that they cannot occur accidentally in the user data.

Frame control (FC) field is used to distinguish data frames from control frames.

For the former, it carries the frame's priority. It can also carry an indicator requiring

the destination station to acknowledge correct or incorrect receipt of the frame. For

the latter, the Frame control field is used to specify the frame type. The allowed types

include token passing and various ring maintenance frames, including the mechanism

for letting new stations enter the ring, the mechanism for allowing stations to leave

the ring, and so on.

Destination address (DA) field identifies the station to which the frame is destined.

This may be 2 or 6 bytes depending on the number of bits used for addressing. All

addressing on a given LAN shall be of the same length.

Source address (SA) field identifies the station which originates the frame and has

the same format and length as the destination address in a given frame.

Data field may be up to 8182 bytes long when 2-byte addresses are used, and

up to 8174 bytes long when 6-byte addresses are used. The data field can contain a

LLC protocol data unit, which is used to exchange LLC information between LLC

entities or a MAC management data frame which is used to exchange management

information between MAC management entities or a value specific to one of the MAC

control frames.

The Frame check sequence(FCS) field which is a 32 bit frame checking sequence

is used to detect transmission errors.

The token frame is a special MAC control frame which gives a station the right

to transmit data. This frame has the same structure as shown in the Fig. 3-3 except

that the DA is the successor's address in the logical ring and that the data field is

Figure 3.3 IEEE 802.4 frame format

21

22

null.

3.3 Service Types

The four service types of token bus LAN are considered as the following [23]:

Single service: Each station has only single-buffer queue, and can send only one

packet when each station acquires the token.

Exhaustive service: When a station receives the token, it continues to send packets

until the station queue is empty. Then it passes the token to the next station.

Gated service: The station sends only those packets found at the queue when the

token is received.

Limited service: A station continues to send packets until either 1) the queue emp-

ties, or 2) the first fixed number K of packets are sent, whichever comes first.

CHAPTER 4

GSPN MODELING OF TOKEN BUS LAN

4.1 Modelling Method

Since in a moderstely sized communication system, the complexity of design at the

implementation level of detail may be unreasonable, researchers are seeking methods

for the progressive synthesis of Petri net models. Previous research on Petri net design

methods falls into two basic categories: bottom-up and top-down [11], [12].

Bottom-up approaches begin with the construction of subnets for component pro-

cessed, and proceed to the final net by merging and/or linking all these subnets.

Top-down synthesis is characterized by the stepwise refinement of an aggregate

Petri net model. Each successive refinement contains increasing detail until the im-

plementation level is reached.

System decomposition and modular composition are two keys to both approaches.

The bottom-up method is used to model the token bus LAN as follows:

Step 1: Model the details of the token bus operation for each station.

Step 2: Link five submodels as a token bus LAN model based on the order of the

logical ring.

4.2 Model Assumptions

The following general assumptions have been made to simplify model design and

operation:

• The LAN has five stations connected to a shared communication channel based

on the IEEE 802.4 specifications.

• The acknowledgement mechanisms between stations are not offered to the data

link layer in these models.

23

24

• The stations under study are already in the logical ring. No new stations join

the logic ring and no station drop from the logic ring. The station always knows

its successor and its predecessor in the logical ring.

• The protocol implements the highest priority class (class 6) only [23].

• Customers arrival is modeled as a Poisson process.

• The length of package is of Poisson distribution. The mean package length is

4096 bytes.

• Channel capacity is 10Mbits/sec. Bus length is 1 Km. The length of token is

fixed as 100 bits.

4.3 GSPN Model Design

In this section, the bottom-up method is used to model operation of token bus LAN

according to four types of services. First of all, the behaviors of each station must be

modeled for each type of service. Then, the GSPN models of LAN can be obtained

by combining each GSPN model of stations.

4.3.1 Modeling a Single Station

Single-Service Type

As shown in Figure 4.1, the single station model consists of one immediate tran-

sition with an inhibitor arc, three timed transitions and four places.

The immediate transition (t„) has zero time delay. The timed transitions: t za

has a firing rate A which is the arrival rate of packets; t,b has a firing rate ii, which

is the service rate of the channel; tid has a firing rate -y which is the token rotation

rate. Place p, represents the condition that station i is idle; place pia represents the

condition that station i has generated a packet; place p,b represents the condition that

station i has acquired the token and starts to transmit a packet; place pi, represents

25

Figure 4.1 Single-station GSPN model for single service

the condition that station i is passing the token to the next station. When station i

obtains the token, only one packet can be sent before station i passes the token.

Exhaustive-Servive Type

The single station model is shown in Figure 4.2. The difference between this service

and previous one is that whenever the token arrives at a station it cannot leave the

station until all packets of the station have been sent. this difference is modeled by

adding an inhibitor arc from place p,a to transition tia with the multiplicity s which

indicates the buffer size of station i, and by changing the output arc from transition tib

to place p,b instead of p,c. Whenever station i gets the token, there is a token in place

p,b. if station i already has packets (i.e. place ma has tokens), the timed transition

tib is enabled and keeps firing until place pia (buffer) has no token (all packets have

been sent). The immediate transition tt, then fires and a token goes to place p,e. The

station i starts to pass the token on. The number of tokens, m„ in place p, is usually

larger than the buffer size, s, implying that station i always has packets to arrive.

26

Figure 4.2 Single-station GSPN model for exhaustive service

Gated-Service Type

In this case, on acquiring the token, station i serves only the packets which arrive

at the station before the token arrives. As shown in Figure 4.3, the single station

model of gated-service type has made little difference from the model of exhaustive-

service type by adding an inhibitor arc from pm to t,,,. Whenever the token arrives

at station i (a token in place p,b), the transition is disenabled by the inhibitor arc.

No more packets can come into the station buffer (place p,„). The gated function is

implemented.

Limited-Service Type

In this service case, station i, on receiving the token, either transmits all packets

that it finds at the station if the number of packets is less than k or k of them. The

single station model is shown in Figure 4.4. The place pid acts as a counter that

ensures that at most k packets are transmitted when the token resides at this station.

An inhibitor arc to transition t 2b originates from place pid. The multiplicity of the arc

27

Figure 4.3 Single-station GSPN model for gated service

is k, which means that the timed transition ttb will fire if and only if there are less

than k tokens in place p,d , at same time, one token in place p,b and at least one token

in place pia. When the number of tokens in place p,d reaches k, the timed transition

t,b is disabled while the immediate transition ttd is enabled. When station i has sent

all packets whose number is less than k, i.e., there is no more token in place pia before

the number of tokens in place pid reaches k, immediate transition tic and t„ fire, and

the tokens in place p,d are discarded by transition tie.

4.3.2 Modeling LAN

Based on the bottom-up method, the models of a token bus LAN can be obtained by

connecting each station model according to the order of the logical ring. The GSPN

models of LAN with five stations for four service cases are described next.

Single-Service Case

The LAN model is shown in Figure 4.5. This model is obtained by linking each

28

Figure 4.4 Single-station GSPN model for limited service

single-station model based on the order of the logical ring. Places pi to p5 represent

the condition that stations 1 to 5 are idle; the places pib to p5b represent the condition

that stations have already received the token and start to transmit packets. The

place pi, to p5, represent the condition that the token is passing to the next station.

Currently, stations 1, 3, and 5 are idle and station 1 has received the token but no

packet arrive at it. Stations 2 and 4 have generated a packet but have to wait for

the token to come. Considering the current marking in Figure 4.5, since pib contains

the token, the immediate transition t ic is enabled. It fires immediately and a token

is deposited to place pi,. This models the situation that station 1, on receiving the

token and finding no packet to transmit, immediately passes the token to station 2.

Since station 2 has a packet (a token in p2a), as soon as the token reaches to station

2, the timed transition t2b is enabled. Its firing causes a token to be deposited to

place 192 and another token to be deposited in place plc. This represents that station

2 returns to the idle state and starts to pass the token to station 3.

Figure 4.5 GSPN model for single-service (symmetric) token bus LAN

30

Exhaustive-Service Case

In this service case, the token cannot leave a station until all packets in that station

have been transmitted. Whenever the token leaves a station the number of packets

in that station is zero. Figure 4.6 shows the GSPN model for an exhaustive-service

token bus LAN. The multiplicity of the inhibitor arc is s which represnts the buffer

size of a station. Note that as long as s < mi holds, the value of rn, does not affect

the results. This means that the model is good for an infinite-population system, in

which packets always come to stations. In Figure 4.6, station 1 must immediately

pass the token to station 2 because there is no packet in station 1 at the moment

when the token reaches the station.

Gated-Service Case

The model of LAN with this service is shown in Figure 4.7. In this service case,

after acquiring the token, a station sends only those packets that arrive at that station

prior to the token arrival. This function is implemented by adding an inhibitor arc

from places pzb to transitions tia , i = 1, 2, 3, 4, 5. As soon as a station acquires the

token, tia is disenabled and no more packets can come into that station. For the

current marking in Figure 4.7, the station 1 will send all four packets in place pia,

then t ic fires and a token is deposited to pi,. At this time, tid is enabled to fire,

passing the token to station 2.

Limited-Service Case

In this service case, a station, on receiving the token, transmits at most k packets.

The GSPN model for this type of service is shown in Figure 4.8. For the current

marking, the token is in station 1. If k = 3, station 1 can send only three of packets

in place pia, and then has to pass the token to the next station. If k > 4, when

station 1 has transmitted four packets in pia no more packets come in. The station

then passes the token to the next. The counter number k and buffer size s can be

different at each station.

Figure 4.6 GSPN model for exhaustive-service token bus LAN

Figure 4.7 GSPN model for gated-service token bus LAN

Figure 4.8 GSPN model for limited-service token bus LAN

CHAPTER 5

PERFORMANCE ANALYSIS

The single-service case is considered to do the experiments to analyze the performance

of token bus LAN because this type of service is common to LAN.

The experiment results can be obtained by solving the GSPN models using stochas-

tic Petri net package (SPNP), which is a C-language-based package [6]. The input

to the SPNP consists of the immediate transitions, the timed transitions and their

firing rates, the input and output arcs for each transition, and the initial marking.

It generates the rechability graph, eliminates the vanishing markings, and constructs

the continuous-time Markov chain. Finally, it obtains the steady-state probability of

each marking using a combination of the successive overrelaxation and Gauss-Seidel

methods. If requested, it also provides the mean number of tokens in each place.

The experiments are conducted for both symmetric and asymmetric systems. A

symmetric system is the one in which each station has same GSPN model structure

and has same arrival rate and service rate. An asymmetric system is the system in

which each station may have different GSPN models (i.e., different service type) and

different arrival rates and service rates.

5.1 Performance Variables

Performance variables can be classified into transient and steady state. The token

bus model solution is based on steady state variables, which will be presented. Per-

formance variables of interest for the IEEE 802.4 standard are average packet delay

and average throughput.

Average packet delay is defined as the average elapsed time between the instant

when a packet arrives at a station and the instant when the last bit of the packet

is transmited. There are two major components of average packet delay: queueing

34

(0.1)

35

delay and transmision delay. Queueing delay includes the time when packets wait for

their turn in order to be sent. Packets wait because the station does not have the

token when they arrive. Transmission delay is the time that takes to send all bits in

a packet at the normal data rate.

Throughput is defined as a number of bytes (or packets) of user data transferred

per second. There are two kinds of throughput: the actual measured throughput and

throughput that network is capable of providing. The actual measured throughput

in packets per second is used in the experiments.

Once performance variables are identified, they need to be incorporated in the

experiment file to obtain the corresponding solution model. The incorporation of

average packet delay into the experiment file is relatively straightforward. By using

the Little's law, average packet delay is calculated as the ratio of the average number

of packets in the system (number of token from la D to 10 , , 5a and from pi& to p5b) over

the average arrival rate of packets from the LLC sublayer (the firing rates from tla to

tsa and from ti to ts,). Throughput:

Average packet delay:

where, Mt (p,a) and Mt (pib) are average number of tokens in places pia and Pib;

g(t,a), §(t,b) and :§(t,,) are average firing rates of transitions t,a , t,b and t2c.

5.2 Experiment Parameters

The following parameters are used in the experiments:

36

1. The arrival processes to each station are statistically equivalent Poisson pro-

cesses with equal average arrival rates, A packets/second.

2. The packet length is exponentially distributed with an average value of Xp =

4096 bytes.

3. The token length is fixed with the value of Xt = 12 bytes.

4. Channel capacity is R = 10 Mbps.

5. Token bus length is L = 1000 meters.

6. Number of station is N = 5.

7. The end-to-end propagation delay of 1000-meter bus is r = 5ysec.

8. The walk time, w, is the time to transfer the token, plus the token propagation

delay, between successive stations in the logical ring.

The walk time, w, depends on the average propagation delay between stations.

This delay is determined with the assumption that transfer between any two

stations on the bus is equally likely. The solution to this problem in probability

gives approximately one-third of the length of the bus as the average spacing

between randomly chosen stations, or an average time delay of r/3 seconds.

9. Average service rate, y, is supposed to be Poisson distributed with average value

y = RI X p = 305 packets/sec.

10. Average token rotation time, Tc, is approximately assumed to be exponentially

distributed with average value T, = N(X pl R+w) because the length of packets

is exponentially distributed. So, the token rotation rate: -y = 1/Tc.

37

11. Offered load, p is defined as:

where, N is the number of stations, A is an average arrival rate, and y is an

average service rate.

5.3 Overview of Experiments

The experiments have been done to prove the liveness of the GSPN models and

to evaluate the performance of single service for both symmetric and asymmetric

systems.

As far as the liveness property, all models of four-service types have been solved

by means of SPNP based on C-language programs and reachability sets have been

obtained. Therefore, there is no deadlock in these GSPN models and they are live.

The reachability graph of single-service GSPN model with two stations is shown in

Figure 5.1. The reachability graph of other models cannot be shown because of too

many states.

For the symmetric system, the GSPN model shown in Figure 4.5 is used to in-

vestigate the network performance. All parameters of each station are assumed to

be the same to meet the condition of symmetric systems. The offered load to the

network is changeable so that the network performance can be measured. For a given

offered-load, the arrival rate can be calculated accordingly and assigned to all timed-

transitions, tia, (i = 1, ..., 5) as the initial firing rates. After running SPNP, each

group of the network data can be obtained numerically according to each value of the

offered load. The values of performance variables, throughput (S) and average packet

delay (D), are obtained by calculating each group of network data using formula (5.1)

and (5.2). Data for transition firing rate are summarized in Table 5.1.

38

Figure 5.1 Reachability graph of single-service GSPN model with two stations

Transition tia tib tic tid

Firing Rate

(packets/s)

P1-1
N 305 immediate 12

Table 5.1 Data for firing rates

For the asymmetric system, the GSPN model, as shown in Figure 5.2, consists

of one single-station model of exhaustive service and four single-station models of

single service. In order to compare the performance with that of the symmetric

system mentioned above, all parameters of each station, such as arrival rate A, token

rotation rate -y and so on, are kept the same. In this sense, the asymmtric system

means that only the structure of GSPN model is not the same for each station in the

network. In another word, each station in the network could have different service

type. The buffer size of the station with exhaustive service is five (s = 5). With the

change of offered load, the performance of the network is obtained.

The experiments of twenty-one station token bus LAN for single service have

been conducted to show that the approximation method is effective. The detail will

be discussed in the next chapter.

5.4 Results and Analysis

Two principal metrics of network performance are throughput and average packet

delay, which are investigated in this study as the offered load varies.

5.4.1 Throughput vs Offered Load

39

Figure 4.5 GSPN model for asymmetric token bus LAN

41

The throughput performances of both symmetric system and asymmetric system are

shown in Figures 5.3 and 5.4. Both throughputs increase with offered load and reach

their maximum values at higher load. For the same offered load, the throughput of

the asymmetric system is higher than that of the symmetric system. This result can

be analyzed qualitatively. The network throughput can be qualitatively represented

as follows [22]:

where

Th is the average token holding time of each station;

w is token walking time which is a constant:

In the asymmetric system, there is one station with exhaustive service. when the

token arrives at that station, the token cannot leave until that station has sent all

of its packets. So, the token holding time of that station is much loger than that

of the others, and average token holding time for each station in this asymmetric

system becomes longer. In the symmetric system, each station has the same token

holding time statistically (the length of packets is exponentially distributed), which

is the service time of one packet. Because the token walking time is unchangeable,

due to fixed token length, the network throughput mainly depends on the average

token holding time Th. That is why the throughput of asymmetric system is higher

than that of symmetric system.

In the thesis, the offered load indicates the input of data packets only. The token

rotating around all idle stations does not included in the offered load. In the design of

the GSPN models, timed transition t ib has been considered only for the transmission of

Figure 5.3 Throughput performance of symmetric system

42

Figure 5.6 Delay performance of asymmetric system

43

44

data packets. The token transmission is modeled by transitions t„ and tid. Therefore,

it can be seen from Figure 5.3 and Figure 5.4 that the thoughput curve passes through

the origin when no packets come to the network.

5.4.2 Delay vs Offered Load

The performance of average packet delay is shown in Figures 5.5 and 5.6 for symmetric

and asymmetric systems, respectively. Both delays increase with the offered load.

It can be seen that the delay of the latter is lower than that of the former at the

same value of the offered load. Since one of stations has exhaustive service it makes

average packet delay become lower for whole network. This result can be analyzed

from queuing thoery qualitatively. The average packet delay for the three service type

is as follows [24]:

Exhaustive Service

Gated Service

Limited Service

where, Yp is the second moment of packet length,) .p is the first moment.

From the corresponding average packet delay expresssions, it can be shown that

Single service can be considered as a special case of limited service. Therefore, the

average packet delay of asymmetric system which has one exhaustive and four single

service stations is less than that of symmetric system which has all single service

stations.

Figure 5.5 Delay performance of symmetric system

45

46

Figure 5.4 Throughput performance of asymmetric system

CHAPTER 6

APPROXIMATION METHODS

This chapter deals with the state space explosion problems in performance analysis

of a token bus LAN with more than five stations. An effort is made to develop an

effective approximation method for evaluating token bus LAN with any number of

stations by reducing the state space.

6.1 Presentation of the Problem

As mentioned above, stochastic Petri nets and extensions are a truly useful model class

for representing distributed systems, in general, and local area computer-communication

networks, in particular. Among them, Generalized Stochastic Petri Nets (GSPN) al-

lows not only exponentially distributed timing delays but also immediate transitions

and probabilitic arcs. GSPN is well suited to modeling and performance of local area

networks, as discussed in the last Chapter. However, with the changes of LAN envi-

ronment, such as increase of buffer size for each or some stations, or station number

growth, tranditional model construction and solution methods for these models limit

their usefulness, due to the extremely rapid growth of the size of the state space used

in model solution.

The experiment presents the state explosion problem as shown in Table 6.1.

6.2 Reduction Method of GSPN

There are many reduction methods which can be used to effectively reduce a large net

to a small one only for non-timed Petri nets. However, some rules can be modified

to hold true for generalized stochastic Petri nets when temporal/stochastic charac-

teristics are considered. Reducible subnets are selected and analyzed in isolation by

47

Art/ r... I A i Of

0
N

u
Station

./.2e,t 1-11 Of ,. state 4.1.el

3
4 5

2
T 135 540 2025

V 27 108 405

3
T 336 1792 8960

V 48 256 1280

4
T 675 4500 28125

V 75 500 3125

5
T 1188 9504 71280

V 108 864 6480

6
T 1911 17836 156065

V 147 1372 12005

48

Table 6.1 State space vs number of stations and buffer size

49

constructing their associated Petri nets.

6.2.1 Reduction Definitions

Flow equivalent server concept can be used to develop a reduced equivalent net based

on the following definitions [24].

Definition 1: Z' = (P' ,T', I', O', H' ,m', F' ,1:1) is a subnet of Z = (P, T, I, O,

H,m, F, I:1) if P' C P, T' C T, and if, Vp E P', t E T', l'(p,t) = I(p,t), 01(p,t) =

0(p, t), H' (p,t) = H(p,t), m'(p) = m(p), F'(t) = F(t), and 13,f(t) = Pr (t). We can

write Z' C Z.

Definition 2: Given Z' C Z, Z' is a p-t subnet/block iff Pin 0 0, pout = 0,

Tin 0 0, and Put 0 0. Where, Pin is a set of input places; pout 1 • s a set of output

places; Tan is a set of input transitions; and Put is a set of output places.

Definition 3: An associated Petri net of a p-t subnet Z', denoted by S(Z') is

a Petri net which links the input and output nodes of Z' based on the token flow

directions in Z, where a node is referred to as either a place or a transition.

Definition 4: A GSPN is called an equivalint net, Z", of a subnet, Z', if under

the same markings, 1) the average time from any input node in Z" equals to that in

Z'; 2) the number of states in S(Z") is less than that in S(Z'); and 3) S(Z") is so if

S(Z) is bounded, live, and reversible.

It is noted that "the same marking" mean that the number of tokens of the

corresponding places in Z" and Z' must be the same. Condition 3 in Definition 4

ensures that the reduced net has the desired qualitative properties.

6.2.2 Subnet Selection

In order to obtain the accurate approximation results, the following rule must be

obeyed to select a subnet for a given GSPN.

Selection Rule: 1) The associated net of Z' = (P', T', I', 0' ,11' ,m' , F',

P,f) C Z is bounded, live, and reversible; and 2) {p : 3t E T' — Tin 3 I(p,t) 0 0,

50

In this rule, the first part ensures that the subnet can be evaluated. In addition,

the preservation of the qualitative properties of the reduction will be guaranteed,

which implies the reduced original net can be further evaluated if an equivalent net

replaces the subnet. The second part ensures that the subnet can be isolated, inde-

pendent of the rest of Z. This rule ensures the flow equivalent principle.

6.2.3 Equivalent Net Construction

Based on the token flow equivalent concept, the flexibility to select various subnets

leads to the variety of equivalent nets. The construction catalog can be classified as

the following: single-input-single-output case, single-input-multiple- output case and

multiple-input-multiple-output case. In single-input-single-output case, there are four

types of subnet structures. one of them is called the place to transition subnet, p-t

subnet [25] as shown in Figure 6.1. The p-t subnet is selected as a equivalent net in

this research because it is suited to the token bus LAN environment. The details will

be mentioned in the following section.

6.3 Procedure

As discussed in [25], for a discrete event system, such as token bus networks, a GSPN

51

Z is modeled and the initial marking is determined. A procedure to derive the results

is formulated as follows:

1. If Z can be evaluated with the software packages available, it is done; otherwise,

2. According to the subnet selection rule, identify a subnet Z' while keeping those

transitions or places or subnets in Z unchanged if they are of special interests.

3. Construct the equivalent net for this subnet and derive the parameters for equiv-

alent net based on the throughputs on Z':

(a) Find the maximum numbers of tokens possible in the related places

(b) Find the throughput by starting from l's in some places to the maximum

numbers or the numbers whose increase will not change the throughputs

of the subnet

(c) Calculate the parameters in the equivalent net

If S(Z') cannot be evaluated with software packages, either re-select a subnet

or select a sub-subnet in S(Z') and continue this procedure.

4. Let Z" be the net which is the reduced net of Z by replacing Z' with its equiv-

alent net. Let Z = Z", go to the first step.

It is necessary to keep the right size of the subnet since a big subnet itself will be

difficult to evaluate though the final net may have a few number of states. The net

which satisfies conditions may not exist. Then we must loosen the conditions at the

expense of approximation accuracy.

6.4 Application Illustration

The traditional GSPN modeling method for token bus LAN results in the state space

explosion problem with the increasing of station number or of buffer size, as mentioned

52

before. In order to show that GSPN analysis method is still effective even under the

condition that token bus LAN has a large number of stations, it is necessary to

combine the approximation method with the tranditional GSPN modeling method to

solve the state space explosion problem.

The single-service case of token bus LAN with twenty-one stations, has been taken

as an example to illustrate the application of the approximation method. The five-

station GSPN model is selected as a subnet Z' of twenty-one station GSPN model Z,

as shown in Figure 6.2. It is clear that the subnet Z' satisfies the subnet selection rule.

Based on the reduction definitions mentioned above, the subnet Z' can be formulated

as a single-input-single-output p-t subnet Z", from pl b through whole subnet to 4, in

Figure 6.2. Therefore, the associated reduced equivalent net can be obtained as the

same as shown in Figure 6.1. In the GSPN model Z of a twenty-one station token bus

LAN, every five-station is simplified as a p-t subnet Z" so that the reduced GSPN

model of Z has been obtained as shown in Figure 6.3.

At the point of network performance, the delay or throughput characteristics of

token bus LAN with single service is mainly depend on the token rotation time which

is the reverse of the firing rate of t,d , i = 1, 2, ..., 5 in Figure 6.2. That is the reason

why the reduced subset is selected in that way.

The single-station performance evaluation of the reduced twenty-one station GSPN

model has been done. The delay and throughput characteristics are shown in Figures

6.4 and 6.5. Compare to the five-station single-service case, the throughput has de-

creased and the dealy has increased. The state space of reduced twenty-one station

model has been much reduced to 11 tangible markings and 1 vanishing markings.

This has shown that the approximation method is very powerful in dealing with the

state explosion for token bus LAN.

The two outstanding advantages can be obtained from above experiment which

has been performed by this approximation method.

Figure 6.2 Subnet of token bus LAN with twenty-one stations

L-- - - - 1 L- - - -J

Pic

54

Figure 6.3 Reduced GSPN model of 21-station token bus LAN

Figure 6.4 Throughput performance of reduced model

56

Figure 6.5 delay performance of reduced model

57

• It is clear that the performance of any single station in the toke bus LAN can be

obtained by this method. The whole network performance could be evaluated

based on every single station performance.

• This approximation method keeps GSPN effective in modeling and performance

of token bus LAN, no matter how large number of stations the LAN has. For

example, a token bus LAN with 101 stations can be reduced to 20 equivalent

nets with 1 station and then evaluated.

Most LAN interconnections of personal computers have interfaces that can store

at most one data packet at a time, thus token passing PC LANs can be modeled by

single-service schemes. This research is only for single-service case of token bus LAN.

It is possible to extend approximation methods for other service cases of token bus

LAN.

CHAPTER 7

CONCLUSION AND FUTURE RESEARCH

In this thesis, GSPN models of token bus LAN with four types of services have been

developed. Based on GSPN models, the performance of token bus LAN has been

investigated. Athough computer-aided solution of stochastic Petri nets is used in the

study, traditional model construction and solution method generate the state space

explosion problem when GSPN models become more complicated with the change of

network environment. In order to solve this problem, an approximation method of

modeling token bus LAN has been applied. Network performance in this case is also

investigated.

The GSPN models developed in this thesis are appropriate for performance studies

on the basis of a small number of stations. The approximation method of GSPN

models is effective in performance and modeling of token bus LAN with a large number

of stations. The contribution of this thesis is that the modeling and performance

evaluation of token bus LAN can be systematically conducted with GSPN not only

for a small number of stations but also for any large number of stations in the single-

service case. It can been seen that generalized stochastic Petri nets (GSPN) is a useful

analytical tool of local area networks and their usefulness is featured as follows:

I. Exact numerical results of network performance can be obtained in an interac-

tive way;

2. Petri net methods take much less time than simulation methods;

3. Both steady and transient state analysis can be performed for network perfor-

mance;

4. Very detailed analysis can be concentrated on a part of a large-scale network;

58

59

5. Small modifications of the GSPN model can represent big changes of network

operations;

6. Performance analysis of asymmetric systems does not create specific problems

but they are difficult by using queueing models;

7. Reliability analysis can be performed by using GSPN.

The work in this thesis can be extended in four directions. First, performance

of token bus LAN with other service cases, such as, limited and gated services, can

be analyzed by using the proposed models in this thesis. Second, the approximation

method for asymmetric network with a large number of stations could be developed

based on the method in this thesis. The idea is that a) selecting a small number of

stations as a subnet and reducing it to an approximate model, b) combining approx-

imate models to form a reduced whole GSPN model of the token bus LAN. Some

other approximation methods are presented in [25], [26], [27]. Third, the models of

this thesis can be extended to incorporate all priority classes (i.e. class 4, 2. and 0).

Performance evaluation of token bus LAN with priority classes is closer to practical

applications of token bus LAN. Fourth, reliability analysis of token bus LAN could be

performed, which is useful in industrial environment [28], [29]. For reliability analysis

of token bus LAN based on GSPN models, two parameters can been chosen to assess

the system: the MTTF (mean time to failure) linked to reliability and the mean num-

ber of packets transmitted in the network before failure as an index of performability.

Failre times are assumed to be exponentially distributed random vriables. The LAN

can be considered to be functioning as long as stations are functional.

APPENDIX

APPENDIX: Programs

program 1 fpetri5.c)

/*
/* This program is uesd to evaluate performance of Token
/* Bus LAN with single service (symmetric system).
/*

#include "user.h"
float Arrivrate;
rate_type Servrate=305.0, Tc=12.0;
int NumPsg;
int N=5;

61

parameters()
iopt
iopt
iopt
iopt
iopt

{
(IOP PR FULL MARK, VAL YES);
(IOP PR RSET, VAL YES);
(IOP PR MC, VAL YES);
(IOP PR RGRAPH,—VAL YES);
(IOP PR PROB, VAL YES);

NumPsg = input ("initial tokens of each station:");
Arrivrate = input ("initial rates of transitions:");

}

net() {
place("Pl"); init("Pl",NumPsg);
place("Pla");
place("Plb"); init("P1b",1);
place("Plc");

trans("tla"); rateval("tla",Arrivrate);
trans("tlb"); rateval("tlb",Servrate);
trans("t1c"); probval("tic",1.0); priority("tic",l);
trans("tld"); rateval("tld",Tc);

iarc("tla","Pl");
iarc("tlb","Pla");
iarc("tlb","Plb");
iarc("tic","Plb");
iarc("tld","Plc");

oarc("t1a","P1a");
oarc("tlb","Pl");
oarc("tlb","Plc");
oarc("tic","Plc");
oarc("tld","P2b");

harc("tic","Pla");

1* *** *1

62

place ("P2") ;
place("P2a");
place("P2b");
place("P2c");

trans("t2a");
trans("t2b");
trans("t2c");
trans("t2d");

init("P2", NumPsg);

rateval("t2a",Arrivrate);
rateval("t2b",Servrate);
probval("t2c",1.0); priority("t2c",2);
rateval("t2d",Tc);

iarc("t2a","P2");
iarc("t2b","P2a");
iarc("t2b","P2b");
iarc("t2c","P2b");
iarc("t2d","P2c");

harc("t2c","P2a");

oarc("t2a","P2a");
oarc("t2b","P2");
oarc("t2b","P2c");
oarc("t2c","P2c");
oarc("t2d","P3b");

1* **/

place("P3");
place("P3a");
place("P3b");
place("P3c");

trans("t3a");
trans("t3b");
trans("t3c");
trans("t3d");

init("P3", NumPsg);

rateval("t3a",Arrivrate);
rateval("t3b",Servrate);
probval("t3c",1.0); priority("t3c",3);
rateval("t3d",Tc);

iarc("t3a","P3");
iarc("t3b","P3a");
iarc("t3b","P3b");
iarc("t3c","P3b");
iarc("t3d","F3c");

harc("t3c","P3a");

oarc("t3a","P3a");
oarc("t3b","P3");
oarc("t3b","P3c");
oarc("t3c","P3c");
oarc("t3d","P4b");

/**/

63

place ("P4") ; init("P4", NumPsg);
place("P4a");
place("P4b");
place("P4c");

trans("t4a"); rateval("t4a",Arrivrate);
trans("t4b"); rateval("t4b",Servrate);

trans("t4c"); probval("t4c",1.0); priority("t4c",4);

trans("t4d"); rateval("t4d",Tc);

iarc("t4a","P4");
iarc("t4b","P4a");
iarc("t4b","P4b");
iarc("t4c","P4b");
iarc("t4d","P4c");

harc("t4c","P4a");

oarc("t4a","P4a");
oarc("t4b","P4");
oarc("t4b","P4c");
oarc("t4c","P4c");
oarc("t4d","P5b");

/**\

place ("P5") ;
place("P5a");
place("P5b");
place("P5c");

trans("t5a");
trans("t5b");
trans("t5c");
trans("t5d");

init("P5",NumPsg);

rateval("t5a",Arrivrate);
rateval("t5b",Servrate);
probval("t5c",1.0); priority("t5c",5);
rateval(Ht5dH,Tc);

iarc("t5a","P5");
iarc("t5b","P5a");
iarc("t5b","P5b");
iarc("t5c","P5b");
iarc("t5d","P5c");

harc("t5c","P5a");

oarc("t5a","P5a");
oarc("t5b","P5");
oarc("t5b","P5c");
oarc("t5c","P5c");
oarc("t5d","P1b");

}

assert() {return (RES_NOERR);}
ac init() {}
ac reach() {fprintf(stderr, "/nThe reahibility graph has been

generated/n/");}

64

reward_type
reward_type
reward_type
reward_type
reward_type
reward_type
reward_type
reward_type
reward_type
reward_type

epl()
ep2 ()
ep3 ()
ep4 ()
ep5 ()
pi:A.()
pb2 ()
pb3()
pb4 ()
pb5 ()

{return(rate("t1a")); }
{return(rate("t2a")); 1
freturn(rate("t3a")); 1
freturn(rate("t4a")); }
{return(rate("t5a")); 1
{return(enabled("tla"));
{return(enabled("t2a"));
{return(enabled("t3a"));
{return(enabled("t4a"));
{return(enabled("t5a"));

reward_type efl()
{return (rate ("tib") +rate ("t2b") +rate ("t3b") +rate ("t4b") +

rate("t5b")); 1

reward_type ef2()
{return (mark ("Pla") +mark ("P2a") +mark ("P3a") +mark ("P4a") +

mark("P5a")); 1

ac _final() {
FILE *ff;
double x, y, z;

ff = fopen("anal.res","w");
fprintf(ff,"\t Offered load = %g\n",

(float)N*Arrivrate/Servrate);
x = expected(efl);
fprintf(ff,"\t UnThroughput = %g\n",x/Arrivrate);
fprintf(ff,"\t Throughput = %g\n", x);
Y=

expected (epi) *expected (pbl) +expected (ep2) *expected (pb2)

+expected (ep3) *expected (pb3) +expected (ep4) *expected (pb4)
+expected(ep5)*expected(pb5);

z = expected(ef2)/(y*(float)N);
fprintf(ff,"\t Ave_package_delay = %g\n", z);
pr_stdaverage(); 1

65

Program 2 (petri_5x.c)

/*

*

of */
*/
*/

/* This program is used for performance evaluation
/* Asymmetric Token Bus LAN with five stations.
/*

float Arrivrate;
rate_type Servrate=305.0, Tc=12.0;
int NumPsg, BufSize;
int N=5;

parameters() {
iopt (I0P_PRFULLMARK, VAL_YES);
iopt (I0P_PR_RSET, VAL_YES);
iopt (I0P_PRMC, VAL_YES);
iopt (I0P_PRRGRAPH, VAL_YES);
iopt (IOP PR PROB, VAL_YES);

NumPsg = input ("initial tokens of each station:");
Arrivrate = input ("initial rates of transitions:");
BufSize = input ("Buffer size:");

net() {
place("Pl"); init("P1",2*NumPsg+BufSize);
place("Pla");
place("Plb"); init("Plb",1);
place("Plc");

trans("tla"); rateval("tla",Arrivrate);
trans("tlb"); rateval("tlb",Servrate);
trans("tlo"); probval("tic",1.0); priority("t1c",1);
trans("tld"); rateval("tld",Tc);

iarc("tla","Pl");
iarc("tlb","Pla");
iarc("tlb","Plb");
iarc("tic","Plb");
iarc("tld","Plc");

oarc("tla","Pla");
oarc("tlb","Pl");
oarc("tlb","Plb");
oarc("t1c","Plc");
oarc("tld","P2b");

harc("tic","Pla");
mharc("tla","Pla",BufSize);

/* *** */

66

place("P2"); init("P2", NumPsg);
place("P2a");spell
place("P2b");
place("P2c");

trans("t2a"); rateval("t2a",Arrivrate);
trans("t2b"); rateval("t2b",Servrate);
trans("t2c"); probval("t2c",1.0); priority("t2c",2);
trans("t2d"); rateval("t2d",Tc);

iarc("t2a","P2"); oarc("t2a","P2a");
iarc("t2b","P2a"); oarc("t2b","P2");
iarc("t2b","P2b"); oarc("t2b","P2b");

iarc("t2c","P2b"); oarc("t2c","P2c");
iarc("t2d","P2c"); oarc("t2d","P3b");

harc("t2c","P2a");

/**/

place("P3");
place("P3a");
place("P3b");
place("P3c");

trans("t3a");
trans("t3b");
trans("t3c");
trans("t3d");

init("P3", NumPsg);

rateval("t3a",Arrivrate);
rateval("t3b",Servrate);
probval("t3c",1.0); priority("t3c",3);
rateval("t3d",Tc);

iarc("t3a","P3");
iarc("t3b","P3a");
iarc("t3b","P3b");
iarc("t3c","P3b");
iarc("t3d","P3c");

harc("t3c","P3a");

oarc("t3a","P3a");
oarc("t3b","P3");
oarc("t3b","P3b");
oarc("t3c","P3c");
oarc("t3d","P4b");

/**/

place("P4"); init("P4", NumPsg) ;
place("P4a");
place("P4b");

67

place("P4c");

trans("t4a"); rateval("t4a",Arrivrate);
trans("t4b"); rateval("t4b",Servrate);

trans("t4c"); probval("t4c",1.0); priority("t4c",4);
trans("t4d") rateval("t4d",Tc);

iarc("t4a","P4");
iarc("t4b","P4a");
iarc("t4b","P4b");
iarc("t4c","P4b");
iarc("t4d","P4c");

harc("t4c","P4a");

oarc("t4a","P4a");
oarc("t4b","P4");
oarc("t4b","P4b");
oarc("t4c","P4c");
oarc("t4d","P5b");

/**/

place ("P5") ;
place("P5a");
place("P5b");
place("P5c");

trans("t5a");
trans("t5b");
trans("t5c");
trans("t5d");

init("P5",NumPsg);

rateval("t5a",Arrivrate);
rateval("t5b",Servrate);

probval("t5c",1.0); priority("t5c",5);
rateval("t5d",To);

iarc("t5a","P5");
iarc("t5b","P5a");
iarc("t5b","P5b");
iarc("t5c","P5b");
iarc("t5d","P5c");

harc("t5c","P5a");

oarc("t5a","P5a");
oarc("t5b","P5");
oarc("t5b","P5b");
oarc("t5c","P5c");
oarc("t5d","P1b");

}

assert() {return (RES NOERR);}
ac _init() {}
ac _reach() {fprintf(stderr, "/nThe reahibility graph has been
generated/n/");}

reward_type ep1() freturn(rate("t1a"));)
reward_type ep2 () {return(rate("t2a")); }

reward_type
reward_type
reward_type
reward_type
reward_type
reward_type
reward_type
reward_type

ep3 ()
ep4 ()
ep5()
pb1()
pb2 ()
pb3 ()
pb4 ()
pb5 ()

{return(rate("t3a")); }
{return(rate("t4a")); }
{return(rate("t5a")); }
{return(enabled("tla"));
{return(enabled("t2a"));
{return(enabled("t3a"));
{return(enabled("t4a"));
{return(enabled("t5a"));

68

reward_type efl()
{return (rate ("tib") +rate ("t2b") +rate ("t3b") +rate ("t4b") +

rate("t5b")); 1

reward_type ef2()
{return(mark("Pla")+mark("P2a")+mark("P3a")+mark("P4a")+

mark("P5a")); 1

ac _final() {
FILE *ff;
double x, y, z;

ff = fopen("anal.res","w");
fprintf(ff,"\t Offered load = %g\n", (float)N*Arrivrate/

Servrate);
x = expected(efl);
fprintf(ff,"\t UnThroughput = %g\n",x/Arrivrate);
fprintf(ff,"\t Throughput = %g\n", x);
y=

expected(epl)*expected(pb1)+expected(ep2)*expected(pb2)

+expected(ep3)*expected(pb3)+expected(ep4)*expected(pb4)
+expected(ep5)*expected(pb5);

z = expected(ef2)/(y*(float)N);
fprintf(ff,"\t Ave_package_delay = %g\n", z);
prstdaverage();)

69

*/
*/
*/
*/

Program 3 (petri5e.c)

/*
/* This program is used for performance evaluation
/* of five-station Token Bus LAN with exhaustive service
/*

#include "user.h"
float Arrivrate;
rate_type Servrate=305.0, Tc=12.0;
int NumPsg, BufSize;
int N=5;

parameters() {
iopt (I0P_PR_FULL_MARK, VAL YES);
iopt (IOP PR RSET, VAL YES);
iopt (IOPIpRMC, VAL YES);
iopt (IOP PR RGRAPH, —VAL YES);
iopt (IOP PR PROB, VAL YES);

NumPsg = input ("initial tokens of each station:");
Arrivrate = input ("initial rates of transitions:");
BufSize = input ("buffer size:");

}

net() {
place("P1"); init("P1",NumPsg);
place("Pla");
place ("Plb") ; init("Plb",1);
place("Plc");

trans("tla"); rateval("tla",Arrivrate);
trans("tlb"); rateval("tlb",Servrate);
trans("tic"); probval("tic",1.0); priority("tic",1);
trans("tld"); rateval("tld",To);

iarc("tla","P1"); oarc("tlau,"P1a");
iarc("t1b","Pla"); oarc("t1b","Pl");
iarc("tlb","Plb"); oarc("tlb","Plb");
iarc("tic","Plb"); oarc("tic","Plc");
iarc("t1d","Plc"); oarc("tld","P2b");
mharc("t1a","P1a",BufSize);
harc("tic","Pla");

/* *** */

70

place ("P2") ; init("P2", NumPsg);
place("P2a");
place("P2b");
place("P2c");

trans("t2a"); rateval("t2a",Arrivrate);
trans("t2b"); rateval("t2b",Servrate);
trans("t2c"); probval("t2c",1.0); priority("t2c",2);
trans("t2d"); rateval("t2d",Tc);

iarc("t2a","P2"); oarc("t2a","P2a");
iarc("t2b","P2a"); oarc("t2b","P2");
iarc("t2b","P2b"); oarc("t2b","P2b");
iarc("t2c","P2b"); oarc("t2c","P2c");
iarc("t2d","P2c"); oarc("t2d","P3b");
mharc("t2a","P2a",BufSize);
harc("t2c","P2a");

/*

place("P3");
place("P3a");
place("P3b");
place("P3c");

trans("t3a");
trans("t3b");
trans("t3c");
trans("t3d");

init("P3", NumPsg);

rateval("t3a",Arrivrate);
rateval("t3b",Servrate);
probval("t3c",1.0); priority("t3c",3);
rateval("t3d",Tc);

iarc("t3a","P3"); oarc("t3a","P3a");
iarc("t3b","P3a"); oarc("t3b","P3");
iarc("t3b","P3b"); oarc("t3b","P3b");
iarc("t3c","P3b"); oarc("t3c","P3c");
iarc("t3d","P3c"); oarc("t3d","P4b");
mharc("t3a","P3a",BufSize);
harc("t3c","P3a");

/**/

place("P4");
place("P4a");
place("P4b");
place("P4c");

trans("t4a");
trans("t4b");

init("P4", NumPsg) ;

rateval("t4a",Arrivrate);
rateval("t4b",Servrate);

71

trans("t4c"); probval("t4c",1.0); priority("t4c",4);
trans("t4d"); rateval("t4d",Tc);

iarc("t4a","P4"); oarc("t4a","P4a");
iarc("t4b","P4a"); oarc("t4b","P4");
iarc("t4b","P4b"); oarc("t4b","P4b");
iarc("t4c","P4b"); oarc("t4c","P4c");
iarc("t4d","P4c"); oarc("t4d","P5b");
mharc("t4a","P4a",BufSize);
harc("t4c","P4a");

/***/

place("P5");
place("P5a");
place("P5b");
place("P5c");

trans("t5a");
trans("t5b");
trans("t5c");
trans("t5d");

init("P5",NumPsg);

rateval("t5a",Arrivrate);
rateval("t5b",Servrate);
probval("t5c",1.0); priority("t5c",5);
rateval("t5d",Tc);

iarc("t5a","P5"); oarc("t5a","P5a");
iarc("t5b","P5a"); oarc("t5b","P5");
iarc("t5b","P5b"); oarc("t5b","P5b");
iarc("t5c","P5b"); oarc("t5c","P5c");
iarc("t5d","P5c"); oarc("t5d","P1b");
mharc("t5a","P5a",BufSize);
harc("t5c","P5a");

1

assert() {return (RES_NOERR);}
ac _init() {}
ac _reach() {fprintf(stderr, "/nThe reahibility graph has been
generated/n/");}

reward_type
reward_type
reward_type
reward_type
reward_type
reward_type
reward_type
reward_type
reward_type
reward_type

epi ()
ep2 ()
ep3 ()
ep4 ()
ep5()
pb1()
pb2 ()
pb3()
pb4 ()
pb5()

freturn(rate("t1a")); }
freturn(rate("t2a")); }
freturn(rate("t3a")); }
freturn(rate("t4a")); }
freturn(rate("t5a")); }
freturn(enabled("t1a"));
(return(enabled("t2a"));
(return(enabled("t3a"));
freturn(enabled("t4a"));
{return(enabled("t5a"));

72

reward_type efl()
{return (rate ("tib") +rate ("t2b") +rate ("t3b") +rate ("t4b") +

rate("t5b")); }

reward_type ef2()
(return(mark("Pla")+mark("P2a")+mark("P3a")+mark("P4a")+

mark("P5a")); }

ac final() {
FILE *ff;
double x, y, z;

ff = fopen("anal.res","w");
fprintf(ff,"\t Offered load = %g\n", (float)N*Arrivrate/

Servrate);
x = expected(efl);
fprintf(ff,"\t UnThroughput = %g\n",x/Arrivrate);
fprintf(ff,"\t Throughput = 96g\n", x);
Y=

expected(epl)*expected(pb1)+expected(ep2)*expected(pb2)

+expected (ep3) *expected (pb3) +expected (ep4) *expected (pb4)
+expected(ep5)*expected(pb5);

z = expected(ef2)/(y*(float)N);
fprintf(ff,"\t Ave_package_delay = %g\n", z);
pr_std_average(); }

73

Program 4 (petri_5g.c)

/*
/*
/* of five-station Token Bus LAN with gated service.
/*

#include "user.h"
float Arrivrate;
rate type Servrate=305 0, Tc=12.0;
int NumPsg, BufSize;
int N=5;

parameters() {
iopt (I0P_PR_FULL_MARK, VAL_YES);
iopt (I0P_PR_RSET, VAL_YES);
iopt (I0P_PR_MC, VAL_YES);
iopt (IOP PR RGRAPH, VAL_YES);
iopt (IOP PR PROB, VAL YE-S);

NumPsg = input ("initial tokens of each station:");
Arrivrate = input ("initial rates of transitions:");
BufSize = input ("buffer size:");

This program is used for performance evaluation

net() {
place("Pl");
place("Pla");
place("Plb");
place("Plc");

trans("tla");
trans("tlb");
trans("tic");
trans(ntld");

init("Pl",NumPsg);

init("Plb",1);

rateval("tla",Arrivrate);
rateval("tlb",Servrate);

probval("tic",1.0); priority("tic",l);
rateval("tld",Tc);

iarc("tla","Pl");
iarc("tlb","Pla");
iarc("tlb","Plb");
iarc("tic","Plb");
iarc("tld","Plc");

oarc("tla","Pla");
oarc("tlb","Pl");
oarc("tlb","Plb");
oarc("tic","Plc");
oarc("tld","P2b");

mharc("tla","Pla",BufSize);
harc("tic","Pla");

harc("t1a","P1b");
1* *** *1

74

place("P2");
place("P2a");
place("P2b");
place("P2c");

trans("t2a");
trans("t2b");

trans("t2c");
trans("t2d");

init("P2", NumPsg) ;

rateval("t2a",Arrivrate);
rateval("t2b",Servrate);

probval("t2c",1.0); priority("t2c",2);
rateval("t2d",Tc);

iarc("t2a","P2"); oarc("t2a","P2a");
iarc("t2b","22a"); oarc("t2b","P2");
iarc("t2b","P2b"); oarc("t2b","P2b");
iarc("t2c","P2b"); oarc("t2c","P2c");
iarc("t2d","P2c"); oarc("t2d","P3b");
mharc("t2a","P2a",BufSize);
harc("t2c","P2a");
harc("t2a","P2b");

1* **/

place("P3");
place("P3a");
place("P3b");
place("P3c");

trans("t3a");
trans("t3b");

trans("t3c");
trans("t3d");

init("P3", NumPsg);

rateval("t3a",Arrivrate);
rateval("t3b",Servrate);

probval("t3c",1.0); priority("t3c",3);
rateval("t3d",Tc);

iarc("t3a","P3"); oarc("t3a","P3a");
iarc("t3b","P3a"); oarc("t3b","P3");
iarc("t3b","P3b"); oarc("t3b","P3b");
iarc("t3c","P3b"); oarc("t3c","P3c");
iarc("t3d","P3c"); oarc("t3d","P4b");
mharc("t3a","P3a",BufSize);
harc("t3c","P3a");
harc("t3a","P3b");

/**/

place("P4"); init("P4", NumPsg);

75

place("P4a");
place("P4b");
place("P4c");

trans("t4a"); rateval("t4a",Arrivrate);
trans("t4b"); rateval("t4b",Servrate);

trans("t4c"); probval("t4c",1.0); priority("t4c",4);
trans("t4d"); rateval("t4d",Tc);

iarc("t4a","P4"); oarc("t4a","P4a");
iarc("t4b","P4a"); oarc("t4b","P4");
iarc("t4b","P4b"); oarc("t4b","P4b");
iarc("t4c","P4b"); oarc("t4c","P4c");
iarc("t4d","P4c"); oarc("t4d","P5b");
mharc("t4a","P4a",BufSize);
harc("t4c","P4a");
harc("t4a","P4b");

/**/

place ("P5") ;
place("P5a");
place("P5b");
place("P5c");

trans("t5a");
trans("t5b");

trans("t5c");
trans("t5d");

init("P5",NumPsg);

rateval("t5a",Arrivrate);
rateval("t5b",Servrate);

probval("t5c",1.0); priority("t5c",5);
rateval("t5d",Tc);

iarc("t5a","P5"); oarc("t5a","P5a");
iarc("t5b","P5a"); oarc("t5b","P5");
iarc("t5b","P5b"); oarc("t5b","P5b");
iarc("t5c","P5b"); oarc("t5c","P5c");
iarc("t5d","P5c"); oarc("t5d","P1b");
mharc("t5a","P5a",BufSize);
harc("t5c","P5a");
harc("t5a","P5b");

}

assert() {return (RES_NOERR);}
ac init() {}
ac reach() {fprintf(stderr, "/nThe reahibility graph has been
generated/n/");}

reward_type
reward_type
reward_type
reward_type
reward_type
reward_type
reward_type
reward_type
reward_type
reward_type

epl ()
ep2()
ep3()
ep4 ()
ep5()
pbl()
pb2 ()
pb3 ()
pb4 ()
pb5()

{return(rate("tla"));)
{return(rate("t2a")); }
{return(rate("t3a")); }
freturn(rate("t4a")); }
{return(rate("t5a")); }
freturn(enabled("tla"));
{return(enabled("t2a"));
{return(enabled("t3a"));
{return(enabled("t4a"));
{return(enabled("t5a"));

76

reward_type efl()
{return (rate ("tlb") +rate ("t2b") +rate ("t3b") +rate ("t4b") +

rate("t5b"));

reward_type ef2()
{return (mark ("Pla") +mark ("P2a") +mark ("P3a") +mark ("P4a") +

mark("P5a")); 1

ac final() {
FILE *ff;
double x, y, z;

ff = fopen("anal.res","w");
fprintf(ff,"\t Offered load = 96g\n",

(float)N*Arrivrate/Servrate);
x = expected(efl);
fprintf(ff,"\t UnThroughput = %g\n",x/Arrivrate);
fprintf(ff,"\t Throughput = 9og\n", x);
Y=

expected(epl)*expected(pb1)+expected(ep2)*expected(pb2)

+expected (ep3) *expected (pb3) +expected (ep4) *expected (pb4)
+expected(ep5)*expected(pb5);

z = expected(ef2)/(y*(float)N);
fprintf(ff,"\t Ave_package_delay = %g\n", z);
pr_std_average(); 1

77

Program 5 (petri 21.c)

/* */

/* This programe is used for performance evaluation */

/* of twenty-one-station Token Bus LAN with single */

/* service. */

/* */

#include "user.h"
float Arrivrate, Scanrate;
rate type Servrate=305.0, Tc=12.0;
int NumPsg;
int N=21;

parameters() {
iopt (I0P_TR_FULL_MARK, VAL YES);
iopt (I0P_TR_RSET, VAL_YES);
iopt (I0P_PR_MC, VAL_YES);
iopt (I0P_PR_RGRAPH, VAL_YES);
iopt (I0PPRPROB, VALYES);

NumPsg = input ("initial tokens of each station:");
Arrivrate = input ("initial rates of transitions:");
Scanrate = input ("Scan rate:");

net() {
place ("Pi") ; init("Pi",NumPsg);
place("Pia");
place ("Pib") ; init("Pib",1);
place("Pic");

place("Pw");
place ("Px") ;
place("Py");
place("Pz");

trans("tia"); rateval("tia",Arrivrate);
trans("tib"); rateval("tib",Servrate);
trans("tic"); probval("tic",1.0); priority("tic",1);

78

trans("tid"); rateval("tid",Tc);

trans("tw"); rateval("tw",Scanrate);
trans("tx"); rateval("tx",Scanrate);
trans("ty"); rateval("ty",Scanrate);
trans("tz"); rateval("tz",Scanrate);

iarc("tia","Pi"); oarc("tia","Pia");
iarc("tib","Pia"); oarc("tib","Pi");
iarc("tib","Pib"); oarc("tib","Pic");
iarc("tic","Pib"); oarc("tic","Pic");
iarc("tid","Pic"); oarc("tid","Pw");
harc("tic","Pia");

iarc("tw","Pw"); oarc("tw","Px");
iarc("tx","Px"); oarc("tx","Py");
iarc("ty","Py"); oarc("ty","Pz");
iarc("tz","Pz"); oarc("tz","Pib");

}

assert() {return (RES NOERR);}

ac _init() {}
ac _reach() {fprintf(stderr, "/nThe reahibility graph has been
generated/n/");}

reward_type epl() {return(rate("tia")); }
reward_type pbl() freturn(enabled("tia")); }
reward_type efl() freturn(rate("tib")); }
reward_type ef2() freturn(mark("Pia")); }

ac _final() {
FILE *ff;
double x, y, z;

ff = fopen("Anal.res","a");
fprintf(ff,"\t Offered load = sIg\n",

(float)N*Arrivrate/Servrate);

x = expected(efl);
fprintf(ff,"\t UnThroughput = %g\n",x/Arrivate);
fprintf(ff,"\t Throughput = %g\n", x);

y = expected(epl)*expected(pb1);
z = expected(ef2)/y;
fprintf(ff,"\t Ave_package_delay = %g\n", z);
fprintf(ff,"\n");
prstdaverage(); 1

79

BIBLIOGRAPHY

1. ANSI/IEEE Standard 802.4, Token-Passing Bus Access Method, New York: IEEE
Press (1985).

2. Brooks, C. A., and 0. C. Yue. " Effect of the token holding timer on MAP perfor-
mance." Proc. Infocom'89. (1989): 342-344.

3. Ibe, 0. C., and X. Cheng. "Approximate analysis of asymmetric single-servicee
token-passing systems." IEEE Trans. Commun. 37 (1989): 572-577.

4. Marsan, M. A., G. conte, and G. Balbo. "A class of generalized stochastic Petri
nets for the performance evaluation of multiprocessor systems." ACM Trans.
Comput. Syst. 2 (1984): 93-122.

5. Proceedings of the First International Workshop on Timed Petri Nets. New York:
IEEE Press (1985).

6. Ciardo, G., J. Muppala, and K. S. Trivedi. "SPNP: Stochastic Petri net Package."
in Proc. 3rd Int. Workshop Petri Net and Performance Models, Kyoto, Japan
(1989): 142-151.

7. Ciardo, G., and J. K. Muppala. Manual for the SPNP Package. Duke University,
Durham (1990).

8. Peterson, J. L. Petri Net Theory and the Modeling of Systems. Englewood Cliffs,
NJ: Prentice Hall (1981).

9. Oliver, C., and K. S. Trivedi. ''Stochastic Petri net models of polling systems."
IEEE J. on Select Area Commu. 8 (1990): 1649-1657.

10. Guo, D., F. DiCiesare, and M. C. Zhou. "Moment generating function approach for
performance evaluation of extended stochastic Petri nets." in Proc. IEEE Int.
Conf. Rob. & Aut., Sacramento, CA (1991): 1309-1314.

11. Zhou, M. C., and F. DiCesare. "Modeling buffers in automated manufacturing
systems using Petri nets." Rensselaer's Second International Conference on
Computer-Integrated Manufacturing, Troy, NY (1990): 265-272.

12. Zhou, M. C., K. McDermott, P. A. Patel, and T. Tang. "Construction of Petri net
based mathematical models of an FMS cell." Proc. of IEEE International Conf.
on Syst., Man, and Cybernetics. Chariottesville, Virginia (1991): 367-372.

13. Murata, T. "Petri nets: properties, analysis and application." Proc. of the IEEE.
77(4) (1989): 541-579.

14. Diaz, M. "Modeling and analysis of communication and cooperation protocols using
Petri net based models." Comput. Networks. 6 (1982): 419-441.

80

81

15. Sajkowski, M. "Protocol verification using discrete-event models." Discrete Event
Systems: Models Applications. New York, Springer-Verlag, (1989): 100-113.

16. Diaz, M., and P. Azema. "Petri net based models for the specification and validation
of protocols." in Lecture Notes in Computer Science, New York: Springer-
verlag. 188 (1985): 101-121.

17. Juanole, G., and C. Faure. "On gateway for internetworking through ISDN: ar-
chitecture and formal modelling with Petri nets." Proc. Infocom'89. (1989):
458-467.

18. Mukherjee, A., L. H. Landweber, and J. C. Strikwerda. "Simultaneous analysis
of flow and error control strategies with congestion-dependent errors." ACM
Performance Evaluation Review. 18 (1990): 86-95.

19. Gressier, E. "A stochastic Petri net model for Ethernet." in Proc. Int. Workshop
on Timed Petri Nets, Torino, Italy, Luly 1-3 (1985): 296-303.

20. Marsan, M. A., and V. Signore. "Timed Petri net performance models of fiber optics
LAN architectures." in Proc. Int. Workshop Petri Nets Perform. Models,
Madison, WI (1987): 66-74.

21. Marsan, M. A., G. Chiola, and A. Fumagali. "An accurate performance model of
CSMA/CD bus LAN." in Lecture Notes in Compter Science, Advances in Petri
Nets. New York: Springer-Verlag. 266 (1987): 146-161.

22. Tanenbaum, A. S. Computer Networks, Second edition. Prentice Hall, Englewood
Cliffs, N.J. (1988).

23. Robbi, A. D., and R. Kurnool. "Token bus LAN performance: modeling and simu-
lation." Proceedings 21st Annual Pittsburgh Conference on Modeling and Sim-
ulation (1990).

24. Pimentel, J. R. Communication Networks for Manufacturing, Prentice Hall, Engle-
wood Cliffs, N.J. (1990).

25. Ma, J. M., and M. C. Zhou. "Performance evaluation of discrete event systems via
stepwise reduction and approximation of stochastic Petri nets." Working paper,
New Jersey Institute of Technology (1992).

26. Sanders, W. H., and J. F. Meyer. "Reduced basemodel construction methods for
stochastic activity networks." IEEE J. on Select Area in Commu. 9 (1991):
25-35.

27. Ciardo, G., and K. S. Trivedi. "A decomposition approach for stochastic Petri net
models." in Proc. of the 4th Int. Workshop on Petri Nets and Performance
Models, Melbourne, Australia (1991): 74-83.

82

28. Catania, V., L. Milazzo, and A. Puliafto. "Enhancing reliability in an aindustrial
LAN: design and performability evaluation." IEEE Trans. on Industrial Elec-
tronics, 37 (1990): 433-441.

29. Casale, S., V.Catania, and L. Vita. " Fault tolerance increasing in token ring
LAN's." in Proc. IEEE 13th Conf. Loacl Comput. Networks, Minneapolis,
MN (1988).

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgement
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Petri Nets in Network Modeling and Analysis
	Chapter 3: Token Bus Local Area Network
	Chapter 4: GSPN Modeling of Taken Bus LAN
	Chapter 5: Performance Analysis
	Chapter 6: Approximation Methods
	Chapter 7: Conclusion and Future Research
	Appendix: Programs
	Bibliography

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

