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ABSTRACT 
Modeling and Performance 

of Token Bus LAN with Petri Nets 

by 
Zhenggang Pan 

A token bus local area network (LAN) is analyzed by Generalized Stochastic Petri 

Nets (GSPN). The GSPN models of both a single station and LAN for four types 

of service schemes are obtained and their liveness property is proved. The network 

performance parameters comprise throughput and delay. The performance analysis 

for both symmetric and asymmetric single-service systems is conducted for varying 

load. In order to analyze a token bus LAN with a large number of stations, an 

approximation method is developed to resolve the .state space explosion problem. A 

token bus LAN with twenty-one stations is used to show the approximation method. 

The contributions of this thesis are 1) modeling token bus LAN using GSPN, 

2) performance evaluation of five-station token bus with symmetric and asymmetric 

service cases, and 3) approximate performance evaluation of a token bus LAN with 

a large number of stations. 
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CHAPTER 1 

INTRODUCTION 

Over the past decade, complex and diverse computer communication networks have 

been established. A computer communication network is a system of interconnected 

computers and other devices capable of exchanging information. A generic network 

component (i.e., computer or device) is refered to as a node or station. A station 

belonging to a network is capable of communicating with any other station in the 

same network. A local area network (LAN) is a computer communication network 

within a small area, which is characterized by an interstation distance in the order of 

magnitude of a few kilometers. Typically, a LAN is owned by a single organization 

such as a hospital, a university, a manufacturing plant, or an office. 

IEEE has produced several LAN standards collectively known as IEEE 802 which 

include CSMA/CD, token bus, and token ring. These standards include the protocols 

of the medium access control (MAC) sublayer based on ISO OSI (Open Systems 

Interconnection) Reference Model as shown in Figure 1.1. This model is composed of 

seven layers. The IEEE 802 standards only concern the lowest two layers (Data Link 

layer and Physical layer). The structure of Data Link layer (layer 2) of OSI model is 

shown in Figure 1.2. The MAC sublayer is located at the bottom of the Data Link 

layer. The token bus standard is called IEEE standard 802.4 [1] published by IEEE 

standards Committee in 1985. It has been widely implemented throughout industry, 

including MAP (Manufacturing Automation Protocol) network architectures used in 

the manufacturing industry. Actually, a MAP network is a broadband token bus LAN 

[2]. 

The increasing computer communication networks pose challenging evaluation 

problems due to their user requirements and complexity. Performance evaluation of 

local area networks is an important topic, since it allows choices to be made in terms of 
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many factors affecting performance. It allows assessment of the different alternatives 

available in local area network designs in order to optimize certain potential benefits, 

while minimizing their associated costs. For example, a MAP network allows certain 

options such as setting various timers and buffer size at the different layers of the OSI 

reference model. Potential benefits (e.g., performance) include improved response 

time, better serviceability, etc. 

Network performance models usually belong to two major categories: analytical 

and simulation. 

Analytical methods are based on mathematical models that characterize the sys-

tem under study. The models are usually queueing models and Petri net models. 

However, while queueing models have been used extensively for the evaluation of 

computing system, their application to systems that exhibit concurrency, synchro-

nization, fault tolerance, and degradable performance is not straightforward. Fur-

thermore, queueing network cannot easily represent fault-related behavior, since the 

probabilistic nature of their structures (e.g., branching probabilities) is fixed. The 

analysis of asymmetric network is complicated and difficult by using queueing mod-

els [3]. On the other hand, Petri nets, especially generalized stochastic Petri nets 

(GSPN) [4], thereof are much better suited to the modeling of systems which ex-

hibit such properties. In particular, the use of timed "transitions" with probabilistic 

timing permits, via different interpretations of tokens, simultaneous representation of 

characteristics related to both performance and reliability [5]. 

Some other advantages of modeling systems with the generalized stochastic Petri 

net include the following: 1) the exact results can be easily obtained for the class 

of systems with Poisson arrivals and exponentially distributed service time. These 

results can be used to validate approximate solutions when these become available. 

2) GSPN results can be obtained interactively, as opposed to simulation results that 

take much longer time. 



Stat ion A Layer number Station B 

Figure 1.1 OSI reference model for a communication system 
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Figure 1.2 IEEE 802 sublayer structure 
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GSPN can be viewed as a way of specifying, generating, and solving Markov 

models. As such, all the capabilities of Markov chains are available. However, the 

state space of the resultant Markov model is generally large even for a small number 

of stations. Thus, an approximate method of modeling networks is needed to obtain 

a compact GSPN model to reduce the state space. This method is important for 

a GSPN to model a LAN with a large number of stations. The computer-aided 

analysis of GSPN models is useful to performance evaluation of networks. A stochastic 

Petri net package called the SPNP [6] is utilized to automatically generate and solve 

the Markov models. Besides obtaining the steady-solution, SPNP can also obtain 

transient solutions and carry out parametric sensitivity analysis [7]. 

Simulation models are somewhat similar to analytical models. Analytical and 

simulation models differ, in that simulation models include model extensions for ob-

taining the solution through the use of a computer program that behaves like the 

system under study. By studying the performance of the program, one can infer the 

performance of the simulated system. 

This thesis is motivated by the increasing importance of Petri net theory's ap-

plication in the area of computer-communication networks and by the importance of 

modeling and performance evaluation of token bus LAN. 

Accordingly, the objectives of this thesis are as follows: 

1. To provide basic concept of a local area network (LAN) and detail about the 

token bus LAN; 

2. To provide an introduction to generalized stochastic Petri nets (GSPN): 

3. To model token bus LAN with generalized stochastic Petri nets; 

4. To present and analyze the performance of the token bus LAN; 

5. To present an approximation method and results for token bus LAN with a 

large number of stations. 
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This thesis is organized as follows. The next chapter provides basic concepts 

and properties of Petri nets, introduction to stochastic Petri nets and generalized 

stochastic Petri nets, and Petri net applications in network modeling and analysis. 

Chapter 3 provides a brief description of IEEE 802.4 protocol, token bus network and 

its service types. Chapter 4 provides the GSPN models, modeling methods and detail 

modeling procedure of token bus LAN. Chapter 5 provides the performance analysis 

based on GSPN models of token bus LAN. In Chapter 6, an approximation method 

is provided to reduce the state space requirement of GSPN for modeling token bus 

LAN with a large number of stations. Finally, Chapter 7 provides a summary of the 

major points discussed in the thesis. 



CHAPTER 2 
PETRI NETS IN NETWORK MODELING 

AND ANALYSIS 

2.1 Generalized Stochastic Petri Nets 

Petri nets are formal graph models that are well suited for representing the flow 

of information and control in systems that exhibit concurrency and synchronization 

characteristics [8]. However, the concept of time is not explicitly given in the original 

definition of Petri nets. For performance evaluation of dynamic systems, it is nec-

essary and useful to introduce time delays associated with transitions and/or places 

in their net models. Such a Petri net model is known as a (deterministic) timed 

Petri net if the delays are deterministically given, or as a stochastic Petri net (SPN) 

if the delays are probabilistically specified with exponential distribution [9]. Based 

on stochastic Petri net (SPN), generalized stochastic petri net (GSPN) is obtained 

by allowing transitions to belong to two different classes: immediate transitions and 

timed transitions with exponential distribution. 

2.1.1 GPSN Definition and Properties 

A GSPN can be defined as an eight-tuple [10]: 

Z = (P,T, I , 0 , rn, H, F, Pr ) 

where 

P = {Pi, P2, ...,p,i}, n > 0, and is a finite set of places; 

T = {ti ,t 2,...,t8 }, s > 0, and is a finite set of transitions with PUT i 0, P nT = 0; 

I: P x T —4 N and is an input function where N = {0,1, 2, ...}; 

0: P x T --►  N and is an output function; 

m: P —> N and is a marking whose ith component is the number of tokens in the 

ith place. An initial marking is denoted by mo; and 
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H: P x T —+ N and is an inhibitor function; 

F: T —4 (0, oo) is a vector whose it  h component is the exponential firing rate if 

the ith transition is timed or otherwise undefined or oo if the ith transition is 

immediate. 

Pr: P ---4 REPEPIP*I, such that EtEp.Pr(t) = 1 and Pr (t) > 0, Vp E P, where p* = 

{t E p*: t is an immediate transition }, and I,' = {t E T : I(p,t) 0}. 

In this definition, the first five tuples define an ordinary Petri net [11], [12]. Within 

it, the places are represented by circles and the transitions are represented by bars. 

A place may contain tokens (represented by dots). The marking of a place is the 

number of tokens which the place contains. The marking of the Petri net is a vector 

that specifies the marking of each place in the net. A place is defined to be an input 

place of a transition if an arc exists from the place to the transition. Similarly, a place 

is defined to be an output place of a transition if an arc exists from the transition 

to the place. An integer d > 1 (default value 1), called its multiplicity, is associated 

with each arc. 

A transition is enabled if each of its input places contains as many tokens as the 

multiplicity of the corresponding arc for an ordinary Petri net. An enabled transition 

can fire. When a transition fires, a number of tokens are removed from each of its 

input places equal to the multiplicity of the corresponding arc and it deposits in each 

of its output places as many tokens as the multiplicity of the corresponding arc. 

H is an inhibitor function from places to transitions. An inhibitor arc connects a 

place to a transition, and is represented by a line terminating in a small circle rather 

than an arrow head. It functions to prevent a transition from firing under certain 

markings. Thus a transition may fire if each of its normal input places contains at 

least as many tokens as the multiplicity of the connecting arc and each of its inhibitor 

input places contains fewer tokens than its multiplicity. Each firing generates a new 
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marking of the net. The token number of inhibitor input place remains unchanged. 

In a GSPN, there are two kinds of transitions. Immediate transitions fire in zero 

time once they are enabled. Timed transitions fire after an exponentially distributed 

random enabling time. In the figures in this thesis immediate transitions are repre-

sented by solid bar, and timed transitions by hollow bar. 

If several immediate transitions have input arcs from the same place, these tran-

sitions must have different probabilities because they cannot fire at the same time. 

Several immediate transitions can fire simultaneously if their input arcs from different 

places. 

The reachability set of a Petri net for a given initial marking is the set of all states 

(or markings) that can be generated from the initial state by a sequence of transition 

firings. 

A GSPN has following behavioral properties which are the same as an ordinary 

Petri net [13]: 

Safeness A place in a Petri net is safe if the number of tokens in that place never 

exceed one. A Petri net is safe if all of its places are safe. 

Boundedness Boundedness is a generalization of safeness of a net with the situation 

that the places can hold a particular number of tokens. A place is k-bounded, 

if the number of tokens in that place cannot exceed an integer k. A Petri net is 

defined to be k-bounded if every place in it is k-bounded. 

Liveness A transition is live, if and only if for any number in the reachability set 

there is a firing sequence whose firing enables the transition. A Petri net is live 

if each of its transition is live. Liveness of a Petri net implies freedom from 

deadlock. 

2.1.2 An Example of GSPN 

An example of a generalized stochastic Petri net is shown in Fig.2.1 to illustrate the 
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Figure 2.1 Single-station GSPN model for limited service 

concept of GSPN. This GSPN model is a station model of token bus LAN with limited 

service in which a station keeps sending packets until either the queue is emptied or 

the number K of packets are sent. 

In the Figure 2.1, eight tuples in GSPN definition are represented as follows. 

A set of places: P P = {Pi, Ma, P.b, Mc, Ad }; 

A set of transitions: 

An input function: 

An output function: 



An inhibitor function: 

A marking: 

A firing rate vector: 

An arc probability vector 

11 

It is noticed that the immediate transitions tic  and t 2d  have input arcs from the 

same place, pib, but these two transitions cannot fire at the same time. The immediate 

transitions tic  and tie  fire simutanously, but the input arcs come from different places 

pib  and pid. Therefore, the probabilities of these three immediate transitions are equal 

to one. 
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2.2 Review of Petri Nets in Communications 

This section reviews various previous efforts to analyze communication system using 

Petri nets. Previous research on Petri net application in the communication area falls 

into two basic categories: protocol specification and verification; network modeling 

and performance. 

• Protocol specification and verification: 

Diaz [14] presented Petri net models for each of the following protocols, and 

verified their liveness. 

1. Alternating bit protocol 

2. Packet switching call establishment protocol 

3. The subscribers and the CCITT No 7 protocol; Connection-Disconnection 

of entities 

4. The X.21 interface protocol 

Sajkowski [15] presented a new approach to the verification of a communica-

tion protocol modelled as a discrete-event system. This approach is based on 

the analysis of a communication protocol considered as a time-driven system. 

The verification technique combines time constraints base projection and the 

examination of the safeness of certain places in a timed Petri net model. 

Diaz [16] surveyed the applicability of Petri nets for protocols, as well as for 

service specification and validation. At the specification level, different classes 

of nets are introduced, and emphasis is given to the modular specification of 

a protocol layer. At the validation level, the analysis techniques implemented 

in the CAD package OGIVE/OVIDE are used in order to prove safety and 

progress properties of a protocol layer. 



13 

Juanole [17] concerned the formal specification of the gateway connecting a 

LAN and a remote computer through ISDN, using Petri nets. 

Mukherjee [18] investigated the performance of flow control and error control 

protocols in computer communication using GSPN. The go-back-n and the se-

lective repeat protocols were considered for error recovery. The sliding-window 

protocol was considered for flow control. 

• Network modeling and performance 

Gressier [19] presented a stochastic Petri net (SPN) model of Ethernet very 

close to design specifications. This model, in spite of row stochastic approxima-

tions and assumptions gave accurate results for network loads less than 50% of 

transmission medium capacity. 

Marsan [20] used deterministic and stochastic Petri nets (DSPN) models to de-

velop models of several fiber optics local area network architectures which were 

Expressnet, D-net, Fasnet, U-net and Token ring, and gave some comparative 

results. 

Marsan [21] developed two timed transition Petri net (TTPN) models of a six-

station LAN with linear topology, in which a finite number of stations located 

randomly along the bus channel and access method based on a 1-persistent 

CSMA/CD protocol. The first model contains a very detailed representation 

of the LAN behavior, modeling each station individually, but the model is in-

tractable from an analytical point of view. Then the second model was a com-

pact model that is a DSPN, and hence permits an analytical approach to its 

solution. 



CHAPTER 3 

TOKEN BUS LOCAL AREA NETWORK 

This chapter is concerned with the detail of token bus local area network (LAN) and 

its service types. 

3.1 Token Bus Principle 

As depicted in Figure 3.1 a physical bus interconnects stations using token bus scheme. 

All stations connected to the bus cooperate in the use of the shared channel. The basic 

idea behind the channel access mechanism involves the concept of the right to use 

the channel. Basically, only the station having the right to use the channel is allowed 

to send messages. The right to use the channel is referred to as the token which is a 

special control frame. Each time a station acquires the token, it can transmit data 

frames for a certain amount of time, then it must pass the token to the next station. 

If the frames are short enough, several consecutive frames may be sent. If a station 

has no data, it passes the token immediately to the next one upon receiving it. Since 

only one station at a time holds the token, collisions do not occur. 

The token is passed from station to station in a cyclic fashion, thus defining a 

logical ring which is shown in Figure 3.1. Therefore, the logical ring determines the 

sequence for passing the token from station to station. As far as the logical ring 

is concerned, each station knows only the identity (i.e., the address) of the station 

preceding it and the one following it. Naturally, a station must know the identity of 

all remaining stations for the purpose of communicating with them, but it has no idea 

about their physical location in the logical ring. Although any station is capable of 

sending and receiving data, stations not included in the logical ring cannot send data, 

since they are never given the token. These stations are called listen only stations 

(e.g., station 6 and 7 in Figure 3.1), because they can receive data but cannot send 

them [22]. 
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Figure 3.1 A token bus LAN 
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An important point to realize is that the physical order in which the stations 

are connected to the cable is not important. The logical order is independent of 

the physical order. Since the cable is inherently a broadcast medium, each station 

receives each frame, discarding those not addressed to it. When a station passes 

the token, it sends a token frame specifically addressed to its logical neighbor in the 

ring, irrespective of where that station is physically located on the cable. That is, 

during normal steady state operation, the right to access the medium passes from one 

station to another. The medium access control (MAC) sublayer provides sequential 

access to the shared bus medium in a logically circular fashion. This MAC sublayer 

determines when a station has the right to access the shared medium by recognizing 

and accepting the token from its predecessor station. For the physical layer, the token 

bus uses the 75-ohm broadband coaxial cable used for cable television. Both single 

and dual cable systems are allowed, with or without headends. Three different analog 

modulation schemes are permitted: phase continuous frequency shift keying, phase 

coherent frequency shift keying, and multilevel duobinary ampliude modulated phase 

shift keying. Speeds of 1, 5, and 10 Mbps are possible [22], [23]. 

3.2 Protocol Description 

Token bus protocol, IEEE standard 802.4, is one of IEEE 802 LAN standard series. 

It is concerned with medium access control (MAC) sublayer [1]. 

3.2.1 MAC sublayer structure 

As depicted in Figure 3.2, MAC sublayer is mainly composed of five elements: 

1. Interface Machine (IFM) 

2. Access Control Machine (ACM) 

3. Receive Machine (RxM) 
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4. Transmit Machine (TxM) 

5. Regenerative Repeater Machine (RRM) 

The function of each machine is as follows: 

• Interface Machine: This machine acts as an interface and buffer between the 

LLC and MAC sublayer. It interprets all incoming service primitives from the 

LLC sublayer and generates appropriate outgoing primitives. It handles the 

queueing of service requests and performs the address recognition function. 

• Access Control Machine: This machine cooperates with the ACM of all other 

stations in the logical ring. As an option, the MAC handles messages with 

priorities. The ACM is also responsible for initialization and maintenance of 

the logical ring, including admission of new stations, failure detection, and 

recovery, and handling other failures in the token bus network. 

• Receive Machine: This machine accepts symbols from the physical layer, assem-

bles them into frames, performs frame validation, and passes the frames to the 

ACM and IFM. The RxM accomplishes this by recognizing the delimiters for 

the start of a frame (i.e., the start delimiter, SD) and the end of the frame (i.e., 

the end delimiter, ED), checking the frame check sequence (FCS), and validat-

ing the frame structure. The RxM also identifies and indicates the reception of 

noise bursts, and bus quiet conditions. 

• Transmit Machine: This machine accepts a data frame from the ACM and 

transmits it as a sequence of symbols, in the proper format to the physical 

layer. The TxM builds a MAC protocol data unit by prefacing each frame with 

the required preamble and SD, and appending the FCS and ED. 

• Regenerative Repeater Machine: This machine is an optional MAC component 

present only in special repeater stations, e.g., in a broadband or a head-end 
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Figure 3.2 Functional configuration of the MAC sublayer 
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demodulator. In such stations the RRM repeats the incoming atomic symbol 

stream, from the physical layer, back to the physical layer for retransmission. 

Of all these five machines, the ACM is both the most critical and the most com-

plex. It is the key control mechanism for the token-bus method. The IFM and RxM 

participate heavily in the operation of the MAC sublayer protocol. 

3.2.2 Priority Mechanisms 

The IEEE 802.4 standard provides an optional priority mechanism. The priority of 

each frame is indicated when the LLC sublayer submits a data frame to be trans-

mitted to the MAC sublayer. The MAC sublayer offers four levels of priority classes, 

called access classes. The access classes are named 0, 2, 4, and 6, with 6 corresponding 

to the highest priority and 0 to the lowest. 

The priority scheme works as follows: each station is internally being divided into 

four substations, one at each priority level. As input comes into the MAC sublayer 

from the above, the data are checked for priority and routed to one of the four 

substations. Thus each substation maintains its timer with stipulated time known 

as Target Rotation Counter (TRTC). When a station recieves the token it begins 

transmitting the frames of priority class 6. When it is done, the token is passed 

internally to the priority 4 substation, which may then transmit until its timer expires, 

at which point the token is passed internally to priority 2 substation. This process is 

repeated until all its frames have been sent or its timer has expired. Again, when the 

station does not have any frames to send, it simply passes the token to its successor. 

In this thesis, it is assumed that the protocol implements the highest priority 

class (class 6) only. In another word, the model assumes a single priority for all data 

packets. 

3.2.3 Frame Format 

The token bus frame format is shown in Figure 3.3. The function of each component 
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in the frame is following. Preamble is used to synchronize the receiver's clock. 

Starting delimiter (SD) and Ending delimiter (ED) fields are used to mark the 

frame boundaries. Both of these fields contain analog encoding of symbols other than 

Os and ls, so that they cannot occur accidentally in the user data. 

Frame control (FC) field is used to distinguish data frames from control frames. 

For the former, it carries the frame's priority. It can also carry an indicator requiring 

the destination station to acknowledge correct or incorrect receipt of the frame. For 

the latter, the Frame control field is used to specify the frame type. The allowed types 

include token passing and various ring maintenance frames, including the mechanism 

for letting new stations enter the ring, the mechanism for allowing stations to leave 

the ring, and so on. 

Destination address (DA) field identifies the station to which the frame is destined. 

This may be 2 or 6 bytes depending on the number of bits used for addressing. All 

addressing on a given LAN shall be of the same length. 

Source address (SA) field identifies the station which originates the frame and has 

the same format and length as the destination address in a given frame. 

Data field may be up to 8182 bytes long when 2-byte addresses are used, and 

up to 8174 bytes long when 6-byte addresses are used. The data field can contain a 

LLC protocol data unit, which is used to exchange LLC information between LLC 

entities or a MAC management data frame which is used to exchange management 

information between MAC management entities or a value specific to one of the MAC 

control frames. 

The Frame check sequence(FCS) field which is a 32 bit frame checking sequence 

is used to detect transmission errors. 

The token frame is a special MAC control frame which gives a station the right 

to transmit data. This frame has the same structure as shown in the Fig. 3-3 except 

that the DA is the successor's address in the logical ring and that the data field is 



Figure 3.3 IEEE 802.4 frame format 
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null. 

3.3 Service Types 

The four service types of token bus LAN are considered as the following [23]: 

Single service: Each station has only single-buffer queue, and can send only one 

packet when each station acquires the token. 

Exhaustive service: When a station receives the token, it continues to send packets 

until the station queue is empty. Then it passes the token to the next station. 

Gated service: The station sends only those packets found at the queue when the 

token is received. 

Limited service: A station continues to send packets until either 1) the queue emp-

ties, or 2) the first fixed number K of packets are sent, whichever comes first. 



CHAPTER 4 

GSPN MODELING OF TOKEN BUS LAN 

4.1 Modelling Method 

Since in a moderstely sized communication system, the complexity of design at the 

implementation level of detail may be unreasonable, researchers are seeking methods 

for the progressive synthesis of Petri net models. Previous research on Petri net design 

methods falls into two basic categories: bottom-up and top-down [11], [12]. 

Bottom-up approaches begin with the construction of subnets for component pro-

cessed, and proceed to the final net by merging and/or linking all these subnets. 

Top-down synthesis is characterized by the stepwise refinement of an aggregate 

Petri net model. Each successive refinement contains increasing detail until the im-

plementation level is reached. 

System decomposition and modular composition are two keys to both approaches. 

The bottom-up method is used to model the token bus LAN as follows: 

Step 1: Model the details of the token bus operation for each station. 

Step 2: Link five submodels as a token bus LAN model based on the order of the 

logical ring. 

4.2 Model Assumptions 

The following general assumptions have been made to simplify model design and 

operation: 

• The LAN has five stations connected to a shared communication channel based 

on the IEEE 802.4 specifications. 

• The acknowledgement mechanisms between stations are not offered to the data 

link layer in these models. 
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• The stations under study are already in the logical ring. No new stations join 

the logic ring and no station drop from the logic ring. The station always knows 

its successor and its predecessor in the logical ring. 

• The protocol implements the highest priority class (class 6) only [23]. 

• Customers arrival is modeled as a Poisson process. 

• The length of package is of Poisson distribution. The mean package length is 

4096 bytes. 

• Channel capacity is 10Mbits/sec. Bus length is 1 Km. The length of token is 

fixed as 100 bits. 

4.3 GSPN Model Design 

In this section, the bottom-up method is used to model operation of token bus LAN 

according to four types of services. First of all, the behaviors of each station must be 

modeled for each type of service. Then, the GSPN models of LAN can be obtained 

by combining each GSPN model of stations. 

4.3.1 Modeling a Single Station 

Single-Service Type 

As shown in Figure 4.1, the single station model consists of one immediate tran-

sition with an inhibitor arc, three timed transitions and four places. 

The immediate transition (t„) has zero time delay. The timed transitions: t za  

has a firing rate A which is the arrival rate of packets; t,b has a firing rate ii, which 

is the service rate of the channel; tid  has a firing rate -y which is the token rotation 

rate. Place p, represents the condition that station i is idle; place pia  represents the 

condition that station i has generated a packet; place p,b  represents the condition that 

station i has acquired the token and starts to transmit a packet; place pi, represents 
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Figure 4.1 Single-station GSPN model for single service 

the condition that station i is passing the token to the next station. When station i 

obtains the token, only one packet can be sent before station i passes the token. 

Exhaustive-Servive Type 

The single station model is shown in Figure 4.2. The difference between this service 

and previous one is that whenever the token arrives at a station it cannot leave the 

station until all packets of the station have been sent. this difference is modeled by 

adding an inhibitor arc from place p,a  to transition tia  with the multiplicity s which 

indicates the buffer size of station i, and by changing the output arc from transition tib 

to place p,b instead of p,c. Whenever station i gets the token, there is a token in place 

p,b. if station i already has packets (i.e. place ma  has tokens), the timed transition 

tib is enabled and keeps firing until place pia  (buffer) has no token (all packets have 

been sent). The immediate transition tt, then fires and a token goes to place p,e. The 

station i starts to pass the token on. The number of tokens, m„ in place p, is usually 

larger than the buffer size, s, implying that station i always has packets to arrive. 
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Figure 4.2 Single-station GSPN model for exhaustive service 

Gated-Service Type 

In this case, on acquiring the token, station i serves only the packets which arrive 

at the station before the token arrives. As shown in Figure 4.3, the single station 

model of gated-service type has made little difference from the model of exhaustive-

service type by adding an inhibitor arc from pm to t,,,. Whenever the token arrives 

at station i (a token in place p,b ), the transition is disenabled by the inhibitor arc. 

No more packets can come into the station buffer (place p,„). The gated function is 

implemented. 

Limited-Service Type 

In this service case, station i, on receiving the token, either transmits all packets 

that it finds at the station if the number of packets is less than k or k of them. The 

single station model is shown in Figure 4.4. The place pid  acts as a counter that 

ensures that at most k packets are transmitted when the token resides at this station. 

An inhibitor arc to transition t 2b  originates from place pid. The multiplicity of the arc 
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Figure 4.3 Single-station GSPN model for gated service 

is k, which means that the timed transition ttb  will fire if and only if there are less 

than k tokens in place p,d , at same time, one token in place p,b  and at least one token 

in place pia. When the number of tokens in place p,d  reaches k, the timed transition 

t,b  is disabled while the immediate transition ttd  is enabled. When station i has sent 

all packets whose number is less than k, i.e., there is no more token in place pia  before 

the number of tokens in place pid  reaches k, immediate transition tic  and t„ fire, and 

the tokens in place p,d  are discarded by transition tie. 

4.3.2 Modeling LAN 

Based on the bottom-up method, the models of a token bus LAN can be obtained by 

connecting each station model according to the order of the logical ring. The GSPN 

models of LAN with five stations for four service cases are described next. 

Single-Service Case 

The LAN model is shown in Figure 4.5. This model is obtained by linking each 
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Figure 4.4 Single-station GSPN model for limited service 

single-station model based on the order of the logical ring. Places pi  to p5  represent 

the condition that stations 1 to 5 are idle; the places pib to p5b represent the condition 

that stations have already received the token and start to transmit packets. The 

place pi, to p5, represent the condition that the token is passing to the next station. 

Currently, stations 1, 3, and 5 are idle and station 1 has received the token but no 

packet arrive at it. Stations 2 and 4 have generated a packet but have to wait for 

the token to come. Considering the current marking in Figure 4.5, since pib contains 

the token, the immediate transition t ic  is enabled. It fires immediately and a token 

is deposited to place pi,. This models the situation that station 1, on receiving the 

token and finding no packet to transmit, immediately passes the token to station 2. 

Since station 2 has a packet (a token in p2a ), as soon as the token reaches to station 

2, the timed transition t2b  is enabled. Its firing causes a token to be deposited to 

place 192  and another token to be deposited in place plc. This represents that station 

2 returns to the idle state and starts to pass the token to station 3. 



Figure 4.5 GSPN model for single-service (symmetric) token bus LAN 
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Exhaustive-Service Case 

In this service case, the token cannot leave a station until all packets in that station 

have been transmitted. Whenever the token leaves a station the number of packets 

in that station is zero. Figure 4.6 shows the GSPN model for an exhaustive-service 

token bus LAN. The multiplicity of the inhibitor arc is s which represnts the buffer 

size of a station. Note that as long as s < mi  holds, the value of rn, does not affect 

the results. This means that the model is good for an infinite-population system, in 

which packets always come to stations. In Figure 4.6, station 1 must immediately 

pass the token to station 2 because there is no packet in station 1 at the moment 

when the token reaches the station. 

Gated-Service Case 

The model of LAN with this service is shown in Figure 4.7. In this service case, 

after acquiring the token, a station sends only those packets that arrive at that station 

prior to the token arrival. This function is implemented by adding an inhibitor arc 

from places pzb  to transitions tia , i = 1, 2, 3, 4, 5. As soon as a station acquires the 

token, tia  is disenabled and no more packets can come into that station. For the 

current marking in Figure 4.7, the station 1 will send all four packets in place pia, 

then t ic  fires and a token is deposited to pi,. At this time, tid  is enabled to fire, 

passing the token to station 2. 

Limited-Service Case 

In this service case, a station, on receiving the token, transmits at most k packets. 

The GSPN model for this type of service is shown in Figure 4.8. For the current 

marking, the token is in station 1. If k = 3, station 1 can send only three of packets 

in place pia, and then has to pass the token to the next station. If k > 4, when 

station 1 has transmitted four packets in pia  no more packets come in. The station 

then passes the token to the next. The counter number k and buffer size s can be 

different at each station. 



Figure 4.6 GSPN model for exhaustive-service token bus LAN 



Figure 4.7 GSPN model for gated-service token bus LAN 



Figure 4.8 GSPN model for limited-service token bus LAN 



CHAPTER 5 

PERFORMANCE ANALYSIS 

The single-service case is considered to do the experiments to analyze the performance 

of token bus LAN because this type of service is common to LAN. 

The experiment results can be obtained by solving the GSPN models using stochas-

tic Petri net package (SPNP), which is a C-language-based package [6]. The input 

to the SPNP consists of the immediate transitions, the timed transitions and their 

firing rates, the input and output arcs for each transition, and the initial marking. 

It generates the rechability graph, eliminates the vanishing markings, and constructs 

the continuous-time Markov chain. Finally, it obtains the steady-state probability of 

each marking using a combination of the successive overrelaxation and Gauss-Seidel 

methods. If requested, it also provides the mean number of tokens in each place. 

The experiments are conducted for both symmetric and asymmetric systems. A 

symmetric system is the one in which each station has same GSPN model structure 

and has same arrival rate and service rate. An asymmetric system is the system in 

which each station may have different GSPN models (i.e., different service type) and 

different arrival rates and service rates. 

5.1 Performance Variables 

Performance variables can be classified into transient and steady state. The token 

bus model solution is based on steady state variables, which will be presented. Per-

formance variables of interest for the IEEE 802.4 standard are average packet delay 

and average throughput. 

Average packet delay is defined as the average elapsed time between the instant 

when a packet arrives at a station and the instant when the last bit of the packet 

is transmited. There are two major components of average packet delay: queueing 
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delay and transmision delay. Queueing delay includes the time when packets wait for 

their turn in order to be sent. Packets wait because the station does not have the 

token when they arrive. Transmission delay is the time that takes to send all bits in 

a packet at the normal data rate. 

Throughput is defined as a number of bytes (or packets) of user data transferred 

per second. There are two kinds of throughput: the actual measured throughput and 

throughput that network is capable of providing. The actual measured throughput 

in packets per second is used in the experiments. 

Once performance variables are identified, they need to be incorporated in the 

experiment file to obtain the corresponding solution model. The incorporation of 

average packet delay into the experiment file is relatively straightforward. By using 

the Little's law, average packet delay is calculated as the ratio of the average number 

of packets in the system (number of token from la  D to 10 ,  , 5a and from pi&  to p5b) over 

the average arrival rate of packets from the LLC sublayer (the firing rates from tla  to 

tsa  and from ti  to ts,). Throughput: 

Average packet delay: 

where, Mt (p,a ) and Mt (pib) are average number of tokens in places pia and Pib; 

g(t,a), §(t,b ) and :§(t,,) are average firing rates of transitions t,a , t,b and t2c. 

5.2 Experiment Parameters 

The following parameters are used in the experiments: 
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1. The arrival processes to each station are statistically equivalent Poisson pro-

cesses with equal average arrival rates, A packets/second. 

2. The packet length is exponentially distributed with an average value of Xp  = 

4096 bytes. 

3. The token length is fixed with the value of Xt  = 12 bytes. 

4. Channel capacity is R = 10 Mbps. 

5. Token bus length is L = 1000 meters. 

6. Number of station is N = 5. 

7. The end-to-end propagation delay of 1000-meter bus is r = 5ysec. 

8. The walk time, w, is the time to transfer the token, plus the token propagation 

delay, between successive stations in the logical ring. 

The walk time, w, depends on the average propagation delay between stations. 

This delay is determined with the assumption that transfer between any two 

stations on the bus is equally likely. The solution to this problem in probability 

gives approximately one-third of the length of the bus as the average spacing 

between randomly chosen stations, or an average time delay of r/3 seconds. 

9. Average service rate, y, is supposed to be Poisson distributed with average value 

y = RI X p  = 305 packets/sec. 

10. Average token rotation time, Tc, is approximately assumed to be exponentially 

distributed with average value T, = N(X pl R+w) because the length of packets 

is exponentially distributed. So, the token rotation rate: -y = 1/Tc. 
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11. Offered load, p is defined as: 

where, N is the number of stations, A is an average arrival rate, and y is an 

average service rate. 

5.3 Overview of Experiments 

The experiments have been done to prove the liveness of the GSPN models and 

to evaluate the performance of single service for both symmetric and asymmetric 

systems. 

As far as the liveness property, all models of four-service types have been solved 

by means of SPNP based on C-language programs and reachability sets have been 

obtained. Therefore, there is no deadlock in these GSPN models and they are live. 

The reachability graph of single-service GSPN model with two stations is shown in 

Figure 5.1. The reachability graph of other models cannot be shown because of too 

many states. 

For the symmetric system, the GSPN model shown in Figure 4.5 is used to in-

vestigate the network performance. All parameters of each station are assumed to 

be the same to meet the condition of symmetric systems. The offered load to the 

network is changeable so that the network performance can be measured. For a given 

offered-load, the arrival rate can be calculated accordingly and assigned to all timed-

transitions, tia, (i = 1, ..., 5) as the initial firing rates. After running SPNP, each 

group of the network data can be obtained numerically according to each value of the 

offered load. The values of performance variables, throughput (S) and average packet 

delay (D), are obtained by calculating each group of network data using formula (5.1) 

and (5.2). Data for transition firing rate are summarized in Table 5.1. 
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Figure 5.1 Reachability graph of single-service GSPN model with two stations 



Transition tia  tib tic  tid 

Firing Rate 

(packets/s) 

P1-1 
N 305 immediate 12 

Table 5.1 Data for firing rates 

For the asymmetric system, the GSPN model, as shown in Figure 5.2, consists 

of one single-station model of exhaustive service and four single-station models of 

single service. In order to compare the performance with that of the symmetric 

system mentioned above, all parameters of each station, such as arrival rate A, token 

rotation rate -y and so on, are kept the same. In this sense, the asymmtric system 

means that only the structure of GSPN model is not the same for each station in the 

network. In another word, each station in the network could have different service 

type. The buffer size of the station with exhaustive service is five (s = 5). With the 

change of offered load, the performance of the network is obtained. 

The experiments of twenty-one station token bus LAN for single service have 

been conducted to show that the approximation method is effective. The detail will 

be discussed in the next chapter. 

5.4 Results and Analysis 

Two principal metrics of network performance are throughput and average packet 

delay, which are investigated in this study as the offered load varies. 

5.4.1 Throughput vs Offered Load 
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Figure 4.5 GSPN model for asymmetric token bus LAN 
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The throughput performances of both symmetric system and asymmetric system are 

shown in Figures 5.3 and 5.4. Both throughputs increase with offered load and reach 

their maximum values at higher load. For the same offered load, the throughput of 

the asymmetric system is higher than that of the symmetric system. This result can 

be analyzed qualitatively. The network throughput can be qualitatively represented 

as follows [22]: 

where 

Th is the average token holding time of each station; 

w is token walking time which is a constant: 

In the asymmetric system, there is one station with exhaustive service. when the 

token arrives at that station, the token cannot leave until that station has sent all 

of its packets. So, the token holding time of that station is much loger than that 

of the others, and average token holding time for each station in this asymmetric 

system becomes longer. In the symmetric system, each station has the same token 

holding time statistically (the length of packets is exponentially distributed), which 

is the service time of one packet. Because the token walking time is unchangeable, 

due to fixed token length, the network throughput mainly depends on the average 

token holding time Th. That is why the throughput of asymmetric system is higher 

than that of symmetric system. 

In the thesis, the offered load indicates the input of data packets only. The token 

rotating around all idle stations does not included in the offered load. In the design of 

the GSPN models, timed transition t ib  has been considered only for the transmission of 



Figure 5.3 Throughput performance of symmetric system 
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Figure 5.6 Delay performance of asymmetric system 
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data packets. The token transmission is modeled by transitions t„ and tid. Therefore, 

it can be seen from Figure 5.3 and Figure 5.4 that the thoughput curve passes through 

the origin when no packets come to the network. 

5.4.2 Delay vs Offered Load 

The performance of average packet delay is shown in Figures 5.5 and 5.6 for symmetric 

and asymmetric systems, respectively. Both delays increase with the offered load. 

It can be seen that the delay of the latter is lower than that of the former at the 

same value of the offered load. Since one of stations has exhaustive service it makes 

average packet delay become lower for whole network. This result can be analyzed 

from queuing thoery qualitatively. The average packet delay for the three service type 

is as follows [24]: 

Exhaustive Service 

Gated Service 

Limited Service 

where, Yp is the second moment of packet length, ) .p  is the first moment. 

From the corresponding average packet delay expresssions, it can be shown that 

Single service can be considered as a special case of limited service. Therefore, the 

average packet delay of asymmetric system which has one exhaustive and four single 

service stations is less than that of symmetric system which has all single service 

stations. 



Figure 5.5 Delay performance of symmetric system 
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Figure 5.4 Throughput performance of asymmetric system 



CHAPTER 6 

APPROXIMATION METHODS 

This chapter deals with the state space explosion problems in performance analysis 

of a token bus LAN with more than five stations. An effort is made to develop an 

effective approximation method for evaluating token bus LAN with any number of 

stations by reducing the state space. 

6.1 Presentation of the Problem 

As mentioned above, stochastic Petri nets and extensions are a truly useful model class 

for representing distributed systems, in general, and local area computer-communication 

networks, in particular. Among them, Generalized Stochastic Petri Nets (GSPN) al-

lows not only exponentially distributed timing delays but also immediate transitions 

and probabilitic arcs. GSPN is well suited to modeling and performance of local area 

networks, as discussed in the last Chapter. However, with the changes of LAN envi-

ronment, such as increase of buffer size for each or some stations, or station number 

growth, tranditional model construction and solution methods for these models limit 

their usefulness, due to the extremely rapid growth of the size of the state space used 

in model solution. 

The experiment presents the state explosion problem as shown in Table 6.1. 

6.2 Reduction Method of GSPN 

There are many reduction methods which can be used to effectively reduce a large net 

to a small one only for non-timed Petri nets. However, some rules can be modified 

to hold true for generalized stochastic Petri nets when temporal/stochastic charac-

teristics are considered. Reducible subnets are selected and analyzed in isolation by 
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Table 6.1 State space vs number of stations and buffer size 
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constructing their associated Petri nets. 

6.2.1 Reduction Definitions 

Flow equivalent server concept can be used to develop a reduced equivalent net based 

on the following definitions [24]. 

Definition 1: Z' = (P' ,T', I', O', H' ,m', F' ,1:1) is a subnet of Z = (P, T, I, O, 

H,m, F, I:1) if P' C P, T' C T, and if, Vp E P', t E T', l'(p,t) = I(p,t), 01(p,t) = 

0(p, t), H' (p,t) = H(p,t), m'(p) = m(p), F'(t) = F(t), and 13,f(t) = Pr (t). We can 

write Z' C Z. 

Definition 2: Given Z' C Z, Z' is a p-t subnet/block iff Pin 0 0,  pout = 0,  

Tin 0 0, and Put  0 0. Where, Pin is a set of input places; pout  1 • s a set of output 

places; Tan  is a set of input transitions; and Put is a set of output places. 

Definition 3: An associated Petri net of a p-t subnet Z', denoted by S(Z') is 

a Petri net which links the input and output nodes of Z' based on the token flow 

directions in Z, where a node is referred to as either a place or a transition. 

Definition 4: A GSPN is called an equivalint net, Z", of a subnet, Z', if under 

the same markings, 1) the average time from any input node in Z" equals to that in 

Z'; 2) the number of states in S(Z") is less than that in S(Z'); and 3) S(Z") is so if 

S(Z) is bounded, live, and reversible. 

It is noted that "the same marking" mean that the number of tokens of the 

corresponding places in Z" and Z' must be the same. Condition 3 in Definition 4 

ensures that the reduced net has the desired qualitative properties. 

6.2.2 Subnet Selection 

In order to obtain the accurate approximation results, the following rule must be 

obeyed to select a subnet for a given GSPN. 

Selection Rule: 1) The associated net of Z' = (P', T', I', 0' ,11' ,m' , F', 

P,f) C Z is bounded, live, and reversible; and 2) {p : 3t E T' — Tin 3 I(p,t) 0 0, 
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In this rule, the first part ensures that the subnet can be evaluated. In addition, 

the preservation of the qualitative properties of the reduction will be guaranteed, 

which implies the reduced original net can be further evaluated if an equivalent net 

replaces the subnet. The second part ensures that the subnet can be isolated, inde-

pendent of the rest of Z. This rule ensures the flow equivalent principle. 

6.2.3 Equivalent Net Construction 

Based on the token flow equivalent concept, the flexibility to select various subnets 

leads to the variety of equivalent nets. The construction catalog can be classified as 

the following: single-input-single-output case, single-input-multiple- output case and 

multiple-input-multiple-output case. In single-input-single-output case, there are four 

types of subnet structures. one of them is called the place to transition subnet, p-t 

subnet [25] as shown in Figure 6.1. The p-t subnet is selected as a equivalent net in 

this research because it is suited to the token bus LAN environment. The details will 

be mentioned in the following section. 

6.3 Procedure 

As discussed in [25], for a discrete event system, such as token bus networks, a GSPN 
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Z is modeled and the initial marking is determined. A procedure to derive the results 

is formulated as follows: 

1. If Z can be evaluated with the software packages available, it is done; otherwise, 

2. According to the subnet selection rule, identify a subnet Z' while keeping those 

transitions or places or subnets in Z unchanged if they are of special interests. 

3. Construct the equivalent net for this subnet and derive the parameters for equiv-

alent net based on the throughputs on Z': 

(a) Find the maximum numbers of tokens possible in the related places 

(b) Find the throughput by starting from l's in some places to the maximum 

numbers or the numbers whose increase will not change the throughputs 

of the subnet 

(c) Calculate the parameters in the equivalent net 

If S(Z') cannot be evaluated with software packages, either re-select a subnet 

or select a sub-subnet in S(Z') and continue this procedure. 

4. Let Z" be the net which is the reduced net of Z by replacing Z' with its equiv-

alent net. Let Z = Z", go to the first step. 

It is necessary to keep the right size of the subnet since a big subnet itself will be 

difficult to evaluate though the final net may have a few number of states. The net 

which satisfies conditions may not exist. Then we must loosen the conditions at the 

expense of approximation accuracy. 

6.4 Application Illustration 

The traditional GSPN modeling method for token bus LAN results in the state space 

explosion problem with the increasing of station number or of buffer size, as mentioned 
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before. In order to show that GSPN analysis method is still effective even under the 

condition that token bus LAN has a large number of stations, it is necessary to 

combine the approximation method with the tranditional GSPN modeling method to 

solve the state space explosion problem. 

The single-service case of token bus LAN with twenty-one stations, has been taken 

as an example to illustrate the application of the approximation method. The five-

station GSPN model is selected as a subnet Z' of twenty-one station GSPN model Z, 

as shown in Figure 6.2. It is clear that the subnet Z' satisfies the subnet selection rule. 

Based on the reduction definitions mentioned above, the subnet Z' can be formulated 

as a single-input-single-output p-t subnet Z", from pl b through whole subnet to 4, in 

Figure 6.2. Therefore, the associated reduced equivalent net can be obtained as the 

same as shown in Figure 6.1. In the GSPN model Z of a twenty-one station token bus 

LAN, every five-station is simplified as a p-t subnet Z" so that the reduced GSPN 

model of Z has been obtained as shown in Figure 6.3. 

At the point of network performance, the delay or throughput characteristics of 

token bus LAN with single service is mainly depend on the token rotation time which 

is the reverse of the firing rate of t,d , i = 1, 2, ..., 5 in Figure 6.2. That is the reason 

why the reduced subset is selected in that way. 

The single-station performance evaluation of the reduced twenty-one station GSPN 

model has been done. The delay and throughput characteristics are shown in Figures 

6.4 and 6.5. Compare to the five-station single-service case, the throughput has de-

creased and the dealy has increased. The state space of reduced twenty-one station 

model has been much reduced to 11 tangible markings and 1 vanishing markings. 

This has shown that the approximation method is very powerful in dealing with the 

state explosion for token bus LAN. 

The two outstanding advantages can be obtained from above experiment which 

has been performed by this approximation method. 



Figure 6.2 Subnet of token bus LAN with twenty-one stations 
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Figure 6.3 Reduced GSPN model of 21-station token bus LAN 



Figure 6.4 Throughput performance of reduced model 
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Figure 6.5 delay performance of reduced model 
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• It is clear that the performance of any single station in the toke bus LAN can be 

obtained by this method. The whole network performance could be evaluated 

based on every single station performance. 

• This approximation method keeps GSPN effective in modeling and performance 

of token bus LAN, no matter how large number of stations the LAN has. For 

example, a token bus LAN with 101 stations can be reduced to 20 equivalent 

nets with 1 station and then evaluated. 

Most LAN interconnections of personal computers have interfaces that can store 

at most one data packet at a time, thus token passing PC LANs can be modeled by 

single-service schemes. This research is only for single-service case of token bus LAN. 

It is possible to extend approximation methods for other service cases of token bus 

LAN. 



CHAPTER 7 

CONCLUSION AND FUTURE RESEARCH 

In this thesis, GSPN models of token bus LAN with four types of services have been 

developed. Based on GSPN models, the performance of token bus LAN has been 

investigated. Athough computer-aided solution of stochastic Petri nets is used in the 

study, traditional model construction and solution method generate the state space 

explosion problem when GSPN models become more complicated with the change of 

network environment. In order to solve this problem, an approximation method of 

modeling token bus LAN has been applied. Network performance in this case is also 

investigated. 

The GSPN models developed in this thesis are appropriate for performance studies 

on the basis of a small number of stations. The approximation method of GSPN 

models is effective in performance and modeling of token bus LAN with a large number 

of stations. The contribution of this thesis is that the modeling and performance 

evaluation of token bus LAN can be systematically conducted with GSPN not only 

for a small number of stations but also for any large number of stations in the single-

service case. It can been seen that generalized stochastic Petri nets (GSPN) is a useful 

analytical tool of local area networks and their usefulness is featured as follows: 

I. Exact numerical results of network performance can be obtained in an interac-

tive way; 

2. Petri net methods take much less time than simulation methods; 

3. Both steady and transient state analysis can be performed for network perfor-

mance; 

4. Very detailed analysis can be concentrated on a part of a large-scale network; 
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5. Small modifications of the GSPN model can represent big changes of network 

operations; 

6. Performance analysis of asymmetric systems does not create specific problems 

but they are difficult by using queueing models; 

7. Reliability analysis can be performed by using GSPN. 

The work in this thesis can be extended in four directions. First, performance 

of token bus LAN with other service cases, such as, limited and gated services, can 

be analyzed by using the proposed models in this thesis. Second, the approximation 

method for asymmetric network with a large number of stations could be developed 

based on the method in this thesis. The idea is that a) selecting a small number of 

stations as a subnet and reducing it to an approximate model, b) combining approx-

imate models to form a reduced whole GSPN model of the token bus LAN. Some 

other approximation methods are presented in [25], [26], [27]. Third, the models of 

this thesis can be extended to incorporate all priority classes (i.e. class 4, 2. and 0). 

Performance evaluation of token bus LAN with priority classes is closer to practical 

applications of token bus LAN. Fourth, reliability analysis of token bus LAN could be 

performed, which is useful in industrial environment [28], [29]. For reliability analysis 

of token bus LAN based on GSPN models, two parameters can been chosen to assess 

the system: the MTTF (mean time to failure) linked to reliability and the mean num-

ber of packets transmitted in the network before failure as an index of performability. 

Failre times are assumed to be exponentially distributed random vriables. The LAN 

can be considered to be functioning as long as stations are functional. 



APPENDIX 



APPENDIX: Programs 

program 1 fpetri5.c) 

/* 
/* This program is uesd to evaluate performance of Token 
/* Bus LAN with single service (symmetric system). 
/*  

#include "user.h" 
float Arrivrate; 
rate_type Servrate=305.0, Tc=12.0; 
int NumPsg; 
int N=5; 
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parameters() 
iopt 
iopt 
iopt 
iopt 
iopt 

{ 
(IOP PR FULL MARK, VAL YES); 
(IOP PR RSET, VAL YES); 
(IOP PR MC, VAL YES); 
(IOP PR RGRAPH,—VAL YES); 
(IOP PR PROB, VAL YES); 

NumPsg = input ("initial tokens of each station:"); 
Arrivrate = input ("initial rates of transitions:"); 

} 

net() { 
place("Pl"); init("Pl",NumPsg); 
place("Pla"); 
place("Plb"); init("P1b",1); 
place("Plc"); 

trans("tla"); rateval("tla",Arrivrate); 
trans("tlb"); rateval("tlb",Servrate); 
trans("t1c"); probval("tic",1.0); priority("tic",l); 
trans("tld"); rateval("tld",Tc); 

iarc("tla","Pl"); 
iarc("tlb","Pla"); 
iarc("tlb","Plb"); 
iarc("tic","Plb"); 
iarc("tld","Plc");  

oarc("t1a","P1a"); 
oarc("tlb","Pl"); 
oarc("tlb","Plc"); 
oarc("tic","Plc"); 
oarc("tld","P2b"); 



harc("tic","Pla"); 

1* ************************************************* *1 
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place ("P2") ; 
place("P2a"); 
place("P2b"); 
place("P2c"); 

trans("t2a"); 
trans("t2b"); 
trans("t2c"); 
trans("t2d"); 

init("P2", NumPsg); 

rateval("t2a",Arrivrate); 
rateval("t2b",Servrate); 
probval("t2c",1.0); priority("t2c",2); 
rateval("t2d",Tc); 

iarc("t2a","P2"); 
iarc("t2b","P2a"); 
iarc("t2b","P2b"); 
iarc("t2c","P2b"); 
iarc("t2d","P2c"); 

harc("t2c","P2a");  

oarc("t2a","P2a"); 
oarc("t2b","P2"); 
oarc("t2b","P2c"); 
oarc("t2c","P2c"); 
oarc("t2d","P3b"); 

1* ****************************************************/ 

place("P3"); 
place("P3a"); 
place("P3b"); 
place("P3c"); 

trans("t3a"); 
trans("t3b"); 
trans("t3c"); 
trans("t3d");  

init("P3", NumPsg); 

rateval("t3a",Arrivrate); 
rateval("t3b",Servrate); 
probval("t3c",1.0); priority("t3c",3); 
rateval("t3d",Tc); 

iarc("t3a","P3"); 
iarc("t3b","P3a"); 
iarc("t3b","P3b"); 
iarc("t3c","P3b"); 
iarc("t3d","F3c"); 

harc("t3c","P3a");  

oarc("t3a","P3a"); 
oarc("t3b","P3"); 
oarc("t3b","P3c"); 
oarc("t3c","P3c"); 
oarc("t3d","P4b"); 

/**********************************************************/ 
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place ("P4") ; init("P4", NumPsg); 
place("P4a"); 
place("P4b"); 
place("P4c"); 

trans("t4a"); rateval("t4a",Arrivrate); 
trans("t4b"); rateval("t4b",Servrate); 

trans("t4c"); probval("t4c",1.0); priority("t4c",4); 

trans("t4d"); rateval("t4d",Tc); 

iarc("t4a","P4"); 
iarc("t4b","P4a"); 
iarc("t4b","P4b"); 
iarc("t4c","P4b"); 
iarc("t4d","P4c"); 

harc("t4c","P4a");  

oarc("t4a","P4a"); 
oarc("t4b","P4"); 
oarc("t4b","P4c"); 
oarc("t4c","P4c"); 
oarc("t4d","P5b"); 

/**********************************************************\ 

place ("P5") ; 
place("P5a"); 
place("P5b"); 
place("P5c"); 

trans("t5a"); 
trans("t5b"); 
trans("t5c"); 
trans("t5d");  

init("P5",NumPsg); 

rateval("t5a",Arrivrate); 
rateval("t5b",Servrate); 
probval("t5c",1.0); priority("t5c",5); 
rateval(Ht5dH,Tc); 

iarc("t5a","P5"); 
iarc("t5b","P5a"); 
iarc("t5b","P5b"); 
iarc("t5c","P5b"); 
iarc("t5d","P5c"); 

harc("t5c","P5a");  

oarc("t5a","P5a"); 
oarc("t5b","P5"); 
oarc("t5b","P5c"); 
oarc("t5c","P5c"); 
oarc("t5d","P1b"); 

} 

assert() {return (RES_NOERR);} 
ac init() {} 
ac reach() {fprintf(stderr, "/nThe reahibility graph has been 



generated/n/");} 
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reward_type 
reward_type 
reward_type 
reward_type 
reward_type 
reward_type 
reward_type 
reward_type 
reward_type 
reward_type  

epl() 
ep2 () 
ep3 () 
ep4 () 
ep5 () 
pi:A.() 
pb2 () 
pb3() 
pb4 () 
pb5 ()  

{return(rate("t1a")); } 
{return(rate("t2a")); 1 
freturn(rate("t3a")); 1 
freturn(rate("t4a")); } 
{return(rate("t5a")); 1 
{return(enabled("tla")); 
{return(enabled("t2a")); 
{return(enabled("t3a")); 
{return(enabled("t4a")); 
{return(enabled("t5a")); 

reward_type efl() 
{return (rate ("tib") +rate ("t2b") +rate ("t3b") +rate ("t4b") + 

rate("t5b")); 1 

reward_type ef2() 
{return (mark ("Pla") +mark ("P2a") +mark ("P3a") +mark ("P4a") + 

mark("P5a")); 1 

ac _final() { 
FILE *ff; 
double x, y, z; 

ff = fopen("anal.res","w"); 
fprintf(ff,"\t Offered load = %g\n", 

(float)N*Arrivrate/Servrate); 
x = expected(efl); 
fprintf(ff,"\t UnThroughput = %g\n",x/Arrivrate); 
fprintf(ff,"\t Throughput = %g\n", x); 
Y= 

expected (epi) *expected (pbl) +expected (ep2) *expected (pb2) 

+expected (ep3) *expected (pb3) +expected (ep4) *expected (pb4) 
+expected(ep5)*expected(pb5); 

z = expected(ef2)/(y*(float)N); 
fprintf(ff,"\t Ave_package_delay = %g\n", z); 
pr_stdaverage(); 1 
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Program 2 (petri_5x.c) 

/* 

 

* 

  

of */ 
*/ 
*/ 

/* This program is used for performance evaluation 
/* Asymmetric Token Bus LAN with five stations. 
/*  

float Arrivrate; 
rate_type Servrate=305.0, Tc=12.0; 
int NumPsg, BufSize; 
int N=5; 

parameters() { 
iopt (I0P_PRFULLMARK, VAL_YES); 
iopt (I0P_PR_RSET, VAL_YES); 
iopt (I0P_PRMC, VAL_YES); 
iopt (I0P_PRRGRAPH, VAL_YES); 
iopt (IOP PR PROB, VAL_YES); 

NumPsg = input ("initial tokens of each station:"); 
Arrivrate = input ("initial rates of transitions:"); 
BufSize = input ("Buffer size:"); 

net() { 
place("Pl"); init("P1",2*NumPsg+BufSize); 
place("Pla"); 
place("Plb"); init("Plb",1); 
place("Plc"); 

trans("tla"); rateval("tla",Arrivrate); 
trans("tlb"); rateval("tlb",Servrate); 
trans("tlo"); probval("tic",1.0); priority("t1c",1); 
trans("tld"); rateval("tld",Tc); 

iarc("tla","Pl"); 
iarc("tlb","Pla"); 
iarc("tlb","Plb"); 
iarc("tic","Plb"); 
iarc("tld","Plc");  

oarc("tla","Pla"); 
oarc("tlb","Pl"); 
oarc("tlb","Plb"); 
oarc("t1c","Plc"); 
oarc("tld","P2b"); 

harc("tic","Pla"); 
mharc("tla","Pla",BufSize); 

/* ************************************************* */ 
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place("P2"); init("P2", NumPsg); 
place("P2a");spell 
place("P2b"); 
place("P2c"); 

trans("t2a"); rateval("t2a",Arrivrate); 
trans("t2b"); rateval("t2b",Servrate); 
trans("t2c"); probval("t2c",1.0); priority("t2c",2); 
trans("t2d"); rateval("t2d",Tc); 

iarc("t2a","P2"); oarc("t2a","P2a"); 
iarc("t2b","P2a"); oarc("t2b","P2"); 
iarc("t2b","P2b"); oarc("t2b","P2b"); 

iarc("t2c","P2b"); oarc("t2c","P2c"); 
iarc("t2d","P2c"); oarc("t2d","P3b"); 

harc("t2c","P2a"); 

/******************************************************/ 

place("P3"); 
place("P3a"); 
place("P3b"); 
place("P3c"); 

trans("t3a"); 
trans("t3b"); 
trans("t3c"); 
trans("t3d"); 

init("P3", NumPsg); 

rateval("t3a",Arrivrate); 
rateval("t3b",Servrate); 
probval("t3c",1.0); priority("t3c",3); 
rateval("t3d",Tc); 

iarc("t3a","P3"); 
iarc("t3b","P3a"); 
iarc("t3b","P3b"); 
iarc("t3c","P3b"); 
iarc("t3d","P3c"); 

harc("t3c","P3a");  

oarc("t3a","P3a"); 
oarc("t3b","P3"); 
oarc("t3b","P3b"); 
oarc("t3c","P3c"); 
oarc("t3d","P4b"); 

/**********************************************************/ 

place("P4"); init("P4", NumPsg) ; 
place("P4a"); 
place("P4b"); 
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place("P4c"); 

trans("t4a"); rateval("t4a",Arrivrate); 
trans("t4b"); rateval("t4b",Servrate); 

trans("t4c"); probval("t4c",1.0); priority("t4c",4); 
trans("t4d") rateval("t4d",Tc); 

iarc("t4a","P4"); 
iarc("t4b","P4a"); 
iarc("t4b","P4b"); 
iarc("t4c","P4b"); 
iarc("t4d","P4c"); 

harc("t4c","P4a");  

oarc("t4a","P4a"); 
oarc("t4b","P4"); 
oarc("t4b","P4b"); 
oarc("t4c","P4c"); 
oarc("t4d","P5b"); 

/************************************************************/ 

place ("P5") ; 
place("P5a"); 
place("P5b"); 
place("P5c"); 

trans("t5a"); 
trans("t5b"); 
trans("t5c"); 
trans("t5d");  

init("P5",NumPsg); 

rateval("t5a",Arrivrate); 
rateval("t5b",Servrate); 

probval("t5c",1.0); priority("t5c",5); 
rateval("t5d",To); 

iarc("t5a","P5"); 
iarc("t5b","P5a"); 
iarc("t5b","P5b"); 
iarc("t5c","P5b"); 
iarc("t5d","P5c"); 

harc("t5c","P5a");  

oarc("t5a","P5a"); 
oarc("t5b","P5"); 
oarc("t5b","P5b"); 
oarc("t5c","P5c"); 
oarc("t5d","P1b"); 

} 

assert() {return (RES NOERR);} 
ac _init() {} 
ac _reach() {fprintf(stderr, "/nThe reahibility graph has been 
generated/n/");} 

reward_type ep1() freturn(rate("t1a")); ) 
reward_type ep2 () {return(rate("t2a")); } 



reward_type 
reward_type 
reward_type 
reward_type 
reward_type 
reward_type 
reward_type 
reward_type  

ep3 () 
ep4 () 
ep5() 
pb1() 
pb2 () 
pb3 () 
pb4 () 
pb5 ()  

{return(rate("t3a")); } 
{return(rate("t4a")); } 
{return(rate("t5a")); } 
{return(enabled("tla")); 
{return(enabled("t2a")); 
{return(enabled("t3a")); 
{return(enabled("t4a")); 
{return(enabled("t5a")); 
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reward_type efl() 
{return (rate ("tib") +rate ("t2b") +rate ("t3b") +rate ("t4b") + 

rate("t5b")); 1 

reward_type ef2() 
{return(mark("Pla")+mark("P2a")+mark("P3a")+mark("P4a")+ 

mark("P5a")); 1 

ac _final() { 
FILE *ff; 
double x, y, z; 

ff = fopen("anal.res","w"); 
fprintf(ff,"\t Offered load = %g\n", (float)N*Arrivrate/ 

Servrate); 
x = expected(efl); 
fprintf(ff,"\t UnThroughput = %g\n",x/Arrivrate); 
fprintf(ff,"\t Throughput = %g\n", x); 
y= 

expected(epl)*expected(pb1)+expected(ep2)*expected(pb2) 

+expected(ep3)*expected(pb3)+expected(ep4)*expected(pb4) 
+expected(ep5)*expected(pb5); 

z = expected(ef2)/(y*(float)N); 
fprintf(ff,"\t Ave_package_delay = %g\n", z); 
prstdaverage(); ) 
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*/ 
*/ 
*/ 
*/ 

Program 3 (petri5e.c) 

/*  
/* This program is used for performance evaluation 
/* of five-station Token Bus LAN with exhaustive service 
/*  

#include "user.h" 
float Arrivrate; 
rate_type Servrate=305.0, Tc=12.0; 
int NumPsg, BufSize; 
int N=5; 

parameters() { 
iopt (I0P_PR_FULL_MARK, VAL YES); 
iopt (IOP PR RSET, VAL YES); 
iopt (IOPIpRMC, VAL YES); 
iopt (IOP PR RGRAPH, —VAL YES); 
iopt (IOP PR PROB, VAL YES); 

NumPsg = input ("initial tokens of each station:"); 
Arrivrate = input ("initial rates of transitions:"); 
BufSize = input ("buffer size:"); 

} 

net() { 
place("P1"); init("P1",NumPsg); 
place("Pla"); 
place ("Plb") ; init("Plb",1); 
place("Plc"); 

trans("tla"); rateval("tla",Arrivrate); 
trans("tlb"); rateval("tlb",Servrate); 
trans("tic"); probval("tic",1.0); priority("tic",1); 
trans("tld"); rateval("tld",To); 

iarc("tla","P1"); oarc("tlau,"P1a"); 
iarc("t1b","Pla"); oarc("t1b","Pl"); 
iarc("tlb","Plb"); oarc("tlb","Plb"); 
iarc("tic","Plb"); oarc("tic","Plc"); 
iarc("t1d","Plc"); oarc("tld","P2b"); 
mharc("t1a","P1a",BufSize); 
harc("tic","Pla"); 

/* ************************************************* */ 
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place ("P2") ; init("P2", NumPsg); 
place("P2a"); 
place("P2b"); 
place("P2c"); 

trans("t2a"); rateval("t2a",Arrivrate); 
trans("t2b"); rateval("t2b",Servrate); 
trans("t2c"); probval("t2c",1.0); priority("t2c",2); 
trans("t2d"); rateval("t2d",Tc); 

iarc("t2a","P2"); oarc("t2a","P2a"); 
iarc("t2b","P2a"); oarc("t2b","P2"); 
iarc("t2b","P2b"); oarc("t2b","P2b"); 
iarc("t2c","P2b"); oarc("t2c","P2c"); 
iarc("t2d","P2c"); oarc("t2d","P3b"); 
mharc("t2a","P2a",BufSize); 
harc("t2c","P2a"); 

/* 

place("P3"); 
place("P3a"); 
place("P3b"); 
place("P3c"); 

trans("t3a"); 
trans("t3b"); 
trans("t3c"); 
trans("t3d");  

init("P3", NumPsg); 

rateval("t3a",Arrivrate); 
rateval("t3b",Servrate); 
probval("t3c",1.0); priority("t3c",3); 
rateval("t3d",Tc); 

iarc("t3a","P3"); oarc("t3a","P3a"); 
iarc("t3b","P3a"); oarc("t3b","P3"); 
iarc("t3b","P3b"); oarc("t3b","P3b"); 
iarc("t3c","P3b"); oarc("t3c","P3c"); 
iarc("t3d","P3c"); oarc("t3d","P4b"); 
mharc("t3a","P3a",BufSize); 
harc("t3c","P3a"); 

/**********************************************************/ 

place("P4"); 
place("P4a"); 
place("P4b"); 
place("P4c"); 

trans("t4a"); 
trans("t4b");  

init("P4", NumPsg) ; 

rateval("t4a",Arrivrate); 
rateval("t4b",Servrate); 
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trans("t4c"); probval("t4c",1.0); priority("t4c",4); 
trans("t4d"); rateval("t4d",Tc); 

iarc("t4a","P4"); oarc("t4a","P4a"); 
iarc("t4b","P4a"); oarc("t4b","P4"); 
iarc("t4b","P4b"); oarc("t4b","P4b"); 
iarc("t4c","P4b"); oarc("t4c","P4c"); 
iarc("t4d","P4c"); oarc("t4d","P5b"); 
mharc("t4a","P4a",BufSize); 
harc("t4c","P4a"); 

/*************************************************************/ 

place("P5"); 
place("P5a"); 
place("P5b"); 
place("P5c"); 

trans("t5a"); 
trans("t5b"); 
trans("t5c"); 
trans("t5d"); 

init("P5",NumPsg); 

rateval("t5a",Arrivrate); 
rateval("t5b",Servrate); 
probval("t5c",1.0); priority("t5c",5); 
rateval("t5d",Tc); 

iarc("t5a","P5"); oarc("t5a","P5a"); 
iarc("t5b","P5a"); oarc("t5b","P5"); 
iarc("t5b","P5b"); oarc("t5b","P5b"); 
iarc("t5c","P5b"); oarc("t5c","P5c"); 
iarc("t5d","P5c"); oarc("t5d","P1b"); 
mharc("t5a","P5a",BufSize); 
harc("t5c","P5a"); 

1 

assert() {return (RES_NOERR);} 
ac _init() {} 
ac _reach() {fprintf(stderr, "/nThe reahibility graph has been 
generated/n/");} 

reward_type 
reward_type 
reward_type 
reward_type 
reward_type 
reward_type 
reward_type 
reward_type 
reward_type 
reward_type  

epi () 
ep2 () 
ep3 () 
ep4 () 
ep5() 
pb1() 
pb2 () 
pb3() 
pb4 () 
pb5()  

freturn(rate("t1a")); } 
freturn(rate("t2a")); } 
freturn(rate("t3a")); } 
freturn(rate("t4a")); } 
freturn(rate("t5a")); } 
freturn(enabled("t1a")); 
(return(enabled("t2a")); 
(return(enabled("t3a")); 
freturn(enabled("t4a")); 
{return(enabled("t5a")); 
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reward_type efl() 
{return (rate ("tib") +rate ("t2b") +rate ("t3b") +rate ("t4b") + 

rate("t5b")); } 

reward_type ef2() 
(return(mark("Pla")+mark("P2a")+mark("P3a")+mark("P4a")+ 

mark("P5a")); } 

ac final() { 
FILE *ff; 
double x, y, z; 

ff = fopen("anal.res","w"); 
fprintf(ff,"\t Offered load = %g\n", (float)N*Arrivrate/ 

Servrate); 
x = expected(efl); 
fprintf(ff,"\t UnThroughput = %g\n",x/Arrivrate); 
fprintf(ff,"\t Throughput = 96g\n", x); 
Y= 

expected(epl)*expected(pb1)+expected(ep2)*expected(pb2) 

+expected (ep3) *expected (pb3) +expected (ep4) *expected (pb4) 
+expected(ep5)*expected(pb5); 

z = expected(ef2)/(y*(float)N); 
fprintf(ff,"\t Ave_package_delay = %g\n", z); 
pr_std_average(); } 
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Program 4 (petri_5g.c) 

/* 
/* 
/* of five-station Token Bus LAN with gated service. 
/*  

#include "user.h" 
float Arrivrate; 
rate type Servrate=305 0, Tc=12.0; 
int NumPsg, BufSize; 
int N=5; 

parameters() { 
iopt (I0P_PR_FULL_MARK, VAL_YES); 
iopt (I0P_PR_RSET, VAL_YES); 
iopt (I0P_PR_MC, VAL_YES); 
iopt (IOP PR RGRAPH, VAL_YES); 
iopt (IOP PR PROB, VAL YE-S); 

NumPsg = input ("initial tokens of each station:"); 
Arrivrate = input ("initial rates of transitions:"); 
BufSize = input ("buffer size:"); 

This program is used for performance evaluation 

net() { 
place("Pl"); 
place("Pla"); 
place("Plb"); 
place("Plc"); 

trans("tla"); 
trans("tlb"); 
trans("tic"); 
trans(ntld");  

init("Pl",NumPsg); 

init("Plb",1); 

rateval("tla",Arrivrate); 
rateval("tlb",Servrate); 

probval("tic",1.0); priority("tic",l); 
rateval("tld",Tc); 

iarc("tla","Pl"); 
iarc("tlb","Pla"); 
iarc("tlb","Plb"); 
iarc("tic","Plb"); 
iarc("tld","Plc");  

oarc("tla","Pla"); 
oarc("tlb","Pl"); 
oarc("tlb","Plb"); 
oarc("tic","Plc"); 
oarc("tld","P2b"); 

mharc("tla","Pla",BufSize); 
harc("tic","Pla"); 



harc("t1a","P1b"); 
1* ************************************************* *1 
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place("P2"); 
place("P2a"); 
place("P2b"); 
place("P2c"); 

trans("t2a"); 
trans("t2b"); 

trans("t2c"); 
trans("t2d"); 

init("P2", NumPsg) ; 

rateval("t2a",Arrivrate); 
rateval("t2b",Servrate); 

probval("t2c",1.0); priority("t2c",2); 
rateval("t2d",Tc); 

iarc("t2a","P2"); oarc("t2a","P2a"); 
iarc("t2b","22a"); oarc("t2b","P2"); 
iarc("t2b","P2b"); oarc("t2b","P2b"); 
iarc("t2c","P2b"); oarc("t2c","P2c"); 
iarc("t2d","P2c"); oarc("t2d","P3b"); 
mharc("t2a","P2a",BufSize); 
harc("t2c","P2a"); 
harc("t2a","P2b"); 

1* ****************************************************/ 

place("P3"); 
place("P3a"); 
place("P3b"); 
place("P3c"); 

trans("t3a"); 
trans("t3b"); 

trans("t3c"); 
trans("t3d");  

init("P3", NumPsg); 

rateval("t3a",Arrivrate); 
rateval("t3b",Servrate); 

probval("t3c",1.0); priority("t3c",3); 
rateval("t3d",Tc); 

iarc("t3a","P3"); oarc("t3a","P3a"); 
iarc("t3b","P3a"); oarc("t3b","P3"); 
iarc("t3b","P3b"); oarc("t3b","P3b"); 
iarc("t3c","P3b"); oarc("t3c","P3c"); 
iarc("t3d","P3c"); oarc("t3d","P4b"); 
mharc("t3a","P3a",BufSize); 
harc("t3c","P3a"); 
harc("t3a","P3b"); 

/**********************************************************/ 

place("P4"); init("P4", NumPsg); 
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place("P4a"); 
place("P4b"); 
place("P4c"); 

trans("t4a"); rateval("t4a",Arrivrate); 
trans("t4b"); rateval("t4b",Servrate); 

trans("t4c"); probval("t4c",1.0); priority("t4c",4); 
trans("t4d"); rateval("t4d",Tc); 

iarc("t4a","P4"); oarc("t4a","P4a"); 
iarc("t4b","P4a"); oarc("t4b","P4"); 
iarc("t4b","P4b"); oarc("t4b","P4b"); 
iarc("t4c","P4b"); oarc("t4c","P4c"); 
iarc("t4d","P4c"); oarc("t4d","P5b"); 
mharc("t4a","P4a",BufSize); 
harc("t4c","P4a"); 
harc("t4a","P4b"); 

/************************************************************/ 

place ("P5") ; 
place("P5a"); 
place("P5b"); 
place("P5c"); 

trans("t5a"); 
trans("t5b"); 

trans("t5c"); 
trans("t5d");  

init("P5",NumPsg); 

rateval("t5a",Arrivrate); 
rateval("t5b",Servrate); 

probval("t5c",1.0); priority("t5c",5); 
rateval("t5d",Tc); 

iarc("t5a","P5"); oarc("t5a","P5a"); 
iarc("t5b","P5a"); oarc("t5b","P5"); 
iarc("t5b","P5b"); oarc("t5b","P5b"); 
iarc("t5c","P5b"); oarc("t5c","P5c"); 
iarc("t5d","P5c"); oarc("t5d","P1b"); 
mharc("t5a","P5a",BufSize); 
harc("t5c","P5a"); 
harc("t5a","P5b"); 

} 

assert() {return (RES_NOERR);} 
ac init() {} 
ac reach() {fprintf(stderr, "/nThe reahibility graph has been 
generated/n/");} 



reward_type 
reward_type 
reward_type 
reward_type 
reward_type 
reward_type 
reward_type 
reward_type 
reward_type 
reward_type  

epl () 
ep2()  
ep3()  
ep4 () 
ep5() 
pbl() 
pb2 () 
pb3 () 
pb4 () 
pb5()  

{return(rate("tla")); ) 
{return(rate("t2a")); } 
{return(rate("t3a")); } 
freturn(rate("t4a")); } 
{return(rate("t5a")); } 
freturn(enabled("tla")); 
{return(enabled("t2a")); 
{return(enabled("t3a")); 
{return(enabled("t4a")); 
{return(enabled("t5a")); 
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reward_type efl() 
{return (rate ("tlb") +rate ("t2b") +rate ("t3b") +rate ("t4b") + 

rate("t5b")); 

reward_type ef2() 
{return (mark ("Pla") +mark ("P2a") +mark ("P3a") +mark ("P4a") + 

mark("P5a")); 1 

ac final() { 
FILE *ff; 
double x, y, z; 

ff = fopen("anal.res","w"); 
fprintf(ff,"\t Offered load = 96g\n", 

(float)N*Arrivrate/Servrate); 
x = expected(efl); 
fprintf(ff,"\t UnThroughput = %g\n",x/Arrivrate); 
fprintf(ff,"\t Throughput = 9og\n", x); 
Y= 

expected(epl)*expected(pb1)+expected(ep2)*expected(pb2) 

+expected (ep3) *expected (pb3) +expected (ep4) *expected (pb4) 
+expected(ep5)*expected(pb5); 

z = expected(ef2)/(y*(float)N); 
fprintf(ff,"\t Ave_package_delay = %g\n", z); 
pr_std_average(); 1 
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Program 5 (petri 21.c) 

/*  */ 

/* This programe is used for performance evaluation */ 

/* of twenty-one-station Token Bus LAN with single */ 

/* service. */ 

/*  */ 

#include "user.h" 
float Arrivrate, Scanrate; 
rate type Servrate=305.0, Tc=12.0; 
int NumPsg; 
int N=21; 

parameters() { 
iopt (I0P_TR_FULL_MARK, VAL YES); 
iopt (I0P_TR_RSET, VAL_YES); 
iopt (I0P_PR_MC, VAL_YES); 
iopt (I0P_PR_RGRAPH, VAL_YES); 
iopt (I0PPRPROB, VALYES); 

NumPsg = input ("initial tokens of each station:"); 
Arrivrate = input ("initial rates of transitions:"); 
Scanrate = input ("Scan rate:"); 

net() { 
place ("Pi") ; init("Pi",NumPsg); 
place("Pia"); 
place ("Pib") ; init("Pib",1); 
place("Pic"); 

place("Pw"); 
place ("Px") ; 
place("Py"); 
place("Pz"); 

trans("tia"); rateval("tia",Arrivrate); 
trans("tib"); rateval("tib",Servrate); 
trans("tic"); probval("tic",1.0); priority("tic",1); 
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trans("tid"); rateval("tid",Tc); 

trans("tw"); rateval("tw",Scanrate); 
trans("tx"); rateval("tx",Scanrate); 
trans("ty"); rateval("ty",Scanrate); 
trans("tz"); rateval("tz",Scanrate); 

iarc("tia","Pi"); oarc("tia","Pia"); 
iarc("tib","Pia"); oarc("tib","Pi"); 
iarc("tib","Pib"); oarc("tib","Pic"); 
iarc("tic","Pib"); oarc("tic","Pic"); 
iarc("tid","Pic"); oarc("tid","Pw"); 
harc("tic","Pia"); 

iarc("tw","Pw"); oarc("tw","Px"); 
iarc("tx","Px"); oarc("tx","Py"); 
iarc("ty","Py"); oarc("ty","Pz"); 
iarc("tz","Pz"); oarc("tz","Pib"); 

} 

assert() {return (RES NOERR);} 

ac _init() {} 
ac _reach() {fprintf(stderr, "/nThe reahibility graph has been 
generated/n/");} 

reward_type epl() {return(rate("tia")); } 
reward_type pbl() freturn(enabled("tia")); } 
reward_type efl() freturn(rate("tib")); } 
reward_type ef2() freturn(mark("Pia")); } 

ac _final() { 
FILE *ff; 
double x, y, z; 

ff = fopen("Anal.res","a"); 
fprintf(ff,"\t Offered load = sIg\n", 

(float)N*Arrivrate/Servrate); 

x = expected(efl); 
fprintf(ff,"\t UnThroughput = %g\n",x/Arrivate); 
fprintf(ff,"\t Throughput = %g\n", x); 



y = expected(epl)*expected(pb1); 
z = expected(ef2)/y; 
fprintf(ff,"\t Ave_package_delay = %g\n", z); 
fprintf(ff,"\n"); 
prstdaverage(); 1 
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