

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

Dynamic Machine Scheduling, Expansion, and

Control- of a Generic Workcell

Submitted to

Department of Computer and Information Science

New Jersey Institute of Technology

In Partial Fulfillment

of

the Requirements for the Degree

of Master of Science

By

Peter A. Murray

Approval Page

Date Submitted: 1/13/92

Date Approved: 1/13 /92

Approved Approved By (Faculty Advisor):

0.3 Abstract

Factory automation has come a long way since the invention of the automatic

flour mill. A workcell is a group of machines (robots) working together to produce a

product. In the past workcells have been hard wired using methods such as

Programmable Logic Controllers (PLCs). To change a part of this system would require

reprogramming the entire system.

The Generic Work Cell (GWC) is a dynamic architecture which allows a workcell

to be modified on the fly. The architecture enables the generation of new cells with

minimal effort, and the modification of the system without reprogramming the entire

system. The concept behind the GWC is that in every workcell there are generic parts

which are the same for all workcells. For instance, the machine scheduler is an example

of a generic piece which is used by all systems. The GWC is also a reactive system This

implies that the system is capable of adjusting itself to environmental disturbances, such

as machine shutdown or startup.

Page 3

0.4 Key Words and Phrases

When discussing programs which are run on a robot, the word recipe is

substituted for the word program.

Programmable Logic Controller(PLC) - A hard wired workcell controller.

GWC - Generic WorkCell.

MSCHED - Machine Scheduler.

HI - Human Interface.

LS - Lot Server.

MS - Machine Server.

ERS - Equipment Recipe Server.

CAS - Cell Alarm Server.

UNIX - An AT&T/Bell Labs multitasking computer operating system.

SUN - Sun Micro Systems work station computer.

X-Window - A Graphical user interface for UNIX.

Workcell - A collection of robots working together to produce a product.

SCR - Siemens Corporate Research.

CMM - Coordinate Measuring Machine.

MAZAK - A computer controlled milling machine.

Recipe - A program which runs on a robot to control the robot.

Lot Scripts - A program which controls the operations of a workcell.

Lot Entities - A Lot Script recognized by the workcell.

OE - Operation Entity.

Hierarchal Control - A multi level controller.

Non-Hierarchical - A single level controller.

Alarm - A signal sent to the HI from another module to notify the HI of an
event.

Resource - This can be machines, robots, or stock used in the cell such as

Page 4

aluminum or brass.

Message Buss - A communications architecture to pass messages from one
module to another with out knowing where the receiver is.

ISIS - A communications package which is used to implement the Message
Buss.

P2P - A German communications package which was used but dropped from its lack of
reliability.

Machine Interface - The module which communicates between the Robots and the workcell.

WC - Work Cell side of the Machine Interface.

ME - Machine side of the Machine Interface.

Feed Back - A way of adjusting a Recipe by using past data.

Feed Forward - A way of adjusting a Recipe so the current product is
manufactured correctly from the current point.

Ingres - A commercial database package.

VMS - Digital Equipment's proprietary operating system.

Logs/Log files - Used for debugging problems in the GWC software.

Modules - Independent executable programs in the GWC.

DBT - Data Base Tool.

CTool - Conversation Tool.

CMON - Conversation Monitor.

C, C++ - Computer programming languages.

Machine - A reference to a robot.

IMPS - Intelligent Moving Processes.

Home - The position a robot goes to align its self.

MEN - Dummy ME half of a Machine Interface, N of them.

WCN - Dummy WC half of a Machine Interface, N of them.

KERMIT - A communications package to move data between two computers.

Page 5

0.5 Table of Contents

0.1 Title Page
0.2 Acceptance/Approval Page
0.3 Abstract
0.4 Key Words and Phrases
0.5 Table of Contents
1.0 Introduction

1.1 Motivation
1.2 Previous and Current Work with Workcell/Generic
1.3 A Brief Description of the Siemens-NJIT Generic
1.4 Modules of the GWC

1.4.1 Equipment Recipe Server (ERS)
1.4.2 Machine Server (MS)
1.4.3 Human Interface (HI)
1.4.4 Lot Server (LS)
1.4.5 Cell Alarm Server (CAS)
1.5 Purpose/Objectives/Justification of the Project
1.6 Thesis Organization

2.0 System Functional Specifications
2.1 Functional Requirements
2.2 User Input Preview
2.3 User output Preview
2.4 System Data Base/File Structure Preview
2.5 External and internal Limitations and Restrictions

3.0 System Performance Requirements
3.1 Efficiency
3.2 Reliability

3.2.1 Description of Reliability Measures
3.2.2 Error/Failure Detection and Recovery
3.2.3 Allowable/Acceptable Error/Failure Rate

3.3 Security
3.3.1 Hardware Security
3.3.2 Software Security
3.3.3 Data Security

3.4 Maintainability
3.5 Modifiability
3.6 Portability

4 0 System Design Overview
4.1 System Internal Data Structure Preview
4.2 Description of System Operations
4.3 Equipment Configuration
4.4 Implementation Languages
4.5 Required Support Software

Page 6

5.0 System Data Structure and Communications Specifications
5.1 System Data Base/File Structure Specification

5.1.1 MSCHED Conversations
5.1.2 MSCHED Database Tables
5.1.3 WC Conversations
5.1.4 WC Database Tables
5.1.5 Lot Script Conversations
5.1.6 Lot Script Database Tables

5.2 System Internal Data Structure Specification
5.3 Evaluation of Communications

6.0 Module Design Specifications
6.1 Operation Entities (scripts)

6.1.1 Logic of the Lot Script
6.2 Machine Scheduler, MSCHED

6.2.1 HI Screens
6.2.2 MSCHED Functions

6.2.2.1 Startup
6.2.2.2 Shutdown
6.2.2.3 Machine Request
6.2.2.4 Cancel Request
6.2.2.5 Update ME Status
6.2.2.6 Accept Type Change
6.2.2.6 Unreserve Machine

6.3 Machine Interface (WC/ME)
6.3.1 Machine Interface Workcell Side (WC)
6.3.2 WC Functions

6.3.2.1 Startup
6.3.2.2 Shutdown
6.3.2.3 Setup_Run
6.3.2.4 Start _Run
6.3.2.5 Upload
6.3.2.6 Download
6.3.2.7 Run Complete_ Action _ _
6.3.2.8 Alarm Action

6.4 Module Design Summary
7.0 Demonstration of the System

7.1 Items/Functions to be Demonstrated
7.2 Description of Demonstration
7.3 Justification of Demonstration
7.4 Demonstration Run Procedures and Results
7.5 Discussion of Demonstration

8.0 Conclusions
8.1 Summary
8.2 Problems Encountered and Solved

8.2.1 Technical Problems Encountered and Solved

Page 7

8.2.2 Non-Technical Problems Encountered and Solved
8.3 Suggestions for better Approaches to Problem/Project
8.4 Suggestions for Future Extensions to Project
8.5 Acknowledgments

9.0 Bibliography
10.0 Figure/Program Listings Directory

10.1 Figure 1
10.2 Figure 2
10.3 Figure 3
10.4 Figure 4
10.5 Figure 5

10.60 Figure 6.0
10.61 Figure 6.1
10.62 Figure 6.2
10.63 Figure 6.3
10.64 Figure 6.4
10.65 Figure 6.5
10.66 Figure 6.6
10.67 Figure 6.7
10.68 Figure 6.8
10.69 Figure 6.9

11.0 Listing 1, Operation Entity/Lot Script
11.1 Listing 2, Msched
11.2 Listing 3, CMM_WC
11.3 Listing 4, Start.csh
11.4 Listing 5, Stop.csh
11.5 Listing 6, Dummy WC_INTERFACE
11.6 Listing 7, Dummy ME INTERFACE
11.7 Listing 8, HI Cancel Request
11.8 Listing 9, RS232

Page 8

1.0 Introduction

A workcell is a collection of machine(s) which work in tandem to perform a

desired task. In a car manufacturing plant for example, a workcell could be used to

paint cars. This may require 20 robots working together to achieve the desired results.

The Siemens-NJIT workcell is a prototype to examine the Generic Workcell (GWC)

feasibility.

This paper will briefly discuss the entire GWC architecture and design so that the

reader may more fully appreciate and understand the work done by the author of this

paper. The work done by the author of this paper is split into three parts of the GWC.

First is the Machine Scheduler (MSCHED). Second is the expansion of a GWC, the

machine interface. Lastly, there is the control of the GWC, which is done through Lot

Scripts.

1.1 Motivation

Consider a hypothetical car painting workcell. Assume that it takes nine months

to set up a new workcell, and the workcell is needed more that three months a year to

be cost effective. If the market demanded that the latest equipment be used every year.

The workcell would have to be rebuilt every year. The factory could not operate

effectively and would be closed.

The basic steps required to build a workcell are as follows: First, the cell must be

defined by a process engineer. Then it must be implemented (programmed); a task

which can take hundreds of man months depending on the size of the cell. The

machines must be physically brought in. Each machine in the cell must be programmed

to work correctly with the controlling computer. Each robot must be programmed how

to preform its task, and finally, everything must work together to produce the desired

result.

Many factories today use programmable logic controllers (PLC). This is a way of

controlling the workcell by hard-wiring the robots to the controller. Making changes to

this system is very difficult since it requires that the entire PLC software be rewritten.

The controlling computer must preform many tasks. One of these tasks is to

choose a paint station at which a car should be painted. If the workcell has five painting

stations, each station providing a different color, and two stations are for model A and

Page 9

the other three for model T, then how does the controlling computer know where to

send the next car waiting to be painted? What if one of the stations is turned off? This

decision has to be made on the fly (dynamically). The decision of what color the car

should be is defined by the lot script, but the scheduling of the car to a particular robot

must be done dynamically by a machine scheduler.

Another task the controlling computer should be able to handle is when a robot

breaks. Will the controlling system allow an operator to dynamically replace the broken

robot without effecting the rest of the workcell? Can the broken robot be replace by a

newer model robot dynamically with out effecting production? How can the

production demand be met if it takes nine months to redesign the workcell to replace a

robot?

Finding an acceptable solution to theses questions and implementing this

solution, has motivated me to do the work presented in this paper.

1.2 Previous and Current Work

The traditional way to create a new workcell is to start from scratch, but this

takes to much time. In the past, the work required to expand or modify a workcell

involved stopping the workcell and reprogramming it. This process could take months

and cost the company thousands of dollars, while production is halted for the

modifications. If a robot in a traditional workcell fails or has an unpredictable

maintenance schedule, the workcell must be shutdown in order to service the robot,

since it is statically configured.

To be able to expand a workcell dynamically, the controller cannot be static such

as the Programmable Logic Controller (PLC). The workcell must be able to adapt to a

changing environment quickly. The control of a workcell is critical to the proper

operation of a factory. It should, therefore have a high degree of fault tolerance. It

should also be structured so that maintenance, and development costs are low. This

implies that a non-hierarchical architecture should be used for the workcell controller.

Non-hierarchical control of a workcell is not a new concept. In fact, many papers have

been published addressing non-hierarchical vs hierarchical control of a

workcell.[1,2,3,4,5,7] Dynamic scheduling should also be part of such a cells design,

which is also easier to implement in a non-hierarchical architecture. To achieve all this,

the Entity-Server Model[8] is used in conjunction with a message bus implemented

using the Conversation Tool developed at Siemens. The Conversation Tool creates the

Page 10

message bus and helps programmers create conversations to use on the message bus.

The current implementation uses ISIS, a communications package developed at Cornell

University.

The GWC is a collaboration of many ideas brought together. Such ideas are

non-hierarchical distributed architecture, modularity, dynamic control of a workcell,

and dynamic expansion/reduction of a workcell. Each concept is, in itself, good and has

been used before, but not all of the concepts have ever been brought together into one

system.

Research is being done on many different approaches to solving manufacturing

problems. Neil A. Duffie has written several papers addressing problems in

manufacturing. He has designed and implemented a workcell which has a

non-hierarchical control with a high degree of fault-tolerance. This system does not

allow dynamic scheduling lowering its degree of flexibility. The cell implements a

master-slave binding mechanism which also limits it flexibility, but the cell does

maintains a good level of control over its processes.[4,5]

Oyvind Orke of the Production Engineering Laboratory, NTH-SINTEF, in

Norway, describes the projects where he is working in his paper. They have developed

a large system which is designed to create a more flexible manufacturing systems. The

system encompasses the design phase to production, but does not address dynamic

scheduling problem. It is not possible to have a flexible workcell unless you have

dynamic scheduling.[15]

Michael J. Shaw has a dynamic scheduling schema which is essentially the same

as the GWC's. The system broadcasts a request and waits for responses. Modules on

the net return a bid with an estimated processing time, estimated wait time, and

estimated travel time. The bids are gathered and the lowest bit gets the job. The GWC

does essentially the same but over a message bus which can also cross over the

network.[14]

At Siemens Corporate Research (SCR) in Princeton NJ, there have been three

implementations of the GWC which makes the current one built at NJIT the fourth.

Two were implemented in Germany at a Siemens micro-chip manufacturing plant. One

is still in operation and is being used to control a Chemical Vapor Deposition (CVD)

cell[8]. The second two are using manufacturing robots The first of the latter two is a

small cell at SCR Princeton which implemented a Scorbot Robot to build Lego planes

Page 11

and helicopters. The forth implementation is at NJIT using a Coordinate Measuring

Machine (CMM) and later a Mazak milling machine to produce chess pieces to a precise

tolerance.[16]

1.3 A Brief Description of the Siemens-NJIT Generic Workcell

For the first phase of the Siemens-NJIT workcell, the implementation will consist

of one machine; CMM. This workcell will hopefully be expanded to include other

machines such as the Mazak milling machine. The plan is that the Mazak will mill

chess pieces and the CMM will measure them to see if the pieces are within an

acceptable tolerance. If not, they will either be sent back to be re-milled or discarded as

scrap.[161

1.4 Modules of the GWC

The following is a description of modules in the GWC which are important as

background information. In order for the reader to understand the work presented

here, he should have a general knowledge of the entire project

1.4.1 Equipment Recipe Server (ERS)

The Equipment Recipe Server keeps track of recipes on the system. It maintains

new and old recipes so original recipes can be kept unmodified. It also ensures that the

recipe being used is the proper one and not a modified one. It can be thought of as a

librarian of recipes.[131

1.4.2 Machine Server (MS)

The Machine Server provides the common services required for all machines.

This includes maintaining the status of the machines in the database, keeping track of

scraps, and keeping track of maintenance schedules. The Machine Server

communicates through the communications bus as do all the other modules.[11]

1.4.3 Human Interface (HI)

The Human Interface provides a clean way for people to communicate with the

GWC. It provides the ability to control all functions of the GWC through easy to use

menus.

Page 12

1.4.4 Lot Server (LS)

The Lot Server provides services to lots. It controls the creation of entities,

division of entities, merger of entities, and the destruction of entities Any service

related to lot entities are provided through the LS.[8]

1.4.5 Cell Alarm Server (CAS)

The Cell Alarm Server(CAS) is used to handle alarms which occur in the

workcell. The functions performed by the CAS are reporting alarms to the HI, queuing

pending alarms, keeping a history of alarms, and taking the appropriate actions

necessary for the given alarm.[12]

1.5 Purpose/Objectives/Justification of the Project.

This project has the potential of improving the state of the art of automated

manufacturing. Using lot scripts the GWC has the ability to dynamically change what a

workcell produces, check to see if the workcell is producing what it should, and see if

the product is to the desired specifications. By reusing the generic parts of the GWC,

the startup time from conception of the cell to implementation is dramatically reduced,

and all that need be written are the machine interfaces.

The proposed purpose of this project is to integrate the factory floor at MIT in

the Center for Manufacturing System (CMS). It is hoped that the GWC soft real-time

system could provide the services necessary to allow the equipment on the factory floor

function together. This would provide a state of the art learning tool for the school to

use. The system is a reactive system; meaning, it reacts to changes in its environment.

It tries to adjust its self so it can continue to function correctly in a changing

environment. The work done by the author was primarily in the three following areas:

The Machine Scheduler MSCHED, the NJIT lot script, and the WC half of the Machine

Interface.

Without dynamic scheduling capabilities offered by MSCHED, the cell would not

operate as efficiently or effectively. The ability to take machines on and off line

dynamically without affecting the rest of the cell is a tremendous timesaving capability

Controlling how the workcell behaves and operates is important to flexible

manufacturing by its definition. The quick expansion of a GWC is also desirable for a

workcell to be called flexible. This is demonstrated by adding the CMM to the NJIT

Page 13

GWC in a relatively short period of time.

1.6 Thesis Organization

The organization of this paper is as follows: Section 2 will discuss the functional

requirements of the MSCHED, WC, and Lot Script for the NJIT workcell. Section 3 will

discuss the performance requirements for the above mentioned. Section 4 will describe

the overall design of the above mentioned. Section 5 will discuss the data structures of

the implementation at NJIT. Section 6 will discuss the detailed specifics of the

implementation for each module. Section 7 will discuss the demonstration of the work

done, and Section 8 will discuss the problems encountered while developing the work.

Page 14

2.0 System Functional Specifications of the Work Done

There are three areas in the GWC on which I worked on: The Lot Script, Machine

Scheduler (MSCHED), and the workcell side of the Machine Interface (WC).

The function of the Lot Script is to control the operations of the NJIT workcell.

The Lot Script uses the MSCHED module, which controls access to the machines in the

workcell. The GWC communicates with these machines through the Machine Interface,

which is split into two section WC and ME.

The Lot Script performs the following functions: requesting machines, down

loading recipes to the machine, up loading a recipes from the machine, and running a

recipes on the machine.

2.1 Functional Requirements

The Machine Scheduler (MSCHED, Listing 2) should control access to all the

machines in the workcell by deciding which request gets a machines and which does

not. Built into MSCHED should be the logic of what requests are filled and not filled.

Priority scheduling can also be implemented using any fair algorithm. Preemptive

scheduling cannot be used for the reason that some processes on some machine can not

be interrupted.

Communication between the GWC and the machines in the workcell must

happen or the workcell is non-functional. The workcell side of the Machine Interface

WC, should be able to handle all the communications between the GWC and the

machine side of the Machine Interface ME. These two modules must cooperate in order

for the GWC to communicate with machines in the workcell. Information regarding the

ME is not presented in this paper since this work was done by my colleague Richard

Meyer. The function of the ME is to communicate between the WC and the machine.

Product flow should be directly controlled by lot scripts The scripts are

executed, and then requests services provided by the cell through servers. This script

will determine how a manufacturing process is done and by which machines; it is the

router for a production.

Page 15

2.2 User Input Preview

The user may input requests through the Human Interface (HI). In addition to

ordering a chess set and importing a lot into the cell, there are many more operations a

user may perform through the HI. The user should be allowed to write new Lot Scripts

to control the functions of the GWC.

The WC half of the Machine Interface gets its input through the message bus and

shared memory. It should listen for conversations on the bus and respond only to

specific messages in effect, ignoring all other conversations. The WC should also watch

the message queue in shared memory for incoming messages from the ME half of the

Machine Interface.

The input to the MSCHED is a request over the message bus to reserve a machine

or cancel a request. It also watches for a change of status and attempts to schedule a

request when it sees that a machine has changed it status.

2.3 User Output Preview

The output of the WC should be a response to any conversations for which it

listened. It should also send requests and commands to the other half of the Machine

Interface, ME. The only conversation it should ever initiate is an alarm, which it

receives from the ME half of the module.

The output of the MSCHED module is to bus, and is an acknowledgment

responding to the requester. This response tells the requester that the request hasbeen

received or not. It should also update the database if the request was successful.

2.4 System Data Base/File Structure Preview

The database provides a high degree of data integrity with an easy way to store

information about the workcell. The database is logically organized by services which

correspond to modules or groups of modules. It can be assumed that all relevant

information ranging from the cell organization to run results from the WC are all kept

in the database. MSCHED should also use the database to store scheduling information

about the machines in the workcell.

There are several files used in the system to keep track of information. One

Page 16

important purpose of files are to keep logs of warnings, errors, and messages from each

module. MSCHED, WC, and the Lot Script should all use log files for error tracking. If

there is a system failure, these logs are invaluable when searching for the problem.

The shared memory between the two halves of the Machine Interface, WC and

ME, also contain data for a short period of time. However, this is flushed clean quickly.

The message bus lets MSCHED receive requests from the Lot Script, and lets the

WC converse with other modules. This has been implemented using the Conversation

Tool, which buffers messages until they are read, and guarantees the order of their

arrival.

2.5 External and internal Limitations and Restrictions

The access to the data base should be tightly controlled to ensure persistent

storage. The servers control how the database is updated, and if a lot wants to reserve

a machine, it must be required to do so through the MSCHED. No module can reserve

a machine(s) besides MSCHED. This ensures that data is stored consistently and

persistently.

Restrictions of the Lot Script are limited by the capabilities of the resources in the

workcell. The cell can be changed dynamically so that it may, at any time, produce any

product. The workcell is limited by its hardware capabilities, which can be expanded

at any time by using MSCHED, the Machine Interface, and the Lot Script

Page 17

3.0 System Performance Requirements

The GWC was conceived for the purpose of quality control. It was designed so

that it could be dynamically reconfigured. It has not been optimized for speed, and is

only in its third rewrite. All of the modules have not been implemented. The GWC

performance requirements are only that it runs sufficiently fast so the computer is not

the bottleneck. As long as the system is running faster than the actual machines in the

workcell, then the system is performing adequately.

The requirements of the Machine scheduler is only that it schedules machines

predictably and follows the guidelines stated above. The requirement of the Lot Script

is that it functions as expected. The requirement of the WC half of the Machine Interface

is that it works consistently, correctly with the ME, and the rest of the system.

3.1 Efficiency

The GWC is very efficient at keeping track information about the workcell. It is

not suggested that using a GWC will speed production. The MSCHED should be

efficient enough so it does not slow the system down. The Lot Script should be

designed so it does not bottleneck the system by making poor requests, and the WC

should operate without slowing the rest of the system excessively either.

3.2 Reliability

The design of the architecture of the GWC should be reliable. The GWC is

designed as a non-hierarchical distributed system This means that redundancy is easy

to implement, and, since it is distributed, it should have a higher degree of fault

tolerance. Since the cell is dynamically configured, if a part of the cell starts to fail, then

the failing part could be replaced with little or no down time to the workcell.

The MSCHED should be able to be replaced at any time However, since it is an

integral part the workcell, the workcell would have to be halted for a short time to start

the new MSCHED. The WC failing would affect the ME half of the Machine Interface;

but if the Machine Interface fails, MSCHED should not try to schedule requests to that

machine. If the Lot Script fails at any point, it could leave database tables corrupted. So

the Lot Script should be written carefully so as not to leave the database corrupted if it

fails.

Page 18

3.2.1 Description of Reliability Measures

The integrity of the database is kept by using servers which control access to the

database for consistency. When a module wishes to get information from the database

or put information in it, it should do so through the proper server. Since the data is

kept on a commercial database it is preserved and one should be able to consider it

consistent.

MSCHED should store information about the status of each machine in the

database. The WC should also be able to retrieve information from the database, as

should the Lot Script.

3.2.2 Error/Failure Detection and Recovery

Error detection of unusual events are handled through alarms. Alarms are used

to alert the human operator that an event has happened which requires human

intervention. Essentially, if a failure occurs in the system which cannot be directly

handled by the cell software, an alarm should be sent out. If the cell should fail for any

reason, then the fault should be traceable by looking at the log files, which are kept on

the file system. The log file should contain information such as what procedure logged

the entry, and what conversations were occurring (Fig 2). This information is

invaluable when trying to trace a problem in the GWC software. Once the fault is

found, and if the module has not died on its own accord, the MSCHED should allow for

the shutdown of the module, and the startup of a revised version to replace the faulty

module. This should be able to take place while the cell is still in operation, causing no

down time, except to the machine module in question.

If a request for a machine startup is made, and the machine is turned off. An

alarm could be sent asking an operator to turn on the machine. Alarms should be

listened for from the ME by the WC and, then passed to the Cell Alarm Server (CAS)

Database failures should be handled by retrying the request which failed. If the

error is fatal, the module should kill itself in a clean and orderly manner. MSCHED,

WC, and the Lot Script should all operate in this way.

3.2.3 Allowable/Acceptable Error/Failure Rate

For many situations, the allowable or acceptable failure rate is not determined

Page 19

statically. There should be limitations in the modules which, if not met, would cause

the module to fail. If one of the three modules is waiting for a response to a

conversation or a continuation of a conversation, and the response takes longer than a

predefined time period, the conversation should fail and the module should log the

error.

Lot Scripts should have the ability to determine if a product produced by a

machine is within the allowable tolerances. The script should be able to do this by

investigating the run results returned from the machine. This should allow the Lot

Script to determine if the lot is good or bad. If it is determined the lot is bad, the script

could be given the ability to take action to correct the problem while the production is

still running.

3.3 Security

The security of this system should be determined the purpose of the system. The

security could be adjusted for any environment, but since it is a research project. It

would only slow down the researchers trying to develop the system. It should therefore

be of no concern.

3.3.1 Hardware Security

The hardware platform at this point can be either UNIX based or VMS based

Considering the large number of hardware vendors that makes UNIX systems, it is

conceivable that any level of hardware security could be obtained for use of the GWC

3.3.2 Software Security

The architecture of the GWC should allow modules to be added or removed at

arbitrary times. This would imply that one could write a software module which would

take care of security as well. This module could be updated whenever needed, since it

would be as dynamic as the rest of the workcell. The Human Interface (HI) could

incorporate the security module requiring passwords to execute commands of

significance such as shutting down, starting up, or changing the configuration of the

cell. The software security can be as stringent as necessary

3.3.3 Data Security

The security of the data is as secure as the operating system, since the results of a

Page 20

run on the workcell are stored in a file on the system. Data security is not very high in

the UNIX operating system, since UNIX is not a secure system. Hence, the data should

be more secure if it were on VMS, but this is not a concern at this stage of the project.

3.4 Maintainability

The GWC architecture was designed to facilitate ease of maintenance. With such

a large software system, maintenance can be very expensive. Several tools have been

built around the GWC project to support the GWC. All of the modules were written in

C++, which is inherently easier to maintain than many other languages. The use of logs

is intended to help a person maintain the existing modules as well as develop new ones.

A developer can test his modules on the cell, while the cell is running without shutting

the cell down. This ability is a significant maintenance capability

There are three tools to help maintain the cell: The Conversation Tool, Database

Tool, and Conversation Monitor. The Conversation Tool (CTOOL) supplies an easy

way to create new or modify existing conversations, which are sent and received

between modules. The Database Tool is used to assist the programmer when

interacting with the database. This is done by making another level of abstraction

between the modules and the database. Many of the tedious embedded SQL tasks

required by the programmer can now be eliminated by using the Database Tool (DBT).

The Conversation Monitor (CMON) allows a programmer to look at the conversations

taking place between modules on the bus. Using these tools a programmer should be

able to maintain the cell software efficiently and effectively.

3.5 Modifiability

The cell should be extremely modifiable as the architecture would suggest. The

addition of modules while the cell is running, if works as described above, would allow

the cell to be dynamically reconfigured. Then ability to modify existing modules

dynamically would also be possible.

Through the Lot Script, recipes used by the cell could be modified while the cell

is running. The cell should have the ability to tweak the recipe to improve the product
quality

The MSCHED was designed with modifiability in mind There is only one

function which determines how MSCHED schedules, and this one function could be

Page 21

changed to use any fair scheduling algorithm.

3.6 Portability

The software which describes the GWC is written in AT&T C++ so it should be

compatible on any AT&T C++ compiler on any system. The cell software has been built

on both VMS and UNIX operating systems successfully. Essentially, the cell could be

built on any multi-tasking operating system.

Porting the system from one factory to another with a completely different setup

should not be as difficult as one could imagine. The largest amount of work required

would should be writing the machine interfaces. Since each robot would require its

specific communications protocol, each different robot would require an

ME_INTERFACE and some modification to the WC_INTERFACE module (FIG 3). The

making of an interface to communicate with a controller needs to be done no matter

what method of controlling the workcell is used. Naturally, the recipes (programs) for

controlling what the robots do must also be created

Page 22

4.0 System Design Overview

As previously mentioned the GWC has been designed in a very modular format.

Each module is a separate executable entity on the system allowing it to be isolated

from the other modules. This ensures that if one module has a problem it will not

adversely effect the other modules, other than not providing services to the other

modules. Each module can be considered a black box which accepts input and gives

results.

4.1 System Internal Data Structure Preview

Since most of the internal data structure are stored in Ingres, it is also controlled

by Ingres. This is done because the database is consistent and reliable. The small

amounts of data which are used in a module and are not stored in the database are only

trivial data stores for temporary use.

All conversations which happen over the bus follow a specific format. The

header of a conversation has information in it such as what conversation it is, and how

many more parts of the conversation there are. Most conversations require that they are

acknowledged so the sender knows that the conversation has been received.

4.2 Description of System Operations

MSCHED controls which machines will be used when a lot requests a machine

for a service. If all the requested machines are busy, then MSCHED will queue the

request. Once the machine is made available, MSCHED will look at the queue for past

requests. After a lot is finished with the machine(s), MSCHED unreserves the machine

allowing other lots to use the machine.

The WC operations are limited to communications between the ME and the

GWC. It handles all interaction between the two modules and is built specifically for

each ME. Most WCs should be similar; however, not this is not necessary since this is

only a convention.

The Lot Scripts operations control the operations in the GWC. The Script

describes the characteristics of the GWC and how it will function. The Lot Script is not

static and can be changed whenever a new machine is added to the workcell. The Lot

Scripts operations are limited by the machines in the workcell

Page 23

4.3 Equipment Configuration

The equipment used in the Siemens-NJIT GWC project consists of a Coordinate

Measuring Machine (CMM) and a Sun (Sparc) workstation. The CMM has a Compac

PC connected to it running the Xenix operating system, which is connected to the Sun

via serial port. The physical layout is shown in Fig 4. This layout is not the only way it

can be set up. The Sun was placed, physically, next to the CMM to ensure that if

anything were to go wrong the panic button could be pressed before anything serious

happened. It is anticipated that once the cell is running, the Sun would reside in the

operator control booth above the factory floor, and a dumb terminal, like a VT-100,

would reside next to the CMM for operator interaction.[16]

As was described in section 3.6, Portability, the hardware platform for the cell

could be almost any vendor, and the operating system could be almost any multitasking

system.

4.4 Implementation Languages

The GWC was written using C++, C, ABF, 4GL, M4 macros, and embedded SQL.

The majority of the code was written in C++. The ability to build classes and structure

in an object oriented environment is highly desirable. C++ promotes the sharing of

code and expedites the development of new code. An object oriented approach for this

project seems to be the best way to proceed. Its benefits outweigh any restrictions it

might have and since C++ is widely used and available, it is the logical choice. It is also

strongly supported and is constantly being upgraded by its creators at Bell Labs. C was

used in conjunction with C++, since it is a subset of C++.

ABF/ 4GL is used since these are the database application languages supported

and supplied by Ingres. ABF is used where ASCII terminals are required and 4GL is

used when a graphical interface is possible, as it is on a Sun Workstation. Ingres was

chosen simply because it is a good reliable distributed relational database. It supports

all the functionality which the project requires, and is a widely used database package.

MSCHED uses ABF since it has an HI screen for canceling requests.

M4 macros are used for database queries. If a failure in a query occurs, the query

can be tried until it succeeds. The macros also provide error checking for other failures

and provides a standardized way for error handling. The M4 macros are being phased

out, and the Database Tool (DBT) is being phased in to provide all the necessary error

Page 24

handling abilities when accessing the database. The DBT also provides another level of

abstraction making it easier and faster to write applications. It is, essentially, the same

as the Conversation Tool, which provides an abstraction away from communicating

between the modules. Embedded SQL is used to provide an easy standard way of

querying the data base. SQL is provided with Ingres and is a standardized query

language. The DBT, as mentioned, above will reduce the amount of embedded SQL

required in GWC modules and eliminate the need for M4 macros.

4.5 Required Support Software

As has been mentioned, several other software packages are required to operate

the GWC. Ingres, for consistent data control, UNIX as an operating system, ISIS for

communicating between modules of the GWC, and any specific software packages to

control the machines (robots). Any and all of the software packages could be

substituted by other packages, but this combination works sufficiently

Page 25

5.0 System Data Structure and Communications Specifications

This section describes the conversations in which MSCHED, WC, and the Lot

Script modules participate. A description of the database tables used by the modules

MSCHED, WC, and the Lot Script is also in this section. Finally, there is a discussion of

the communications used by theses modules.

5.1 System Data Base/Conversation Structure Specification

Each of the three modules communicates using the message bus. Conversations

are classes which are essentially structures with a private section. Conversations over

this message bus follow a strict format. When a conversation is initiated, it is

broadcasted over the entire message bus. Any module which is interested in the

conversation will receive it. All other modules will ignore it. The conversation header

contains information about the conversation such as: a unique identifier, the number of

messages in the conversation, and data to be passed from the sending module to the

receiving module. These conversations are classes created using the Conversation Tool.

Most conversations require a return acknowledgment, confirming the reception of the

conversation and returning the results of the request made by the conversation. Each

module has its own conversations as well as some common conversation. The

conversations of the three modules are explained in this section. The database tables

used by each of the three modules are also listed in this section with a short explanation

of their use. Each module has access to a common database. This allows the sharing of

information as easy as accessing the database. There are some conventions used when

accessing the database. If the table is controlled by another module, then to update that

table one must initiate a conversation with the controlling module, asking that module

to update the table. If this convention is broken, then the integrity of the system is

sacrificed.

5.1.1 MSCHED Conversations

Machine_Request: Request one or more machines to be bound to the requesting lot script.

Cancel_Request: Cancels a request for one or more machines which were requested by the lot
script earlier.

Update_Machine_Status: If the machine status is changed to 'Shutdown' MSCHED removes

all requests of that machine from the REQUEST_MACHINES database table. MSCHED

Page 26

then sends the machine_request_complete acknowledgment to all of the lot entities which

had outstanding requests with the shutdown machine. The requests cannot be filled since

the status of the machine is now 'Shutdown'.

Unreserved_Machine: Is used to unreserved a machine which was reserved by the lot script

earlier.

Accept_Type_Change: This conversation is only listened for. When MSCHED hears this

conversation it runs the scheduler function. A machine may now be able to accept a

request that it could not before. So if any entities can now be scheduled they will be.

5.1.2 MSCHED Database Tables

REQUEST_MACHINES: This table keeps a list of machines requested by lot entities, on the

bus of what entity, and what combinations of machines have been requested.

RESERVED_MACHINES: This table keeps a list of machine which have been reserved by lot

entities through MSCHED, and cannot be used by any other lot entities until the

machines have been unreserved.

ME_CONFIG: This table is used to see if the requested machine exists or not.

MACHINE_STATUS: This table keeps track of the status of all the machines in the workcell.

This table tells us if a machine is 'Shutdown', 'Idle', 'Running', etc.

5.1.3 WC Conversations

ME_START: This conversation is used to start the module and get it ready to receive requests.

ME_SHUT: This tells the WC to shut its self down, finish what it is doing, and not to accept

any conversations accept ME_START.

SETUP_RUN: Downloads the recipe to the machine and get the machine ready to run the recipe

on the machine.

START_RUN: Tells the WC to tell the ME to start running the recipe that was just sent to the

machine from the SETUP_RUN message.

DNLD_ME: Downloads a recipe to the machine from the GWC.

UPLD_ME: Uploads a recipe from the machine to the GWC.

ALARM_SEND: This conversation is initiated by the ME. The machine will send the ME and

Page 27

alarm. The ME will pass the alarm to the WC who will send the alarm to the Cell Alarm

Server. This alarm is used to tell the operator to ''Push the start button on the CMM".

ALARM CLEAR: This conversation is listened for so the WC knows when the alarm to the

operator "Push the start button" was acknowledged. When this message is seen the WC

knows it may continue.

5.1.4 WC Database Tables

OP_MACHINE_RECIPE: Table contains information about the recipes. The information in this

table is: machine_id, recipe_id, and op_type. This infoiniation is used to check to see if

the recipe_id and op_type are valid for the machine.

MACHINE_RUN_RESULT: Is used to store the results returned from a run on a machine.

These results are retrieved from a flat file created by the ME.

ALARM DESCRIPTION: Is used to cross reference an alarm with known alarms in the

database. This is used to tell the operator to push the start button on the CMM.

5.1.5 Lot Script Conversations

SETUP_RUN: Downloads the recipe to the machine and get everything ready to run the recipe.

START_RUN: Tells the WC to tell the ME to start running the recipe that was just sent to the

machine from the SETUP_RUN message.

DNLD_ME: Downloads a recipe to the machine from the GWC.

UPLD_ME: Uploads a recipe from the machine to the GWC.

UNRESERVE_MACHINE: Unreserve a machine previously reserved by the script.

RESERVE_MACHINE: Request that MSCHED reserve a machine with specific abilities and

specifications.

IMPORT_LOT: Ask to be imported into the workcell.

EXPORT_LOT: Ask to be exported from the workcell.

5.1.6 Lot Script Database Tables

The Lot Script does not directly manipulate the database at this time. It can

however obtain information from the database if desired.

Page 28

5.2 System Internal Data Structure Specification

The WC uses message queues to communicate with the ME half of the Machine

Interface. Each queue has the following fields in it: file_name of the recipe to use,

recipe_id to uniquely identify each recipe, message :id to identify what message it is,

ack_code to ensure that the ME receives the message correctly, and alarm_text to

identify the alarm. The CMM cannot directly send alarms such as fire or collision.

Alarms are only used to tell an operator what to do, like push the start button. These

alarms are actually generated by the ME since the CMM cannot generate them.

The other form of data structures are conversations, which are passed via

message bus. A typical conversation consists of an initial message, multiple pieces of

data, and an acknowledgment to the message as described earlier.

The Lot Script and MSCHED do not have any other significant data structure

that have not already been discussed, but the Lot Script could have other structures if

required.

5.3 Evaluation of Communications

The ME and WC are two separate programs which cooperatively coordinate

communications between the machines (robots) and the GWC The two halves use

UNIX message queues to achieve asynchronous communications. The message queues

are used so that if WC sends ME several messages with little or no delay in between, the

messages are not lost, instead they are queued to be processed when possible. The

same is true going in the other direction. If the robot sends several messages to the cell

with little or no delay, the messages are queued till they can be processed by the WC.

This scheme seems to work well.

The Lot Script and MSCHED use the message bus as their communications

interface. As an example, if the Lot Script built for NJIT workcell needed machines M1

and M2, the script would send a request to MSCHED for M1 and M2. MSCHED would

respond with an acknowledgment telling the Lot Script that its request has been filled

and the machines are reserved for it. If the machines were busy then MSCHED would

put the request on MSCHEDs queue until the machine could service the request. If the

request fails, it would mean the requested machines are not available. The Lot Script

Page 29

could decide to try again or to try another machine. When making the request, the Lot

can also make requests for a combination of machines: Ml and M2, or M1 and M3, or

M4 and M5. If any of the combinations are valid, MSCHED will reserve that

combination of machines. This method of communication between the two modules

seems appropriate for our requirements.

Page 30

6.0 Module Design Specifications

All modules have been designed in a analogous way so that the maintenance and

additions to the modules require a minimal amount of effort. As described in section 5

the Lot Script, MSCHED and WC communicate through a common message bus with

predefined messages. These modules operate using and Entity Server model[8], where

entities request a service and a server provides the service to fill that request.

6.1 Operation Entity(scripts) Functions

An Operation Entity controls and monitors a workcell's manufacturing process

during every step of the process. The Operation Entity (OE) defines which processes

should be performed, how they should be performed, and which machines should

perform the processes[8]. During the life of an operation entity, it controls how the

workcell behaves. In a given workcell many operation entities may exist at one time[8].

OEs are created from a Lot Script. A single Lot Script may produce more than one OE.

The tasks that the Operation Entities must perform are:"

Control a manufacturing process according to process and production rules.

Determine which machines and machine recipes are qualified to perform the process.

Coordinate the rendezvous of all resources required for a manufacturing step to be performed(c.g. product

lots, tooling, machines, and dummy wafers).

Initiate machine scheduling and initiate process runs according to schedule

Monitor and report process quality.

Determine process maintenance intervals and initiate maintenance.

"[8].

The operations described above are not all necessary nor are required for every

operation entity. There may be no need to monitor the quality of the process, or

maintenance a machine. This depends on the specific process the workcell performs,

and on the sophistication of the machines in the workcell. If an intelligent machine such

as the Mazak is used, the process quality can be monitored carefully. On the other

hand, if a simple robot like the SCORBOT is used which at best can only determine that

it collided into an immovable object. Hence, to ensure the quality of a product, the OE

would be required to use another machine. A machine such as the Coordinate

Measuring Machine(CMM) could be used to check the quality of the process. An

Page 31

operation entity can evolve and learn from its history if written with the ability to learn.

For example, the operation entity could learn the results from machine M1 are better

than those from machine M2. It could also be written to tweek a recipe if it perceives

that the recipe is off by a small amount. If a tool wears as it is used, the OE could

modify the recipe so that the effect of the dulling tool would be minimized by using

feedback. The intelligence described have not been applied to the NJIT workcell, but

could be if desired.

In the future, Operation Entities will be served by the Operation Server(OS), but

since the OS module has not been written yet, the OE must manage on its own. The OE

is created through the HI where an order can be placed. To fulfill the order the

appropriate Lot Script is started which becomes the OE. An OE can actually start other

OEs if it requires the operation of those OEs. The OE is as flexible as the system it is

running under, and the language it is written in. The OE in the Siemens-NJIT workcell

is written in C/C++, but could be written in any language including LISP.

The Operation Entity for our workcell is in listing 1. This listing is the script

which is executed by the HI when a chess set is ordered. The HI uses a UNIX fork/exec

to start the script.

6.1.1 Logic of the Lot Script

The script first retrieves the lot_id from the HI upon execution. At this time most

of the information needed by the entity is built into it. This design is acceptable, since

the script has been defined to perform a specific function. If programmed, the script

could also be dynamic. The NJIT script has the following information built into it:

Op_type - "alum_chess", this entity is for measuring the aluminum chess pieces
machine_list - a list of machines to schedule, WC_CMM
num_machine=1 - number of machines to schedule
machine_run_id = 26551; This could be any unique number.
recipe_name - Name of the recipes to run, "alum_chess_set"
file_name - of the recipe on the disk, with the full path
lot_type - not really used yet...,"CMM_LOT"
priority = 20 - not used yet...sets the prionty of the lot
paraml,param2,param3- Result parameters...what a successful running of this script should

return.
script_id - ID for this script non-changing
entity_id - Created by the log server each time the script is run
lot_id - assigned, valid tell the lot is export...If an entity is exported and then

imported the lot_id will be different from the previous time

Once the Lot Script is started it will ask the Lot Server(LS) to become an entity

Page 32

These steps are described in the test of the software in section 7. Once the script has

become an entity, the entity must wait to be imported by the HI; this process is also

described in section 7. After the lot has been imported, it sends a request for the needed

machine(s). This is done by sending a Machine_Request to MSCHED (described in

section 6.2). Each entity then waits for an acknowledgment from MSCHED. This is to

confirm that MSCHED received the request and also to obtain the results of the request.

If the request was filled the entity is given a machine_run :id, otherwise the machines

were not available. The entity sends a SETUP_RUN message to the WC which homes

the machine and downloads the recipe to the CMM. To home the CMM the ME sends

an alarm to the WC in turn which is sent to the Cell Alarm Server(CAS). The CAS then

sends the alarm to the Status Line Server. This displays the alarm on the HI, asking the

operator to press the start button on the CMM Once the alarm is acknowledged, the

WC continues. After the SETUP_RUN is accomplished the entity sends a START_RUN

message which tells the CMM to run the recipe. The CMM carries this out and returns

its results. The entity decides what to do next depending on the results of the run.

Once the results are returned, the entity sends a request to HI to be exported from the

workcell.

6.2 Machine Scheduler, MSCHED

The machine scheduler schedules or binds operation entities to machine(s) it

requests. If the machine is not available then the MSCHED can reserve the machine for

that operation entity's use when the machine is unreserved[11].

6.2.3 HI Screens

There is only one HI screen for MSCHED. The screen is used for canceling the

requests and observing what requests are currently scheduled. The interface allows an

operator to easily scan through the scheduled requests. Once the operator finds the

request he wishes to remove, he needs only to highlight the request and press a key to

remove the request. The screen follows all the same look and feel conventions used by

all the other screens in the HI. This operation calls the MSCHED Cancel_Request

function.

6.2.4 MSCHED Functions

The Machine Scheduler can perform several functions. The functions performed

by the MSCHED can only be done only by MSCHED. A diagram of MSCHEDs

Page 33

operations is shown in Figure 5. As seen in Figure 5, cell modules interact with

MSCHED to acquire services from MSCHED.

6.2.4.1 Startup

The startup function used in MSCHED is modeled after the startup function in

other modules such as the Cell Alarm Server (CAS), Entity Recipe Server (ERS), and

Machine Server (MS).

The Startup function is received by MSCHED and an Acknowledgment is

returned to the initiating module. MSCHED makes sure that the

REQUEST_MACHINES, and RESERVED_MACHINES tables are empty. MSCHED will

change its conversation filter from STARTUP to SHUTDOWN, MACH_REQUEST,

CANCEL_REQUEST, UPLOAD_ME, ACCEPT_TYPE_CHANGE, and UNRESERVE.

Since the module is running, it will not listen for a startup message until it is shutdown

first. Once the startup is complete MSCHED sends a Startup_Complete message to the

initiator of the conversation, and MSCHED idles until it receives a request.

6.2.4.2 Shutdown

As with the Startup function, this Shutdown function was modeled after other

Shutdown functions. The first job of this function is to send a shutdown

acknowledgment to the sending module. The filters is set to Startup. This module

cannot offer any services until it is started up again. Shutdown goes through the

REQUEST_MACHINES table and sends a Machine_Req_Complete(NO_MACHINE) for

each request that it finds. For each Machine_Req_Complete message sent, the

MSCHED listens for an acknowledgment message to ensure it was received. The

module is shutdown at this point. So MSCHED sends a Shutdown_Complete message

to the module which sent the shutdown request. MSCHED will now idle until a startup

message is received.

6.2.4.3 Machine Request

The machine request is the most complex part of MSCHED. It must keep track of

all the requests for every machine. The first function is to receive the multiple second

messages which provide the machine id(s) to be requested. The machine request is a

multiple message conversation, where part of the first message is how many messages

are to follow. The machine requests are stored in a linked list class The convention

Page 34

used for requesting machines is: If a lot entity wants machine M1 & M2, or MI & M3, it

will make two requests. The first request will have two messages, one for M1 and the

second for M2. The second request will be the same as the first but for M1 and M3.

This allows us to request machines using both logical expressions AND and OR. The

AND is done when a request is made like M1 AND M2, and the OR is between

different requests; (MI AND M2), OR (M1 AND M3).

After all the requests have been put on the linked list, MSCHED makes sure that

none of the requested machine are shutdown. If a machine is shutdown the request is

canceled and removed from the linked list. If all of the requests of a lot entity are

removed from the list, the lot entity is sent a message telling it that the request cannot

be satisfied.

If the request is valid, it is given a unique request_key number to identify it, and

the request is put in the database table REQUEST_MACHINES, and a

Machine_Req_Ack is sent to the requesting lot entity.

6.2.4.4 Cancel_Request

The cancel request conversation takes a (request_key, entity_id) and removes all

occurrences of that (request_key, entity_id) from the REQUEST_MACHINES table. If

no request were removed from the table, the Cancel_Req_Ack tells the lot entity there

were no requests to be removed.

6.2.4.5 Update_ME_Status

This function is to monitor any changes in the status of a machine. It does

nothing unless it sees that the status of a machine has been changed to 'Shutdown'.

Once it has determined that a machine has been shutdown, it takes action to cancel all

requests for that machine. This is done in the following manner: First MSCHED goes

through the MACHINE_REQUESTS table to find all occurrences of the shutdown

machine. If any entities are waiting for the machine, the entities must be told that the

machine is no longer available, but only if there are no alternate requests which can still

satisfy the request. As an example, an entity could request machines M1 or M2. If M1

is shutdown, the request could still be satisfied by M2. There would be no reason in this

situation to tell the entity anything. If the request cannot be satisfied then MSCHED

must send a Machine_Req_Comp(NO_MACHINE) message to the entity(s) requesting

the machine.

Page 35

6.2.4.6 Accept_Type_Change

This conversation is listened for by MSCHED to trigger the scheduling function

to be run. The scheduling algorithm which is the heart of this module is a simple First

In First Out (FIFO) algorithm. FIFO was chosen because of its simplicity and fair

scheduling scheme. MSCHED listens for this message, and once it is heard the

scheduler goes through the REQUEST_MACHINES table looking for the oldest request

in the table. Once the request is found, the number of machines requested is tallied.

The scheduler checks to see that each and every machine requested is available using

the AND and OR method described earlier in section 6.2.4.3. The machines must not

only be available but they must have the proper ACCEPT_TYPES for the request. If all

this is satisfied by at least one of the requests, all the requests of the given request_key

are removed from the REQUEST_MACHINES table. The machines which satisfy the

request are then reserved by putting them on the RESERVED_MACHINES table, and a

new machine_run_id is created. The requesting lot entity is sent a

Machine_Req_Comp(Success,...) telling the entity that its request has been satisfied

along with information about how it was satisfied.

6.2.4.7 Unreserve Machine

This allows a machine which was previously reserved to be unreserved This is

used when an operator determines that he does not want to perform the task which the

machine was reserved for. The lot entity may have crashed after it reserved a machine.

In this case the operator can clean up the database quickly and easily through the HI.

This must be done so that the scheduler does not try to schedule a machine for a lot

entity which does not exist.

6.3 Machine_Interface (WC/ME)

The Machine Interface is the module which lets the machine communicate with

the rest of the cell. This module is broken into two sections to help modularize the code

as much as possible. Of the two sections one communicates with the workcell (WC),

and the other communicates with the machine (ME). The two small modules

communicate with each other through message queues, which on UNIX is part of the

shared memory.

Page 36

6.3.1 Machine Interface Workcell Side (WC)

The WC half of the Machine Interface provides the communication between the

GWC and the ME half of the Machine Interface. This module is critical in the operation

of the workcell. Without this module the workcell would not be able to communicate

with external machines.

6.3.2 WC Functions

The WC provides several functions which allow the GWC to communicate with

machines in the workcell and vice versa. The functions provided are: STARTUP,

SHUTDOWN, SETUP_RUN, START_RUN, DOWNLOAD, UPLOAD,

RUN_COMPLETE_ACTION, and sending alarm for the machine.

6.3.2.1 Startup

The startup function is to get the module ready for use by the workcell. When a

startup message is received, the WC first confirms that the machine is shutdown, and if

the WC is shutdown it responds with a startup acknowledgment. Otherwise it returns

an acknowledgment that the startup has failed.

If the startup is acknowledged the filters are changed to SHUTDOWN and

ALARM_CLEARED. The WC sends the ME a ME_START message over the queue and

waits for an acknowledgment. The first response from the ME should be an alarm

telling the operator to press the start button on the CMM so the CMM can be homed.

The WC passes the alarm on and waits until it sees an ALARM_CLEARED

conversation. This conversation indicates to WC that the operator responded to the

alarm. WC sends ME the news and waits for ME to send it an acknowledgment back

This acknowledgment tells WC that ME is ready for further instructions. WC's interests

are changed to listen for SHUTDOWN, SETUP_RUN, START_RUN, DOWNLOAD, and

UPLOAD.

6.3.2.2 SHUTDOWN

The shutdown conversation will change the filters to accept nothing. WC does

not want to hear any conversations while shutting down because this is critical to

ensure the database is left in a proper state WC then confirms that its status is not

Page 37

shutdown and changes the status of the machine to shutdown. If the change of status

failed then the shutdown request fails and returns an error to the caller.

If there is not an error, WC will send a shutdown message to ME half telling it to

shutdown. WC listens for an acknowledgment and changes its filters to listen for

startup conversations.

6.3.2.3 SETUP_RUN

The setup run conversation is to get the machine ready for use by an operation

entity. The WC confirms that the machine is "idle", and if it is idle the WC will

continue.

The WC checks the OP_MACHINE_RECIPE table to confirm that the

operation_type and the recipe_id are valid for the machine_id The WC then proceeds

to download the recipe to the machine. WC waits for an acknowledgment from ME and

then changes its status to "setup". WC sends an acknowledgment over the bus to the

calling module telling the module that it is finished.

6.3.2.4 Start_Run

The start_run message first confirms that the machine is in a "Setup" status which

will allow the recipe to run. After this is confirmed, it sends a start_run message to the

machine and waits for an acknowledgment. When the acknowledgment is received, the

status is changed to "Running". The last operation done by this function is to send an

acknowledgment back to the calling module telling it that start_run failed or succeeded.

6.3.2.5 Upload

The upload is used to send a recipe to the machine from the GWC. The status is

checked to see if the machine is "idle", and if it is, the WC sends the request to ME.

After the upload is finished, an upload acknowledgment is sent to the calling module

over the bus.

6.3.2.6 Download

The download is the exact opposite of the upload. It transfers a r,...ipe from the

machine to the GWC. It functions in the same manner as upload.

Page 38

6.3.2.7 Run Complete Action

This occurs whenever the WC get a run complete message from the ME. The WC

updates the database table with the time when the run complete occurred, and changes

the status to "now". The results file is opened and the contents of the file are put into

the MACHINE_RUN_RESULTS table in the database.

A Run_Complete message is sent out on the bus and the status of the machine is

changed to "idle". The accept types for the machine are set to "all operations" and the

processes finished.

6.3.2.8 Alarm Action

Alarms are sent from ME to WC where they are passed on to the Cell Alarm

Server (CAS). When an alarm is received the WC checks the ALARM_DESCRIPTION

table to confirm that the alarm is valid. It then sends the alarm and waits for an

operator response. This is signalled by an ALARM_CLEAR conversation over the bus.

Once this is received, the WC is allowed to continue what it was doing before the alarm

occurred.

6.4 Module Design Summary

The three modules described all function together closely to make the GWC

operate correctly. The conversations described allow the services of a module to be

utilized by other modules. The modules as described earlier make requests of other

modules through the conversations. These conversations map directly to the functions

in each module. For example, the Machine Request conversation is a function of

MSCHED allowing any other module to request a machine. The Operation Entity

module will use conversations to request services from MSCHED, Machine Interface

(WC half), and other modules in the GWC. This is how the Entity Server model works:

nd entity requests a service and a server services the request.

Page 39

7.0 Demonstration of the System

To demonstrate that the modules which I wrote work correctly, the entire system

must be demonstrated. It is not feasible to demonstrate the Lot Scripts without the

MSCHED, which is not feasible to demonstrate without the WC, which cannot be

demonstrated without the ME..

The system cannot be proven to be better than other systems without several

detailed case studies. Due to timing constraints no case studies were done.

7.1 Items/Functions to be Demonstrated

The Lot Script, MSCHED, and WC are demonstrated to show that they function

as expected.

7.2 Description of Demonstration

The demonstration involves running lot entities on the workcell as if the workcell

is statically configured. The demonstration will also involve starting and stopping

machine modules while the workcell is running to show the dynamic abilities of the

GWC. Multiple lot entities will be started to show that MSCHED does handle the

scheduling of multiple lots correctly.

7.3 Justification of Demonstration

To show that the Lot Script, MSCHED, and WC function correctly a

demonstration is done. The demonstration only needs to show that the modules work,

not that they are unbreakable.

7.4 Demonstration Run Procedures and Results

The first step is to confirm that both ISIS and Ingres are running on the

workstation. Once this has been confirmed the GWC is started by running a CSH script

start (listing 4), or if the cell was running, we stop it by using a CSH script stop (listing

5) to ensure a consistent state in the cell. The startup script sets the log level for each

module. After the last module is started, the script runs the HI module (Figure6). From

the HI, we go into the system service menu where we can start the modules of the GWC

(Figure 6.1). The GWC will report that the cell was started successfully if there were no

problems. Once the cell is running the operator goes to the Work Order Main Menu

Page 40

(WOMM) (Figure 6.2) where he can make a Work Order Entry (WOEN) (Figure 6.3).

The operator fills out the appropriate information: name, address, city, state, zip, and

selects the product to be built from the product list. At this point the HI will start the

Lot Script to carry out the order made in the HI. The Lot Script will take control of its

destiny as described in section 6, thus turning itself into an operation entity. The entity

will request to be imported into the workcell so it can use the workcell's resources. The

Status Line Server tells the operator that a lot entity is waiting to be imported. The

operator can then go to the Dispatch List (DISP) (Figure 6.4) and import the lot entity

(Figure 6.5). Several lot entities may have been created by one order in the HI, hence

several lot entities my request to be imported. If there are several lots in the workcell an

operator can check to see the status of a particular work order by looking at the Work

Order Status screen (Figure 6.6). This screen displays the status of the order, customer

name, due date, and the work order number. The work order number indicates the

requests in which the orders will be serviced. Information about what is currently

being serviced by a machine can be obtained by looking at the View Machine Status

screen (Figure 6.7), which tells the operator what Recipe is being run at the moment

along with the start time of the recipe, the machine run id, and the status of the

machine. If the lot in which the operator is interested is not running on a machine at

that time, and it has been imported, it should be waiting for a machine. The operator

can check on the lot entity by looking at the Delete Machine Requests screen (Figure

7.8). This allows an operator to remove a Lot entity request from the scheduling queue.

After the lot entity is finished using the workcell, it requests the GWC to be exported.

This causes the Status Line Server to notify the operator of the request made by the lot

entity. The operator can then export the lot in the same way the lot was imported

(Figure 6.9). The lot entity could go to other workcells to do more work, but this has not

been implemented with our implementation since we only have one workcell operating

at this point.

The lot entity as discussed in section 6, operates independently of the HI, except

when it requires importation or exportation to the workcell The Machine Scheduler

selects the lot entity to be serviced by the requested machine. To check if the workcell

can operate with multiple machines, a dummy machine was built. The interface to the

dummy machine is exactly the same as to any other machine The module is split into

two parts: machine side MEN, and the workcell side WCN. The 'N' stands for N

dummy machines. In addition to the above, machine modules were also started and

stopped during the test to see if MSCHED handled dynamic removal and insertion of

Page 41

machines to the workcell.

7.5 Discussion of Demonstration

All the modules of the workcell cooperated to control the operation of the

workcell in a smooth and predictable manner. MSCHED did not try to schedule lot

entities to run on a machine after it was shutdown, and when a new machine was

added, MSCHED scheduled lot entities to the new machine. The WC functioned

correctly as did the Lot Script. The demonstration was successful in showing that the

modules functioned correctly as described in section 6. Some operations of WC were

not demonstrated, upload and download functions, due to time constraints (see section

8). These are easily implemented using KERMIT to transmit the files from the SUN to

the Compac.

The demonstration shows that MSCHED does startup, shutdown,

machine_request, cancel_request, update_me_status, accept_type_change, and

unreserve_machines. This is shown by the fact that the CMM runs a recipe and when

done the CMM is unreserved and ready to be requested again.

In the demonstration the Operation Entity (OE) has worked correctly since.

Specifically, the OE has control of the workcell telling it how to function. Had the OE

not worked nothing would have happened.

The Machine Interface (WC half) has worked correctly since the CMM ran the

recipe and returned a result. This shows that the startup, shutdown, setup_run, and

start_run of the WC were functioning correctly. If they did not, the run result would

not be in the database, which it is. This also demonstrated that the communications

between the WC and ME work correctly.

Page 42

8.0 Conclusions

This sections will summarize the project by discussing the problems encountered

while developing the system. It will also suggest ways to approach the problems

encountered and solve them. There are also suggestions for future extensions to the

current project. Last credit is given where deserved.

8.1 Summary

The GWC project has been a success as far as providing to the manufacturing

world a true generic workcell. The ability to dynamically expand and reduce a workcell

was achieved. The startup time of a completely new workcell has been reduced by a

considerable amount, and control of the GWC at NJIT was successful. A study done by

N. A. Duffie comparingCentralized, Hierarchical, and heterarchical systems are as follows:"

Centralized
Controller

Hierarchical
Controller

Heterarchical
Controller

Line of source code 680 2450 256
Software development cost(1)$17,000 $61,250 $6,475
Expansion software cost(2) $17,000(6) $960 0
Machine utilization(3) - 64% 60

Memory requirements(4) - 50,680 7,104
Average CPU utilization(5) - 20% 60%

Complexity low highest lowest
Flexibility lowest high highest
Modifiability lowest high highest Fault
tolerance lowest high highest
Intelligent parts no no yes

1-At $25 per line of source code
2-24 hours per machine added at $40 per hour
3-From simulated fault-free cell operation, random part mix
4-Scheduler bytes plus stack and data segments
5-Four cell processors, scheduling 50%, machine and part 10%
6-Complete redevelopment required due to explicit sequencing

"

[4 1
This study shows that the heterarchical system outpreforms the other systems

considerably in all of the comparisons. Since the GWC is also a Heterarchical system, it

should have similar results.

8.2 Problems Encountered and Solved

There were two types of problems encountered during the development of this

Page 43

project, technical and non-technical.

8.2.1 Technical Problems Encountered and Solved

One of the technical problems was to help port the entire system from VMS to

UNIX. Due to different manufactures of the compiler, and different implementations of

C++ handled destructors, many problems needed to be resolved. In addition, due to

different file systems all references to the file system had to be changed. The

communications between the two halves of the machine interface required much

thought and effort to find and develop a better interface between the two halves of the

module.

The system set up at NJIT caused another major problem. The different Ingres

installations, required some work. Richard Meyer and I were able to setup the dummy

machines, and then we started work on the communications between the GWC and the

CMM. To setup the communications between the CMM and the SUN, a serial cable had

to be run from the first floor to the second. The hardest problem was yet to come. The

communications between Xenix and SUN OS/UNIX was not as simple as one would

expect. Each system has a specific serial port(RS232) settings which brings to attention

the intersect differences between the two operating systems. After this was solved

several smaller problems were tackled and the cell was successfully implemented.

There is a design flaw in the message bus which became apparent at NJIT.

Conversations can collide and cause a deadlock if the modules are not programmed

carefully. The patch to circumvent this problem was to put to sleep in the problem

causing sections. This seem to allow the other conversation to get through and prevent

the deadlock.

8.2.2 Non-Technical Problems Encountered

The project checkpoints, dates due, and dates done are listed in the following table.

Page 44

The dates are not exact, but an approximation of the original schedule laid out

for the project by both NJIT and Siemens management.

Richard Meyer and myself found that we unexpectedly had to deal with

problems at NJIT involving hardware. We found faults faults in serial cables and get

them replaced ourselves. The system changed in the middle of the summer from

National File System(NFS) to Andrew File System(AFS), and the two system are not

fully compatible. The database at NJIT was an older version than at Siemens, and was

not setup as a distributed system. The C++ compiler was an old version and it took

around two weeks to get the new compiler installed. Passwords were changed during

the week so when we came to work on the weekends we could not proceed any further.

The configuration of the system seemed to change almost weekly making it hard to find

faults in our system. This resulted in not knowing if it was our software or the system

causing the faults. Many of the problems would have never occurred if the original

hardware request was filled exactly as we asked. These problems caused a time delay

in the expected completion.

8.3 Suggestions for better Approaches to Problem/Project

The maturity of the project has gotten to a stage where it does not seem to be any

basic design flaws except the problem with conversations colliding occasionally causing

a deadlock. This problem was amplified at NJIT since the SUN we are using is not as

fast as the machines at SCR, and the entire Ingres package is running on the machine

At SCR we only run the front end on the local machine, and the backend is on a server.

Most probably there are other implementation problems, but they are not apparent yet

due to incomplete testing of the system potentials.

8.4 Suggestions for Future Extensions to Project

The GWC has not been fully implemented. New modules can be used to expand

the performance of the existing GWC system. The design of all the crucial modules has

been done, but there are probably some design problems which are not apparent yet.

The GWC is designed so any number of modules can be added to the system. The

implementation of the GWC at more production sights would expose faults in the

system. Once the GWC modules are understood, rewriting them using more

advantages of C++ is feasible.

The future should be very promising for the GWC. The GWC could have a

Page 45

graphical user interface with a graphical language to control the workcell. So even a

manager with no technical abilities could program the workcell to produce a new

product. Also the GWC could be designed as a system and not just an application on a

system. This could lead to the redesign of the GWC to work as a hard, real time system

instead of a soft system[17]. It could be implemented on a hard real time system, and a

Real Time Server(RTS) could be designed to ensure hard deadline preserving. This

would open up many areas for the GWCs use not available now. The education of

people as to the abilities of a GWC should be done so it is accepted and used. It is too

valuable to neglect.

8.5 Acknowledgments

The GWC project has been a long term project which was started several years

before I became involved. The project over the last four years, has grown to what it is

today, but was not possible without the contributions of many people. The principal

investigators Dan Wolfson and Paul Bruschi, with the contributions of other members

of the project: Fred Brehm, Frank Maslar, Rick Taft, Ellen Voorhees, and last but not

least Richard Meyer were also critical to the development of the project

I would also like to thank my advisor and principal investigator at NJIT

Dr. Alexander D. Stoyenko of the CIS Dept. Still at NJIT there were several other people

instrumental to the success of the project: Reggie Caudill of the CMS Dept., David

Perrel of the CSD Dept., and Allen Bondhus of the CMS Dept.

I am exceedingly grateful to Siemens Corporate Research for providing the

capital and financial support which made this project possible. I am also very grateful

to SCR for giving me the opportunity to gain experience in an exciting area of computer
science.

Page 46

9.0 Bibliography

1. Dan Wolfson & Paul Bruschi, A Reconfigurable Generic Workcell
Architecture, Siemens Corporate Research, Princeton NJ., July 9 1991,
Internal Document.

2. Dan Wolfson & Paul Bruschi, A Generic Workcell Architecture, Siemens
Corporate Research, Princeton NJ., 1990,Internal Document.

3. Dan Wolfson & Paul bruschi, A Generic Workcell Controller, Siemens
Corporate Research, Princeton NJ., 1990,Internal Document.

4. Neil A. Duffle And Rex S. Piper, Non-Hierarchical Control of a Flexible
Manufacturing Cell. Robotics & Computer-integrated Manufacturing, Vol.
3, No. 2, pp. 175-179, 1987.

5. N. A. Duffie, Hierarchical And Non-Hierarchical Manufacturing Cell
control with Dynamic Part-Oriented Scheduling, North American
Manufacturing Research Conference. 14th: 1986

6. S,P. Rana & S. K. Taneja, A Distributed Architecture for Automated
Manufacturing Systems, The International journal of Advanced
Manufacturing Technology, 3(5), 81-98, 1988.

7. D.D'Amore & G. Coleman, A Modular Approach to FMS control Systems,
Advanced Manufacturing systems, Exposition and conference 24-26
June 1986.

8. D. Wolfson, The Entity-Server model for Generic Cell Control, Siemens
Corporate Research, inc (RTL-88-TR-176) 1988.

9. Andrew P. Black & Yeshagahv Artsy, Implementing Location independent
invocation, Distributed Systems Advanced Development, Digital
Equipment Corporation, Distributed Systems Conference,TX, IEEE 1989.

10. Peter A. Murray, A Binding View of Distributed Systems, NJIT CIS 651,
1990. Report

11. Dan Wolfson, Machine Scheduler Specification Version 2.2, SCR,
Inc.,SCR-89-TM-232, March 1990. Internal Document.

12. Frank J. Maslar, Cell Alarm Server Specification Version 1.0, SCR, Inc.,
SCR-89-TM-226, March 1990, Internal Document.

13 Dan Wolfson, Donna Scharkss, Paul J. Bruschi,Equipment Recipe
Server Specification Version 1.1, SCR, Inc., SCR-89-TM-227, March
1990, Internal Document.

Page 47

14. Michael J. Shaw, Dynamic Scheduling in Cellular Manufacturing
Systems: A Framework for Networked Decision Making, University of
Illinois at Urbana-Champaign, Champaign, Illinois, Journal of
Manufacturing Systems Volume 7 No. 2.

15, OYVIND BJORKE, Towards Integrated Manufacturing Systems
Manufacturing Cells and Their Subsystems, Robotics &
Computer-Integrated Manufacturing, Vol. 1. No. 1. pp 3-9, 1984.

16. Alexander D. Stoyenko, Rich Meyer, Peter Murray, Functional
Requirements for a CMS Generic Workcell, Department of computer
science and information science. NJIT University Heights Newark NJ,
1991.

17. Wolfgang A. Halang, Alexander D. Stoyenko, Constructing Predictable
Realtime Systems, Addison-Wesley Publishing Company © 1991.

Page 48

11.0 Figure/Program Listings Directory

Figure 1.0 - A reconfigurable generic workcell arch
Figure 2.0 - Log file entry example...
Figure 3.0 - GWC diagram with each module ME,WC, MSCHED. .
Figure 4.0 - SIEMENS-NJIT GWC Floor lay out
Figure 5.0 - MSCHED,
Figure 6.0 - HI Initial Screen
Figure 6.1 - Start Cell Modules
Figure 6.2 - Work Order Main Menu
Figure 6.3 - Work Order Entry.
Figure 6.4 - Dispatch List, Import.
Figure 6.5 - Import Lot.
Figure 6.6 - Work Order Status.
Figure 6.7 - View Machine Status.
Figure 6.8 - Delete Machine Requests.
Figure 6.9 - Display List, Export.

listing 1 - OE, the lot script for NJIT.
listing 2 - MSCHED.
listing 3 - WC half of machine interface...
listing 4 - Start.csh, used to start all the modules in the cell.
listing 5 - Stop.csh, used to stop all the modules in the cell.
listing 6 - Dummy WCN, WC half of machine interface.
listing 7 - Dummy MEN, ME half of machine interface.
listing 8 - HI for removing requests, ABF code.
listing 9 - RS232, code running on the Xenix system.

Page 49

10.1 Figure 1

Reference 1. Page 50

10.2 Figure 2, Log File entry.

=
From init mq
Date Fri Dec 13 11:09:25 1991
User bruschi
Term /dev/tty
PID 2899

Note:
initialize message queue

From init mq
Date Fri Dec 13 11:09:26 1991
User bruschi
Telm /dev/tty
PID 2898

Note:
initialize message queue

From main
Date Fri Dec 13 11:09:28 1991
User bruschi
Term /dev/tty
PID 2898

Note:
Starting

Page 51

10.3 Figure 3, GWC Diagram

Reference 16.
Page 52

10.4 Figure 4,SIEMENS-NJIT GWC Floor lay out.

Reference 16.
Page 53

10.5 Figure 5, MSCHED

Reference 11. Page 54

10.60 Figure 6.0

Page 54.5

10.61 Figure 6.1

Page 55

10.62 Figure 6.2

Page 56

10.63 Figure 6.3

Page 57

10.64 Figure 6.4

Page 58

10.65 Figure 6.5

Page 59

10.66 Figure 6.6

Page 60

10.67 Figure 6.7

Page 61

10.68 Figure 6.8

Page 62

10.69 Figure 6.9

Page 63

11.0 Listing 1, Operation Entity/Lot Script

Page 64

#include <stdio.h>
#include <strings.h>
#include <osfcn.h>
#include "ack_codes.h"
#include "logs.h"
exec sql include sqlca;'
#include "esql.h" /* contains function prototypes */

/* for ingres functions */
include(handlers.inc) /* M4 macro's '/

extern int ingres_error(char*,char*,int);
extern int isis sign_on();
extern int startcell();
extern int stopcell();
extern int ers download(char*,char*);
extern int ers upload(char*,char*);
extern int setup_run(char*,char*,int,char*,char*);
extern int start_run(char*,int,char*,char*);
extern int run_complete(int);
extern int create lot_entity(char*,char*,int,float,char*,char*,char*,char*,char*
extern int wait_f6r import(char*);
extern int lot_compieted(char*);
extern int wait_for_export(char*);
extern int wait_for_machine(char*,int&,int&,int&,char*[][17]);
extern int send_request(char*,char*,int&,int&,char*[][17]);
extern int unreserve_machine(char*);

static char send_array[0][17] = ("cmm_wc" };

main (int argc, char **argv)

#ifdef clean_return
#undef clean_return
#endif
#define clean return break;

if (argc < 2)
[

puts("Number of prameters passed was incorrect");
exit(0);

}
/*

prams passed in order....
lot_id - char 17,

*/
char lot_id[17];
strcpy(lot_id, argv[1]);

// should be able to get this from lot_it, but not implemented
// this way yet

char op_type[13];
strcpy(op_type,"ALUMCHESS");

char machine_list[10][17]; //
strcpy(machine_list[0],"cmm_wc");
int machine_run_id = 26551; //
int num_machine = 1; //
char recipe_name[10][20]; //
strcpy(recipe_name[0],"gwc1");
char file_name[10][81]; //
strcpy(file name[0],"gwc1");

list of machines to schedule

one for all machines on list, bug..
number of machines to sched
Name of the recipes to run

of recipes on disk, w/full path..

char lot_type[17]; // but really used yet...
strcpy(lot_type,"CMM LOT");
float priority = 20.0; // not really used yet...
char paraml[17]; // Result parms...
strcpy(paraml,"RCP_ACTIONS");
char param2[17]; // what a running of this script should
strcpy(param2,"RCP_STATUS");
char param3[17]; // return.
strcpy(param3,"OP TYPES");
char script id[17]; // Id for this script non-changing
strcpy(script id,"Syd Barrett");
char entity id[17]; // Created by the log server.
int request_key; // used for msched

int qty = 1; // number of entyities to create.
char owner[17]; // owner of the entity
strcpy(owner,"B. B. King");
int count = 0;
exec sql begin declare section;

char *database name = DATABASE NAME; _ _
exec sql end declare section;

dbconnect:
exec sql connect :database_ name;
check and_recover_to("main",dbconnect,

"An ingres error occurred during connect",DONT_CHECK)

int req_num_machine = num machine;
if (0 != isis_sign_on())
[

printf("isis sign_on failed\n");
exit(0);

}
printf("create lot entity lot id = %s...\n",lot_id);
if (0 != create lot_entity(lot type,lot id,qty,priority,owner,

paraml,param2,param3,script id,entity_id))
[

printf("create lot entity failed.\n ");
exit(0);

)
printf("lot entity_id %s created\n",entity id);
printf("wait for lot to be imported...\n");
if (0 != wait_for_import(entity_id))
[

printf("wait for import failed. \n"),
exit(0);

1

printf("Request machines...\n");
printf("entity_id: %s, op_type: %s, request_key: %d, req_num_machine: %d\n",

entity_id, op_type, request_key, req_num_machine);
if (0 != send_request(entity_id,

op_type,
request_key,
req_num machine,
(char *[][17])&send array[0][0]))

[
printf("send_request failed.\n");
exit(0);

}
printf("got request_key %d, wait for machine...\n",request_key);
printf("entity_id: %s, op_type: %s, request_key: %d, req num_machine: %d machi

entity_id, op_type, request_key, req num_machine, machine_list[0]);
if (0 != wait_for_machine(entity_id,

machine_run_id,
request_key,
req num machine,
(char *[][17])&machinelist[0][0]))

printf("wait for_ machine failed.\n");
exit(0);

if (nummachine < req num_machine)
[

printf("Not enough machines to satisfy request. bye\n");
exit(0);

printf("got machine run id %d request_key %d for %d machines satisfied.\n",
machine_run_id,request_key, num_machine);

int list = num_machine-1;
for (;list >= 0;list--)
[

printf("setup run...\n");
if (0 1 = setup run((char *)&machine list[list][0],

op_type,machine_run_id,
(char *)&recipe name[list][0],
(char *)&file_name[list][0]))

printf("setup run failed. machine_run_id = %d\n",machine run_id);
exit(0);

1
printf("start run on all machine...\n");
if (0 != start_run((char *)&machine_list[list][0],

machine_run id,
(char *)&recipe name[list][0],
(char *)&file_name[list][0]))

printf("start run failed. machine_run_id = %d\n",machine_run_id);
exit(0);

1
printf("wait for run complete...%d\n",machine_run_id);
if (0 != run_complete(machine_run_id))
[

printf("run complete failed. machine_run_id = %d\n",machine_run_id);
exit(0);

1

int un_res_count = 0;
while (un_res_count < nummachine)

sleep(10);
printf("unreserve machine %s\n",(char*)&machine list[un res_count][0]);
if (0 != unreserve_machine((char*)&machinelist[unrescount][0]))

printf("unreserve machine failed.\n");
exit(0);

un res count++;
}

printf("lot completed...\n");
if (0 != lot completed(entity_id))
[

printf("lot_completed failed. count = %d\n",count);
exit(0);

)
printf("wait for lot exported...\n");
if (0 != wait_for_export(entity_id))
[

printf("wait for export failed. \n");
exit(0);

}
}

11.1 Listing 2, MSCHED

Page 65

/*
* MSCHED.M4
*
*/
#include <stdio.h>
#include <strstream.h>
#include "Conversation. h"
#include "cellmessages.h"
#include "nullitems.h"
#include "ack codes.h"
#include "sls.h"
#include "logs.h"
exec sql include sqlca;'
#include "esql.h"
include(handlers.inc)
/*
* The following code(class) is for storing the list of machines to be
* scheduled. It is used internally to MSCHED only....
* it was writtent by Rich A. Taft and slightly modified by
* Peter A. Murray.
*/

#include <iostream.h>
#include "list.h"
#include <stddef.h>

const int FFALSE = 0;
const int TTRUE - 'FFALSE;

charelt :: charelt (const char * n)
[

strcpy(value,n);
_next = (charelt *)NULL;

}
charelt :: -charelt ()
f
if (_next 1 = NULL)

delete _next;
)
charelt*
charelt :: next()
{
return next;

}

const char *
charelt :: val()
{
return value;

}

charlist :: charlist () : head((charelt*)NULL), _tail((charelt*)NULL)
t

)

charlist :: charlist ()
f
charelt *p = _head;
while (p 1 = NULL) [

p = p -> next;
head -> next = (charelt *) NULL;

delete _head;
_head = p;

}
}

charelt *
charlist :: head() [return _head; }

charelt *
charlist :: tail() I return _tail;)

void
charlist :: add (const char * n)
C
if (_head == NULL) (// empty list

_head = new charelt (n);
tail = _ _head;
_ _ tail -> _next = (charelt *)NULL; // just to be safe
return;

)

else if (_head == _tail) [// single elt
if (_head -> val () == n)
return;

else if (_head -> val() < n) [
_head -> next = new charelt (n); // insert after existing val
_ _ tail = _next -> _next;
_ _ tail -> _next = (charelt *)NULL; // just to be safe
return;

}
else f // head > n
_head = new charelt (n); // insert before existing elt
_head_next_tail;
return;

-> = tail;
return;

1
)

else f // find where to put n
charelt *p = head;
charelt *f = (charelt *)NULL; // f follows p
do I
if (p -> val () == n)
return;

else if (p -> val () > n) f
charelt *nxt = p;
p = new charelt (n); // insert before existing elt
p -> next = nxt;
if (f == NULL) // p points to head

_head = p;
else
f -> _next = p;

return;
)
else [// head < n

f = Pi
p = p -> next;

}

while (p != NULL);
// p has reached end without inserting
tail -> next = new charelt (n);
—tail = -> _next;
tail -> next = (charelt *)NULL;

}

}

void
charlist :: remove (const char * n)
[

charelt *head = _head;
charelt *trail = (charelt *)NULL;
int found = FFALSE;

while(!found && head != NULL) [
if (strcmp(n, head->value) == 0) [

found = TTRUE;
else [
trail = head;
head = head->_next;

if(found) [
if(head == _head) [

_head = _head-> next;
head->_next = (charelt *)NULL;
delete head;

} else
if(head _tail) [

tail = trail;
tail->_next = (charelt *)NULL; _tail

->_next = (charelt *)NULL;
delete head;
else
trail->_next = head-> next;
head->_next = (charelt *)NULL;
delete head;

if(_head == NULL) _tail = (charelt *)NULL;

int
charlist :: operator == (charlist& il)
f
for (charelt *pl = _head, *p2 = il. head;

pl != NULL && p2 != NULL && *pl *p2;
pl = pl -> _next, p2 = p2 -> _next) ;

if (pl == NULL && p2 == NULL)
return TTRUE;

else
return FFALSE;

ostrearn& operator << (ostream& os, const charelt& i

[
os << i.value;
return os;

ostream& operator << (ostream& os , const charlist& i)
[

charelt *p = i._head;

while(p I= NULL) [
os << *p;
if (p -> next() I- NULL)

os << " ";
p = p -> next ();

os << flush;
return os;

}

/* End of the class stuff.... */

#define IS_NULL -1 /* used by inquire_ingres */
#define TRUE 1
#define FALSE 0
#define OK 0
#define NOT OK -1
#undef clean return

stringl2 module_name = "MSCHED";
stringl2 busname = "CELL";

extern "C" IISQLCA sqlca;
exec sql whenever sqlerror continue;
exec sql whenever sqlwarning continue;
exec sql whenever sqlmessage continue;

static char* startup[] = ["STARTUP", (char*) NULL);
static char* clist[] = ["SHUTDOWN", "MACH_REQ", "CANCEL RE",

"UPD ME ST", "ACC_TYPC", "UNRESERVE", (char*) NULL);

extern void error_lookup(int,char*);
extern int ingres_error(char*,char*,int);
extern void LOGS(char*, char*, char* = "%s", LOG_MSG_TYPE = note);
extern void kill_mq_sm(int = 0);

void msched_startup(Conversation *C, Startup_Request& M);
void msched_shutdown(Conversation *C,Shutdown_Request& M);
int msched_shutdown_scope();
void machine_request(Conversation *C,Machine_Request& M);
int request_machine scope(int,char*,char*,int&);
void sched_algorithi();
void update me_status(Conversation *C,Update_ME Status& M);
int update_ me status_scope(char*,int&,char*);
void cance_request(Conversation *C, Cancel Request& M);
int cancel_ request_ scope(int,char*);
void unreserve_macEine(Conversation *C,Unreserve Me& M);

int err = OK;
int ack;
charlist me list;

main()
[
#ifdef clean_return
#undef clean_return
#endif
#define clean_return break;

ifdef(son_error'4undefineCon_error'))
define(on_error, kill_mq_sm();')

ifdefl-on_badrows'i„undefineCon_badrows'))
define(on_badrows, kill_mq_sm();')

exec sql begin declare section;
char database_name[64];

exec sql end declare section;
strcpy(database_name, DATABASE_ NAME);
sprintf(line,"Starting %s",module_name);
LOGS("main",line);

dbconnect:
exec sql connect :database_ name;
check_and_recover_to("main",dbconnect,

"An ingres error occurred during connect",DONT_CHECK)

err = sign on(module_name, conv_timeout, TRUE);
if (err != OK)

sprintf(line,"ISIS returned error #%d while %s was tring to sign on",
err, module name);

LOGS("main",line,"%s",error);
kill_mq sm();

err = interest(busname,startup);
if (err != OK)
[
sprintf(line,"ISIS returned error #%d while setting interest filters for %s",

err,module_name);
LOGS("main",line,"%s",error);
sign_off();
kill_mq_sm();

sprintf(line,"Signed on to %s bus and waiting for startup",busname);
LOGS("main",line);

int bad_message = FALSE;
while (TRUE)

bad_message = FALSE;

Message msg;
Conversation *C;
C = new Conversation;
C->set_group(busname);

first_message("main",C,msg)

switch(C->iclass())

case C_STARTUP:
if (msg.msg_class_id() M_STARTUP_REQUEST)

Startup_Request sur(msg);
msched_startup(C,sur);

else
bad_message = TRUE;

break;
case C_SHUTDOWN:
if (msg.msg_class_id() -= M_SHUTDOWN_REQUEST)

Shutdown_ Request sdr(msg);
msched_shutdown(C,sdr);

else
bad_message = TRUE;

break;
case C_MACH_REQ:

if (msg.msg_class_id() == M MACHINE_REQUEST)
f

Machine_Request mrr(msg);
machine_request(C,mrr);

else
bad_message = TRUE;

break;
case C_CANCEL_RE:
if (msg.msg_class_id() == M CANCEL_ REQUEST)
f

Cancel_Request creq(msg);
cancel request(C,creq);

else
bad_message = TRUE,

break;
case C_UPD_ME_ST:
if (msg.msg_class_id() == M UPDATE_ ME_ STATUS)
[

Update ME_ Status ums(msg);
update_me_status(C,ums);

else
bad_message = TRUE;

break;
case C_UNRESERVE:
if (msg.msg_class_id() == M_UNRESERVE ME)

Unreserve_Me unresme(msg);
unreserve_machine(C,unresme);

}
else

bad_message = TRUE;
break;

case C_ACC_TYP_C:
if (msg.msg_class_id() == M CHG_ACCEPT_TYPE)

f
C->ignore();

f /* C++ is strange. I need to make this a block */
Chg_Accept_Type cat(msg);
/*

Check if the sched algorithm must be run. If
no accept types are being added, then do not run it

*/
if ((int)cat.num messages().ifnull(INTNULL) > 0)

sched_algorithm();
}

else
bad message = TRUE;

break;
default:

C->sprint_conversation(line);
strcat(line,"\nUnexpected Conversation received");
LOGS("main",line,"%s",warning);
C->ignore();
break;
/* end of switch */

if (bad_message == TRUE)
[
sprintf(line,"Unexpected message received '%s' for conversation: '%s'

msg.msg_name(),C->cclass());
LOGS("main",line,"%s",warning);
C->ignore();

exec sql commit; /* make sure that the DB is not locked */
delete C;
/* end of while */

/* end of main */

/***
*

MSCHED STARTUP
*
**/
void msched startup(Conversation *C, Startup Request& M)
f
#ifdef clean_return
#undef clean_return
#endif
#define clean_return [\

return; \
}

ifdef(-on_error',undefine(-on_error'))
define(on error, _
Startup_Ack startackl(module name,int with null(DB_Badupd));
err = C->send(startackl);
if (err != OK)
f
sprintf(line,"Error #%d sending Startup_Ack",err);
LOGS("msched startup",line,"%s",error);

)1)

if (strcmp((char *)M.module_id().ifnull(CHARNULL),module name) == 0)
[

LOGS("msched_startup","MSCHED startup received");

/* make sure REQUEST MACHINES and RESERVED_MACHINES tables are empty */
saveto(sp_wipe_clean)
exec sql delete from REQUEST MACHINES;
check_and_recover_to("msched_startup",sp_wipe_clean,
"An ingres error occured while deleting REQUEST_MACHINES",DONT_CHECK)

exec sql delete from RESERVED MACHINES;
check_and_recover_to("msched_startup",sp_wipe_clean,
"An ingres error occured while deleting RESERVED MACHINES",DONT_CHECK)
exec sql commit;

Startup_Ack startack(module name,int_with_null(ACK_OK));
err = C->send(startack);
if (err != OK)

sprintf(line,"Error #%d sending Startup_Ack",err);
LOGS("msched_startup",line,"%s",error);
clean_return

err = no interest(busname);
if (err != OK)

sprintf(line,
"Error #%d while setting conversation filter to no intrest",err);
LOGS("msched_startup",line,"%s",error);
ack = Start Fai;

1
else

err = interest(busname,clist);
if (err != OK)

sprintf(line,"Error #%d while setting conversation filter",err)
LOGS("msched_startup",line,"%s",error);
ack = Start Fai;

Conversation *comp, COMP;
comp = &COMP;
comp->set_group(busname);

Startup_Complete starteomp(module_name,ack);
err = comp->send(startcomp);
if (err != OK)

sprintf(line,"Error #%d while sending Startup_Complete",err);
LOGS("msched_startup",line,"%s",error);

1
else
{
/* the startup is NOT for MSCHED */
C->ignore();

clean_return
/* end of msched_startup */

/***************************************w**************w****************
*
* MSCHED_SHUTDOWN
*
* Change receive filters to not accept any conversation.
* Complete actions for all pending Cell conversations.
* Finally send a Shutdown Complete conversation and wait for a STARTUP.
*

void msched_shutdown (Conversation *C, Shutdown_Request& M)
[
#ifdef clean_return
#undef clean_return
#endif
#define clean_return { \

return; \
}

ack = ACK OK;

if (strcmp((char *)M.module_id().ifnull(CHARNULL),module_name) == 0)
f
LOGS("msched shutdown","MSCHED shutdown received");

Shutdown_Ack shutack(module_name,int_with_null(ACK_OK));
err = C->send(shutack);
if (err != OK)
[

sprintf(line,"Error #%d sending Shutdown_Ack",err);
LOGS("msched_shutdown",line,"%s",error);
clean_return

)

/* no longer interested in "all" conversations */
err = no interest(busname);
if (err T= OK)
f

ack = Shut_Fail;
sprintf(line,
"Error #%d while setting conversation filter to no_interest",err);
LOGS("msched_shutdown",line,"%s",error);

)
/* interested in only the startup conversation */
err = interest(busname,startup);
if (err != OK)
[

ack = Shut_Fail;
sprintf(line,"Error #%d while setting conversation filter",err);
LOGS("msched_shutdown",line,"%s",error);

)

ack = msched_shutdown_scope();

Conversation *comp, COMP;
comp = &COMP;
comp->set_group(busname);

Shutdown_Complet shutcomp(module_name,ack);
err = comp->send(shutcomp);
if (err != OK)

f
sprintf(line,"Error #%d while sending Shutdown_Complet",err);
LOGS("msched_shutdown",line,"%s",error);

}
}
else
{
/* the Shutdown is NOT for MSCHED */
C->ignore();

}
clean_return
} /* end of msched_shutdown */

/**
*
* MSCHED SHUTDOWN SCOPE
*
* For each distinct request key in request machine send machine
* request complete saying it cannot be satisfied
*
***/

int msched_shutdown_scope()
t
#ifdef clean_return
#undef clean_return
#endif
#define clean_return { \

return(ack); \
}

ifdef(-on_error',undefine(-on_error'))
define(on error, _
ack = DB Badrea;')

ifdef(-on_badrows',undefineCon_badrows 1))
define(on badrows, _
ack = ACKOK;')

exec sql begin declare section;
char entity_id[17];
int request_key;
char errortext[512];

exec sql end declare section;

while(TRUE)
[

saveto(sp unsatisfied)
f
/*

Get a request_key from REQUEST_ MACHINES. It does not
matter which one. When there are none left, then return.

*/
exec sql select distinct request_key, entity_id

into :request_key, :entity_id
from REQUEST MACHINES
where request_key = (select min(request_key)

from REQUEST_MACHINES);
check_and_recover_tormsched_shutdown_scope",sp_unsatisfied,
"An ingres error occured while reading REQUEST MACHINES",

CHECK ONEROWNOLOG)
/*

Remove all occurences of request key from REQUEST_ MACHINES
*/
exec sql delete

from REQUEST_ MACHINES
where request_key = :request_key;

check_and_recover_to("msched_shutdown_scope",sp_unsatisfied,
"An ingres error occured deleting from REQUEST MACHINES",DONT_CHECK)
exec sql commit;

/* These will be initialized to null */
int_with_null machine_ run_ id;
Conversation CONY, *cony;
cony = &CONY;
cony->set_group(busname);
Message req_msg;

Machine_Req Comp mrcnomach(NO_MACHIN,entity_id,machine run_id,
request key,0);

err - conv->send(mrcnomach);
if (err '= OK)
[

sprintf(line,"Error #%d sending Machine_Req Comp",err);
LOGS("msched shutdown_scope",line,"%s",error);

)
/* wait for ack */
nextmessage("msched_shutdown_scope",conv,req msg)

/* make sure its the right ack message */
if (req_msg.msg_class_id() == M REQUEST_COMP_ACK)

Request_Comp_Ack reqack(req msg);
int ack_code = (int)regack.ack_code().ifnull(INTNULL);
if (ack_code ACK_OK)
[

conv->end();
error_lookup(ack code,errortext);
sprintf(line,"Entity returned ack code #%dAn%s",ack_code,errortext);
LOGS("msched shutdown_scope",line,"%s",warning);
clean_return

conv->end();
)
else

conv->ignore();
sprintf(line,"Unexpected message received: %s.\nThe conversation is: %s.

req_msg.msg class_id(),conv->cclass());
LOGS("msched_shutdown_scope",line,"%s",warning),
clean_return

)
/* scope of lable...may work with out this...?

) /* end of while */
/* end of msched_shutdown_scope */

/**************************************w**w*****************************
Name: machine_ request

Function: request a machine for msched.

Inputs: Conversation *, Machine_req&

Returns: None.

Modifies: me list

Dependancies: charelt (object)

Language: C++

Copyright: Siemens Corporate Research, INC 1991
All rights reserved.

By:
Peter A. Murray

Date:
2/02/1991

**/
void machine_request(Conversation *C,Machine_Request &M)
[
#ifdef clean_return
#undef clean_return
#endif
#define clean_return f \

delete o_type; \
delete e_id; \
delete m_id; \
return; \
}

Message temp_msg;
charelt *pt;
int counter 0; /* keep track of the number of machine_ids recieved */

int request_key;
int n_machine = (int)M.num_machine().ifnull(INTNULL);
char *o_type = (char*)M.op_type().ifnull(CHARNULL);
char *e_id = (char*)M.entity_id().ifnull(CHARNULL);
char *mid = NULL;

LOGS("machine_request","received machine_request");

pt = me_list.head();
while(pt != NULL)
[

melist.remove(pt->val());
pt = pt->next();

}
/*

Multiple second messages provide the machine_id(s).
How many second messages == num_messages in first message.
Now, get messages.

*/
while (counter < n_machine)
f

ifdef(-on_badreceive',undefine(\on badreceive'))

define(on_badreceive,
Machineeg Ack mreqa(request key,int_with_null(Bad_messa));
err = C->send(mreqa);
if (err != OK)

sprintf(line,"Error sending Machine_Req Ack err - %d",err);
LOGS("machine_request",line,"%s",error);
clean_return

}')

nextmessage("machine_request",C,temp_msg)

ifdef(-on_badreceive',undefineCon_badreceive 1))
define(on_badreceive, ');

/* make sure its the right message */
if (temp_msg.msg_class_id() == MMACHINE_ENTRY)

/* store machine id in the link list */
Machine_Entry MEl (temp_msg); /* cast msg */
m_id = (char *)MEl.machine_id().ifnull(CHARNULL);
me list.add(m_id);
delete m_id;
/* set m_id = NULL because if the next message is bad,

clean_return which will try to delete m_id.
The non-NULL ptr which will core dump.

*/
m_id = NULL;
counter++; /* increase counter -- received next machine_id */

else
[
/* not a machine_entry msg,ignore it */
sprintf(line,"Unexpected message received: %s",temp msg.msg class_id()
LOGS("machine request",line,"%s",warning);
C->ignore();

} /* end of else */
)/* end of while */

ack = request machine scope(n_machine,otype,e_id,request key);

Machine_Req Ack mreqack(request_key,int_with_null(ack));
err = C->send(mreqack);
if (err != OK)
[

sprintf(line,"Error sending Machine_Req_Ack err = %d",err);
LOGS("machine_request",line,"%s",error);
clean_return

if (ack == ACK_OK)
sched_algorithm();

clean_return
} /* end of machine_request */

/**
*

REQUEST MACHINE SCOPE

**/
int request machine_scope(int nummachine,char *op_t,

char *e_id,int &r_key)
[
#ifdef clean_return
#undef clean_return
#endif
#define clean_return f \

r_key = request_key; \
return(ack); \
1

int counter = 0;
charelt *pt;
exec sql begin declare section;

char machine_id[17];
char *op_type = op_t;
char *entity_id = e_id;
char me_status[17];
int row_count = 0;
int request_key = 0;

exec sql end declare section;

saveto(sp_check)
[
ifdef(on_error',undefine(on_error'))
define(on_error, ack = DB_Badrea;')

ifdef(-on_badrows'Lundefine(\on_badrows'))
define(on_badrows, ')

if (num_machine < 1)

sprintf(line,"No machines were scheduled");
LOGS("request_machine_scope",line,"%s",warning);
ack = NO MACHIN;
clean_return

/*
Now lets check if the machines are NOT shutdown.
If one is, take it out of the link list.

*/
pt = melist.head();
while (pt 1 = NULL)
[

strcpy(machine_id,pt->val());
sprintf(line,"Check if machine %s exists and is not shutdown",machine_id);
LOGS("requestmachine_scope",line);
/*

Lets get a count of how many there are....
*/
exec sql select count(*)

into :row_count
from ME_CONFIG
where machine_id = :machine_id;

check_and recover_to("request_machine_scope",sp_check,
"An ingres error occured reading ME_CONFIG",DONT_CHECK)
if (row_count != 1)
[/* The machine does not exist */

sprintf(line,"Machine %s does not exist.",machine id),
LOGS("request_machine scope",line,"%s",warning);
ack = NO MACHIN;

clean_return
1
exec sql select count(*)

into :row_count
from MACHINE_STATUS
where machine_id = :machine id and

me status = 'Shutdown';
check_and_recover_to("request_machine scope",sp check,
"An ingres error occured reading MACHINE_STATUS",DONT_CHECK)
if (row_count == 1)
f /* The machine is shutdown */
sprintf(line,
"Machine %s is shutdown. Cannot satisfy request",machine_id);
LOGS("request_machine scope",line,"%s",warning);
ack = NO_MACHIN;
clean_return

pt = pt->next();
/* end of while */

/* generate the new request_key number */
exec sql execute procedure get_new_max_value (type 'MACH _ R _KEY')

into :request_key;
if (1 > request_key)
{ /* an error occurred */
LOGS("request_machine_scope",

"An error occured when getting the request key number",
"%s",error);

ack = DB_Badupd;
exec sql rollback;
clean_return

} /* end of if */

/*
We have now found all the machines and checked that they are running
now add them to the REQUEST_MACHINES table.

*/
pt = me_list.head(); // go to the begining of the list..
//
// The machines in the list are all valid requests so lets put
// them into the REQUEST_MACHINES table....
//
while (pt 1 = NULL)
[
strcpy(machineid,pt->val());
sprintf(line,"Insert entity_id %s,request_key %d,machine_id %s,op_type %s",

entity_id, request_key, machine_id, op_type);
LOGS("request_machine_scope",line);
exec sql insert

into REQUEST_MACHINES
(entity_id, request_key, machine_id, op_type)

values (:entity_id, :request key, :machine_id, :op_type);
check and_recover_to("request_machine_scope",sp_check,
"An ingres error while inserting into REQUEST_MACHINES",DONT_CHECK)
pt = pt->next();
/* end of while */

exec sql commit;
ack = ACK_OK;
clean return

} /* end of request_machine_scope

/**
Name: sched algorithm

Function: To service the oldest request FIFO for a machine first.

Inputs: None.

Returns: None.

Modifies: request_machines

Dependancies: None.

Language: C++/esql

By:
Peter A. Murray

Date:
07/07/1991

Copyrite 1991 Siemens Corporate Reseaarch, INC

***/
void sched_algorithm()
[
#ifdef clean_return
#undef clean_return
#endif
#define clean_return { \

goto bye; \
}

ifdef(-on_badrows',undefine(-on_badrows'))
define(on_badrows, ')

ifdef(-on_error',undefine(-on_error'))
define(on_error, /* should send an alarm. */')

LOGS("sched_algorithm","run the sched algorithm");

exec sql begin declare section;
int request_key;
char machine id[17];
char entity_id[17];
char op_type[17];
int machine_run_id;
int row_count;
int num_machines;
char errortext[512];

exec sql end declare section;

int done = FALSE;

saveto(sp_sched)
[

exec sql declare cursorl cursor for

select distinct request key, entity_id, op_type
from REQUEST_MACHINES
order by request_key;

exec sql open cursorl;
exec sql whenever not found goto bye;

while (!done)

/*
go through the REQUEST_MACHINES table for each distinct
request key - starting with the oldest.

*/

exec sql fetch cursorl into :request_key, :entity_id, :op_type;
check and recover to("sched algorithm",sp sched,
"An ingres error occured when cursorl was reading REQUEST_MACHINES",
DONT_CHECK)

/*
count the number of rows of the request key. this will give the
number of machines needed to satisfy the request.

*/

exec sql select count(*)
into :row_count
from REQUEST_MACHINES
where request_key = :request_key;

check_and_recover_to("sched algorithm",sp sched,
"An ingres error occured counting the rows of a request in REQUEST_MACHINES
DONT_CHECK)

sprintf(line,"There are %d machines for request_key %d",row count,request_k
LOGS("sched_algorithm",line);

/*
Check if all of the machines in the request are available.
The op_type and the machine must be in ACCEPT_TYPES and
the machine must NOT be currently reserved

*/

exec sql select count(*)
into :num_machines
from REQUEST MACHINES r, ACCEPT TYPES a
where r.machine_id = a.machine_id and

a.op_type = :op_type and
r.request_key = :request_key and
r.machine id not in
(select machine_id

from RESERVED_ MACHINES);
check_and_recover_to("schedalgorithe,sp_sched,
"An ingres error occured while reading REQUEST_MACHINES and ACCEPT_TYPES",
DONT_CHECK)
sprintf(line,"There are %d machines available for request_key %d",

num_machines,request_key);
LOGS("sched_algorithm",line);

/* if the two counts match, then the request is satisfied */
if (num_machines == row_count)

done = TRUE;
1
/* found a satisfied request key */
exec sql close cursorl;
/* reserve the machines */
exec sql insert into RESERVED MACHINES

(machine_id,entity_id)
select machine_id,entity_id

from REQUEST_MACHINES
where request_key = :request_key;

check_and_recover_to("sched algorithm",sp_sched,
"An ingres error while inserting into RESERVED_MACHINES",DONT CHECK)

/* generate the new machine_run_id number */
exec sql execute procedure get new_max_value (type = 'MACH_R_ID')

into :machine_run_id;
if (1 > machine_run_id)
f /* an error occurred */
check_and recover_to("schedalgorithm",sp_sched,
"An ingres error occured while inserting into MAX_VALUES",DONT CHECK)

1
/*

read the machine ids into memory. Use a link list
*/
charelt *pt;
int counter = 0;
pt = me_list.head();
while(pt != NULL)
f /* clear link list */
me_list.remove(pt->val());
pt = pt->next();

}
exec sql declare cursor2 cursor for
select distinct machine_id
from REQUEST_MACHINES
where request_key = :request_key;

exec sql open cursor2;

while (counter < num_machines)

exec sql fetch cursor2 into :machine_id;
check_and_recover to("sched algorithm",sp_sched,
"An ingres error occured while reading REQUEST_MACHINES",DONT_CHECK)
me_list.add(machine_id);
counter++; /* increase counter -- get next machine_id */

} /* end of while */

exec sql close cursor2;
sprintf(line,"Delete all requests for entity_id %s from REQUEST_MACHINES",

entity_id);
LOGS("sched algorithm",line);
exec sql delete

from REQUEST_MACHINES
where entity_id = :entity_id;

check_and_recover_to("sched_algorithm",sp_sched,
"An ingres error while deleting from REQUESTMACHINES",DONT_CHECK)
exec sql commit;

#ifdef clean_return
#undef clean_return
#endif
#define clean_return f \

return; \

sprintf(line,"satisfied request key %d for entity %s of op_type %s",
request key,entity_id,op type);

LOGS("sched algorithm",line);

/*
send out a Machine Request Complete conversation to the lot entity
telling it that the machines are ready

*/
Conversation CONY, *cony;
cony = &CONY;
cony->set_group(busname);
Message req_msg;

Machine_Req Comp mrcok((int_with_null)ACK OK,entity id,
machine run_id,request_key,num machines);

err = conv->send(mrcok);
if (err != OK)

sprintf(line,"Error sending Machine_Req Comp err: %d",err);
LOGS("sched_algorithm",line,"%s",error);
clean return

//
// Start at the begining of the list of requests and send out the
// message that these machines are reserved...
//
pt = me_list.head();
while (pt != NULL)

strcpy(machine_id,pt->val());
Reserved Machine resmach(machine id);
err = conv->send(resmach);
if (err 1 = OK)

sprintf(line,"Error sending Reserved Machine err: %d",err);
LOGS("sched_algorithm",line,"%s",error);
clean return

pt = pt->next();

/* wait for ack */
next message("sched_algorithm",conv,req msg)

/* make sure its the right message */
if (req_msg.msg_class_id() == M REQUEST COMP ACK)

Request_Comp_Ack reqack(req msg);
int ack_code = (int)reqack.ack_code().ifnull(INTNULL);
if (ack code != ACK_OK)
f
conv->end();
error_lookup(ack_code,errortext);
sprintf(line,"Entity returned ack_code #%dAn%s",ack_code,errortext);
LOGS("sched_algorithm",line,"%s",warning);
clean_return

1
conv->end();
}
else

conv->ignore();

sprintf(line,"Unexpected message received: %s.\nThe conversation is: %s.",
req msg.msg_class_id(),conv->cclass());

LOGS("sched_algorithm",line,"%s",warning);
clean return

}
)
bye: exec sql commit;

clean return

exec sql whenever not found continue;

) /* end of sched_algorithm */

/***
Name: update_me_status

Function: If the update_me_status changes the status of a machine to
'Shutdown', this function deletes the machine from
the REQUEST_ MACHINES table and sendsthe machine_request_complete
to all lot entities that requested a machine such that now
the request cannot be filled.

Inputs: Conversation *C - the current conversation.
Update ME Status M - the message we look for

Returns: None.

Modifies: None.

Dependancies: handlers.inc M4 macro

Language: C++/esql

By:
Peter A. Murray

Date:
07/07/1991

Copyrite 1991 Siemens Corporate Reseaarch, INC

**/
void update_me status(Conversation *C, Update_ME_Status& M)
f
#ifdef clean_return
#undef clean_return
#endif
#define clean_return { \

delete me_status;\
delete machine_id; \
return; \
}

int_with_null machine_run_id; // should be init to null
char *me_status = (char *)(M.me_status().ifnull(CHARNULL));
char *machine_id = (char *)(M.machine_id().ifnull(CHARNULL));
int request key;
char entity_id[17];

char errortext[512];

/*
There is no response for MSCHED. Tell the conversation
tool to end the conversation.

*/
C->end();

/* if the machine is NOT Shutdown, then ignore the conversation */
if (strcmp(me status,"Shutdown") == 0)

sprintf(line,"machine %s has shutdown. Should any requests be canceled",
machine_id);

LOGS("update_me_status",line);
/*

go through the machine request table and find all of the requests
which will be eliminated because there is no machine
left (not shutdown) to satify the request. Call the
update—me—status_scope routine until ack = ACK_OK.

*/
while (NO_MACHIN == update_me_status_scope(machine_id,

request_key,&entity id[0]))

/* no machine is left, tell the waiting entity */
Conversation CONV, *conv;
cony = &CONV;
conv->set_group(busname);
Message req msg;

Machine_Req Comp mrcnomach(NO_MACHIN,entity id,machine_run_id,
request_key,0);

err = conv->send(mrcnomach);
if (err != OK)

sprintf(line,"Error #%d sending Machine_Req_Comp",err);
LOGS("update_me status",line,"%s",error);

/* wait for ack */
next_message("update_me_status",conv,req_msg)

/* make sure its the right message */
if (req_msg.msg_class_id() == M_REQUEST_COMP_ACK)

Request_Comp_Ack reqack(req msg);
int ack_code = (int)reqack.ack_code().ifnull(INTNULL);
if (ack_code != ACK_OK)

conv->end();
error_lookup(ack_code,errortext);
sprintf(line,"Entity returned ack_code #%dAn%s",ack_code,errortext);
LOGS("update_me_status",line,"%s",warning);
clean_return

conv->end();

else

conv->ignore();
sprintf(line,"Unexpected message received: %s.\nThe conversation is: %s.",

req_msg.msg_class_id(),conv->cclass());

LOGS("update_me_status",line,"%s",warning);
clean return

} /* end of while */
} /* end of if */
clean_return
} /* end of update me_status */

/***
*

UPDATEME_STATUS_SCOPE

**/
int update_ me_ status_scope(char *m_id,int &r_key,char *e_id)

#ifdef clean_return
#undef clean_return
#endif
#define clean_return { \

r_key = request_key; \
return(ack); \

ifdef(1 on_error'1,undefineCon_error'))
define(on_error, request_key = INTNULL;')

ifdef(-on_badrows',undefine(-on badrows'))
define(on_badrows,
exec sql commit;
request_key = INTNULL;')

exec sql begin declare section;
char *entity_id = e_id;
char *machine_id = m_id;
int request_key;

exec sql end declare section;

ack = ACKOK;

saveto(sp_update)

/*
see if an entities are waiting for the machine which has just
shutdown

*/
exec sql select distinct request_key, entity_id

into :request_key, :entity_id
from REQUEST_ MACHINES
where machine_id = :machine_id;

check_and_recover_to("update_me_status_scope",sp_update,
"An ingres error occured reading from REQUEST_MACHINES",CHECK_ONEROW NOLOG)

/*
delete the request from the table for the machine which shutdown

*/
exec sql delete from REQUEST MACHINES

where request_key = :request_key;
check_and_recover_to("update_me status_scope",sp_update,
"An ingres error occured deleting from REQUEST_MACHINES",DONT_CHECK)
exec sql commit;
/*

not all machines are left to satisfy the request
a Machine Request Complete is sent to the waiting
entity indicating that the request has been removed

*/
ack = NO MACHIN;
clean_return

)
] /* end of update_me_status_scope */

/***
Name: cancel_request

Function: to cancel a request for a machine.

Inputs: Cancel_Request M // the message with the information in it.

Returns: None.

Modifies: Request_machines table

Dependancies: None.

Language: C++/esql

By:
Peter A. Murray
Paul J. Bruschi

Date:
08/07/1991

Copyrite 1991 Siemens Corporate Reseaarch, INC
**/
void cancel_request(Conversation *C,Cancel_Request& M)
[
#ifdef clean_return
#undef clean_return
#endif
#define clean_return [\

return; \
}

int err = OK;
int with null machine run id; // should be init to null
string_with_null machine_id; // should be init to null
char entity_id[17];
char errortext[512];

int request_key = (int)M.request key().ifnull(INTNULL);

ack = cancel request_scope(request key,&entity id[0]);
if (ack == ACK OK)
(

Conversation CONY, *cony;
cony = &CONV;
conv->set_group(busname);
Message req_msg;

Machine Req Comp mrcreqcan(REQ_CANCE,entity id,machine run id,
request_key, 0);

err = conv->send(mrcreqcan);
if (err != OK)
[

sprintf(line,"Error #%d sending Machine Req_Comp",err);
LOGS("cancel_request",line,"%s",error);

}
/* wait for ack */
nextmessage("cancel request",conv,req_msg)

/* make sure its the right message */
if (req msg.msg_class_id() == M_REQUEST_COMP ACK)

Request_Comp_Ack reqack(req msg);
int ack_code = (int)reqack.ack_code().ifnull(INTNULL);
if (ack_code != ACK_OK)
f
conv->end();
error_lookup(ack_code,errortext);
sprintf(line,"Entity returned ack_code #%d.\n%s",ack code,errortext);
LOGS("cancel_request",line,"%s",warning);
clean_return

conv->end();

else

conv->ignore();
sprintf(line,"Unexpected message received: %s.\nThe conversation is: %s.",

req msg.msg_class_id(),conv->cclass());
LOGS("cancel_request",line,"%s",warning);
clean_return

}

Cancel_Req Ack cral(request_key,ack);
err = C->send(cral);
if (err != OK)
[

sprintf(line,"Error #%d sending CancelReq_Ack",err);
LOGS("cancel_request",line,"%s",error);
clean_return

clean_return
/* end of cancel_request */

/**
*

CANCEL REQUEST SCOPE

***/
int cancel_request_scope(int r_key,char *e_id)
f
//
// Remove all occurences of a given request_key from the REQUEST MACHINES
// table...
//
#ifdef clean_return
#undef clean_return
#endif
#define clean_return f \

return(ack); \

ifdef(on_error',undefine(on_error'))
define(on_error, ack = DB_Badrea;')

ifdef(-on_badrows',undefineCon_badrows 1))
define(on badrows,
ack = REQ_KEYU;
exec sql commit;')

exec sql begin declare section;
char *entity_id = e_id;
int request_key = r_key;

exec sql end declare section;

ack = ACKOK;

saveto(sp_cancel_req)
[

exec sql select distinct entity_id
into :entity_id
from REQUEST_ MACHINES
where request_key = :request_key;

check_and_recover_to("cancel_request_scope",sp_cancel_reg,
"An ingres error occured reading REQUEST_MACHINES",CHECKMANYROWS)

exec sql repeated delete
from REQUEST_ MACHINES
where request_key = :request_key;

check_and_recover_to("cancel_request scope",sp cancel req,
"An ingres error occured deleting from REQUEST_MACHINES",DONT_CHECK)
exec sql commit;
clean_return

/* end of cancel_request_scope */

/*************************************** *************7%*******************

Name: UNRESERVEMACH1NE

Function: To unreserve a machine wich was reserved earlier by
msched.

Inputs: Conversation *C
Unreserve_Me &M

Returns: None.

Modifies: RESERVED MACHINES

Dependancies: None.

Language: C++/esql

By:
Paul J. Bruschi

Date:
08/07/1991

Copyrite 1991 Siemens Corporate Reseaarch, INC

void unreserve machine(Conversation *C, Unreserve Me& M)
[
#ifdef clean return
#undef clean_return
#endif
#define clean_return [\

delete machine_id; \
return; \
}

ifdef(-on_error',undefine(-on_error'))
define(on_error,
Unreserve_Me Ack unresackl(int_with_null(DB_Badupd));
err = C->send(unresackl);
if (err != OK)

sprintf(line,"Error #%d sending UnreserveMe_Ack",err);
LOGS("unreservemachine",line,"%s",error);
,)

ifdef(-on_badrows',undefineCon_badrows'))
define(on_badrows, ')

saveto(sp_unres)
[

exec sql begin declare section;
char *machine_id = (char *)(M.machine id().ifnull(CHARNULL));

exec sql end declare section;

exec sql delete from RESERVED MACHINES
where machine_id = :machine_id;

check_and_recover_to("unreservemachine",sp_unres,
"An ingres error occured deleteing from RESERVEDMACHINES",DONT_CHECK)

Unreserve_Me_Ack unresack(int_with_null(ACK OK));
err = C->send(unresack);
if (err OK)

sprintf(line,"Error #%d sending UnreserveMe Ack",err);
LOGS("unreserve_machine",line,"%s",error);

1

sched_algorithm();
clean_return
}
} /* end of unreserve machine

11.2 Listing 3, CMM_WC

Page 66

/*
* we interface
*
*/
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include "Conversation. h"
#include "cell_messages.h"
#include "ack_codes.h"
#include "logs.h"
#include "nullitems.h"
#include "machine_status.h"
#include "me_messages.h"
#include "me defs.h"
#include "sh7ared_mem struct.h"
exec sql include sqica;'
#include "esql.h"

include(handlers.inc)

#undef clean return

string12 machine_id = "cmm_wc";
string12 busname = "CELL";

extern "C" IISQLCA sqlca;

exec sql whenever sqlerror continue;
exec sql whenever sqlwarning continue;
exec sql whenever sqlmessage continue;

static char* startup[] = { "ME_START", (char*) NULL);
static char* start2[] = rALARM_CLE", (char *) NULL);
static char* clist[] ["ME_SHUT", "START_RUN", "SETUP RUN", "DNLD_ME_",

"UPLDME_", (char*) NULL);

MACHINE STATUS status;

extern int ingres_error(char*,char*,int);
extern void LOGS(char*,char*,char* "96s",LOG_MSG_TYPE = note);
extern int get_status(char*,MACHINE_STATUS*);
extern int change status(char*,MACHINE_STATUS*);
extern int send_aiarm(char*,char*,char*,char*,char*,char*,char*);
extern int convert_cname(char*);
extern int send_accept_types(char*,char*,int);
extern int mq_send(int msgid, long msg_type, char *msg text);
int mq read_wait(int msgid,long msg_type,char *msg_text);

void wc_startup(Conversation *C, ME Startup& M);
void wc_shutdown(Conversation *C, ME_Shutdown& M);
void wc_setup_run(Conversation *C, Setup_Run& M);
void wc_start_run(Conversation *C, Start_Run& M);
void wc_download(Conversation *C, Download_Me& M);
void wc_upload(Conversation *C, Upload_Me& M);
void run_comp_action();
void alarm_ action();
void alarm_ action_ sub();
void shutdown_ machine();
void listen me(int msqid);

extern void kill_mq_sm(int = 0);
extern int init_mq(char *);
extern int send_listen(int msgid,int conv,char *file_name,char *recp_id)
extern int mq_read_nowait(int msgid,long msg_type,char *msg_text);
WC_ME_BUFFER wc_me_message;
int msgid;

main()

#ifdef clean_return
#undef clean_return
#endif
#define clean return break;

ifdef(-on_error'4undefineCon_error'))
define(on_error, kill mq_sm();')

ifdef(-on_badrows'L.undefineCon_badrows1))
define(on_badrows, killmq sm();')

int err = 0;
exec sql begin declare section;

char *database name = DATABASE NAME;
exec sql end declare section;

char process[20];
strcpy(process,"cmmwc");
msgid = init_mq(process);
printf("WC:MSG_ID: %d\n", msgid);

LOGS("main","Starting ");

dbconnect:
exec sql connect :database name;
check_and_recover_to("main",dbconnect,

"An ingres error occurred during connect",DONT_CHECK)

/* Have this module sign on to ISIS */
err = sign_on(machine_id,conv_timeout,TRUE);
if (err != 0)
[
sprintf(line,
"ISIS returned error #%d while tring to sign on",err),
LOGS("main",line,"%s",error);
kill_mq_sm();

/* have this module listen to the bus 'busname' and set the interest
* to the conversation startup
*/
err = interest(busname,startup);
if (err != 0)
[
sprintf(line,
"ISIS returned error #%d while setting interest filters. ",err);
LOGS("main",line,"%s",error);
sign off();
kill mq_sm();
}

sprintf(line,"Signed on to %s bus and waiting for startup",busname);
LOGS("main",line);

int bad_message = FALSE;
while (TRUE)
[
bad_message = FALSE;

Message msg;
Conversation *C;
C = new Conversation;
C->set_group(busname);

ifdef(-on_badreceive',undefineCon_badreceive'))
define(on_badreceive, listenme(msgid);')

ifdef(-conv_timeoutf ,undefine(-conv_timeout'))
define(conv_timeout, 3')

first_message("main",C,msg)

ifdef(-on_badreceive',undefine(-on_badreceive'))
define(on_badreceive, ')

ifdef(-conv_timeout',undefine(-conv timeout 1))
define(conv_timeout, 60')

switch(C->iclass())
[
case C_ME START :

if (msg_ msg_classid() == M_ME_STARTUP)

ME_Startup sr12(msg);
wc_startup(C,sr12);
}

else
bad_message = TRUE;

break;
case C_ME_SHUT :
if (msg.msg_class_id() == M_ME SHUTDOWN)

ME_Shutdown srll(msg);
wc_shutdown(C,sr11);

else
bad_message = TRUE;

break;
case C_SETUP_RUN :
if (msg.msg_class_id() == M SETUP_RUN)

Setup_Run sr13(msg);
wc_setup_run(C,sr13);
}

else
bad_message = TRUE;

break;
case C_START RUN
if (msg.msg_class_id() == MSTART_RUN)
[

Start_Run sr14(msg);
wc_start run(C,sr14);

else
bad message = TRUE;

break;
case C_DNLD_ME_ :

if (msg.msg_class_id() == M_DOWNLOAD ME)
[
Download_Me dmll(msg);
wc_download(C,dm11);

else
bad message = TRUE;

break;
case C_UPLD ME_ :

if (msg.msg_class_id() == M_UPLOAD_ME)

Upload Me umll(msg);
wc_upload(C,um11);

else
bad_message = TRUE;

break;
default:

C->sprint conversation(line);
strcat(line,"\nUnexpected Conversation received");
LOGS("main",line,"%s",warning);
C->ignore();
break;

} /* end of switch */

if (bad_message == TRUE)
[
sprintf(line,"Unexpected message received '%s' for conversation:

msg.msg_name(), C->cclass());
LOGS("main",line,"%s",warning);
C->ignore();

exec sql commit;
delete C;
} /* end of while
/* end of main */

'OS' .11

/***
*

WC STARTUP
*
**/
void wc_startup(Conversation *C, ME Startup& M)
[
#ifdef clean_return
#undef clean_return
#endif
#define clean_return (\

delete mach_id; \
delete CONV1; \
delete CONV2; \
return; \

int ack = ACK OK;
int err = 0;

Message msgl;
Conversation *CONV1;
CONV1 = new Conversation;
CONV1->set group(busname);

Message msg2,
Conversation *CONV2;
CONV2 = new Conversation;
CONV2->set_group(busname);

ifdef(-err_return',undefine(-err_return'))
define(err return,
send_alarm(busname,

"MESTRT_FAIL",
"MACHINE",

machine_id,
"See Error Log",
"now");

clean_return')

char *mach id = (char *)M.machine_id().ifnull(CHARNULL);

if (strnomp(machine_id,mach_id,strlen(machine id)) == 0)

/*
A startup message was received for the wc_interface
we checks for its status, if stauts is not Shutdown then
sends back Notnow acknowledgement

*/

LOGS("wc startup","WC startup received");

if (ACK != get status(machine_id,&status))

ME_Startup_Ack mesal(machine id,DB_Badrea);
err = C->send(mesal);
if (err != 0)
[

sprintf(line,"Error #%d sending ME_Startup_Ack",err);
LOGS("wc_startup",line,"%s",error);

}
clean return

}
if (strncmp(status.me_status,"Shutdown",strlen("Shutdown")) I= 0)

LOGS("wc_startup","Sending Notnow. ME not Shutdown.","%s",warning);
ME_Startup_Ack mesa2(machine_id,Notnow),
err = C->send(mesa2);
if (err != 0)

sprintf(line,"Error #%d sending ME Startup_Ack",err);
LOGS("wc_startup",line,"%s",error),

clean return

/*
status is Shutdown so we sends back the acknowledgement OK

*/
ME_Startup_Ack mesa3(machine_id,int_with_null(ACK_OK));
err - C->send(mesa3);
if (err != 0)

sprintf(line,"Error #%d sending ME_Startup Ack",err);
LOGS("wc_startup",line,"%s",error);
clean return

/*
Status of WC is Shutdown. Send ME_Startup
message to the machine and wait for ack.

strcpy(wc_me_message.file_name, "NULL");
strcpy(wc_me_message.recipe_id, "NULL");
wc_me_message.message_id = ME_START;
wc_me_message.ack_code = ACK;
strcpy(wc_memessage.alarm_text,"NULL");

if (IS_MESSAGE mq_send(msgid,TO_ME,(char *)&wc_me_message))

sprintf(line, "Error sending to ME startup msg");
LOGS("wc_startup",line,"%s",warning);
err_return

if (IS_MESSAGE != mq read_wait(msgid,FROM_ME,(char *)&wc me_message))

sprintf(line, "Got no responce from the ME");
LOGS("wc startup",line,"%s",warning);
err_return

sprintf(line, "Message_id = %d \n",wc_me_message.message id);
LOGS("wc_startup",line,"%s",warning);
if (wc_me_message.message_id == CELL_ALAR)

sprintf(line, "Got an alarm for cmm home");
LOGS("wc startup",line,"%s",note);
/* WARNING ----
**this is a cluge to get the demo working
**alarm_action listens for an ack, any old ack, and it dosent care
**who or what the ack is...
**IT will then send an ack back to the ME half...
**The ack should be confirmed that it is the one expected..
**You want a demo well here is your demo
*/

/* also listen for ALARMs begin cleared */
err = interest(busname,start2);
if (err 0)f

sprintf(line,
"Error #%d while setting conversation filter",err);
LOGS("wc startup",line,"%s",error),

err = interest(busname,startup);
if (err != OH

sprintf(line,"Error #%d while setting conversation filter",err);
LOGS("wc_startup",line,"%s",error);

)
err_return

)
alarm_ action();
listen_me(msgid); /* listen for an alarm or ack */

)

err = nointerest(busname);
if (err != 0)[

sprintf(line,
"Error #%d while setting conversation filter to no_intrest",err)
LOGS("wc_startup",line,"%s",error);
err_return

I
err = interest(busname,clist);
if (err != 0)[

sprintf(line,
"Error #%d while setting conversation filter",err);
LOGS("wc_startup",line,"%s",error);
err = interest(busname,startup);
if (err != 0)(

sprintf(line,"Error #%d while setting conversation filter",err);
LOGS("wc _startup",line,"%s",error);

)
err_return

)

ifdef(-err_return',undefine(-err_return'))
define(err return,
err = sena_alarm(busname,

"MESTRT_FAIL",
"MACHINE",
II II

machine_id,
"See Error Log",
"now");

if (err == 0){
clean_return

}
err = no interest(busname);
if (err != 0)[

sprintf(line,
"Error #%d while setting conversation filter to no_intrest",err)
LOGS("wc_startup",line,"%s",error);
clean_return

)
err = interest(busname,startup);
if (err != 0)[

sprintf(line,
"Error #%d while setting conversation filter",err);
LOGS("wc_startup",line,"%s",error);

)
clean_return')

if (ACK != send accept_types(machine id,busname,ALLOPS)){

err_return
}
strcpy(status.recipe_id,CHARNULL);
strcpy(status.starttime,TIMENULL);
strcpy(status.end_time,TIMENULL);
strcpy(status.me_status,"Idle");
status.machine_run_id = INTNULL;
status.note_id = INTNULL;
if (ACK != change_status(busname,&status))(

sprintf(line, "Cannot change the status to %s",status.me_status);
LOGS("wc_startup",line,"%s",warning);
err return

ME_Ready merd(machine_id);
err = CONV1->send(merd);
if (err != 0)[

sprintf(line,"Error #%d sending ME_Ready",err);
LOGS("wc_startup",line,"%s",error);
clean_return

else
C->ignore();

clean_return
} /* end of wc startup */

/***
*

WC SHUTDOWN
*
**/

void wc_shutdown(Conversation *C, ME_Shutdown& M)
[
#ifdef clean_return
#undef clean_return
#endif
#define clean_return [\

delete mach_id; \
return; \

int ack = ACK_OK;
int err = 0;

char *mach_id = (char *)M.machine_id().ifnull(CHARNULL);

if (strncmp(machine_id,mach id,strlen(machine_id)) == 0)

/*
A shutdown message was received for the wc_interface.
First WC will set the accept types to accept no more operations.
Then it will check its status: if it is "Idle" it will
shutdown immediately. if it is "Setup" it will set its state to
"Setup_Shut" and will shutdown when the run is complete. If
it is "Running" it will set its state to "Run_Shut" and
will shutdown when the run is complete.

*/
LOGS("wc_shutdown","WC shutdown received");

ME_Shutdown_Ack mesh(machine id,intwith_null(ACK_OK));

err = C->senu(mesh),
if (err != 0)

sprintf(line,"Error #%d sending ME_Shutdown_Ack",err);
LOGS("wc_shutdown",line,"%s",error);
clean_return

)
if (ACK != send_accept_types(machine id, busname, NONE))

clean_return

if (ACK != get_status(machine_id,&status))

ack = DB_Badrea;
sprintf(line,"Cannot read the current status");
LOGS("wc_shutdown",line,"%s",warning);
clean_return

)
if (strncmp(status.m_status,"Idle",strlen("Idle")) == 0)
[

shutdown_machine();
clean_return

}
if (strncmp(status.me_status,"Setup",strlen("Setup")) == 0)

strcpy(status.me_status,"Setup_Shut");
if (ACK != change_status(busname,&status))[

sprintf(line, "Cannot change the status to %s",status.me_status)
LOGS("wc_shutdown",line,"%s",warning);

clean_return
}
if (strncmp(statuseme_status,"Running",strlen("Running")) == 0)

strcpy(status.me_status,"Run_Shut");
if (ACK != change_status(busname,&status))
f

sprintf(line, "Cannot change the status to %s",status.me_status)
LOGS("wc_shutdown",line,"%s",warning);

clean_return
)

/*
Status of WC is Shutdown. Send ME Shutdown
message to the machine and wait for ack.

*/

strcpy(wc_me_message.file_name, "NULL");
strcpy(wc_me_message.recipe_id, "NULL");
wc_me_message.message_id = ME_SHUT;
wc_me_message.ack_code = ACK;
strcpy(wc_me_message.alarm_text,"NULL");

if (IS_MESSAGE != mq_send(msgid,TO_ME,(char *)&wc me message))

sprintf(line, "Error sending to ME startup msg");
LOGS("wc_startup",line,"%s",warning);
err return

)

if (IS MESSAGE != mq read wait(msgid,FROM ME,(char *)&wc me message))
[

sprintf(line, "Got no responce from the ME");
LOGS("wc_startup",line,"%s",warning);
err return

}

sprintf(line, "Message_id = %d \n",wc me message.message id);
LOGS("wc_startup",line,"%s",warning);
if (wc_me_message.message_id != ME SHUT_C)

sprintf(line, "Got the wrong responce from the ME");
LOGS("wc startup",line,"%s",warning);

}

else
C->ignore();

clean_return
} /* end of wc_shutdown */

/***
*

SHUTDOWN MACHINE
*
• This will change the status to "Shutdown", change the conversation
• filter to accept only a startup and then send out the ME_SHUTDOWN_COMPLETE
• conversation.
***/

void shutdown_ machine()

#ifdef clean_return
#undef clean_return
#endif
#define clean_return f \

delete CONV1; \
return; \

int err = 0;

Conversation *CONV1;
CONV1 = new Conversation;
CONV1->set_group(busname);

LOGS("shutdownmachine","WC will shutdown the machine");

stropy(status.recipe_id, CHARNULL);
strcpy(status.starttime,TIMENULL);
strcpy(status.end_time,TIMENULL);
stropy(status.me_status,"Shutdown");
status.machine_run_id = INTNULL;
status.note_id = INTNULL;
if (ACK != change_status(busname,&status))[

sprintf(line, "Cannot change the status to %s",status.me_status)
LOGS("shutdown_machine",line,"%s",warning);
clean_return

err = nointerest(busname);
if (err != 0)f

sprintf(line,

"Error #%d while setting conversation filter to no_interest",err);
LOGS("shutdown_machine",line,"%s",error);
clean_return

err = interest(busname,startup);
if (err != 0)f

sprintf(line,"Error #%d while setting conversation filter to startup",err);
LOGS("shutdown_machine",line,"%s",error);
clean_return

ME_Stopped mest(machine_id);
err = CONV1->send(mest);
if (err != 0)[

sprintf(line,"Error #%d sending ME_Stopped",err);
LOGS("shutdown_machine",line,"%s",error);
clean_return

clean_return
)/* end of shutdown machine */

/***
*

WC SETUP RUN

**/
void wc_setup_run(Conversation *C, Setup Run& M)
[
#ifdef clean_return
#undef clean_return
#endif
#define clean_return [\

delete mach_id; \
delete op_type; \
delete recipe_id; \
delete filename; \
return; \
}

int ack = ACK_OK;
int err = 0;

exec sql begin declare section;
char *mach_id;
char *op_type;
char *recipe_id;
char *filename;
int row_count;

exec sql end declare section;

mach_id = (char *)M.machine id().ifnull(CHARNULL);
op_type = (char *)M.op_type().ifnull(CHARNULL);
recipe_id = (char *)M.recipe_id().ifnull(CHARNULL);
filename = (char *)M.filename().ifnull(CHARNULL);

ifdef(-on_badrows',undefineCon badrowsI))
define(on_badrows,
Setup_Run_Ack srnal(machine_id, Rec_Inval);
err = C->send(srnal);
if (err != 0)f

sprintf(line,"Error #%d sending Setup_Run_Ack",err);
LOGS("wc_setup_run",line,"%s",error);
}I)

ifdef(son_error',undefine(-on_error'))
define(on error,
Setup_Run_Ack srna2(machine_id, DB_Badrea);
err - C->send(srna2);
if (err != 0)[

sprintf(line,"Error #%d sending Setup_Run_Ack",err);
LOGS("wc_setup_run",line,"%s",error);
)

ifdef(-err_return',undefineCerr_return'))
define(err_return,
Setup_Run_Ack srna3(machine_id, ack);
err - C->send(srna3);
if (err != 0)[

sprintf(line,"Error #%d sending Setup Run_Ack",err);
LOGS("wc_setup_run",line,"%s",error);

clean_return')

if (strncmp(machine_id,mach_id,strlen(machine_id)) 0)[
/*

A setup run message was received for the machine.
WC will check if its status is "Idle", download the recipe,
then send back the acknowledgement

*/
LOGS("wc_setup_run","setup_run received");

if (ACK != get_status(machine_id,&status))[
ack = DB_Badrea;
sprintf(line,"Cannot read the status");
LOGS("wc_setup run",line,"%s",warning);
err_return

if (strncmp(status.me_status,"Idle",strlen("Idle")) 0)
ack = Notnow;
sprintf(line,"Machine not Idle, try later.");
LOGS("wc_setup_run",line,"%s",warning);
err_return

/*
Check if the recipe_id and op_type are valid for the machine

*/

saveto(sp_oprec);
exec sql select count(*)

into :row_count
from OP_MACHINE_RECIPE
where machine_id = :mach_id and

recipe_id = :recipe_id and
op_type = :op_type;

check_and_recover_to("wc_setup_run",sp_oprec,
An ingres error occured while reading OP_MACHINE_RECIPE",CHECK_ONEROW_NOLOG)
exec sql commit;

/*
Now setup the run by telling the me_interface to download the recipe

to the machine
*/
ack = Start_Fai;
if (ACK != send_listen(msgid,SETUP_RUN,filename,recipe_id))[

sprintf(line,"Cannot setup the run on the machine.");
LOGS("wc_setup_run",line,"%s",warning);
err_return

/*
Change the accept types to none

*/
ack = DB Badupd;
if (ACK T= send_accept_types(machine id,busname,NONE))(

err_return

/*
change the status to "Setup"

*/
strcpy(status.recipe_id, recipe_id);
strcpy(status.starttime,TIMENULL);
strcpy(status.end_time,TIMENULL);
strcpy(status.me_status,"Setup");
status.machinerun_id = M.machine_run_id().ifnull(INTNULL);

if (ACK != change_status(busname,&status)){
sprintf(line, "Cannot change the status to %s",status.me status);
LOGS("wc_setup_run",line,"%s",warning);
err_return

/*
machine is setup for run so send setup_run_ack

*/
Setup_Run_Ack srna4(machine_id,int_with null(ACK OK));
err = C->send(srna4);
if (err != 0) [

sprintf(line,"Error #%d sending Setup_Run Ack",err);
LOGS("wc_setup_run",line,"%s",error);
clean_return

else
C->ignore();

clean_return
} /* end of wc_setup_run */

/***
*

WC START RUN

**/
void wc_start_run(Conversation *C, Start_Run& M)
[
#ifdef clean_return
#undef clean_return
#endif
#define clean_return [\

delete mach_id; \
delete recipe_id; \

delete filename;
return; \

int ack = ACK_OK;
int err = 0;

char *mach_id = (char *)M.machineid().ifnull(CHARNULL);
char *recipe_id - (char *)M.recipe_id().ifnull(CHARNULL);
char *filename = (char *)M.filename().ifnull(CHARNULL);

ifdef(-err_return',undefine(-err_return'))
define(err_return,
Start_Run_Ack strnal(machine_id,Start_Fai);
err = C->send(strnal);
if (err != 0)[

sprintf(line,"Error #%d sending Start_Run_Ack",err);
LOGS("wc_startrun",line,"%s",error);

clean_return')

if (strncmp(machine_id,mach_id,strlen(machine_id)) 0)(
/*

A start_run message was received for the wc interface
we send back the acknowledgement and sets the filters to
receive all of the messages.

*/
LOGS("wc_start_run","start_run received");

if (ACK != get_status(machine_id,&status))(
ack = DB_Badrea;
sprintf(line,"Cannot read the status");
LOGS("wc_start_run",line,"%s",warning);
err_return

if ((strncmp(status.me_status,"Setup",strlen("Setup")) != 0) &&
(strncmp(status.me_status,"Setup_Shut",strlen("Setup_Shut")) !=0))1
ack = Notnow;
sprintf(line,"Machine not setup for run, try later.");
LOGS("wc_start_run",line,"%s",warning);
errreturn

/*
Status of WC is setup or setup_shut so send start_run
message to me and wait for ack.

*/
if (ACK I= send_listen(msgid,START RUN, filename, recipe_id))[

ack = Start_Fai;
sprintf(line, "ME could not start machine");
LOGS("wc_start_run",line,"%s",warning);
err_return

/*
change the status to "Running" or "Run_Shut"

*/
strcpy(status.start_time,"now");
strcpy(status.end_time,TIMENULL);
if (strncmp(status.me_status,"Setup",strlen("Setup")) 0)

strcpy(status.me_status,"Running");

else
strcpy(status.me_status,"Run_Shut");

if (ACK != change_status(busname,&status))f
sprintf(line, "Cannot change the status to %s",status.me_status);
LOGS("wc_start_run",line,"%s",warning);
err_return

Start_Run_Ack strna2(machine_id,int_with_null(ACK_OK));
err = C->send(strna2);
if (err != 0) f

sprintf(line,"Error #%d sending Start_Run_Ack",err);
LOGS("wc_start_run",line,"%s",error);
clean_return

else
C->ignore();

clean_return
} /* end of wc_start_run */

/***
*

WC UPLOAD
*

void wc_upload(Conversation *C, Upload_Me& M)
[
#ifdef clean_return
#undef clean_return
#endif
#define clean_return f \

delete mach_id; \
delete recipe_id; \
delete filename; \
return; \

int ack = ACK_OK;
int err = 0;

char *mach_id = (char *)M.machineid().ifnull(CHARNULL);
char *recipe_id = (char *)M.recipe_id().ifnull(CHARNULL);
char *filename = (char *)M.filename().ifnull(CHARNULL);

ifdef(-err_return',undefine(-err_return'))
define(err_return,
-Upload_Ack upldal(ack);
err = C->send(upldal);
if (err != 0)f

sprintf(line,"Error #%d sending Upload_Ack",err);
LOGS("wc_upload",line,"%s",error);

clean_return')

if (strncmp(machine_id,mach_id,strlen(machine_id)) == 0)1
/*

An upload_me message was received for the wc_interface
we will try to upload the recipe if the me_status is "Idle"
then send back the acknowledgement.

*/

LOGS("wc_upload","Upload received");

if (ACK != get_status(machine_id,&status))f
ack = DB_Badrea;
sprintf(line,"Cannot read the status");
LOGS("wc_upload",line,"%s",warning);
err return

if (strncmp(status.me_status,"Idle",strlen("Idle")) 0)
ack = Notnow;
sprintf(line,"Machine not Idle, try later.");
LOGS("wc_upload",line,"%s",warning);
err_return

}
/*

Status of the machine is "Idle", so it can upload the recipe.
WC will send the upload message to ME and wait for ack.

*/
if (ACK != send_listen(msgid,UPLD_ME_,filename,recipe_id))f

ack = Notnow;
sprintf(line,"Cannot upload recipe from the machine");
LOGS("wc_upload",line,"%s",warning);
err_return

Upload_Ack uplda2(int_with_null(ACK_OK));
err = C->send(uplda2);
if (err != 0) f

sprintf(line,"Error #%d sending Upload_Me_Ack",err);
LOGS("wc_upload",line,"%s",error);
clean_return

else
C->ignore();

clean_return
} /* end of wc_upload */

/***
*

WC DOWNLOAD
*
**/
void wq_download(Conversation *C, Download Me& M)

#ifdef clean_return
#undef clean_return
#endif
#define clean_return f \

delete mach_id; \
delete recipe_id; \
delete filename; \
return; \

int ack = ACK_OK;
int err = 0;

char *mach_id = (char *)M.machineid().ifnull(CHARNULL);
char *recipe_id = (char *)M.recipe_id().ifnull(CHARNULL);
char *filename = (char *)M.filename().ifnull(CHARNULL),

#ifdef clean_return
#undef clean_return
#endif
#define clean_return { \

delete COMP; \
return; \
}

int ack = ACK_OK;
int err = 0;

FILE *result_fp;

exec sql begin declare section;
char parm[13];
char value[26];
int machine_run_id;

exec sql end declare section;

Conversation *COMP;
COMP = new Conversation;
COMP->set_group(busname);

ifdef(-on_error',undefineCon_error'))
define(on_error,
sprintf(line,"Error inserting into MACHINE_RUN_RESULTS");
LOGS("run_comp_action",line);
fclose(result_fp);
Run_Complete rncom(machine_run_id);
err = COMP->send(rncom);
if (err != 0){

sprintf(line,"Error #%d sending Run_Complete",err);
LOGS("run_comp_action",line,"%s",error);

))

ifdef(-on_badrows',undefine(-on_badrows'))
define(on_badrows, ')

LOGS("run_comp_action","WC sees the end of a run.");

/*
First get the status and update the end time

*/
if (ACK != get_status(machine id,&status))

f
ack - DB_Badrea;
sprintf(line,"Cannot read the status");
LOGS("run_comp_action",line,"%s",warning);
clean_return
)

stropy(status.end_time,"now");

if (ACK != change_status(busname,&status))
f
sprintf(line,"Cannot update the end time to %s",status.end_time)
LOGS("run_complete_action",line,"%s",warning);
clean_return
)

machine run id = status.machinerun id,

/* now get the results and put them into the database */
if ((result_fp = fopen(wc_me_message.file_name,"r")) == NULL)

sprintf(line,"Error in opening result file %s.",wc me_message.file_name);
LOGS("run_comp_action",line,"%s",error);

else
{ /* get the results from the file and put into the database */
saveto(sp_results)
while (fscanf(result_fp,"%s",parm) != EOF)

fscanf(result_fp,"%s",value);
sprintf(line,"machine result read - value = %s. parm = %s",value,parm)
LOGS("run_comp_action",line);
exec sql repeated insert

into MACHINERUN_RESULT
(machine_run_id, param_id, value)

values(:machine_run_id, :parm, :value);
check_and_recover_to("run_comp_action",sp_results,

"An ingres error occured while inserting MACHINE RUN_RESULT",
DONT_CHECK)

exec sql commit;
/* close and delete result file */
fclose(result_fp);
if (unlink(wc_me_message.file_name) < 0)

perror("unlink");

Run_Complete rncoml(machine_run_id);
err = COMP->send(rncoml);
if (err != 0)

sprintf(line,"Error #%d sending Run_Complete",err);
LOGS("run_comp_action",line,"%s",error);
clean_return

if ((strncmp(status.me_status,"Setup_Shut",strlen("Setup_Shut")) -= 0) I I
(strncmp(status.me_status,"Run_Shut",strlen("Run_Shut")) ==0))

shutdown_ machine();
clean_return

strcpy(status.recipe_id,CHARNULL);
strcpy(status.starttime,TIMENULL);
strcpy(status.end_time,TIMENULL);
strcpy(status.me_status,"Idle");
status.machine_run_id = INTNULL;
status.note_id = INTNULL;

if (ACK != change_status(busname,&status))f
sprintf(line,"Cannot change status to %s",status.me_status);
LOGS("run_complete_action",line,"%s",warning);
clean_return

if (ACK I= send_accept_types(machine_id,busname,ALLOPS)){
clean_return

}

clean return
}/* end of run_comp_action */

/***

ALARM_ACTION

**/
void alarm_action()

#ifdef clean_return
#undef clean_return
#endif
#define clean_return [\

return; \

int err - 0;
int saack = 0;

exec sql begin declare section;
char alarm_id[13];
char alarm[81];
char run_id[16];
char parameters[129];

exec sql end declare section;

ifdef(-on_error',undefineCon_error1))
define(on_error, 1)

ifdef(-on_badrows 1 ,undefineCon_badrows 1))
define(on badrows,
sprintf(line, "Alarm from machine not recognized.\n%s.",alarm)
LOGS("alarm_action",line);
exec sql commit;')

LOGS("alarmaction","WC sees an alarm");

if (status.machine run_id == INTNULL)
strcpy(run_id,CHARNULL);

else
sprintf(run_id,"%d",status.machine_run_id);

strncpy(alarm,wc_memessage.alarmtext,sizeof(alarm));

saveto(sp_alarm);
exec sql select alarm_id, description

into :alarm id, :parameters
from ALARM_ DESCRIPTION
where robot_alarm = :alarm;

check_and_recover_to("alarm_action",sp_alarm,
"An ingres error occured while reading ALARM_DESCRIPTION",CHECK_ONEROW)

exec sql commit;
/*

if an error occurred send_alarm returns a 0
otherwise it returns a serial number....

*/
sa_ack = send_alarm(busname,

alarm_id,
"MACHINE",

run_id,
machine_id,
parameters,
"now");

alarmactionsub();

void alarm action sub()

int bad_message = FALSE;
int DONE = FALSE;

Message msg;
Conversation *C,CONV;
C = &CONV;
C->set_group(busname);

while(DONE == FALSE)

ifdef(-on_badreceive',undefineCon_badreceive'))
define(on_badreceive, listen_me(msgid);')
ifdef(conv_timeout',undefine(conv_timeout1))
define(conv_timeout, 60')

firstmessage("alarm_action",C,msg)

ifdef(-on_badreceive',undefineCon_badreceive'))
define(on_badreceive, ')
ifdef(conv_timeout',undefine(conv_timeout'))
define(conv_timeout, 60')

switch(C->iclass())

case C_ALARM_CLE:
if (msg.msg_class_id() == MCELL_ALARM_CLEAR)
[

DONE = TRUE;
sprintf(line, "Got CELL_ ALARM_ CLEAR");
LOGS("alarm_action",line);
wc_me_message.message_id = ME_START WAIT;
strcpy(wc_me_message.filename, "NULL");
strcpy(wc_me_message.recipe_id, "NULL");
wc_me_message.ack_code = ACK;
strcpy(wc_me_message.alarm_text, "NULL");
if (mq_send(msgid, TO_ME, (char *)&wc_me_message) == ERROR MSG)

sprintf(line, "alarm_action mq send failed..");
LOGS("alarm_action",line,"%s",error);

else
bad_message TRUE;

break;
default:

C->sprint_conversation(line);
strcat(line,"\nUnexpected Conversation received");
LOGS("main",line,"%s",warning);
C->ignore();
break;
/* end of switch */

if (bad_message == TRUE)
f
sprintf(line,"Unexpected message received '%s' for conversation: '%s'

msg.msg_name(), C->cclass());
LOGS("main",line,"%s",warning);
C->ignore();
}

/* eo while */
clean_return

void listen me(int msgid)

ifdef(-err_return',undefineCerr_return 1))
define(err return,
send_alarm(busname,

"MESTRT FAIL",
"MACHINE",
un

machine_id,
"See Error Log",
"now");

clean_return')

#ifdef clean_return
#undef clean_return
#endif
#define clean_return f \

return; \
}
/* look for message from the me_interface */

if (mq read_nowait(msgid,FROM ME,(char *)&wc_me_message) == IS_MESSAGE)
f
if (wc_me_message.message_id == NO_MESSAGE)

return;
if (wc_me_message.message_id == RUN_COMPL)
[

run comp action();
wc_me_message.message_id = NO_MESSAGE;
return;

)
if (wc_me_message.message_id == CELL_ALAR)

alarm_ action();
/* everything is ok send ack back to me... to continue */
wc_me_message.message_id = MESTART_WAIT;
if (IS_MESSAGE != mq send(msgid, TO_ME,(char *)&wc_me_message))

sprintf(line, "WC had error sending ME_START_WAIT msg");
LOGS("wc_startup",line,"%s",warning);
err_return

wc_me_message.message_id = NO_MESSAGE;
return;

)
if (wc_me_message.message_id == ME_START)
[

wc_me_message.message_id = NO MESSAGE;

if (wc_me_message.ack_code 1 - ACK)
[

sprintf(line, "ME could not start machine");
LOGS("wc_startup",line,"%s",warning);
err_return

}
return;

)

11.3 Listing 4, Start.csh

Page 67

echo "Starting the cell."
/bin/cas.csh

echo "Started cas"
/bin/ers.csh

echo "Started ers"
/bin/ms.csh

echo "Started ms"
/bin/lsr.csh

echo "Started lsr"
/bin/msched.csh

echo "Started msched"
/bin/scorbot.csh

echo "Started SCORBOT"
/bin/dummyl.csh

echo "Started DUMMY1"
-/bin/hi.csh

11.4 Listing 5, Stop.csh

Page 68

kall.csh -15 lsr msched ers cas ms wcn men we interface me interface;
ipcs I awk 'fif ($1 == "q" 11 $1 == "m" 1 $1—== "s") \

printf("iperm -%s %d\n",$1,$2)} 1 > .clean.up.shmem
chmod 777 .clean.up.shmem
.clean.up.shmem
/bin/rm .clean.up.shmem

11.5 Listing 6, Dummy WC_INTERFACE

Page 69

/*
* we interface
*
*/
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include "Conversation.h"
#include "cell_messages.h"
#include "ack_codes.h"
#include "logs.h"
#include "nullitems.h"
#include "machine_status.h"
#include "me_messages.h"
#include "me_defs.h"
#include "shared mem struct.h"
exec sql include sqlca;'
#include "esql.h"

include(handlers.inc)

#undef clean return

stringl2 machine_id = "wen";
stringl2 busname = "CELL";

extern "C" IISQLCA sqlca;

exec sql whenever sqlerror continue;
exec sql whenever sqlwarning continue;
exec sql whenever sqlmessage continue;

static char* startup[] = ["ME_START", (char*) NULL);
static char* clist[] ["ME_SHUT", "START_RUN", "SETUP RUN", "DNLD_ME_",

"UPLDME_", (char*) NULL);

MACHINE STATUS status;

extern int ingres_error(char*,char*,int);
extern void LOGS(char*,char*,char* = "%s",LOG_MSG_TYPE = note);
extern int get_status(char*,MACHINE_STATUS*);
extern int change_status(char*,MACHINE_STATUS*);
extern int send_alarm(char*,char*,char*,char*,char*,char*,char*);
extern int convert_cname(char*);
extern int send_accept_types(char*,char*,int);

void wc_startup(Conversation *C, ME_Startup& M);
void wc_shutdown(Conversation *C, ME_Shutdown& M);
void wc_setup_run(Conversation *C, Setup_Run& M);
void wc_start_run(Conversation *C, Start Run& M);
void wc_download(Conversation *C, Download_Me& M);
void wc_upload(Conversation *C, Upload_Me& M);
void run_comp_action();
void alarm_ action();
void shutdown_ machine();
void listen_me(int msgid);

extern void kill_mq_sm(int = 0);
extern int init_mq(char *);
extern int send_listen(int rnsgid,int conv,char *file_name,char *recp_id);

extern int mq read_nowait(int msgid,long msg_type,char *msg_text);
WC_ME_BUFFER wc_me_message;
int msgid;

main(int argc, char *argv[])
[
#ifdef clean_return
#undef clean_return
#endif
#define clean_return break;

ifdef(-on_error'is undefineCon_error'))
define(on_error, kill mq sm();')

ifdef(-on_badrows',undefineConbadrows'))
define(on_badrows, killmq sm();')

int err = 0;
exec sql begin declare section;

char *database_name = DATABASE_NAME;
exec sql end declare section;

char process[20];
stropy(process,"wcn");
msgid = init_mq(process);

LOGS("main","Starting ");

dbconnect:
exec sql connect :database_name;
check_and_recover_to("main",dbconnect,

"An ingres error occurred during connect",DONT_CHECK)

/* Have this module sign on to ISIS */
err = sign_on(machine_id,conv_timeout,TRUE);
if (err != 0)
[
sprintf(line,
"ISIS returned error #%d while tring to sign on",err);
LOGS("main",line,"%s",error);
kill mq sm();
}

/* have this module listen to the bus 'busname' and set the interest
* to the conversation startup
*/

/* if there is a command line argument, the bus name will be set to it,
otherwise the default "hard coded" value will be used */

if (argc == 2)
strcpy(busname, argv[1]);

sprintf(line, "ISIS bus: '%s'", busname);
LOGS("main", line, "%s", note);

err = interest(busname,startup);
if (err != 0)
[
sprintf(line,

"ISIS returned error #%d while setting interest filters. ",err);
LOGS("main",line,"%s",error);
sign_off();
kill_mq_sm();

sprintf(line,"Signed on to %s bus and waiting for startup",busname)
LOGS("main",line);

int bad_message = FALSE;
while (TRUE)
[
bad message = FALSE;

Message msg;
Conversation *C;
C = new Conversation;
C->set_group(busname);

ifdef(-on_badreceive',undefine(on_badreceive 1))
define(on_badreceive, listen_me(msgid);')

ifdef(-conv_timeout'undefine(-conv timeout'))
define(conv timeout, 3')

firstmessage("main",C,msg)

ifdef(-on_badreceive 1 ,undefineCon_badreceive 1))
define(on_badreceive, 1)

ifdefl-conv_timeout1 ,undefine(-conv_timeout 1))
define(conv_timeout, 30')

switch(C->iclass())

case C ME_START :
if (msg.msg_class_id() == M_ME_STARTUP)

ME_Startup srl2(msg);
wc startup(C,sr12);
}

else
bad_message = TRUE;

break;
case C_ME_SHUT :

if (msg.msg_class_id() == M_ME_SHUTDOWN)

ME_Shutdown srll(msg);
wc shutdown(C,sr11);

else
bad_message TRUE;

break;
case C_SETUP_RUN :

if (msg.msg_class_id() == M_SETUP_RUN)

Setup_Run sr13(msg);
wc_setup_run(C,sr13);

else

int buf_count = 0;

strcpy(buffer, "");
do
f

if ((num = read(PORT_IN, rbuf, 1)) < 0)
{
fprintf(ERR_OUT, "num read: %d\n", num);

}
rbuf[1] - '\0';
strcat(buffer,rbuf);
fprintf(ERR_OUT, "buffer read: (%s)\n", buffer);
buf_count++;

} while ((rbuf[0] != ',') && (buf_count < BUF_SIZE));
)

output(direction, buffer)
int direction;
char *buffer;
[
int num;

/* pass it on to the sup */
if ((num = write(direction, buffer, (strlen(buffer)-1))) < 0)
f
fprintf(ERR_OUT, "num write: %d\n", num);
return -1;

}
fprintf(ERR_OUT, "num write: %d, (%s)\n", num, buffer);

I

bad message = TRUE,
break;

case C_START_RUN :
if (msg.msg_class_id() == M_START_RUN)
[
Start_Run srl4(msg);
we start run(C,sr14);
}

else
bad message = TRUE;

break;
case C_DNLD_ME_ :
if (msg.msg_class_id() == M_DOWNLOAD_ME)

Download Me dmll(msg);
wc_download(C,dm11);
}

else
bad_message = TRUE;

break;
case C_UPLD_ME_ :
if (msg.msg_class_id() == M UPLOAD_ME)

Upload_Me umll(msg);
wc upload(C,um11);

else
bad_message = TRUE;

break;
default:

C->sprint_conversation(line);
strcat(line,"\nUnexpected Conversation received");
LOGS("main",line,"%s",warning);
C->ignore();
break;
/* end of switch */

if (bad_message == TRUE)
[
sprintf(line,"Unexpected message received '%s' for conversation: '%s'

msg.msg_name(), C->cclass());
LOGS("main",line,"%s",warning);
C->ignore();
}

exec sql commit;
delete C;
} /* end of while */

) /* end of main */

/***
*

WC STARTUP
*
**/
void wc_startup(Conversation *C, ME_Startup& M)

#ifdef clean_return
#undef clean_return
#endif

#define clean_return f \
delete mach_id; \
delete CONV1; \
delete CONV2; \
return; \
}

int ack = ACK_OK;
int err = 0;

Message msgl;
Conversation *CONV1;
CONV1 = new Conversation;
CONV1->set_group(busname);

Message msg2;
Conversation *CONV2;
CONV2 = new Conversation;
CONV2->set_group(busname);

ifdef(-err_return',undefineCerr_return'))
define(err_return, ,
send_alarm(busname,

"MESTRT_FAIL",
"MACHINE",

machine id,
"See Error Log",
"now");

clean return')

char *mach_id = (char *)M.machine_id().ifnull(CHARNULL);

if (strncmp(machine_id,mach_id,strlen(machine_id)) == 0)[
/*

A startup message was received for the wc_interface
we checks for its status, if stauts is not Shutdown then
sends back Notnow acknowledgement

*/

LOGS("wc_startup","WC startup received");

if (ACK != get_status(machine_id,&status))[
ME_ Startup_Ack mesal(machine_id,DB_Badrea);
err = C->send(mesal);
if (err != 0)[

sprintf(line,"Error #%d sending ME_Startup_Ack",err);
LOGS("wc_startup",line,"%s",error);

I
clean return

}
if (strncmp(status.me_status,"Shutdown",strlen("Shutdown")) != 0)[

LOGS("wc_startup","Sending Notnow. ME not Shutdown.","%s",warning);
ME_Startup_Ack mesa2(machine_id,Notnow);
err = C->send(mesa2);
if (err 1 = 0)[

sprintf(line,"Error #%d sending ME Startup_Ack",err);
LOGS("wc_startup",line,"%s",error);

)

clean_return
)

/*
status is Shutdown so we sends back the acknowledgement OK

ME_Startup_Ack mesa3(machine_id,int_with_null(ACK_OK));
err = C->send(mesa3);
if (err != 0)f

sprintf(line,"Error #%d sending ME_Startup_Ack",err)
LOGS("wc_startup",line,"%s",error);
clean_return

)

/*
Status of WC is Shutdown. Send ME_Startup
message to the machine and wait for ack.

*/
if (ACK != send_listen(msgid,ME_START," "," "))f

sprintf(line, "ME could not start machine");
LOGS("wc_startup",line,"%s",warning);
err return

}
err = nointerest(busname);
if (err != 0)f

sprintf(line,
"Error #%d while setting conversation filter to no intrest",err);
LOGS("wc_startup",line,"%s",error);
err_return

)
err = interest(busname,clist);
if (err != 0)f

sprintf(line,
"Error #%d while setting conversation filter",err);
LOGS("wc_startup",line,"%s",error);
err = interest(busname,startup);
if (err != 0){

sprintf(line,"Error #%d while setting conversation filter",err)
LOGS("wc_startup",line,"%s",error);
)

err_return
)

ifdef(err_return',undefineCerr_return'))
define(err_return,
err = send_alarm(busname,

"MESTRT FAIL",
"MACHINE",
II II

machine_id,
"See Error Log",
"now");

if (err == 0){
clean_return

}
err = nointerest(busname);
if (err != 0)(

sprintf(line,
"Error #%d while setting conversation filter to no_intrest",err);
LOGS("wc_startup",line,"%s",error);

clean return
}
err = interest(busname,startup);
if (err != 0)f

sprintf(line,
"Error #%d while setting conversation filter",err);
LOGS("wc_startup",line,"%s",error);

}
clean_return')

if (ACK != send_accept_types(machine_id,busname,ALLOPS))f
err_return

}
strcpy(status.recipe id,CHARNULL);
strcpy(status.start_time,TIMENULL);
strcpy(status.end_time,TIMENULL);
strcpy(status.me_status,"Idle");
status.machine_run_id = INTNULL;
status.noteid = INTNULL;

if (ACK != change_status(busname,&status))f
sprintf(line, "Cannot change the status to %s",status.me_status)
LOGS("wcstartup",line,"%s",warning);
err_return

}
ME_Ready merd(machine id);
err = CONV1->send(merd);
if (err != 0)f

sprintf(line,"Error #%d sending MEReady",err);
LOGS("wc_startup",line,"%s",error);
clean_return

}
}
else

C->ignore();
clean_return
} /* end of wc_startup y

/***
*
* WC SHUTDOWN
*
*****************4.**/

void wc_shutdown(Conversation *C, ME Shutdown& M)
f
#ifdef clean_return
#undef clean_return
#endif
#define clean_return f \

delete mach_id; \
return; \
}

int ack = ACK_OK;
int err = 0;

char *mach_id = (char *)M.machine_id().ifnull(CHARNULL);

if (strncmp(machine_id,mach id,strlen(machine id)) == 0)f
/*

A shutdown message was received for the we interface.
First WC will set the accept types to accept no more operations.
Then it will check its status: if it is "Idle" it will
shutdown immediately. if it is "Setup" it will set its state to
"Setup_Shut" and will shutdown when the run is complete. If
it is "Running" it will set its state to "Run Shut" and
will shutdown when the run is complete.

*/
LOGS("wc_shutdown","WC shutdown received");

ME_Shutdown_Ack mesh(machine_id,int_with_null(ACK_OK));
err = C->send(mesh);
if (err != 0) [

sprintf(line,"Error #%d sending ME_Shutdown_Ack",err);
LOGS("wc_shutdown",line,"%s",error);
clean_return

1
if (ACK != send_accept_types(machine_id, busname, NONE))[

clean_return
}
if (ACK != get_status(machine id,&status))[

ack = DB_Badrea;
sprintf(line,"Cannot read the current status");
LOGS("wc_shutdown",line,"%s",warning);
clean_return

}
if (strncmp(status.mestatus,"Idle",strlen("Idle")) == 0)[

shutdown_ machine();
clean_return

if (strncmp(status.me status,"Setup",strlen("Setup")) == 0)[
strcpy(status.me_status,"Setup_Shut");
if (ACK != change status(busname,&status))[

sprintf(line, "Cannot change the status to %s",status.me_status);
LOGS("wc shutdown",line,"%s",warning);

clean_return
}
if (strncmp(status.me_status,"Running",strlen("Running")) == 0)[

strcpy(status.me_status,"Run_Shut");
if (ACK != change_status(busname,&status))[

sprintf(line, "Cannot change the status to %s",status.me_status);
LOGS("wc shutdown",line,"%s",warning);

}
clean_return

else
C->ignore();

clean_return
} p end of wc_shutdown

/***
*

SHUTDOWN MACHINE
*
• This will change the status to "Shutdown", change the conversation
• filter to accept only a startup and then send out the ME SHUTDOWN_ COMPLETE
• conversation.
**/

void shutdown_machine()
[
#ifdef clean_return
#undef clean_return
#endif
#define clean_return f \

delete CONV1; \
return; \
}

int err = 0;

Conversation *CONV1;
CONV1 = new Conversation;
CONV1->set_group(busname);

LOGS("shutdownmachine","WC will shutdown the machine");

strcpy(status.recipe_id, CHARNULL);
stropy(status.starttime,TIMENULL);
stropy(status.end_time,TIMENULL);
stropy(status.me_status,"Shutdown");
status.machine_run_id = INTNULL;
status.noteid = INTNULL;

if (ACK != change_status(busname,&status)){
sprintf(line, "Cannot change the status to %s",status.me_status);
LOGS("shutdown_machine",line,"%s",warning);
clean_return

I
err = no interest(busname);
if (err != 0)[

sprintf(line,
"Error #%d while setting conversation filter to no_interest",err)
LOGS("shutdown_machine",line,"%s",error);
clean_return

}
err = interest(busname,startup);
if (err != 0)(

sprintf(line,"Error #%d while setting conversation filter to startup",err);
LOGS("shutdown_machine",line,"%s",error);
clean_return

}
ME_Stopped mest(machineid);
err = CONV1->send(mest);
if (err != 0)[

sprintf(line,"Error #%d sending ME Stopped",err);
LOGS("shutdown machine",line,"%s",error);
clean_return

}
clean_return
}/* end of shutdown_machine */

/***
*
* WC SETUP RUN
*
**********************/ **/

void wc_setup_run(Conversation *C, Setup Run& M)
f

#ifdef clean_return
#undef clean_return
#endif
#define clean_return [\

delete mach_id; \
delete op_type; \
delete recipe_id; \
delete filename; \
return; \
}

int ack = ACK_OK;
int err = 0;

exec sql begin declare section;
char *mach_id;
char *op_type;
char *recipe_id;
char *filename;
int row_count;

exec sql end declare section;

mach_id = (char *)M.machineid().ifnull(CHARNULL);
op_type = (char *)M.op_type().ifnull(CHARNULL);
recipe_id = (char *)M.recipe_id().ifnull(CHARNULL);
filename = (char k)M.filename().ifnull(CHARNULL);

ifdef(-on_badrows',undefineCon_badrows 1))
define(on badrows,
Setup_Run_Ack srnal(machine_id, Rec_Inval);
err = C->send(srnal);
if (err != 0)[

sprintf(line,"Error #%d sending Setup_Run_Ack",err);
LOGS("wc_setup_run",line,"%s",error);
}'

ifdef(-on_error',undefine(-on_error'))
define(on error,
Setup_Run_Ack srna2(machine_id, DB_Badrea);
err = C->send(srna2);
if (err != 0)[

sprintf(line,"Error #%d sending Setup Run_Ack",err);
LOGS("wc_setup run",line,"%s",error);
}')

ifdef(-err_return',undefine(-err_return'))
define(err_return,
Setup_Run_Ack srna3(machine_id, ack);
err = C->send(srna3);
if (err != 0)f

sprintf(line,"Error #%d sending Setup_Run_Ack",err);
LOGS("wc_setup_run",line,"%s",error);

clean return')

if (strncmp(machine_id,mach_id,strlen(machine_id)) == 0)f
/*

A setup_run message was received for the machine.
WC will check if its status is "Idle", download the recipe,

then send back the acknowledgemenc
*/
LOGS("wc_setup_run","setup_run received");

if (ACK != get_status(machine_id,&status))[
ack = DB_Badiea;
sprintf(line,"Cannot read the status");
LOGS("wc_setup run",line,"%s",warning);
err_return

}
if (strncmp(status.me status,"Idle",strlen("Idle")) != 0)[

ack = Notnow;
sprintf(line,"Machine not Idle, try later.");
LOGS("wc_setup_run",line,"%s",warning);
err return

}
/*

Check if the recipe_id and op_type are valid for the machine
*/

saveto(sp_oprec);
exec sql select count(*)

into :row_count
from OP MACHINE_RECIPE

where machine_id = :mach_id and
recipe_id = :recipe_id and
op_type = :op_type;

check_and_recover_to("wc_setup_run",sp_oprec,
"An ingres error occured while reading OP MACHINE RECIPE",CHECK_ONEROW_NCL°G)
exec sql commit;

/*
Now setup the run by telling the me_interface to download the recipe
to the machine

*/
ack = Start_Fai;
if (ACK 1 = send_listen(msgid,SETUP_RUN,filename,recipe_id))[

sprintf(line,"Cannot setup the run on the machine.");
LOGS("wc_setup_run",line,"%s",warning);
err_return

}

/*
Change the accept types to none

*/
ack = DBBadupd;
if (ACK != send_accept types(machine_id,busname,NONE)){

err_return
}

/*
change the status to "Setup"

*/
strcpy(status.recipe_id, recipe_id);
strcpy(status.starttime,TIMENULL);
strcpy(status.end_time,TIMENULL);
strcpy(status.me status,"Setup");
status.machine run_id = M.machine_run_id().ifnull(INTNULL);

if (ACK = change status(busname,&status))[

sprintf(line, "Cannot change the status to %s",status.me_status);
LOGS("wc_setup_ruh",line,"%s",warning),
err return

}
/*

machine is setup for run so send setup run_ack
*/
Setup_Run_Ack srna4(machine id,int_with_null(ACK_OK));
err = C->send(srna4);
if (err != 0) f

sprintf(line,"Error #%d sending Setup_Run_Ack",err);
LOGS("wcsetup_run",line,"%s",error);
clean_return

}
}
else

C->ignore();
clean_return
} /* end of wc_setup_run */

/***
*
* WC START RUN
*
**/
void wc_start_run(Conversation *C, Start_Run& M)
f
#ifdef clean_return
#undef clean_return
#endif
#define clean_return f \

delete mach _id; \
delete recipe_id; \
delete filename; \
return; \
}

int ack = ACK_OK;
int err = 0;

char *mach_id - (char *)M.machineid().ifnull(CHARNULL);
char *recipe_id = (char *)M.recipe_id().ifnull(CHARNULL);
char *filename = (char *)M.filename().ifnull(CHARNULL);

ifdef(-err_returni,undefineCerr_return'))
define(err_return,
Start_Run_Ack strnal(machine_id,Start Fai);
err = C->send(strnal);
if (err != 0)f

sprintf(line,"Error #%d sending Start Run_Ack",err);
LOGS("wcstartrun",line,"%s",error);

}
cleanreturn')

if (strncmp(machine_id,mach id,strlen(machine_id)) == 0)[
/*

A start run message was received for the wc_interface
we send back the acknowledgement and sets the filters to
receive all of the messages.

*/

LOGS("wc_start_run" "start: run received");

if (ACK != get_status(machine_id,&status))[
ack = DB_Badrea;
sprintf(line,"Cannot read the status");
LOGS("wc start run",line,"%s",warning);
errreturn

}
if ((strncmp(status.me_status,"Setup",strlen("Setup")) != 0) &&

(strncmp(status.me_status,"Setup_Shut",strlen("Setup_Shut")) !=0))[
ack = Notnow;
sprintf(line,"Machine not setup for run, try later.");
LOGS("wc_start_run",line,"%s",warning);
err_return

)

/*
Status of WC is setup or setup shut so send start_run

*/
message to me and wait for ack.

if (ACK != send listen(msgid,START_RUN, filename, recipe_id))f
ack = Start_Fai;
sprintf(line, "ME could not start machine");
LOGS("wc_start_run",line,"%s",warning);
err_return

I
/*

change the status to "Running" or "Run_Shut"
*/
stropy(status.starttime,"now");
strcpy(status.end_time,TIMENULL);
if (strncmp(status.me status,"Setup",strlen("Setup")) == 0)

strcpy(status.me status,"Running");
else

strcpy(status.me_status,"Run_Shut");
if (ACK != change_status(busname,&status))f

sprintf(line, "Cannot change the status to %s",status.me_status)
LOGS("wc_start_run",line,"%s",warning);
err_return

}
StartRun_Ack strna2(machine_id,int with_null(ACK_OK));
err = C->send(strna2);
if (err != 0) f

sprintf(line,"Error #%d sending Start_Run_Ack",err);
LOGS("wc_start_run",line,"%s",error);
clean return

}
)
else

C->ignore();
clean_return
} /* end of wc_start_run */

/***
*
* WC UPLOAD
*
***/

void wc_upload(Conversation *C, Upload_Me& M)
{

#ifdef clean_return
#undef clean_return
#endif
#define clean_return f \

delete mach_id; \
delete recipe_id; \
delete filename; \
return; \

int ack = ACK_OK;
int err = 0;

char *mach_id = (char *)M.machineid().ifnull(CHARNULL);
char *recipe_id - (char *)M.recipe_id().ifnull(CHARNULL);
char *filename = (char *)M.filename().ifnull(CHARNULL);

ifdef(err_return',undefine(err_return'))
define(err return,
Upload_Ack upldal(ack);
err = C->send(upldal);
if (err != 0)f

sprintf(line,"Error #%d sending Upload Ack",err);
LOGS("wc_upload",line,"%s",error);

clean_return')

if (strncmp(machine_id,mach_id,strlen(machine_id)) == 0)[
/*

An upload_me message was received for the wc_interface
we will try to upload the recipe if the me_status is "Idle"
then send back the acknowledgement.

*/
LOGS("wc_upload","Upload received");

if (ACK != get_status(machine_id,&status))f
ack = DB_Badrea;
sprintf(line,"Cannot read the status");
LOGS("wc_upload",line,"%s",warning);
err_return

if (strncmp(status.me_status,"Idle",strlen("Idle")) != 0)[
ack = Notnow;
sprintf(line,"Machine not Idle, try later.");
LOGS("wc_upload",line,"%s",warning);
err_return

/*
Status of the machine is "Idle", so it can upload the recipe.
WC will send the upload message to ME and wait for ack.

*/
if (ACK != send_listen(msgid,UPLD _ ME _,filename,recipe_id))[

ack = Notnow;
sprintf(line,"Cannot upload recipe from the machine");
LOGS("wc_upload",line,"%s",warning);
err_return

}
Upload_Ack uplda2(int_with_null(ACK_OK));
err = C->send(uplda2);
if (err 1 = 0) [

sprintf(line,"Error #%d sending Upload_Me_Ack",err);
LOGS("wc_upload",line,"%s",error);
clean_return

}

else
C->ignore();

clean_return
/* end of wc_upload */

/***
*

WC_DOWNLOAD
*
**/
void wc_download(Conversation *C, Download_Me& M)

#ifdef clean_return
#undef clean_return
#endif
#define clean_return { \

delete macllid; \
delete recipe_id; \
delete filename; \
return; \

int ack = ACK_OK;
int err = 0;

char *mach_id = (char *)M.machine id().ifnull(CHARNULL);
char *recipe_id = (char *)M.recipe_id().ifnull(CHARNULL);
char *filename = (char *)M.filename().ifnull(CHARNULL);

ifdef(err_return',undefine(err_return'))
define(err return,
Download Ack dnlda(ack);
err = C-5send(dnlda);
if (err 1 = 0)f

sprintf(line,"Error #%d sending Download_Ack",err);
LOGS("wc_download",line,"%s",error);

}
clean_return')

if (strncmp(machine id,mach id,strlen(machine id)) == 0)f
/*

A download_me message was received for the wc_interface
we send download message to me

*/
LOGS("wc_download","Download received");

if (ACK != get status(machine_id,sistatus))(
ack DB_Baarea;
sprintf(line,"Cannot read the status");
LOGS("wc_download",line,"%s",warning);
err_return

}
if (strncmp(status_me_status,"Idle",strlen("Idle")) != 0)[

ack = Notnow,
sprintf(line,"Machane not Idle, try later.");

LOGS("wc_download",line,"%s",warning);
err return

Status of the machine is "Idle" so it can download the recipe.
WC will send a message to ME and wait for ack.

*/
ack = Notnow;
if (ACK != send_listen(msgid,DNLD ME ,filename,recipe_id))f

sprintf(line,"Cannot download recipe to the machine");
LOGS("wc_download",line,"%s",warning);
err return

}
Download_Ack dnlda2(int_with_null(ACK_OK));
err = C->send(dnlda2);
if (err != 0) f

sprintf(line,"Error #%d sending Download Ack",err);
LOGS("wc_download",line,"%s",error);
clean_return

}
else

C->ignore();
clean_return
} /* end of wc_download */

/***

RUN COMP_ACTION

***/
void run_comp_action()
[
#ifdef clean_return
#undef clean_return
#endif
#define clean_return \

delete COMP; \
return; \

int ack = ACK_OK;
int err = 0;

FILE *result_fp;

exec sql begin declare section;
char parm[13];
char value[26];
int machine_run_id;

exec sql end declare section;

Conversation *COMP;
COMP = new Conversation;
COMP->set group(busname);

ifdef(-on_error',undefine(-on error'))
define(on -error,
sprintf(line,"Error inserting into MACHINE_ RUN_ RESULTS");
LOGS("run_comp_action",line);

fclose(result_fp);
Run_Complete rncom(machine_run_id);
err = COMP->send(rncom);
if (err != 0)[

sprintf(line,"Error #%d sending Run_Complete",err);
LOGS("run_comp action",line,"%s",error);

}')

ifdef(-on_badrows'4.undefineCon_badrowsl))
define(on_badrows, ')

LOGS("run_comp_action","WC sees the end of a run.");

/*
First get the status and update the end time

*/
if (ACK != get_status(machine id,&status))
[
ack = DB_Badrea;
sprintf(line,"Cannot read the status");
LOGS("run_comp_action",line,"%s",warning);
clean_return
}

strcpy(status.end time,"now");

if (ACK != change_status(busname,&status))
[
sprintf(line,"Cannot update the end time to %s",status.end time)
LOGS("run_complete_action",line,"%s",warning);
clean_return
}

machine_run_id = status.machinerunid;

/* now get the results and put them into the database */
if ((result_fp = fopen(wc_me_message.file_name,"r")) -= NULL)
[
sprintf(line,"Error in opening result file %s.",wc_me message.file name);
LOGS("run_comp_action",line,"%s",error);
}

else
[/* get the results from the file and put into the database */
saveto(sp_results)
while (fscanf(result_fp,"%s",parm) 1 = EOF)

[
fscanf(result_fp,"%s",value);
sprintf(line,"machine result read - value = %s. parm = %s",value,parm);
LOGS("run_comp_action",line);
exec sql repeated insert

into MACHINERUN_RESULT
(machine_run_id, param id, value)

values(:machine_run_id, :parm, :value);
check_and_recover_to("run_comp_action",sp_results,

"An ingres error occured while inserting MACHINE RUN RESULT",
DONT CHECK)

}
exec sql commit,
/* close and delete result file
fclose(result fp);

if (unlink(wc_me_messe.flle_name) < 0)
perror("unlink");

}

Run_Complete rncoml(machine_run_id);
err = COMP->send(rncoml);
if (err != 0)

f
sprintf(line,"Error #%d sending Run_Complete",err);
LOGS("run_comp_action",line,"%s",error);
clean_return
I

if ((strncmp(status.me_status,"Setup_Shut",strlen("Setup_Shut")) --= 0) 11
(strncmp(status.me_status,"Run_Shut",strlen("Run Shut")) ==0))
f
shutdown_machine();
clean_return
}

strcpy(status.recipe_id,CHARNULL);
strcpy(status.start time,TIMENULL);
strcpy(status.end_time,TIMENULL);
strcpy(status.me status,"Idle");
status.machine_run_id = INTNULL;
status.note_id = INTNULL;

if (ACK != change status(busname,&status))f
sprintf(line,"Cannot change status to %s",status.me status)
LOGS("run complete action",line,"%s",warning);
clean_return

}
if (ACK != send_accept_types(machine_id,busname,ALLCPS))f

clean_return
}
clean_return
}/* end of run_comp_action */

/***

ALARM ACTION

******************************t*tr**********************/

void alarm_action()
{
#ifdef clean_return
#undef clean_return
#endif
#define clean_return

return; \
}

int err = 0;

exec sql begin declare section;
char alarm_id[13];
char alarm[81];
char run_id[16],
char parameters[129];

exec sql end declare section,

[\

ifdef(-on_error'.undefin,_ n error'))
define(on_error, ')

ifdef(-on_badrows',undefine(-on_badrows'))
define(on badrows,
sprintfaine, "Alarm from machine not recognized.\n%s.",alarm)
LOGS("alarm_action",line);
exec sql commit;')

LOGS("alarmaction","WC sees an alarm");

if (status.machine_runid == INTNULL)
strcpy(run_id,CHARNULL);

else
sprintf(run_id,"%d",status.machine_run_id);

strncpy(alarm,wcme message.alarmtext,sizeof(alarm));

saveto(sp_alarm);
exec sql select alarm_id, description

into :alarm_id, :parameters
from ALARM DESCRIPTION
where robot_alarm = :alarm;

check_and recover_to("alarm_action",sp alarm,
"An ingres error occured while reading ALARM_DESCRIPTION",CHECK ONEROW)

exec sql commit;

send_alarm(busname,
alarm_id,
"MACHINE",
run_id,
machine id,
parameters,
"now");

clean_return

void listen_me(int msgid)
f
/* look for message from the me interface */

if (mq read nowait(msgid,FROM_ME,(char *)&wc_me_message) == IS_MESSAGE)
[
if (wc_me_message.message_id == NO MESSAGE)
return;

if (wc_me_message.message_id == RUN_COMPL)

run_comp_action();
wc_me_message.message_id = NO_MESSAGE;
return;

if (wc_me_message.message_id == CELL_ALAR)

alarm action(),
wc_me_message.message_id = NO MESSAGE;
return;

11.6 Listing 7, Dummy ME_INTERFACE

Page 70

* *

MACHINE ENITITY PROGRAMM FOR A DUMMY MACHINE
"mr2dummy"'"

***/

#include <stdio.h>
#include <unistd.h>
#include <strings.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include "me_messages.h"
#include "shared_mem_struct.h"
#include "logs.h"

#define TRUE 1
#define NOT TRUE -1
#define ACK 0
#define NACK -1

//
// prototypes
//
extern int init_mg(char*);
extern int mq read_nowait(int msgid, long msg_type, char *msg_text);
extern void LOGS(char*,char*,char* = "%s",LOG_MSG TYPE = note);
extern int mq send(int msgid,long msg type,char *msg_text);

extern "C" int fork();
// extern "C" void execl(const char*,const char*,DOTDOTDOT);

WCMEBUFFER wcmemessage;

main()

int msgid;
char process[20];
char msgidst[20];

strcpy(process,"wcn");

//
// INITIALIZE MSG QUEUE
//
msgid = init_mg((char *)&process);

while (TRUE)
{

while (mg_read nowait(msgid,TO ME,(char *)&wc me_message) == IS_NOMESSAGE)

sleep(2);

switch(wc_me_message.message id)

case ME_START :
sleep(2);
wc_me_message.ack_code = ACK;
wc_me message.message id = ME START;
break;

case SETUP RUN :
sleep(2);
wc_me_message.ack_code = ACK;
wc_memessage.message_id = SETUP RUN;
break;

case START_RUN :
signal(SIGCLD,SIG_TGN); /* ignore the death of the child */
switch(fork())
[
case -1:

perror("Cant create a new process.\n");
LOGS(process,"fork failed...","%s",error);
wc_me_message.ack_code = NACK;
wc_memessage.message_id = START_RUN;
break;

case 0: // child process
sprintf(msgidst,"%d",msgid);
execl(wc_me_message.file_name,wc me_message.file_name,msgidst,

process,(char*)NULL);
LOGS(process,"exec failed...","%s",error);
break;

default:
wc_me_message.ack_code = ACK;
wc_memessage.message id = START RUN;
break;

}
break;

case DNLD_ME_ :
sleep(2);
wc_me_message.ack_code = ACK;
wc_memessage.message_id = DNLD_ME ;
break;

case UPLD_ME_ :
sleep(2);
wc_me_message.ack_code = ACK;
wc_memessage.message id = UPLD ME ;
break;

default
sprintf(line,"Unknown message from wc_interface #%d",

wc_me_message.message_id);
LOGS(process,line,"%s",warning);
break;

} /* end of switch */
if (mq send(msgid,FROM ME,(char *)&wcme_message) == ERROR_MSG)

LOGS(process,"mq send failed...","%s",error);
/* end of while */

11.7 Listing 8, HI Cancel Request

Page 71

/*
Copyright 1990, Siemens Corporate Research, Inc.
All Rights Reserved

*/
/*

Form: mach_requests

Purpose: Allows a user to update information about a
machine request.

*/

initialize(
name = varchar(16),
err = integer,
change = integer,
reply = char(1),
on_table = integer,
m = vchar(80), /* message */
rows - integer,
p_machineid = varchar(12),
p_recipe_id = varchar(20),
selected_table = char(20),
datarows = integer,
p_note_id = integer,
op_to_move = varchar(12),

/* Status Line Server variables */
tmp = varchar(49),
subj = varchar,
what_to_do = varchar
)

/* Start the Status Line Server */
set_forms frs (timeout = 0);
err = callproc read_sls(byref(:tmp));
if err = -1 then

m = 'Error reading status line info. Check error log.';
callproc messg(m = :m);

elseif err - 0 then
set_forms field mach_requests (reverse (sls_data) = 0,

blink (sls_data) = 0);
sls_data := null;

elseif err = 1 then
set_forms field mach_requests (reverse (sls_data) = 1,

blink (sls_data) = 1);
sls data := tmp;

endif;
/* End of Status Line Server */

inittable key_list read;

/* % is the ingres wild card i.e. * unix */
machine id = '%';
entity_id = '%';
op_type = f % I ;

lot id = ,%,;

err = callproc ing_err();
if err != 0 then return NULL;endif;
commit;
set_forms frs (timeout = 10);

resume field machine_irl;
}

Dia timeout = [
/* Status Line Server update every 10 seconds */
set_forms frs (timeout = 0);
err = callproc read_sls(byref(:tmp));
if err = -1 then

m = 'Error reading status line info. Check error log.';
callproc messg(m = :m);

elseif err = 0 then
set_forms field mach_requests (reverse (sls_data) = 0,

blink (sls_data) = 0);
sls_data := null;

elseif err = 1 then
set_forms field mach_requests (reverse (sls_data) = 1,

blink (sls_data) = 1);
slsdata := tmp;

endif;
set_forms frs (timeout = 10);
/* End of Status Line Server */

}

/*
This section updates the fields on the screen according
where the cursor is....

k/

'Do It ', key frskey4 = [
set_forms frs(timeout = 0);
inquire_forms field mach_requests(on_table = table);
if :on_table = 1 then

/* send msched a message telling it to cancel the */
/* request with key request_key */
err = callproc cancel_request(:key_list.request_key);
mach_requests - select machine_id, entity_id, op_type

from REQUEST_ MACHINES
where request_key = :key_list.request_key;

else
key_list = select lot_id, request_key, machine_id, op_type
from REQUEST_ MACHINES r, LOT_STATUS 1

where l.lot_entity_id = r.entity_id
and r.machine_id like :machine_id
and r.entity_id like :entity_id
and r.op_type like :op_type
and 1.1ot_id like :lot_id
order by request_key;

endif;
commit;
set_folms frs (timeout = 10);

/*
this set the screen up like when you first entered the menu..

*/
'Clear Screen ', key frskey9 = [

set_forms frs(timeout = 0);
/* % is the ingres wild card i.e. * unix */
machine_id = '%';
entity_id = '%';
op_type =

lot id = '%';

clear field key_list;

err = callproc ing_err();
if err != 0 then return NULL;endif;
commit;
set_forms frs (timeout = 10);
resume field machine_id;

'Zoom ', key frskeyl0 =
set_forms frs(timeout = 0);

inquire_forms field mach_requests(name = name);
if :name = 'machine_id' then

machine_id := callframe choices
(choices.name = name);

elseif :name = 'op_type' then
op_type := callframe choices

(choices.name = name);
elseif :name = 'entity_id' then

entity_id := callframe choices
(choices.name = name);

elseif :name = 'lot_id' then
lot_id := callframe choices

(choices.name = name);
endif;
err = callproc ing_err();
if err != 0 then return NULL;endif;
set_forms frs (timeout = 10);

key_list = select lot_id, request_key, machine_id, op_type
from REQUEST_MACHINES r, LOT_STATUS 1

where 1.1ot_entity_id = r.entity_id
and r.machine_id like :machine_id
and r.entity_id like :entity_id
and r.op_type like :op_type
and 1.1ot_id like :lot_id
order by request_key;

resume field machine_id;

'Get All Requests ', key frskey8 = [
set_forms frs(timeout = 0);
/* % is the ingres wild card i.e. * unix */
machine id = '%';
entity_id = '%';
op_type = '%';
lot_id = '%';

key_list = select lot_id, request_key, machine_id, op_type
from REQUEST_MACHINES r, LOT_STATUS 1

where 1.1ot_entity_id = r.entity_id
order by request_key;

err = callproc ing_err();
if err != 0 then return NULL;endif;

commit;
set_forms frs (timeout = 10);
resume field machine id;

'Back ', key frskey3 =
set_forms frs(timeout = 0);
inquire_forms form(change=change);
if :change = 0 then

return NULL;
else

reply := prompt 'Really quit(y/n)? ';
if :reply = 'y' or :reply = 'Y' then

return NULL;
else

set_forms frs(timeout = 10);
resume;

endif;
endif;

11.8 Listing 9, RS232

Page 72

/*
This module is for communicating with the CMM and the ME on the cell side.
It was done in the quick and dirty manner so it is not prity.

Written on or about Dec 3 1991
by

Peter Murray & Rich Meyer
or Rich Meyer & Peter Murray
depending on you point of view...

The module reads in the serial port checking for the Up/Down load
commands. It it is the U/D command it takes the appropiat action.
Everything else is passed on to SUP/Avail...

This program is written to be run on the Xenix side.
*/
#include <stdio.h>
#include <stdlib.h>
#include <termio.h>
#include <fcntl.h>

/*
Description of the file descriptors:
DATA_OUT = rs232_to_sup commands to avail (usually 1, stdout)
PORT _OUT = line to Machine Entity (usually fd)
PORT IN = line to Machine Entity (usually fd) PORT_
ERRUT = errors incurred by this program (usually 2, stderr)

*/
#define DATA_OUT 1
#define PORT_OUT fd
#define PORT IN fd
#define ERR OUT stderr _

/- following must match size in ME interface */
#define BUF_SIZE 125
#define ERR SIZE 100

#define TRUE 1
#define FALSE !TRUE

/* GLOBAL's */
int fd; /* the fd for tty2a */
char buffer[BUF_SIZE];
char err_buf[ERR SIZE];
int flag;

main()
[

set pipe();

if ((fd = open("/dev/tty2a", 0 RDWR)) < 0)
[

perror("open /dev/tty2a:");
exit(1);

}

set terminal(1, 0, TRUE); /* 10 = 1 sec */

listen();

set pipe()
[

int fd[2];
int pid;
int fd_out;

if (pipe(fd) == -1)
[

perror("pipe: ");
exit(1);

I

if ((pid = fork()) >0)
[

/* the parent */
/* redirect std out */
close(1);
dup(fd[1]);
close(fd[0]);
close(fd[1]);

J
else if (pid == 0)
[
/* the child */
/* redirect std input */
close(0);
dup(fd[0]);
close(1);

if ((fd_out = open("outfile", 0 WRONLY 1 O_CREAT 1
1 0 TRUNC)) < 0)

[
perror("open outfile:");
exit(1);

}

dup(fd_out);
close(fd[0]);
close(fd[1]);

/* execl("/afs/cad/usr/class/cell/releases/src/cmm/get", jet",
(char *) 0); */

if (execl("/usr/super/xeq/sup", "sup", (char *) 0) <0)
perror("execl:");

}
else if (pid < 0)
[

perror("fork() error:");
exit(1);

]

I

set_terminal(slze, time, flag)

int size;
int time;
int flag;
{

struct termio tty;

fprintf(ERR_OUT, "Terminal set, min = %d, time = %d\n", size, time);

/* modify tty structure/settings to raw mode*/
if (ioctl(fd, TCGETA, &tty) <0)

f
perror("ioctl, TCGETA:");
exit(1);

}

tty.c_iflag &= DIGNBRKIINLCRIIGNPARIPARMRKIINPCKIICRNLITUCLCIISTRIPIIGNCRIIXO
tty.c_oflag &= (OROSTIOLCUCIONLCRIOCRNLIONOCRIONLRETIOFILLIOFDEL);
tty.c_cflag &= -(PARODD|CSTOPB);
tty.c_cflag |= (PARENB|CS8IHUPCL|CREAD|CLOCAL) ;
tty.c_lflag &= (ISIG|ICANON|ECHO|XCASE|ECHOE1ECHOK|ECHONL|NOFLSH);

tty.c_cc[4] = size;
tty.c_cc[5] = time; /* 10 = 1 sec */

if (ioctl(fd, TCSETA, &tty) <0)
{

perror("ioctl, TCSETAF:");
exit(1);

}
}

/*
This function listens to the RS232 port...It assumes all entries are
finished with a 1 char.

*/
listen()

{
char tbuf[BUF_SIZE + 30];
char tname[BUF_SIZE];
char tpath[BUF_SIZE];
FILE *fp;

do /* forever */
f

file input(buffer); /* read rs232 port */
fprintf(ERR_OUT, "do:buffer read: (%s)\n", buffer);

if (!strcmp(buffer,"_DOWNLD_!"))
f

/* download */
system("kermit ilbr /dev/tty2a 9600");
system("tar -xvf /usr/avail/part/*.tar");

}
else if (!strcmp(buffer,"_UPLD_ 1 "))

{
/* upload */
strcpy(tname,(buffer+6));
strcpy(tpath,"/usr/avail/part/");

/* tar -cvf /usr/avail/part/tname/tname.tar /usr/avail/part/tname/STAR */

strcat(tbuf,"tar -cvf ");
strcat(tbuf,tpath);
strcat(tbuf,tname);
strcat(tbuf,"/");
strcat(tbuf,tname);
strcat(tbuf,".tar /usr/avail/part/");
strcat(tbuf,tname);
strcat(tbuf,"/*");
fprintf(ERR OUT, "tbuf tar: %s\n", tbuf);
system(tbuf);

/* kermit ilbs /dev/tty2a 9600 /usr/avail/part/tname/tname.tar */
strcpy(tbuf,"kermit ilbs /dev/tty2a 9600");
strcat(tbuf,tpath);
strcat(tbuf,tname);
strcat(tbuf,".tar");
fprintf(ERR OUT, "tbuf kermit: %s\n", tbuf);
system(tbuf);

else if (!strcmp(buffer,"_SETUP RUN_!"))
t

file_input(buffer);
output(DATA_OUT, buffer);
if (strcmp(buffer,"1!"))

fprintf(ERR_OUT,"unexpected input...");
file_input(buffer);
output(DATA OUT, buffer);
strncpy(tname,buffer,(strlen(buffer)-1)); /* save the part name
fprintf(ERR OUT,"Part name: %s\n",tname);

else if (!strcmp(buffer," START_RUN !"))
{

strcpy(tpath,"/usr/avail/part/");
strncat(tpath, tname, (strlen(tname)-l));
strcat(tpath,"/"),
strcat(tpath,"RESULTS");
fprintf(ERR_OUT,"Looking for: %s\n",tpath);
while(1)

if ((fp = fopen(tpath, "r")) != NULL)
{

if (fread(buffer,80,l,fp) > 1)
output(PORT OUT,"FAIL!"); /* to the workcell */

else
output(PORT_OUT,"PASS!"); /* to the workcell */

break;
}
sleep(1);
fprintf(ERR OUT,"Wating for: %s file to be created.\n",tpath);

}
else

output(DATA OUT, buffer);
while(1);

file_input(buffer)
char *buffer;

char rbuf[4];
int num;

	Copyright Warning & Restrictions
	Personal Information Statement
	Title Page
	Approval Page
	Abstract
	Key Words and Phrases (1 of 2)
	Key Words and Phrases (2 of 2)

	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: System Functional Specifications of the Work Done
	Chapter 3: System Performance Requirements
	Chapter 4: System Design Overview
	Chapter 5: System Data Structure and Communications Specifications
	Chapter 6: Module Design Specifications
	Chapter 7: Demonstration of the System
	Chapter 8: Conclusions
	Bibliography
	Appendix 1: Figure/Program Listings Directory
	Appendix 2: Listing 1, Operation Entity/Lot Script

