
 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



An Information Theoretic 
Approach to DSN Evaluation 

by 
Vivek Mehrotra 

A Thesis 
Submitted to the Faculty 

of New Jersey Institute of Technology 
in Partial Fulfillment of the Requirements for the Degree of Master of Science 

Department of Electrical and Computer Engineering 
October 1992 



APPROVAL SHEET 
An Information Theoretic Approach to DSN Evaluation 

by 

Vivek Mehrotra 

 
Di. Nirwan Ansari, Thesis Advisor 
Assistant Professor of Electrical and Computer Engineering, 
New Jersey Institute of Technology 

Dr. Joseph Frank, Committee Member 7 1 
ciate Professor of Electrical and Computer Engineering, 

ew Jersey Institute of Technology 

 
Dr. Edwin Hou, Committee Member 
Assistant Professor of Electrical and Computer Engineering, 
New Jersey Institute of Technology 



BIOGRAPHICAL SKETCH 

Author: Vivek Mehrotra 

Degree: Master of Science in Electrical Engineering 

Date: October, 1992 

Undergraduate and Graduate Education: 

• Master of Science in Electrical Engineering, New Jersey Institute of Tech-
nology, Newark, NJ, 1992 

• Bachelor of Engineering in Electrical and Electronics Engineering, Birla 
Institute of Technology and Science, Pilani, India, 1990 

Major: Electrical Engineering 

iii 



ABSTRACT 
An Information Theoretic Approach to DSN Evaluation 

by 

Vivek Mehrotra 

Evaluation of Distributed Sensor Networks (DSN's) for optimal detection 

using Bayesian cost formulation methods has been the objective of several studies. 

There have been a few studies on DSN evaluation using an information theoretic 

approach, wherein an assymetric channel models a detector. We look at the multi-

sensor system at the receiver as a black-box and model it as an assymetric channel 

whose cross over probabilities depend on the probabilties of detection and of false 

alarm. These probabilities in turn depend on the thresholds of the local detectors 

and on the fusion rule used. We consider the case wherein the receiver has control 

over the value of the probability of the signal being present, by influencing trans-

mitter coding. The probability to be used at the receiver is the one that solves the 

MED (Minimum Equivocation Detetion) problem. Minimizing the equivocation 

between the input and output is the same as maximizing the mutual information. 

The input probability, P0, at the receiver that maximizes the mutual information is 

then achieved by having an encoder between the transmitter and the multi-sensor 

system at the receiver. The only factor in encoding is the proportion of O's to 

l's. Variable length codes with different ordering of 0's and l's are possible to get 

the same performance. Results show that as we move towards an optimum ROC 

(Receiver Operating Characteristic) curve, the mutual information attains a higher 

value. The value of P0  that helps attain this value is then derived by encoding the 

transmitter output. 
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CHAPTER 1 
INTRODUCTION 

A Distrzbuted Sensor Network (DSN) can be defined as a set of spatially scattered 

intelligent sensors designed to obtain measurements from the environment, abstract 

relevant information from the data gathered, and to derive appropriate inferences 

from the data gathered. Distributed sensor networks depend on multiple processors 

to simultaneously gather and process information from many sources. Interest in 

these systems stems from a realization of the limitations imposed by relying on a 

single source of information to make decisions. 

In recent years, there has been an increasing interest in distributed sensor 

systems. This interest has been sparked by the requirements of military surveillance 

systems. Signal detection with multiple sensors can be performed in two manners 

In the traditional method, the local sensors communicate all observations directly 

to a central detector where decision processing is performed. This method often 

requires a large bandwidth for the communication channel in order to obtain real-

time results. In the second method, each sensor has an associated detector which 

decides locally whether a signal is detected or not. The local decisions are sent to 

a fusion center where they are combined for global decision making. This method 

does not require the large bandwidth of the first method. However, performance 

is degraded because the central processor does not receive all the information 

The advantages in cost, reliability, and communications bandwidth, however, may 

outweigh the loss of performance. 

1.1 Literature Survey 

Tenney and Sandell[1] were among the first to stud the problem of detection with 

distributed sensors. Their analysis follows classical Bavesian theory. Using the 
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minimum cost criterion, they determine that for a fixed fusion rule, the optimal 

structure for the local detectors is the likelihood ratio test when local observations 

are independent. Optimal thresholds of the local detectors are shown to be related 

by a set of coupled nonlinear algebraic equations. They did not however explicitly 

tackle the problem of fusion of these decisions in terms of development of optimal 

data fusion algorithms. 

Chair and Varshney[2], using the minimum cost criterion, optimize the fu-

sion center assuming fixed thresholds of the local detectors and independent local 

decisions. Individual decisions are weighted according to their reliability, i.e., the 

weights are a function of the probability of miss and the probability of false alar- 

m of the individual detection, and comparing the weighted sum of these decision 

probabilities against a likelihood threshold to derive the global decision. A different 

type of generalization of the analysis was presented independently by Sadjadi[3]. 

He offered an optimum solution for the general case of m-ary hypotheses testing for 

n sensors but without explicit optimal fusion. A nonparametric centralized object 

recognition scheme is proposed by Demirbas[4]. This scheme uses object features 

collected by several sensors. Recognition is performed by a binary decision tree gen-

erated from a training set. This proposed scheme does not assume the availabilty 

of any probability density functions. The study by Reibman and Nolte[5] extended 

the previous studies[2][1] by simultaneous optimization of the local detectors and 

the global fusion processor. They show that globally optimal performance for the 

distributed detector system is obtained if neither the local thresholds nor the the 

fusion rule are set a priori but are chosen according to the criterion of optimali-

ty. This approach requires finding the minimum cost solution to a set of coupled 

nonlinear equations. The resulting fusion processor is a k-out-of-n logical function, 

where the value of k is not fixed a priori, but is chosen according to the optimality 
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criterion. Krzysztofowicz and Long[6] formulated a Bayesian detection model for 

a distributed system of sensors, wherein each sensor provides the central processor 

with a detection probability rather than an observation vector or a detection deci-

sion. 

In statistical decision theory, a variety of criteria are used for the optimiza-

tion of detectors. The above studies attempt to optimize the system performance 

by Bayesian cost formulation. In applications where such costs are available and 

meaningful, they provide an excellent choice for system optization. In this, a fixed 

cost is assigned to each possible course of action, and the average cost is then min-

imized. However, in some applications, our interest is to maximize the amount of 

information transfer from the input side to the output side. 

Our study investigates the problem of sensor fusion from an information the-

oretic point of view. Middleton[7] and Gabriele[8] used such a criterion for the 

design of an optimum decision system where they minimized the equivocation (or 

information loss) between the input and output. Gabriele offered a method of im-

posing information criteria for threshold setting in simple binary hypothesis tests. 

More recently, Hoballah and Varshney[9] proved that the detector that maximizes 

information transfer is a threshold detector. Further, they used the minimum e-

quivocation criterion to derive optimum thresholds and fusion rules for the classical 

single detector and for two distributed detection topologies. 

In our thesis, we consider the case where the respective input probabilities of 

the hypotheses at the receiver can be controlled by influencing transmitter coding. 

In such a case, our goal is to maximize the information transfer across a sensor 

system at the receiver. 
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1.2 Organization of the Report 

In Chapter 2, we talk about the classical Bayesian methods used in characterizing 

DSN's. In Chapter 3, an information theoretic approach to the distributed detection 

problem is discussed. In Chapter 4, maximization of the mutual information over 

a priori probabilities at the receiver is done. Results are presented too. The report 

ends with conclusions in Chapter 5. 



CHAPTER 2 
BAYESIAN METHODS FOR DSN 

EVALUATION 

The binary hypothesis testing problem for n sensors can be formulated[5] as follows: 

The two hypothesis, Ho  and H1, have a priori probabilities Po  and Pi  respectively, 

where 

1/0: x, = n, 

H1: x, = s n, 

for z = 1, , n. 

The observation vectors x, are statistically independent from sensor to sensor. 

The observation vector at local sensor i, x„ has joint probability density func-

tion P(x,IH,) under hypothesis j, for j = 0, 1. At each sensor i, the decisions are 

given by: 

0. if detector i decides Ho 
u = -y(x,) 

1. if detector i decides H1  

The probability of false alarm Pf, and the probability of detection Pd, are 

used as measures of performance for each sensor i. We say that a false alarm has 

occurred, when the sensor decides that a signal is present when it actually is not 

present, i.e P(u, = 11H0) = Pf,. Detection occurs when the sensor decides that a 

signal is present, when it actually is present, i.e P(u, = 111/1 ) = Pd, • 

Processing occurs at the local sensors, and then the fusion center (see Fig 2.1) 

receives the decisions of the sensors as its observations. Because individual sensor 

observations are independent and no communication occurs between local sensors, 

the local decisions are also statistically independent; hence, the joint probability 

density function of the "observation" at the fusion center under hypothesis j may 

5 
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Fig.2.1 Distributed Sensor System with Data Fusion. 
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be written as P(ul , , un IH3 ) = P(u,11/3 ). The decision at the fusion 

center, 

\ 0, if global decision Ho 
u = 7(u1, u2, , ti n ) = 

1, if global decision H1  

The action of the fusion rule can be summarized by F(ui , , un ), the probabil- 

ity of choosing H1  given local decisions (ui , , un ). The criterion chosen for opti- 

mality is to minimize the overall cost of the global decision. If J(u, H3 ) is the cost of 

the fusion center choosing u when H3  is true, optimality demands E(J(u, H3 )), the 

total cost, be minimized. The functions P(u,lx,) and P(ului , , un ), which char- 

acterize the decision rule of the local detectors and the fusion detector, respectively, 

are chosen such that E(J (u, 1-1.7 )) reaches a global minimum. 

2.1 Non-Optimal Solutions 

Chair and Varshney[2] considered the optimization of the data fusion algorithm 

once the local detectors have already been designed. They show that the optimal 

fusion rule is given by the following likelihood ratio test, with J3 as the threshold: 

and 

lx71-lorg,  

Because the decisions are statistically independent, the likelihood ratio is 
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where S1  is the set of all i such that u, = 1, and So  is the set of all i such that ui 

= 0. The decision rule is summarized by 

which depends on local perfomance characteristics, Pf. and Pd„ through (2.4) above. 

The above optimal fusion structure was designed assuming that the local detectors 

are specified, i.e., Pf, and Pd, are assumed fixed. 

However, the optimal choice of Pf, and Pd, can be determined by optimizing 

the local detectors in terms of the fusion rule. This problem is considered by Tenney 

and Sandell[1]. Given a fixed fusion rule and independent local observations, they 

show that the optimum detector that satisfies the minimum cost criterion is the 

threshold detector with its likelihood ratio test given by: 

and 

where a, is the local detector threshold. 

The local detector threshold, a„ depends on the fusion rule chosen and on the 

other local detector thresholds. Reibman and Nolte[5] show that for a fixed fusion 

rule, for the case of a 3-sensor system (n = 3), the optimal local detector thresholds 

are given by: 

for i j k. And i, j, k E {1, n}. F(p,q,r) = P(u = 1u1  = p, u2  = q, u3  = r). 

The equations are extended in an obvious manner for n > 3. Note that (2.8) 

gives only necessary conditions for optimal detection with a fixed fusion rule[1]. 
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If multiple solutions exist for a particular fusion rule, the minimum cost solution 

must be determined. 

2.2 Globally Optimal Solution 

For optimal detection, neither the local detectors nor the fusion rule are a priori 

fixed, and equations given by (2.8) must be solved for each optimal fusion rule 

to determine the overall minimum cost solution. F(ui,... , un) has 2' variables 

and therfore can have 22n assignments. Reibman and Nolte[5] also show that the 

assumptions made to derive equations given by (2.8) rule out the possibility of a 

number of assignments. The solution of the above equations can become com- 

putationally difficult; hence by making certain assumptions, solving for an overall 

minimum cost solution is considered as is described in [5]. 

The statistics of the observations entering each local detector, P(x,1H.,), are 

equivalent for all i given j Also, the local detector thresholds a, are set equal to a 

for all i. With this constraint, the fusion likelihood ratio becomes a function of k, 

where k is the number of local detectors which decide H1. It is given by 

The fusion rule is a "k-out-of-n" logical function, where k depends upon the overall 

threshold 33. The dependence of the local threshold a can be expressed using i  and 

k. i.e, 

The optimal values of a and k are found by solving equation (2.10) for each value 

of k and locating the (a, k) pair which produce the minimum cost solution for the 

given value of 3. 

Results for this simplified solution aie shown in [5]. The slope of the Receiver 
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Operating Characteristic at any point is equal to )3, the fusion processor threshold 

at that point. 



CHAPTER 3 
INFORMATION THEORETIC VIEWPOINT 

OF DETECTION THEORY 

Gabrielle[8] first offered a method of analyzing the effect of imposing information 

criteria for threshold setting in simple binary tests. It considered such a test as a 

general binary assymetric channel whose transition probabilities are related to the 

probabilities of errors of the first and second kind in the test. 

The test threshold value, which controls the tradeoff between these probabil-

ities, is selected on the basis of the performance of the test as a communication 

channel between its input and output. Gabrielle showed that the maximization 

of the mutual information associated with a binary hypothesis test subject to the 

operating characteristic of the test determines the threshold. 

Recently, Hoballah and Varshney[9] re-examined the problem of optimum de-

tection for entropy-based cost functions. They considered the design of DSN's based 

on this cost function, i.e , the one which minimizes the information loss. This cost 

function can be used in applications where we are interested in the amount of infor-

mation that we are able to transfer, rather than the nature of the information itself. 

In such situations, cost may be a variable (unlike fixed costs assigned to actions 

in Bayesian formulation methods), and entropy based cost functions may be more 

meaningful. The goal therefore becomes to maximize the amount of information 

transfer. 

We study the DSN with data fusion. Studies on DSN with local inferences 

have been done too, and the more interested reader may refer to [9]. 

11 
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Fig.3.1(a) A Classical Binary Detection System. 

Fig.3.1(b) A Classical Information Transmission System. 
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Fig.3.2 Channel Modelling Multi-sensor System at the Receiver. 
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3.1 Common Grounds in Detection Theory 
and Information Theory 

As shown in Fig.3.1(a), the source in the detection problem is the phenomenon 

H. This is a random variable that can assume one of the two values: 0 or 1. H 

= i corresponds to the hypothesis H, being present, i=0,1. This is followed by a 

data processor, that generates a likelihood ratio, which is then compared against 

a threshold, to give a final decision u. This output is a decision random variable 

which may again assume the value of 0 or 1. The source in the detection problem 

can be viewed as the information source in the information transmission problem. 

For the information transmission problem, (See Fig.3.1(b)), the source alphabet, 

H, is considered to be binary {0,1} We assume that the output of such a source 

is transmitted via a Binary Asymetric Channel, whose cross-over probabilities are 

determined by the probability of detection, Pd, and the probability of false alarm, 

Pf. The decisions may be looked at as the output of the communication channel in 

Fig 3.1(b) The channel modelling the multi-sensor system at the receiver is shown 

in Fig 3.2. 

We consider detection problems where we minimize the equivocation between 

the input and the output, i.e., the Minimum Equivocation Detection (MED) prob-

lem. In this case, we are interested in minimizing an average cost, which is not 

a constant, but a function of the a posteriori probability of H given u. The aver-

age Bayesian risk is defined as E{J(u,H)} as seen in the previous chapter, where 

J(u,H) is a constant for a given pair u and H. For the MED problem, the average 

cost is the conditional entropy of H given u, i.e., h(lilu) = Elog[ p( ll  i u)]. 

If the a priori probabilities P0  and P1  are known, Hoballah and Varshney[9] 

have obtained decision rules to minimize the average cost h(Hlu) Shannon[12] had 

demonstrated how information can be reliably transmitted over a noisy communi- 
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cation channel by first considering a measure of the amount of information about 

the transmitted message contained in the observed output of the channel. To do 

so, he defined the notion of mutual information between input events and output 

events, H and u, in our case. It is given by I(H; u) = h(H) - h(111u) 

For the channel model shown in Fig.3.2, the mutual information I(H; u) is 

given by: 

and the a posteriori probabilities are 

and 

As h(H), the entropy of H, is constant when P0  and P1  are known, minimizing 

h(Hlu) is equivalent to maximizing I(H; u). Thus the minimization of equivocation 

is equivalent to the maximization of mutual information. 

Different Receiver Operating Characteristics (ROC) curves are associated with 

different decision rules for a given detection system. The ROC corresponding to the 

optimum Bayesian detection rule lies above the Pd = Pf line. As shown in Chapter 

2, the optimum performance of the detection system is obtained when neither the 

local decision rules nor the fusion rule is fixed a priori. ROC's corresponding to 

nonoptimum decision rules will lie partly or entirely below the ROC corresponding 

to the optimum decision rule. Therefore, for any given probability of false alarm 

Pf/ E {0, 1}, the corresponding probability of detection Pd / on the optimum ROC 

and the one on the non-optimum ROC, Pd// satisfy the following relation: 

For all Psi, such that Psi E {0, 1}, Pdopt  i > Pdnonopt ll• 

It has been proved that[10] given a priori probabilities P0  and P1, for each value 
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of Pf (or Pd), the mutual information /min(H; u) is a concave upward function of 

the transition probabilities P(uIH). Using this fact, it has been shown[9] that the 

minimum mutual information is achieved at the point where Pd = P 1 • 

From the above findings, since I (H; u) is a concave upward function of Pd  for a 

given value P. f l of Pf, and the minimum value of I(HIu) is achieved by choosing Pd 

= pfl, then for values of Pd such that Pd > Pfl, I(11;11) is an increasing function 

of Pd. 

Therefore, if Pal > Pf  1 , then /(Pf i, Pd /) > I (P f  1 , Pall). i.e., for a fixed value Pf /, the 

value of Pd obtained by maximization of Pd also maximizes I(H; u). Therefore, the 

pair (Pd , Pf ) which maximizes I (H ; u) lies somewhere on the ROC of the optimum 

Bayesian Detection System. 

Tenney and Sandell[1], in their pioneering work on DSN's had shown that 

in a binary hypothesis test, when sensors observe independently, each sensor uses 

an independent, local likelihood ratio test, but with thresholds determined via a 

coupled computation. Hoballah and Varshney[9] came up with a similar result 

using information theoretic methods. They showed that given Po  and P1, and the 

conditional densities p(x1113 ), j = 0, 1; the optimum detector that maximizes the 

mutual information is the threshold detector. The optimum MED detector can be 

implemented as a threshold detector with the following likelihood ratio test: 

and 

with 

where 4.0  and ei  are given by equations (3.11) and (3.12) respectively. 

The above was the classical detection problem utilizing a single sensor. And the 
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result obtained matches the results obtained in[8]. For the case of two detectors, 

and then for the N detector case, optimum thresholds have been obtained using 

information theoretic methods in [9]. 

3.2 Controlling P0  and P1  at the Receiver 
to Maximize /(H, u) 

The receiver of a multi-sensor system can be modelled as a channel as has bean 

validated by studies by Gabriele[8] and Hoballah and Varshney[9]. The cross over 

probabilities of this information channel depend on Pf  and Pd. From Fig 3.1(b), it 

can be seen that the binary information channel models a wide range of multisensor 

systems. i.e., the channel can be thought of as a black box which has H = 0 or 

H = 1 as its input, and u = 0 or u = 1 as its output. In other words, for a wide 

range of local detector thresholds and fusion rules, we can literally get a unique 

channel. 

As can be seen from the ROC curves obtained in [5], ROC's of non-optimum 

decision rules will lie partly or entirely below the ROC corresponding to the optimum 

decision rule. Hence, a particular Pd-Pf  combination does not uniquely say that 

a particular decision rule is being used. We hereafter consider the multi-sensor 

system at the receiver to be an Asymetric Binary Channel and consider a special 

case where we try to maximize I(H; u) across the channel. 

3.2.1 Why Control P0  and P1  at the Receiver 
Gabriele[8] hinted about maximizing I(H; u) by influencing transmitter coding. 

A suitable measure for efficiency of transmission is by making a comparison be-

tween the actual rate and the upper bound of the rate of transmission of information 

for a given channel. In a discrete channel with prespecified noise characteristics, 

i.e., with a given transition probabilit,) matrix, the rate of information transmission 
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depends on the source that drives the channel. In the network analogy, one could 

specify the load and determine the class of transducers that would match the given 

load to a specified class of sources. The maximum (or the upper bound) of the 

rate of information transmission corresponds to a proper matching of the source 

and the channel. This ideal characterization of the source in turn depends on the 

probability transition characteristics of the given channel. 

3.2.2 Encoding 

Encoding is frequently used in a wide variety of cases as a transformation procedure 

operating on the input signal prior to its entry into the communication channel. 

The main purpose of coding, is, in general, to improve the efficiency of the commu-

nication process in some sense. 

In our system, (See Fig.3.3) we use encoding between the transmitter and the 

receiver so as to increase the amount of information across the multi-sensor system 

at the receiver that is modelled as an asymmetric channel. The channel of com-

munication usually deals with symbols of some specified list. This list is generally 

referred to as the alphabet of the communication language. By an independent 

source, we mean a device that selects messages at random from a discrete 

message ensemble {mi, ... , mN} with prescribed probabilities {p(mi), - • • ,P(mn)} 

In our system, a transmitter is an independent source and it either sends a 0 or 

a 1 depending upon voltage levels, as is usually done in data communications. In 

other words, we have a binary event represented by the two hypothesis, Hypo  and 

Hypi , which have a priory probabilities Pro  and Pri  respectively. 

Hypo: 0 is transmitted 

Hypi : 1 is transmitted 

By encoding, we map our given set of messages [mo,mi ] into a new set of 

encoded messages [co, c1 ] so that the transformation is one-to-one. Although. gen 
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Fig.3.3 Complete System to Maximize Mutual Information 
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erally .12y efficiency, we wish to improve the "efficiency" of the "transmission", it is 

possible to devise codes for any other desired purpose, as in our case, to improve the 

amount of information across the multi-sensor system at the receiver. And this is 

done without relevance to the transmission efficiency in our adopted sense. For 

the sake of clarity, we redefine the hypotheses and also the a priori probabilities 

at the receiver. However, we will assume that the signal does not get corrupted 

during the encoding process. i.e., if a 0 (or 1) is sent, a 0 (or 1) is received. We 

now have two hypothesis denoted by Ho  and H1, which have a priori probabilities 

Po and P1  respectively. 

Ho: 0 is received 

H1: 1 is received 

Efficient encoding, depending upon its application, improves certain cost func-

tions. In our case, as has been emphasized before, the goal is to maximize the 

information transfer at the receiver. And for the MED problem that we are con-

sidering, the cost is given as a function of the a posteriori probability of H given 

u, where H = i corresponds to the hypothesis H, being present (at the receiver), 

i=0,1. The output of the multi-sensor system at the receiver is the decision random 

variable u, which may again assume the value of 0 or 1. 

The average cost of our MED problem is the conditional entropy of H given 

u, i.e., h(HIu) = Elog[p(Liu)]. The mutual information between input and output 

events, H and u, is given by 

I (H; u) = h(H) - h(HIu). 

We wish to minimize the equivocation over all input probabilities P0  (or P1). 

Hence, h(H) is not going to remain fixed. But minimizing the equivocation still 

implies maximizing the mutual information since h(H) must be as low as possible 

when compared to /(H; u) to get the minimum equivocation, i.e., to solve the MED 



21 

problem. Hence, our goal of maximizing the mutual information in this case too 

remains unchanged. 

In our study, as we are controlling Po  by encoding at the transmitter, we are 

increasing the average cost per message, where the average cost per message is 

given by: 

where t, is the duration, and p(m,) is the probability of message i. We confine our-

selves to the simplest case when all symbols have identical cost. Thus, the average 

cost per message becomes proportional to the average of n„ the number of symbols 

per message (or the average length of the message). 

As we try to maximize the mutual information over the input probabilities at 

the receiver by encoding, we are obviously increasing the average cost per message 

as defined by equation (3.16).To achieve our goal, this is unavoidable. As we have 

said before, "efficiency" of "transmission'.  can be open to subjective interpretations. 

Our transmitter has two messages. Let mo  represent a 0 and m1  represent a 

1. Both messages are equiprobable. [M] = [mo,Ind 

[P(M)] -= [Pro, Pri ] 

Pro  = Pr1  = 2 

We wish to encode the messages into words selected from a binary alphabet with a 

one-to-one correspondence. 

Implementation 

Our encoding is motivated by the need to control the Po  at the receiver to maximize 

/(H; u) across the multisensor system. (See Fig. 3.3) The encoded word is trans-

mitted as a whole at any point of time. i.e., all the bits in the word are transmitted 

in parallel. 

For different channel specifications. i.e., for different probabilities of detection 
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and false alarm, we get the Po  at which I(H; u) reaches a maximum. I(H; u) is a 

convex A function in the space of the input probability distributions. Once we get 

the input probability P0  that maximizes the mutual information /(H; u), we try to 

encode the message at the transmitter in an appropriate way so as to get that P0  at 

the receiver. The coding is not unique as will be shown later by an example. The 

bits can be ordered differently in the same string to produce the same effect. Also, 

the codes can be of variable length to produce the same effect. What matters in 

the encoded word is the proportion of the number of zeroes to the number of ones 

to produce a particular effect. 

For a paricular (Pd , pf ) pair, if we get the result that the mutual information 

is maximized in such a way that Po  = 0.75, and if mo  is transmitted, the following 

encoding can be performed. 

m0  0001 

We encode m0  alone, because as we have said before. we assume that if a 0 is 

transmitted, a 0 is received and that an encoder does not corrupt the transmission. 

It is easy to see that this encoding is not unique. Variable length codes with different 

orderings of O's and l's are possible for the same result. 

To maximize I(H; u) over all input probability distributions, we use the method 

that was suggested by S.Muroga[13]. Maximizing I(H;u) is the same as maximizing 

the rate of transmission of information of the binary channels. See the channel 

model shown in Fig. 3.2. 

The following is the method: First, one uses auxiliary variables Qo  and Qi , 

which satisfy the following eauations: 
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The rate of transmission of information I(h; u) can be written as: 

where poi and pi t are the probabilities of receiving 1 and 0 at the output, respec- 

tively. 

Next we introduce Qo  and Qi  into (3.3), through (3.2): 

Thus, 

The maximization of I(11;a) is done with respect to poi and pi /, the probabilities at 

the output. In order to do this, we may use the method of Lagrangian multipliers. 

This method suggests maximizing the function 

through a proper selection of the constant number p. Taking partial derivatives of 

I(H; u) w.r.t p'0  and A respectively, we get the following equations: 

Solving, p must satisfy the following condition. 
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where e is the base that is used for the log function. In our case e = 2. The 

maximum mutual information is found to be: 

The values of Qo  and Ql  may be obtained from the set of equations 3.17). But note 

that 

Thus, 

The maximum mutual information /(H; u)mas  of a binary channel is greater than 

zero except when Pd = Pf • 



CHAPTER 4 
RESULTS AND DISCUSSIONS 

In this chapter, we get the probability P0  at the receiver that maximizes the mutual 

information /(H; u) for different local detector rules and fusion rules. Or more 

simply, for different channel specifications, i.e., for different Pd and Pf. 

We can get the maximum mutual information from Muroga's method as we 

have seen in Chapter 3. The probability P0  at which this maximum is attained can 

be obtained from 

Expanding this, we get the following expression: 

Once we get the appropriate /30 , we derive this P0  at the receiver end by 

encoding the transmitter output. Curves for certain specifications of the multi-

sensor system are shown, and using the P0  at which maximum information transfer 

occurs, we show how encoding at the transmitter can be performed so as to achieve 

our goal of solving for minimum equivocation detection, or, as we have shown in 

Chapter 3, for achieving maximum information transfer across the multi-sensor 

system at the receiver. 

The way this works is as follows: 

(DSN with fusion is considered. (See Fig 2.1)) 

25 
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• Using Bayesian methods, the multi-sensor system is evaluated for different 

decision rules. 

• Using the Bayesian methods as discussed in Chapter 2, the multisensor system 

at the receiver is tuned for globally optimal performance, i.e., neither the local 

detector rules nor the fusion rules are a priori fixed. 

• For the above Bayesian methods, we get Pd vs Pf  values. As has been dis-

cussed in Chapter 3, ROC's corresponding to nonoptimum decision rules will 

lie partly or entirely below the ROC coresponding to the optimum decision 

rule. 

• We now consider the multi-sensor system at the receiver as a black box, and 

model it as a channel, with cross over probabilities determined by Pd and Pf . 

(See Fig. 3.2) 

• To achieve our goal of maximizing the mutual information /(H; u) across the 

receiver, we get the value of Po  at the receiver that maximizes I(H; u). 

• We then encode the 0 or 1 at the transmitter output in such a way that we 

get the desired Po  at the receiver. (See Fig 3.3) 

For a few Pd and Pf  values, /(H; u),,„, is obtained (See Table 4.1). The Po  

at which it is achieved is then derived, as is shown by a few examples, and plots 

of I(H; u) vs Po  are shown. For the Binary Assymeric Channel that we use to 

model the sensor system at the receiver, we see that the Po  at which the maximum 

I(H; u) is reached, is around 0.5 (which is the ideal one as in a Binary Symmetric 

Channel). 

For values of Pd and Pf  that are likely to lie on a more optimum ROC curve, 

more information transfer occurs across the multi-sensor system at the receiver. A 
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plot of 1(11; u)max against Pd  and Pf  is shown in Fig.4.1. 

Consider the channel with Pd  = 0.415922, and Pf  = 0.463543. /(H; u) as 

expected has a maximum of close to 0. (See Table 4.1). Consider the channel with 

more optimum performance, with Pd = 0.983481 and P f  = 0.535422. /(H; u)max 

is equal to 0.242. (See Fig.4.2) This particular (Pd, P1) combination is on a more 

optimum ROC curve than the previous one. A Po  of 0.4 can help attain this. Hence 

if a 0 is transmitted, it can be coded as 00111 or 01011. Similarly, if a 1 is trans-

mitted, it too can be coded in the same way. However, as we have said before, the 

cost given by (3.16) is increased. 

Considering a Pd = 0.947670 and a Pf  = 0.171744 (obviously a pretty good 

combination), we find that a maximum .1(H; u) of 0.512 is attained. (See Fig 4.3) 

A Po  of about 0.47 does the job, which means that if a 0 or 1 is transmitted, it can 

be coded into 1010101010101010101010101, or another combination with the same 

proportion of O's and l's. 

Considering yet anothc: very good combination of Pd  = 0.979207 and Pf  = 

0.126442, a maximum /(H -  , of 0.647554 is achieved. (See Fig 4.4) The Po  that 

helps achieve this is about -.47, and therefore a similar coding at the transmitter 

output can be performed a in the previous case. 



Q1 Q2 Pf Pd I(H;u)jmax 

-0.499870 -1.472198 0.175749 0.513893 0.094385 
-0.748329 -1.212865 0.534558 0.308665 0.038023 
-0.742645 -0.271592 0.171744 0.947670 0.512073 
-0.721024 -0.945401 0.226441 0.702262 0.171162 
-0.388766 -1.624136 0.124726 0.494796 0.121938 
-0.265216 -2.060255 0.389664 0.083903 0.100110 
-0.554084 -1.627750 0.368087 0.277238 0.006739 
-2.042133 -0.089173 0.535422 0.983481 0.242311 
-1.760266 -0.487231 0.646502 0.765716 0.012336 
-2.144013 -0.369931 0.780272 0.767173 0.000100 
-0.601412 -0.689082 0.151939 0.822988 0.355454 
-0.842373 -1.021082 0.314699 0.625505 0.071045 
-1.247390 -0.336470 0.917245 0.346917 0.278829 
-0.879593 -1.109260 0.401172 0.519783 0.010140 
-1.703124 -0.489870 0.785437 0.606785 0.027454 
-3.346772 -0.140684 0.869960 0.931564 0.007744 
-2.116875 -0.328166 0.674550 0.866563 0.038573 
-1.583723 -0.547366 0.581919 0.758433 0.025582 
-0.671292 -1.424320 0.355651 0.389265 0.000777 
-0.740953 -0.648708 0.826964 0.200241 0.305937 
-0.834115 -1.183912 0.463543 0.415922 0.001562 
-0.607225 -0.136090 0.126442 0.979207 0.647554 
-0.888398 -0.221499 0.958494 0.212646 0.483296 
-1.157372 -0.714268 0.409075 0.737496 0.081133 

Table 4.1 Maximum Mutual Information Tabulated using Muroga t s Method 
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Fig.4.1 A Plot of l(H;u)mar  Against Pd and Pf. 



Fig.4.2 Mutual Information vs PO 



Fig.4.3 Mutual Information vs PO 

Pd = 0.947670 
Pf = 0.171744 
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Fig.4.4 Mutual Information vs PO 

Pd = 0.979207 
Pf = 0.126442 
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CHAPTER 5 
CONCLUSIONS 

A Distributed Sensor Network at the receiver is modelled as an assymetric channel, 

and the local detector rules and fusion rules decide the cross over probabilities 

of the channel. Our goal, being to maximize the amount of information transfer 

across the multi-sensor system at the receiver. By simulation, we get a sample of 

co-ordinates on the ROC curve and calculate the maximum information possible. 

The a priori probability, P0, that helps attain this goal is then derived, assuming 

that the receiver has control over the value of the probability of the signal being 

present. This apriori probability is then obtained by encoding at the transmitter 

output. The only factor in encoding is the proportion of 0's to l's. Variable length 

codes and variable ordering of 0's and l's is possible. Results show that as we move 

towards an optimum ROC curve, the mutual information attains a higher value. 

The value of P0  that helps attain this maximum is then derived by encoding the 

transmitter output. 
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