

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT
An Implementation and Evaluation

of a Distributed Information System
Based on the OSCATM Architecture Guidelines

by
Babita Masand

The concepts in this thesis discuss and evaluate the need for systems integra-

tion. As a conceptual architecture, the OSCATM architecture is investigated. A

prototype of the CS Department distributed information system is built following

the guidelines and standards of this conceptual architecture. This prototype is

implemented in 'C'. RPC (remote procedure call) is used for the communication

channel to implement the distributed environment. Conclusions and results that

were achieved by implementing this prototype are presented. The main outcome of

this thesis is the introduction of the infrastructure to the GenSIF framework.

AN IMPLEMENTATION AND EVALUATION
OF A DISTRIBUTED INFORMATION SYSTEM

BASED ON THE OSCATM ARCHITECTURE GUIDELINES

by
Babita Masand

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for

the Degree of Master of Science
Department of Computer and Information Science

May 1992

APPROVAL PAGE

An Implementation and Evaluation
of a Distributed Information System

Based on the OSCATM Architecture Guidelines

by

Babita Masand

Dr. Wilhelm Rossak
Assistant Professor of Computer and Information Science, NJIT

Dr. Peter Ng
Chairperson for Computer and Information Science, NJIT

BIOGRAPHICAL SKETCH

Author: Babita Masand

Degree: Master of Science in Computer and Information Science

Date: May, 1992

Undergraduate and Graduate Education:

• Master of Science in Computer and Information Science, New Jersey
Institute of Technology, Newark, NJ, 1992

• Master of Science in Physics (Electronics), University of Bombay, India, 1987

• Bachelor of Science in Physics, University of Bombay, India, 1985

Major: Computer and Information Science

iv

This thesis is dedicated to my parents.

v

ACKNOWLEDGEMENT

The author wishes to express her sincere gratitude and thanks to her advisor,

Dr. Wilhelm Rossak, for his guidance, friendship, and moral support throughout

this work, without which this thesis would not be a success.

Special thanks to Mr. John A. Mills of Bellcore who guided us in our study

of OSCA.

The author appreciates and thanks Ms. Felicia Cheng for extended help

with the lab facilities.

And finally, a thank you to Ravi, Jatin, and Rajesh for their help.

vi

TABLE OF CONTENTS
Page

1 INTRODUCTION / OVERVIEW OF GENSIF 1

1.1 Need for Systems Integration 1

1.2 A Generic Systems Integration Framework (GenSIF) 1

1.3 The Conceptual Architecture Model 3

1.4 The Technical Infrastructure 5

1.5 A Meta Model for System Development 6

2 OVERVIEW OF THE CONCEPTUAL INTEGRATION
ARCHITECTURE 7

2.1 Introduction 7

2.2 Concepts of the OSCATM Architecture 7

2.3 A Conceptual Architecture of Building Blocks 9

2.4 The Conceptual Architecture in a Distributed Environment 11

2.5 The Conceptual Architecture with Explicit Communication Channel 12

2.6 The Conceptual Architecture with Fully Transparent Communication 12

2.7 The Trader 15

3 THE CS DEPARTMENT DIS APPLICATION 16

3.1 Overview of the System 16

3.2 System Description 18

3.2.1 The ER Diagram 18

3.2.2 User Characteristics, Assumptions and Dependencies 22

3.2.3 Product Functions 22

3.2.4 Functional Requirements in Detail 23

3.2.5 Level of Maintainability 26

vii

Page

3.2.6 Bubble Charts 27

3.2.7 Structure Charts 41

3.3 The Technical Environment 53

4 MAPPING THE APPLICATION TO THE CONCEPTUAL
ARCHITECTURE 55

4.1 Level 1 Building Blocks 57

4.2 Level 2 Building Blocks 61

4.3 Level 3 Building Blocks 64

4.4 Communication between Building Blocks on a Conceptual Level 71

4.5 Communication Using A Trader 74

4.5.1 Actual Operation Description 75

5 AN IMPLEMENTATION OF THE TRADER USING RPC 76

5.1 Basics of Remote Procedure Calling 76

5.2 Development of an Application using RPCGEN 80

5.3 Our DIS Application As Seen From RPC 85

5.4 Production Process of the Trader using RPC 90

6 RESULTS & CONCLUSIONS 92

6.1 Evaluation of the DIS with regard to the Conceptual Architecture . 92

6.2 Realization of the need for an Infrastructure 98

6.3 Advantages of the Conceptual Architecture 99

6.4 Guidelines for better System Implementation 100

6.5 Conclusions 103

7 APPENDIX 104

7.1 The Primitive User Interface 104

7.2 Source Code for BUILDING BLOCKS 114

7.2.1 Makefile 114

7.2.2 User Layer Building Blocks 119

7.2.3 Faculty Building Blocks 211

7.2.4 Course Building Blocks 229

7.2.5 Student Building Blocks 250

7.2.6 Register Building Blocks 267

Viii

Page

7.3 Source Code for the TRADER 283

BIBLIOGRAPHY 338

ix

LIST OF FIGURES
Figure Page
1.1 Components of the GenSIF framework 2
2.1 General OSCATM view of a system as derived from[1] 8
2.2 A Conceptual Architecture of Building Blocks 10
2.3 The Conceptual Architecture: Workstation View 11
2.4 The Conceptual Architecture with Explicit Communication Channel 13
2.5 The Conceptual Architecture with Fully Transparent Communication 14
3.1 ER Diagram for CS Department DIS 20
3.2 Level 0: CS Department DIS 27
3.3 Level 1: CS Department DIS 28
3.4 Level 2: PROCESS DATA 33
3.5 Level 2: PROCESS QUERY 36
3.6 Level 2: FORMAT QUERY ANSWER 39
3.7 Level 0: STRUCTURE CHART 42
3.8 Level 1: PROVIDE I/P 43
3.9 Level 1: PROCESS I/P 47
3.10 Level 1: PROVIDE 0/P 51
4.1 Building Blocks of the CS Department DIS 56
4.2 Components of the Main Menu Building Block: Part A 58
4.3 Components of the Main Menu Building Block: Part B 59
4.4 Components of Feedback Building Blocks 60
4.5 Level 2 Building Blocks 62
4.6 Faculty Building Blocks 65
4.7 Course Building Blocks 66
4.8 Student Building Blocks 67
4.9 Register Building Blocks 68
4.10 Communication between Building Blocks on a Conceptual Level 72
4.11 Transparent Communication between Building Blocks using a trader 74
5.1 The three steps behind remote procedure calling 77
5.2 RPC Communication 79
5.3 Application development with RPCGEN compiler 80
5.4 Protocol Specification Files 85
5.5 Client Functions 86
5.6 Server Functions 88
5.7 Production Process of the Trader using RPC 89
7.1 Main Menu 105
7.2 Faculty Menu 106
7.3 Faculty View Menu 107
7.4 Course Menu 108
7.5 Course View Menu 109
7.6 Student Menu 110
7.7 Student View Menu 111
7.8 Register Menu 112

Figure Page
7.9 Register View Menu 113

xi

CHAPTER 1

INTRODUCTION / OVERVIEW OF GENSIF

1.1 Need for Systems Integration

The available current methodologies and development strategies are unable to deal

with very large distributed systems [2]. These systems are built by different con-

tractors and at different points in time, they are relatively independent projects,

but finally they all have to work together in an integrated manner. The factors

that necessitate the need for systems integration are:

• More than a single client is involved

• More than a single producer is involved

• More than a single project is involved

Each of the projects in a system are developed independently. These projects

together form a larger system. Hence to guarantee the integration optimization and

consistent user semantics of the final product, we need a pre-planned and organized

integration process. This task includes the integration of these projects into a larger

system framework like GenSIF (Generic Systems Integration Framework) [6] and

to use integration architectures like Bellcore's OSCATM [1].

1.2 A Generic Systems Integration Framework

(GenSIF)

GenSIF serves as a generalized blue print for the description and handling of large

and complex systems [7]. It deals with integration architectures and addresses

1

2

Figure 1.1: Components of the GenSIF framework

standards, guidelines and domain knowledge on a conceptual level. The neces-

sary environmental infrastructure like networking, data storage, operating systems,

hardware, etc. are supported on the tool level. From the point of view of the in-

tegration architecture, domain knowledge delivers the generalized specification for

functionality and data handling capabilities, while the infrastructural level is used

as a set of technologies, which enable an optimal implementation of the architecture

and the embedded individual applications.

This framework for systems integration [6], includes three components [2]:

(Ref. Fig. 1.1)

• Global domain integration:

Specifies the conceptual basis for the integration architecture. One aspect of

global integration is to deal with the concepts and semantics of an application

domain and with the mapping of these concepts into the installed applications.

Domain analysis [8] not only provides the basis for systems integration, but

is also the main input to decide the design of the integration architecture.

• Derivation of an integration architecture:

The integration architecture is the core of GenSIF. An integration architecture

is a conceptual model that bridges the gap between the results of domain

analysis and the tool level. It is also an infrastructure that provides the

necessary utilities and components to implement an application system by

3

following the rules of the conceptual model. An integration architecture must

fit the needs of the application domain, like a given hardware - architecture

must fit the needs of the typical working environment it is serving.

• Assessment and usage of enabling technologies:

Enabling technologies comprise all the tools and products that are required

by the infrastructure of an integration architecture to develop and implement

the applications which will fill the abstract architecture with functionality

and data. It should also provide suggestions for restrictions and standards

in this area. Therefore, the choice of enabling technologies is a strategic

decision which goes beyond the scope of a single application. This concept

coordinates the concepts of domain analysis, global integration and already

existing technologies and filters it through the integration architectures. It

thus allows a controlled process of reasoning, evaluation and adaptation as is

necessary for decisions with long term effects.

1.3 The Conceptual Architecture Model

The conceptual architecture model [2] describes the guidelines and standards of the

architecture. It links the model of the application domain with the implementation

oriented concepts of development environments and enabling technologies [6]. These

guidelines usually include:

• Standards and guidelines of building blocks:

The building block is the elementary concept of integration architectures.

Building blocks are the components which provide different functionality in

an application domain. A building block acts like a black box, offering services

via a predefined interface but hiding implementation details. Each building

block emulates the same type of interface and uses the same method of com-

4

munication and data access as defined in the integration architecture stan-

dards. All the building blocks together form the integrated system.

• A general strategy for system decomposition:

One project may deliver one building block or a set of building blocks. This

depends on the decomposition strategy of the integration architecture. The

architecture only restricts the possible layout of the final product in its ap-

pearance on system level. A good example for decomposition rules on a

conceptual level would be to separate functionality of the user interface, the

data storage units and of additional functional units into different building

blocks regardless of project boundaries and development methodologies [1].

• Communication model:

To form a fully functional system, the building blocks must be connected to

each other. Standards have to be set for one building block to send and receive

data or control to another building block. This communication standard is

only of concern at the system level of the application domain but does not

interfere with the internal characteristics of the building blocks. Two main

strategies are seen on this level: (1) The free communication of standardized

messages between building blocks. (2) A centralized approach based on a

structure similar to bulletin boards and databases [9].

• A model for handling of data storage/access:

By standardizing the way data is modeled, accessed and stored, an integration

architecture can open the set of global data items to all building blocks. In

a traditional environment these data items would be guarded and hidden by

a given application system. Combining the concepts of decomposition rules,

building blocks, standardized communication, data handling can become just

another service offered by the building blocks.

5

A good example for the conceptual part of an integration architecture is OSCATM

[1]. Refer Chapter 2 for further details.

1.4 The Technical Infrastructure

The technical infrastructure [2] of an integration architecture is the basis to finish

projects which follow the rules of the conceptual model. The infrastructure pro-

vides the necessary standardized services which are the essential ingredients of the

architecture. The type of infrastructure used depends to a large extent on the type

of architecture the conceptual model describes. The two most important elements

of an infrastructure are:

• A software bus (a channel) for communication:

A software bus facilitates the communication between building blocks. It

works like a bus or a channel in a hardware architecture. A software bus gives

the system engineer a chance to hide a set of distributed hardware/software

platforms underneath the interface of the bus. By providing logical addresses,

a building block can communicate with another block via the use of the bus

without having to know where the other building block is installed. The

concept of this software bus was developed in the prototype implemented.

• Data storage facilities with standardized interface:

In case of a distributed database, the data stored has to provide distributed

storage facility and an interface to the software bus. Hence storage elements

can be added and deleted as necessary. The challenge here is to provide a

standardized and generalized interface for these data storage elements and to

handle the problems of data conversion between different products, platforms

and concepts. Such a solution of a relatively independent data storage build-

ing blocks, accessible over the software bus and offering a distributed but still

6

integrated data environment, is described in [4]. The distribution is hidden

underneath the software bus. Every building block can send a message to

ask for a service without knowing the physical locations. For the user and

any building block, the database appears essentially like a centralized system.

Such an implementation of independent data storage building blocks has been

described in chapter 4 and chapter 5.

The components of the infrastructure should be as general as possible to support

a wide variety of conceptual architectures. They should be able to run on different

hardware and software platforms, must provide a standardized interface and must

be easily updated and adapted while still maintaining upwards compatibility. Most

components of such an infrastructure are not readily available. Thus the infras-

tructure must be developed and maintained as part of a separate project at a meta

level above the application projects.

1.5 A Meta Model for System Development

As discussed earlier, we assume that the development environment is diversified

and complex. (Sub-)systems are developed in independent projects and are a part

of a larger development effort within the application domain [2]. To be able to

achieve integrated development in such an environment, a meta level above the

level of single projects can be introduced [10].

This meta level is oriented towards long term goals and control of short term

projects, in order to assure integration of these projects and their results into the

global system framework. Using the components of the integration framework as

discussed, a meta level of control for system development can be specified, which

provides the system engineer with the basis to coordinate and plan projects in the

application domain. For further details see [10].

CHAPTER 2

OVERVIEW OF THE

CONCEPTUAL INTEGRATION ARCHITECTURE

2.1 Introduction

As described in chapter 1, a conceptual integration architecture specifies the basic

strategy used to design the system from relatively independent components. For

the prototype developed here, we used OSCATM1 as the basis for our variation of

such a conceptual guideline.

The OSCATM Architecture [1], is a system design framework intended to

give Bellcore client companies (BCC) the flexibility to combine software products

in ways which best satisfy their business needs and to provide access to corporate

systems by all authorized users.

The OSCATM Architecture is designed to allow any heterogeneous software

products, when they are designed within the OSCAT M architectural framework, to

operate as a system of systems in a loosely coupled, distributed configuration so as

to achieve end-to-end automation, corporate data access and rapid development of

advanced technologies.

2.2 Concepts of the OSCATM Architecture.

OSCATM [1] is an architecture to enable and enhance interoperability among soft-

ware systems. Interoperability is the ability of building blocks (i.e., the deliverable

components of an OSCA-based system) to communicate with each other and the

ability to communicate with any building block irrespective of the internal imple-

1OSCA is a trademark of Bellcore - Bell Communications Research

7

Figure 2.1: General OSCATM view of a system as derived from[1]

mentations and the environments on which the building blocks reside. The general

layout of the OSCATM architecture is shown in Figure 2.1.

OSCATM requires that application functionality be separated (grouped)

into "layers" or domains: a corporate data layer, a processing layer and a user

layer. A layer is the union of all functionality defined as either corporate data

functionality, processing functionality or user functionality.

The corporate data layer stewards corporate data and provides functionality

to support all create, retrieve, update and delete operations of corporate data in a

9

semantically consistent manner. The corporate data layer also supports redundancy

management and generalized query.

The user layer provides functionality to support human users and supports

business-specific functions that assume the existence of human users.

The processing layer provides functionality for business processes, otherwise

not supported in the other layers, such as complex mathematical algorithms and

non-interactive process control.

The software that implements the functionality in these layers is partitioned

into "building blocks", and these building blocks must adhere to specific

interoperability principles, such as no simultaneous releases among building blocks, resource

independence among building blocks, no accessibility assumptions among building

blocks, logical building block addressing, and the presence of a secure environment.

In addition, interfaces between building blocks must meet certain criteria, such as

the use of industry and international standards, restricted set of syntax encodings,

isolation from building block internals etc., and having met them are termed con-

tracts. (Contract - is a deal/an interface between any two building blocks. It is

implemented by the building block.)

Based on the OSCATM architecture, our conceptual architecture can be

described on several levels of abstraction as given in the following sections.

2.3 A Conceptual Architecture of Building Blocks

At the highest level of abstraction, the application is made from software on one

or more of three logical layers. (Ref. Fig. 2.2) As shown in this figure, level 1 is

the user layer, level 2 is the processing layer and level 3 is the data layer. A layer

is the union of all functionality defined as either data function, processing function

or user function. Each layer is made up of one or more well defined deliverable

functional units called building blocks. As seen in the Figure 2.2, any building

10

Figure 2.2: A Conceptual Architecture of Building Blocks

11

Figure 2.3: The Conceptual Architecture: Workstation View

block can communicate with any other building block that provides a function that

it requires. Ex., a user layer building block C communicates with a processing layer

building block F, that fetches and manipulates data from a data layer building block

H for the end user. User layer building blocks can enquire directly to the data layer

building blocks. Building blocks of any layer can communicate with building blocks

in the same layer.

2.4 The Conceptual Architecture in a Distributed

Environment

12

A distributed view of the building blocks on two workstations is shown in Figure

2.3. These building blocks exist logically on the same levels as shown in the pre-

vious figure (Figure 2.2). However, they are placed physically on two different

workstations. As shown in the Figure 2.3, when a building block B on workstation

1 requires to communicate with the building block C on workstation 2, they can

not do so directly as they no longer exists on the same physical environment. Hence

the need for a trader/communication fabric as shown in the Figure 2.4.

2.5 The Conceptual Architecture with Explicit

Communication Channel

As seen in figure 2.4, the building block B will now communicate with building

block C through the trader, i.e., a software communication fabric. (In terms of

OSCATM, this communication between the building blocks should be defined as

a contract. A contract is invoked by providing well defined input which will result

in a well defined set of actions. Actions include returning outputs to the invoker

of the contract and invoking contracts of other building blocks.) In general, every

communication between building blocks residing on different platforms is now done

indirectly using the trader.

2.6 The Conceptual Architecture with Fully Trans-

parent Communication

The next step is to utilize the trader to handle all communications in the system,

irrespective of the location of the building blocks which want to communicate (Ref.

Figure 2.5). (This is done in order to achieve the interoperability goals of the

OSCATM architecture.)

Figure 2.4: The Conceptual Architecture with Explicit Communication Channel

13

Figure 2.5: The Conceptual Architecture with Fully Transparent Communication

14

15

For example, the building blocks C and G placed on workstation 2, no longer

directly communicate with each other, instead they now communicate through the

common trader. This allows the trader to guarantee transparent addressing or

even better to provide a set of services that is matched internally to messages and

addresses.

2.7 The Trader

The Trader provides software services and infrastructure for inter-building block

communication, building block availability and performance management. In a

distributed environment such as promoted in this conceptual architecture, no sin-

gle building block will provide all of the services required by a user. In such an

environment, multiple building blocks operate together in a cooperative effort and

communicate their results to each other. The Trader is the "glue" that ties together

building blocks and allows this cooperative effort in providing the services to the

users. The trader knows the physical addresses of the building blocks. When a

particular service of a building block is requested by another building block, the

trader maps the requested service to the address of the building block that provides

it.

CHAPTER 3

THE CS DEPARTMENT DIS APPLICATION

3.1 Overview of the System

The prototype is built as an example for systems integration, based on the con-

ceptual architecture described in chapter 2. This prototype implements a CS De-

partment Distributed Information System (DIS). In this application, the Computer

Science (CS) Department is organized by the faculty, courses, students and regis-

tration. Each faculty member teaches one or more of the courses offered by the CS

Department. Each student is registered for one or more courses offered by the CS

Department. The number of credits offered by a particular course does not vary,

i.e., all students who pass the same course receive the same amount of credit.

Thus this database keeps track of the following entities:

• faculty - courses taught by the faculty along with the section numbers

• courses - course information, section number, semester and year offered, room

number for a particular section of the course and the time when it is offered

• students - their major, college degree, courses registered for and the grades

obtained for the courses taken

This application is written in 'C' using flat files for data storage. Since it is

a DIS, the executables and databases can exist on one or more workstations.

This prototype provides the following facilities:

• A simple menu driven user interface providing the following options: (Ref.

Appendix Section 7.1)

16

17

1. ADD/DELETE faculty records:

Adds new records or deletes user specified records to and from the faculty

database.

2. ADD/DELETE course records

Adds new records or deletes user specified records to and from the course

database.

3. ADD/DELETE student records

Adds new records or deletes user specified records to and from the stu-

dent database.

4. ADD/DELETE register records

Adds new records or deletes user specified records to and from the reg-

ister database.

• The following output screens:

1. Listing of courses registered by students

2. Listing of students registered for the courses offered by the CS Depart-

ment

3. Listing of faculty members of the CS Department

4. Listing of courses taught by a faculty

5. Listing of courses offered by the Department

6. Viewing specific records based on specific fields:

(a) For faculty: based on first name, last name, office location, phone

number and social security number

(b) For course: based on course name and course number

18

(c) For student: based on first name, last name, phone number and

social security number

(d) For registered courses: based on grade in a particular course, course

number and student social security number

3.2 System Description

This software has two main facilities. One is to update the CS Department DIS

and the other is to handle queries. The functions ADD and DELETE provide the

required updation of the DIS. The software provides answers to user interactive

queries (ex. statistical, listings, etc.).

3.2.1 The ER Diagram

The ER diagram is as shown in Figure 3.1.

The Student entity has attributes stud_ssn, stud_firstName, stud_middlelnitial,

studiastName, stud_address, stud_city, stud_state, stud_zip, stud_phone, stud_major,

stud_college and stud_gpa. The stud_ssn is the primary key of this entity.

The course entity has attributes course_number, course_section, course_semester,

course_year, course_name, course_inst, course_room, course_bldg, course_day, course_time

and course_credit. The course_number, course_section, course_semester, course_year

is the primary key of this relation. One or more sections of a course are offered in

a semester in a particular year.

The faculty entity has attributes ssn, firstName, middlelnitial, lastName,

phone, location. The ssn is the primary key of this relation.

The registered relationship exists between the entities student and course.

This is a many to many relationship, since one student can register for many courses

and one course can be taken by many students. In addition, this relationship stores

the grade attribute which describes the grade earned by a student in a particular

19

course.

The teaches relationship exists between the faculty and course entities. This

is a one to many relationship from faculty to the course entity, since one faculty

member can teach many courses, but a particular course can be taught by only a

single faculty member.

A List of Entities / Relations and Attributes

1. STUDENT:

(a) stud_ssn: Is the student's social security number

(b) stud_firstName: Is the student's first name

(c) stud_middlelnitial: Is the student's middle initial

(d) stud_lastName: Is the student's last name

(e) stud_address: Is the student's residential street address

(f) stud_city: Is the city in the student's address

(g) stud_state: Is the state in the student's address

(h) stud_ztp: Is the zip code in the student's address

(i) stud_phone: Is the student's home phone number

(j) stud_major: Is the student's major

(k) stud_college: Is the student's college

(1) stud_gpa: Is the student's gpa

2. COURSE:

(a) course_number: Is the number of a course

(b) course_section: Is the section of a course

(c) course_semester: Is the semester the course is offered

20

Figure 3.1: ER Diagram for CS Department DIS

21

(d) course_year: Is the year the course is offered

(e) course_name: Is the name of the course

(f) course_inst: Is the social security number of the instructor teaching the

course

(g) course_room: Is the room number in which the course is taught

(h) course_bldg: Is the building in which the course is taught

(i) course_day: Is the day when the course is taught

(j) course_time: Is the time when the course is taught

(k) course_credit: Is the number of credits for the course

3. FACULTY:

(a) ssn: Is the faculty's social security number

(b) firstName: Is the faculty's first name

(c) mzddlelnitial: Is the faculty's middle initial

(d) lastName: Is the faculty's last name

(e) phone: Is the faculty's phone number

(f) location: Is the faculty's location

4. Registered Relationship:

It provides information about the courses registered by a student and the

corresponding grade.

(a) grade: Is the grade earned by a student in a particular course

5. Teaches Relationship:

It provides information about the courses taught by a faculty member.

22

3.2.2 User Characteristics, Assumptions and Dependen-

cies

This application assumes two main end users, a professor i.e., a faculty member

and the department secretary. A simple, user friendly environment is provided to

help the users use the product efficiently. Different views are provided for the two

end users as follows:

An instructor would be interested in the following views of the database:

(1) List of all students in a particular class conducted by him/her.

(2) List of all the PhD students.

(3) List of all students in his/her class based on a specific grade.

The Department secretary would be interested in the following view of the database:

(1) Total credits taught by an instructor.

(2) Total credits taken by a student.

(3) List of all the courses taken by a student.

As of now, a common user interface is designed for both the users. Hence, a

faculty member or a department secretary has access to all the above mentioned

functionalities.

3.2.3 Product Functions

1. Add a record

A new record can be added to the faculty, course, student and register

databases.

2. Delete a record

A specific record can be deleted from the faculty, course, student and register

databases.

23

3. List all the records in a specific database

List of all the courses, faculty, students and courses registered by students.

4. Answer user interactive queries i.e., viewing specific records based on specific

fields

(a) For faculty: based on first name, last name, office location, phone num-

ber and social security number

(b) For course: based on course name and course number

(c) For student: based on first name, last name, phone number and social

security number

(d) For registered courses: based on grade in a particular course, course

number and student social security number

3.2.4 Functional Requirements in Detail

Functional Requirement I

Introduction: This function involves the updation of the CS Department DIS.

updation —> ADD, DELETE

Inputs:

1. The data to be processed - (source - user)

To add a new record to the faculty database, the user provides the social se-

curity number, first name, middle initial, last name, phone number and office

location of the new faculty member.

To delete a specific faculty member from the faculty database, the user pro-

vides the faculty member's social security number.

To add a new student to the student database, the user provides the social se-

curity number, first name, middle initial, last name, phone number, address,

24

major, college and gpa of the student.

To delete a specific student from the student database, the user provides the

student's social security number.

To add a new course to the course database, the user provides course number,

course section, course semester, course year, course name, course instructor's

social security number, course room number, course bldg, course day, course

time and course credit.

To delete a specific course from the course database, the user provides the

course number.

To register a student to a course, the user provides student's social security

number, course number, course section, course semester and year.

To delete a student from the register database, the user provides the student's

social security number.

2. The operation to be performed on the input data (the operation is selected

by the user from the provided menu)

Processing:

1. Add: This process adds the data provided by the user to the CS Department

DIS. If the input data is not valid i.e., if the data already exists, the software

generates an error message:

"DUPLICATE RECORD"

2. Delete: This process deletes a particular record in the CS Department DIS.

The inputs required are social security number or course number correspond-

ing to the record to be deleted. If the input is invalid, the software generates

an error message:

"RECORD DOES NOT EXIST"

25

3. Outputs: A suitable feedback is generated informing the user that the op-

eration is successful.

Functional Requirement II

Introduction: This function "Query" provides answers to user queries.

Input: The query (selected by the user from the provided menu).

Processing:

1. Statistical Query: This process provides statistics requested by the user.

• total number of credits taught by a particular faculty

• total number of credits taken by a student

2. Listings: This process provides the listings of data stored in the DIS.

• List of all the faculty members in the Department

• List of all the courses offered by the Department

• List of all the students registered for the above courses

• List of all the students in the Department

3. User Interactive Query: This process provides answers to any predefined

query selected by the user. The system prompts the user to enter information

required to process a particular query.

• To get the listing of courses taught by a particular faculty, the system

prompts the user to enter the faculty's last name

26

• To get the listing of a particular faculty member by the first name, last

name, office location, phone number or social security number the system

prompts the user to enter first name, last name, office location, phone

number or social security number accordingly

• To get the listing for a particular course by the course name or course

number, the system prompts the user to enter the course name or course

number accordingly

• To get the listing of a particular student by first name, last name, phone

number or social security number the system prompts the user to en-

ter the first name, last name, phone number or social security number

accordingly

• To get the listing of registered courses by grade in a particular course,

course number or student social security number, the system prompts

the user to enter the grade in the particular course, course number or

student social security number accordingly

Output: The appropriate answer to the requested query is provided.

3.2.5 Level of Maintainability

• The application is written in a modular form, it can be adapted to changing

user needs, i.e., anything can be easily added, modified or deleted from the

system.

• Since the application is a DIS, all the functionality blocks can be physically

placed on any (of the two) workstations. They can be easily moved from one

workstation to another. All these movements will be transparent to the end

users.

27

Figure 3.2: Level 0: CS Department DIS

3.2.6 Bubble Charts

— Level 0

The level 0 bubble chart is as shown in Figure 3.2. It consists of the following

inputs:

• I/P Data Description: This is the input data provided by the user to add,

delete or view records in the faculty, course, student and register databases

(as described earlier)

• I/P Function Type: This is selected by the user from the menu to add or delete

a particular record in the faculty, course, student and register databases (as

described earlier)

• I/P Query Type: This is selected by the user from the available queries listed

in the menu (as described earlier)

28

Figure 3.3: Level 1: CS Department DIS

The level 0 bubble chart consists of the following outputs:

• Formatted Feedback Message: This displays a message for the user on the

CRT depending on the results of the add or delete operations on the databases

• Formatted Query Answer: Appropriate answer is displayed for the query

selected by the user

— Level 1

The level 1 bubble chart is as shown in Figure 3.3. The data flow for this bubble

chart is as follows:

The user selects add or delete function for adding or deleting records, in

29

the faculty, course, student or register databases. This is shown by the input I/P

FUNCTION in the bubble chart. The next bubble identifies the function selected as

ADD-F or DELETE-F. ADD-F implies add faculty or add course or add student or

add register. Similarly DELETE-F implies the delete faculty, delete course, delete

student or delete register functions. The user input shown in the bubble chart as

I/P DATA, is checked for validity and the verified input data goes to the PROCESS

DATA bubble, along with the selected functionality. In case of addition of a new

record, the input is checked with the already existing data in the database to avoid

duplication. If it does not exist already, then it is added to the database and a

message is displayed on the CRT, stating that the new record was added. In case,

the record already exists, a message is displayed on the CRT stating that it is a

duplicate record. In case of deletion of a specific record, the input is checked for

a match with the already existing records in the database. If a match is found,

then this record is displayed on the CRT. On the user's approval, the record is

deleted and a message is displayed on the CRT, stating that the required record

was deleted.

The user selects an I/P QUERY from the menu. This query is then checked

and identified as STAT-Q (Statistical Query), LISTING-Q (listing query), USER-

INT-Q (user interactive query). The selected query along with the input data is

then processed. The required query data is obtained from the database and a

formatted query answer is displayed on the CRT. In case of user interactive query,

a proper query question is posed, after the user enters the data required to process

the query, the required query answer is presented to the user.

Abbreviations:

1. F+: function(Add,Delete)

2. F-: Any function other than Add, Delete

3. PROC. CIS DATA: Process CS Data

30

4. Q+: Query for statistics, listing or interactive

5. Q-: Invalid query

6. ADD-F: function to Add data

7. DELETE-F: function to Delete data

8. STAT-Q: Statistical query

9. LISTING-Q: Listing query

10. USER-INT-Q: User interactive query

11. I/P DATAQ±: User selected question

Bubble Chart Description: Level 1

1. GET & CHECK FUNCTION

Input: I/P FUNCTION

Output: F+

This process gets the function that the user selects from the menu and checks

if it is a valid function (F+), i.e., one of ADD or DELETE. If the function is not

valid (F-), then an error message is generated.

2. GET & CHECK I/P DATA

Input: I/P DATA

Outputs: I/P DAT A+, I/P DAT AQ+

This process gets the data from the user and checks if the data is valid

(I/PDATA+). If the data is not valid (I/PDATA-), then an error message is

generated.

3. GET & CHECK I/P QUERY

Input: I/P QUERY

Output: Q+

31

This process gets the input query from the user and checks if it is a valid

query (Q+). The input query can be a query for statistics, listings or user interactive

query. If the query is not valid (Q-), then an error message is generated.

4. IDENTIFY FUNCTION

Input: F+ : function(Add,Delete)

Output: ADD-F, DELETE-F

This process identifies the input function (F+) type as Add or Delete.

5. IDENTIFY QUERY TYPE

Input: Q+ : Query

Outputs: STAT-Q, LISTING-Q, USER-INT-Q

This process identifies the query (Q+) type as STAT-Q, LISTING-Q or

USER-INT-Q.

6. PROCESS DATA

Inputs: ADD-F, I/P DATA+, DELETE-F

Output: FEEDBACK : Message indicating that the required updation was success-

ful.

Pseudocode

IF input = ADD-F THEN

DO Add Data

IF input = DELETE-F THEN

DO Delete Data

7. PROCESS QUERY

Inputs: STAT-Q, LISTING-Q, USER-INT-Q

Outputs: QUERY ANSWER : Message - query answer (statistics answer, listings,

user interactive answer)

QUERY QTS : Message - query questions (only for user interactive queries)

Pseudocode

32

IF input = STAT-Q THEN

DO Statistical Query

IF input = LISTING-Q THEN

DO Listing Query

IF input = USER-INT-Q THEN DO BEGIN

DO Process User interactive query

DISPLAY query qts

END

8. FORMAT FEEDBACK

Input: FEEDBACK

Output: FORMATTED FEEDBACK MESSAGE

This process formats the feedback message generated by "PROCESS DATA",

informing the user that the operation has been performed.

9. FORMAT QUERY ANSWER

Inputs: QUERY ANSWER

Output: FORMATTED QUERY ANSWER

Pseudocode

IF QUERY ANSWER = ANSWER TO STATISTICS THEN

DO Format Answer to Statistics

IF QUERY ANSWER = ANSWER TO LISTING QUERY THEN

DO Format Answer to Listing Query

IF QUERY ANSWER = ANSWER TO USER INTERACTIVE QUERY THEN

DO Format Answer to User Interactive Query

— Level 2 for PROCESS DATA (No. 6)

The level 2 bubble chart for PROCESS DATA is as shown in Figure 3.4.

33

Figure 3.4: Level 2: PROCESS DATA

34

If the user selects the ADD-F function, i.e., add faculty, or add course or

add student or add register, then the I/P DATA i.e., the AI DATA along with the

selected functionality is passed to the ADD DATA bubbles for faculty or course

or student or register. The new record is then added to the appropriate database,

and a message is displayed stating that the record is added. If the user selects the

DELETE-F function, i.e., delete faculty, or delete course or delete student or delete

register, then the I/P DATA i.e., the DI DATA along with the selected functionality

is passed to the DELETE DATA bubbles for faculty or course or student or register.

The specified record is first displayed on the screen and on the user's approval is

deleted from the appropriate database, and a message is displayed indicating that

the record is deleted.

Abbreviations for PROCESS DATA:

1

. A-DATA DESC: Added data description

2. A-DATA: Added data feedback

3. AI DATA: Add input data

4. D-DATA DES C: Deleted data description

5. D-DATA: Deleted data feedback

6. DI DATA: Delete input data

Bubble chart description: PROCESS DATA

6.1. ADD DATA

Inputs: ADD-F, AI DATA

Output: A-DATA: Message indicating that the required addition was successful.

Pseudocode for ADD DATA

DO Add Data

35

6.2. DELETE DATA

Inputs: DELETE-F, DI DATA

Output: D-DATA: Message indicating that the required deletion was successful.

Pseudocode for DELETE DATA

DO Delete Data

— Level 2 for PROCESS QUERY(No. 7)

The level 2 bubble chart for PROCESS QUERY is as shown in Figure 3.5.

If the user input is STAT-Q, then the PROCESS STATISTICS bubble pro-

cesses the statistical query and displays the required statistical answers. If the

user input is LISTING-Q, then the PROCESS LISTING QUERY bubble processes

the listing query and displays the required listing answers. If the user input is

USER-INT-Q, then a proper query question is posed to the user. The user enters

the input data as described earlier. Then the PROCESS USER INTERACTIVE

QUERY processes these and displays the user interactive answer to the query.

Abbreviations for PROCESS QUERY:

1. A-LIST: Answer to list queries

2. A-U-INT: Answer to user interactive questions

3. LIST-Q: Selected list

4. S-DESC.: Statistical description

5. U-INT. QTS: User interactive questions

Bubble chart description: PROCESS QUERY

7.1. PROCESS STATISTICS

Input: STAT-Q

Output: STATISTICS ANSWER

Pseudocode for PROCESS STATISTICS

36

Figure 3.5: Level 2: PROCESS QUERY

DO Process Statistics

7.2. PROCESS LISTING QUERY

Input: LISTING-Q

Output: LISTING ANSWER

37

38

Pseudocode for PROCESS LISTING QUERY

DO Process Listing Query

7.3. PROCESS USER INTERACTIVE QUERY

Inputs: USER INT-Q, I/P DATAQ+

Outputs: QUERY QTS, USER INTERACTIVE ANSWER

Pseudocode for PROCESS USER INTERACTIVE QUERY

DO Process User Interactive Query

PRINT QUERY QTS

GET User Input

PRINT User Interactive Answer

— Level 2 for FORMAT QUERY ANSWER(No. 9)

The level 2 bubble chart for FORMAT QUERY ANSWER is as shown in Figure

3.6.

The query answer is the data retrieved from the databases for the required

query, selected by the user from the menu. If it is a statistical query, this forms

ANSWER TO STATISTICS which is fed to the FORMAT ANSWER TO STATIS-

TICS bubble which formats the data and presents it to the user as FORMATTED

ANSWER TO STATISTICS. If it is a listing query, this forms ANSWER TO

LISTING QUERY which is fed to the FORMAT ANSWER TO LISTING QUERY

bubble which formats the data and presents it to the user as FORMATTED AN-

SWER TO LISTING QUERY. If it is a user interactive query, this forms ANSWER

TO USER-INT QUERY which is fed to the FORMAT ANSWER TO USER-INT

QUERY bubble which formats the data and presents it to the user as FORMAT-

TED ANSWER TO USER-INT QUERY.

Bubble chart description: FORMAT QUERY ANSWER

Figure 3.6: Level 2: FORMAT QUERY ANSWER

39

9.1. FORMAT ANSWER TO STATISTICS

Input: ANSWER TO STATISTICS

Output: FORMATTED ANSWER TO STATISTICS

40

41

Pseudocode for FORMAT ANSWER TO STATISTICS

DO Format Answer to Statistics

9.2. FORMAT ANSWER TO LISTING QUERY

Input: ANSWER TO LISTING QUERY

Output: FORMATTED ANSWER TO LISTING QUERY

Pseudocode for FORMAT ANSWER TO LISTING QUERY

DO Format Answer to Listing Query

9.3. FORMAT ANSWER TO USER-INT QUERY

Inputs: ANSWER TO USER-INT QUERY

Outputs: FORMATTED ANSWER TO USER-INT QUERY

Pseudocode for FORMAT ANSWER TO USER-INT QUERY

DO Format User Interactive Query

3.2.7 Structure Charts

— Level 0

The level 0 structure chart is as shown in Figure 3.7. In the CS Department DIS :

(1) The user selects one of the menu options from the main menu as shown in the

Appendix Section 7.1 i.e., user selects one of the four databases. Faculty, Course,

Student, Register.

(2) Then the user selects either the update options i.e.F-ADD or F-DELETE or

the query options QS or QP or QOTHERS from the submenus of the selected

database.

(3) The user enters the required input data for the particular selection i.e. I/P

DATA for F-ADD or F-DELETE or QOTHERS. Here "F" stands for Faculty or

Course or Student or Register.

42

Figure 3.7: Level 0: STRUCTURE CHART

(4) All the input data along with the chosen functionality are then processed in

PROCESS I/P and the corresponding outputs are then obtained i.e. Feedback,

Query Qts., Query Answer.

(5) These outputs are then presented in the required format by PROVIDE 0/P.

Abbreviations

1. F-ADD: Function to add data

2. F-DELETE: Function to delete data

3. QS: Query for statistics

4. QP: Listing query

5. QOTHERS: Other user interactive queries

Pseudocode for CS Department DIS

Do {

DO Provide I/P

DO Process I/P

DO Provide 0/P

} WHILE I/P not equal to exit

43

Figure 3.8: Level 1: PROVIDE I/P

— Level 1: for PROVIDE I/P

The level 1 structure chart for PROVIDE I/P is as shown in Figure 3.8. From

the user interface, through the main menu (Ref. Appendix Section 7.1), the user

selects the required database to be updated or queried. If this database is to be

updated, the functions add-faculty, add-course, add-student, add-register or delete-

faculty, delete-course, delete-student, delete-register can be selected. This function

is then checked and the required input is then provided by the user. The input

data provided by the user is as described above.

If the database selected is to be queried, then the required query option is

selected from the menu. This selected query is then checked for the query type i.e.,

if it is a statistical query, a listing query or a user interactive query.

Abbreviations

1. RF: Raw Function

2. F+: Function(Add,Delete)

3. FFLAG: Flag for function type

4. RD: Raw input data

5. RQ: Raw input query

6. Q+: Query(Statistics,Listing,User interactive)

7. FQUERY: Flag for query type

Pseudocode for PROVIDE I/P

IF input = F+ THEN BEGIN

DO Get Function

DO Check Function

IF FFLAG THEN

DO Get I/P Data

END

IF input = Q+ THEN BEGIN

DO Get I/P Query

DO Check Query Type

END

Pseudocode for Get Function (Ref. Appendix Section 7.1)

DO {

IF Input = FACULTY THEN

Display FACULTY MENU

IF Input = COURSE THEN

Display COURSE MENU

44

IF Input = STUDENT THEN

Display STUDENT MENU

IF Input = REGISTER THEN

Display REGISTER MENU

} WHILE Input not equal to EXIT.

Pseudocode for Check Function (Ref. Appendix Section 7.1)

DO {

IF Input = ADD THEN

DO ADD FUNCTION

IF Input = DELETE THEN

DO DELETE FUNCTION

IF Input = LIST THEN

DO LIST FUNCTION

IF Input = VIEW THEN

DO VIEW FUNCTION

} WHILE Input not equal to EXIT.

Pseudocode for Get I/P DATA

IF FFLAG = ADD THEN

DO Get Input Data For Add Function

IF FFLAG = DELETE THEN

DO Get Input Data For Delete Function

Pseudocode for Get I/P QUERY

IF RQ = faculty query THEN

DO GET I/P Query for Faculty

IF RQ = course query THEN

45

46

DO GET I/P Query for Course

IF RQ = student query THEN

DO GET I/P Query for Student

IF RQ = register query THEN

DO GET I/P Query for Register

Pseudocode for Check Query Type

IF Q+ = Statistical Query Type THEN

Set FQUERY = STATISTICAL

IF Q+ = Listing Query Type THEN

Set FQUERY = LISTING

IF Q+ = User Interactive Query Type THEN

Set FQUERY = USER INTERACTIVE

— Level 1: for PROCESS I/P

The level 1 structure chart for PROCESS I/P is as shown in Figure 3.9. If the

user selects an option to update a particular database, then he/she is required to

provide the required input. This input is then processed, i.e., depending on the kind

of updation, a new record is being added, or an existing record is deleted from the

database. A message stating the output of this procedure is sent back as the output

i.e., "feedback". If the user selects an option for querying a particular database,

then depending on the type of the query, i.e., statistical, listing or user-interactive,

the query is processed. If it is a statistical query, then the required statistics are

calculated and the output is presented as AS. If it is a listing query, the required

list of records is obtained from the database and the output is presented as AP. If it

is a user interactive query, the user is asked to enter specific information according

to which the required records are then retrieved and sent back as AQ.

47

Figure 3.9: Level 1: PROCESS I/P

Abbreviations

1. A-DATAF: Added data feedback

2. D-DATAF: Deleted data feedback

3. AS: Answer to statistics

4. AP: Answer to listing query

5. AU: Answer to user interactive query

6. AQ: Query question

Pseudocode for PROCESS I/P

IF input = F-ADD or F-DELETE THEN

DO Process Data

IF input = QS or QP or QOTHERS THEN

DO Process Query

Pseudocode for PROCESS DATA

IF input = F-ADD THEN

DO Add Data

IF input = F-DELETE THEN

DO Delete Data

Pseudocode for PROCESS QUERY

IF input = QS THEN

DO Process Statistics

IF input = QP THEN

DO Process List

IF input = QOTHERS THEN

DO Process USER-INT-Q

Pseudocode for ADD DATA

IF Input Data = New Faculty Record THEN

DO FACULTY Add Data

IF Input Data = New Course Record THEN

DO COURSE Add Data

IF Input Data = New Student Record THEN

DO STUDENT Add Data

IF Input Data = New Register Record THEN

DO REGISTER Add Data

Pseudocode for DELETE DATA

IF Input Data = Faculty Social Security Number THEN

DO FACULTY Delete Data

48

IF Input Data = Course Number THEN

DO COURSE Delete Data

IF Input Data = Student Social Security Number THEN

DO STUDENT Delete Data

IF Input Data = Student Social Security Number THEN

DO REGISTER Delete Data

Pseudocode for PROCESS STATISTICS

IF Input = Faculty Statistics THEN

DO Process FACULTY Statistics

IF Input = Course Statistics THEN

DO Process COURSE Statistics

IF Input = Student Statistics THEN

DO Process STUDENT Statistics

IF Input = Register Statistics THEN

DO Process REGISTER Statistics

Pseudocode for PROCESS LISTINGS

IF Input = Faculty Listings THEN

DO Process FACULTY Listings

IF Input = Course Listings THEN

DO Process COURSE Listings

IF Input = Student Listings THEN

DO Process STUDENT Listings

IF Input = Register Listings THEN

DO Process REGISTER Listings

49

50

Pseudocode for PROCESS USER INT. QUERY

IF Input = Faculty User Int. Query THEN

DO Process FACULTY User Int. Query

IF Input = Course User Int. Query THEN

DO Process COURSE User Int. Query

IF Input = Student User Int. Query THEN

DO Process STUDENT User Int. Query

IF Input = Register User Int. Query THEN

DO Process REGISTER User Int. Query

— Level 1: for PROVIDE 0/P

The level 1 structure chart for PROVIDE 0/P is as shown in Figure 3.10. The feed-

back from the PROCESS DATA is formatted in the procedure FORMAT FEED-

BACK and displayed on the user CRT. The query answers from the PROCESS

QUERY are formatted accordingly for the three types of queries, i.e., statistical

query, listing query, user interactive query, and presented to the user in the re-

quired format i.e., as FAS or FAP or FAQ.

Abbreviations

1. FAS: Formatted answer to statistics

2. FAP: Formatted list

3. FAU: Formatted answer to user interactive query

4. FAQ: Formatted question

Pseudocode for PROVIDE 0/P

IF input = FEEDBACK THEN

DO Format Feedback

51

Figure 3.10: Level 1: PROVIDE 0/P

IF input = QUERY ANSWER THEN

DO Format Query Ans

Pseudocode for FORMAT QUERY ANS

IF input = AS THEN

DO Format Stat Query

IF input = AP THEN

DO Format List Query

IF input = AS THEN

DO FORMAT Answer to U-INT QUERY

Pseudocode for FORMAT FEEDBACK

IF Feedback = ADD FEEDBACK THEN

DO Format ADD FEEDBACK

IF Feedback = DELETE FEEDBACK THEN

DO Format DELETE FEEDBACK

Pseudocode for FORMAT STAT QUERY

IF Input = Statistical Query Answer For Faculty THEN

DO Format Statistical Query Answer For Faculty

IF Input = Statistical Query Answer For Course THEN

DO Format Statistical Query Answer For Course

IF Input = Statistical Query Answer For Student THEN

DO Format Statistical Query Answer For Student

IF Input = Statistical Query Answer For Register THEN

DO Format Statistical Query Answer For Register

52

53

Pseudocode for FORMAT LIST QUERY

IF Input = List Answer For Faculty THEN

DO Format Listing For Faculty

IF Input = List Answer For Course THEN

DO Format Listing For Course

IF Input = List Answer For Student THEN

DO Format Listing For Student

IF Input = List Answer For Register THEN

DO Format Listing For Register

Pseudocode for FORMAT ANSWER TO U-INT QUERY

IF Input = Answer to U-INT Query for faculty THEN

DO Format Answer to U-INT Query For Faculty

IF Input = Answer to U-INT Query for course THEN

DO Format Answer to U-INT Query For Course

IF Input = Answer to U-INT Query for student THEN

DO Format Answer to U-INT Query For Student

IF Input = Answer to U-INT Query for register THEN

DO Format Answer to U-INT Query For Register

3.3 The Technical Environment

(1) At least two Sun Workstations are required to run this application, as it is a

DIS. This application is designed in such a way that it can run on a network of

SUN workstations. Currently only two SUN workstations are being used. Actually,

right now it runs on a SPARC station SLC and a SUN workstation. Due to the

difference in the machine architectures, if the software has to be moved around, the

application has to be recompiled.

54

(2) Availability of mouse, terminal, keyboard and ethernet is assumed. The user

interface which is presently available does not need the mouse. Ethernet connects

the different workstations.

(3) Version of SunOS used is Release 4.1.

(4) This application is written in standard 'C'. Due to the difference in the machine

architecture, as stated above, the programs have to be recompiled if the software

has to be moved around.

(5) The "databases" are actually flat files which store the records. The fields in

these records are delimited by a single space.

(6) Version of Sun's ONC RPC is Release 4.0. TCP is used to create a connection.

TCP is a connection oreinted transport protocol. TCP lies on top of the ethernet

layer. By TCP we mean Internet Transmission Control Protocol.

(7) Interface Requirements: The user interface that has been implemented is very

basic. It is implemented in 'C'.

CHAPTER 4

MAPPING THE APPLICATION

TO THE CONCEPTUAL ARCHITECTURE

According to the conceptual architecture, the implementation of the proto-

type is divided into different building blocks. Building blocks are the components

which provide the different functionalities in an application domain. The building

blocks act like black-boxes, offering services via a predefined interface, but hiding

implementation details.

In this application, a building block is realized as a subroutine, a main pro-

gram, or a system of programs written in C. If a building block consists of a system

of programs, then these programs directly call each other. All these programs to-

gether form one building block since they contribute towards the same functionality.

Decomposition rules used here on a conceptual level separate functionality of the

user-interface, the data storage units, and of additional functional elements into

different building blocks [2]. These building blocks are placed conceptually in three

different layers. These layers as seen in Figure 4.1 are described below:

• Level 1 is the User Layer

It provides a menu based interface to select the functions: add or delete and

allows the user to view different records (Ref. Chapter 3).

• Level 2 is the Processing Layer

It consists of building blocks that actually process the data from the data

layer described below, using combinations of building blocks that exits in the

data layer.

• Level 3 is the Data Layer

It consists of building blocks that perform the basic functions add, delete, list

55

56

Figure 4.1: Building Blocks of the CS Department DIS

57

and view a specific record (Ref. Chapter 3). These building blocks actually

handle the data in the databases.

The building blocks do not contain application functionality from more than

one layer and the interfaces between the functions in one building block and another

building block are well defined, so that the functions of one layer are decoupled from

the functions of another layer. This grouping of the building blocks according to

their functionality into the different layers corresponds to the requirements of the

conceptual architecture described in Chapter 2.

These building blocks are capable of communicating with each other and the

user is able to communicate with every block via the user interface irrespective of

the internal implementation and environments on which the building blocks reside

(This is equivalent to interoperability as described in the OSCATM manual [1]).

4.1 Level 1 Building Blocks

The level I consists of the following building blocks: (Ref. Fig. 4.1)

1. Main Menu

2. Faculty Feedback

3. Course Feedback

4. Student Feedback

5. Register Feedback

Main Menu

Components of the main menu building block are as shown in Figures 4.2

and 4.3. The main menu building block comprises of all C programs as shown.

All these C programs call each other directly and they together work towards the

58

Figure 4.2: Components of the Main Menu Building Block: Part A

formation of the user interface input functionality. The main menu building block

corresponds to the structure chart for PROVIDE I/P as seen in Figure 3.8. This

provides a simple user interface for updating or querying the faculty, course, stu-

dent, register databases.

Feedback

Components of the feedback building blocks are as shown in Figure 4.4.

Each feedback building block comprises of a single C program as shown in the

Figure 4.4. Each of these C programs work towards the formation of the user

output functionality for faculty, course, student and register respectively. The

feeback building block corresponds to the structure chart for PROVIDE 0/P as seen

in Figure 3.10. The feedback implies faculty, course, student, register feedbacks. It

displays the results of the queries as requested by the user.

59

Figure 4.3: Components of the Main Menu Building Block: Part B

Figure 4.4: Components of Feedback Building Blocks

60

61

4.2 Level 2 Building Blocks

The level 2 consists of the following building blocks:(Ref. Fig. 4.1)

1. Faculty Course List

2. Credits Per Faculty

3. Credits Per Student

These building blocks fall in level 2 as they all provide functionality to answer

complex queries and control process flow. They contain functionality that is not

present in the data layer or the user layer. Hence, they do not steward data or

support human users directly. These building blocks contain certain messages to

access the building blocks in the data layer. They also

Faculty Course List

Provides a list of courses taught by a particular faculty member using the

last name of the faculty as the search key (Ref. Fig. 4.5). Components of the

faculty course list building block are as shown in Figure 4.5. The faculty course list

building block comprises of the C program facourse_list.c. This C program sends a

message to the trader to access the view faculty building block. The data is then

sent back to this program. Another message containing this data is sent to the

trader to access the list course building block. The required list is then displayed.

The faculty course list building block corresponds to the PROCESS USER INT-Q

block in the structure chart for PROCESS I/P as seen in Figure 3.9.

Credits per Faculty

Provides the total number of credits taught by a particular faculty member

using the last name of the faculty as the search key (Ref. Fig. 4.5). Components

of the credits per faculty building block are as shown in Figure 4.5. The credits per

faculty building block comprises of the C program fcredits.c. This works towards

the formation of the credits per faculty functionality. This C program sends a

Figure 4.5: Level 2 Building Blocks

62

63

message to the trader to access the faculty course list building block. The sequence

of faculty course building block operations are as explained above. The credits

per faculty building block corresponds to the PROCESS STATISTICS block in the

structure chart for PROCESS I/P as seen in Figure 3.9.

Credits per Student

Provides the total number of credits earned by a student using the social

security number of the student as the search key (Ref. Fig. 4.5). Components

of the credits per student building block are as shown in Figure 4.5. The credits

per student building block comprises of the C program scredits. c. This works

towards the formation of the credits per student functionality. This C program

sends a message to the trader to access the view student building block. The

data is then sent back to this program. Another message containing this data is

sent to the trader to access the list register building block. The required data is

then computed and displayed. The credits per student building block corresponds

to the PROCESS STATISTICS block in the structure chart for PROCESS I/P

as seen in Figure 3.9. This layer contains a variety of service processing layer

building blocks. For example, the faculty course list building block, is a basic

service processing layer building block. The basic service processing layer provides

answers to high level queries, using the data retrieved by a data layer building block

and then manipulating the data according to the query requirement. The credits

per faculty is an advanced service processing layer building block. An advanced

service processing layer building block provides answers to high level queries by

using the output data of a basic service processing layer building block and then

processes this data further to suit the required queries requirements.

64

4.3 Level 3 Building Blocks

The level 3 consists of the following building blocks: (Ref. Figures 4.1, 4.6, 4.7,

4.8, 4.9).

1. Add Faculty

2. List Faculty

3. Delete Faculty

4. View Faculty

5. Add Course

6. List Course

7. Delete Course

8. View Course

9. Add Student

10. List Student

11. Delete Student

12. View Student

13. Add Register

14. List Register

15. Delete Register

16. View Register

65

Figure 4.6: Faculty Building Blocks

66

Figure 4.7: Course Building Blocks

67

Figure 4.8: Student Building Blocks

68

Figure 4.9: Register Building Blocks

69

ADD Building Blocks

Adds a new record to the specified database. The ADD faculty building block

comprises of a C program for adding a new record in faculty database (Ref. Fig.

4.6). The ADD course building block comprises of a C program for adding a new

record in course database (Ref. Fig. 4.7). The ADD student building block

comprises of a C program for adding a new record in student database (Ref. Fig.

4.8). The ADD register building block comprises of a C program for adding a new

record in register database (Ref. Fig. 4.9). The ADD building blocks correspond

to the ADD DATA block in the structure chart for PROCESS I/P as seen in Figure

3.9.

LIST Building Blocks

Lists all records in the specified database. The LIST faculty building block com-

prises of a C program for listing particular records from the faculty database (Ref.

Fig. 4.6). The LIST course building block comprises of a C program for listing

particular records from the course database (Ref. Fig. 4.7). The LIST student

building block comprises of a C program for listing particular records from the

student database (Ref. Fig. 4.8). The LIST register building block comprises of

a C program for listing particular records from the register database (Ref. Fig.

4.9). The LIST building blocks correspond to the PROCESS LISTINGS block in

the structure chart for PROCESS I/P as seen in Figure 3.9.

DELETE Building Blocks

Deletes a record from the specified database. In case of faculty, student, and register

databases the social security number determines the record to be deleted. In case

of course database the course number determines the record to be deleted. The

DELETE faculty building block comprises of a C program for deleting a specific

record from faculty database (Ref. Fig. 4.6). The DELETE course building block

comprises of a C program for deleting a specific record from course database (Ref.

Fig. 4.7). The DELETE student building block comprises of a C program for

70

deleting a specific record from student database (Ref. Fig. 4.8). The DELETE

register building block comprises of a C program for deleting a specific record from

register database (Ref. Fig. 4.9). The DELETE building blocks correspond to the

DELETE DATA block in the structure chart for PROCESS I/P as seen in Figure

3.9.

View Faculty

Displays the required record/s from the faculty database based on either of the fol-

lowing attributes: First Name, Last Name, Social Security Number, Phone, Office

Number. Components of the view faculty building block are as shown in Figure

4.6. The view faculty building block comprises of the C program frdb_svc_proc.c,

which in turn comprises of the subroutines as shown in the figure. These work

towards the formation of the faculty view functionality. The view faculty building

block corresponds to the PROCESS USER INT-Q block in the structure chart for

PROCESS I/P as seen in Figure 3.9.

View Student

Displays the required record/s from the student database based on either of the fol-

lowing attributes: First Name, Last Name, Social Security Number, Phone. Com-

ponents of the view student building block are as shown in Figure 4.8. The view

student building block comprises of the C program srdb_svc_proc.c, which in turn

comprises of the subroutines as shown in the figure. These work towards the forma-

tion of the student view functionality. The view student building block corresponds

to the PROCESS USER INT-Q block in the structure chart for PROCESS I/P as

seen in Figure 3.9.

View Course

Displays the required record/s from the course database based on either of the fol-

lowing attributes: Course Number, Course Name. Components of the view course

building block are as shown in Figure 4.7. The view course building block com-

prises of the C program crdb_svc_proc.c, which in turn comprises of the subroutines

71

as shown in the figure. These work towards the formation of the course view func-

tionality. The view course building block corresponds to the PROCESS USER

INT-Q block in the structure chart for PROCESS I/P as seen in Figure 3.9.

View Register

Displays the required record/s from the register database based on either of the

following attributes: Grade in a particular course, Course Number, Student Social

Security Number. Components of the view register building block are as shown

in Figure 4.9. The view register building block comprises of the C program

rrdb_svc_proc.c, which in turn comprises of the subroutines as shown in the fig-

ure. These work towards the formation of the register view functionality. The view

register building block corresponds to the PROCESS USER INT-Q block in the

structure chart for PROCESS I/P as seen in Figure 3.9.

As seen in figures 4.6, 4.7, 4.8 & 4.9, the components of VIEW and LIST

building blocks consist of the same C file. This C file consists of subroutines as

seen in these figures. These subroutines are physically placed in the same C file but

operate as complete independent blocks. They have no kind of interaction or direct

communication between each other. If for any reason, this arrangement appears to

violate the conceptual integration architecture used, the subroutines can be placed

in different files without affecting any kind of functionality of the software.

4.4 Communication between Building Blocks on

a Conceptual Level

On an abstract level, the application is seen as a unified whole. The fact that the

building blocks are distributed on two or more workstations is ignored as is the

existence of a trader which handles communication. (Ref. Fig. 4.10 & Sections

2.1, 2.2 & 2.3)

For example,

72

Figure 4.10: Communication between Building Blocks on a Conceptual Level

73

1. The main menu building block in Level 1 is seen to communicate with all the

other building blocks in Level 1, 2, 3.

2. The faculty course list building block in Level 2 communicates with the view

faculty building block in Level 3, which in turn communicates with list course

building block in Level 3.

74

Figure 4.11: Transparent Communication between Building Blocks using a trader

4.5 Communication Using A Trader

The prototype built according to the concepts of communication (with a trader) as

outlined in Sections 2.6 & 2.7, is as shown in Fig. 4.11. As seen in the figure all

the building blocks communicate with each other through the trader which is the

software communication fabric. The building blocks do not communicate directly

with each other as seen in the conceptual level description. Also, the building blocks

do not exist on the same workstation. They are distributed on two workstations

(Ref. Fig. 4.11).

75

4.5.1 Actual Operation Description

Consider a user working on workstation 1. This user selects an option from the

main menu building block which exists on workstation 1. A message stating the

function selected by the user is transmitted to the trader. The trader knows where

the building block with the required functionality exists (i.e. on which workstation

the required building block physically exists). The message is then passed to that

particular building block requesting the service required. The service is then per-

formed by the building block and the result is then passed back to the trader. The

trader passes the result to the feedback building block, which in turn displays it in

the required format on the screen of workstation 1.

CHAPTER 5

AN IMPLEMENTATION OF THE

TRADER USING RPC

5.1 Basics of Remote Procedure Calling

RPC [3], is a sophisticated programming tool that lets you write powerful dis-

tributed applications in a client server model. In the client-server communication

model, servers are the distributors of the network's services. To adequately perform

their jobs, servers must be registered and listening at addresses known to client com-

puters on the network. Or, when initiated, they must register themselves with the

appropriate mapping daemon (whose address is known to client machines). These

registration and addressing conventions provide a mechanism for clients to establish

communications with a particular service. An RPC system makes the procedures

for finding and opening connections with a server systematic and flexible.

Three steps are involved in initiating an RPC : (Ref. Fig. 5.1)

1. When servers first start up, they register themselves with their local portmap,

using a unique RPC server program number that specifies the version number

of the application they support. A port is a logical network communication

channel. The portmapper is responsible for mapping services to the ports.

The portmapper on every host is well known, it is always assigned to port

number 111. This allows direct access by both the client and server to the

machine's portmap via the function portmap 0 [11]. By servers registering

themselves, we mean that they make themselves accessible to host on the

network [11].

2. A client can ask portmaps on the network to locate a particular program num-

ber and version of the service. Requests can be made singly or in broadcast

76

77

1. Server registers services.

2. Client queries binding daemon to find address of a service.
Daemon provides server address or issues an error message.

3. Client sends request for a specific procedure.
Server replies or issues error message.

Figure 5.1: The three steps behind remote procedure calling

78

fashion.

3. Once the client machine finds the address at which the requested server is

listening, the client sends a request for a specific procedure number. If it is

available, the server uses the accompanying arguments to call the appropriate

service procedure and returns to the client a reply containing the results.

A request is the information created by the client process RPC code and

transmitted to the server according to the RPC protocol, to attempt to ini-

tiate the execution of a procedure within the server application. Necessary

procedure arguments are included [11].

A reply is the information assembled by the server RPC code and transmit-

ted back to the client, according to the RPC protocol, to return the results

of the remote execution. The information in a reply connotes either a success

procedure call or a failure at the server [11].

This represents one RPC cycle.

A daemon is a program designed to run continuously in the background, lying

dormant until some condition is met [11]. Most servers are daemons.

Binding is the act of associating a server with a socket. When ONC RPC

server transport handles are created, they are bound to a certain network

port address [11].

If the server can't provide the requested service or a nonfatal error occurs, the

server sends a reply to the client indicating the type of error encountered. If a

client makes several requests of one server, the reply to the second request in the

sequence may be postponed until a certain number of requests have been processed.

A remote procedure call is similar to a local procedure call, i.e., execution

within the calling procedure is postponed until the called procedure executes. Vari-

ables are passed to the called procedure and results are passed back to the calling

procedure, which resumes execution. In case of local procedure calls, this activity

79

Figure 5.2: RPC Communication

takes place within one process and address space, whereas in the RPC model, called

procedures are executed in different processes and either in the same address space

or different address spaces (Ref.Fig. 5.2).

As seen in Figure 5.2 [11]:

• The client sends out a request over the network. The service daemon is

constantly listening for a request. When a request is received, it invokes the

service. The appropriate procedure is dispatched. The request is executed

and the reply is returned over the network to the client.

• The client program is inactive between the time of the request and when it

80

Figure 5.3: Application development with RPCGEN compiler

receives a reply.

• The client and server machines may be the same.

5.2 Development of an Application using RPC-

GEN

The application development with ONC (Open Network Computing) RPCGEN

compiler [3] is as shown in Figure 5.3. The RPCGEN protocol compiler auto-

matically handles the creation of stubs and filters, as seen in Figure 5.3, even

81

producing a skeleton of client and server source files. These client and server source

files are referred to as client and server stubs. RPCGEN handles the intricacies

of processing within the stubs it generates for linking the client and server. These

stubs take care of low level communications and the format in which the data is

represented. To accommodate a variety of client operating systems, compilers, and

architectures, server data is transmitted in a universally accepted format. For ONC

RPC, that format is eXternal Data Representation (XDR). The RPCGEN compiler

enables programmers to specify the service procedures and data structures to be

exchanged while leaving the translation processing to the stubs. The RPC & Data

Representation library contains filters for translating built-in C types as well as

more complex types, such as strings and variable length vectors. By putting filters

together, the RPCGEN compiler generates filters, capable of translating any kind

of data structure. The Client functions are programs written in 'C' to call the

server functions. The Server functions are programs written in 'C' to provide the

various service functionalities offered by the application. The database as seen in

the Figure 5.3, exists on the server side only. This is because the server provides

the required functionality to update or query the data in the database. Hence it

should have direct access to the data. On the other hand, the client just requests

the services from the server. Therefore the database need not exist on the client

side. A "cc" compiler is used to compile and link the client functions along with

the client stubs and XDR files to create the client executables and it is used to

compile and link the server functions along with the server stubs and XDR files to

create the server executables.

Four steps are involved in developing the client and server executables for

an RPC application (Ref. Fig. 5.3).

1. Protocol Specification

2. Protocol Compilation (using RPCGEN compiler)

82

Results of Protocol Compilation:

• Client Stubs

• Server Stubs

• xdr files

• Header Files

3. Writing Client and Server Functions

4. Compilation and linking of library routines and stubs and functions generated

during 2 and 3

Protocol Specification:

Here the client-server interface is defined and the language with which the

client and server will communicate is specified. To establish a framework for ap-

plication development, service procedure names, parameters and return argument

types, and the types of data passed between client and server are defined. Data typ-

ing must conform to any limitations of the protocol compiler. The RPC Language

(RPCL) read by ONC's RPCGEN protocol compiler is C-like.

Protocols have version numbers and program numbers. The version numbers

FRDBVERS make it possible for multiple software generations to co-exist on the

network.

Protocol Compilation (RPCGEN):

A protocol compiler is a tool that generates structured C source code, includ-

ing client and server stubs, common definitions (header file(s)) and data translation

filters. It consists of C like definitions of the network application, to allow the client

and server applications to carry on remote procedure calls at the highest possible

abstraction. RPCGEN produces a client and server stub, the necessary XDR filters

and a header file to be included by client and server applications and stubs. It also

83

generates a server dispatch function to take care of validating requests and invok-

ing the appropriate service procedures [5]. A dispatch routine receives the request,

attempts to validate and provide the service through a local procedure call on the

client and sends the reply to the client [11].

Client and Server Stubs:

A client stub is the source code containing all the necessary functions to

allow the client application to make remote procedure calls using a local procedure

call model. A protocol compiler typically generates this file which gets linked with

ant XDR filters and client applications [11].

A server stub is the source code containing all the necessary functions to

allow the server applications to satisfy remote procedure requests using local pro-

cedure calls. A protocol compiler typically generates this file which gets linked with

XDR filters and server application [11].

With ONC RPC, client and server parameters are passed by address. Be-

cause the service procedures are invoked by the dispatcher, they must work with

pointers. To permit their encoding, the dispatcher must have a static address at

which to store the results of service procedures. Clients must pass addresses to

their stubs for the same reason. The stub generated at the client enables the client

code to make local calls using the same names mentioned in the service procedures.

Writing Client and Server Procedures: (Ref. Figures 5.5 & 5.6 for examples)

Client Procedures are programs written in 'C' that requests remote proce-

dure calls to be executed by a server application. Server Procedures are isolated

functions performed by the server. This is a program written in 'C' to handle and

reply to requests made by the client processes.

Compilation and linking of library routines and stubs generated during

compilation:

Here the client and server are compiled. This is done by linking the client

functions and the server functions with their respective stubs and XDR filters gen-

84

erated by RPCGEN. Since the XDR and RPC library functions are included in

libc.a no extra linking libraries are necessary.

Processing of Client & Server Stubs

The client stub makes a service request by calling the routine callrpc in the client

stub. The client provides the following eight pieces of information to callrpc:

• name of the server system

• program number

• program version

• procedure number

• an argument for the procedure call

• the address of the XDR routine that describes it

• the address of the return variable

• an XDR routine describing the return information

The server stub uses the routine svctcp_create to open a socket. The server

then registers its functions via the routine register_rpc. The server provides the

following information to the routine register_rpc:

• program number

• program version

• procedure number

• the address of the routine that processes the request

• the address of an XDR routine that receives any past argument

• the XDR routine that sends any return data

In this way, each service routine takes a single argument that is the result

of the XDR input and returns the pointer to the data to be sent via XDR output.

After the server has registered all its procedures, it calls the routine svc_run which

loops, waiting for and processing request. This routine never returns a value.

85

Figure 5.4: Protocol Specification Files

5.3 Our DIS Application As Seen From RPC

Six steps (as described in the previous section) involved in developing the client

and server executables for our DIS application using RPC are as follows:

Protocol Definitions:

RPCL protocol definition files for remote database interface servers in this ap-

plication are included in the Appendix Section 7.2 with a .x extension. These

are frdb.x, crdb.x, srdb.x and rrdb.x for the faculty, course, student and register

databases respectively (Ref Appendix Section 7.2). They consists of the formal

grammar required to define the nature of the client/server interface, including re-

mote procedure declarations, input and output typing, and program, version, and

procedure detailing.

For example, frdb.x allows a client user to add, delete, view, and list a faculty

record from a database stored on the server. Records in frdb.x are stored as white-

space delimited ASCII characters, name(first, middle initial, last), phone number

and location. It contains six service procedures for searching through the records

by first name, last name, social security number, phone number or location. The

service procedures ending with _KEY require a string argument and return a struc-

ture record. (In RPCL, a string is defined as a sequence of characters ending with

a null character.) The service procedures ending with ...RECORD require a record

argument and return a structure record. The ADD_RECORD service procedure

86

Figure 5.5: Client Functions

adds records to the database, returning a status integer. An additional proce-

dure, number 0, (also called the null procedure) will be inserted by RPCGEN. It is

used for "pinging" a server to verify that it is listening for requests. The #define

DATABASE preprocessor definition is passed into the header file. The #define

MAX_STR also appears there as an integer preprocessor constant, and a structure

record will show up as a typedef structure definition in the header.

RPCGEN Protocol Compiler:

The Sun ONC RPC protocol compiler used here, uses C-like specification(RPCL

language) for RPC applications and network data to generate code to handle low-

level RPC mechanisms. The above mentioned .x files are compiled with this com-

piler to generate the following header files, data translation filters, and client and

server stubs.

Header Files:

frdb.h, crdb.h, srdb.h, and rrdb.h (Ref Appendix Section 7.2).

Client Stubs:

frdb_clnt.c, crdb_clnt.c, srdb_clnt.c and rrdb_clnt.c (Ref Appendix Section 7.2).

Server Stubs:

frdb_svc.c, crdb_svc.c, srdb..svc.c and rrdb_svc.c (Ref Appendix Section 7.2).

Writing Client and Server Functions

Client Functions:

They consist of C code through which the server procedures can be requested.

87

The calling functions for faculty, course, student and register, are specified in

rdb_faculty.c, rdb_course.c, rdb_student.c, and rdb_register.c files (Ref Appendix

Section 7.2).

Server Functions:

These service functions are the procedures specified in protocol specification files.

They consist of C code through which the replies to requests made by client pro-

cesses are handled. The called functions for faculty are specified in frdb_svc_proc.c,

frdb_svc_add.c, and frdb_svc_del.c (Ref Appendix Section 7.2). The called func-

tions for course are specified in crdb_svc_proc.c, crdb_svc_add.c, and crdb_svc_del.c

(Ref Appendix Section 7.2). The called functions for student are specified in

srdb_svc_proc.c, srdb_svc_add.c, and srdb_svc_del.c (Ref Appendix Section 7.2).

The called functions for register are specified in rrdb_svc_proc.c, rrdb_svc_add.c,

and rrdb_svc_del.c (Ref Appendix Section 7.2).

Compilation and linking of library routines and stubs generated during compilation:

In this application, the previously described client routines are compiled with the

client stubs and XDR files. The server routines are compiled with their respective

server stubs and XDR files. The client executable thus obtained is rdb. The server

executables obtained are frdbs, crdbs, srdbs & rrdbs.

In this application (Ref. Fig. 5.7), the user enters a service key and value

which is passed to the trader, which in turn attempts to place the appropriate re-

mote calls. Before proceeding the client calls the server machine's portmap daemon

to see if the necessary service program is registered. This sequence follows a well

defined RPC pattern. If the program is registered, the ONC RPC library function

clnt_create() returns a pointer to a CLIENT structure containing vital server com-

munication information (the port address and an associated socket). A connection

is created using the transports for transmission control protocol (TCP). As can be

seen from the Figure 5.3, the client and server sides are created by linking their

functions with the respective stubs and XDR filters generated by RPCGEN.

88

Figure 5.6: Server Functions

89

Figure 5.7: Production Process of the Trader using RPC

90

5.4 Production Process of the Trader using RPC

The trader provides the infrastructure required for this DIS. In this application, we

have a number of servers which provide all the services requested by a user. The

trader is basically the "glue" that ties together the client-server and the distributed

system concept. In this way, it ties together the client routines with the server

routines thus providing services to the users on a totally abstract level. In this

way, the user does not need to know the underlying communication i.e., the RPC

details.

The trader consists of a communication network that provides the basic con-

nectivity and services that are required to run the application. As seen in Figure

5.7, the create_h.c file creates the client handles for the registered servers (Ref.

Appendix Section 7.2). The rdb.c file accepts the messages from the user layer

building blocks. These messages are passed to the client routines. The client rou-

tines as shown in Figure 5.7, consist of routines written in 'C', to access the server

functions. The rdb_faculty.c contains routines to access the different functions for

faculty database. The rdb_course.c contains routines to access the different func-

tions for course database. The rdb_student.c contains routines to access the different

functions for student database. The rdb_register.c contains routines to access the

different functions for register database. (Ref. Appendix Section 7.2).

The client stubs as seen in the figure 5.7, are generated by the RPCGEN compiler

as explained above. The frdb_clnt.c is the client stub for faculty, crdb_clnt.c is the

client stub for course, srdb_clnt.c is the client stub for student and rrdb_clnt.c is the

client stub for register. (Ref. Appendix Section 7.2). The contents of the client

stubs are as described in the previous sections.

The dashed arrows imply that in our application we have four different client rou-

tines for each of the databases i.e., faculty, course, student and register, and four

client stubs for each of these client routines. These are written in this fashion

91

to make the application modular. The solid arrows imply that all the connected

files are compiled together to create the trader. The files createh.c, rdb.c, client

routines and client stubs (described earlier) are compiled to create the client exe-

cutables i.e., in this case, the trader. This compilation is done before run time i.e.,

the application can run only after the trader executable is created.

CHAPTER 6

RESULTS & CONCLUSIONS

6.1 Evaluation of the DIS with regard to the

Conceptual Architecture

The Conceptual Architecture applied in building this DIS is derived from the

OSCATM architecture. The basic ideas and concepts as understood from [1] have

been used for the implementation and derivation of this prototype. As stated in the

earlier chapters, this application is divided into building blocks which try to adhere

to the interoperability principles as described in [1]. The following characteristics

have been achieved for the building blocks in this prototype [1] (This is our own

verification and has not been formally authorized by Bellcore):

1. Release Independence:

All the building blocks are releasable, installable and upgradable without

requiring the simultaneous release of any other building blocks. Hence any

building block can now be replaced by an updated version without unduly

affecting the rest of the software.

New building blocks added to the system must be compatible with older

building blocks. To obtain a new functionality, it may be required that new

versions of several building blocks be installed over a period of time before the

new functionality is available. It will not be necessary for all the installations

to take place simultaneously.

Also, if the code for a particular building block is changed, it will not affect

the functionality of the other building blocks. Every building block providing

a certain functionality has a version number which is defined in the protocol

specification file (Ref. Chapter 5). This is in adherence to the RPCGEN (Ref.

92

93

Chapter 5) requirements. Now, this changed building block can be given a

new version number and be recompiled with the rest of the system to bring

the changed functionality into existence.

2. Physical Data Base Independence:

Only the stewarding building blocks like the add building blocks or the delete

building blocks are required to run on the same hardware as where the re-

spective stewarded database physically exists. All the other building blocks

can be physically placed on any of the workstations.

3. No Accessibility Assumptions Between Building Blocks:

Some building blocks are required by other building blocks. This depends

on the functionality and the user needs. However, if for whatever reason

a building block becomes non available, then the building block reports its

inability to perform the requested function.

4. Logical Building Block Addressing:

No building block knows the physical address of any other building block. The

addressing is invariant over location and environment. Building blocks iden-

tify other building blocks and their contracts by their logical addresses. The

building blocks communicate with each other through the common trader.

The trader (Ref. Chapter 5) keeps track of all the physical locations of the

various building blocks. The communication software fabric (i.e., the trader)

performs the logical to network address mapping. If for whatever reason we

want to move a building block residing on one workstation to another work-

station, then, the new position of this block will have to be specified in the

create_h.c file (Ref Appendix Section 7.2) and a recompilation of the trader

for this change to be done. The moved building block may need recompilation

because of operating system version problems.

94

5. Execution in only one Recoverable Environment:

A recoverable environment is one physical machine or multiple machines

which are made to appear as if they are one environment from the stand

point of the application. This application is made to run on two different

workstations without the user being aware of this fact. Every building block

in the processing and data layer exists only on one recoverable environment.

If these building blocks have to be moved around, then they have to be moved

as a whole unit along with the database for which these blocks provide the

various functionalities.

6. Interactions among building blocks are defined by contracts:

A building block communicates with any other building block only via the

trader with the help of messages. This is done by using a specific format

for the messages. There is no direct communication among building blocks.

Hence it does not matter where a building block physically exists. The build-

ing blocks can be easily moved from one workstation to the other. This mes-

sage passing is close to a contract, even though it is restricted to a syntactical

level.

7. Secure Environment:

Every building block has only one entry point through which only the trader

can get access. In case of the user layer building blocks, the entry points are

those provided for human access only.

According to the conceptual architecture guidelines [1], these building blocks are

divided into three layers depending on their functionality. The Data Layer building

blocks in this prototype exhibit the following characteristics:

1. Provide means so that the data is updatable and readable.

The data layer building block contains only the update and read function-

alities. The functionality enumerated by these building blocks eliminates

95

processing and user functionality. These building blocks provide query and

updation functions. These are the only blocks that can access the database

directly. This protects against unknown sources damaging the data.

2. Allow query of all the data i.e., provide list, user-interactive queries and al-

ternate views.

Inquiry access to all the data is provided to the end users and to building

blocks, with a query facility which interacts with the end user and formulates

a well formed query. This gives the end users an easy and uniform access to

the data in the databases.

3. The distributed computing environment hosting the data layer building blocks

is transparent to the user of the data.

A user on any workstation can access any data layer building block irrespective

of whether the block is present on the particular workstation being used.

4. Manage data redundancy.

A database in this application exists on any of the workstations. Hence, the

same data is not present on both the workstations. Hence we do not have to

deal with data redundancy.

The User Layer building blocks in this prototype exhibit the following characteris-

tics:

1. Provide access to the human user to all the other building blocks in this ap-

plication through the trader.

This is provided by the primitive user menu (Ref. Appendix Section 7.1).

2. Provide data entry and deletion facilities.

Data Entry is provided by the primitive user interface implemented (Ref.

Appendix Section 7.1).

96

3. Provide display processing, menu processing, list formatting, interactive text

and network accessibility.

Display processing refers to actions like "refresh screen". This function can

be performed without consulting any other building block. Hence it is per-

formed locally by the user layer building block.

Menu Processing refers to providing service for constructing and presenting

menus. The user layer building block accepts the end user's choice and then

initiates subsequent processing (Ex. Presentation of the appropriate menu

screen).

List Formatting refers to formatting the display i.e., screen design for the

gathered, analyzed and summarized requested data.

Interactive text refers to screens which are interactive and user driven. For

example, for viewing a particular record, the system asks the user to enter

data for a particular field like "Enter social security number". The user enters

this social security number which is then processed accordingly.

Network accessibility refers to accessing other building blocks distributed

across the network, achieved through the software communication fabric i.e.,

the trader. Through this trader, any building block has access to the function-

alities provided by any other building block in this distributed environment.

4. Exist on all the end user's machines.

The user layer building blocks exist on both the workstations. This is neces-

sary for the users on both the machines to be able to use the primitive menu

interface.

The Processing Layer building blocks in this prototype exhibit the following char-

acteristics:

1. Provide functionality to crunch numbers, to answer complex queries, and con-

trol process flow.

97

The processing layer building blocks provide answers to statistical queries.

For example, it calculates the total number of credits taught by a particu-

lar faculty or the total number of credits taken by a student. It also answers

complex queries like listing the courses taught by a particular faculty member

(Ref. Chapter 4).

2. Provide value-added services to the data that an end user requires.

When certain data is needed, the processing layer building block issues a

request to the appropriate data layer building block, responsible for accessing

the data and returns the desired result.

3. Contain any functionality that is not expressly enumerated by the data layer

or the user layer.

The processing layer building blocks contain functions that can not be con-

strued as communications software fabric, data layer or user layer function-

ality. The processing layer therefore does not steward data, nor supports

human users directly.

4. Contain building blocks that only process services.

Contain certain contracts to access the data stewarded by a data layer building

block to support service processing. (Ref. Chapter 4).

5. Contain a variety of service processing layer building blocks.

Ex. of a basic service processing layer building block is faculty course list and

advanced service processing layer building block is credits per faculty (Ref.

Chapter 4).

The following characteristics of the building blocks according to the concep-

tual architecture [1] could not be implemented:

1. The building blocks do not have their own local data. According to [1],

this data can be maintained only by the building block that owns it and no

98

other building block can access this data. In this application there was no

need for this kind of local data, hence it was not required to implement this

characteristic.

2. A secure environment could not be provided as required by [1]. According

to [1], the identity of the invoking user must be maintained and passed to

any other building blocks. This feature and no other security features were

implemented in this prototype.

3. The integrity of the data stored in the databases is not checked in this pro-

totype. No constraints are implemented on the data read in from the user.

6.2 Realization of the need for an Infrastructure

A conceptual architecture does not talk explicitly about the need for an infrastruc-

ture, i.e., the need for a software communication channel or a trader as a minimun.

However, for a distributed application as implemented by this prototype, we con-

clude that a good infrastructure is essential. While implementing this application,

most of the time was spent on designing and developing this infrastructure i.e., the

communication channel, than the actual application. The communication chan-

nel developed for this application is the trader. The trader follows the following

standards and guidelines (also essential to implement contracts [1]):

1. Use of standards:

The trader in this case, uses the SUN's ONC RPC standards of communica-

tion as described in Chapter 5. The RPC views the application as a client

server model. Hence, an interface is written for the client modules so that

they emulate the software communication channel i.e., the trader. The trader

is not application independent as it requires the data storage details. Hence

the need for a better trader is realized by this application.

99

2. Restricted set of syntax encodings:

The trader uses a restricted set of syntax encodings supporting the commu-

nication fabric services provided by RPC.

3. Release Independence:

When the trader is changed, some changes will have to be made to the building

blocks. This makes it possible to release different versions of building blocks

which invoke the trader.

4. Equality of invocation:

A contract invoked by building block A functions in exactly the same way as

the same contract invoked by building block B.

5. Logical addressing:

Contracts between building blocks are identified and invoked in a way that

is independent of the physical location of the building block providing the

contract. Each contract that a building block provides is uniquely identifiable

and accessible with respect to all other contracts.

6. Error messages:

Provides error messages when a particular building block is unaccessible.

6.3 Advantages of the Conceptual Architecture

There are a number of advantages of applying the described conceptual integration

architecture to the DIS.

1. Separation into different layers:

The separation into user, processing, data layers provides a manageable means

to upgrade this DIS. For example, when new database management techniques

are developed to manage the data in this kind of Distributed Environment,

100

the application software could be easily upgraded to take advantage of these

techniques without unduly impacting other software.

Similarly, as user interface techniques are advanced, the application software

could be upgraded without unnecessarily impacting other software. The ap-

plication provides a simple primitive menu driven user interface. A X-window

interface could be designed for this application. The existing user layer build-

ing blocks could be replaced by this new interface, without actually making

any changes in the building blocks in the other layers.

2. Relocation:

The whole application is implemented in a distributed networking environ-

ment. The building blocks in our application can be statically allocated in

any environment, i.e., the building blocks can be physically moved around

from one workstation to another. After the building blocks have been placed

in their new environment, the trader is informed of the new locations of the

building blocks. The whole application is then recompiled. This recompila-

tion is necessary because different workstations can have different versions of

the operating system or different architectures. After this, the background

service processes are started up on their respective workstations. Now, the

application can be run. The whole process of moving the blocks around does

not consume much time. Also, none of the actual code is affected by this

relocation.

6.4 Guidelines for better System Implementa-

tion

If a similar application has to be developed, then it would be very helpful to have

the following facilities readily available and to solve the related problems:

101

1. A good communication channel:

This is very essential in designing such a distributed application. The trader

designed and implemented in this prototype is very primitive and has many

restrictions. It is specifically designed for this particular prototype as infor-

mation about the handled data types has to be included in the trader (Ref.

Chapter 5 on RPC). The trader, hence is not very general and can not be used

for any other application. If new building blocks are added to this application,

then the trader has to be updated to include the data handling information

of these new building blocks. Also, the availability of new functionalities

provided by these building blocks has to be coded into the trader.

2. A database:

The data in this prototype is stored in files. It would be good to have a

database to store this data. The database would then facilitate complex SQL

queries. The data retrieval and update would become much more simple and

efficient. Integrity constraints can also be enforced on the data to be stored,

keeping the database consistent. As it exists today, this application does not

enforce any entity or referential or key integrity constraints. A database sys-

tem would automatically enforce these constraints. On the other hand, the

presently available database systems have a few problems:

(a) The distributed database systems are not very compatible with each

other.

(b) Not many are easily available

(c) The available systems are not very mature.

(d) Each of these distributed sytems have their own way of communication in

a distributed environment. Each of these systems can operate using only

the available internal communication. For integrating these individual

102

systems together, the need arises for a common communication platform,

which is not available as of today.

3. An integrable user interface:

The prototype provides a simple menu driven user interface. A X/Motif

interface was developed but could not be integrated with the application

due to integration problems between X/Motif and RPC. Integrating RPC

and windowing systems has its challenges.[11] The X protocol supports its

own messaging system on top of sockets. It was designed with graphics and

windowing in mind, and does not represent a general purpose, high-level,

remote execution environment like RPC. In order to mix RPC and X, you

have to reach down to low-level RPC and IPC programming. There are several

strategies available for using RPC under X. Some of them are as stated below:

(a) Placing RPCs into the callback routines to be performed synchronously

in response to some user action.

(b) Using a timer to do the same as (1).

(c) Placing an RPC in a callback, returning immediately to look for the

return FRPC with a timer.

(d) Performing asynchronous servicing of RPCs using event or socket-watching

functions built into X toolkits.

These mentioned solutions could not be implemented due to time constraints.

For further details to implement the above mentioned strategies, refer Chapter

10 of [11].

From the above three points it can be concluded that the basic need to imple-

ment an application using the standards of a conceptual integration architec-

ture is a good and complete infrastructure. A good infrastructure consists of

a stable and general communication fabric, a database that will work in co-

103

herence with this fabric and also a good user interface that will be compatible

with both the software fabric and the database.

4. Configuration Management:

In a production environment to run this kind of DIS application, we would

need a configuration file to start up the background processes, i.e., the server

processes (frdbs, crdbs, srdbs and rrdbs). This can be implemented by using

simple shell scripts. Also, we could keep changing the physical positions of

the building blocks. This can be done by moving a building block from one

workstation to another. However this can not be done at run-time. After

moving the building block, the trader has to be informed of its new location

and then it has to be recompiled. Note that the data layer building blocks

for addition and deletion of records, have to physically exist on the machine

where the particular databases exist.

6.5 Conclusions

The use of a conceptual integration architecture increased the modularity of the

whole application. As building blocks can be easily moved, it makes this system

more portable and adaptable. Additional functionality can be easily introduced in

the system in the form of additional building blocks without unduly impacting the

rest of the system and it is relatively easy to change the current configuration.

However, implementing this prototype also brought forth the need for a

complete infrastructure to support the implementation of a conceptual architecture.

As a result of this, it was concluded that the infrastructure is a vital part of any

systems integration architecture.

CHAPTER 7

APPENDIX

7.1 The Primitive User Interface

104

pluto

105

Enter Selection (1/2/3/4/5):

Figure 7.1: Main Menu

pinto

106

Enter Selection (1/2/3/4/5):

Figure 7.2: Faculty Menu

pluto

107

Enter Selection (1/2/3/4/5/6):

Figure 7.3: Faculty View Menu

pluto

108

Enter Selection (112/314/51/6):

Figure 7.4: Course Menu

pluto

109

Enter Selection (1/2/3):

Figure 7.5: Course View Menu

pluto

110

Enter Selection (1/2/3/4/5):

Figure 7.6: Student Menu

pluto

111

Enter Selection (112/3/4/5):

Figure 7.7: Student View Menu

pluto

112

Enter Selection (1/2/3/4/5):

Figure 7.8: Register Menu

pluto

113

Enter Selection (1/2/3/4):

Figure 7.9: Register View Menu

7.2 Source Code for BUILDING BLOCKS

114

7.2.1 Makefile

CC= cc

LD= cc

CFLAGS=-g -I.$(CCDEBUG)

LDFLAGS= $(LDDEBUG)

FACDIR = ../faculty/

COURSEDIR = ../course/

STUDDIR = ../student/

REGDIR = ../register/

.o:.c

RDBOBJS = main_menu.o fmenu.o fquery.o farecord.o ffirst_record.o \

flast_record.o fssn_record.o foff_record.o fphone_record.o \

cmenu.o cquery.o carecord.o cname_record.o cnumber_record.o \

smenu.o squery.o sarecord.o sfirst_record.o slast_record.o \

sssn_record.o sphone_record.o rmenu.o rquery.o rarecord.o \

rssn_record.o rcourse_record.o rgrade_record.o create_h.o \

rdbl.o rdb_faculty.o rdb_course.o rdb_student.o rdb_register.o \

frdb_clnt.o crdb_clnt.o srdb_clnt.o rrdb_clnt.o frdb_xdr.o \

crdb_xdr.o srdb_xdr.o rrdb_xdr.o ffun.o cfun.o sfun.o rfun.o

FRDBSOBJS= ${FACDIR}frdb_svc_add.o $IFACDIRIfrdb_svc_proc.co \

WACDIRIfrdb_svc_de1.0 frdb_svc.0 frdb_xdr.o

FDUMMYSOBJS= frdb_svc_add.o frdb_xdr.o frdb_svc_proc.o \

frdb_svc_de1.0 frdb_svc.0

115

CRDBSOBJS= ${COURSEDIR}crdb_svc_proc.o WOURSEDIR}crdb_svc_add.o \

WOURSEDIR}crdb_svc_de1.0 WOURSEDIR}facourse_list.o \

crdb_svc.0 crdb_xdr.o

CDUMMYSOBJS= crdb_svc_proc.o crdb_svc_add.o crdb_svc_del.o \

facourse_list.o crdb_svc.0 crdb_xdr.o

SRDBSOBJS= ${STUDDIR}srdb_svc_proc.o ${STUDDIR}srdb_svc_add.o \

${STUDDIR}srdb_svc_del.o srdb_svc.o srdb_xdr.o

SDUMMYSOBJS= srdb_svc_proc.0 srdb_svc_add.o srdb_svc_del.o\

srdb_svc.0 srdb_xdr.o

RRDBSOBJS= $fREGDIR}rrdb_svc_proc.0 ${REGDIR}rrdb_svc_add.o \

$fREGDIR}rrdb_svc_de1.0 srdb_svc.0 srdb_xdr.o

RDUMMYSOBJS= rrdb_svc_proc.o rrdb_svc_add.o rrdb_svc_del.o\

srdb_svc.o srdb_xdr.o

These object files depend on frdb.h:

FXDOBJS= ffun.o rdb.o frdb_svc.o frdb_xdr.o frdb_svc_proc.o \

frdb_svc_add.o frdb_svc_de1.0 crdb_svc_proc.c

These object files depend on crdb.h:

CXDOBJS= cfun.o rdb.o crdb_svc.o crdb_xdr.o crdb_svc_proc.o \

crdb_svc_add.o crdb_svc_de1.0 frdb_svc_proc.o

These object files depend on srdb.h:

SXDOBJS= sfun.o rdb.o srdb_svc.o srdb_xdr.o srdb_svc_proc.o\

srdb_svc_add.o srdb_svc_de1.0 rrdb_svc_proc.o

116

These object files depend on rrdb.h:

RXDOBJS= rfun.o rdb.o rrdb_svc.o rrdb_xdr.o rrdb_svc_proc.o\

rrdb_svc_add.o rrdb_svc_del.o sdb_svc_proc.0

These source files are produced by rpcgen:

FGENR= frdb.h frdb_clnt.c frdb_svc.c frdb_xdr.c

CGENR= crdb.h crdb_clnt.c crdb_svc.c crdb_xdr.c

SGENR= srdb.h srdb_clnt.c srdb_svc.c srdb_xdr.c

RGENR= rrdb.h rrdb_clnt.c rrdb_svc.c rrdb_xdr.c

alll: rdb frdbs crdbs

a112: rdb srdbs rrdbs

rdb client

rdb: $(RDBOBJS)

$(LD) -o rdb $(CFLAGS) $(RDBOBJS)

rdb server for faculty.

frdbs: $(FRDBSOBJS)

$(LD) -o frdbs $(CFLAGS) $(FDUMMYSOBJS)

rdb server for course.

crdbs: $(CRDBSOBJS)

$(LD) -o crdbs $(CFLAGS) $(CDUMMYSOBJS)

117

rdb server for student.

srdbs: $(SRDBSOBJS)

$(CC) -o srdbs $(CFLAGS) $(SDUMMYSOBJS)

rdb server for register.

rrdbs: $(RRDBSOBJS)

$(CC) -o rrdbs $(CFLAGS) $(RDUMMYSOBJS)

$(XOBJS): frdb.h crdb.h srdb.h rrdb.h

$(FGENR): frdb.x

rpcgen frdb.x

$(CGENR): crdb.x

rpcgen crdb.x

$(SGENR): srdb.x

rpcgen srdb.x

$(RGENR): rrdb.x

rpcgen rrdb.x

cleanl:

rm -f $(RDBOBJS) $(FRDBSOBJS) $(CRDBSOBJS)

clean2:

rm -f $(RDBOBJS) $(SRDBSOBJS) $(RRDBSOBJS)

118

7.2.2 User Layer Building Blocks

119

/*main_menu.c : Main Menu for CIS Database Services */

#include<stdio.h>

#include<ctype.h>

char bufdata[256];

int key;

int DEBUG = 0;

extern void fmenu();

extern void cmenu();

extern void smenu();

extern void menu();

extern void create_handle();

main()

{

int i;

int j;

create_handle();

while(j != 5)

{

system("clear");

printf("\n");

printf("\n");

printf("\n");

printf("\n");

printf("\n");

printf("\n");

120

printf (" \n");

printf ("\n") ;

printf (" \n") ;

system("hostname");

printf("

\n");

printf(" I CIS DEPARTMENT

DATABASE I\n");

printf ("

\n");

printf("

I\n");

printf(" I (1) FACULTY

I\n");

printf(" I

I \n") ;

printf(" I (2) COURSE

I\n");

printf(" I

I\n");

printf(" I (3) STUDENT

I\n");

printf(" I

I\n");

printf(" I (4) REGISTER

I\n");

printf(" I

I \n") ;

121

printf(" I (5) EXIT

1\n");

printf("

\n");

printf("\n");

printf("\n");

printf("\n");

printf(" Enter

Selection (1/2/3/4/5): ");

scanf("%d",&i);

switch(i) {

case 1: system("clear");

j = 1;

fmenu();

break;

case 2: system("clear");

j= 2;

cmenu();

break;

case 3: system("clear");

j = 3;

smenu();

break;

case 4: system("clear");

122

j = 4;

rmenu();

break;

case 5: system("clear");

j = 5;

printf("Exiting \n");

break;

default : system("clear");

printf("invalid input \n");

break;

}/*end of while*/

/* end of case - switch */

/* end of main */

123

/*fmenu.c : Menu for Faculty Database Services */

#include<stdio.h>

#include<ctype.h>

extern void enter_record();

fmenu()

{

extern int key;

int i;

int j;

while(j != 5)

{

system("clear");

printf("\n");

printf("\n");

printf("\n");

printf("\n");

printf("\n");

printf("\n");

printf("\n");

printf("\n");

printf("\n");

system("hostname");

printf("

\n");

124

printf(" I FACULTY DATABASE

FUNCTIONS I\n");

printf("

\n");

printf C' I

I \n") ;

printf(" I (1) ADD A RECORD

I\n");

printf (" ►

I \n") ;

/******

printf(" I (2) MODIFY A RECORD

I \n") ;

printf(" I

I \n") ;

****/

printf(" I (2) DELETE A RECORD

I \n") ;

printf("

I \n") ;

printf(" I (3) LIST ALL RECORDS

I \n") ;

printf("

I \n") ;

printf(" I (4) VIEW A RECORD

I \n") ;

printf ("

I \n") ;

printf(" I (5) EXIT

I \n") ;

125

printf("

\n");

printf("\n");

printf("\n");

printf("\n");

printf(" Enter

Selection (1/2/3/4/5): ");

scanf("U"Ai);

switch(i) {

case 1: system("clear");

j = 1;

key = 7;

fenter_record();

break;

/********

case 2: system("clear");

j =2;

printf("Modifying a record \n");

update_record(cl);

break;

**********/

case 2: system("clear");

j = 2;

key = 8;

fssn_record();

126

case 3: system("clear");

j = 3;

printf("Listing all records \n");

key = 6;

trader();

break;

case 4: system("clear");

j = 4;

fquery_record();

break;

case 5: system("clear");

j = 5;

break;

default : system("clear");

printf("invalid input \n");

break;

} /* end of case - switch */

}/*end of while*/

} /* end of main */

127

/*farecord.c : Data Entry Screen for

Faculty Database Services */

#include<stdio.h>

#include<ctype.h>

#include<rpc/rpc.h>

#include<frdb.h>

fenter_record()

{

char ch;

record *pr;

int 1 =0;

int flag;

extern char bufdata[256];

pr = (record *) malloc(sizeof(record));

pr->ssn = (char *)malloc(MAX_STR);

pr->firstName = (char *)malloc(MAX_STR);

pr->middleInitial = (char *)malloc(MAX_STR);

pr->lastName = (char *)malloc(MAX_STR);

pr->phone = (char *)malloc(MAX_STR);

pr->location = (char *)malloc(MAX_STR);

printf("Enter ssn number :");

scanf("%s",pr->ssn);

getchar();

sprintf(tibufdata[1],"%s ",pr->ssn);

128

/***** A blank space is placed after each field

- to separate the fields, hence "%s " ********/

/***** To move the position in the buffer to place

text pertaining to the next field ********/

1 = strlen(bufdata);

if (0)

printf("Data Retrieved: %s\n",bufdata);

printf("Enter first name :");

scanf("%s",pr->firstName);

getchar();

/*sprintf(aufdata[1],"%s ",pr->firstName);*/

strcat(bufdata , pr->firstName);

strcat(bufdata , " ")•

1 = strlen(bufdata);

if (0)

printf("Data Retrieved: %s\n",bufdata);

printf("Enter middle initial :");

scanf("%s",pr->middleInitial);

getchar();

/****** sprintf(&bufdata[1],"%s ",pr->middleInitial);*******/

strcat(bufdata , pr->middleInitial);

strcat(bufdata , " ");

1 = strlen(bufdata);

if (0)

printf("Data Retrieved: %s\n",bufdata);

printf("Enter last name :");

scanf("%s",pr->lastName);

129

getchar();

/****sprintf(ftufdata[1],"%s ",pr->lastName);****/

strcat(bufdata , pr->lastName);

strcat(bufdata , " ");

1 = strlen(bufdata);

if (0)

printf("Data Retrieved: %s\n",bufdata);

printf("Enter phone number :");

scanf("%s",pr->phone);

getchar();

/***sprintf(&bufdata[1],"%s ",pr->phone);***/

strcat(bufdata , pr->phone);

strcat(bufdata , " ")•

if (0)

printf("Data Retrieved: %s\n",bufdata);

printf("Enter Office No. :");

scanf("%s",pr->location);

getchar();

/*** sprintf(aufdata[1],"%s ",pr->location);****/

strcat(bufdata , pr->location);

1 = strlen(bufdata);

if (0)

printf("Data Retrieved: %s\n",bufdata);

trader();

130

/*fquery.c : Menu for Faculty Database Services */

#include<stdio.h>

#include<ctype.h>

fquery_record()

{

int i;

int j;

extern int key;

while(j != 6)

{

system("clear");

printf("\n");

printf("\n");

printf("\n");

printf("\n");

printf("\n");

printf("\n");

printf("\n");

printf("\n");

printf("\n");

system("hostname");

printf("

\n");

printf(" I VIEW

RECORDS I\n");

131

printf ("

\n") ;

printf ("

I \n") ;

printf(" I (1) FIRST NAME

\n") ;

printf ("

I \n")

printf(" I (2) LAST NAME

I \n")

printf ("

1 \ n") ;

printf(" I (3) SOCIAL

SECURITY NUMBER \n") ;

printf("

1 \ n") ;

printf (" I (4) OFFICE NUMBER

I \n")

printf ("

\n") ;

printf(" I (5) PHONE NUMBER

\n") ;

printf ("

I \n")

printf(" I (6) EXIT

\n") ;

printf ("

\n");

printf (" \n")

132

printf("\n");

printf("\n");

printf(" Enter

Selection (1/2/3/4/5/6): ");

scanf("%d",&i);

switch(i) {

case 1: system("clear");

j = 1;

key = 1;

ffirst_record();

break;

case 2: system("clear");

j = 2;

key = 2;

flast_record();

break;

case 3: system("clear");

j = 3;

key = 5;

fssn_record();

break;

case 4: system("clear");

j = 4;

key = 4;

foff_record();

133

break;

case 5: system("clear");

j = 5;

key = 3;

fphone_record();

break;

case 6: system("clear");

j = 6;

break;

default : system("clear");

printf("invalid input \n");

break;

} /* end of case - switch */

}/*end of while*/

/* end of main */

134

/*fssn_record.c : View Screen for

Faculty Database Services */

#include<stdio.h>

#include<ctype.h>

#include<rpc/rpc.h>

#include<frdb.h>

void fssn_record()

char ch;

record *pr;

int 1=0;

extern char bufdata[256];

pr = (record *) malloc(sizeof(record));

pr->ssn = (char *)malloc(MAX_STR);

printf("Enter ssn number :");

scanf("%s",pr->ssn);

sprintf(8cbufdata[1],"%s",pr->ssn);

if (0)

printf("Data Retrieved: %s\n",bufdata);

trader();

135

/*ffirst_record.c : View by firstname Screen

for Faculty Database Services */

#include<stdio.h>

#include<ctype.h>

#include<rpc/rpc.h>

#include<frdb.h>

ffirst_record()

{

char ch;

record *pr;

int 1 = 0;

extern char bufdata[256];

pr = (record *) malloc(sizeof(record));

pr->firstName = (char *)malloc(MAX_STR);

printf("Enter first name :");

scanf("%s",pr->firstName);

sprintf(&bufdata[1],"%s",pr->firstName);

if (0)

printf("Data Retrieved: Y.s\n",bufdata);

trader();

}

136

/*flast_record.c : View by lastname Screen

for Faculty Database Services */

#include<stdio.h>

#include<ctype.h>

#include<rpc/rpc.h>

#include<frdb.h>

void flast_record()

{

char ch;

record *pr;

int 1 = 0;

extern char bufdata[256];

pr = (record *) malloc(sizeof(record));

pr->lastName = (char *)malloc(MAX_STR);

printf("Enter last name :");

scanf("%s",pr->lastName);

sprintf(aufdata[1],"%s",pr->lastName);

if (0)

printf("Data Retrieved: %s\n",bufdata);

trader();

137

/*fphone_record.c : View Screen for

Faculty Database Services */

#include<stdio.h>

#include<ctype.h>

#include<rpc/rpc.h>

#include<frdb.h>

fphone_record()

{

char ch;

record *pr;

int 1 =0;

extern char bufdata[256];

pr = (record *) malloc(sizeof(record));

pr->phone = (char *)malloc(MAX_STR);

printf("Enter phone number :");

scanf("%s",pr->phone);

sprintf(aufdata[1],"%s",pr->phone);

if (0)

printf("Data Retrieved: %s\n",bufdata);

trader();

138

/*foof_record.c : View Screen for

Faculty Database Services */

#include<stdio.h>

#include<ctype.h>

#include<rpc/rpc.h>

#include<frdb.h>

void foff_record()

{

char ch;

record *pr;

int 1 = 0;

extern char bufdata[256];

pr = (record *) malloc(sizeof(record));

pr->location = (char *)malloc(MAX_STR);

printf("Enter location :");

scanf("%s",pr->location);

sprintf(aufdata[1],"%s",pr->location);

if (0)

printf("Data Retrieved: %s\n",bufdata);

trader();

}

139

/***************** GENERAL NOTATIONS ***********************

where ever following character(s) are used in

variable/procedure name

C,_c : used for COURSE DATA BASE

F,_f : used for FACULTY DATA BASE

S,_s : used for STUDENT DATA BASE

R,_r : used for REGISTER DATA BASE

**/

#include <stdio.h>

#include <ctype.h>

#include <rpc/rpc.h>

#include "frdb.h"

void copy_frecord();

void print_flist();

void print_frecordl();

void print_frecord();

int print_fdrecord();

int insert_frecord();

char c;

/**

Functions copy, print list/record, insert for

*** Faculty Database ****

140

***/

/*

insert_frecord : insert record "rec" into the linked list

whose header is given by "head"

*/

insert_frecord(head,rec)

record *head,*rec;

{

record *temp;

temp = (record *)malloc(sizeof(record));

if (temp == NULL)

printWinsufficient memory : insert_record \n");

return(0);

}

temp->ssn = (char *)malloc(MAX_STR);

temp->firstName = (char *)malloc(MAX_STR);

temp->middleInitial = (char *)malloc(MAX_STR);

temp->lastName = (char *)malloc(MAX_STR);

temp->location = (char *)malloc(MAX_STR);

temp->phone = (char *)malloc(12*sizeof(char));

copy_frecord(temp,rec);

temp->next_record = head->next_record;

head->next_record = temp;

return(1);

1

/*

copy_frecord : copy record "src" into "dest"

*/

void copy_frecord(dest,src)

141

record *src,*dest;

{

strcpy(dest->ssn,src->ssn);

strcpy(dest->firstName,src->firstName);

strcpy(dest->middleInitial,src->middleInitial);

strcpy(dest->lastName,src->lastName);

strcpy(dest->location,src->location);

strcpy(dest->phone,src->phone);

}

/*

print_flist : print list starting at "first"

*/

void print_flist(first)

record *first;

{

record *temp;

system("clear");

temp = first;

printf("ssn \t first \tmiddle \tlast

\t phone \t office no. \n");

printf("\n");

printf("\n");

printf("\n");

while(temp)

{

print_frecordl(temp);

temp = temp->next_record;

}

c = getchar();

printf("Press Any Key To Continue....\n");

142

c = getchar();

}

/*

print_frecordl : print individul items of record "rec"

*/

void print_frecordl(rec)

record *rec;

{

printf("%s %s %s %s %s %s \n",rec->ssn,

rec->firstName, rec->middleInitial,

rec->lastName,rec->phone,rec->location);

}

/*

print_frecord : print individul items of record "rec"

*/

void print_frecord(rec)

record *rec;

{

system("clear");

printf("SSN %s \n",rec->ssn);

printf("First Name %s \n",rec->firstName);

printf("Middle Initial %s \n",rec->middleInitial);

printf("Last Name %s \n",rec->lastName);

printf("Phone %s \n",rec->phone);

printf("Office %s \n",rec->location);

c = getchar();

printf("Press Any Key To Continue...An");

c = getchar();

143

/*

print_frecord : print individul items of record "rec"

*/

print_fdrecord(rec)

record *rec;

{

char ch='n';

print_frecord(rec);

printf("\n");

printf("\n");

printf("\n");

c = getchar();

printf("Delete This Record (Y/N) ? :");

scanf("%c"Ach);

if ((ch == 'Y') II (ch == 'y'))

return(1);

else

return(0);

}

/*

freeF_record : free memory allocated to faculty record

*/

freeF_record(ptr)

record *ptr;

{

if(ptr == NULL)

return(0);

144

free(ptr->ssn);

free(ptr->firstName);

free(ptr->middleInitial);

free(ptr->lastName);

free(ptr->location);

free(ptr->phone);

if(ptr->next_record)

free(ptr->next_record);

return(1);

}

/*

freeF_list : free memory allocated to faculty linked list

including "head" pointer

*/

freeF_list(head_ptr)

record *head_ptr;

{

if(head_ptr->next_record)

freeF_recursive(head_ptr->next_record);

free(head_ptr->next_record); /* head pointer not contains

any memory allocation for elements

of structure */

free(head_ptr);

}

/*

freeF_recursive : recursive routine to free memory of each

member of linked list of Faculty

*/

freeF_recursive(ptr)

record *ptr;

145

{

record *prev_ptr;

if(ptr->next_record != NULL)

freeF_recursive(ptr->next_record);

freeF_record(ptr);

}

146

/*cmenu.c : Menu for Course Database Services */

#include<stdio.h>

#include<ctype.h>

extern void center_record();

cmenu()

{

extern int key;

int i;

int j = 0;

while(j != 6)

{

system("clear");

printf("\n");

printf("\n");

printf("\n");

printf("\n");

printf("\n");

printf("\n");

printf("\n");

printf("\n");

printf("\n");

system("hostname");

printf("

147

\n") ;

printf C' I COURSE DATABASE

FUNCTIONS 1 \n") ;

printf ("

\n") ;

printf (" I

I \n") ;

printf(" I (1) ADD A RECORD

I \n") ;

printf (" I

I \n") ;

/******

printf(" I (2) MODIFY A RECORD

I \n") ;

printf (" I

I \n") ;

****/

printf(" I (2) DELETE A RECORD

1 \n") ;

printf ("

I \n") ;

printf(" I (3) LIST ALL RECORDS

I \n") ;

printf ("

I \n") ;

printf(" I (4) VIEW A RECORD

I \n") ;

printf ("

I \n") ;

printf(" I (5) LIST FOR A PARTICULAR

148

FACULTY I\n");

printf("

1\n");

printf(" I (6) EXIT

|\n");

printf ("

\n");

printf("\n");

printf("\n");

printf("\n");

printf(" Enter

Selection (1/2/3/4/5/6): ");

scanf("%d",&i);

getchar();

switch(i) {

case 1: system("clear");

j= 1;

key = 13;

center_record();

break;

/********

case 2: system("clear");

j = 2;

printf("Modifying a record \n");

update_record(cl);

break;

**********/

149

case 2: system("clear");

j = 2;

key = 14;

cnumber_record();

break;

case 3: system("clear");

j = 3;

printf("Listing all records \n");

key = 12;

trader();

break;

case 4: system("clear");

j = 4;

cquery_record();

break;

case 5: system("clear");

j = 5;

key = 9;

flast_record();

break;

case 6: system("clear");

j = 6;

break;

default : system("clear");

150

printf("invalid input\n");

break;

} /* end of case - switch */

}/*end of while */

} /* end of main */

151

/*carecord.c : Data entry Screen for

Course Database Services */

#include<stdio.h>

#include<ctype.h>

#include<rpc/rpc.h>

#include<crdb.h>

center_record()

{

char ch,c;

recordl *pr1;

int 1 =0;

int flag;

int i,j;

extern char bufdata[256];

pr1 = (record1 *) malloc(sizeof(recordl));

pr1->course_number = (char *)malloc(MAX_STR);

prl->course_section = (char *)malloc(MAX_STR);

prl->course_semester = (char *)malloc(MAX_STR);

prl->course_name = (char *)malloc(MAX_STR);

prl->course_inst = (char *)malloc(MAX_STR);

prl->course_room = (char *)malloc(MAX_STR);

pr1->course_bldg = (char *)malloc(MAX_STR);

pr1->course_day = (char *)malloc(MAX_STR);

prl->course_time = (char *)malloc(MAX_STR);

prl->course_year = (char *)malloc(MAX_STR);

prl->course_credit = (char *)malloc(MAX_STR);

152

153

for(i = 0; i < 256; i++)

bufdata[i] = '\0';

printf("Enter course number :");

scanf("%s",pri->course_number);

/* sprintf(aufdata[1],"%s ",prl->course_number); */

strcat(bufdata,pri->course_number);

strcat(bufdata , " ");

/***** A blank space is placed after each field -

to separate the fields, hence "/,s " ********/

/***** To move the position in the buffer to place

text pertaining to the next field ********/

1 = strlen(bufdata);

getchar();

printf("Enter course section :");

scanf("%s",pri->course_section);

/*sprintf(aufdata[1],"%s ",pri->course_section);*/

strcat(bufdata , prl->course_section);

strcat(bufdata , " ");

1 = strlen(bufdata);

getchar();

printf("Enter course semester :");

scanf("%s",prl->course_semester);

/*sprintf(&bufdata[1],"%s ",prl->course_semester);*/

strcat(bufdata , prl->course_semester);

strcat(bufdata , " ");

1 = strlen(bufdata);

getchar();

printf("Enter course name :");

/** c = getchar();

j = 0;

while (c != '\n')

{

prl->course_name[j] = c;

c = getchar();

++j ;

}

******/

scanf("%s",prl->course_name);

/*sprintf(ttbufdata[1],"%s ",prl->course_name);*/

strcat(bufdata , prl->course_name);

strcat(bufdata , " ");

1 = strlen(bufdata);

printf("Enter course instructors ssn :");

scanf("%s",pri->course_inst);

/*sprintf(&bufdata[1],"%s ",prl->course_inst);*/

strcat(bufdata , prl->course_inst);

strcat(bufdata , " ");

1 = strlen(bufdata);

getchar();

printf("Enter room no. :");

scanf("%s",prl->course_room);

/*sprintf(ttbufdata[1],"%s ",prl->course_room);*/

strcat(bufdata , prl->course_room);

strcat(bufdata , " ")•

1 = strlen(bufdata);

154

155

getchar();

printf("Enter bldg. :");

scanf(ls",prl->course_bldg);

/*sprintf(&bufdata[1],"%s ",prl->course_bldg);*/

strcat(bufdata , prl->course_bldg);

strcat(bufdata , " ");

1 = strlen(bufdata);

getchar();

printf("Enter day :");

scanf("%s",prl->course_day);

/*sprintf(&bufdata[1],"%s ",prl->course_day);*/

strcat(bufdata , prl->course_day);

strcat(bufdata , " ")•

1 = strlen(bufdata);

getchar();

printf("Enter course time :");

scanf("%s",prl->course_time);

/*sprintf(aufdata[1],"%s ",prl->course_time);*/

strcat(bufdata , prl->course_time);

strcat(bufdata , " ");

1 = strlen(bufdata);

getchar();

printf("Enter course year :");

scanf("%s",prl->course_year);

/*sprintf(Etbufdata[1],"%s ",pri->course_year);*/

strcat(bufdata , prl->course_year);

156

strcat(bufdata , " ")•

1 = strlen(bufdata);

getchar();

printf("Enter credits :");

scanf("%s",prl->course_credit);

/*sprintf(&bufdata[1],"%s ",pri->course_credit);*/

strcat(bufdata , prl->course_credit);

1 = strlen(bufdata);

getchar();

if (0)

printf("Data Retrieved: %s\n",bufdata);

trader();

/*cquery.c : Menu for Course Database Services */

#include<stdio.h>

#include<ctype.h>

extern void enter_record();

cquery_record()

{

int i;

int j;

extern int key;

while(j != 3)

{

system("clear");

printf("\n");

printf("\n");

printf("\n");

printf("\n");

printf("\n");

printf("\n");

printf("\n");

printf("\n");

printf("\n");

system("hostname");

printf("

\n");

printf(" I VIEW

157

RECORDS |\n");

printf("

\n");

printf("

I\n");

printf(" I (1) COURSE NAME

I\n");

printf("

|\n");

printf(" I (2) COURSE NUMBER

I\n");

printf("

|\n");

printf(" I (3) EXIT

|\n");

printf("

\n");

printf("\n");

printf("\n");

printf("\n");

printf(" Enter

Selection (1/2/3): ");

scanf("%d",&i);

getchar();

switch(i) {

case 1: system("clear");

j = 1;

158

key = 10;

cname_record();

break;

case 2: system("clear");

j = 2;

key = 11;

cnumber_record();

break;

case 3: system("clear");

j = 3;

break;

default : system("clear");

printf("invalid input \n");

break;

/* end of case - switch */

}/*end of while */

1 /* end of main */

159

/*cnumber_record.c : View by Course Number

for Course Database Services */

#include<stdio.h>

#include<ctype.h>

#include<rpc/rpc.h>

#include<crdb.h>

cnumber_record()

{

char ch;

record1 *pr;

int 1 = 0;

extern char bufdata[256];

pr = (records *) malloc(sizeof(recordl));

pr->course_number = (char *)malloc(MAX_STR);

printf("Enter Course number :");

scanf("%s",pr->course_number);

sprintf(eibufdata[1],"%s",pr->course_number);

if (0)

printf("Data Retrieved: Yes\n",bufdata);

trader();

160

/*cname_record.c : View by Course Name

for Course Database Services */

#include<stdio.h>

#include<ctype.h>

#include<rpc/rpc.h>

#include<crdb.h>

cname_record()

{

char ch,c;

recordl *prl;

int 1 = 0,j;

extern char butdata[256];

extern int key;

prl = (records *) malloc(sizeof(recordl));

prl->course_name = (char *)malloc(MAX_STR);

for (j=0;j<256;j++) bufdata[j] = '\0';

printf("Enter Course name :");

/****/ c = getchar();

j = 0;

while (c != '\n')

{

pr1->course_name[j] = c;

++j;

c = getchar();

}

/*****/

161

/* scanf("%s",pr1->course_name); */

sprintf(bufdata,"%s",prl->course_name);

key = 10;

if (0)

printf("Data Retrieved: U\n",bufdata);

trader();

}

162

/**

where ever following character(s) are

used in variable/procedure name

C,_c : used for COURSE DATA BASE

F,_f : used for FACULTY DATA BASE

S,_s : used for STUDENT DATA BASE

R,_r : used for REGISTER DATA BASE

***/

#include <stdio.h>

#include <ctype.h>

#include <rpc/rpc.h>

#include "crdb.h"

void copy_crecord();

void print_clist();

void print_crecordl();

void print_crecord();

int print_cdrecord();

int insert_crecord();

char c;

/**

Functions copy, print list/record, insert

163

** for Course Database **

**/

/*

insert_crecord : insert record "rec" into the

linked list whose header

is given by "head" data

type : (recordl *)

*/

insert_crecord(head,rec)

recordl *head,*rec;

{

recordl *temp;

temp = (recordl *)malloc(sizeof(record1));

if(temp == NULL)

{

printf("insufficient memory : insert_record \n");

return(0);

}

temp->course_number = (char *)malloc(MAX_STR);

temp->course_section = (char *)malloc(MAX_STR);

temp->course_semester = (char *)malloc(MAX_STR);

temp->course_name = (char *)malloc(MAX_STR);

temp->course_inst = (char *)malloc(MAX_STR);

temp->course_room = (char *)malloc(MAX_STR);

temp->course_bldg = (char *)malloc(MAX_STR);

temp->course_day = (char *)malloc(MAX_STR);

temp->course_time = (char *)malloc(MAX_STR);

temp->course_year = (char *)malloc(5*sizeof(char));

temp->course_credit = (char *)malloc(MAX_STR);

164

copy_crecord(temp,rec);

temp->next_course = head->next_course;

head->next_course = temp;

return(1);

}

/*

copy_crecord : copy record "src" into "dest"

*/

void copy_crecord(dest,src)

recordi *src,*dest;

strcpy(dest->course_number,src->course_number);

strcpy(dest->course_section,src->course_section);

strcpy(dest->course_semester,src->course_semester);

strcpy(dest->course_name,src->course_name);

strcpy(dest->course_inst,src->course_inst);

strcpy(dest->course_room,src->course_room);

strcpy(dest->course_bldg,src->course_bldg);

strcpy(dest->course_day,src->course_day);

strcpy(dest->course_time,src->course_time);

strcpy(dest->course_year,src->course_year);

strcpy(dest->course_credit,src->course_credit);

}

/*

print_clist : print list starting at "first"

*/

void print_clist(first)

recordl *first;

165

{

recordl *temp;

system("clear");

printf("Number\tSection\tSemester\tName\t

Inst Ssn\tRoom\tBldg\tday\tTime\tYear\tCredit\n");

temp = first;

while(temp)

{

print_crecordl(temp);

temp = temp->next_course;

}

c = getchar();

printf("Press Any Key To Continue...\n");

c = getchar();

}

/*

print_crecordi : print individul items of record "rec"

*/

void print_crecordl(rec)

recordl *rec;

{

printf("%s %s %s %s %s %s %s %s %s %s %s\n",

rec->course_number, rec->course_section,

rec->course_semester,rec->course_name,

rec->course_inst,rec->course_room,

rec->course_bldg,rec->course_day,

rec->course_time,rec->course_year,

rec->course_credit);

}

166

/*

print_crecord : print individul items of record "rec"

*/

void print_crecord(rec)

recordl *rec;

{

system("clear");

printf("Course Number %s\n", rec->course_number);

printf("Course section %s\n", rec->course_section);

printf("Course semester %s\n", rec->course_semester);

printf("Course name %s\n", rec->course_name);

printf("Course inst. ssn %s\n", rec->course_inst);

printf("Course room %s\n", rec->course_room);

printf("Course bldg %s\n", rec->course_bldg);

printf("Course day U\n", rec->course_day);

printf("Course time %s\n", rec->course_time);

printf("Course year Xs\n", rec->course_year);

printf("Course credit %s\n", rec->course_credit);

c = getchar();

printf("Press Any Key To Continue...\n");

c = getchar();

}

i*

print_cdrecord : print individul items of record "rec

o/

int print_cdrecord(rec)

recordi *rec;

(

char ch='n';

167

print_crecord(rec);

printf("\n");

printf(u\nu);

printf(u\n");

c = getchar();

printf("Delete This Record (YIN) ? :");

scanf("%cuAch);

if(ch == 'Y' II ch == 'y')

return(1);

else

return(0);

}

/*******

freeC_record : free memory allocated to student record

*/

freeC_record(ptr)

record1 *ptr;

{

if (ptr == NULL)

return(0);

free(ptr->course_number);

free(ptr->course_section);

free(ptr->course_semester);

free(ptr->course_name);

free(ptr->course_inst);

free(ptr->course_room);

free(ptr->course_bldg);

free(ptr->course_day);

168

free(ptr->course_time);

free(ptr->course_year);

free(ptr->course_credit);

if(ptr->next_course)

free(ptr->next_course);

return(1);

}

/*

freeC_list : free memory allocated to course linked list

including "head" pointer

*/

freeC_list(head_ptr)

record1 *head_ptr;

{

/* if(head_ptr->next_course)

freeF_recursive(head_ptr->next_course);

free(head_ptr->next_course);

* head pointer not contains

any memory allocation for elements

of structure *

free(head_ptr);

*/

}

/*

freeC_recursive : recursive routine to free memory of each

member of linked list of Course

*/

freeC_recursive(ptr)

record1 *ptr;

169

{

record1 *prev_ptr;

if(ptr->next_course != NULL)

freeC_recursive(ptr->next_course);

freeC_record(ptr);

}

170

/*smenu.c : Menu for Student Database Services */

#include<stdio.h>

#include<ctype.h>

extern void senter_record();

smenu()

{

extern int key;

int i;

int j;

while(j != 5)

{

system("clear");

printf("\n");

printf("\n");

printf("\n");

printf("\n");

printf("\n");

printf("\n");

printf("\n");

printf("\n");

printf("\n");

system("hostname");

printf("

171

\n");

printf(" I STUDENT DATABASE

FUNCTIONS |\n");

printf ("

\n");

printf (" |

I \n");

printf(" I (1) ADD A RECORD

|\n");

printf (" I

| \n") ;

/******

printf(" I (2) MODIFY A RECORD

| \n") ;

printf (" I

I \n") ;

****/

printf(" I (2) DELETE A RECORD

| \n") ;

printf ("

I \n");

printf(" I (3) LIST ALL RECORDS

|\n");

printf ("

I \n");

printf(" I (4) VIEW A RECORD

|\n");

printf ("

I \n");

printf(" I (5) EXIT

172

l\n");

printf("

\n");

printf("\n");

printf("\n");

printf("\n");

printf(" Enter

Selection (1/2/3/4/5): ");

scanf("%d",&i);

switch(i) {

case 1: system("clear");

j = 1;

key = 20;

senter_record();

break;

/********

case 2: system("clear");

j = 2;

printf("Modifying a record \n");

update_record(cl);

break;

**********/

case 2: system("clear");

j = 2;

key = 21;

sssn_record();

break;

173

case 3: system("clear");

j = 3;

printf("Listing all records \n");

key = 19;

trader();

break;

case 4: system("clear");

j = 4;

squery_record();

break;

case 5: system("clear");

j = 5;

break;

default : system("clear");

break;

} /* end of case - switch */

} /* end of while */

} /* end of main */

174

/*sarecord.c : Data Entry Screen for Student Database Services */

#include<stdio.h>

#include<ctype.h>

#include<rpc/rpc.h>

#include<srdb.h>

senter_record()

{

char ch;

record2 *pr2;

int 1 =0;

int i;

int flag;

extern char bufdata[256];

pr2 = (record2 *) malloc(sizeof(record2));

pr2->stud_ssn = (char *)malloc(MAX_STR);

pr2->stud_firstName = (char *)malloc(MAX_STR);

pr2->stud_middleInitial = (char *)malloc(MAX_STR);

pr2->stud_lastName = (char *)malloc(MAX_STR);

pr2->stud_address = (char *)malloc(MAX_STR);

pr2->stud_city = (char *)malloc(MAX_STR);

pr2->stud_state = (char *)malloc(MAX_STR);

pr2->stud_zip = (char *)malloc(MAX_STR);

pr2->stud_phone = (char *)malloc(MAX_STR);

pr2->stud_major = (char *)malloc(MAX_STR);

pr2->stud_college = (char *)malloc(MAX_STR);

pr2->stud_gpa = (char *)malloc(MAX_STR);

175

for(i = 0; i <256;i++)

bufdata[i] = '\0';

printf("Enter ssn number :");

scanf("%s",pr2->stud_ssn);

sprintf(&bufdata[1],"%s ",pr2->stud_ssn);

/***** A blank space is placed after each field -

to separate the fields, hence "%s " ********/

/***** To move the position in the buffer to place

text pertaining to the next field ********/

1 = strlen(bufdata);

getchar();

printf("Enter first name :");

scanf("%s",pr2->stud_firstName);

strcat(bufdata , pr2->stud_firstName);

strcat(bufdata , " ");

1 = strlen(bufdata);

getchar();

printf("Enter middle initial :");

scanf("%s",pr2->stud_middleInitial);

strcat(bufdata , pr2->stud_middlelnitial);

strcat(bufdata , " ")•

1 = strlen(bufdata);

getchar();

printf("Enter last name :");

scanf("%s",pr2->stud_lastName);

strcat(bufdata , pr2->stud_lastName);

176

strcat(bufdata , " ");

1 = strlen(bufdata);

getchar();

printf("Enter street address:");

scanf("%s",pr2->stud_address);

strcat(bufdata , pr2->stud_address);

strcat(bufdata , " ")•

1 = strlen(bufdata);

getchar();

printf("Enter city :");

scanf("%s",pr2->stud_city);

strcat(bufdata , pr2->stud_city);

strcat(bufdata , " ")•

1 = strlen(bufdata);

getchar();

printf("Enter state :");

scanf("%s",pr2->stud_state);

strcat(bufdata , pr2->stud_state);

strcat(bufdata , " ");

1 = strlen(bufdata);

getchar();

printf("Enter zip :");

scanf("%s",pr2->stud_zip);

177

strcat(bufdata , pr2->stud_zip);

strcat(bufdata , " ");

1 = strlen(bufdata);

getchar();

printf("Enter phone number :");

scanf("%s",pr2->stud_phone);

strcat(bufdata , pr2->stud_phone);

strcat(bufdata , " ");

1 = strlen(bufdata);

getchar();

printf("Enter major:");

scanf("%s",pr2->stud_major);

strcat(bufdata , pr2->stud_major);

strcat(bufdata , " ");

1 = strlen(bufdata);

getchar();

printf("Enter college:");

scanf("%s",pr2->stud_college);

strcat(bufdata , pr2->stud_college);

strcat(bufdata , " ");

1 = strlen(bufdata);

getchar();

printf("Enter gpa:");

scanf("%s",pr2->stud_gpa);

strcat(bufdata , pr2->stud_gpa);

1 = strlen(bufdata);

178

getchar();

if (0)

printf("Data Retrieved: U\n",bufdata);

getchar();

trader();

179

/*squery.c : Menu for Faculty Database Services */

#include<stdio.h>

#include<ctype.h>

squery_record()

{

int i;

int j;

extern int key;

while(j !=5)

{

system("clear");

printf("\n");

printf("\n");

printf("\n");

printf("\n");

printf("\n");

printf("\n");

printf("\n");

printf("\n");

printf("\n");

system("hostname");

printf("

\n");

printf(" I VIEW

RECORDS |\n");

180

printf("

\n");

printf("

|\n");

printf(" I (1) FIRST NAME

|\n");

printf("

|\n");

printf(" I (2) LAST NAME

I \n");

printf("

|\n");

printf(" I (3) SOCIAL SECURITY

NUMBER |\n");

printf("

|\n");

printf(" I (4) PHONE NUMBER

|\n");

printf("

|\n");

printf(" I (5) EXIT

|\n");

printf ("

\n");

printf("\n");

printf("\n");

printf("\n");

printf(" Enter

Selection (1/2/3/4/5): ");

181

scanf("%d",8d);

switch(i) {

case 1: system("clear");

j = 1;

key = 15;

sfirst_record();

break;

case 2: system("clear");

j = 2;

key = 16;

slast_record();

break;

case 3: system("clear");

j = 3;

key = 18;

sssn_record();

break;

case 4: system("clear");

j = 4;

key = 17;

sphone_record();

break;

case 5: system("clear");

j = 5;

182

break;

default : system("clear");

j = 1;

printf("invalid input \n");

break;

} /* end of case - switch */

} /* end of while */

} /* end of main */

183

/*sssn_record.c : View Screen for

Student Database Services */

#include<stdio.h>

#include<ctype.h>

#include<rpc/rpc.h>

#include<srdb.h>

void sssn_record()

{

char ch;

record2 *pr2;

int 1=0;

extern char bufdata[256];

pr2 = (record2 *) malloc(sizeof(record2));

pr2->stud_ssn = (char *)malloc(MAX_STR);

printf("Enter ssn number :");

scanf("%s",pr2->stud_ssn);

sprintf(tcbufdata[1],"%s",pr2->stud_ssn);

if (0)

printf("Data Retrieved: %s\n",bufdata);

trader();

}

184

/*sfirst_record.c : View by Firstname

Screen for STUDENT Database Services */

#include<stdio.h>

#include<ctype.h>

#include<rpc/rpc.h>

#include<srdb.h>

sfirst_record()

{

char ch;

record2 *pr2;

int 1 = 0;

extern char bufdata[256];

pr2 = (record2 *) malloc(sizeof(record2));

pr2->stud_firstName = (char *)malloc(MAX_STR);

printf("Enter first name :");

scanf("%s",pr2->stud_firstName);

sprintf(&bufdata[1],"%s",pr2->stud_firstName);

if (0)

printf("Data Retrieved: %s\n",bufdata);

trader();

185

/*slast_record.c : View by lastname

Screen for Student Database Services */

#include<stdio.h>

#include<ctype.h>

#include<rpc/rpc.h>

#include<srdb.h>

void slast_record()

{

char ch;

record2 *pr2;

int 1 = 0;

extern char bufdata[256];

pr2 = (record2 *) malloc(sizeof(record2));

pr2->stud_lastName = (char *)malloc(MAX_STR);

printf("Enter last name :");

scanf("%s",pr2->stud_lastName);

sprintf(aufdata[1],"%s",pr2->stud_lastName);

if (0)

printf("Data Retrieved: %s\n",bufdata);

trader();

186

/*sphone_record.c : View Screen for

Student Database Services */

#include<stdio.h>

#include<ctype.h>

#include<rpc/rpc.h>

#include<srdb.h>

sphone_record()

{

char ch;

record2 *pr2;

int 1 =0;

extern char bufdata[256];

pr2 = (record2 *) malloc(sizeof(record2));

pr2->stud_phone = (char *)malloc(MAX_STR);

printf("Enter phone number :");

scanf("%s",pr2->stud_phone);

sprintf(&bufdata[1],"%s",pr2->stud_phone):

if (0)

printf("Data Retrieved: %s\n",bufdata);

trader();

187

/*************** GENERAL NOTATIONS ***********************

where ever following character(s) are

used in variable/procedure name

C,_c : used for COURSE DATA BASE

F,_f : used for FACULTY DATA BASE

S,_s : used for STUDENT DATA BASE

R,_r : used for REGISTER DATA BASE

***/

*include <stdio.h>

#include <ctype.h>

#include <rpc/rpc.h>

#include "srdb.h"

void copy_srecord();

void print_slist();

void print_srecord();

void print_srecordl();

int print_sdrecord();

int insert_srecord();

char c;

/**

Functions copy, print list/record, insert for

188

** Student Database ****

***/

/*

insert_srecord : insert record "rec" into the linked

list whose header is given by "head"

*/

insert_srecord(head,rec)

record2 *head,*rec;

{

record2 *temp;

temp = (record2 *)malloc(sizeof(record2));

if(temp == NULL)

printf("insufficient memory : insert_record \n");

return(0);

}

temp->stud_ssn = (char *)malloc(MAX_STR);

temp->stud_firstName = (char *)malloc(MAX_STR);

temp->stud_middleInitial = (char *)malloc(MAX_STR);

temp->stud_lastName = (char *)malloc(MAX_STR);

temp->stud_address = (char *)malloc(MAX_STR);

temp->stud_city = (char *)malloc(MAX_STR);

temp->stud_state = (char *)malloc(MAX_STR);

temp->stud_zip = (char *)malloc(MAX_STR);

temp->stud_phone = (char *)malloc(12*sizeof(char));

temp->stud_major = (char *)malloc(MAX_STR);

temp->stud_college = (char *)malloc(MAX_STR);

temp->stud_gpa = (char *)malloc(MAX_STR);

copy_srecord(temp,rec);

temp->next_record = head->next_record;

189

head->next_record = temp;

return(1);

}

/*

copy_srecord : copy record "src" into "dest"

*/

void copy_srecord(dest,src)

record2 *src,*dest;

{

strcpy(dest->stud_ssn,src->stud_ssn);

strcpy(dest->stud_firstName,src->stud_firstName);

strcpy(dest->stud_middleInitial,src->stud_middleInitial);

strcpy(dest->stud_lastName,src->stud_lastName);

strcpy(dest->stud_address,src->stud_address);

strcpy(dest->stud_city,src->stud_city);

strcpy(dest->stud_state,src->stud_state);

strcpy(dest->stud_zip,src->stud_zip);

strcpy(dest->stud_phone,src->stud_phone);

strcpy(dest->stud_major,src->stud_major);

strcpy(dest->stud_college,src->stud_college);

strcpy(dest->stud_gpa,src->stud_gpa);

}

/*

print_slist : print list starting at "first"

*/

void print_slist(first)

record2 *first;

{

record2 *temp;

temp = first;

190

system("clear");

printf("ssn\tfirst\tmiddle\tlast\taddress\t

city\tstate\tzip\tphone\tmajor\tcollege\tgpa\n");

while(temp)

{

print_srecordl(temp);

temp = temp->next_record;

}

c = getchar();

printf("Press Any Key to continue \n");

c = getchar();

}

/*

print_srecord1 : print individul items of record "rec"

*/

void print_srecordl(rec)

record2 *rec;

{

printf("%s %s %s %s %s %s %s %s %s %s is %s \n",

rec->stud_ssn,rec->stud_firstName,rec->stud_middleInitial,

rec->stud_lastName,rec->stud_address,rec->stud_city,

rec->stud_state,rec->stud_zip,rec->stud_phone,

rec->stud_major,rec->stud_college,rec->stud_gpa);

/*

print_srecord : print individul items of record "rec"

*/

void print_srecord(rec)

191

record2 *rec;

{

system("clear");

printf("SSN %s \n",rec->stud_ssn);

printf("First Name %s \n",rec->stud_firstName);

printf("Middle Initial %s \n",rec->stud_middleInitial);

printf("Last Name %s \n",rec->stud_lastName);

printf("Address %s \n",rec->stud_address);

printf("City %s \n",rec->stud_city);

printf("State %s \n",rec->stud_state);

printf("Zip '/,s \n",rec->stud_zip);

printf("Phone %s \n",rec->stud_phone);

printf("Major %s \n",rec->stud_major);

printf("College %s \n",rec->stud_college);

printf("GPA %s \n",rec->stud_gpa);

c = getchar();

printf("Press Any Key to continue \n");

c = getchar();

}

/*

print_sdrecord : print individul items of record "rec"

*/

print_sdrecord(rec)

record2 *rec;

{

char ch='n';

print_srecord(rec);

192

printf("\n");

printf("\n");

printf("\n");

c = getchar();

printf("Delete This Record (Y/N) ? :");

scanf("%c"Ach);

if(ch == 'Y' II ch == 'y')

return(1);

else

return(0);

}

/*

freeS_record : free memory allocated to student record

*/

freeS_record(ptr)

record2 *ptr;

{

if (ptr == NULL)

return(0);

free(ptr->stud_ssn);

free(ptr->stud_firstName);

free(ptr->stud_middleInitial);

free(ptr->stud_lastName);

free(ptr->stud_address);

free(ptr->stud_city);

free(ptr->stud_state);

free(ptr->stud_zip);

free(ptr->stud_phone);

free(ptr->stud_major);

193

free(ptr->stud_college);

free(ptr->stud_gpa);

if(ptr->next_record)

free(ptr->next_record);

return(1);

}

/*

freeS_list : free memory allocated to student linked list

including "head" pointer

*/

freeS_list(head_ptr)

record2 *head_ptr;

{

if(head_ptr->next_record)

freeF_recursive(head_ptr->next_record);

free(head_ptr->next_record);

/* head pointer not contains

any memory allocation for elements

of structure */

free(head_ptr);

}

/*

freeS_recursive : recursive routine

to free memory of each

member of linked list of Student

*/

freeS_recursive(ptr)

record2 *ptr;

{

record2 *prev_ptr;

194

if(ptr->next_record != NULL)

freeS_recursive(ptr->next_record);

freeS_record(ptr);

}

195

/*rmenu.c : Menu for Register Database Services */

itinclude<stdio.h>

#include<ctype.h>

extern void renter_record();

rmenu()

{

extern int key;

int i;

int j;

while(j != 5)

{

system(" clear");

printf("\n");

printf("\n");

printf("\n");

printf("\n");

printf("\n");

printf("\n");

printf("\n");

printf("\n");

printf("\n");

system("hostname");

printf("

\n");

196

printf(" I REGISTER DATABASE

FUNCTIONS | \n") ;

printf C'

\n") ;

printf(" I

I\n");

printf(" I (1) ADD A RECORD

| \n") ;

printf(" I

I \n") ;

/******

printf(" I (2) MODIFY A RECORD

I \n") ;

printf (" I

I \n") ;

****/

printf(" I (2) DELETE A RECORD

I \n") ;

printf ("

I\n");

printf(" I (3) LIST ALL RECORDS

I \n") ;

printf ("

I\n");

printf(" I (4) VIEW A RECORD

| \n") ;

printf ("

I \n") ;

printf(" I (5) EXIT

I \n") ;

197

printf("

\n");

printf("\n");

printf("\n");

printf("\n");

printf(" Enter

Selection (1/2/3/4/5): ");

scanf("%d",&i);

switch(i) {

case 1: system("clear");

j = 1;

key = 25;

renter_record();

break;

/********

case 2: system("clear");

j = 2;

printf("Modifying a record \n");

update_record(cl);

break;

**********/

case 2: system("clear");

j = 2;

key = 26;

rssn_record();

break;

198

case 3: system("clear");

j = 3;

printf("Listing all records \n");

key = 24;

trader();

break;

case 4: system("clear");

j = 4;

rquery_record();

break;

case 5: system("clear");

j = 5;

break;

default : system("clear");

printf("invalid input \n");

break;

} /* end of case - switch */

/* end of while*/

} /* end of main */

199

/*rarecord.c : Data entry Screen

for Register Database Services */

#include<stdio.h>

#include<ctype.h>

#include<rpc/rpc.h>

#include<rrdb.h>

renter_record()

{

char ch;

record3 *pr3;

int 1 =0;

int flag;

int i;

extern char bufdata[255];

pr3 = (record3 *) malloc(sizeof(record3));

pr3->stud_ssn = (char *)malloc(MAX_STR);

pr3->course_number = (char *)malloc(MAX_STR);

pr3->course_section = (char *)malloc(MAX_STR);

pr3->course_semester = (char *)malloc(MAX_STR);

pr3->course_year = (char *)malloc(MAX_STR);

pr3->grade = (char *)malloc(MAX_STR);

for(i = 0; i < 256; i++)

bufdata[i] = '\0';

printf("Enter Student Ssn :");

scanf("%s",pr3->stud_ssn);

200

/* sprintf(&bufdata[1],"%s ",pr3->stud_ssn); */

strcat(bufdata,pr3->stud_ssn);

strcat(bufdata , " ");

getchar();

printf("Enter course number :");

scanf("%s",pr3->course_number);

/* sprintf(&bufdata[1],"%s ",pr3->course_number); */

strcat(bufdata,pr3->course_number);

strcat(bufdata , " ");

/***** A blank space is placed after each field

to separate the fields,

hence "%s " ********/

/***** To move the position in the buffer to place

text pertaining to the next field ********/

1 = strlen(bufdata);

getchar();

printf("Enter course section :");

scanf("%s",pr3->course_section);

/*sprintf(aufdata[1],"%s ",pr3->course_section);*/

strcat(bufdata , pr3->course_section);

strcat(bufdata , " ")•

1 = strlen(bufdata);

getchar();

printf("Enter course semester :");

scanf("%s",pr3->course_semester);

/*sprintf(aufdata[1],"%s ",pr3->course_semester);*/

strcat(bufdata , pr3->course_semester);

201

202

strcat(bufdata , " ");

1 = strlen(bufdata);

getchar();

printf("Enter course year :");

scanf("%s",pr3->course_year);

/*sprintf(Ftbufdata[1],"%s ",pr3->course_year);*/

strcat(bufdata , pr3->course_year);

strcat(bufdata , " ");

1 = strlen(bufdata);

getchar();

printf("Enter grade : ") ;

scanf("%s",pr3->grade);

/*sprintf(aufdata[1],"%s ",pr3->grade);*/

strcat(bufdata , pr3->grade);

1 = strlen(bufdata);

getchar();

if (0)

printf("Data Retrieved: 7.s\n",bufdata);

trader();

1

/*rquery.c : Menu for Register Database Services */

#include<stdio.h>

#include<ctype.h>

rquery_record()

{

int i;

int j;

extern int key;

while(j != 4)

{

system(" clear");

printf("\n");

printf("\n");

printf("\n");

printf("\n");

printf("\n");

printf("\n");

printf("\n");

printf("\n");

printf("\n");

system("hostname");

printf("

\n");

203

printf(" I VIEW

RECORDS |\n");

printf("

\n");

printf("

I\n");

printf(" I (1) GRADE

|\n");

printf("

|\n");

printf(" I (2) COURSE

|\n");

printf("

I\n");

printf(" I (3) SSN

|\n");

printf("

|\n");

printf(" I (4) EXIT

|\n");

printf("

\n");

printf("\n");

printf("\n");

printf("\n");

printf(" Enter

Selection (1/2/3/4): ");

scanf("%d",&i);

204

switch(i) {

case 1: system("clear");

j = 1;

key = 22;

rgrade_record();

break;

case 2: system("clear");

j = 2;

key = 27;

rcourse_record();

break;

case 3: system("clear");

j = 3;

key = 23;

rssn_record();

break;

case 4: system("clear");

j = 4;

break;

default : system("clear");

printf("invalid input \n");

break;

} /* end of case - switch */

/* end of while */

205

} /* end of main */

206

/*rgrade_record.c : View by grade Screen

for Register Database Services */

#include<stdio.h>

#include<ctype.h>

#include<rpc/rpc.h>

#include<rrdb.h>

rgrade_record()

{

char ch;

record3 *pr3;

int 1 =0;

int i =0;

int flag;

extern char bufdata[256];

extern int key;

pr3 = (record3 *) malloc(sizeof(record3));

pr3->course_number = (char *)malloc(MAX_STR);

pr3->course_section = (char *)malloc(MAX_STR);

pr3->course_semester = (char *)malloc(MAX_STR);

pr3->course_year = (char *)malloc(MAX_STR);

pr3->grade = (char *)malloc(MAX_STR);

for(i = 0; i < 256; i++)

bufdata[i] = '\0';

key = 22;

printf("Enter course number :");

207

scanf("%s",pr3->course_number);

/*sprintf(Ftbufdata[1],"%s ",pr3->course_number);*/

strcat(bufdata , pr3->course_number);

strcat(bufdata , " ");

1 = strlen(bufdata);

printf("1 = %d\n",1);

getchar();

printf("Enter course section :");

scanf("%s",pr3->course_section);

i*sprintf(lebufdata[1],"%s ",pr3->course_section);*/

strcat(bufdata , pr3->course_section);

strcat(bufdata , " ");

1 = strlen(bufdata);

printf("1 = %d\n",1);

getchar();

printf("Enter course semester :");

scanf("%s",pr3->course_semester);

/*sprintf(&bufdata[1],"%s ",pr3->course_semester);*/

strcat(bufdata , pr3->course_semester);

strcat(bufdata , " ");

1 = strlen(bufdata);

printf("1 = %d\n",1);

getchar();

printf("Enter course year :");

scanf("%s",pr3->course_year);

/*sprintf(aufdata[1],"%s ",pr3->course_year);*/

strcat(bufdata , pr3->course_year);

208

209

strcat(bufdata , " ");

1 = strlen(bufdata);

printf("1 = Xd\n",1);

getchar();

printf("Enter grade :");

scanf("%s",pr3->grade);

/*sprintf(itbufdata[1],"%s ",pr3->grade);*/

strcat(bufdata , pr3->grade);

strcat(bufdata , "\n");

1 = strlen(bufdata);

printf("1 = %d\n",1);

getchar();

if (0)

printf ("Data Retrieved: %s\n",bufdata);

trader();

1

/*rssn_record.c : View Screen for

Register Database Services */

#include<stdio.h>

#include<ctype.h>

#include<rpc/rpc.h>

#include<rrdb.h>

void rssn_record()

{

char ch;

record3 *pr3;

int 1=0;

extern char bufdata[256];

pr3 = (record3 *) malloc(sizeof(record3));

pr3->stud_ssn = (char *)malloc(MAX_STR);

printf("Enter ssn number :");

scanf("%s",pr3->stud_ssn);

sprintf(&bufdata[1],"%s",pr3->stud_ssn);

if (0)

printf("Data Retrieved: %s\n",bufdata);

trader();

}

210

/*********** GENERAL NOTATIONS ***********************

where ever following character(s) are

used in variable/procedure name

C,_c : used for COURSE DATA BASE

F,_f : used for FACULTY DATA BASE

S,_s : used for STUDENT DATA BASE

R,_r : used for REGISTER DATA BASE

**/

#include <stdio.h>

#include <ctype.h>

#include <rpc/rpc.h>

#include urrdb.h"

void copy_rrecord();

void print_rlist();

void print_rrecordl();

void print_rrecord();

int print_rdrecord();

int insert_rrecord();

char c;

/***

211

Functions copy, print list/record, insert

**for Register Database **

**/

/*

insert_rrecord : insert record "rec" into the

linked list whose header

is given by "head" data

type : (record1 *)

*/

insert_rrecord(head,rec)

record3 *head,*rec;

{

record3 *temp;

temp = (record3 *)malloc(sizeof(record3));

if (temp == NULL)

{

printf("insufficient memory : insert_record \n");

return(0);

}

temp->stud_ssn = (char *)malloc(MAX_STR);

temp->course_number = (char *)malloc(MAX_STR);

temp->course_section = (char *)malloc(MAX_STR);

temp->course_semester= (char *)malloc(MAX_STR);

temp->course_year = (char *)malloc(MAX_STR);

temp->grade = (char *)malloc(MAX_STR);

copy_rrecord(temp,rec);

temp->next_record = head->next_record;

head->next_record = temp;

return(1);

212

}

/*

copy_rrecord : copy record "src" into "dest"

*/

void copy_rrecord(dest,src)

record3 *src,*dest;

{

strcpy(dest->stud_ssn,src->stud_ssn);

strcpy(dest->course_number,src->course_number);

strcpy(dest->course_section,src->course_section);

strcpy(dest->course_semester,src->course_semester);

strcpy(dest->course_year,src->course_year);

strcpy(dest->grade,src->grade);

}

/*

print_rlist : print list starting at "first"

*/

void print_rlist(first)

record3 *first;

{

record3 *temp;

temp = first;

system("clear");

printf("Student SSN\tCourse Number\tCourse Section\t

Course Semester\tCourse Year\tCourse Grade\n");

while(temp)

{

print_rrecordl(temp);

temp = temp->next_record;

213

c = getchar();

printf("Press Any Key To Continue \n");

c = getchar();

}

/*

print_rrecord1 : print individul items of record "rec"

*/

void print_rrecordl(rec)

record3 *rec;

{

printf("%s '/.s %s %s %s %s \n",rec->stud_ssn,

rec->course_number, rec->course_section,

rec->course_semester,

rec->course_year, rec->grade);

}

/*

print_rrecord : print individul items of record "rec"

*/

void print_rrecord(rec)

record3 *rec;

{

system("clear");

printf("Student SSN %s\n", rec->stud_ssn);

printf("Course Number %s\n", rec->course_number);

printf("Course Section %s\n", rec->course_section);

printf("Course Semester %s\n", rec->course_semester);

printf("Course Year %s\n", rec->course_year);

printf("Course Grade %s\n", rec->grade);

c = getchar();

214

printf("Press Any Key To Continue \n");

c = getchar();

}

/*

print_rdrecord : print individul items of record "rec"

*/

print_rdrecord(rec)

record3 *rec;

char ch='n';

print_rrecord(rec);

printf("\n");

printf("\n");

printf("\n");

c = getchar();

printf("Delete This Record (Y/N) ? :");

scanf("%c"Ach);

if(ch == 'Y' II ch == 'y')

return(1);

else

return(0);

1

215

7.2.3 Faculty Building Blocks

216

/* frdb_svc_proc.c : Remote database service

procedures for Faculty.data*/

#include <stdio.h>

#include <string.h>

#include <rpc/rpc.h>

#include <errno.h>

#include <fcntl.h>

#include <sys/types.h>

#include <unistd.h>

#include "frdb.h"

record *pR1; /* For Faculty.data */

char ch[1000];

char buf[MAX_STR];

FILE *fppl; /* For Faculty.data */

int fdl;

/***Func. readRecord for Faculty.data **********/

int readRecord(fpos)

int Epos;

{

int i;

char ch;

int ret,flag;

217

if (0) printf("In read record \n");

if(!pR1)

{

pR1 = (record *)malloc(sizeof(record));

pR1->ssn = (char *)malloc(MAX_STR);

pR1->firstName = (char *)malloc(MAX_STR);

pR1->middleInitial = (char *)malloc(MAX_STR);

pR1->lastName = (char *)malloc(MAX_STR);

pR1->location = (char *)malloc(MAX_STR);

pR1->phone = (char *)malloc(12 * sizeof(char));

pR1->next_record = NULL;

}

if (0)

printf("In read record...memory allocated to pR1...\n");

if(lseek(fdl,fpos,SEEK_SET) == -1)

{

if (0) printf("lseekl : \n",errno);

return(0);

}

i = flag = 0;

ret = read(fdl,&ch,1);

if(ret == 0)

return(0); /* end of file */

while(ch != '\n' && ch != EOF && ret > 0)

{

buf[i++] = ch;

flag = 1;

ret = read(fd1,&ch,1);

}

buf[i] = '\0';

218

if(sscanf(buf,"%s %s '/.s %s %s %s",pR1->ssn,pR1->firstName,

pR1->middleInitial,pR1->lastName,pR1->phone,

pR1->location) != 6)

return(0);

return((int)tell(fd1));

}

/*** Server procedures for Faculty.data ***********/

record *firstname_key_1(name)

char **name;

{

return(getF_record(*name,FIRSTNAME_KEY) ? (record *)pR1 :

(record *)NULL);

}

record *ssn_key_1(ssnumber)

char **ssnumber;

{

if (0)

printf("ssn = %s\n",ssnumber);

return(getF_record(*ssnumber,SSN_KEY) ? (record *)pR1 :

(record *)NULL);

}

record *lastname_key_1(name)

char **name;

{

return(getF_record(*name,LASTNAME_KEY) ? (record *)pR1 :

(record *)NULL);

219

}

record *phone_key_1(phnumber)

char **phnumber;

return(getF_record(*phnumber,PHONE_KEY) ? (record *)pRl :

(record *)NULL);

}

record *location_key_1(location)

char **location;

{

return(getF_record(*location,LOCATION_KEY) ? (record *)pR1 :

(record *)NULL);

}

record *list_record_1(record_number)

int **record_ number;

{

int i;

fd1 = open(DATABASE,O_RDONLY);

if(fd1 < 0)

{

if (0) printf("file open error : %s \n",DATABASE);

return((record *)NULL);

}

pR1->file_offset = readRecord(*record_number);

close(fdl);

return((record *)pR1);

220

record *firstname_record_1(rec)

record *rec;

{

int i;

fd1 = open(DATABASE,O_RDONLY);

if (fd1 < 0)

{

if (0) printf("file open error: %s \n",DATABASE);

return((record *)NULL);

}

/*note rec?*/ i = rec->file_offset;

if (0) printf("i = %d\n",i);

while(i = readRecord(i))

{

if ((!strcmp(rec->firstName,pR1->firstName)))

{

close(fd1);

pR1->file_offset = i;

return((record *)pR1);

}

}

close(fdl);

pR1->file_offset = i;

return((record *)pR1);

record *lastname_record_1(rec)

record *rec;

221

222

{

int i;

fd1 = open(DATABASE,O_RDONLY);

if(fd1 < 0)

{

if (0) printf("file open error: %s \n",DATABASE);

return((record *)NULL);

}

/*note rec?*/ i = rec->file_offset;

if (0) printf("i = %d\n",i);

while(i = readRecord(i))

{

if ((!strcmp(rec->lastName,pR1->lastName)))

{

close(fdl);

pR1->file_offset = i;

return((record *)p111);

}

}

close(fdl);

pR1->file_offset = i;

return((record *)pR1);

}

/************Func. getF_record for Faculty.data **********/

getF_record(c_string,c_key)

char *c_string;

int c_key;

int i;

int fflag;

fd1 = open(DATABASE,O_RDONLY);

if(fd1 < 0)

{

if (0) printf("file open error : %s \n",DATABASE);

return(0);

}

i = fflag = 0;

while(i = readRecord(i))

switch(c_key)

{

case FIRSTNAME_KEY :

if(!strcmp(pR1->firstName,c_string))

fflag = 1;

break;

case LASTNAME_KEY :

if(!strcmp(pR1->lastName,c_string))

fflag = 1;

break;

case PHONE_KEY :

if(!strcmp(pR1->phone,c_string))

fflag = 1;

break;

case LOCATION_KEY :

if(!strcmp(pR1->location,c_string))

fflag = 1;

break;

case SSN_KEY :

223

if (0) printf("ssn = %s\n",pR1->ssn);

if (0) printf("c_string = %s\n",c_string);

if(!strcmp(pR1->ssn,c_string))

{

if (0) printf("fflag = %d\n",fflag);

fflag = 1;

break;

default :

break;

/* end of SWITCH */

if (fflag)

break;

} /* end of WHILE */

close(fd1);

pR1->file_offset = i;

return(1);

224

/*frdb_svc_del.c : Remote database Delete

service procedures for Faculty.data*/

include <stdio.h>

include <string.h>

include <rpc/rpc.h>

include <errno.h>

include <fcntl.h>

include <unistd.h>

include "frdb.h"

/***Delete Procedure for Faculty.data *****/

int *del_record_1();

extern record *pR1;

extern int fdl;

int *del_record_1(ssnumber)

char **ssnumber;

{

static int status;

int i,cnt;

char buf[MAX_STR];

record *prev,*head;

record *current,*temp;

record *pcurent;

225

fd1 = open(DATABASE,O_RDONLY);

if(fd1 < 0)

{

status = 0;

if (0) printf("file open error \n");

return((int *) &status); /* file open error */

}

prey = current = (record *)NULL;

temp = head = (record *)malloc(sizeof(record));

/* first : header */

temp->next_record = NULL;

i = cnt = 0;

while(i = readRecord(i))

{

prey = temp;

temp->next_record = (record *)malloc(sizeof(record));

temp = temp->next_record;

temp->next_record = NULL;

++cnt;

copy_record(temp,pR1);

if (0)

printf("temp : %x : %x : %s\n",temp,temp->next_record,temp->ssn);

if(!strcmp(temp->ssn,*ssnumber))

{

pcurent = prey;

current = temp;

}

}

close(fd1);

if(current == (record *)NULL)

{

226

status = 0;

if (0) printf("record not found \n");

}

else

{

if (0)

printf("record found \n");

if (0)

printf("ssn = %s : %d \n",current->ssn,cnt);

pcurent->next_record = current->next_record;

temp = head->next_record;

fd1 = open(DATABASE,O_WRONLYIO_TRUNC);

if(fdl < 0)

{

status = 0;

if (0) printf("file open error \n");

return((int *) &status);

}

i = 0;

while(temp != (record *)NULL)

{

++i;

if(i > cnt) break;

sprintf(buf,"%s %s %s %s %s %s\n",temp->ssn,

temp->firstName, temp->middleInitial,

temp->lastName, temp->phone,temp->location);

write(fdl,buf,strlen(buf));

if (0) printf("i = %d \n",i);

if (0)

printf("%s %s %s %s %s %s\n",temp->ssn,

227

temp->firstName,temp->middleInitial,

temp->lastName, temp->phone,temp->location);

temp = temp->next_record;

if (0) printf(" temp = Yoc \n",temp);

}

close(fdl);

status = 1;

}

return ((int *) &status);

}

copy_record(dest,src)

record *dest,*src;

{

dest->ssn = (char *)malloc(MAX_STR);

dest->firstName = (char *)malloc(MAX_STR);

dest->middleInitial = (char *)malloc(MAX_STR);

dest->lastName = (char *)malloc(MAX_STR);

dest->location = (char *)malloc(MAX_STR);

dest->phone = (char *)malloc(MAX_STR);

strcpy(dest->ssn,src->ssn);

strcpy(dest->firstName,src->firstName);

strcpy(dest->middleInitial,src->middleInitial);

strcpy(dest->lastName,src->lastName);

strcpy(dest->location,src->location);

strcpy(dest->phone,src->phone);

return(1);

228

/* frdb_svc_add.c : Remote database

Add service procedures for Faculty.data*/

include <stdio.h>

include <string.h>

include <rpc/rpc.h>

include <errno.h>

include <fcntl.h>

include <unistd.h>

include "frdb.h"

/**** Add Procedure for Faculty.data

int *add_record_1();

int readFacultyRecord();

/******

extern record *pR1;

extern int fd1;

******/

record *pR1; /* For Faculty.data */

char ch[1000];

FILE *fppl; /* For Faculty.data */

int fdl;

int *add_record_1(r)

record *r;

{

static int status;

229

char buf[MAX_STR];

int i;

if (0) printf("in *add_record \n");

fd1 = open(DATABASE,O_RDWR); /* O_RDONLY */

if(fd1 < 0)

{

status = 0;

if (0)

printf("file open error \n");

return((int *) &status); /* file open error */

}

if (0)

printf("in *add_record....opened data file for reading.\n");

i = 0;

while(i = readFacultyRecord(i))

{

if (0)

printf("%s %s %s %s %s %s\n",pR1->ssn,pR1->firstName,

pR1->middleInitial,pR1->lastName,pR1->phone,

pR1->location);

if(!strcmp(r->firstName,pR1->firstName) &&

(!strcmp(r->middleInitial,pR1->middleInitial)) &&

(!strcmp(r->lastName,pR1->lastName)) &&

(!strcmp(r->phone,pR1->phone)) &&

(!strcmp(r->location,pR1->location)))

{

/* duplicate record */

status = -2;

230

231

if (0) printf("duplicate record \n");

return ((int *) &status);

}

}

/*

close(fdl);

fd1 = open(DATABASE,O_APPEND);

if (fd1 < 0)

{

status = 0;

if (0) printf("file open error \n");

return((int *) &status); * file open error *

*/

if (0) printf("Writing in buf \n");

sprintf(buf,"%s %s %s %s %s %s\n",r->ssn,

r->firstName,r->middleInitial,

r->lastName,r->phone,r->location);

if (0) printf("Writing in file \n");

write(fdl,buf,strlen(buf));

close(fdl);

status = 1;

if (0) printf("status = %d\n",status);

return ((int *) &status);

/**************Func. readRecord for Faculty.data ********************/

int readFacultyRecord(fpos)

int Epos;

{

int i;

char ch;

int ret,flag;

char buf[MAX_STR];

if (0) printf("In read record \n");

if(!pR1)

{

pR1 = (record *)malloc(sizeof(record));

pR1->ssn = (char *)malloc(MAX_STR);

pR1->firstName = (char *)malloc(MAX_STR);

pR1->middleInitial = (char *)malloc(MAX_STR);

pR1->lastName = (char *)malloc(MAX_STR);

pR1->phone = (char *)malloc(12 *

sizeof(char));

pR1->location = (char *)malloc(MAX_STR);

pR1->next_record = NULL;

}

if (0)

printf("In read record...memory allocated to pR1...\n");

if(lseek(fd1,fpos,SEEK_SET) == -1)

{

if (0) printf("lseekl : 7dc \n",errno);

return(0);

}

i = flag = 0;

ret = read(fdl,&ch,1);

if (0) printf("ret = %d\n",ret);

if(ret == 0)

232

return(0); /* end of file */

while(ch != '\n' && ch != EOF 84 ret > 0)

{

buf[i++] = ch;

flag = 1;

ret = read(fd1,8ech,1);

1

buf[i] = '\0';

if(sscanf(buf,"%s %s %s %s %s %s",pR1->ssn,

pR1->firstName, pR1->middleInitial,

pR1->lastName,pR1->phone, pR1->location) != 6)

return(0);

return((int)tell(fd1));

}

233

7.2.4 Course Building Blocks

234

/* crdb_svc_proc.c : Remote Course database

service procedures */

#include <stdio.h>

#include <string.h>

include <rpc/rpc.h>

#include <errno.h>

#include <fcntl.h>

#include <sys/types.h>

#include <unistd.h>

#include "crdb.h"

#include "frdb.h"

record1 *pR2; /* For Course.data */

char ch[1000];

char buf[MAX_STR];

FILE *fpp2; /* For Course.data */

int fd2;

/****Func. readCRecord for Course.data ***********/

int readCRecord(fpos)

int Epos;

{

int i;

int ret,flag;

char ch;

if (0) printf("In readcrecord \n");

if (!pR2)

235

{

pR2 = (records *) malloc(sizeof(record1));

if(pR2 == NULL)

return(0);

pR2->course_number = (char *) malloc(MAX_STR);

pR2->course_section = (char *) malloc(MAX_STR);

pR2->course_semester = (char *) malloc(MAX_STR);

pR2->course_name = (char *) malloc(MAX_STR);

pR2->course_inst = (char *) malloc(MAX_STR);

pR2->course_room = (char *) malloc(MAX_STR);

pR2->course_bldg = (char *) malloc(MAX_STR);

pR2->course_day = (char *) malloc(MAX_STR);

pR2->course_time = (char *) malloc(MAX_STR);

pR2->course_year = (char *) malloc(5*sizeof(char));

pR2->course_credit = (char *) malloc(MAX_STR);

pR2->next_course = NULL;

}

i = lseek(fd2,fpos,SEEK_SET);

if(i == -1)

{

if (0) printf("lseek2 : %x \n",errno);

return(0);

}

i = flag = 0;

ret = read(fd2Ach,l);

if (ret == 0)

return(0); /* eof */

while(ch != '\n' && ch != EOF && ret > 0)

{

buf[i++] = ch;

236

ret = read(fd2,Etch,1);

flag = 1;

}

buf[i] = '\0';

if(sscanf(buf,"%s %s %s %s %s %s %s %s %s %s %s",

pR2->course_number, pR2->course_section,

pR2->course_semester,pR2->course_name,

pR2->course_inst, pR2->course_room,

pR2->course_bldg, pR2->course_day,

pR2->course_time, pR2->course_year,

pR2->course_credit) != 11)

return(0);

return ((int)tell(fd2));

}

/********Server Procedures for Course.data ***********/

record1 *coursename_key_1(name)

char **name;

{

if (0) printf("In course_name_key_1\n");

return(getC_record(*name,COURSENAME_KEY) ? (record1 *)pR2 :

(record1 *)NULL);

1

record1 *coursenumber_key_1(coursenumber)

char **coursenumber;

{

if (0) printf("in coursenumber %s\n",*coursenumber);

return(getC_record(*coursenumber,COURSENUMBER_KEY) ?

(record1 *)pR2 :

237

(record1 *)NULL);

record1 *clist_record_1(record_number)

int **record_number;

{

int i;

fd2 = open(DATABASE1,0_RDONLY);

if(fd2 < 0)

{

if (0) printf("file open error : '/.s \n",DATABASE1);

return((record1 *)NULL);

}

pR2->file_offset = readCRecord(*record_number);

close(fd2);

return((record1 *)pR2);

record1 *coursename_record_1(rec)

record1 *rec;

{

int i;

fd2 = open(DATABASE1,0_RDONLY);

if(fd2 < 0)

{

if (0) printf("file open error: %s \n",DATABASE1);

return((record1 *)NULL);

238

/*note rec?*/ i = rec->file_offset;

if (0) printf("i = %d\n",i);

while(i = readCRecord(i))

{

if (0) printf("%s\n",pR2->course_name);

if ((!strcmp(rec->course_name,pR2->course_name)))

close(fd2);

pR2->f ile_offset = i;

return((record1 *)pR2);

close(fd2);

pR2->file_offset = i;

return((record1 *)pR2);

record1 *coursenumber_record_1(rec)

recordl *rec;

{

int i;

fd2 = open(DATABASE1,0_RDONLY);

if(fd2 < 0)

{

if (0) printf("file open error: %s \n",DATABASE1);

return((record1 *)NULL);

/*note rec?*/ i = rec->file_offset;

if (0) printf("i = %d\n",i);

while(i = readCRecord(i))

239

{

if (0) printf("%s\n",pR2->course_number);

if ((!strcmp(rec->course_number,pR2->course_number)))

close(fd2);

pR2->file_offset = i;

return((recordl *)pR2);

}

close(fd2);

pR2->file_offset = i;

return((record1 *)pR2);

/*******Func. getC_record for Course.data **********/

getC_record(c_string,c_key)

char *c_string;

int c_key;

{

int i;

int fflag;

fd2 = open(DATABASE1,0_RDONLY);

if(fd2 < 0)

{

if (0) printf("file open error : %s \n",DATABASEl);

return(0);

}

i = fflag = 0;

if (0) printf("coursename_key = %d \n",c_key);

while(i = readCRecord(i))

240

241

{

switch(c_key)

{

case COURSENAME_KEY :

if (0) printf("%s %s\n",pR2->course_name,c_string);

if(!strcmp(pR2->course_name,c_string))

fflag = 1;

break;

case COURSENUMBER_KEY :

if(!strcmp(pR2->course_number,c_string))

fflag = 1;

break;

default :

break;

} /* end of SWITCH */

if (fflag)

break;

} /* end of WHILE */

close(fd2);

pR2->file_offset = i;

return(1);

}

/* crdb_svc_del.c : Remote Course database

delete service procedures */

include <stdio.h>

include <string.h>

include <rpc/rpc.h>

include <errno.h>

include <fcntl.h>

include <unistd.h>

include "crdb.h"

/*** Delete Procedure for Course.data *****/

int *cdel_record_1();

extern record1 *pR2;

extern int fd2;

int *cdel_record_1(coursenumber)

char **coursenumber;

{

static int status;

int i,cnt;

char buf[MAX_STR];

record1 *prev,*head;

record1 *current,*temp;

record1 *pcurent;

242

fd2 = open(DATABASE1,0_RDONLY);

if(fd2 < 0)

status = 0;

if (0) printf("file open error \n");

return((int *) &status);

/* file open error */

prey = current = (record1 *)NULL;

temp = head = (record1 *)malloc(sizeof(recordl));

/* first : header */

temp->next_course = NULL;

i = cnt = 0;

while(i = readCRecord(i))

{

prey = temp;

temp->next_course = (record1 *)malloc

(sizeof(record1));

temp = temp->next_course;

temp->next_course = NULL;

++cnt;

copy_crecord(temp,pR2);

if (0)

printf("temp : %x : %x : %s\n",

temp,temp->next_course,temp->course_number);

if(!strcmp(temp->course_number,*coursenumber))

{

pcurent = prey;

current = temp;

}

243

close(fd2);

if(current == (records *)NULL)

{

status = 0;

if (0) printf("record not found \n");

}

else

{

if (0) printf("record found \n");

if (0)

printf("course_number = %s : %d \n",

current->course_number,cnt);

pcurent->next_course = current->next_course;

temp = head->next_course;

fd2 = open(DATABASE1,0_WRONLYIO_TRUNC);

if(fd2 < 0)

{

status = 0;

if (0) printf("file open error \n");

return((int *) &status);

}

i = 0;

while(temp != (record1 *)NULL)

{

++i;

if(i > cnt) break;

sprintf(buf,"%s %s %s %s %s %s %s %s

%s %s %s\n",

temp->course_number, temp->course_section,

temp->course_semester,temp->course_name,

244

temp->course_inst, temp->course_room,

temp->course_bldg, temp->course_day,

temp->course_time, temp->course_year,

temp->course_credit);

write(fd2,buf,strlen(buf));

if (0) printf("i = %d \n",i);

if (0)

printf("%s %s %s %s %s %s %s

'/.s is %s\n",

temp->course_number, temp->course_section,

temp->course_semester,temp->course_name,

temp->course_inst, temp->course_room,

temp->course_bldg, temp->course_day,

temp->course_time, temp->course_year,

temp->course_credit);

temp = temp->next_course;

if (0) printf(" temp = ix \n",temp);

}

close(fd2);

status = 1;

}

return ((int *) &status);

}

copy_crecord(dest,src)

record1 *dest,*src;

{

dest->course_number = (char *)malloc(MAX_STR);

dest->course_section = (char *)malloc(MAX_STR);

dest->course_semester = (char *)malloc(MAX_STR);

dest->course_name = (char *)malloc(MAX_STR);

245

iest->course_inst = (char *)malloc(MAX_STR);

iest->course_room = (char *)malloc(MAX_STR);

lest->course_bldg = (char *)malloc(MAX_STR);

iest->course_day = (char *)malloc(MAX_STR);

dest->course_time = (char *)malloc(MAX_STR);

dest->course_year = (char *)malloc(MAX_STR);

dest->course_credit = (char *)malloc(MAX_STR);

strcpy(dest->course_number,src->course_number);

strcpy(dest->course_section,src->course_section);

strcpy(dest->course_semester,src->course_semester);

strcpy(dest->course_name,src->course_name);

strcpy(dest->course_inst,src->course_inst);

strcpy(dest->course_room,src->course_room);

strcpy(dest->course_bldg,src->course_bldg);

strcpy(dest->course_day,src->course_day);

strcpy(dest->course_time,src->course_time);

strcpy(dest->course_year,src->course_year);

strcpy(dest->course_credit,src->course_credit);

return(1);

246

/* crdb_svc_add.c : Remote Course database

Add service procedures */

include <stdio.h>

include <string.h>

include <rpc/rpc.h>

include <errno.h>

include <fcntl.h>

include <unistd.h>

include "crdb.h"

/***** Add Procedure for Course.data *****/

int *cadd_record_1();

extern record1 *pR2;

extern int fd2;

int *cadd_record_1(r1)

record1 *r1;

{

static int status;

char buf[MAX_STR];

int i;

fd2 = open(DATABASE1,0_RDWR); /* O_RDONLY */

if(fd2 < 0)

{

status = 0;

if (0) printf("file open error \n");

return((int *) &status);

247

/* file open error */

}

i = 0;

= readCRecord(i))

{

if (0)

printf("%s %s %s %s %s %s %s '/.s %s %s %s\n",

pR2->course_number, pR2->course_section,

pR2->course_semester,pR2->course_name,

pR2->course_inst, pR2->course_room,

pR2->course_bldg, pR2->course_day,

pR2->course_time, pR2->course_year,

pR2->course_credit);

if(!strcmp(r1->course_number,pR2->course_number) &&

(!strcmp(r1->course_section,pR2->course_section)) &&

(!strcmp(r1->course_semester,pR2->course_semester))&&

(!strcmp(r1->course_year,pR2->course_year)))

/* duplicate record */

status = -2;

if (0) printf("duplicate record \n");

return ((int *) &status);

/*

close(fd2);

fd2 = open(DATABASE1,0_APPEND);

if(fd2 < 0)

248

status = 0;

if (0) printf("file open error \n");

return((int *) &status); * file open error *

}

*/

sprintf(buf,"%s %s %s %s %s %s %s %s %s %s %s\n",

r1->course_number, r1->course_section,

r1->course_semester,r1->course_name,

r1->course_inst, r1->course_room,

r1->course_bldg, r1->course_day,

r1->course_time, r1->course_year,

r1->course_credit);

write(fd2,buf,strlen(buf));

close(fd2);

status = 1;

return ((int *) &status);

249

/* facourse_list.c : Remote Course database

service procedures */

#include <stdio.h>

#include <string.h>

include <rpc/rpc.h>

#include <errno.h>

#include <fontl.h>

*include <sys/types.h>

#include <unistd.h>

#include "crdb.h"

#include "frdb.h"

record1 *pR2; /* For Course.data */

char ch[1000];

char buf[MAX_STR];

FILE *fpp2; /* For Course.data */

int fd2;

/******Func. readCRecord for Course.data ****/

int readCLRecord(fpos)

int fpos;

{

int i;

int ret,flag;

char ch;

if (0) printf("In readcrecord \n");

if (!pR2)

250

{

pR2 = (recordl *) malloc(sizeof(recordl));

if(pR2 == NULL)

return(0);

pR2->course_number = (char *) malloc(MAX_STR);

pR2->course_section = (char *) malloc(MAX_STR);

pR2->course_semester = (char *) malloc(MAX_STR);

pR2->course_name = (char *) malloc(MAX_STR);

pR2->course_inst = (char *) malloc(MAX_STR);

pR2->course_room = (char *) malloc(MAX_STR);

pR2->course_bldg = (char *) malloc(MAX_STR);

pR2->course_day = (char *) malloc(MAX_STR);

pR2->course_time = (char *) malloc(MAX_STR);

pR2->course_year = (char *) malloc(5*sizeof(char));

pR2->course_credit = (char *) malloc(MAX_STR);

pR2->next_course = NULL;

}

i = lseek(fd2,fpos,SEEK_SET);

if(i == -1)

{

if (0) printf("lseek2 : \n",errno);

return(0);

}

i = flag = 0;

ret = read(fd2Ach,l);

if(ret == 0)

return(0); /* eof */

while(ch != '\n' && ch != EOF && ret > 0)

{

buf[i++] = ch;

251

ret = read(fd2,8cch,1);

flag = 1;

}

buf[i] = '\0';

if(sscanf(buf,"%s %s %s %s %s '/,s %s %s %s '/,s %s",

pR2->course_number, pR2->course_section,

pR2->course_semester,pR2->course_name,

pR2->course_inst, pR2->course_room,

pR2->course_bldg, pR2->course_day,

pR2->course_time, pR2->course_year,

pR2->course_credit) != 11)

return(0);

return ((int)tell(fd2));

}

/******Server Procedures for Course.data ***********/

record1 *get_course_1(rec)

record1 *rec;

{

int i;

fd2 = open(DATABASE1,0_RDONLY);

if(fd2 < 0)

{

if (0)

printf("file open error: %s \n",DATABASE1);

return((record1 *)NULL);

1

i = rec->file_offset;

while(i = readCLRecord(i))

{

252

if(!strcmp(rec->course_inst,pR2->course_inst))

{

close(fd2);

pR2->file_offset = i;

return((record1 *)pR2);

}

}

close(fd2);

pR2->file_offset = i;

return((record1 *)pR2);

253

7.2.5 Student Building Blocks

254

/* srdb_svc_proc.c : Remote database service

procedures for Student.data*/

#include <stdio.h>

#include <string.h>

include <rpc/rpc.h>

#include <errno.h>

#include <fcntl.h>

#include <sys/types.h>

#include <unistd.h>

#include "srdb.h"

record2 *pR3; /* For Student.data */

char ch[1000];

char buf[MAX_STR];

FILE *fpp3; /* For Student.data */

int fd3;

/****Func.readSRecord for Student.data ************/

int readSRecord(fpos)

int Epos;

{

int i;

char ch;

int ret,flag;

255

if(!pR3)

pR3 = (record2 *)malloc(sizeof(record2));

pR3->stud_ssn = (char *)malloc(MAX_STR);

pR3->stud_firstName = (char *)malloc(MAX_STR);

pR3->stud_middleInitial = (char *)malloc(MAX_STR);

pR3->stud_lastName = (char *)malloc(MAX_STR);

pR3->stud_address = (char *)malloc(MAX_STR);

pR3->stud_city = (char *)malloc(MAX_STR);

pR3->stud_state = (char *)malloc(MAX_STR);

pR3->stud_zip = (char *)malloc(MAX_STR);

pR3->stud_phone = (char *)malloc(12 * sizeof(char));

pR3->stud_major = (char *)malloc(MAX_STR);

pR3->stud_college = (char *)malloc(MAX_STR);

pR3->stud_gpa = (char *)malloc(MAX_STR);

pR3->next_record = NULL;

}

if(lseek(fd3,fpos,SEEK_SET) == -1)

{

if (0)

printf("lseek3 : \n",errno);

return(0);

}

i = flag = 0;

ret = read(fd3,&ch,1);

if (ret == 0)

return(0); /* end of file */

while(ch != '\n' && ch != EOF && ret > 0)

buf[i++] = ch;

flag = 1;

256

ret = read(fd3Ach,1);

}

buf[i] = 1\01 ;

if(sscanf(buf,"%s %s %s %s %s %s %s

%s %s) s '/.s '/.s ",

pR3->stud_ssn,pR3->stud_firstName,

pR3->stud_middleInitial,pR3->stud_lastName

pR3->stud_address,pR3->stud_city,pR3->stud_state,

pR3->stud_zip,pR3->stud_phone,pR3->stud_major,

pR3->stud_college,pR3->stud_gpa) != 12)

return(0);

return((int)tell(fd3));

/****Server procedures for Student.data *************/

record2 *sfirstname_key_1(name)

char **name;

{

return(getS_record(*name,SFIRSTNAME_KEY) ? (record2 *)pR3 :

(record2 *)NULL);

record2 *sssn_key_1(ssnumber)

char **ssnumber;

{

return(getS_record(*ssnumber,SSSN_KEY) ? (record2 *)pR3 :

(record2 *)NULL);

257

record2 *slastname_key_1(name)

char **name;

{

return(getS_record(*name,SLASTNAME_KEY) ? (record2 *)pR3 :

(record2 *)NULL);

record2 *sphone_key_1(phnumber)

char **phnumber;

{

return(getS_record(*phnumber,SPHONE_KEY) ? (record2 *)pR3 :

(record2 *)NULL);

record2 *slist_record_1(record_number)

int **record_number;

{

int i;

fd3 = open(DATABASE2,0_RDONLY);

if(fd3 < 0)

{

if (0)

printf("file open error : %s \n",DATABASE2);

return((record2 *)NULL);

}

pR3->file_offset = readSRecord(*record_number)

close(fd3);

return((record2 *)pR3);

258

record2 *sfirstname_record_1(rec)

record2 *rec;

{

int i;

fd3 = open(DATABASE2,0_RDONLY);

if(fd3 < 0)

{

if (0)

printf("file open error: %s \n",DATABASE2);

return((record2 *)NULL);

}

/*note rec?*/ i = rec->file_offset;

if (0)

printf("i = %d\n",i);

while(i = readSRecord(i))

{

if ((!strcmp(rec->stud_firstName,pR3->stud_firstName)))

close(fd3);

pR3->file_offset = i;

return((record2 *)pR3);

close(fd3);

pR3->file_offset = i;

return((record2 *)pR3);

259

record2 *slastname_record_1(rec)

260

record2 *rec;

{

int i;

fd3 = open(DATABASE2,0_RDONLY);

if(fd3 < 0)

{

if (0)

printf("file open error: %s \n",DATABASE2);

return((record2 *)NULL);

}

/*note rec?*/ i = rec->file_offset;

if (0)

printf("i = %d\n",i);

while(i = readSRecord(i))

{

if ((!strcmp(rec->stud_lastName,pR3->stud_lastName)))

close(fd3);

pR3->file_offset = i;

return((record2 *)pR3);

}

close(fd3);

pR3->file_offset = i;

return((record2 *)pR3);

/******* getS_record for Student.data **********/

getS_record(c_string,c_key)

char *c_string;

int c_key;

{

int i;

int fflag;

fd3 = open(DATABASE2,0_RDONLY);

if(fd3 < 0)

{

if (0)

printf("file open error : \n",DATABASE2);

return(0);

}

i = fflag = 0;

while(i = readSRecord(i))

{

switch(c_key)

case SFIRSTNAME_KEY :

if(!strcmp(pR3->stud_firstName,c_string))

fflag = 1;

break;

case SLASTNAME_KEY :

if(!strcmp(pR3->stud_lastName,c_string))

fflag = 1;

break;

case SPHONE_KEY :

if(!strcmp(pR3->stud_phone,c_string))

fflag = 1;

break;

case SSSN_KEY :

if(!strcmp(pR3->stud_ssn,c_string))

261

fflag = 1;

break;

default :

break;

} /* end of SWITCH */

if (fflag)

break;

} /* end of WHILE */

close(fd3);

pR3->file_offset = i;

return(1);

262

/* srdb_svc_del.c : Remote Student database

Delete service procedures */

include <stdio.h>

include <string.h>

include <rpc/rpc.h>

include <errno.h>

include <fcntl.h>

include <unistd.h>

include "srdb.h"

/**** Delete Procedure for Student.data ****/

int *sdel_record_1();

extern record2 *pR3;

extern int fd3;

int *sdel_record_1(ssnumber)

char **ssnumber;

{

static int status;

int i,cnt;

char buf[MAX_STR];

record2 *prev,*head;

record2 *current,*temp;

record2 *pcurent;

263

fd3 = open(DATABASE2,0_RDONLY);

if(fd3 < 0)

{

status = 0;

if (0)

printf("file open error \n");

return((int *) &status);

/* file open error */

}

prey = current = (record2 *)NULL;

temp = head = (record2 *)malloc(sizeof(record2));

/* first : header */

temp->next_record = NULL;

i = cnt = 0;

while(i = readSRecord(i))

{

prey = temp;

temp->next_record = (record2 *)

malloc(sizeof(record2));

temp = temp->next_record;

temp->next_record = NULL;

++cnt;

copy_srecord(temp,pR3);

if (0)

printf("temp : %x : %x : U\n",temp,

temp->next_record,temp->stud_ssn);

if(!strcmp(temp->stud_ssn,*ssnumber))

{

pcurent = prey;

current = temp;

264

}

close(fd3);

if(current == (record2 *)NULL)

{

status = 0;

if (0)

printf("record not found \n");

}

else

{

if (0)

printf("record found \n");

if (0)

printf("ssn = %s : %d \n",current->stud_ssn,cnt);

pcurent->next_record = current->next_record;

temp = head->next_record;

fd3 = open(DATABASE2,0_WRONLYIO_TRUNC);

if(fd3 < 0)

{

status = 0;

if (0)

printf("file open error \n");

return((int *) &status);

i = 0;

while(temp != (record2 *)NULL)

{

++i;

if(i > cnt) break;

sprintf(buf,"%s is %s is %s is %s is

265

is is is is\n",

temp->stud_ssn,temp->stud_firstName,

temp->stud_middleInitial,temp->stud_lastName,

temp->stud_address,temp->stud_city,

temp->stud_state,temp->stud_zip,

temp->stud_phone,temp->stud_major,

temp->stud_college,temp->stud_gpa);

write(fd3,buf,strien(buf));

if (0)

printf("i = %d \n",i);

if (0)

printf("%s %s %s is %s %s is

%s %s %s %s\n",

temp->stud_ssn,temp->stud_firstName,

temp->stud_middleInitial,temp->stud_lastName,

temp->stud_address,temp->stud_city,

temp->stud_state,temp->stud_zip,

temp->stud_phone,temp->stud_major,

temp->stud_college,temp->stud_gpa);

temp = temp->next_record;

if (0)

printf(" temp = ix \n",temp);

}

close(fd3);

status = 1;

}

return ((int *) &status);

266

copy_srecord(dest,src)

7ecord2 *dest,*src;

iest->stud_ssn = (char *)malloc(MAX_STR);

iest->stud_firstName = (char *)malloc(MAX_STR);

iest->stud_middleInitial = (char *)malloc(MAX_STR);

iest->stud_lastName = (char *)malloc(MAX_STR);

iest->stud_address = (char *)malloc(MAX_STR);

iest->stud_city = (char *)malloc(MAX_STR);

iest->stud_state = (char *)malloc(MAX_STR);

dest->stud_zip = (char *)malloc(MAX_STR);

dest->stud_phone = (char *)malloc(MAX_STR);

dest->stud_major = (char *)malloc(MAX_STR);

dest->stud_college = (char *)malloc(MAX_STR);

dest->stud_gpa = (char *)malloc(MAX_STR);

strcpy(dest->stud_ssn,src->stud_ssn);

strcpy(dest->stud_firstName,src->stud_firstName);

strcpy(dest->stud_middleInitial,src->stud_middleInitial);

strcpy(dest->stud_lastName,src->stud_lastName);

strcpy(dest->stud_address,src->stud_address);

strcpy(dest->stud_city,src->stud_city);

strcpy(dest->stud_state,src->stud_state);

strcpy(dest->stud_zip,src->stud_zip);

strcpy(dest->stud_phone,src->stud_phone);

strcpy(dest->stud_major,src->stud_major);

strcpy(dest->stud_college,src->stud_college);

strcpy(dest->stud_gpa,src->stud_gpa);

return(1);

267

/* srdb_svc_add.c : Remote Student database

Add service procedures */

include <stdio.h>

include <string.h>

include <rpc/rpc.h>

include <errno.h>

include <fcntl.h>

include <unistd.h>

include "srdb.h"

/***** Add Procedure for Student.data *********/

int *sadd_record_1();

extern record2 *pR3;

extern int fd3;

int *sadd_record_1(r2)

record2 *r2;

{

static int status;

char buf[MAX_STR];

int i;

fd3 = open(DATABASE2,0_RDWR); /* O_RDONLY */

if(fd3 < 0)

{

status = 0;

if (0)

printf("file open error \n");

268

return((int *) &status);

/* file open error */

}

i = 0;

while(i = readSRecord(i))

{

if (0)

printf("%s %s %s %s %s %s '/,s %s %s %s %s '/.s \n",

pR3->stud_ssn,pR3->stud_firstName,

pR3->stud_middleInitial,pR3->stud_lastName,

pR3->stud_address,pR3->stud_city,pR3->stud_state,

pR3->stud_zip, pR3->stud_phone,pR3->stud_major,

pR3->stud_college,pR3->stud_gpa);

if(!strcmp(r2->stud_ssn,pR3->stud_ssn))

{

/* duplicate record */

status = -2;

if (0)

printf("duplicate record \n");

return ((int *) &status);

}

}

/*

close(fd3);

fd3 = open(DATABASE2,0_APPEND);

if(fd3 < 0)

{

status = 0;

if (0)

printf("file open error \n");

269

270

return((int *) &status); * file open error *

}

*/

sprintf(buf,"%s %s %s %s %s %s %s %s %s

%s %s %s \n",

r2->stud_ssn,r2->stud_firstName,

r2->stud_middleInitial,r2->stud_lastName,

r2->stud_address,r2->stud_city,r2->stud_state,

r2->stud_zip,r2 ->stud_phone,r2->stud_major,

r2->stud_college,r2->stud_gpa);

write(fd3,buf,strlen(buf));

close(fd3);

status = 1;

return ((int *) &status);

}

7.2.6 Register Building Blocks

271

/* rrdb_svc_proc.c : Remote Register database

service procedures */

#include <stdio.h>

#include <string.h>

include <rpc/rpc.h>

#include <errno.h>

#include <fcntl.h>

#include <sys/types.h>

#include <unistd.h>

#include "rrdb.h"

record3 *pR4; /* For Register.data */

char c,ch[1000];

char buf[MAX_STR];

FILE *fpp4; /* For Register.data */

int fd4;

/***Func. readRRecord for Register.data *****/

int readRRecord(fpos)

int Epos;

{

int i;

int ret,flag;

char ch;

if (!pR4)

{

if (0)

272

printf("In readRRecord \n");

pR4 = (record3 *) malloc(sizeof(record3));

if(pR4 == NULL)

return(0);

pR4->stud_ssn = (char *) malloc(MAX_STR);

pR4->course_number = (char *) malloc(MAX_STR);

pR4->course_section = (char *) malloc(MAX_STR);

pR4->course_semester = (char *) malloc(MAX_STR);

pR4->course_year = (char *) malloc(5*sizeof(char));

pR4->grade = (char *) malloc(MAX_STR);

}

i = lseek(fd4,fpos,SEEK_SET);

if(i == -1)

{

printf("lseek4 : %x \n",errno);

c = getchar();

return(0);

}

i = flag = 0;

ret = read(fd4Ach,1);

if (ret == 0)

return(0); /* eof */

while(ch != '\n' && ch != EOF && ret > 0)

buf[i++] = ch;

ret = read(fd4,&ch,1);

flag = 1;

}

buf[i] = '\0';

if(sscanf(but,"%s %s %s '/.s %s %s ",

273

pR4->stud_ssn,pR4->course_number,

pR4->course_section,pR4->course_semester,

pR4->course_year, pR4->grade) != 6)

return(0);

return ((int)tell(fd4));

}

/******Server Procedures for Register.data ***********/

record3 *grade_record_1(rec)

record3 *rec;

{

int i;

fd4 = open(DATABASE3,0_RDONLY);

if(fd4 < 0)

f

if (0)

printf("file open error: %s \n",DATABASE3);

return((record3 *)NULL);

}

/*note rec?*/ i = rec->file_offset;

if (0)

printf("i = %d\n",i);

while(i = readRRecord(i))

{

if (0)

printf("%s %s %s %s %s %s \n",

pR4->stud_ssn,pR4->course_number,

pR4->course_section,pR4->course_semester,

pR4->course_year, pR4->grade);

274

if ((!strcmp(rec->course_number,pR4->course_number)) it&

(!strcmp(rec->course_section,pR4->course_section)) &&

(!strcmp(rec->course_semester,pR4->course_semester))

(!strcmp(rec->course_year,pR4->course_year)) &&

(!strcmp(rec->grade,pR4->grade)))

close(fd4);

pR4->file_offset = i;

return((record3 *)pR4);

1

close(fd4);

pR4->file_offset = i;

return((record3 *)pR4);

}

record3 *rcourse_record_1(rec)

record3 *rec;

{

int i;

fd4 = open(DATABASE3,0_RDONLY);

if(fd4 < 0)

{

if (0)

printf("file open error: %s \n",DATABASE3);

return((record3 *)NULL);

}

/*note rec?*/ i = rec->file_offset;

while(i = readRRecord(i))

275

{

if ((!strcmp(rec->course_number,pR4->course_number))

(!strcmp(rec->course_section,pR4->course_section)) &&

(!strcmp(rec->course_semester,pR4->course_semester))

(!strcmp(rec->course_year,pR4->course_year)))

{

close(fd4);

pR4->file_offset = i;

return((record3 *)pR4);

}

}

close(fd4);

pR4->file_offset = i;

return((record3 *)pR4);

record3 *rssn_record_1(rec)

record3 *rec;

int i;

fd4 = open(DATABASE3,0_RDONLY);

if(fd4 < 0)

if (0)

printf("file open error: '/,s \n",DATABASE3);

return((record3 *)NULL);

}

/*note rec?*/ i = rec->file_offset;

while(i = readRRecord(i))

276

{

if(!strcmp(rec->stud_ssn,pR4->stud_ssn))

{

close(fd4);

pR4->file_offset = i;

return((record3 *)pR4);

}

}

close(fd4);

pR4->file_offset = i;

return((record3 *)pR4);

}

record3 *rlist_record_1(record_number)

int **record_number;

int i;

fd4 = open(DATABASE3,0_RDONLY);

if(fd4 < 0)

{

if (0)

printf("file open error : %s \n",DATABASE3);

return((record3 *)NULL);

}

pR4->file_offset = readRRecord(*record_number);

close(fd4);

return((record3 *)pR4);

}

record3 *rssn_key_1(ssnumber)

277

char **ssnumber;

printf("ssn = %s\n",ssnumber);

return(getR_record(*ssnumber,l) ? (record3 *)pR4 :

(record3 *)NULL);

}

/***************** getR_record for Register.data **********/

getR_record(c_string,c_key)

char *c_string;

int c_key;

{

int i;

int fflag;

fd4 = open(DATABASE3,0_RDONLY);

if(fd4 < 0)

if (0)

printf("file open error : %s \n",DATABASE3);

return(0);

}

i = fflag = 0;

while(i = readRRecord(i))

{

switch(c_key)

{

case 1 :

if(!strcmp(pR4->stud_ssn,c_string))

fflag = 1;

break;

278

/* case COURSE_KEY :

if(!strcmp(pR4->course_number,c_string))

fflag = 1;

break;

*/

default :

break;

/* end of SWITCH */

if (fflag)

break;

/* end of WHILE */

close(fd4);

pR4->file_offset = i;

return(1);

279

/* rrdb_svc_del.c : Remote Register

database delete service procedures */

include <stdio.h>

include <string.h>

include <rpc/rpc.h>

include <errno.h>

include <fcntl.h>

include <unistd.h>

include "rrdb.h"

/**Delete Procedure for Student.data *****/

int *rdel_record_1();

extern record3*pR4;

extern int fd4;

int *rdel_record_1(ssnumber)

char **ssnumber;

{

static int status;

int i,cnt;

char buf[MAX_STR];

record3 *prev,*head;

record3 *current,*temp;

record3 *pcurent;

280

fd4 = open(DATABASE3,0_RDONLY);

if(fd4 < 0)

{

status = 0;

if (0)

printf("file open error \n");

return((int *) &status);

/* file open error */

}

prey = current = (record3*)NULL;

temp = head = (record3*)malloc(sizeof(record3));

/* first : header */

temp->next_record = NULL;

i = cnt = 0;

while(i = readRRecord(i))

{

prey = temp;

temp->next_record = (record3*)malloc(sizeof(record3));

temp = temp->next_record;

temp->next_record = NULL;

++cnt;

copy_rrecord(temp,pR4);

if (0)

printf("temp : %x : %x : %s\n",temp,temp->next_record,temp->stud_ssn);

if(!strcmp(temp->stud_ssn,*ssnumber))

{

pcurent = prey;

current = temp;

}

}

close(fd4);

281

if(current == (record3*)NULL)

{

status = 0;

if (0)

printf("record not found \n");

}

else

{

if (0)

printf("record found \n");

if (0)

printf("ssn = %s : %d \n",current->stud_ssn,cnt);

pcurent->next_record = current->next_record;

temp = head->next_record;

fd4 = open(DATABASE3,0_WRONLYIO_TRUNC);

if(fd4 < 0)

{

status = 0;

if (0)

printf("file open error \n");

return((int *) &status);

}

i = 0;

while(temp != (record3*)NULL)

{

++i;

if(i > cnt) break;

sprintf(buf,"%s %s %s '/,s %s %s\n",

temp->stud_ssn,temp->course_number,

temp->course_section,temp->course_semester,

282

temp->course_year,temp->grade);

write(fd4,buf,strlen(buf));

if (0)

printf("i = \n",i);

temp = temp->next_record;

if (0)

printf(" temp = %x \n",temp);

}

close(fd4);

status = 1;

return ((int *) &status);

}

copy_rrecord(dest,src)

record3*dest,*src;

{

dest->stud_ssn = (char *)malloc(MAX_STR);

dest->course_number = (char *)malloc(MAX_STR);

dest->course_section = (char *)malloc(MAX_STR);

dest->course_semester = (char *)malloc(MAX_STR);

dest->course_year = (char *)malloc(MAX_STR);

dest->grade = (char *)malloc(MAX_STR);

strcpy(dest->stud_ssn,src->stud_ssn);

strcpy(dest->course_number,src->course_number);

strcpy(dest->course_section,src->course_section);

strcpy(dest->course_semester,src->course_semester);

strcpy(dest->course_year,src->course_year);

strcpy(dest->grade,src->grade);

283

return(1);

}

284

/* rrdb_svc_add.c : Remote Register database

Add service procedures */

include <stdio.h>

include <string.h>

include <rpc/rpc.h>

include <errno.h>

include <fcntl.h>

include <unistd.h>

include "rrdb.h"

/**Add Procedure for Course.data *******/

int *radd_record_1();

extern record3 *pR4;

extern int fd4;

int *radd_record_1(r3)

record3 *r3;

{

static int status;

char buf[MAX_STR];

int i;

fd4 = open(DATABASE3,0_RDWR);

/* O_RDONLY */

if(fd4 < 0)

{

status = 0;

if (0)

285

printf("file open error \n");

return((int *) &status);

/* file open error */

}

i = 0;

while(i = readRRecord(i))

{

if (0)

printf("%s %s %s %s %s %s \n",pR4->stud_ssn,

pR4->course_number,pR4->course_section,

pR4->course_semester,pR4->course_year,

pR4->grade);

if((!strcmp(r3->stud_ssn,pR4->stud_ssn)) &&

(!strcmp(r3->course_number,pR4->course_number)) &&

(!strcmp(r3->course_section,pR4->course_section)) &&

(!strcmp(r3->course_year,pR4->course_year)))

{

/* duplicate record */

status = -2;

if (0)

printf("duplicate record \n");

return ((int *) &status);

/*

close(fd4);

fd4 = open(DATABASE3,0_APPEND);

if(fd4 < 0)

{

status = 0;

286

if (0)

printf("file open error \n");

return((int *) &status); * file open error *

*/

sprintf(buf,"%s '/,s '/.s %s '/.s %s\n", r3->stud_ssn,

r3->course_number,r3->course_section,

r3->course_semester,r3->course_year,

r3->grade);

write(fd4,buf,strlen(buf));

close(fd4);

status = 1;

return ((int *) &status);

287

7.3 Source Code for the TRADER

/* create_h.c : Create Client Handles for server processes */

include <stdio.h>

include <ctype.h>

include <rpc/rpc.h>

include "frdb.h"

include "rrdb.h"

include "crdb.h"

include "srdb.h"

define SERVERF "newark"

define SERVERC "newark"

define SERVERS "pluton

define SERVERR "pluton

CLIENT *clf; /* A client handle */

CLIENT *cls; /* A client handle */

CLIENT *clr; /* A client handle */

CLIENT *cic; /* A client handle */

char c;

void create_handle()

{

initialize_f(SERVERF);

if (0)

printf("Client handle created...clf = %d,for %s \n",c1f,SERVERF);

initialize_c(SERVERC);

if (0)

289

290

printf("Client handle created...cic = %d,for %s \n",cic,SERVERC);

initialize_s(SERVERS);

if (0)

printf("Client handle created...cls = id,for %s \n",cls,SERVERS);

initialize_r(SERVERR);

if (0)

printf("Client handle created...clr = %d,for %s \n",c1r,SERVERR);

/* end of MAIN */

/*

initialize : Create client Handles for the various servers

*/

initialize_f(serv_mc)

char *serv_mc;

extern CLIENT *clf;

if (!(clf = clnt_create(serv_mc, FRDBPROG, FRDBVERS, "tcp")))

{

clnt_pereateerror(serv_mc);

system("clear");

printf("Client Handle not created; serverf missing. \n");

c = getchar();

return;

}

if (0)

printf("in initf--Client handle created... clf = %d,for %s \n",c1f,serv_mc);

291

initialize_c(serv_mc)

char *serv_mc;

{

extern CLIENT *cic;

if (!(cic = clnt_create(serv_mc, CRDBPROG, CRDBVERS, "tcp")))

clnt_pereateerror(serv_mc);

system("clear");

printf("Client Handle not created; serverc missing. \n");

c = getchar();

return;

}

if (0)

printf("in initc--Client handle created...cic = %d,for %s \n",c1c,serv_mc);

)-

initialize_s(serv_mc)

char *serv_mc;

{

extern CLIENT *cls;

if (!(cls = clnt_create(serv_mc, SRDBPROG, SRDBVERS, "tcp")))

clnt_pereateerror(serv_mc);

system("clear");

printf("Client Handle not created; servers missing. \n");

c = getchar();

return;

}

if (0)

printf("in inits--Client handle created...cls = %d,for %s \n",c1s,serv_mc);

initialize_r(serv_mc)

char *serv_mc;

{

extern CLIENT *clr;

if (!(clr = clnt_create(serv_mc, RRDBPROG, RRDBVERS, "tcp")))

{

clnt_pereateerror(serv_mc);

system("clear");

printf("Client Handle not created; serverr missing. \n");

c = getchar();

return;

}

if (0)

printf("in initr--Client handle created...clr = %d,for %s \n",c1r,serv_mc);

292

/* rdbl.c : Client application for rdb */

include <stdio.h>

include <ctype.h>

include <rpc/rpc.h>

include "frdb.h"

include "rrdb.h"

include "crdb.h"

include "srdb.h"

trader ()

{

extern int key;

extern CLIENT *clf;

extern CLIENT *cic;

extern CLIENT *cls;

extern CLIENT *clr;

extern char bufdata[256];

char *value;

if (0){

printf("In trader....\n");

printf("key = %d\n",key);

printf("In Trader Data = %s\n",bufdata);

1

value = bufdata;

switch (key)

{

293

294

/************Cases for Faculty Database **********/

case FIRSTNAME_RECORD:

faculty_first_name(value,c1f);

break;

case SSN_KEY :

faculty_ssn(value,c1f);

break;

case LASTNAME_RECORD :

faculty_last_name(value,c1f);

break;

case PHONE_KEY :

faculty_phone(value,c1f);

break;

case LOCATION_KEY :

faculty_location(value,c1f);

break;

case ADD_RECORD :

if (0)

printf("In Trader -add_record Data = U\n",

bufdata):

faculty_add_record(value,c1f);

/**faculty_add_record(c1f);****/

break;

case DEL_RECORD :

faculty_del_record(value,clf);

break;

case LIST_RECORD :

faculty_list_record(value,c1f);

break;

/************Cases for Course Database **********/

case GET_COURSE:

if (0)

printf("value = %s\n",value);

course_get_course(value,c1c,c1f);

break;

case COURSENAME_RECORD:

course_name(value,cic);

break;

case COURSENUMBER_RECORD:

course_number(value,c1c);

break;

case CLIST_RECORD :

course_list_record(value,cic);

break;

case CADD_RECORD :

if (0)

printf("value = %s\n",value);

295

course_add_record(value,c1c);

break;

case CDEL_RECORD :

if (0)

printf("value = %s\n",value);

course_del_record(value,c1c);

break;

/************Cases for Student Database **********/

case SFIRSTNAME_RECORD:

student_first_name(value,c1s);

break;

case SSSN_KEY :

student_ssn(value,c1s);

break;

case SLASTNAME_RECORD :

student_last_name(value,c1s);

break;

case SPHONE_KEY :

student_phone(value,c1s);

break;

case SADD_RECORD :

student_add_record(value,c1s);

break;

296

case SDEL_RECORD :

student_del_record(value,c1s);

break;

case SLIST_RECORD :

student_list_record(value,c1s);

break;

/*********************** Register Database ******************/

case GRADE_RECORD :

register_grade(value,c1r);

break;

case RCOURSE_RECORD :

register_course(value,c1r);

break;

case RSSN_RECORD :

register_ssn(value,c1r);

break;

case RLIST_RECORD :

register_list_record(value,clr);

break;

case RADD_RECORD :

register_add_record(value,c1r);

break;

297

case RDEL_RECORD :

register_del_record(value,c1r);

break;

default:

printf("Unknown remote procedure\n");

break;

} /* end of SWITCH */

} /* end of MAIN */

298

299

/******rdb_faculty.c : Client applications for faculty database Services */

include <stdio.h>

include <ctype.h>

include <rpc/rpc.h>

#include "frdb.h"

include "crdb.h"

static record *pRF;

char c;

record *temp;

record *head;

/******extern msg_memo();**/

extern int *add_record_1();

void faculty_phone();

void faculty_location();

void faculty_add_record();

void faculty_del_record();

void faculty_list_record();

void faculty_ssn();

void initializel_f();

/********

void faculty_first_name(value,c1)

char *value;

CLIENT *cl;

{

do {

temp = firstname_key_1(&value, cl);

if(!temp)

{

system("clear");

printf("FIRSTNAME_KEY : null ptr \n");

c = getchar();

return;

}

else

if(temp->file_offset < 1)

{

system("clear");

printf("data not found...\n");

c = getchar();

}

else

{

print_frecord(temp);

c = getchar();

1

}while(temp->file_offset > 0);

}

******/

void faculty_first_name(value,c1)

char *value;

CLIENT *cl;

300

301

{

extern CLIENT *clf;

if (0)

printf("cl = %x : ix \n",cl,*cl);

initializel_f();

sscanf(value,"%s", pRF->firstName);

if (0)

printf("value = %s\n",value);

head = (record *)malloc(sizeof(record));

if(head == NULL)

{

system("clear");

printf("head : insuff. memory \n");

c = getchar();

return;

}

head->next_record = NULL;

if (0)

printf("cl = %x : %x \n",c1,*c1);

c = getchar();

pRF->file_offset = 0;

do{

temp = firstname_record_1(pRF,c1f);

if (temp == NULL)

{

system("clear");

printf("Faculty : temp null ptr \n");

c = getchar();

return;

else

if(temp->file_offset > 0)

insert_frecord(head,temp);

pRF->file_offset = temp->file_offset;

}

while(temp->file_offset > 0);

print_flist(head->next_record);

void faculty_last_name(value,c1)

char *value;

CLIENT *cl;

{

extern CLIENT *clf;

if (0)

printf("cl = %x : %x \n",c1,*c1);

initializel_f();

sscanf(value,"%s", pRF->lastName);

if (0)

printf("value = %s\n",value);

head = (record *)malloc(sizeof(record));

if (head == NULL)

{

system("clear");

printf("head : insuff. memory \n");

c = getchar();

return;

}

head->next_record = NULL;

if (0)

302

303

printf("cl = %x : %x \n",c1,*c1);

c = getchar();

pRF->file_offset = 0;

do{

temp = lastname_record_1(pRF,c1f);

if (temp == NULL)

{

system("clear");

printf("Faculty : temp null ptr \n");

c = getchar();

return;

}

else

if(temp->file_offset > 0)

insert_frecord(head,temp);

pRF->file_offset = temp->file_offset;

}

while(temp->file_offset > 0);

print_flist(head->next_record);

}

void faculty_ssn(value,c1)

char *value;

CLIENT *cl;

{

temp = ssn_key_1(&value,cl);

if(!temp)

{

system("clear");

printf("SSN_KEY : null ptr \n");

c = getchar();

return;

}

else

if(temp->file_offset < 1)

{

system("clear");

printf("data not found...\n");

c = getchar();

return;

1

else

{

print_frecord(temp);

c = getchar();

return;

1

}

void faculty_phone(value,c1)

char *value;

CLIENT *cl;

{

temp = phone_key_1(&value,cl);

if(!temp)

{

system("clear");

printf("PHONE_KEY : null ptr \n");

c = getchar();

return;

}

else if(temp->file_offset < 1)

304

{

system("clear");

printf("data not found...\n");

c = getchar();

return;

}

else

{

print_frecord(temp);

c = getchar();

return;

}

}

void faculty_location(value,cl)

char *value;

CLIENT *cl;

{

temp = location_key_1(&value,cl);

if(!temp)

{

system("clear");

printf("LOCATION_KEY : null ptr \n");

c = getchar();

return;

}

else

if(temp->file_offset < 1)

system("clear");

printf("data not found...\n");

305

306

c = getchar();

return;

else

{

print_frecord(temp);

c = getchar();

return;

}

void faculty_add_record(value,cl)

char *value;

CLIENT *cl;

{

int ret;

/*****extern char bufdata[2560];***/

char *msgbuf[90];

initializel_f();

if (0)

printf("In faculty_add_record....1\n");

if (0)

printf("In faculty_add_record -%s\n",value);

msgbuf[0] = (char *)malloc(sizeof(char)*30);

msgbuf[1] = (char *)malloc(sizeof(char)*30);

msgbuf[2] = (char *)malloc(sizeof(char)*30);

if (0)

printf("In faculty_add_record....2\n");

sscanf(value,"\n%s %s %s %s %s %s",

pRF->ssn,pRF->firstName,pRF->middleInitial,

307

pRF->lastName,pRF->phone,pRF->location);

if (0)

printf("In faculty_add_record....3\n");

ret = *add_record_1(pRF,cl);

if (0)

printf("In faculty_add_record..ret = %d\n",ret);

if (ret < 0)

{

system("clear");

printf("Duplicate Record \n");

sprintf(msgbuf[0],"%s"," DUPLICATE ");

sprintf(msgbuf[1],"%s"," RECORD ");

c = getchar();

return;

/**msg_memo(2,msgbuf);

***/

}

else if(!ret)

{

system("clear");

printf("Database file error \n");

sprintf(msgbuf[0],"7.s"," DATABASE ");

sprintf(msgbuf[1],"%s"," FILE ");

sprintf(msgbuf[1],"%s"," ERROR ");

c = getchar();

return;

/***msg_memo(3,msgbuf);***/

}

system("clear");

printf("New Record Added \n");

c = getchar();

sprintf(msgbuf[0],"%s"," RECORD ");

sprintf(msgbuf[1],"%s"," ADDED ");

/***msg_memo(2,msgbuf);***/

}

void faculty_del_record(value,c1)

char *value;

CLIENT *cl;

{

char ch;

/*** do { ****/

temp = ssn_key_1(8cvalue,c1);

if(temp == NULL)

{/* D1 */

system("clear");

printf("DEL_RECORD : temp null ptr \n");

c = getchar();

return;

}/* D1 */

if(temp->file_offset <= 0)

{ /* D2 */

system("clear");

printf("DEL_RECORD : record not found \n");

c = getchar();

return;

} /* D2 */

else{

if (print_fdrecord(temp))

if(*del_record_1(&value,c1) <= 0)

{

308

system("clear");

printf("delete failed \n");

c = getchar();

return;

/* D3 */

/***** while(temp->file_offset > 0);*****/

void faculty_list_record(value,c1)

char *value;

CLIENT *cl;

{

int rec_number;

head = (record *)malloc(sizeof(record));

if (head == NULL)

{/* L1 */

printf("LIST_RECORD(1) : insuff. memory \n");

c = getchar();

return;

}/*L1*/

head->next_record = NULL;

rec_number = 0;

do{/* L2 */

temp = list_record_1(&rec_number,c1);

if (temp == NULL)

{

printf("LIST_RECORD(2) : null ptr \n");

c = getchar();

return;

309

rec_number = temp->file_offset;

if(!rec_number)

break;

insert_frecord(head,temp);

}

while(rec_number > 0);

print_flist(head->next_record);

}

void initializel_f()

{

if (0)

printf("in pRF initializef\n");

pRF = (record *)malloc(sizeof(record));

if (pRF == NULL)

{

printf("pRF (1) : insufficient memory \n");

c = getchar();

return;

}

pRF->ssn = (char *)malloc(MAX_STR);

pRF->firstName = (char *)malloc(MAX_STR);

pRF->middleInitial = (char *)malloc(MAX_STR);

pRF->lastName = (char *)malloc(MAX_STR);

pRF->location = (char *)malloc(MAX_STR);

pRF->phone = (char *)malloc(MAX_STR);

pRF->next_record = NULL;

310

/* rdb_course.c : Client application for Course Database Services */

include <stdio.h>

include <ctype.h>

include <rpc/rpc.h>

include "crdb.h"

include "frdb.h"

static record1 *pRC;

void initializel_c();

record *temp;

record *head;

record1 *tempi;

record1 *headl;

record1 *temp22;

char c;

void course_get_course(value,c1,cf)

char *value;

CLIENT *cl,*cf;

printf("value = %s \n",value);

printf("cf = %d \n",of);

temp = lastname_key_1(&value, cf);

if(temp == NULL)

311

312

{

system("clear");

printf("GET_COURSE : temp null ptr \n");

c = getchar();

return;

temp22 = (record1 *) malloc(sizeof(recordl));

temp22->course_number = (char *)malloc(MAX_STR);

temp22->course_section = (char *)malloc(MAX_STR);

temp22->course_semester = (char *)malloc(MAX_STR);

temp22->course_name = (char *)malloc(MAX_STR);

temp22->course_inst = (char *)malloc(MAX_STR);

temp22->course_room = (char *)malloc(MAX_STR);

temp22->course_bldg = (char *)malloc(MAX_STR);

temp22->course_day = (char *)malloc(MAX_STR);

temp22->course_time = (char *)malloc(MAX_STR);

temp22->course_year = (char *)malloc(MAX_STR);

temp22->course_credit = (char *)malloc(MAX_STR);

temp22->next_course = NULL;

if (0)

printf("firstname ssn = U\n",temp->ssn);

temp22->course_inst = temp->ssn;

if (0)

printf("firstname ssn = %s\n",temp22->course_inst);

head1 = (record1 *)malloc(sizeof(record1));

if (heads == NULL)

{/* 2 */

system("clear");

printf("head1 : insuff. memory \n");

c = getchar();

313

return;

}/* 2 */

headl->next_course = NULL;

if (0)

printf("cl = %d\n",c1);

templ = get_course_1(temp22,c1);

if (tempi == NULL)

{

system("clear");

printf("GET_COURSE : tempt null ptr \n");

c = getchar();

return;

}

while(templ->file_offset > 0)

{/* 3 */

insert_crecord(headl,templ);

temp22->file_offset = tempi->file_offset;

tempi = get_course_1(temp22,c1);

if(templ == NULL)

{

system("clear");

printf("GET_COURSE : tempi null ptr \n");

c = getchar();

return;

}

}/* 3 */

print_clist(headl->next_course);

/**** else

{

system("clear");

314

printf("invalid prof. name \n");

c = getchar();

return;

}

******/

void course_name(value,cl)

char *value;

CLIENT *cl;

extern CLIENT *cic;

if (0)

printf("cl = %x : '/,x \n",c1,*c1);

initializel_c();

sscanf(value,"%s", pRC->course_name);

if (0)

printf("value = %s\n",value);

head1 = (record1 *)malloc(sizeof(record1));

if(head1 == NULL)

{

system("clear");

printf("head1 : insuff. memory \n");

c = getchar();

return;

}

headl->next_course = NULL;

if (0)

printf("cl = %x : %x \n",cl,*cl);

c = getchar();

315

pRC->file_offset = 0;

do{

tempi = coursename_record_1(pRC,c1c);

if(templ == NULL)

{

system("clear");

printf("COURSE : tempi null ptr \n");

c = getchar();

return;

}

else

if(templ->file_offset > 0)

insert_crecord(head1,temp1);

pRC->file_offset = templ->file_offset;

}

while(temp1->file_offset > 0);

print_clist(headl->next_course);

}

void course_number(value,c1)

char *value;

CLIENT *cl;

{

extern CLIENT *cic;

if (0)

printf("cl = %x : inx \n",c1,*c1);

initializel_c();

sscanf(value,"/.s", pRC->course_number);

if (0)

Printf("value = %s\n",value):

316

head1 = (record1 *)malloc(sizeof(record1));

if(head1 == NULL)

{

system("clear");

printf("head1 : insuff. memory \n");

c = getchar();

return;

}

headl->next_course = NULL;

if (0)

printf("cl = %x : %x \n",cl,*cl);

c = getchar();

pRC->file_offset = 0;

do{

templ= coursenumber_record_1(pRC,c1c);

if(templ == NULL)

{

system("clear");

printf("COURSE : templ null ptr \n");

c = getchar();

return;

}

else

if(templ->file_offset > 0)

insert_crecord(headl,templ);

pRC->file_offset = templ->file_offset;

}

while(templ->file_offset > 0);

print_clist(headl->next_course);

void course_list_record(value,cl)

char *value;

CLIENT *cl;

{

int rec_number;

if (0)

printf("%s \n",value);

head1 = (record1 *)malloc(sizeof(record1));

if(head1 == NULL)

{/* Li */

{

system("clear");

printf("LIST_RECORD(1) : insuff. memory \n");

c = getchar();

return;

}

}/* Li */

headl->next_course = NULL;

rec_number = 0;

do{/* L2 */

tempi = clist_record_1(&rec_number,cl);

if(templ == NULL)

{

system("clear");

printf("LIST_RECORD(2) : null ptr \n");

c = getchar();

return;

317

rec_number = tempi->file_offset;

if(!rec_number)

break;

insert_crecord(headl,templ);

}

while(rec_number > 0);

print_clist(headl->next_course);

}

void course_add_record(value,c1)

char *value;

CLIENT *cl;

{

int ret;

if (0)

printf("%s \n",value);

initializel_c();

sscanf(value,"%s %s)'.s %s %s %s %s %s %s %s %s",

pRC->course_number, pRC->course_section,

pRC->course_semester, pRC->course_name,

pRC->course_inst, pRC->course_room,

pRC->course_bldg, pRC->course_day,

pRC->course_time, pRC->course_year,

pRC->course_credit);

if (0)

printf("pRC.coursenum = %s \n",pRC->course_number);

ret = *cadd_record_1(pRC,cl);

if (ret < 0)

{

system("clear");

printf("Duplicate record \n");

c = getchar();

318

319

return;

else if(!ret)

system("clear");

printf("Database file error \n");

c = getchar();

return;

system("clear");

printf("record added \n");

c = getchar();

return;

}

void course_del_record(value,cl)

char *value;

CLIENT *cl;

char ch;

if (0)

/* do{

printf("%s \n",value);

*/

tempi = coursenumber_key_1(&value,c1);

if(templ == NULL)

{/* Di */

system("clear");

printf("DEL_RECORD : temp null ptr \n");

}

else

320

c = getchar();

return;

}/* D1 */

if(templ->file_offset <= 0)

{/* D2 */

system("clear");

printf("DEL_RECORD : record not found \n");

c = getchar();

return;

}

else{

if (print_cdrecord(templ))

if(*cdel_record_1(&value,cl) <= 0)

{

system("clear");

printf("delete failed \n");

c = getchar();

return;

/* }while(templ->file_offset > 0); */

}

void initializel_c()

{

if (0)

printf("in pRC initialize)\n");

pRC = (record) *)malloc(sizeof(recordl));

if (pRC == NULL)

{

printf("pRC (2) : insufficient memory \n");

c = getchar();

return;

}

pRC->course_number = (char *)malloc(MAX_STR);

pRC->course_section = (char *)malloc(MAX_STR);

pRC->course_semester = (char *)malloc(MAX_STR);

pRC->course_name = (char *)malloc(MAX_STR);

pRC->course_inst = (char *)malloc(MAX_STR);

pRC->course_room = (char *)malloc(MAX_STR);

pRC->course_bldg = (char *)malloc(MAX_STR);

pRC->course_day = (char *)malloc(MAX_STR);

pRC->course_time = (char *)malloc(MAX_STR);

pRC->course_year = (char *)malloc(MAX_STR);

pRC->course_credit = (char *)malloc(MAX_STR);

pRC->next_course = NULL;

321

322

/* rdb_student.c : Client application for Student database Services */

include <stdio.h>

include <ctype.h>

include <rpc/rpc.h>

include "srdb.h"

static record2 *pRS;

void initializel_s();

char c;

record2 *temp2;

record2 *head2;

/***********Cases for Student Database **********/

student_first_name(value,c1)

char *value;

CLIENT *cl;

{

initializel_s();

sscanf(value,"%s", pRS->stud_firstName);

if (0)

printf("value = %s\n",value);

head2 = (record2 *)malloc(sizeof(record2));

if(head2 == NULL)

{

system("clear");

printf("head2 : insuff. memory \n");

c = getchar();

return;

head2->next_record = NULL;

323

if (0)

printf("cl = %x : \n",c1,*c1);

c = getchar();

pRS->file_offset = 0;

do{

temp2 = sfirstname_record_1(pRS,cl);

if(temp2 == NULL)

system("clear");

printf("Student : temp2 null ptr \n");

c = getchar();

return;

}

else

if(temp2->file_offset >

insert_srecord(head2,temp2);

pRS->file_offset = temp2->file_offset;

}

while(temp2->file_offset > 0);

print_slist(head2->next_record);

student_last_name(value,c1)

char *value;

CLIENT *cl;

{

324

initializel_s();

sscanf(value,"%s", pRS->stud_lastName);

if (0)

printf("value = %s\n",value);

head2 = (record2 *)malloc(sizeof(record2));

if(head2 == NULL)

{

system("clear");

printf("head2 : insuff. memory \n");

c = getchar();

return;

}

head2->next_record = NULL;

if (0)

printf("cl = Yoc : Yoc \n",cl,*cl);

c = getchar();

pRS->file_offset = 0;

do{

temp2 = slastname_record_1(pRS,cl);

if(temp2 == NULL)

system("clear");

printf("Student : temp2 null ptr \n");

c = getchar();

return;

}

else

if(temp2->file_offset > 0)

insert_srecord(head2,temp2);

pRS->file_offset = temp2->file_offset;

1

while(temp2->file_offset > 0);

print_slist(head2->next_record);

325

}

student_ssn(value,c1)

char *value;

CLIENT *cl;

{

temp2 = sssn_key_1(&value,cl);

if(!temp2)

{

system("clear");

printf("SSN_KEY : null ptr \n");

c = getchar();

return;

}

else

if(temp2->file_offset < 1)

{

system("clear");

printf("data not found...\n");

c = getchar();

return;

else

print_srecord(temp2);

}

student_phone(value,c1)

char *value;

CLIENT *cl;

{

temp2 = sphone_key_1(&value,c1);

if(!temp2)

system("clear");

printf("PHONE_KEY : null ptr \n");

c = getchar();

return;

else if(temp2->file_offset < 1)

system("clear");

printf("data not found...\n");

c = getchar();

return;

else

print_srecord(temp2);

}

student_add_record(value,c1)

char *value;

CLIENT *cl;

{

int ret;

initializel_s();

sscanf(value,"%s %s %s %s %s %s %s %s %s is is %s ",

pRS->stud_ssn,pRS->stud_firstName,

326

pRS->stud_middleInitial,

pRS->stud_lastName,pRS->stud_address,

pRS->stud_city,pRS->stud_state,

pRS->stud_zip,pRS->stud_phone,

pRS->stud_major,pRS->stud_college,

pRS->stud_gpa);

ret = *sadd_record_1(pRS,c1);

if (ret < 0)

{

system("clear");

printf("Duplicate record \n");

c = getchar();

return;

}

else if(!ret)

{

system("clear");

printf("Database file error \n");

c = getchar();

return;

}

}

student_del_record(value,c1)

char *value;

CLIENT *cl;

{

char ch;

/**** do{*****/

temp2 = sssn_key_1(&value,cl);

if(temp2 == NULL)

327

328

{/* D1 */

system("clear");

printf("DEL_RECORD : temp null ptr \n");

c = getchar();

return;

}/* D1 */

if(temp2->file_offset <= 0)

{/* D2 */

system("clear");

printf("DEL_RECORD : record not found \n");

c = getchar();

return;

}/* D2 */

else{

if (print_sdrecord(temp2))

if(*sdel_record_1(&value,c1) <= 0)

{

system("clear");

printf("delete failed \n");

c = getchar();

return;

}

}

/**** }while(temp2->file_offset > 0);*****/

}

student_list_record(value,c1)

char *value;

CLIENT *cl;

{

int rec_number;

head2 = (record2 *)malloc(sizeof(record2));

if(head2 == NULL)

{/* Ll */

system("clear");

printf("LIST_RECORD(1) : insuff. memory \n");

c = getchar();

return;

}/* L1 */

head2->next_record = NULL;

rec_number = 0;

do{/* L2 */

temp2 = slist_record_1(&rec_number,cl);

if(temp2 == NULL)

{

system("clear");

printf("LIST_RECORD(2) : null ptr \n");

c = getchar();

return;

}

rec_number = temp2->file_offset;

if(!rec_number)

break;

insert_srecord(head2,temp2);

}

while(rec_number > 0);

print_slist(head2->next_record);

/******initializel_s()**********/

void initializei_s()

329

{

if (0)

printf("in initializel_s()\n");

pRS= (record2 *)malloc(sizeof(record2));

if(pRS == NULL)

{

printf("pRS (1) : insufficient memory \n");

c = getchar();

return;

pRS->stud_ssn = (char *)malloc(MAX_STR);

pRS->stud_firstName = (char *)malloc(MAX_STR);

pRS->stud_middleInitial = (char *)malloc(MAX_STR);

pRS->stud_lastName = (char *)malloc(MAX_STR);

pRS->stud_address = (char *)malloc(MAX_STR);

pRS->stud_city = (char *)malloc(MAX_STR);

pRS->stud_state = (char *)malloc(MAX_STR);

pRS->stud_zip = (char *)malloc(MAX_STR);

pRS->stud_phone = (char *)malloc(MAX_STR);

pRS->stud_major = (char *)malloc(MAX_STR);

pRS->stud_college = (char *)malloc(MAX_STR);

pRS->stud_gpa = (char *)malloc(MAX_STR);

pRS->next_record = NULL;

330

/* rdb_register.c : Client application for register.data*/

include <stdio.h>

include <ctype.h>

include <rpc/rpc.h>

include "rrdb.h"

static record3 *pRR;

record3 *temp3;

record3 *head3;

/************Cases for Register Database **********/

void register_grade(value,c1)

char *value;

CLIENT *cl;

{

sscanf(value,"%s %s 7,s %s %s ",

pRR->course_number,pRR->course_section,

pRR->course_semester,pRR->course_year,

pRR->grade);

temp3 = grade_key_1(pRR, cl);

if(temp3 == NULL)

{

printf("GRADE_KEY : null ptr \n");

return;

}

if(temp3->file_offset > 0)

331

332

{

head3 = (record3 *)malloc(sizeof(record3));

if(head3 == NULL)

{

printf("head3 : insuff. memory \n");

exit(1);

}

head3->next_record = NULL;

temp3->file_offset = 0;

temp3 = grade_1(temp3,c1);

if(temp3 == NULL)

{

printf("GRADE : temp3 null ptr \n");

return;

}

while(temp3->file_offset > 0)

{

insert_rrecord(head3,temp3);

temp3->file_offset ;

temp3 = grade_1(temp3,c1);

if(temp3 == NULL)

{

printf("GRADE : temp3 null ptr \n");

break;

}

}

print_rlist(head3->next_record);

}

else

printf("invalid grade \n");

333

/***/

void register_ssn(value,c1)

char *value;

CLIENT *cl;

{

temp3 = rssn_key_1(&value, cl);

if(temp3 == NULL)

{

printf("RSSN_KEY : null ptr \n");

return;

}

if(temp3->file_offset > 0)

{

head3 = (record3 *)malloc(sizeof(record3));

if(head3 == NULL)

{

printf("head3 : insuff. memory \n");

exit(1);

}

head3->next_record = NULL;

temp3->file_offset = 0;

temp3 = rssn_1(temp3,c1);

if(temp3 == NULL)

{

printf("RSSN : temp3 null ptr \n");

return;

while(temp3->file_offset > 0)

{

insert_rrecord(head3,temp3);

temp3->file_offset ;

temp3 = rssn_1(temp3,c1);

if(temp3 == NULL)

{

printf("RSSN : temp3 null ptr \n");

break;

}

}

print_rlist(head3->next_record);

}

else

printf("invalid ssn \n");

}

/**/

void register_list_record(value,c1)

record3 *value;

CLIENT *cl;

{

int rec_number;

head3 = (record3 *)malloc(sizeof(record3));

if(head3 == NULL)

{/* L1 */

printf("LIST_RECORD(1) : insuff. memory \n");

exit(1);

}/* Ll */

head3->next_record = NULL;

rec_number = 0;

do{/* L2 */

334

335

temp3 = rlist_record_1(&rec_number,c1);

if(temp3 == NULL)

printf("LIST_RECORD(2) : null ptr \n");

exit(1);

}

rec_number = temp3->file_offset;

if(!rec_number)

break;

else

insert_rrecord(head3,temp3);

}

while(rec_number > 0)

print_rlist(head3->next_record);

}

void register_add_record(value,c1)

char *value;

CLIENT *cl;

{

int ret;

sscanf(value,"%s %s %s %s %s %s ",

pRR->stud_ssn,pRR->course_number,

pRR->course_section,pRR->course_semester,

pRR->course_year);

{

printf("ADD_RECORD requires a compl. quoted record\n");

exit(1);

}

336

ret = *radd_record_1(pRR,c1);

if (ret < 0)

printf("Duplicate record \n");

else if(!ret)

{

printf("Database file error \n");

exit(1);

}

}

/**/

void register_del_record(value,cl)

char *value;

CLIENT *cl;

{

char ch;

tempi = rssn_key_1(&value,cl);

if (tempi == NULL)

{/* D1 */

printf("DEL_RECORD : temp null ptr \n");

return;

}/* D1 */

if(temp3->file_offset <= 0)

{/* D2 */

printf("DEL_RECORD : record not found \n");

return;

}/* D2 */

printf("\n");

print_rrecord(temp3);

printf("Delete (y/n) ? ");

scanf("%c",&ch);

if(ch == 'Y' II ch == 'y')

{/* D3 */

printf("deleting record ...\n");

if(*rdel_record_1(toralue,c1) <= 0)

printf("delete failed \n");

}/* D3 */

337

BIBLIOGRAPHY

[1] "The Bellcore OSCATM Architecture." Bellcore - Bell Communications Re-
search, Technical Advisory, TA-STS-000915, ISSUE 2, July 1990.

[2] Rossak, Wilhelm. "INTEGRATION ARCHITECTURES A Concept and a
Tool to Support Integrated Systems Development." Institute for Integrated
Systems Research, Department of Computer & Information Science, New
Jersey Institute of Technology.

[3] Bloomer, John. "Ticket to Ride." Sun World, Nov 1991, pp. 39-55.

[4] Mills, John. "The Operations Systems Computing Architecture." Proceedings
of the First Intl. Conference on Systems Integration, Morristown, NJ, IEEE
Computer Society Press, April 1990.

[5] Mallett, Mark. "A Look at Remote Procedure Calls." Byte, May 1991.

[6] Rossak, W., and P. Ng. "Some Thoughts on Systems Integration - A Concep-
tual Framework." Journal of Systems Integration, Vol. 1, No. 1, Kluwer,
1991, pp. 97-114.

[7] Rossak, W., and S. Prasad. "Integration Architectures - A Framework for
System Integration Decisions." Proc. of the IEEE Intl. Conf. on Systems,
Man and Cybernetics, Charlottesvilee VA, October 1991, pp. 545-550.

[8] Prieto-Diaz, R., and G. Arango. "Domain Analysis and Software Systems
Modeling." IEEE Computer Society Press, Los Alamitos, CA, 1991.

[9] Best, L. "Application Architecture - Modern Large Scale Information Process-
ing." Wiley, NY, 1990.

[10] Rossak, W. "System Development with Integration Architectures." Interna-
tional Conference on Systems Integration, Morristown, NJ, June 1992, to
appear.

[11] Bloomer, John. "Power Programming with RPC." O'Reilly and Associates,
Inc., February 1992.

338

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgement
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction / Overview of Gensif
	Chapter 2: Overview of the Conceptual Integration Architecture
	Chapter 3: The CS Department Dis Application
	Chapter 4: Mapping the Application to the Conceptual Architecture
	Chapter 5: An Implementation of the Trader using RPC
	Chapter 6: Results & Conclusions
	Chapter 7: Appendix
	Bibliography

	List of Figures (1 of 2)
	List of Figures (2 of 2)

