

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

Abstract

A Heuristical Method
Of Corner Detection On an Image Boundary

By

Qiulin Li

A heuristics-based method of corner points detection on an image boundary is

proposed and implemented. The method uses the sampled boundary distances to

find all of the candidate corner points along the image boundary. Then the curvature

characteristical value is used to measure the severity of curvature change of the

candidate points. Those candidates whose curvature characteristical value is under

some threshold are eliminated. The paper also proposed some mechanism to reduce

the effect of noises on the boundary. Experiments show that it is an efficient method

and it gives satisfactory results on some image boundaries.

A Heuristical Method Of Corner Points
Detection On An Image Boundary

By

Qiulin Li

A Thesis
Submitted to the Faculty of the Graduate School of the New Jersey
Institute of Technology in partial fulfillment of the requirements for

the degree of Master of Science in Computer and Information

Jan. 1992

Approval Page

A Heuristical Mathod Of Corner Points Detection
On An Image Boundary

by

Qiulin Li

Dr. David T. Wang, Thesis Advisor
Assistant Professor of Computer and Information Science Department,
New Jersey Institute of Technology

Biographical Sketch

Author: Qiulin Li

Degree: Master of Science in Computer Science

Date: Jan. 1992

Undergraduate and Graduate Education:

1. Master of Science in Computer Science, New Jersey Institute of Technology,

Jan. 1992.

2. Bachelor of Science in Computer Science, Hefei University of Technology,

PR China, Jan. 1982.

Major: Computer Science

Acknowledgement

The author would like to thank Dr. David T. Wang who advised this research work.

Without his instructions it is impossible that this work is done. The author would also

like to thank the visiting professor Guizhang Tu of the Computer and Information

Department of New Jersey Institute of Technology who helped the author in solving the

mathematical problems of this research work.

Table of Contents

Table of Contents i
1. Introduction 2
2. Survey of Previous Work on Corner Points Detection 4
3. The Heuristical Algorithm for Corner Points Detection 9
3.1. General Discussion 9
3.2. The Parabolic Property in the Neighborhood of a Point on a Curve 10
3.3. The Algorithm 13
4. Implementation of the Algorithm 14
4.1. Candidate Points Selection 14
4.2. Candidate Points Determination 18
4.3. Final Selection of the Corner Point 21
5. Experiments Results 23
6. Conclusion 23
Acknowledgement 24
References 24
Appendix I: Source Program Listing for the Implementaion of the Method

 26
Appendix II: Data Set Used to Test the Mechnism of Noise Elimination
Discussed in Sec. 4.2. 39
Appendix III: Figures from the Experiments 40

1. Introduction

The recognition of geometrically shaped objects by their boundaries or contours

is of great importance in the field of computer vision and pattern recognition. For

example, if a person is shown a silhountte formed by back illuminating a pile of

objects, it is usually a simple task to identify the objects that contribute to the boun-

dary. Even though there are no depth or color cues available, we can eventually

recognize the objects from their two dimensional boundary contours[1].

To analyze and recognize a two dimensional image boundary, it is important to

identify those basic geomatrical elements which contribute to the combination of the

image boundary. Asada and Brady[1] categorized those basic elements into five

types, and called them curvature primal sketch. They are: corners, smooth joins,

Fig. 1. The curvature changes proposed as primitives are
illustrated. (a) The corner and smooth join are isolated
changes. (b) The crank. end, and bump or dent are com-
pound changes formed of corners. (After Asada and Brady(1))

cranks, ends, and bumps or dents. Fig. 1 illustrates these five basic elements of

boundary changing. The elements represent five different forms of curvature change

2

along the boundary of the object. For example, corner represents a discontinuity point

of the curvature change. It isolates two boundary segments, each of which has a con-

tinuous change of curvature. Smooth join, on the other hand, isolates also two seg-

ments of boundary with continuous curvature change, except that the curvature at this

point is "smooth". If we describe this fact in mathematical language, it is just to

mean that the first order derivative of the boundary function is continuous at the

smooth join but discontinuous at the corner. For another example, both cranks and

ends have two close discontinuity points of curvature changes. The difference is that

the former has the change in opposite directions while the latter has the changes in

the same direction.[1]

Study the five basic elements, we see that each of them describes a special case

of severe curvature change along the image boundary. The most important point here

is the severity of the curvature changes. From the elements we see that each element

contains at least one such point. We could call this kind of points corner points (We

call this corner points to differentiate it from the corners in the previous paragraph).

The presence of a corner point is usually an indication of feature point in the

image boundary, a road intersection, a house, a cultivated field. etc. If a surface

region is broken into many parts and then reassembled, at least one of them (and

possibly all) will exhibit a "corner" at every point at which n parts join to form a

closed junction.

From the above discussion we can get such a conclusion: Corner points are the

important feature points on the image boundaries. Therefore if we could recognize all

of the corner points along the image boundaries, we can then gain a lot of important

information for the image analysis and classification.

In this paper we present a heuristics based method for the corner points detec-

tion. It uses the sampled boundary distances and the ratio of the height to the width

of a piece of curve at the neighborhood of a possible high-curvature point. The

expenments show that it is an efficient and promissing method.

The paper is arranged in the following way: Chapter 2 reviews some of the pre-

vious research work on the topic in that seven methods are discussed and evaluated.

Chapter 3 introduces our heuristical corner points detection algorithm. Chapter 4

discusses some issures of implementation of the method. Chapter 5 shows some

experimental resulte and some conclussions.

3

2. Survey of Previous Work on Corner Points Detection

While the definition of the corner points is very simple, it is not a trivial work

to detect them along the image boundaries. In the past two decades, a lot of research

-work has been spent in this field. We survey some of it. -

There are two directions in this field. One refers to those which are image-

based, the other refers to those which are boundary-based. In this paper, we pay

attention to the latter.

Liu and Srinath[2] summarized and evaluated 6 methods of corner points detec-

tion based on the image boundaried represented in chain-code. Following are brief

description of these methods:

Method 1: Medioni-Yasumoto Corner Detector.

In this method, an image boundary is fit by a parametric cubic B-spline[5] and

use the displacement between the original point and the interpolating spline to decide

whether the point is a corner point. Those points for which the displacement exceeds

a given threshold and the curvature is high are recognized as corner points.

The experiments showed that this is very sensitive to the smoothness of the

boundary points. This is because the scheme detects the corner points by using five

points in the boundary to compute the curvature and displacement of its B-spline fit.

Thus, if any of these 5 points moves by even one pixel, the result can change drasti-

cally.

Method 2: Beus-Tiu corner detector.

In this method, a corner point is defined as an isolated discontinuity (local

curvature) in the mean slop whose prominance is proportional to the length of the

discontinuity-free regions to either side as well as the severity of discontinuity. If we

define δs as the measure of servrity of discontinuity, whose computation was

described in [2] and [7], and t i and £2 are the length of the discontinuity-free region

in both sides. Then we can calculate the value of decision function K, as follows:

= f (t1)x∑8,2 x f (t 2),
i=1

where f is some function like square root, in, etc. The decision rule is as follows: If

K1 is above a given threshold, then j is considered as a corner point.

As shown in Beus and Tiu. this algorithm fails to detect some obvious corner

points and detects spurious corner points in some situation. Some improvements are

also proposed to enhance this method.

4

Method 3: Weighted-K-curvature corner detector.

Rutkowski and Rosenfeld concluded that the result of this method can detect

corner points most closely resembling those detected by a human. In this method. the

contour is defined by a chain code. Given a set of weights, w1, w2, ..., wk, the

weighted-K-vector at point i is defined as:

Then the weighted-K-curvature at this point could be determined as:

where • denotes the vector inner product and I I denotes the norm. Once the curvature

has been estimated for all contour points, a corner point is detected if the curvature is

above a given threshold and is a local maximum within a range [i —k , 1 +k 1.

The result showed that only very few spurious corner points are detected. but it

also fail to detect some real corner points.

Method 4: Rosenfeld-Johnston Corner Detector[8] --

In this method. a so-called K-cosine value at the point i=(x1, y1) is calculated in

this way:

where aik , bik are called K-vectors in the point i, which is defined as:

They also defined a way to choose an appropriate value of k. Assume the maximal

value is m. Then using the K —cosine definition to compute the values c,1, c,2, ..., c,„„ the

best value of k is chosen such that the following holds:

The value of k and the corresponding cik are used to detect corner points. If for all j

such that I i—j| <= k/2, cuk is a local maximum or minimum, point i is considered to be 2

5

a corner point.

The drawback of this method is that it can lead to incorrect detection results

when corner points occur too close to one another.

Method 5: Rosenfeld-Weszka corner detector.

This is just the modification of method 4. It smoothes the K—cosine at each point

by a process of averaging. The average of K—cosine is defined by:

for k even, and

for k odd. The ci-(k) is then used as a decision function in place of cik of the previous

method.

Method 6: Cheng-Hsu corner detector

This method is based on the definition of so-called bending degree according to

the direction changes of forward and backward arms. Because it needs- more para-

graphs to describe the method, we omit the description. The interested reader could

reference [2] and [].

The experiment results showed some drawbacks of the method. First, it is also,

as of method 1, very sensitive to the smoothness of the boundary. On a noisy image,

this can lead to spurious corner points. Second, it may result in a multiple response

to the same corner point. Very often there is no way to find local maximum and to-

localize the corner point.

Apart from the methods described above, there are also some other methods for

the points detection. One is to use the difference of slope (DOS)[3],[4]. to estimate

the curvature of the boundary points.

In this method, curvature at a point is estimated as the angular difference

between the slope of the line segments fit to the data before and after the point. For

the DOS method, both segments are of arc length w, and the overlap of the two seg-

ments is denoted as M. The total length from the beginning of one segment to the

end of another segment could be written as:

Thus; if M > 0, there is an overlap between the segments. If M = 0, it means that the

6

Fig.2. DOS method for a) M<0. b) M=O. c) M>0. (After O'Gorman[4])

two segments are joined together. And if M < 0, the two segments are separate apart.

Fig. 2 shows the three cases of M . We usually denote the DOS method with M > 0 as

DOS+ method. For the DOS+ method, first the orientation of the two line segments

connecting the endpoints of the arcs are calculated. The-formula for the orientation

is:

points of the line segments respectively.

After the orientation are calculated. the difference of the slopes is calculated

according to the formula:

The geometrical meaning of 8, is that it is the supplement of the corner angle. This

means that the smaller the corner angle, the larger the corresponding value of θ1. We

can determine by using the value of 8—plot whether a boundary segment is a straight

line, a corner, or a curve. For a boundary segment to be treated as a straight line, the

7

value of θ—plot should not exceed the range from --θ,. to θsmax, where 0,. is usually

defined as:

If the 9—plot value in a boundary exceeds this range, then it is considered that the

segment is a curve or contains a corner. In this case, a peak width is determined. To

differentiate the corners from the curves, some task-dependent knowledge is usually

used. For example, often only corners of 90° and curves of much lower curvature are

present. Thus a simple threshold on the 8—plot peaks is sufficient to distinguish

corners from curve features. If the feature segment is decided to contain a corner, the

coordinates of the corner point could then be calculated. If it is decided to contain a

curve, the curvature center could also be calculated. The readers may look for [3]

for more details of the calculations.

In [4] some comparisons of the DOS+ method with the Gaussian smoothing

method has been presented. The results showed that the DOS+ method has better

corner detectability over the Gaussian smoothing method. The other advantage of

DOS+ is that it performs better than Gaussian smoothing method under the noise dis-

tortion of the boundary.

From the above brief survey we could see that the-fundalmental characteristics

of a corner point is its change of curvature along the boundary. According to the cal-

culus, the curvature of a point in a curve could be defined as:

But in general we could not apply this formula directly in the computations. There

are at least two reasons for this. First, the above formula is derived from the continu-

ous mathematics, while the boundary of the image is usually consisted with finite

number of discrete points. Until now we could still not predict what would happen if

we apply this continuous formula to the discrete points. Second. our boundaries are

usually subjected with distortion of noises. It may cause great change for the

behavior of the formula even though a very tiny noise is present.

We could also see that almost all of the methods described above are based to

some extend on some heuristics. Because of this, every method has some advantages

as well as some drawbacks. They usually succeeded in one set of boundaries while

failed in another. From this point of view we can say that more research work is still

8

needed in development more efficient and more precise methods for the corner points

detection.

3. The Heuristical Algorithm for Corner Points Detection

3.1. General Discussion

Consider a piece of boundary segment in an image whose boundary points are

represented in Cartesian coordinates. We connect the end points of the segment with

a straight line. Then we consider the distances of the boundary points to this straight

line segment (We usually call these distances the sampled boundary distances

according to [12]). By studying these distances we could find that those points

whose distance is a local maximum or local minimum in a neighbor usually represent

a meaningful change of the curvature along the boundary. Fig. 3 described this idea

in an intutive way. In Fig. 3, the boundary points a, d, and e may be considered as

feature points. The most obvious characteristics is that the Sampled Boundary Dis-

tances (SBD for short) for those points, that is, the distances from these points to the

straight line, l1,l4,l5 are either a maximum (l1,l5), or a minimum (14) in a neighbor

area around these points. This suggest us that we can use this characteristics to help

Fig. 3. Boundary points with local maximal or local minimal
SBD's may be considered as candidates of feature points.

us to determine the candidates of corner points on an image boundary.

9

Only this condition is not enough to consider these candidates as corner points.

Let take as an example the boundary points d and e in Fig. 3, whose SBD's are also

local maximum or local minimum in their neighbor areas. Because the curvatures on

these points are so "smooth", we usually don't think that they more valuable feature

than other boundary points. Therefore we have to eliminate them. This could be done

by further considering the curvature characteristics of the candidate points. Accord-

ing to the differential geometry, we could define this curvature characteristics as a

ratio which is formulated as follows:

where yi is the height of a piece of boundary curve in the neighbor of the point p„

and xi is the width of that segment. We will give the detailed development of the

decision formula in the next subsection.

3.2. The Parabolic Property in the Neighborhood of a Point on a Curve

From the theory of differential geometry, we realize that the following statement

holds:

-Assume that r=r(s) = (x (s) , (y (s)) is a curve on plane XOY , where s is

the arc length. Without loss of generality, we can assume that the origin is located at

r(0), i.e., x (0) = y (0). If the curvature of curve r at s = 0 is k > 0, the parametric

equation of the curve in the neighborhood of this point is:

Therefore, the shape of the neighborhood of this point on curve r is approximately a

parabola (see Fig. 4):

in other words, the curvature ko in this neighborhood is approximately

since k 0 is proportional to y/y^2-, we can compare the corresponding value of y/y^2 when
x x

we need to compare the curvature at different points. In other words, if we use

10

(xA , yA) and (x8 , y8) to represent the local coordinates at points A and B , respec-

tively, we can see that the curvature at point A is greater than that at point B if

YA YB > Especially when vA = B

y

 >k yB, xA < x B if kA>k B. That is, the parabola at A is
xA xB^2

steeper than that at point B . If we move the curve segment LB at point B to point A ,

LA should be above LB (see Fig. 5).

The above statement can also be proved regorously as follows: Let the equations

of curve LA and LB are rA(s)= (xA(s), y,, (s)) and rB (s) = (xB(s), YB(s)), respectively.

Assume that they both pass the origin at s = 0, that is, rA (0) = r (0) = 0 (= (0,0)). Using

kA (s) and kB (s) to represent the curvature of curve LA and LB , respectively, when both

kA (s) and kB (s) are positive, the curve LA and LB at s = 0 are approximately parabolic:

We now assume that the curvature of LA at s=0 is greater than the curvature of LB at

so, i.e., k4 (0) > kB (0), then when both LA and LB are smooth, by continuity, we should

have. in the neighborhood of s=0.

it θA(s) and 83 (s) represent the angle between the tangent lines of curves LA and

LB , respectively, and the x-axis, then by the taking of coordinate system we have

θA (0) = θB (0) = 0 and 0 <= θA (S), θB (s) <= π/2. Consequently, from the definition of curva-

11

cure k(s), we obtain:

Therefore, when s is small enough, we can obtain from Eq. (1):

This equation indicates that, in the neighborhood of origin, the slope of the

tangent line at curve LA is greater than that of LB. From Eq. (2), = sinθ

and the assumption that xA (0) = xB (0) = Y A (0) = Ye (0) = 0, we obtain

Specially if ya(s) = YB (s) (see Fig. 6), then

Hence, s2 > S1. Further, we have

That is:

Eq. (3) and the assumption yA (si) = Ye (s2) lead to the following result:

Eq. (3) shows that, if the coordinate is taken from neighborhood of s = SA on curve LA

and of s = SB on curve LB , then when the coordinates are the same. the abycissa of

the curve with the greater curveture is smaller than that of smaller curvature. In short,

we can use y/x^2 as the measurement of the curvature in the neighborhood of a point of

the curve, where x, y are the local coordinates in the neighborhood of that point.

12

From the above discussion, we see that if for a candidate point P, its value of k,

exceeds some threshold. then it could be considered as a corner point. Otherwise we

could eliminate it. Usually this threshold is task-dependent.

3.3 The Algorithm

We now embed the above ideas into our algorithm of corner points detection

along the whole image boundary. To make the method work, we must first divide the

whole image boundary into several segments. Usually the number of points on a seg-

ment is taken as a sixth or eighth of the total number of points on the whole boun-

dary. However, some problem may occue if a corner point is just a joint point of two

segments by our segment selection. Fig. 6(a) shows such an example. In this case.

point P is a corner point, but it is ignored because of the segment selection. The

problem could be solved by letting the segments be overlapped to some extend. In

our experiment, we took the extend of the overlapped area as a half or a third of the

segment. The method is shown in Fig. 6(b). According to the above discussion, we

briefly list our algorithm as follows:

1. Set the search boundary segment length to 1/8 of the whole boundary;

2. Select the first boundary segment;

3. while the search area not cover the whole boundary do

3.1. For each of the segments do

3.1.1. Compute the distances from the boundary points of the segment to the

straight line connecting the end points of the segment;

3.1.2. Select the points which are the local maximum or local minimum as

the corner point candidates.

3.1.3. For each of the candidates do

3.1.3.1 Calculate the curvature characteristical value Ki according to for-

mula (1);

3.1.3.2 If K,> threshold. then accept the candidate as a corner point; Oth-

erwise reject it.

3.2. Advance the search segment by half length of the segment:

3.3. endwhile

Because of the presence of noises, it may be true that sometimes the place

where our candidate located is not the place where the real one is located. But

13

(a) (b)

The method to overcome the A case in which a corner may
be ignored. problem. --

Fig.6. An example of failure detection of a feature point and the solution to it.

according to some statistical data, we can safely assert that the true corner point will

be in a neighbor area of the candidate if this area contains one. Thus in step 3.1.3.2

of the above algorithm. instead of just calculating the curvature characteristical value

of only the candidate, we could modify it so that it calculates every point in the

neighbor area where the candidate locates. By select the point with maximum cur-

veture characteristical value among the points ine the area, we could thus avoid the

deviation of the corner points.

4. Implementation of the Algorithm

4.1. Candidate Points Selection

Assume that we are given a segment of image boundary which is composed of

points P 0(xo, yo), P 1(x1, y1), Pk (xk , yk) represented in Cartesian coordinate system.

First we make a chord connecting the end points of this segment. that is, the straight

line segment passing through Po(xo, yo) and Pk(xk, yk). The line equation for this chord

is:

Or, by some processing, we could write its general form:

14

where A . B,C are constants which can be represented as the combination of

xo, Yo, x,„ yk . Then according to analytical geometry, the distance from a point Pi (x„ y1)

on the curve to this line could be written as:

or more precisely:

is the length of the chord.

After the distances from all of the points on the curve to the chord P ork have

been calculated, we can then select the local maxima or local minima by comparing

these distances. Assume that Pm is a local maximum in a neighbor area from Pm-1 to

Pm+r where / and r are the length of left and right area respectively, then we have:

where d, and dm are the distances from points Pm and P, to the chord respectively. Or

at least we have:

respectively. If we define a sign function as

We can pick up points which are satisfied by Eq.(8) in a very simple way. For a

point Pm to satisfy the Eq.(8), it is clear that:

that is:

and

Similarly, for a point Pm to be a candidate of local minimum, we would have:

15

By similar development, we get the condition for local minimum candidates, which

is:

and

This mechanism could be implemented in following steps:

sign1:=1; d1:0;

for i:=1 to k-1 do

begin

compute d2: the distance from Pi to the chord according to Eq.(7');

if d2-dl>0 then

sign2:=1 else

if d2-d1=0 then

sign2:=0

else

sign2:=-1;

if signl*sign2=-1 then

if sign 1>0 then

mark Pi as a local maximal candidate

else

mark Pi as a local minimal candidate;

sign1:=sign2: dl :=d2:

end:

By study formula (7) and (7') further, we could find that there is a minor prob-

lem: Because the distance d, calculated from Eq.(7) or (7') is an absolute value, then

we would have such cases shown in Fig.7 which satisfy the satisfy the conditions (9),

(10), or (12), (13). But in these cases they are neither the local maximum nor the

local minimum.

To overcome this problem, we introduce the concept of virtual distances. Con-

sider a straight line in the XOY plain whose equation is:

16

Fig.7. An example of detection of a spurious point.

Assume Pi (xi y1) is a point on XOY plain. From the analytical geometry we know that

if Pi is on the line, then we have:

If P, (x, y1) is above the line, then we have:

and finally, if P ,(x„ y1) is under the line. we have:

From this point of view. we define a virtual distance from a point to a straight as fol-

lows: First we calculate the distance from P, to the line according to Eq(7) or (7').

The we check the position of P, related to the line. If P, is above the line, we make

17

this distance positive: if P, is under the line, we make it negative. In fact, it is a very

easy task to calculate the virtual distances by remove the absolute operation from

Eq.(7) or (7'). Thus the formula to find a virtual distance from point P, to a line is

simply:

or

To show that the virtual distances can help us solving the problem, consider the

situation shown in Fig.7. Assume that the boundary segment cross with the chord at

point Pz, with its left neighbors Pz-1, Pz-2, ..., above the chord and its right neighbors

Pz+1, Pz+2, ..., under the chord. Clearly we have d^vz = 0. All of its left neighbors, accord-

ing to the definition of virtual distance, have the positive virtual distances, and all of

its right neighbors -will have negative distances. Furthermore, we can also arrange

these virtual distances in a decreasing order like this:

Thus, at point Pz we have:

and

which means that Pz could not be picked up as a candidate of local maximum or

local minimum. The above algorithm can be modified to implement this: instead of

calculating distance d, according to Eq(7'), we calculate the virtual distance di"

according to Eq(14').

- 4.2. Candidate points Determination

After all of the candidates of possible local maximum or local minimum have

been detected, we should further decide which points are most promising candidates

of corner points. Because of the presence of noises, it is not a easy task to

differentiate a real candidate from a spurious one. Fig.8 shows some cases that results

in the generation of spurious candidates.

18

In Fig.8 point P 2 is a probable noisy peak and it has been picked up as candi-

date because it satisfies the condition. This kind of spurious points are relatively easy

to eliminate. Because the range of this kind of noisy peak is usually only a few

points, by setting up a threshold on the range, they could usually be eliminated. The

usual way to eliminate a spurious point is to calculate the length of left and right arm

of a candidate point. If both the left and the right arm lengthes exceed a threshold

and the product of them (sometimes we use the product of the values of some func-

tion of them, such as square root. or logrithm, etc.) also exceeds a threshold, then it

is considered as a more promising candidate. To express this idea more precisely,

assume that the lengthes of left and right arms of a candidate point P, is 1 and r

respectively, then the decision rule for Pi is:

1. 1, r are both greater than a threshold;

2. f (1)1(0 is greater than a threshold. (Here the function f may take the form of:

f (x)=√x f (x)=x, or f (x)=(nx)

Then the question is: how can we determine the length of left or right arm for a

given candidate point Pi ? One way is that we count the number of points from P, to

the left or right with continuously increasing or decreasing order the virtual distances,
that is we selert r such chat

as the length of its right arm. The length of left arm can be selected in a similar way.

There is subtle case which can cause problem for this decision rule. Consider a

situation in Fig.9: Here P is a real candidate, p' is a noise. The actual end of the

right arm of P is P". But because of the existance of noise P', it may cause that the

right arm length calculated by the above decision rule with only few points. And if

this length is under the value of threshold, it may also be eliminated. Thus causes a

failure of detection.

To solve this kind of problem, we use the following mechanism: When we meet

a point P1+k which violates the condition (15), that is, say:

we count from P1+k the number of points which are violate this condition until either

at some point the condition is restored or the number of violating points has

19

exceeded some threshold. For the former case, we consider these violating points as a

noise and just ignore them and continue the process from the restoring point. For the

latter case. we don't think them as a noise, but as a part of another candidate. In this

case, the actual length of the right arm we found is k. (The mechanism has been

tested separately with a set of test data. The testing data set and the description of

the results is listed in Appendix II)

After the left arm and the right arm have been found in this way, we then con-

sider the value of the square root of the product of the arms. it is:

where t1 is the length of the left arm of the candidate point P, and t2 is length of its

right arm. According to this k1, we can eliminate some spurious points. If k, is less

than a threshold, then we consider it as a spurious candidate and just eliminate it.

Otherwise we accept it for further consideration. The reason that we use the square

root of the product of the length of the arm is that: The length of the arms-have no

doubt the contribution for a candidate to be a corner, but this contribution is not

20

proportional to the length of the arms.

We can now summarize the above discussion in following steps:

Initialize the noise count;

Initialize the left and right arm counts:

for each candidate Pk do

find the left arm of Pk :

Repeat

while P, violate the arm condition and noise count less than threshold

do:

increment the noise count;

decrement i;

if noise count exceeds the threshold then exit;

increment the left arm count:

decrement i;

forever

find the right arm of P,:

Repeat

i:=k+1;

initialize the noise count to 0;

while Pi violate the right arm condition and noise count less than

threshold do

increment the noise count;

increment i:

if noise count exceeds the threshold then exit;

increment the right arm count;

invrement i;

forever Decide whether accept or reject Pk :

if sqrt(leftcount*rightcount)>threshold then

accept Pk for further consideration;

else

eliminate Pk;

endfor_

21

4.3. Final Selection of the Corner Point

For those candidates survived from the elimination steps described in Sec.

4.2, we must further consider the change of curvature around these points. Con-

sider an arc segment in the neighbor of a candidate point Pi as shown in Fig.10

We denote the span of this arc as x, and the height as y. By the conclusion of

Section 3.2, we can determine that: if the ratio of y over the square of x is high,

this also means that the point Pi has high curvature. In other words, the curva-

ture c, at the point Pi is proportional to this ratio:

Fig. 10. The geometrical meaning
of Formula 11).

We can use this formula as a decision rule, that is: if c, is greater than a given

thrshold, then the curvature at Pi is large enough for P, to be picked up as a

corner point, otherwise we reject P, as a corner point.

Before we implement this mechanism, we must take little further con-

sideration: There may be cases in which the candidate is biased little from the

real corner point. To find more precise position of the corner point, we could

test the curvatures of all the points in a neighbor area of the candidate, and

select the the point with the highest curvature among the points in this-area as

the corner point. In this way, the location of the corner would be more precise.

22

We describe the algorithm as follows:

Algorithm: Final Detection of Corner Point;

Input: A corner Point Candidate Pi ;

Output: P', in a neighbor area of P1 with the maximal value of y /x2 and

this value exceeds a given threshold, or reject Pi if no such a point found.

1. Pick up 8 as the range of the neighbor area:

max c4-0; max loc4-0;

2. for j4--i - 8 to i + 8 do

yl 4-- height of the arc centered at Pi;

xi 4- span of the arc centered at Pi ;

c • 4- ye/x1^2

if ci>,ax_c then max loc•-j;

end:

(* Now the point with the maximal curvature has been determined.

Next step is to determine whether we should accept it or reject it *)

3. if max c > threshold then

output Pmax_loc as a corner point;

else

reject it:

end of the algorithm

5. Experiments Results

The method described in this paper is implemented in C language running on

the Sun system. Following are some experiments used to test its performance.

In the figure of Fig. 11, the seven corner points are detected with the value of

threshold of the curvature characteristical value equal to 0.08. From the figure we see

that the location of the corners are detected precisely. Fig. 12 also shows a very suc-

cessful detection. In Fig. 13, most of the corner points are detected correctly. Point x

should be a corner point, but the method fails to detect it. The method also failed to

detect the point y, but this is a very confusing point. The feature of this point is not

very sharp. In fig. 14 all of the interesting feature points are detected. But it also gen-

erated two spurious points (x and x'). The boundary in Fig. 15 is a subtle case. In

this figure, two seemed interesting points was not detected. By changing some value

of thresholds, they could be detected. But it may also generate some points which we

23

don't want. It seemed that for the complicated image boundary some further study of

the relationship between the detectability and the value of parameters is still needed.

The experiments also show that the method is very efficient. By analysis we

know that the time complexity for the method is 0 (n), where n is the total points

of the image boundary.

6. Conclusion

In this paper, a heuristical method mainly based on the concept of SBD and the

curvature characteristical value is discussed. Some experiments show that, although

some further work for the refinement of the method is needed, it works for a variety

set of image boundary. Some mechanisms dealing with the noises on the boundary

are also proposed to improve the precision of the method. One of the advantages of

the method is its simplicity. Also it is a very efficient method.

Acknowledgement

The author would like to thank Dr. David T. Wang who advised this research

work. Without his instructions it is impossible that this work is done. The author

would also like to thank the visiting professor Guizhang Tu who helped the author in

solving the mathematical problem of this research work.

References

1. Haruo Asada, Michael Brady, "The Curvature Primal Sketch", IEEE Trans. Pat-

tern Analysis and Machine Intelligence, Vol. PAMI-8, No.1, Jan. 1981, pp 2-14. -

2. Liu H. C., Srinath M. D., "Corner Detection From Chain-Code", Pattern Recog-

nition, Vol. 23, No.1/2, pp 51-68, 1990.

3. Lawrence O'Gorman, "Curvilinear Feature Detection from Curvature Estima-

tion", 9-th ICPR, Rome, Nov. 1988, pp 1116-1119.

4. Lawrence O'Gorman, "An Analysis of Feature Detectability from Curvature

Estimation", CVPR, Ann Arbor, Jun. 1988, pp 235-240.

5. Gerard Medioni, Yoshio Yasumoto, "Corner Detection and Curve Representation

Using Cubic B-splines", Computer Vision, Graphics, And Image Processing 39,

pp 267-278, 1987.

6. Azriel Rosenfeld, Joan S. Weszka, "An Improved Method of Angle Detection on

Digital Curves", IFFE Trans. Comput.. Sept., pp 940-941, 1975

24

7. Beus H. L., Tiu S. S. H., "An Improved Corner Detection Algorithm Based on

Chain-Coded Plane Curves'', Pattern Recognition Vol. 20, No. 3, pp 291-296,

1987.

8-. Rosenfeld A., Johnston E., "Angle Detection on Digital Curves", IEEE Trans.

Comput.. 22: pp 875-878, 1973.

9. Cheng F., Hsu W., "Parallel Algorithm for Corner Finding on Digital Curves",

Pattern Recognition Lett. 8: 47-53, 1988.

10. Rosenfeld A., Thurston M., "Edge and Curve Detection for Visual Scene

Analysis", IEEE Trans. Comput., Vol., c-20, No.5, pp 562-569, 1971.

11. Freeman H., Davis L. S., "A Corner Finding Algorithm for Chain-Coded

Curves", IEEE Trans. Comput. 26: pp 297-303, 1977.

12. Wang D. T., Wei C,S., Chen S.S., Sung B.C., Shiau T.H., Ng P.A., "Cross

Correlation of Sampled Boundary Distances - An Approach to Object Recogni-

tion", Proc 1st Int'l Conf System Intergration, Morristown, New Jersey, April

23-26, 1990.

Appendix I: Source Program Listing for the Implementation of the Method.

/***/

/*
/* This is a program of using the corner finding
/* algorithm to find local features points.

/*
/* Programmer : Qiuiin Li
/* Date : Dec., 1991
/*
/***/

#include <stdio.h>

#include <math.h>

#define MAXLEN 1500 /* the maximum points of image */

#define SQUARE(A) ((A) * (A))
#define LEFT 5 /* maximum points of left arm */

...

#define SELECT 4 /* define interleave of point */
#define RIGHT 5 /* maximum points of right arm */

#define YES 1
#define ABS(a) (a >= 0 ? a : -a)

#define Noisethreshold 3

#define Armthreshold 5

int len; /* number of points of image */
int local; /* number of points of local calculation */
struct node (int x; int y;

int n;

) ;
struct sor

float length;

int point;

);
struct sor *height(); /* function to find the vertical distance */

26

struct node point[1000]; /* array storing the cordinate of boundary points */
struct node maxnmin[200];
struct sor array[100];

-int RANGE; /* global range */

int HOLD; /* value of right*Ieft

right and left are defined in the program */
float c hold: /* value of y/(x*x) */ _
int Feature_points[100], nxt_feature_pt=0;

void insert();
void output_feature_points();

int get sign();

main 0

{
int i,n;

FILE *fp,*fpp;
char boundaryfile{20];

char *argv[2];

/* input image file name. filename.bd */

printf(" Enter filename for the image boundary : ");
scanf(" % s",boundaryfile);

fpp = fopen(boundaryfile,"r");

while(fpp == NULL)
{

printf("*** Open error, no such raw image file\n");

printf(" Rekey-i imageboundary file name please : ");
scanf("%s", boundaryfile);
fpp = fopen(boundaryfile,"r");

/* get input from image file */
get_input (&len,fpp);

/* input global range, EVEN number */
RANGE=len/8;

27

c hold-0,06;
max and min(&len);
out put_feature_points();

fcloseapp);

I

/*
Read image boundary datas and boundary length.

*1

get_input(len,fp)

int *len;
FILE *fp;
{
int i;

fscanf(fp,"%d",len);
for (i = 0; i < *len ; i++)

{
point[i].n = i;

fscanf(fp,"%d %d",&point[i].y,&point[i].x);

I

I

/***/

/*

find local feature points
*1

max _ and _min(leng)

int *leng;
{

int i,j,count,from_zero;

float lon;

28

struct sor *max array;

for(i=0:i<*leng;)

{
from zero = 0; _
count = i;

for(j=0;j<RANGE;j++) /* read points- in the range into array

{

if(count < *leng)

{
maxnmin[j].x = point[count].x;

maxnmin[j].y = point[count].y;

maxnmin[j].n = point[count++].n;

I

else /* pass last point */

{

maxnmin[j].x = point[from_zero].x; _
maxnmin[j].y = point[from_zero].y; _

maxnmin[j].n = point[from_zero++].n; _

I
max array = height(maxnmin,&lon.RANGE); /* array storing the vertivcal _

distance */

trimmax array,lon); /* first trim determined by right*left */ _
i = i - RANGE/SELECT;

/***/

/*

calculate the vertical distance
*1

struct sor *height(cmaxnmin.l,range)

29

*1

struct node *cmaxnmin; /* array of the points in the range */

int range; /* local max calculation range */
float *I; /* distance between the first point and the last point */

{

float raw area.distancearea.fullarea;

float verticle;

float xx.yy;
int index.i.max_lo_ind;
float xl.yl,x2.y2,slope;
int inverse,sign;

xl=cmaxnmin[0].x; yl=cmaxnmin[0].y;

x2=cmaxnmin[range-1].x; y2=cmaxnmin[range-1].y;

if (xl==x2)

[
inverse=!;

}
else

inverse=0;
slope=(y2-y1)/(x2-x1);

I
index = 0;

xx = SQUARE((cmaxnmin[range-1].x_- cmaxnmin[0].x));

yy = SQUARE((cmaxnmin[range-1].y - cmaxnmin[0].y));

distance = sqrt((double)(xx + yy));
/* distance between the first point and the last point */

for(i=0;i<range;i++)

I

/* area of triangle divided by distance to get the vertical distance */

raw area = (cmaxnmin[i].y-cmaxnmin[0].y) _
*(cmaxnmin [ran ge- 1].x-cmaxnmin [0].x)

-(cmaxnmin [range- 1].y-cmaymmin [0].y)
*(cmaxnmin[i].x-cmaxnmin [0].x);

30

fullarea = ABS(raw area);
verticle = fullarea / distance;
if (inverse)

sign=cmaxnmin[i].x-xl;

else

sign=cmaxnmin[i].y-yl-slope*(cmaxnmin[i].x-x1);
if (sign>0) sign=1;

else
{

if (sign<O) sign=-1;

)
array[index].length = verticle*sign;

array[index++].point = cmaxnmin[i].n;

) /* end */
*1 = distance;
return array;

I
...

1***1

/*

find load maximum determined by right*Ieft
*1

trim(rarray,d)

struct sor *rarray;

float d;

{
int i.max _ind.j,k.left.right;
int left noise.right noise.left limit.right limit; _ _ _ _

typedef struct {

int del bit;

int what;
int leftarm.rightarm;
int point_inx;

31

32

33

34

35

36

37

38

Appendix II: Data Set Used to Test the Mechanism of Noise Elimination

Dicussed in Sec. 4.2.

Test 1: In the following segment, no noise is present. The only one corner point

is Point P 16. The method can detect this point successfully. —

40 20 15 22 18 24 21 26 24 28 27 30 30 32 33 34 36 36 39 38 42 40 45 42 48 44

51 46 54 48 57 50 60 53 58 56 56 59 54 62 52 65 50 68 48 71 46 74 44 77 42 80

40 83 38 86 36 89 34 92 32 95 30 98 28 101 26 104 24 107 22 110 20 113 18 116

16 119 14 122 12

Test 2: In the following set. a noise generated two spurious corners. The real

one is at point P16, two spurious ones are P 20 and P 22. In the test run, first the three

points are detected as candidates. Then the spurious ones are eliminated by the

mechnism. Following is the test data set.

40 20 15 22 18 24 21 26 24 28 27 30 30 32 33 34 36 36 39 38 42 40 45 42 48 44

51 46 54 48 57 50 60 53 58 56 56 59 54 62 52 65 54 68 62 71 58 74 50 77 44 80

40 83 38 86 36 89 34 92 32 95 30 98 28 101 26 104 24 107 22 110 20 113 18 116

16 119 14 122 12

39

Appendix III: Figures from the Experiments.

Fig.11. Experiment result 1.

Fig,12. Experiment result 2.

40

Fig.13. Experiment result 3.

'X I

Fig.14. Experiment result 4.

41

Fig. 15. Experiment result 5.

42

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Acknowledgement
	Table of Contents
	Chapter 1: Introduction
	Chapter 2: Survey of Previous Work on Cornor Points Detection
	Chapter 3: The Heuristical Algorithm for Corner Points Detection
	Chapter 4: Implementation of the Algorithm
	Chapter 5: Experiment Results
	Chapter 6: Conclusion
	References
	Appendix I: Source Program Listing for the Implementation of the Method
	Appendix II: Data Set Used to Test the Mechanism of Noise Elimination Discussed in Sec. 4.2
	Appendix III: Figures from the Experiments

