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Abstract 

A Heuristical Method 
Of Corner Detection On an Image Boundary 

By 

Qiulin Li 

A heuristics-based method of corner points detection on an image boundary is 

proposed and implemented. The method uses the sampled boundary distances to 

find all of the candidate corner points along the image boundary. Then the curvature 

characteristical value is used to measure the severity of curvature change of the 

candidate points. Those candidates whose curvature characteristical value is under 

some threshold are eliminated. The paper also proposed some mechanism to reduce 

the effect of noises on the boundary. Experiments show that it is an efficient method 

and it gives satisfactory results on some image boundaries. 
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1. Introduction 

The recognition of geometrically shaped objects by their boundaries or contours 

is of great importance in the field of computer vision and pattern recognition. For 

example, if a person is shown a silhountte formed by back illuminating a pile of 

objects, it is usually a simple task to identify the objects that contribute to the boun-

dary. Even though there are no depth or color cues available, we can eventually 

recognize the objects from their two dimensional boundary contours[1]. 

To analyze and recognize a two dimensional image boundary, it is important to 

identify those basic geomatrical elements which contribute to the combination of the 

image boundary. Asada and Brady[1] categorized those basic elements into five 

types, and called them curvature primal sketch. They are: corners, smooth joins, 

Fig. 1. The curvature changes proposed as primitives are 
illustrated. (a) The corner and smooth join are isolated 
changes. (b) The crank. end, and bump or dent are com-
pound changes formed of corners. (After Asada and Brady(1)) 

cranks, ends, and bumps or dents. Fig. 1 illustrates these five basic elements of 

boundary changing. The elements represent five different forms of curvature change 
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along the boundary of the object. For example, corner represents a discontinuity point 

of the curvature change. It isolates two boundary segments, each of which has a con-

tinuous change of curvature. Smooth join, on the other hand, isolates also two seg-

ments of boundary with continuous curvature change, except that the curvature at this 

point is "smooth". If we describe this fact in mathematical language, it is just to 

mean that the first order derivative of the boundary function is continuous at the 

smooth join but discontinuous at the corner. For another example, both cranks and 

ends have two close discontinuity points of curvature changes. The difference is that 

the former has the change in opposite directions while the latter has the changes in 

the same direction.[1] 

Study the five basic elements, we see that each of them describes a special case 

of severe curvature change along the image boundary. The most important point here 

is the severity of the curvature changes. From the elements we see that each element 

contains at least one such point. We could call this kind of points corner points (We 

call this corner points to differentiate it from the corners in the previous paragraph). 

The presence of a corner point is usually an indication of feature point in the 

image boundary, a road intersection, a house, a cultivated field. etc. If a surface 

region is broken into many parts and then reassembled, at least one of them ( and 

possibly all ) will exhibit a "corner" at every point at which n parts join to form a 

closed junction. 

From the above discussion we can get such a conclusion: Corner points are the 

important feature points on the image boundaries. Therefore if we could recognize all 

of the corner points along the image boundaries, we can then gain a lot of important 

information for the image analysis and classification. 

In this paper we present a heuristics based method for the corner points detec-

tion. It uses the sampled boundary distances and the ratio of the height to the width 

of a piece of curve at the neighborhood of a possible high-curvature point. The 

expenments show that it is an efficient and promissing method. 

The paper is arranged in the following way: Chapter 2 reviews some of the pre-

vious research work on the topic in that seven methods are discussed and evaluated. 

Chapter 3 introduces our heuristical corner points detection algorithm. Chapter 4 

discusses some issures of implementation of the method. Chapter 5 shows some 

experimental resulte and some conclussions. 
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2. Survey of Previous Work on Corner Points Detection 

While the definition of the corner points is very simple, it is not a trivial work 

to detect them along the image boundaries. In the past two decades, a lot of research 

-work has been spent in this field. We survey some of it. - 

There are two directions in this field. One refers to those which are image-

based, the other refers to those which are boundary-based. In this paper, we pay 

attention to the latter. 

Liu and Srinath[2] summarized and evaluated 6 methods of corner points detec-

tion based on the image boundaried represented in chain-code. Following are brief 

description of these methods: 

Method 1: Medioni-Yasumoto Corner Detector. 

In this method, an image boundary is fit by a parametric cubic B-spline[5] and 

use the displacement between the original point and the interpolating spline to decide 

whether the point is a corner point. Those points for which the displacement exceeds 

a given threshold and the curvature is high are recognized as corner points. 

The experiments showed that this is very sensitive to the smoothness of the 

boundary points. This is because the scheme detects the corner points by using five 

points in the boundary to compute the curvature and displacement of its B-spline fit. 

Thus, if any of these 5 points moves by even one pixel, the result can change drasti-

cally. 

Method 2: Beus-Tiu corner detector. 

In this method, a corner point is defined as an isolated discontinuity ( local 

curvature ) in the mean slop whose prominance is proportional to the length of the 

discontinuity-free regions to either side as well as the severity of discontinuity. If we 

define δs as the measure of servrity of discontinuity, whose computation was 

described in [2] and [7], and t i  and £2  are the length of the discontinuity-free region 

in both sides. Then we can calculate the value of decision function K, as follows: 

= f (t1)x∑8,2  x f (t 2 ),  
i=1 

where f is some function like square root, in, etc. The decision rule is as follows: If 

K1  is above a given threshold, then j is considered as a corner point. 

As shown in Beus and Tiu. this algorithm fails to detect some obvious corner 

points and detects spurious corner points in some situation. Some improvements are 

also proposed to enhance this method. 
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Method 3: Weighted-K-curvature corner detector. 

Rutkowski and Rosenfeld concluded that the result of this method can detect 

corner points most closely resembling those detected by a human. In this method. the 

contour is defined by a chain code. Given a set of weights, w1, w2, ..., wk, the 

weighted-K-vector at point i is defined as: 

Then the weighted-K-curvature at this point could be determined as: 

where • denotes the vector inner product and I I denotes the norm. Once the curvature 

has been estimated for all contour points, a corner point is detected if the curvature is 

above a given threshold and is a local maximum within a range [i —k , 1 +k 1. 

The result showed that only very few spurious corner points are detected. but it 

also fail to detect some real corner points. 

Method 4: Rosenfeld-Johnston Corner Detector[8] -- 

In this method. a so-called K-cosine value at the point i=(x1, y1) is calculated in 

this way: 

where aik , bik are called K-vectors in the point i, which is defined as: 

They also defined a way to choose an appropriate value of k. Assume the maximal 

value is m. Then using the K —cosine definition to compute the values c,1, c,2, ..., c,„„ the 

best value of k is chosen such that the following holds: 

The value of k and the corresponding cik  are used to detect corner points. If for all j 

such that I i—j| <= k/2,  cuk is a local maximum or minimum, point i is considered to be 2 
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a corner point. 

The drawback of this method is that it can lead to incorrect detection results 

when corner points occur too close to one another. 

Method 5: Rosenfeld-Weszka corner detector. 

This is just the modification of method 4. It smoothes the K—cosine at each point 

by a process of averaging. The average of K—cosine is defined by: 

for k even, and 

for k odd. The ci-(k)  is then used as a decision function in place of cik  of the previous 

method. 

Method 6: Cheng-Hsu corner detector 

This method is based on the definition of so-called bending degree according to 

the direction changes of forward and backward arms. Because it needs- more para-

graphs to describe the method, we omit the description. The interested reader could 

reference [2] and [ ]. 

The experiment results showed some drawbacks of the method. First, it is also, 

as of method 1, very sensitive to the smoothness of the boundary. On a noisy image, 

this can lead to spurious corner points. Second, it may result in a multiple response 

to the same corner point. Very often there is no way to find local maximum and to-

localize the corner point. 

Apart from the methods described above, there are also some other methods for 

the points detection. One is to use the difference of slope ( DOS )[3],[4]. to estimate 

the curvature of the boundary points. 

In this method, curvature at a point is estimated as the angular difference 

between the slope of the line segments fit to the data before and after the point. For 

the DOS method, both segments are of arc length w, and the overlap of the two seg-

ments is denoted as M. The total length from the beginning of one segment to the 

end of another segment could be written as: 

Thus; if M > 0, there is an overlap between the segments. If M = 0, it means that the 
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Fig.2. DOS method for a) M<0. b) M=O. c) M>0. (After O'Gorman[4]) 

two segments are joined together. And if M < 0, the two segments are separate apart. 

Fig. 2 shows the three cases of M . We usually denote the DOS method with M > 0 as 

DOS+ method. For the DOS+ method, first the orientation of the two line segments 

connecting the endpoints of the arcs are calculated. The-formula for the orientation 

is: 

points of the line segments respectively. 

After the orientation are calculated. the difference of the slopes is calculated 

according to the formula: 

The geometrical meaning of 8, is that it is the supplement of the corner angle. This 

means that the smaller the corner angle, the larger the corresponding value of θ1. We 

can determine by using the value of 8—plot whether a boundary segment is a straight 

line, a corner, or a curve. For a boundary segment to be treated as a straight line, the 
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value of θ—plot should not exceed the range from --θ,. to θsmax, where 0,. is usually 

defined as: 

If the 9—plot value in a boundary exceeds this range, then it is considered that the 

segment is a curve or contains a corner. In this case, a peak width is determined. To 

differentiate the corners from the curves, some task-dependent knowledge is usually 

used. For example, often only corners of 90° and curves of much lower curvature are 

present. Thus a simple threshold on the 8—plot peaks is sufficient to distinguish 

corners from curve features. If the feature segment is decided to contain a corner, the 

coordinates of the corner point could then be calculated. If it is decided to contain a 

curve, the curvature center could also be calculated. The readers may look for [3] 

for more details of the calculations. 

In [4] some comparisons of the DOS+ method with the Gaussian smoothing 

method has been presented. The results showed that the DOS+ method has better 

corner detectability over the Gaussian smoothing method. The other advantage of 

DOS+ is that it performs better than Gaussian smoothing method under the noise dis-

tortion of the boundary. 

From the above brief survey we could see that the-fundalmental characteristics 

of a corner point is its change of curvature along the boundary. According to the cal-

culus, the curvature of a point in a curve could be defined as: 

But in general we could not apply this formula directly in the computations. There 

are at least two reasons for this. First, the above formula is derived from the continu-

ous mathematics, while the boundary of the image is usually consisted with finite 

number of discrete points. Until now we could still not predict what would happen if 

we apply this continuous formula to the discrete points. Second. our boundaries are 

usually subjected with distortion of noises. It may cause great change for the 

behavior of the formula even though a very tiny noise is present. 

We could also see that almost all of the methods described above are based to 

some extend on some heuristics. Because of this, every method has some advantages 

as well as some drawbacks. They usually succeeded in one set of boundaries while 

failed in another. From this point of view we can say that more research work is still 
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needed in development more efficient and more precise methods for the corner points 

detection. 

3. The Heuristical Algorithm for Corner Points Detection 

3.1. General Discussion 

Consider a piece of boundary segment in an image whose boundary points are 

represented in Cartesian coordinates. We connect the end points of the segment with 

a straight line. Then we consider the distances of the boundary points to this straight 

line segment ( We usually call these distances the sampled boundary distances 

according to [12] ). By studying these distances we could find that those points 

whose distance is a local maximum or local minimum in a neighbor usually represent 

a meaningful change of the curvature along the boundary. Fig. 3 described this idea 

in an intutive way. In Fig. 3, the boundary points a, d, and e may be considered as 

feature points. The most obvious characteristics is that the Sampled Boundary Dis-

tances (SBD for short) for those points, that is, the distances from these points to the 

straight line, l1,l4,l5  are either a maximum (l1,l5), or a minimum (14) in a neighbor 

area around these points. This suggest us that we can use this characteristics to help 

Fig. 3. Boundary points with local maximal or local minimal 
SBD's may be considered as candidates of feature points. 

us to determine the candidates of corner points on an image boundary. 
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Only this condition is not enough to consider these candidates as corner points. 

Let take as an example the boundary points d and e in Fig. 3, whose SBD's are also 

local maximum or local minimum in their neighbor areas. Because the curvatures on 

these points are so "smooth", we usually don't think that they more valuable feature 

than other boundary points. Therefore we have to eliminate them. This could be done 

by further considering the curvature characteristics of the candidate points. Accord-

ing to the differential geometry, we could define this curvature characteristics as a 

ratio which is formulated as follows: 

where yi is  the height of a piece of boundary curve in the neighbor of the point p„ 

and xi is the width of that segment. We will give the detailed development of the 

decision formula in the next subsection. 

3.2. The Parabolic Property in the Neighborhood of a Point on a Curve 

From the theory of differential geometry, we realize that the following statement 

holds: 

-Assume that r=r( s ) = ( x ( s ) , (y (s)) is a curve on plane XOY , where s is 

the arc length. Without loss of generality, we can assume that the origin is located at 

r( 0 ), i.e., x ( 0 ) = y ( 0 ). If the curvature of curve r at s = 0 is k > 0, the parametric 

equation of the curve in the neighborhood of this point is: 

Therefore, the shape of the neighborhood of this point on curve r is approximately a 

parabola ( see Fig. 4 ): 

in other words, the curvature ko  in this neighborhood is approximately 

since k 0  is proportional to y/y^2-, we can compare the corresponding value of y/y^2 when 
x x 

we need to compare the curvature at different points. In other words, if we use 
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( xA , yA  ) and ( x8 , y8  ) to represent the local coordinates at points A and B , respec-

tively, we can see that the curvature at point A is greater than that at point B if 

YA YB > Especially when vA  = B 

y

 >k yB, xA < x B  if kA>k B. That is, the parabola at A is 
xA xB^2 

steeper than that at point B . If we move the curve segment LB  at point B to point A , 

LA  should be above LB  ( see Fig. 5 ). 

The above statement can also be proved regorously as follows: Let the equations 

of curve LA  and LB  are rA(s)= ( xA(s), y,, (s)) and rB  (s) = ( xB(s), YB(s)), respectively. 

Assume that they both pass the origin at s = 0, that is, rA  (0) = r (0) = 0 ( = (0,0) ). Using 

kA  (s) and kB  (s) to represent the curvature of curve LA  and LB , respectively, when both 

kA  (s) and kB  (s) are positive, the curve LA  and LB  at s = 0 are approximately parabolic: 

We now assume that the curvature of LA  at s=0 is greater than the curvature of LB  at 

so, i.e., k4  (0) > kB (0), then when both LA  and LB  are smooth, by continuity, we should 

have. in the neighborhood of s=0. 

it θA(s) and 83  (s ) represent the angle between the tangent lines of curves LA  and 

LB , respectively, and the x-axis, then by the taking of coordinate system we have 

θA (0) = θB (0) = 0 and 0 <= θA (S ), θB (s) <= π/2. Consequently, from the definition of curva- 
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cure k(s ), we obtain: 

Therefore, when s is small enough, we can obtain from Eq. (1): 

This equation indicates that, in the neighborhood of origin, the slope of the 

tangent line at curve LA  is greater than that of LB. From Eq. (2), = sinθ 

and the assumption that xA  (0) = xB  (0) = Y A (0) = Ye (0) = 0, we obtain 

Specially if ya(s) = YB (s) (see Fig. 6), then 

Hence, s2  > S1. Further, we have 

That is: 

Eq. (3) and the assumption yA  (si) = Ye (s2) lead to the following result: 

Eq. (3) shows that, if the coordinate is taken from neighborhood of s = SA on curve LA 

and of s = SB  on curve LB , then when the coordinates are the same. the abycissa of 

the curve with the greater curveture is smaller than that of smaller curvature. In short, 

we can use y/x^2 as the measurement of the curvature in the neighborhood of a point of 
 

the curve, where x, y are the local coordinates in the neighborhood of that point. 
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From the above discussion, we see that if for a candidate point P, its value of k, 

exceeds some threshold. then it could be considered as a corner point. Otherwise we 

could eliminate it. Usually this threshold is task-dependent. 

3.3 The Algorithm 

We now embed the above ideas into our algorithm of corner points detection 

along the whole image boundary. To make the method work, we must first divide the 

whole image boundary into several segments. Usually the number of points on a seg-

ment is taken as a sixth or eighth of the total number of points on the whole boun-

dary. However, some problem may occue if a corner point is just a joint point of two 

segments by our segment selection. Fig. 6(a) shows such an example. In this case. 

point P is a corner point, but it is ignored because of the segment selection. The 

problem could be solved by letting the segments be overlapped to some extend. In 

our experiment, we took the extend of the overlapped area as a half or a third of the 

segment. The method is shown in Fig. 6(b). According to the above discussion, we 

briefly list our algorithm as follows: 

1. Set the search boundary segment length to 1/8 of the whole boundary; 

2. Select the first boundary segment; 

3. while the search area not cover the whole boundary do 

3.1. For each of the segments do 

3.1.1. Compute the distances from the boundary points of the segment to the 

straight line connecting the end points of the segment; 

3.1.2. Select the points which are the local maximum or local minimum as 

the corner point candidates. 

3.1.3. For each of the candidates do 

3.1.3.1 Calculate the curvature characteristical value Ki according to for- 

mula (1); 

3.1.3.2 If K,> threshold. then accept the candidate as a corner point; Oth- 

erwise reject it. 

3.2. Advance the search segment by half length of the segment: 

3.3. endwhile 

Because of the presence of noises, it may be true that sometimes the place 

where our candidate located is not the place where the real one is located. But 
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(a) (b) 

The method to overcome the A case in which a corner may 
be ignored. problem. -- 

Fig.6. An example of failure detection of a feature point and the solution to it. 

according to some statistical data, we can safely assert that the true corner point will 

be in a neighbor area of the candidate if this area contains one. Thus in step 3.1.3.2 

of the above algorithm. instead of just calculating the curvature characteristical value 

of only the candidate, we could modify it so that it calculates every point in the 

neighbor area where the candidate locates. By select the point with maximum cur-

veture characteristical value among the points ine the area, we could thus avoid the 

deviation of the corner points. 

4. Implementation of the Algorithm 

4.1. Candidate Points Selection 

Assume that we are given a segment of image boundary which is composed of 

points P 0(xo, yo), P 1(x1, y1), .... Pk (xk , yk ) represented in Cartesian coordinate system. 

First we make a chord connecting the end points of this segment. that is, the straight 

line segment passing through Po(xo, yo) and Pk(xk, yk). The line equation for this chord 

is: 

Or, by some processing, we could write its general form: 
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where A . B,C are constants which can be represented as the combination of 

xo, Yo, x,„ yk  . Then according to analytical geometry, the distance from a point Pi (x„ y1 ) 

on the curve to this line could be written as: 

or more precisely: 

is the length of the chord. 

After the distances from all of the points on the curve to the chord P ork  have 

been calculated, we can then select the local maxima or local minima by comparing 

these distances. Assume that Pm is a local maximum in a neighbor area from Pm-1  to 

Pm+r where / and r are the length of left and right area respectively, then we have: 

where d, and dm are the distances from points Pm and P, to the chord respectively. Or 

at least we have: 

respectively. If we define a sign function as 

We can pick up points which are satisfied by Eq.(8) in a very simple way. For a 

point Pm to satisfy the Eq.(8), it is clear that: 

that is: 

and 

Similarly, for a point Pm  to be a candidate of local minimum, we would have: 
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By similar development, we get the condition for local minimum candidates, which 

is: 

and 

This mechanism could be implemented in following steps: 

sign1:=1; d1:0; 

for i:=1 to k-1 do 

begin 

compute d2: the distance from Pi to the chord according to Eq.(7'); 

if d2-dl>0 then 

sign2:=1 else 

if d2-d1=0 then 

sign2:=0 

else 

sign2:=-1; 

if signl*sign2=-1 then 

if sign 1>0 then 

mark Pi as a local maximal candidate 

else 

mark Pi as a local minimal candidate; 

sign1:=sign2: dl :=d2: 

end: 

By study formula (7) and (7') further, we could find that there is a minor prob-

lem: Because the distance d, calculated from Eq.(7) or (7') is an absolute value, then 

we would have such cases shown in Fig.7 which satisfy the satisfy the conditions (9), 

(10), or (12), (13). But in these cases they are neither the local maximum nor the 

local minimum. 

To overcome this problem, we introduce the concept of virtual distances. Con-

sider a straight line in the XOY plain whose equation is: 
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Fig.7. An example of detection of a spurious point. 

Assume Pi (xi y1 ) is a point on XOY plain. From the analytical geometry we know that 

if Pi is on the line, then we have: 

If P, (x, y1) is above the line, then we have: 

and finally, if P ,(x„ y1) is under the line. we have: 

From this point of view. we define a virtual distance from a point to a straight as fol-

lows: First we calculate the distance from P, to the line according to Eq(7) or (7'). 

The we check the position of P, related to the line. If P, is above the line, we make 
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this distance positive: if P, is under the line, we make it negative. In fact, it is a very 

easy task to calculate the virtual distances by remove the absolute operation from 

Eq.(7) or (7'). Thus the formula to find a virtual distance from point P, to a line is 

simply: 

or 

To show that the virtual distances can help us solving the problem, consider the 

situation shown in Fig.7. Assume that the boundary segment cross with the chord at 

point Pz,  with its left neighbors Pz-1, Pz-2, ..., above the chord and its right neighbors 

Pz+1, Pz+2, ..., under the chord. Clearly we have d^vz = 0. All of its left neighbors, accord-

ing to the definition of virtual distance, have the positive virtual distances, and all of 

its right neighbors -will have negative distances. Furthermore, we can also arrange 

these virtual distances in a decreasing order like this: 

Thus, at point Pz we have: 

and 

which means that Pz could not be picked up as a candidate of local maximum or 

local minimum. The above algorithm can be modified to implement this: instead of 

calculating distance d, according to Eq(7'), we calculate the virtual distance di" 

according to Eq(14'). 

- 4.2. Candidate points Determination 

After all of the candidates of possible local maximum or local minimum have 

been detected, we should further decide which points are most promising candidates 

of corner points. Because of the presence of noises, it is not a easy task to 

differentiate a real candidate from a spurious one. Fig.8 shows some cases that results 

in the generation of spurious candidates. 
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In Fig.8 point P 2  is a probable noisy peak and it has been picked up as candi-

date because it satisfies the condition. This kind of spurious points are relatively easy 

to eliminate. Because the range of this kind of noisy peak is usually only a few 

points, by setting up a threshold on the range, they could usually be eliminated. The 

usual way to eliminate a spurious point is to calculate the length of left and right arm 

of a candidate point. If both the left and the right arm lengthes exceed a threshold 

and the product of them ( sometimes we use the product of the values of some func-

tion of them, such as square root. or logrithm, etc.) also exceeds a threshold, then it 

is considered as a more promising candidate. To express this idea more precisely, 

assume that the lengthes of left and right arms of a candidate point P, is 1 and r 

respectively, then the decision rule for Pi  is: 

1. 1, r are both greater than a threshold; 

2. f (1)1(0 is greater than a threshold. (Here the function f may take the form of: 

f (x)=√x f (x)=x, or f (x)=(nx) 

Then the question is: how can we determine the length of left or right arm for a 

given candidate point Pi ? One way is that we count the number of points from P, to 

the left or right with continuously increasing or decreasing order the virtual distances, 
that is we selert r such  chat 

as the length of its right arm. The length of left arm can be selected in a similar way. 

There is subtle case which can cause problem for this decision rule. Consider a 

situation in Fig.9: Here P is a real candidate, p' is a noise. The actual end of the 

right arm of P is P". But because of the existance of noise P', it may cause that the 

right arm length calculated by the above decision rule with only few points. And if 

this length is under the value of threshold, it may also be eliminated. Thus causes a 

failure of detection. 

To solve this kind of problem, we use the following mechanism: When we meet 

a point P1+k which violates the condition (15), that is, say: 

we count from P1+k  the number of points which are violate this condition until either 

at some point the condition is restored or the number of violating points has 
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exceeded some threshold. For the former case, we consider these violating points as a 

noise and just ignore them and continue the process from the restoring point. For the 

latter case. we don't think them as a noise, but as a part of another candidate. In this 

case, the actual length of the right arm we found is k. (The mechanism has been 

tested separately with a set of test data. The testing data set and the description of 

the results is listed in Appendix II) 

After the left arm and the right arm have been found in this way, we then con-

sider the value of the square root of the product of the arms. it is: 

where t1  is the length of the left arm of the candidate point P, and t2  is length of its 

right arm. According to this k1, we can eliminate some spurious points. If k, is less 

than a threshold, then we consider it as a spurious candidate and just eliminate it. 

Otherwise we accept it for further consideration. The reason that we use the square 

root of the product of the length of the arm is that: The length of the arms-have no 

doubt the contribution for a candidate to be a corner, but this contribution is not 
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proportional to the length of the arms. 

We can now summarize the above discussion in following steps: 

Initialize the noise count; 

Initialize the left and right arm counts: 

for each candidate Pk  do 

find the left arm of Pk : 

Repeat 

while P, violate the arm condition and noise count less than threshold 

do: 

increment the noise count; 

decrement i; 

if noise count exceeds the threshold then exit; 

increment the left arm count: 

decrement i; 

forever 

find the right arm of P,: 

Repeat 

i:=k+1; 

initialize the noise count to 0; 

while Pi violate the right arm condition and noise count less than 

threshold do 

increment the noise count; 

increment i: 

if noise count exceeds the threshold then exit; 

increment the right arm count; 

invrement i; 

forever Decide whether accept or reject Pk : 

if sqrt(leftcount*rightcount)>threshold then 

accept Pk  for further consideration; 

else 

eliminate Pk; 

endfor_ 
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4.3. Final Selection of the Corner Point 

For those candidates survived from the elimination steps described in Sec. 

4.2, we  must further consider the change of curvature around these points. Con-

sider an arc segment in the neighbor of a candidate point Pi as shown in Fig.10 

We denote the span of this arc as x, and the height as y. By the conclusion of 

Section 3.2, we can determine that: if the ratio of y over the square of x is high, 

this also means that the point Pi has high curvature. In other words, the curva-

ture c, at the point Pi is proportional to this ratio: 

Fig. 10. The geometrical meaning 
of Formula 11). 

We can use this formula as a decision rule, that is: if c, is greater than a given 

thrshold, then the curvature at Pi is large enough for P, to be picked up as a 

corner point, otherwise we reject P, as a corner point. 

Before we implement this mechanism, we must take little further con-

sideration: There may be cases in which the candidate is biased little from the 

real corner point. To find more precise position of the corner point, we could 

test the curvatures of all the points in a neighbor area of the candidate, and 

select the the point with the highest curvature among the points in this-area as 

the corner point. In this way, the location of the corner would be more precise. 
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We describe the algorithm as follows: 

Algorithm: Final Detection of Corner Point; 

Input: A corner Point Candidate Pi ; 

Output: P', in a neighbor area of P1 with the maximal value of y /x2  and 

this value exceeds a given threshold, or reject Pi if no such a point found. 

1. Pick up 8 as the range of the neighbor area: 

max c4-0; max loc4-0; 

2. for j4--i - 8 to i + 8 do 

yl 4-- height of the arc centered at Pi; 

xi  4- span of the arc centered at Pi ; 

c • 4- ye/x1^2  

if ci>,ax_c then max loc•-j; 

end: 

(* Now the point with the maximal curvature has been determined. 

Next step is to determine whether we should accept it or reject it *) 

3. if max c > threshold then 

output Pmax_loc as a corner point; 

else 

reject it: 

end of the algorithm 

5. Experiments Results 

The method described in this paper is implemented in C language running on 

the Sun system. Following are some experiments used to test its performance. 

In the figure of Fig. 11, the seven corner points are detected with the value of 

threshold of the curvature characteristical value equal to 0.08. From the figure we see 

that the location of the corners are detected precisely. Fig. 12 also shows a very suc-

cessful detection. In Fig. 13, most of the corner points are detected correctly. Point x 

should be a corner point, but the method fails to detect it. The method also failed to 

detect the point y, but this is a very confusing point. The feature of this point is not 

very sharp. In fig. 14 all of the interesting feature points are detected. But it also gen-

erated two spurious points (x and x'). The boundary in Fig. 15 is a subtle case. In 

this figure, two seemed interesting points was not detected. By changing some value 

of thresholds, they could be detected. But it may also generate some points which we 

23 



don't want. It seemed that for the complicated image boundary some further study of 

the relationship between the detectability and the value of parameters is still needed. 

The experiments also show that the method is very efficient. By analysis we 

know that the time complexity for the method is 0 ( n ), where n is the total points 

of the image boundary. 

6. Conclusion 

In this paper, a heuristical method mainly based on the concept of SBD and the 

curvature characteristical value is discussed. Some experiments show that, although 

some further work for the refinement of the method is needed, it works for a variety 

set of image boundary. Some mechanisms dealing with the noises on the boundary 

are also proposed to improve the precision of the method. One of the advantages of 

the method is its simplicity. Also it is a very efficient method. 
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Appendix I: Source Program Listing for the Implementation of the Method. 

/*********************************************************/ 

/* 
/* This is a program of using the corner finding 
/* algorithm to find local features points. 

/* 
/* Programmer : Qiuiin Li 
/* Date : Dec., 1991 
/* 
/*********************************************************/ 

#include <stdio.h> 

#include <math.h> 

#define MAXLEN 1500 /* the maximum points of image */ 

#define SQUARE(A) ((A) * (A)) 
#define LEFT 5 /* maximum points of left arm */ 

... 

#define SELECT 4 /* define interleave of point */ 
#define RIGHT 5 /* maximum points of right arm */ 

#define YES 1 
#define ABS(a) (a >= 0 ? a : -a) 

#define Noisethreshold 3 

#define Armthreshold 5 

int len; /* number of points of image */ 
int local; /* number of points of local calculation */ 
struct node ( int x; int y; 

int n; 

) ; 
struct sor 

float length; 

int point; 

); 
struct sor *height(); /* function to find the vertical distance */ 
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struct node point[1000]; /* array storing the cordinate of boundary points */ 
struct node maxnmin[200]; 
struct sor array[100]; 

-int RANGE; /* global range */ 

int HOLD; /* value of right*Ieft 

right and left are defined in the program */ 
float c hold: /* value of y/(x*x) */ _ 
int Feature_points[100], nxt_feature_pt=0; 

void insert(); 
void output_feature_points(); 

int get sign(); 

main 0 

{ 
int i,n; 

FILE *fp,*fpp; 
char boundaryfile{20]; 

char *argv[2]; 

/* input image file name. filename.bd  */ 

printf(" Enter filename for the image boundary : "); 
scanf(" % s",boundaryfile); 

fpp = fopen(boundaryfile,"r"); 

while(fpp == NULL) 
{ 

printf("*** Open error, no such raw image file\n"); 

printf(" Rekey-i imageboundary file name please : "); 
scanf("%s", boundaryfile); 
fpp = fopen(boundaryfile,"r"); 

 

/* get input from image file */ 
get_input (&len,fpp); 

/* input global range, EVEN number */ 
RANGE=len/8; 
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c hold-0,06; 
max and min(&len); 
out put_feature_points(); 

fcloseapp); 

I 

/* 
Read image boundary datas and boundary length. 

*1 

get_input(len,fp ) 

int *len; 
FILE *fp; 
{ 
int i; 

fscanf(fp,"%d",len); 
for ( i = 0; i < *len ; i++ ) 

{ 
point[i].n = i; 

fscanf(fp,"%d %d",&point[i].y,&point[i].x); 

I 

I 

/*****************************************************************/ 

/* 

find local feature points 
*1 

max _ and _min(leng) 

int *leng; 
{ 

int i,j,count,from_zero; 

float lon; 
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struct sor *max array;  

for(i=0:i<*leng;) 

{ 
from zero = 0; _ 
count = i; 

for(j=0;j<RANGE;j++) /* read points- in the range into array 

{ 

if(count < *leng) 

{ 
maxnmin[j].x = point[count].x; 

maxnmin[j].y = point[count].y; 

maxnmin[j].n = point[count++].n; 

I 

else /* pass last point */ 

{ 

maxnmin[j].x = point[from_zero].x; _ 
maxnmin[j].y = point[from_zero].y; _ 

maxnmin[j].n = point[from_zero++].n; _ 

I 
max array = height(maxnmin,&lon.RANGE); /* array storing the vertivcal _ 

distance */ 

trimmax array,lon); /* first trim determined by right*left */ _  
i = i - RANGE/SELECT; 

/*****************************************************************/ 

/* 

calculate the vertical distance 
*1 

struct sor *height(cmaxnmin.l,range) 
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struct node *cmaxnmin; /* array of the points in the range */ 

int range; /* local max calculation range */ 
float *I; /* distance between the first point and the last point */ 

{ 

float raw area.distancearea.fullarea; 

float verticle; 

float xx.yy; 
int index.i.max_lo_ind; 
float xl.yl,x2.y2,slope; 
int inverse,sign; 

xl=cmaxnmin[0].x; yl=cmaxnmin[0].y; 

x2=cmaxnmin[range-1].x; y2=cmaxnmin[range-1].y; 

if (xl==x2) 

[ 
inverse=!; 

} 
else 

inverse=0; 
slope=(y2-y1)/(x2-x1); 

I 
index = 0; 

xx = SQUARE((cmaxnmin[range-1].x_- cmaxnmin[0].x)); 

yy = SQUARE((cmaxnmin[range-1].y - cmaxnmin[0].y)); 

distance = sqrt((double)(xx + yy)); 
/* distance between the first point and the last point */ 

for(i=0;i<range;i++) 

I 

/* area of triangle divided by distance to get the vertical distance */ 

raw area = (cmaxnmin[i].y-cmaxnmin[0].y) _ 
*(cmaxnmin [ran ge- 1].x-cmaxnmin [0].x) 

-(cmaxnmin [ range- 1].y-cmaymmin [0].y) 
*(cmaxnmin[i].x-cmaxnmin [0].x); 
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fullarea = ABS(raw area); 
verticle = fullarea / distance; 
if (inverse) 

sign=cmaxnmin[i].x-xl; 

else 

sign=cmaxnmin[i].y-yl-slope*(cmaxnmin[i].x-x1); 
if (sign>0) sign=1; 

else 
{ 

if (sign<O) sign=-1; 

) 
array[index].length = verticle*sign; 

array[index++].point = cmaxnmin[i].n; 

) /* end */ 
*1 = distance; 
return array; 

I 
... 

1*************************************************************1 

/* 

find load maximum determined by right*Ieft 
*1 

trim(rarray,d) 

struct sor *rarray; 

float d; 

{ 
int i.max _ind.j,k.left.right; 
int left noise.right noise.left limit.right limit; _ _ _ _ 

typedef struct { 

int del bit; 

int what; 
int leftarm.rightarm; 
int point_inx; 
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Appendix II: Data Set Used to Test the Mechanism of Noise Elimination 

Dicussed in Sec. 4.2. 

Test 1: In the following segment, no noise is present. The only one corner point 

is Point P 16. The method can detect this point successfully. — 

40 20 15 22 18 24 21 26 24 28 27 30 30 32 33 34 36 36 39 38 42 40 45 42 48 44 

51 46 54 48 57 50 60 53 58 56 56 59 54 62 52 65 50 68 48 71 46 74 44 77 42 80 

40 83 38 86 36 89 34 92 32 95 30 98 28 101 26 104 24 107 22 110 20 113 18 116 

16 119 14 122 12 

Test 2: In the following set. a noise generated two spurious corners. The real 

one is at point P16, two spurious ones are P 20  and P 22. In the test run, first the three 

points are detected as candidates. Then the spurious ones are eliminated by the 

mechnism. Following is the test data set. 

40 20 15 22 18 24 21 26 24 28 27 30 30 32 33 34 36 36 39 38 42 40 45 42 48 44 

51 46 54 48 57 50 60 53 58 56 56 59 54 62 52 65 54 68 62 71 58 74 50 77 44 80 

40 83 38 86 36 89 34 92 32 95 30 98 28 101 26 104 24 107 22 110 20 113 18 116 

16 119 14 122 12 
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Appendix III: Figures from the Experiments. 

Fig.11. Experiment result 1. 

Fig,12. Experiment result 2. 
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Fig.13. Experiment result 3. 

'X I  

Fig.14. Experiment result 4. 
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Fig. 15. Experiment result 5. 
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