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ABSTRACT 

A mathematical model is developed to study the effect of extrusion speed 

and the bearing length on the surface temperature along the die billet 

interface. The surface temperature distribution resulting from the plastic 

work done on the die billet interface is studied. Finite element analysis is 

done on the model incorporating the mass transport effect occurring 

during the extrusion process and the interdependence of various 

parameters are presented. Die wearing problem is analyzed considering 

the effect of diffusion. Thermal analogy of the diffusion problem is 

utilized in the development of the mathematical model for diffusion 

problem and finite element analysis is done on the model to study the 

effect of controlling parameters in the extrusion process. 
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CHAPTER 1 

1.1 INTRODUCTION 

Extrusion is a commercially important manufacturing process to make intricately 

shaped products. The requirements like close dimensional tolerance, good surface 

properties and mechanical properties are functions of extrusion speed, bearing 

length etc. Productivity and optimum extrusion speed for stringent requirements are 

conflicting parameters and the drive of the process analysis is to achieve the 

maximum productivity meeting the requirements. 

The prediction of the external force required to cause the metal flow and deform to 

the desired shape is limited by the uncertainties introduced by frictional effect, non-

homogeneous deformation and the true manner in which strain hardening occur 

during complex deformations. The plastic work done over the area of contact with a 

die bearing can be simulated by replacing an equivalent heat source. 

The exit temperature determines the surface quality and it increases with extrusion 

speed. This implies that there exist limits to extrusion speed for a particular alloy or 

product. The exit temperature is a function of the speed of extrusion, the reduction 

ratio, initial billet temperature, the mechanical properties of the material and the 

friction at billet tool interface. Complex interaction of these parameters prevent an 



analytical approach. The problem is non-linear involving thermo-mechanical 

coupling. Other approximation methods such as Upper Bound and Slip Line 

techniques are too simplistic. Therefore, numerical solution is the only way to 

unravel the interaction of the complex parameters. 



1.2 REVIEW OF THE ANALYTICAL TECHNIQUES 

1.2.1 Introduction: 

The problem under study, thermal analysis at the die billet interface in extrusion 

process, is similar to the thermal analysis of the metal flow through an orifice. This 

can be analyzed using different techniques, but all of them have serious limitations. 

The exact values of force requirements to cause the plastic flow are seldom 

predictable. Exact solutions require that both stress equilibrium and a 

geometrically self-consistent pattern of flow are satisfied simultaneously everywhere 

throughout the deforming body and on its surface. Limits theorem provide values 

that are either lower (Lower Bound) or higher (Upper Bound) than the actual 

values. Several methodologies have been developed using pertinent assumptions to 

calculate an approximate load requirements. To varying degrees, each of the 

uncertainties involved in the analysis are introduced into these analytical methods, 

thereby permitting an estimation of the deformation forces, the constraining forces, 

and the manner in which metal flow occur. These techniques do not provide a 

means to predict the mechanical properties of the deformed material, the maximum 

possible deformation up to fracture, or any variation in frictional effects during 

deformation. 



1.2.2 Uniform Energy or Ideal Work Method: 

In this simplest method the force requirement is calculated using the concept of 

energy or work balance. The external work is equated to the energy consumed in 

deforming the work piece. The process is assumed to be ideal in the sense that the 

external work done is solely used to cause deformation. Frictional effect and 

nonhomogeneous effects are neglected. The prediction done neglecting these facts 

is a serious mistake in the case of extrusion process where large non homogeneous 

deformation occur along with frictional heating. 

1.2.3 Free Body Equilibrium Approach: 

This method also known as slab analysis, gives results by force balance on a slab of 

metal of differential thickness. This analysis formulate a differential equation where 

the variations are considered in one direction only. Using pertinent boundary 

conditions, an integration of this equation then provide a solution. The assumptions 

involved in these are following: 

(1) The direction of applied load and the planes perpendicular to the direction 

define principal directions, and the principal stresses do not vary in these planes. 

(2) Even if the surface friction is included in the force balance, its effect on the 

internal distortion of the metal or the orientation of the principal directions are not 

taken into consideration. 

(3) Deformation is assumed to be homogeneous in regard to the determination of 

induced strain. 



All the above assumptions will seriously affect the applicability of the technique to 

the study of temperature distribution along the bearing metal interface. 

1.2.4 Upper Bound Analysis: 

In metal deforming operation we require the prediction of a force that will definitely 

cause the plastic deformation. This analysis focus on satisfying the yield criterion 

keeping the geometric self-consistency. This analysis look for a kinematically 

admissible solution. Following are the assumptions made in the analysis: 

(1) Specimen is isotropic and homogeneous. 

(2) The effect of strain hardening and strain rate on flow stress are neglected. 

(3) Frictionless or constant shear stress conditions are imposed on the die billet 

interface. 

(4) Flow is assumed to be two dimensional ( plane strain). If the shear is occurring 

in intersecting planes that are not orthogonal, the sected plane may not be the plane 

of maximum shear stress. 

All the above assumptions limit the use of upper bound analysis for the thermal 

analysis along the bearing metal interface. 

1.2.5 Slip-line Field Theory: 

This analysis is based upon a deformation field that is geometrically consistent with 

the shape change. The strain within the fields should be kinematically admissible. 

Following are the assumptions made in the analysis: 



(1) The metal is rigid-perfectly plastic. This assumes the flow stress as constant 

without work hardening and neglect the effect of elastic strains. 

(2) Deformation is plane strain only. 

(3) Effects of stain rate and temperature changes due to deformation. 

(4) Constant shear is assumed in the interface. 

Above assumptions made in the technique limit the use of these methods for the 

extrusion analysis. 



CHAPTER 2 

2.1 MATHEMATICAL MODELING 

The heat generation due to the plastic work dissipation and the stain rate and 

temperature dependence of the yield strength of the material should be included for 

the process analysis. Replacing the plastic work by an equivalent heat source over 

the moving work piece will simulate the process. The mathematical model reduces 

the complex process to the solution of a thermal problem with transport 

phenomena. The transport process is time dependent at the onset of the process, 

when the material started emerging from the die. However, at a longer time it can 

be treated as a steady state convective circumstance. This is due to the fact that a 

time factor is involved to attain a steady flow situation, because of the end effects, 

stemming from the energy losses at the end, do not affect transport over the moving 

surface. So assuming a typical values of surface convective heat transfer co-efficient, 

the temperature distribution of the moving plate can be calculated. 

The 3-D problem is reduced to 2-D problem of a flat rectangular section moving 

with a velocity and heat is supplied at constant rate over the area of contact with the 

die bearing. It is assumed that there exists sticking friction and the plastic work is 

done due to the shearing of aluminium. 



The power density of heat generation P =Z * V [W/m2] 

Z-  = shear stress [Pa] 

V = velocity [m/s] 

The plastic work done (t.V) along the bearing billet interface is equated to a heat 

input Q there. To find Q, a reasonable value of t is taken for the extrusion velocity. 

Shear stress is a function of temperature and strain rate and we have experimental 

curves for that relationship (refer section 2.2.2). 

G—Y - - G--•  f1(T) * f2(e) 

G--Y = Yield stress 

6--0  = Static yield stress 

T = temperature 

e = strain rate 

With an assumed z value, Q is calculated for different extrusion speeds and is 

applied along the die billet interface. FEA analysis provide the temperature 

distribution along the surface. For the known temperature, we have f1(T) from the 

curve (Fig. 1.3 (a)) and the only unknown is f2(e) now. From the equation f2(e) is 

calculated and the corresponding strain rate from curve (Fig. 1.3 (b)) is taken. These 

strain rates from the model analysis match with the strain rates from a separate flow 



modeling experiment for different speeds. This agreement support the validity of 

the assumed model. 



2.2 FINITE ELEMENT ANALYSIS OF THE MODEL 

2.2.1 Introduction: 

A schematic of the extrusion process is shown in Fig.1.1. The basic model is a flat 

rectangular section (Fig 1.2). The section has prescribed thickness and velocity and 

is approaching the die with a prescribed initial temperature. In order to study the 

effect of back conduction of the extruding section, a 10 mm model length is 

extended upstream of the die and to study the effect of cooling same length is 

extended downstream of the die. Only half of the system is analyzed to reduce the 

computational requirements, taking the advantage of the plane of symmetry of the 

model. 

2.2.2 Material Properties: 

Material properties of aluminium and steel are listed in table 1.1. 

The thermal properties of the materials are taken to be independent of 

temperature, ignoring the very small error involved in it at the concerned 

temperature ranges. Due to the large strain rate, yield stress is taken as a function of 

strain rate and temperature. 



Schematic of Extrusion Process 

FIGURE 1.1 



FIGURE 1.2 



TABLE 1  

Thermal Properties of Aluminium and Steel  

Aluminium Steel 

Thermal Conductivity 215 W/m C 48 W/m C 

Density 2600 Kg/m3 7800 Kg/m3 

Specific Heat 1100 J/Kg C 450 J/Kg C 



Fig. 1.3 shows a typical curves for the yield stress as a function of temperature and 

strain rate for 6063 alloy, based on the results of Akeret(3). 

Strain rate is unknown and to pitch the correct value of shear stress the results from 

the study of Jowett and Coupland was taken. A value of 6.2 MPa at 500 deg. C is 

taken for the shear stress. This implies a yield stress of 32.4 MPa. A flow modelling 

study indicate that in the presence of sticking friction, with an extrusion speed of 1 

m/s, the strain rate near the surface is of the order of 200 per sec. For that amount 

of strain rate, f2(e) is about 2.5, which gives the explanation for the high value of 

shear stress. This value is applied throughout the modelling. 

2.2.3 FEA Element: 

The finite element selected is STIFF 55 of ANSYS(9), 4-node isoparametric 

quadrilateral. The meshing of the element is done with KEYOPT(8) = 1, to 

supports mass transport effect. 

Theory: 

The temperature distribution for the element is obtained from the numerical 

solution of the following equation ( for plane analysis). 



VARIATION OF 1) (T) WITH TEMPERATURE 

FIGURE 1-3 (a) 



VARIATION OF f (i) WITH STRAIN RATE FIGURE 1.3 (b) 
2 



aT a  aT aT pCp + = ) 
dt dX ay ax ax aY aY 

• 
where p = density 

C = specific heat 

K = thermal conductivity 

q = internal heat generation rate 

V = velocity of mass transport 

T = temperature 

Since the analysis is steady state 

aT = o 
t 

2.2.4 Boundary Conditions: 

The problem is reduced to steady state thermal analysis, and the meshing is done 

with an element supporting mass transport property. The section upstream is kept at 

a temperature of 500 deg. C. Under steady state condition heat conduction into the 

die is very small and has very small impact on the temperature distribution. The 

bearing surface is considered adiabatic to simplify the problem. This will 

accommodate the most severe conditions for heat generation in the section. The 

boundary conditions of the section downstream of the die bearing is taken as 

adiabatic. In actual case there will be heat radiation from the surface or cooling 

from an external source. An adiabatic boundary condition will simulate the most 

severe case possible, where the heat generated is completely absorbed by the 

extruding material. 



CHAPTER 3 

3.1 COMPARISON OF FEA SOLUTION WITH ANALOGOUS 

ANALYTICAL SOLUTION 

Carslow & Jaeger presents an analytical solution for the surface temperature 

generated when an infinite strip supplies heat at the rate Q per unit time per unit 

area over the strip, and the surrounding medium moves across it with velocity V. 

This semi-infinite block analysis is analogous to the problem of die bearing friction 

as modelled. The solution can be expressed by the following dimensionless 

quantities: x/b 

Tr . AT. K V/ 2aQ 

B = V b/2a 

b = half width of the heat source 

x = position relative to the center of the heat source 

AT = temperature increase 

K = thermal conductivity 

V = velocity of the heat source relative to the slab 

a = thermal diffusivity 



Q = power intensity of heat source 

The boundary conditions for the analytical solution are simulated in the model by 

taking a slab of sufficient thickness and neglecting the heat penetration to the 

surface remote from the heat source. 

Using the thermal properties of the aluminium, for b =3 mm, a value for B =10 

could be obtained by taking the velocity V = 0.5 m/s. 0 is set at 6,000,000 W/m2  in 

order to obtain a reasonable temperature increase of 30 deg.0 at the peak 

temperature on the curve for B = 10. 

The ANSYS solution for B =10 is superimposed on the analytical solution in Fig. 

1.4. The deviations of both solutions are practically nil, which implies the validity 

of the FEA model implemented. 



Figure 1.4 



From the Carslow and Jaeger's analytical solution for surface temperature rise (sec- 

tion 3.1), we have for large values of B (Ub/2a) the max. temperature occur near 

x = b and is approximately 

Qb  
K 7,R13 

This implies Temperature maxima, 

T Q 

max. 

Heat supplied 

Q = q (t) U 

This implies 

Qc< U 

B = Ub  2a 

Temperature maxima, 

T Q U oc 0, _ _____ oc X 
max. jil gi 

This proportionality from the analytical solution is in agreement with FEA result. 



3.2 RESULTS AND DISCUSSIONS 

3.2.1 Temperature Distribution in Section: 

Short residence time in bearing: 

Fig. 1.5 gives the temperature distribution at various depth of the section, when the 

velocity is 0.5 m/s and the bearing length is 6 mm. The residence time is so small 

that there is no significant temperature rise in the midplane. During these heating 

face the section behave like a semi-infinite body. 

(1) There is no significant heat conduction upstream of the section. 

(2) Mass transport is the dominant characteristic. 

(3) Peak temperature is a surface effect and is attenuated even 0.3 mm below the 

surface. 

(4) Peak temperature decays very steeply once the section leaves the bearing, and 

hence the measurement made even a few mm. downstream of the bearing will not 

reflect the actual temperature. 

This study cover a wide range of operating conditions, and where the die bearing 

heating limit the extrusion speed. 

Fig.1.6 (a) and Fig. 1.6 (b) shows the ANSYS contour display of temperature for 

0.25 m/s and 0.75 m/s extrusion velocity. 



Figure 1.5 



Extended residence time in the bearing: 

Fig. 1.7 shows the temperature history of the midplane with two different extrusion 

speeds. Once the residence time is increased with slow extrusion there is significant 

heating in the midplane. This is not of practical importance sine this condition of 

midplane heating occur when a thin section extrude through a long bearing with a 

slow extrusion speed. 

3.2.2 Effect of velocity: 

Fig. 1.8 shows the temperature distribution along the surface of the section for 

different velocities of 0.25, 0.50, 0.75 m/s. From the figure it is apparent that the 

peak temperature rise is proportional to the square root of the velocity. 

For the conditions satisfying the section to behave as a semi infinite body, the 

temperature rise is proportional to the square root of the velocity. 

As the residence time increases there is greater diffusion of heat to the middle of 

the section, and the temperature rise dependence of the velocity becomes less and 

less. In the limiting condition it became independent of the velocity. The rise in the 

average temperature of the section is substantially independent of velocity. This is 

consistent with the thermodynamic relations, since the power input is linearly 

related to the velocity and hence the mass flow of metal to which the power is 

applied is also linearly related. 



Figure 1.7 



FIGURE 1 . 8 



3.2.3 Effect of Bearing Length: 

Fig. 1.9 shows the surface temperature history for various bearing length. It is clear 

from the figure that the peak temperature rise is proportional to the square root of the  

bearing length.  

This relationship is valid for the cases where the section behaves like a semi infinite 

body. Otherwise in the limiting case the average temperature rise is proportional to 

the bearing length. 

3.2.4 Combined Effect of Velocity and Bearing Length: 

Peak surface temperature rise is correlated for all cases where the section behaves 

as a semi infinite body and the following relation is obtained. 

Peak temperature rise = 17.7 (BV)05  

where B = bearing length, mm 

V = extrusion speed, m/s 

The average temperature rise in the section is directly proportional to the bearing 

length and is independent of the velocity of extrusion. 



Figure 1.9 







3.2.5 Boundary Layer Thickness: 

There is a boundary layer formation in between the extruding material and the die. 

The plastic work done on the interface is simulated by applying a heat input of 

Q = 6 x 106  W/m2  sec. 

Q = q V 

For V = 0.25 m/s , 

q = Q / V = 24 x 106  Pa 

We have the relation, 

Yield stress = Static Yield Stress f1(t) f2(6) 

Yield Stress = 48 MPa 

Static Yield Stress = 10 MPa 

From curve 1.3 (a), f1(522.7) = 0.74 

Solving the equation for f2(e), we have 

f2(es) = 6.48 

From the curve 1.3 (b) for f2(e) = 6.48 we have, 

strain rate = 104  sec-1  

Strain rate = dV / dx 



Since the die is stationary and the billet is moving with a velocity of V, we have 

dV = V and dx is the thickness of boundary layer. 

Solving for dx, we have 

dx = 0.25 * 10-4  m 

Boundary Layer Thickness = 0.025 mm 



CHAPTER 4 

4.1 DIFFUSION EFFECT ON DIE WEARING 

4.1.1 Introduction: 

The die wearing in the extrusion process can be related to the erosion of the die 

material due to the diffusion effect. The driving parameters acting along the die 

billet interface for the diffusion are the strong concentration gradient and the 

temperature dependent diffusion coefficient. 

Solid containing initially uniform dilute concentration of constituent elements 

upon the application of mechanical and thermal loading, will develop regions of 

high constituent concentration . This will result in local degradation of material 

properties. Process such as hydrogen embrittlement and stress corrosion cracking 

are two examples of degradation process resulting from constituent mass transport 

within solid materials. The analysis of mass transport problem in solid diffusion has 

been limited to the solution of differential equation that are formulated as a 

function of concentration, stress and temperature. 

At the die billet interface, there exists severe concentration and temperature 

gradient which will accelerate the diffusion effect. Diffusion problem is analogous 

to the thermal problem and thermal analysis will simulate the analogous diffusion 



problem and the controlling parameters involved are studied by changing the 

extrusion speed and bearing length. 

4.1.2 Review of Diffusion theory: 

Fick's Laws of Diffusion: 

This law is similar to the Fourier equation in the classical heat flow analysis. Fick's 

first law states that atoms moves from regions of high concentration to that of lo\\ er  

concentration. The equation for the flow of matter v, hich is consistent v.ith these 

condition is 

do 
J . - D a x 

where J is the flux of atoms across unit are of the plane at any instant. anti the 

concentration gradient is normal to the plane at the same instant. 

Fick's second law called the continuity equation stems from the concept of the 

conservation of matter. It states that the rate of change of concentration v. ith 

respect to the time is equal to the rate of change of the flux. 

ac . a ac 
a t a >JD' xl 

a c  
= D.v2c 

d t 



Analytical solution for transient state Fickian diffusion and for heat conduction in 

solid phase are well known when the diffusion coefficient is constant. The solutions 

have been reviewed in detail by Carslaw and Jaeger (1959), Crank (1975) and 

others. However the solution becomes extremely complicated when the thermo-

mechanical coupling is existing along with the concentration gradient. A number of 

solutions have been done by Crank (1975) and they are quite complex due to the 

non-linearity of the partial differential equations. 



CHAPTER 5 

5.1 MATHEMATICAL MODELING OF THE DIFFUSION PROBLEM 

5.1.1 Thermal analogy of diffusion: 

Fourier equation for heat conduction is: 

Flux = —KaT 
ax 

a a  aT a aT a aT 
pCp (--

I
.T +Vx

ax
T +Vy) = a(Kxxa-) + (Kyy-a3-?-) 

where K is thermal conductivity, C the specific heat and p the density. 

Fick's equation for diffusion is 

J = —Dac 
ax 

aa
ct
+vxac 

+Vyac — = 
a —(Dxxac a  ) + —(Dyy—ac

) 
ax ay  ax ax ay ay 

where D is the diffusion coefficient and c the concentration. For the extrusion process 

Vy = 0 , Vx = extrusion velocity and Dxx = Dyy. 

k = K/pC, This term in thermal analysis is similar to D in diffusion problem. 



The above relations imply that the heat flux in thermal analysis is similar to the 

mass flux in diffusion analysis. Diffusion coefficient D is analogous to k. 

The problem to analyze is the dependence of various parameters involved in the 

extrusion process to the mass flux going into the billet from die. This will provide 

the informations about the die wearing in the extrusion process. Mass flux is directly 

proportional to the diffusion coefficient and the concentration gradient. 

5.1.2 Variation of D with temperature: 

The diffusion coefficient is a very strong function of temperature and it is virtually 

always represented by Arrhenius law 

D = Do Exp( -Q/RT) 

where Do is a constant and Q is called the activation energy. The value of D is 

always quoted in cgs units and the units of D are in cm2/sec. The Arrhenius law is 

approximately valid and the activation energy given is within 2% by the empirical 

correlations. Due to the mass transport effect there exists temperature gradient 

along the surface and hence the diffusion coefficient is also varying along the 

surface. 



Due to the mass transport effect concentration gradient between the die and the 

billet is also varying along the die surface. The two parameters, concentration 

gradient and the diffusion coefficient variation along the surface have opposing 

trend and the resultant effect will produce a flux gradient along the surface. The 

peaking of flux value along the die billet iilerface point out the region where 

maximum die erosion or wear occur. The total flux going into the billet for different 

velocities gives the idea of the amount of die wear dependence on extrusion speed. 



5.2 FEA MODELING OF DIFFUSION PROBLEM 

5.2.1 Model geometry and the Element type: 

The same model geometry for the thermal analysis is taken for the diffusion 

analysis. The finite element meshing is done with ANSYS element STIFF 55, with 

KEYOPT(8) equal to 1 to incorporate the transport effect. 

5.2.2 Boundary conditions: 

In order to simulate the diffusion process in extrusion, following boundary 

conditions are taken. The flux flow occur from the die to the billet and can be 

idealized as the flux flow across a boundary from concentration c = 1 to 

concentration c=0 initially. The concentration c in the die is assumed to remain 

constant with respect to time due to the fact that the ratio of concentration c in die 

to that at any time in billet is very large. Due to the mass transport, concentration 

of material from die in the billet is varying along the interface between die and 

billet and is increasing down stream of the die. 

There is a temperature variation along the die billet interface. This will have an 

impact on the diffusion coefficient, because D is a function of temperature. In order 

to incorporate this effect D values corresponding to the temperatures along the 

surface is calculated. Keeping density and specific heat as constants and the 

temperature dependent D, which is similar to k , values are given to the concerned 



elements as a material property. D is equivalent to k (thermal diffusivity ) in 

thermal analysis. 

Temperature rise in the thermal anal\ sis is in the range of 500 (iC - 540 ('C. 

range is divided into 8 regions and the corresponding D values are calculated by the 

Arrhenius equation 

D = Do Exp (-Q/RT) 

Approximate D value for aluminium in this temperature range is 1 x e-10 cm2 /1 /4ec. 

Do and Q/R values are set to get the D value in the same range as that of 

aluminium. D is similar to k (thermal diffusivity). Specific heat and cicrity 

assumed to remain constant and the thermal conductk ity (K) correspondin,2, to the 

D values for different temperature ranee is given in the table 2.1. Fig 2.1 slim,. the 

variation of D with respect to the temperature. 

5.2.3 Validity of the model: 

The governing equation in diffusion is 
,,c 

- D 

This implies heat flux is proportional to the diffusion coefflc:ent. F:eure 2.2 and 2.1', 

shows the variation of flux with two sets of D values v.hich are linea:ly relatcci. Fmm 

the figure it is clear that the flux \ alues also \ ary linearly follov. Inc: the D sets This 

result support the \ alidity of the model. 



TEMPERATURE (Deg. C) (Mean values of the Temp. range) 



CHAPTER 6 

6.1 RESULTS AND DISCUSSION 

6.1.1 Variation of Total Flux with Velocity: 

Total flux along the surface gives an idea about the amount of matter gone out of 

the die and hence the wear. For three speeds 0.25 m/s, 0.50 m/s and 0.75 the total 

flux along the surface is calculated. Table 2.2, 2.3, 2.4 gives the values of the flux. 

Figure 2.4 shows the flux curves plotted for different speeds. Following are the total 

and normalized flux values for three different speeds. 

V (m/s) Flux (total) Normalized Flux 

0.25 1339.18 1 

0.50 1891.30 1.41 

0.75 2395.31 1.7 

From the above values it is clear that the total flux varies as the square root of 

velocity of extrusion. 



Distance along the surface (mm) 



6.1.2 Effect of Concentration Gradient: 

From the flux curves it is apparent that there is severe die erosion at the billet 

entrance. This heavy flux flow at the entrance is due to the severe concentration 

gradient existing there. This fact is in agreement with the observed results. The 

severe influence of the concentration gradient at the die entrance override the effect 

of D variation along the surface. This is the limitation of the model presented. 

6.1.3 Die life and Extrusion Velocity: 

The life of the die is inversely proportional to the total flux going out from the die. 

T = C, x Flux-1  

where T is the die life and C, is a constant. 

We have from the result 

Flux = Cj  x V° 5 

This implies 

T x V°.5  = Ck 

The above observation is in agreement with the result from the thermal analysis. 



CHAPTER 7 

CONCLUSIONS 

A flat section model has been taken to study the temperature distribution along the 

surface and inside the section. The boundary conditions are applied to satisfy the 

practical operating conditions of the extrusion process. The finite element meshing 

is done with an element having the mass transport property. The finite element 

analysis results are validated by comparing with the analytical solution of an 

analogous problem. 

For slow extrusion where the residence time is large, there is significant temperature 

penetration into the section and the model is no more a semi-infinite body. In this 

situation the temperature rise due to the bearing friction is independent of the 

extrusion speed and is directly proportional to the bearing length. 

For the ideal operating condition, with high extrusion speed, thicker section and 

shorter bearing length, there is no significant temperature penetration into the 

section and the section behaves like a semi-infinite body. In this case the 

temperature rise is a surface phenomena and is proportional to the square root of 

the extrusion velocity and bearing length. 



From thermal analysis, the peak temperature rise is proportional to the V°5. Since 

the temperature gradient curve from thermal analysis and the concentration 

gradient curve from the diffusion analysis have the same nature, it can be assumed 

that both hold the same relationship with the velocity. This implies that the 

concentration gradient is proportional to the square root of velocity. From the finite 

element analysis of the diffusion problem, total flux is proportional to V. 

Combining the above two statements, we have flux proportional to the 

concentration gradient. This conclusion from the analysis is in perfect agreement 

with the classical Fick's first law of diffusion and support the validity of the model 

analyzed. 
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APPENDIX I 

PREP 7 OF ANASYS FINITE ELEMENT THERMAL ANALYSIS FOR EXTRUSION 

************************************************************************* 

/COM,ANSYxS REVISION 4.4 UP437 A 24 12.5856 12/17/1991 
/show,X11 
/PREP? 
/TITLE,EXTRUSION ANALYSIS 
KAN,-1 
ET,1,55 
KEYOPT,1,8,1 
R,1,.25 
MP,DENS,1,2600 
MP,C,1,1100 
MP,KXX,1,215 
K„-.001 
K„0 
K,,.006 
K,,.009 
K,,.009,.005 
K„0„005 
K„-.001„005 
/PNUM,KPOI,1 
KPLOT 
KPLOT 
/PNUM,KPOI,1 
KPLOT 
A,1,2,6,7 
A,2,4,5,6 
ELS I/J-  ,.0002 
AMESH,2 
ELSIZF,.0005 
AMESH,1 
NLIST 
NT,1197,TEMP,500„1258 
HFLOW,72,HEAT,1350 
HFLOW,87,HEAT,1350„116 
AFWRITE 
FINISH 
/EOF 



TEMPERATURE DISTRIBUTION ALONG SURFACE 

BEARING LENGTH = 6 mm. 
EXTRUSION SPEED = 0.25 m/s 

DISTANCE (mm) TEMPERATURE deg. C 

0.0 500.00000 
0.2 503.70043 
0.4 505.42284 
0.6 506.87628 
0.8 508.08061 
1.0 509.14444 
1.2 510.10316 
1.4 510.98320 
1.6 511.80084 
1.8 512.56769 
2.0 513.29221 
2.2 513.98081 
2.4 514.63851 
2.6 515.26930 
2.8 515.87645 
3.0 516.46267 
3.2 517.03020 
3.4 517.58110 
3.6 518.11690 
3.8 518.63900 
4.0 519.14870 
4.2 519.64690 
4.4 520.13441 
4.6 520.61113 
4.8 521.07634 
5.0 521.52707 
5.2 521.95664 
5.4 522.34525 
5.6 522.66324 
5.8 522.75139 
6.0 522.59428 
6.2 519.35563 
6.4 518.25378 
6.6 517.38153 
6.8 516.83118 
7.0 516.62188 



TEMPERATURE DISTRIBUTION ALONG SURFACE 

BEARING LENGTH = 6 mm. 
EXTRUSION SPEED = 0.75 m/s 

DISTANCE (mm) TEMPERATURE deg. C 

0.0 500.0000 
0.2 507.13631 
0.4 510.05565 
0.6 512.55824 
0.8 514.6125 
1.0 516.42668 
1.2 518.06065 
1.4 519.56063 
1.6 520.95442 
1.8 522.26178 
2.0 523.49694 
2.2 524.67064 
2.4 525.79121 
2.6 526.86524 
2.8 527.89808 
3.0 528.89413 
3.2 529.8570 
3.4 530.7899 
3.6 531.6954 
3.8 532.5758 
4.0 533.4330 
4.2 534.2688 
4.4 535.0848 
4.6 535.8822 
4.8 536.6624 
5.0 537.4258 
5.2 538.1765 
5.4 538.9018 
5.6 539.6626 
5.8 540.1818 
6.0 541.8643 
6.2 534.6376 
6.4 532.4119 
6.6 530.5334 
6.8 529.1108 
7.0 528.4581 



TEMPERATURE DISTRIBUTION ALONG SURFACE 

BEARING LENGTH = 3 mm. 
EXTRUSION SPEED = 0.5 m/s 

DISTANCE (mm) TEMPERATURE deg. C 

0.0 500.0000 
0.2 505.86233 
0.4 508.80375 
0.6 510.55964 
0.8 512.20417 
1.0 513.63711 
1.2 514.94433 
1.4 516.14802 
1.6 517.27024 
1.8 518.32514 
2.0 519.32313 
2.2 520.27359 
2.4 521.17506 
2.6 522.05506 
2.8 522.73777 
3.0 523.63740 
3.2 518.39280 
3.4 516.83360 
3.6 515.53819 
3.8 514.59424 
4.0 513.82230 
4.2 513.17845 
4.4 512.62626 
4.6 512.14468 
4.8 511.71883 
5.0 511.33818 
5.2 510.99493 
5.4 510.68311 
5.6 510.39809 
5.8 510.13619 
6.0 509.89444 
6.2 509.67049 
6.4 509.46273 
6.6 509.27163 
6.8 509.10766 
7.0 509.03481 



TEMPERATURE DISTRIBUTION ALONG SURFACE 

BEARING LENGTH = 4 mm. 
EXTRUSION SPEED = 0.5 m/s 

DISTANCE (mm) TEMPERATURE deg. C 

0.0 500.00000 
0.2 505.64641 
0.4 508.05376 
0.6 510.10495 
0.8 511.79205 
1.0 513.28142 
1.2 514.62260 
1.4 515.85343 
1.6 516.99677 
1.8 518.06891 
2.0 519.08158 
2.2 520.04363 
2.4 520.96194 
2.6 521.84193 
2.8 522.68810 
3.0 523.50367 
3.2 524.29295 
3.4 525.05064 
3.6 525.80135 
3.8 526.36698 
4.0 527.15996 
4.2 521.81769 
4.4 520.16863 
4.6 518.79020 
4.8 517.76927 
5.0 516.92573 
5.2 516.21509 
5.4 515.60042 
5.6 515.06028 
5.8 514.57943 
6.0 514.14706 
6.2 513.75518 
6.4 513.39826 
6.6 513.07491 
6.8 512.80050 
7.0 512.67917 



TEMPERATURE DISTRIBUTION ALONG THE SURFACE 

BEARING LENGTH = 6 mm. 
EXTRUSION SPEED = 0.5 m/s 

DISTANCE (mm) TEMPERATURE deg. C 

0.0 500.0000 
0.2 505.6464 
0.4 508.0537 
0.6 510.1049 
0.8 511.7929 
1.0 513.2814 
1.2 514.6226 
1.4 515.8534 
1.6 516.9967 
1.8 518.0689 
2.0 519.0815 
2.2 520.0436 
2.4 520.9619 
2.6 521.8419 
2.8 522.6881 
3.0 523.5039 
3.2 524.2925 
3.4 525.0565 
3.6 525.7980 
3.8 526.5188 
4.0 527.2208 
4.2 527.9052 
4.4 528.5734 
4.6 529.2264 
4.8 529.8654 
5.0 530.4909 
5.2 531.1049 
5.4 531.7004 
5.6 532.3006 
5.8 532.7259 
6.0 533.3878 
6.2 527.9233 
6.4 526.1613 
6.6 524.6879 
6.8 523.6447 
7.0 523.2024 



TEMPERATURE DISTRIBUTION AT A DEPTH OF 0.2 mm BELOW SURFACE 

BEARING LENGTH = 6 mm. 
EXTRUSION SPEED = 0.5 m/s 

DISTANCE (mm) TEMPERATURE deg. C 

0.0 500.0000 
0.2 500.0316 
0.4 500.2236 
0.6 500.4006 
0.8 500.6313 
1.0 500.9095 
1.2 501.2277 
1.4 501.5782 
1.6 501.9544 
1.8 502.3507 
2.0 502.7623 
2.2 503.1858 
2.4 503.6181 
2.6 504.0567 
2.8 504.4999 
3.0 504.9463 
3.2 505.3945 
3.4 505.8437 
3.6 506.2931 
3.8 506.7422 
4.0 507.1904 
4.2 507.6375 
4.4 508.0831 
4.6 508.5270 
4.8 508.9691 
5.0 509.4092 
5.2 509.8469 
5.4 510.2809 
5.6 510.7075 
5.8 511.1190 
6.0 511.5035 
6.2 511.8473 
6.4 512.1390 
6.6 512.3665 
6.8 512.4621 
7.0 512.5215 



TEMPERATURE DISTRIBUTION ALONG MIDPLANE 

BEARING LENGTH = 6 mm. 
EXTRUSION SPEED = 0.5 m/s 

DISTANCE (mm) TEMPERATURE deg. C 

0.0 500.0000 
0.2 500.0014 
0.4 500.0005 
0.6 500.0013 
0.8 500.0029 
1.0 500.0057 
1.2 500.0104 
1.4 500.0175 
1.6 500.0279 
1.8 500.0425 
2.0 500.0622 
2.2 500.0877 
2.4 500.1198 
2.6 500.1594 
2.8 500.2069 
3.0 500.2631 
3.2 500.3282 
3.4 500.4026 
3.6 500.5801 
3.8 500.6834 
4.0 500.7964 
4.2 500.9192 
4.6 501.1932 
4.8 501.3441 
5.0 501.5041 
5.2 501.6728 
5.4 501.8501 
5.6 501.0356 
5.8 502.2290 
6.0 502.4298 
6.2 502.6367 
6.4 502.8457 
6.6 503.0381 
6.8 503.1262 
7.0 503.1920 



TEMPERATURE DISTRIBUTION ALONG MIDPLANE 

BEARING LENGTH = 3 mm. 
EXTRUSION SPEED = 0.25 m/s 

DISTANCE (mm) TEMPERATURE deg. C 

0.0 500.00000 
0.2 500.01621 
0.4 500.04355 
0.6 500.08557 
0.8 500.14593 
1.0 500.22813 
1.2 500.33527 
1.4 500.46990 
1.6 500.63386 
1.8 500.82820 
2.0 501.05320 
2.2 501.30832 
2.4 501.59222 
2.6 501.90279 
2.8 502.23720 
3.0 502.59192 
3.2 502.96284 
3.4 503.34546 
3.6 503.73505 
3.8 504.12688 
4.0 504.51648 
4.2 504.89977 
4.4 505.27325 
4.6 505.63405 
4.8 505.97998 
5.0 506.30944 
5.2 506.62141 
5.4 506.91530 
5.6 507.19087 
5.8 507.44800 
6.0 507.68647 
6.2 507.90539 
6.4 508.10224 
6.6 508.27069 
6.8 508.39608 
7.0 508.44560 



APPENDIX II 

PREP 7 OF ANSYS - FOR DIFFUSION PROBLEM 
********************************************* 

/COM,ANSYS REVISION 4.4 UP437 A 24 10.4144 12/ 6/1991 
/show,X11 
/PREP? 
! DENNIS 
! DENNIS 
/TITLE,DENNIS 
KAN,-1 
ET,1,55 
KEYOPT,1,8,1 
R,1,0.5 
MP,KXX,1,215 
MP,DENS,1,2600 
MP,C,1,1100 
MPLIST 
K 
K,,.007 
K„.007,.0025 
K,,,.0025 
A,1,2,3,4 
ELSIII-„0002 
AMESH,1 
/RESET 
EPLOT 
/PNUM,NODE,1 
EPLOT 
MP,KXX,1,251 
MP,KXX,2,315 
MP,KXX,3,393 
MP,KXX,4,488 
MP,KXX,5,603.6 
MP,KXX,6,743.6 
MP,KXX,7,912.4 
MP,DENS,2,2600 
MP,DENS,3,2600 
MP,DENS,4,2600 
MP,DENS,5,2600 
MP,DENS,6,2600 
MP,DENS,7,2600 
MP,C,7,1100 
MP,C,6,1100 



MP,C,5,1100 
MP,C,4,1100 
MP,C,3,1100 
MP,C,2,1100 
MPLIST 
MAT,1 
EMODIF,351,0 
EMODIF,352,0 
EMODIF,353,0 
EMODIF,354,0 
EMODIF,355,0 
MAT,2 
EMODIF,356,0 
EMODIF,357,0 
EMODIF,358,0 
EMODIF,359,0 
EMODIF,360,0 
MAT,3 
EMODIF,361,0 
EMODIF,362,0 
EMODIF,363,0 
EMODIF,364,0 
EMODIF,365,0 
EMODIF,366,0 
EMODIF,367,0 
MAT,4 
EMODIF,368,0 
EMODIF,369,0 
EMODIF,370,0 
EMODEF,371,0 
EMODIF,372,0 
EMODIF,374,0 
MAT,5 
MAT,5 
EMODIF,375,0 
EMODIF,376,0 
EMODIF,377,0 
EMODIF,378,0 
EMODIF,379,0 
EMODIF,380,0 
EMODIF,381,0 
EMODIF,382,0 
EMODIF,383,0 
EMODIF,384,0 
MAT,4 
EMODIF,385,0 



MAT,1 
EMODIF,386,0 
EMODIF,387,0 
EMODIF,388,0 
MAT,2 
EMODIF,389,0 
EMODIF,390,0 
EMODIF,391,0 
EMODIF,392,0 
EMODIF,393,0 
MAT,3 
EMODIF,394,0 
EMODIF,395,0 
EMODIF,396,0 
EMODIF,397,0 
EMODIF,398,0 
MAT,4 
EMODIF,399,0 
EMODIF,400,0 
EMODIF,401,0 
EMODIF,402,0 
EMODIF,403,0 
EMODIF,404,0 
MAT,5 
EMODIF,405,0 
EMODIF,406,0 
EMODIF,407,0 
EMODIF,408,0 
EMODIF,409,0 
EMODIF,410,0 
MAT,6 
EMODIF,411,0 
EMOD1F,412,0 
EMODIF,413,0 
EMODIF,414,0 
EMODIF,415,0 
EMODIF,416,0 
MAT,5 
EMODIF,417,0 
EMOD1F,418,0 
EMODIF,419,0 
EMODIF,420,0 
MAT,1 
EMODIF,421,0 
MAT,2 
EMODIF,422,0 



EMOD1F,423,0 
EMODIF,424,0 
EMODIF,425,0 
MAT,3 
EMODIF,426,0 
EMODIF,427,0 
MAT,4 
EMODIF,428,0 
EMODIF,429,0 
EMODLF,430,0 
EMODIF,431,0 
EMODIF,432,0 
MAT,5 
EMODIF,433,0 
EMODIF,434,0 
EMODEF,435,0 
EMODIF,436,0 
EMODIF,437,0 
EMODIF,438,0 
MAT,6 
EMODIF,439,0 
EMODIF,440,0 
EMODLF,441,0 
EMODIF,442,0 
EMODIF,443,0 
EMODIF,444,0 
EMODIF,445,0 
MAT,7 
EMODIF,446,0 
EMODIF,447,0 
EMODIF,448,0 
EMODIF,449,0 
EMODIF,450,0 
MAT,6 
EMODIF,451,0 
EMODIF,452,0 
MAT,5 
EMODIF,453,0 
EMODIF,454,0 
MAT,4 
EMODIF,455,0 
NT,85,TEMP,0„96 
NT,1,TEMP,0 
NT,50,TEMP,1 
NT,37,TEMP,1 
NT,51,TEMP,1„84 



AFWRITE 
FINISH 
/INPUT,27 
FINISH 
/POST1 
STRESS,THER 
SET 
PLNSTR,TEMP 
/output,35 
NFORCE 
FINISH 
/EOF 
/COM,ANSYS REVISION 4.4 UP437 A 16 12.0822 12/ 8/1991 
/show,x11 



TABLE 2.1 

TEMPERATURE (deg. C) K 

500 - 505 251.6 

505 - 510 315.0 

510 - 515 393.0 

515 - 520 488.0 

520 - 525 603.6 

525 - 530 743.6 

530 - 535 912.4 

535 - 540 1115.2 



TABLE 2.2 

FLUX ALONG THE SURFACE 

BEARING LENGTH = 6 mm 

EXTRUSION SPEED = 0.25 m/s 

DISTANCE ( mm) FLUX 

0.0 95.543 
0.2 168.219 
0.4 108.773 
0.6 89.123 
0.8 71.732 
1.0 62.464 
1.2 55.173 
1.4 53.154 
1.6 51.638 
1.8 45.783 
2.0 42.118 
2.2 39.751 
2.4 37.972 
2.6 35.583 
2.8 36.012 
3.0 36.326 
3.2 33.396 
3.4 31.335 
3.6 29.579 
3.8 28.279 
4.0 27.421 
4.2 26.624 
4.4 25.129 
4.6 25.502 
4.8 25.922 
5.0 24.307 
5.2 23.441 
5.4 22.938 
5.6 23.052 
5.8 25.855 
6.0 32.576 



TABLE 2.3 

FLUX ALONG THE SURFACE 

BEARING LENGTH = 6 mm 

EXTRUSION SPEED = 0.5 m/s 

DISTANCE ( mm) FLUX 

0.0 103.332 
0.2 196.531 
0.4 141.351 
0.6 107.976 
0.8 90.455 
1.0 85.840 
1.2 80.890 
1.4 76.227 
1.6 74.699 
1.8 68.011 
2.0 63.352 
2.2 58.011 
2.4 58.443 
2.6 59.284 
2.8 55.297 
3.0 52.232 
3.2 49.061 
3.4 45.748 
3.6 46.972 
3.8 48.492 
4.0 45.866 
4.2 43.429 
4.4 40.657 
4.6 38.491 
4.8 36.918 
5.0 39.349 
5.2 41.362 
5.4 39.158 
5.6 37.349 
5.8 36.600 
6.0 33.244 



TABLE 2.4 

FLUX ALONG THE SURFACE 

BEARING LENGTH = 6 mm 

EXTRUSION SPEED = 0.75 m/s 

DISTANCE ( mm) FLUX 

0.0 112.597 
0.2 199.387 
0.4 159.711 
0.6 147.917 
0.8 119.624 
1.0 104.587 
1.2 102.415 
1.4 99.199 
1.6 93.345 
1.3 90.226 
2.0 81.607 
2.2 77.013 
2.4 72.047 
2.6 72.197 
2.8 72.272 
3.0 66.969 
3.2 63.108 
3.4 64.404 
3.6 64.739 
3.8 59.704 
4.0 56.649 
4.2 54.676 
4.4 52.478 
4.6 54.125 
4.8 54.807 
5.0 51.466 
5.2 49.917 
5.4 49.023 
5.6 48.541 
5.8 52.021 
6.0 61.087 



TEMPERATURE DISTRIBUTION ALONG MIDPLANE 

BEARING LENGTH = 3 mm. 
EXTRUSION SPEED = 0.5 m/s 

DISTANCE (mm) TEMPERATURE deg. C 

0.0 500.00000 
0.2 500.00014 
0.4 500.00051 
0.6 500.00132 
0.8 500.00291 
1.0 500.00570 
1.2 500.01036 
1.4 500.01750 
1.6 500.02795 
1.8 500.04256 
2.0 500.06219 
2.2 500.08768 
2.4 500.11984 
2.6 500.15937 
2.8 500.20687 
3.0 500.26282 
3.2 500.32756 
3.4 500.40124 
3.6 500.48386 
3.8 500.57519 
4.0 500.67483 
4.2 500.78218 
4.4 500.89648 
4.6 501.01682 
4.8 501.14222 
5.0 501.27165 
5.2 501.40408 
5.4 501.53850 
5.6 501.67397 
5.8 501.80963 
6.0 501.94471 
6.2 502.07845 
6.4 502.20996 
6.6 502.33698 
6.8 502.44990 
7.0 502.50093 
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