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ABSTRACT 

Point Pattern 
Matching by Heuristic Methods: 

A Genetic Algorithm and Simulated Annealing 

by 
Erh-Chin Chen 

The problem we consider is to find a subset of points in a pattern that best match to 

a subset of points in another pattern through a transformation in an optimal sense. 

Exhaustive search to find the best assignment mapping one set of points to another set is, if 

the number of points that are to be matched is large, computationally expensive. We 

propose two stochastic searching techniques — a genetic algorithm and simulated annealing 

to search for the best ("almost the best") assignment efficiently. To make the comparison 

between GA and SA fair, we introduce a piece-wise linear cooling schedule for the SA. As 

compared to conventional searching techniques such as simple hill climbing and random 

search techniques, the proposed methods are able to attain better solutions much faster. The 

proposed methods can be applied to n-dimensional point patterns and any transformation, 

but we only present results for two-dimensional point patterns and similarity 

transformations. 
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CHAPTER 1 

INTRODUCTION 

Shape recognition is an important task in computer vision and pattern recognition. We 

will use the term shape to refer to the invariant geometrical properties of the relative 

distances among a set of static spatial features of an object. These static spatial 

features are known as the shape features of the object. For the purpose of 

recognition, much of the visual data perceived by a human being is highly redundant. 

It has been suggested from the view point of the human visual system (2) that some 

dominant points along an object contour are rich in information content and sufficient 

to characterize the shape of the object. Thus, point pattern matching in which points 

are used as shape features is a crucial vision task. 

The problem we address in this paper is that of recognizing and locating 

objects which are represented by a set of points. That is, each object is represented by 

a set of dominant points (shape features). Information about the sequential order of 

these points is not known or provided. The problem is to find a subset of points in a 

point pattern that match to a subset of points in another point pattern through a 

transformation in a certain optimal sense with the constraint that the mapping is 

single. In a general setting, the points are arranged in n-dimensional space, and the 

transformation is specified according to the geometric and environmental constraints 

of the problem. In this paper, we only consider two-dimensional point patterns and 

similarity transformations because images are inherently 2-D and similarity 

transformations can be used to indicate the similarity between two point patterns. 

However, the algorithm itself is not restricted to 2-D point patterns and similarity 

transformations. 

Many studies on planar object recognition have been done. The recognition 

task can be modeled as searching for an assignment between two features. 
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Commonly used features are holes and points (3), (4), (8), (17), (18), (28), (26), 

line segments (5), (7), (6), (10), (25), curve segments (11), (14), (15), (19), (21), 

(29), or a combination of these features (23), (24). The features are obtained by a 

preprocessing step such as edge detection, polygonal approximation, and corner 

extraction. We have taken a similar view by posing the recognition task as a point 

pattern-matching problem. Even methods that use points as their features usually 

require a priori knowledge on the sequential order of the arrangement of the points. 

The point pattern matching problem we are addressing is more general, and assumes 

no knowledge on the sequential order of the points. 

Among the methods mentioned above, (18),(26) which use relaxation labeling 

for point pattern matching do not assume, similar to our proposed algorithm, 

knowledge on the order of the points. However, a good estimate of the initial 

assignment between the points of the two point patterns is important relative to the 

convergence of the algorithm and the validity of the result. These methods (18),(26), 

inheriting the drawback of relaxation labeling, are complex, and computationally 

expensive because of their sequential nature. 

Comparing the algorithms addressed here to conventional search techniques 

such as random search and simple hill climbing technique which evaluate the fitness 

value sequentially, a genetic algorithm evaluates a set of samples in each generation. 

Thus, the genetic algorithm can achieve faster convergence and can escape local 

maxima. On the other hand, though simulated annealing is a sequential search 

technique, it provides a mechanism from getting stuck in local minima (9). 

After having formulated the problem in the next Chapter, we will describe a 

genetic algorithm for point pattern matching in Chapter 3, and the simulated annealing 

approach in Chapter 4. Experimental results and comparative studies are described in 

Chapter 5. Concluding remarks are drawn in Chapter 6. 



CHAPTER 2 

PROBLEM FORMULATION 

The point pattern matching problem can be formulated as follows: Given two sets of 

point patterns, 

P .(1),:p,c le ,i = 1,2,3,...,m} and 0 = {o,:oi  e Rn,i = 1,2,3,...,n}, 

we want to find an assignment, P --4 0, where P P and i5 D 0, such that the 

match error between T(P) and 0 is minimized; the match error which will be defined 

later indicates the quality of match, the smaller the error, the better the match between 

P and 0, and T is a predefined transformation. In this paper, we only consider two-

dimensional point patterns, N=2, and that T is a similarity transformation, 

T= {rotation, scaling, translation} .This problem is different from the image registration 

problem [13] in which the objective is to align two images through a geometric 

transformation. Let 6 be an observed 2-D point pattern, and P be a model 2-D point 

pattern. The 2-D similarity transformation is defined by the mapping x --> u, where x, 

U E R2 such that 

u [ cos 0 sin 01-x1 [e 
= S + 

v —sin 0 cos (9_,..y f ' - - _ 

[x 
u 

where x= , u= , S= scale factor, 6= angle of rotation, e= translation in the x- 
Y v 

axis, and f= translation in the y-axis. 

By letting a= Scos 6 and b= Ssin 6, the similarity transformation can be 

rewritten as 

1
-u . a birx-1

4. 
 e 

Irv_ _—b alyi _f_ .  

Let P={ (x„y,): (x„yi ) E R2, i=1,2,3,...,k} be a subset of model points. To 

find how well P is assigned to 0 under a similarity transformation, we need to find the 

parameters of the similarity transformation which maps P to 0 in an optimal sense, in 
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our case, in the minimum least squared error sense. Denote (i.1„-0,) as the result 

obtained by transforming (x„ y,) under T; i.e., T { (x,,y,)} = {(11„-i;,)} . Mapping P by 

this transformation, we have 
raii  F a blExl r  
Li; , j =  L—b a iy,i 

e] 
j +  Lf  

The squared error between the two sets of points T{P}={(ii ,,i),), i=1 ,2 ,...,k} and 

0={ (u„v,), i= 1 ,2 ,...,k} is defined by: 
rt 

e2 = lo
g 
 _ii

i
)2 +(v - i))2 

z=1 
• n 

=1((4, — ax,— by,— e)2  + (v, + bx,— ay,— f)2  
r=i 

To find the parameters of the transformation which will achieve the minimum 

least squared error, we simply take the derivatives of the error c will respect to each 

parameter, and set these derivatives to zero. That is, 
de2 n 

= I (2(u, — ax,— by,— e)(—x,)+ 2(v, + bx,— ay,— f)(—y,)= 0, 
da i=-.1 
de2 n 

= E (2(u, — ax,— by,— e)(—y,) + 2(v, + bx, — ay, — f)(—x,)= 0, 
db t=i 
d e2 n 

= E 2(u, — ax,— by,— e)(-1)= 0, and 
de i=i 

de2 n 

=12(1 ) , + bx , — ay,— f)(-1)= 0. 
di i 

a 

b 
Rewrite this in matrix form, we have A = C, where 

e 

f 
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The above least squared error derived from the similarity transformation 

quantifies how well P is mapped to 0. That is, it only quantifies how well a portion of 

the model point pattern P matches to the corresponding portion of the observed point 

pattern O. A small error indicates that the portion of the model points match well to 

the corresponding observed points. It does not, however, account for the overall 

goodness of match between point pattern P and point pattern O. To account for the 

overall goodness of the match between model and observed point patterns, we use the 

following heuristic measure (20), (21) which penalizes incomplete matching of the 

model point pattern: 

E = ' S * k k 

e 
ki + t

m 

 — 

, — 2 
)log2( 

 

k — 2 )) 
k>_3 

k = 0,1,2. 

where k is the number of model points that match the observed points, m is the 

number of model points, and S is the scale factor. 

The heuristic measure, which can be regarded as an error measure for the 

overall goodness of match between the model and the observed point pattern, is 

referred to as the match error. If there are only two or less pairs of matches between 

the model and the observed point patterns, the least squared error is always zero 

because there always exists a similarity transformation that perfectly maps a set of one 

or two points to another set. We consider such cases where two or less model points 

match to those in the scene as undetermined cases; i.e., these cases have insufficient 

evidence of match between the model and the observed point pattern. The logarithmic 

term of the match error serves as a penalty factor for incomplete matching of the 

model points. When all model points match those in the observed points (k=m), the 

match error equals the not ialized least squared error. The penalty is larger when less 

model points match those in the observed point pattern. The smaller the error, the 

larger the fitness value. The reciprocal value of the match error is thus used as the 





CHAPTER 3 

POINT PATTERN-MATCHING BY A GENETIC 

ALGORITHM 

Genetic algorithms were first introduced by John Holland (11) and received much 

attention as efficient searching methods for various applications. This searching 

scheme is based on the mechanics of natural selection and natural genetics that 

combines the notion of survival of the fittest, and the parallel evaluation of nodes in 

the entire search space (10). 

A genetic algorithm consists of a string representation of the node in the 

solution space, a fitness function to evaluate the nodes, a set of genetic operators for 

generating new nodes, and a stochastic assignment to control the genetic operators. 

To map the matching problem onto a genetic algorithm framework, we need 

to define a coding scheme (Section 3.1), a fitness function (Section 3.2), a set of 

genetic operators (Section 3.4), and the rules to control the operators that are suitable 

to this matching problem (5). 

3.1 String Representation 

Each string is an idealized "chromosome" consisting of a number of idealized "genes" 

(items in the string), and hence ending with the name "genetic algorithm." Choosing 

a coding scheme to encode the parameters of the problem into a string is problem 

dependent and not unique. In general, a proper coding scheme should 

(1) be as simple as possible, 

(2) span the range of the parameter to avoid illegal codes, and 

(3) be easily manipulated by genetic operators. 

In this paper, the parameters which we want to encode are assignments 

between two sets of points; each cell in a string indicates which model point is 

assigned a specific observed point. Suppose we have m model points and n 

7 



8 
observed points. For in model points, we choose a code consisting of m cells. Each 

cell takes on an integer value between 0 to n. The value of each cell indicates an 

assignment of match from the model point (that correspond to this cell) to an 

observed point. For our point pattern matching problem, the assignment between a 

set of model points and a set of observed points must satisfy the constraints that the 

match is single; that is, 

(1) A model point cannot be assigned to more than one observed point, and 

(2) An observed point cannot be assigned to more than one model point. 

A value of 0 indicates that no observed point is assigned to this corresponding model 

point. Note that the cell value in each string (except a cell value of 0) must be distinct 

because the mapping from the model points to the observed points is single. A string 

can, however, have several O's because it is possible that a number of model points 

do not match any observed points. 

Consider the following code with 12 cells: 2 5 7 0 9 1 3 4 6 11 10 12. The 

cell position from the left indicates the label of a model point. For example, the sixth 

cell corresponds to the sixth model point. In this code, the first model point is 

assigned to the second observed point, the second to the fifth, the third to the 

seventh, the fourth is not assigned, the fifth to the ninth, and so on. 

3.2 Fitness Function 

The fitness function must be relevant to the problem to be optimized. A well-defined 

fitness function is necessary to ensure success and to provide the payoff information 

indicating how good each sampled assignment is. Each string is thus evaluated by the 

fitness function to get a fitness value, the smaller the error, the larger the fitness 

value. We use a fitness value that is inversely proportional to the match error defined 

in Chapter 2. That is 



3.3 Population Size 

The population size is the number of strings to be evaluated in each generation. The 

larger the population size, the faster the convergence in terms of the number of 

generations to reach the optima, but the required computation for each generation 

becomes more intense. There is no fixed rule to select the size of the population. It is 

usually determined by trial and error, and we have chosen a population size of 30 for 

our experiments. 

3.4 Genetic Operators 

3.4.1 Reproduction 

The purpose of reproduction is to pass on good strings to which genetic operators 

such as crossover and mutation will be applied. For the point pattern matching 

problem, the reproduction operator is performed as follows: 

(1) Normalize the fitness value of each string such that the sum of the fitness 

value of all the string in the current population equal 1. 

(2) Partition a unit-length scale into thirty slots, each slot size is in proportion 

to the normalized fitness value of a string in the current population. 

(3) A new population of strings is reproduced by picking 29 random number 

(which are uniformly distributed on [0,11), and see where the number 

falls on the scale. The string corresponding to the division where a 

random number falls is selected to be a member for the new population. 

We pick 29 random numbers because we always pass the best string in 
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the current generation. Then, a total of 30 strings including the best string 

that is passed to the new population form a reproduction pool. 

3.4.2 Crossover 

The crossover operator is the most important operator in genetic algorithms. It is the 

"mating" operator which allows production of new strings through combination of 

parts of strings. It combines partial solutions that have been judged to be relatively 

good. One simple way of performing the crossover operator is: 

(1) Pairs of members of the newly reproduced strings are randomly selected 

for mating. 

(2) For each pair of selected strings, we swap parts of the strings to form a 

pair of new strings. The position of a string to which the swapping takes 

place is randomly selected. 

Each new string produced contains partial information from its parents. The 

mechanics of reproduction and crossover are surprisingly simple, involving only 

random number generation and string coping. 

Consider the following two strings Al and A2 

A1:12345678 

A2:25781436 

Using simple crossover at cross site 4, the following two new strings are obtained. 

A l':123411436 

A2':257815678 

The above simple crossover operator may produce illegal strings for our point 

matching problem. For example, Al' violates the constraint that the mapping must be 

single. We thus need to modify the crossover operator with some type of reordering. 

We introduce a new operator known as mixed-type partial matching crossover 

(MPMX). The MPMX operator is introduced for the following reasons: 

(1) it inherits the characteristics of the crossover operator in combining partial 
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solutions. 

(2) it avoids illegal strings by reordering. 

(3) it differs from mutation because no new "genes" are introduced. 

We shall illustrate the MPMX operator by means of an example. Let m= 12 

and n= 15. Thus, each string consists of 12 cells, and each cell takes on an integer 

value between 0 and 15. Consider the following two strings: 

Al: 1 2 7 6 9 13 8 0 4 11 12 5 

A2: 0 15 2 4 5 6 7 1 3 8 9 0 

The MPMX operator works as follows: 

(1) a. Determine the common genes between the two strings, 

fAlln(A2)={0,1,2,4,5,6,7,8,9). 

b. Determine the genes contained in Al but not in A2, 

(A1)MA2)={11,12,13). 

c. Determine the genes contained in A2 but not in Al, 

(A2IMA1)=(15,3). 

(2) a. Randomly select N1 cells from the pool of common genes, say, N1=4, and 

the cells are (1,5,6,7). 

b. Randomly select N2 cells from the two pools of genes, say, N2=1, and the 

cells are (12) and (3), respectively. 

(3) Form the matching section from the selected common and uncommon genes. 

a. the first matching section M1=1,5,6,7,12. 

b. the second matching section M2=1,5,6,7,3. 

(4) Permute the first matching section to the new matching section say 

IVI1'=5,6,7,12,1. 

(5) According to the position wise mapping between the new matching section and 
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the second matching section (e.g. cell value of 5 in string Al becomes 1, cell value 

of 6 in string Al becomes 5, and so on; likewise, cell value of 1 in string A2 

becomes 5, and so on), the two new strings are generated: 

Al 3, 2, 6, 5, 9, 13, 8, 0, 4, 11, 7, 1. 

A2 0, 15, 2, 4, 6, 7, 12, 5, 1, 8, 9, 0. 

The operator satisfies the constraint that each cell has a unique cell value in a string 

except cell value 0. 

3.4.3 Mutation 

Mutation is the occasional (with small probability) random alteration of the value of a 

string position. For a binary code, this simply means changing a 1 to a 0, and vice 

versa. By itself, mutation is a random walk through the string space. Mutation is 

needed because reproduction and crossover never introduce new genetic material 

(which might be needed even if they never actually lose any genetic material). In an 

artificial genetic system, the mutation operator protects against such irrecoverable 

lose, and provides a means of escaping from local minima. 

Since the string used for the point pattern matching problem is not binary, we 

cannot simply do bit inversion. In addition, we are constrained that cell values (except 

0) in a string cannot be repeated. Thus, we adopt the following mutation procedure: 

(1) Check the cell values of the string. If some cell values (out of all the possible 

cell values) are not assigned in the string, we randomly pick a cell in the string, 

and replace this cell with a cell value which is randomly picked from those 

unassigned cell values. 

(2) If the string contains all the possible cell values, we randomly swap the values 

between two cells in a string. 

Note that, as in natural selection, mutation rarely occurs, and thus artificial 

mutation operation is not always carried out. That is, mutation occurs with a small 

probability in each generation. 
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3.5 Summarizing the Procedure 

The point pattern matching procedure can be summarized as follows: 

(1) Select a fixed population size of strings, and randomly select an initial population. 

In our experiments, we use 30. 

(2) Assign a probability, each for the MPMX operation and the mutation operation. 

Usually the probability for the mutation operation is very small. 

(3) Perform reproduction as described in Section 3.4.1. 

(4) Reordering: Randomly pair up 28 strings (the best string is not paired up). For 

each pair of strings, generate a random number distributed on [0,1]. If the number 

is less than the assigned crossover probability, perform the MPMX operator on the 

present pair of strings. 

(5) Mutation: For each string in the population, generate a random number distributed 

on [0,1]. If the value is less than the assigned mutation probability, perform the 

mutation operation on the current string. 

(6) Repeat Steps (3)-(5) until convergence or a predefined number of generations has 

been reached. 



CHAPTER 4 

POINT PATTERN-MATCHING BY SIMULATED ANNEALING 

First introduced by Kirkpatric et al (1983) (20), simulated annealing is a stochastic 

searching technique derived from statistical mechanics for finding solutions to large 

optimization problems (28). The concept of simulated annealing is analogous to the way 

liquids freeze and crystallize. At high temperature, the molecules of a liquid move freely, 

and thermal mobility is lost as the liquid is cooled slowly. A pure crystal is formed when it 

is at the state of minimum energy. 

In simulated annealing, there are two conceptual operations involved: a thermostatic 

operation which schedules the decrease of the temperatures (an algorithm parameter), and a 

random relaxation process which search for the equilibrium solution at each temperature 

(1). 

To map the point pattern matching problem onto the simulated annealing 

framework, we use the same coding scheme as in the genetic algorithm discussed earlier. 

Each code (an assignment) is analogous to the state of a liquid. The cost of an assignment 

(the match error) is analogous to the energy of a state of the liquid. Thus, we let the energy 

function of the SA procedure be the match error. A perturbation rule for generating new 

assignments (configurations, states), the acceptance rule, the cooling schedule, and the 

stopping criterion will all be discussed next (30) (9). 

4.1 The Energy Function 

As mentioned earlier, the match error for the point pattern matching is analogous to the state 

energy. Thus the energy function E of an assignment is equal to the match error of the 

assignment. 

14 



4.2 The Perturbation Rule 

Various perturbation rules are applicable. For simplicity, a simple perturbation rule is 

applied here to generate a new assignment from the current assignment. Consider the 

following string assignment with eight number: 

Al: 25781436 

We randomly generate two numbers, say, "1" and "3." The first random number 

• indicates the element of the string to which its value will be replaced by the second 

random number. Thus, the new string is generated by replacing the first element 

with 3. 

Al':35781436 

Since there exists another "3" in the string (in position 7), this violates the constraint 

that the match must be single. Thus, the 7 th element is replaced by the original value 

of the first element. Thus, we obtain 

Al': 35781426 

4.3 The Acceptance Rule 

The acceptance rule decides whether the new search node is accepted. Here, the new 

assignment with a lower energy is always accepted. To provide a mechanism from 

getting stuck in a local minima, a new assignment with a higher energy is 

occasionally accepted. The acceptance of a new assignment with a higher energy 

follows the Boltzmann distribution. 

1 if AE <_0 
P ,- 1 

exp(
—AF:

) if AE > 0 

Here, P is the probability for accepting a new assignment. This provides the 
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mechanism to avoid getting stuck in local minima. As the temperature decreases, the 

probability of accepting new assignments with higher energy values is greatly 

reduced. 

4.4 Cooling Schedule 

In order to make a fair comparison with GA, and to see if SA will acquire the (near) 

optimal solution as fast as GA, for each experiment, if GA acquires the (near) optimal 

solution at the Nth generation with population size 30 (i.e. 30 N iterations), we allow 

SA to run for 30 N iteration. 

Let To=1 be the initial temperature. The cooling schedule: 

Tn+1 = Tn — AT„ where AT n  = 
 in 

 
30N 

In= the number of runs (iterations) executed by SA at T. 

At each temperature, new assignments are generated and accepted according 

to the perturbation rule and the acceptance rule described above until thermal 

equilibrium is reached at that temperature or a predefined maximum number of 

iterations allowed at each temperature is reached. Thermal equilibrium is reached if 

the energy for a number of new consecutive assignments are close to each other. In 

our experiments, if IAEk  HE, — Ek_i I < 0.5 for 20 consecutive iterations, thermal 

equilibrium is said to be attained, where Ek is the energy of the kth assignment. 

4.5 Stopping Criterion 

The annealing procedure is terminated when the temperature reaches 0 or an optimal 

solution (with match error=0) is found. 

4.6 The Summarized Procedure 

The procedure can be summarized as follows: 

(1) Set To=1 

(2) Randomly select an assignment. 
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(3) Generate a new assignment according to the perturbation rule. 

(4) Determine if the new assignment is accepted according to the 

acceptance rule. 

(5) Repeat steps (3) & (4) until thermal equilibrium or a predefined 

number of iterations is reached at that temperature. 

(6) Reduce the temperature according to the cooling schedule. 

(7) Repeat steps (3) to (6) until the stopping criterion is met. 



CHAPTER 5 

EXPERIMENTAL RESULTS 

In this section, we present experimental results to demonstrate the efficiency (how well 

and how fast) of our proposed methods for point pattern matching. We have run a large 

number of simulations which can be categorized into several cases. In the following set 

of simulations, we create a library of four model point patterns, each consisting of 12 

points as shown in Figure 1. The observed point pattern are made up of points 

belonging to one or more model objects which have undergone a similarity 

transformation. In addition, as compared to the model point patterns, extraneous points 

or missing points may be introduced in the observed point patterns. We also consider 

cases where the observed point pattern is derived from one or more model point 

patterns with noise added on the points. Extensive comparative studies are also made 

among GA, SA the simple hill climbing technique and the random search technique. 

The results are summarized in Table 1. 

Since Case (7) is the most difficult case in which some points are missing, 

extraneous points are added, and all points are corrupted with noise, this case is used as 

a test bed for comparison among GA with various cross-over and mutation 

probabilities, SA, the simple hill climbing method and the random search method. 
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Figure 1. Four model point patterns:(a) Model A,(b) Model B,(c) Model C, and (d) 
Model D. 



Figure 3. Experiment Case (2) using GA with Pc=0.5 and Pm=0.02 — (a) 
Mapping Model A to the observed pattern, (b) the convergence plot. 



Figure 5. Experiment Case (4) using GA with Pc=0.5 and Pm=0.02— (a) 
Mapping Model A to the observed pattern, (b) the convergence plot. 



- , 
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, 

Figure 7. Experiment Case (6) using GA with Pc=0.5 and Pm=0.02,  (a) 
Mapping Model A to the observed pattern, (b) the convergence plot. 



Figure 9. Experiment Case (8) using GA with Pc=0.5 and Pm=0.02 — (a) Mapping 
Model A to the observed pattern, (b) the convergence plot. 



Figure 11. Experiment Case (9) using GA with Pc=0.5 and Pm=0.02 — (a) Mapping 
Model C to the incompatible observed pattern, (b) the convergence plot. 



igure 12. Experiment Case (9) using GA with Pc=0.5 and Pm=0.02 — (a) Mapping 
Model D to the incompatible observed pattern, (b) the convergence plot. 

Figure 13. The convergence plot for Experiment Case(7) using DA with Pc=O and 
Pm=0.03. 



Figure 14. The convergence plot for Experiment Case(7) using GA with Pc=O and 
Pm=1. 

Figure 15. The convergence plot for Experiment Case(1) using simulated 
annealing. 



Figure 16. The convergence plot for Experiment Case(2) using simulated 
annealing. 

Figure 17. The convergence plot for Experiment Case(7) using simulated 
annealing. 



Figure 18. The convergence plot for Experiment Case(7) using the simple Hill 
Climbing technique. 

Figure 19. The convergence plot for Experiment Case(7) using the random search 
technique. 
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Table. 1. Summarized experimental results. 
Methods Experiments 

T{Model } — Mapping Model through a 
similarity transformation. 
Noise — points are corrupted by additive 
noise. 

Numbert 
of 

Iterations 

Final 
Match 
Error 

Figures 
depicting 
the results 

G A 
Pc=0.5 

Pm=0.02 

Case (1) Observed= { Relabelling Model A } 270 0 Figure 2a, 2b 
Case (2) Observed=T{Model A} 270 0 FIgure 3a, 3b 
Case (3) Observed=T{Model A}+Extraneous 
Points 

10,500 0 Figure 4a, 4b 

Case (4)Observed=T{Model A}+Extraneous 
Points {close to observed points} 

1,500 0 Figure 5a, 5b 

Case (5) Observed=T{Model A - Missing 
Points} 

1,500 0 Figure 6a, 6b 

Case (6) Observed=T{Model A}+Noise 1,500 19.2 Figure 7a, 7b 
Case (7) Observed=T{Model A - Missing 
Points ) +Extraneous Points+Noise. 

4,500 18.9 Figure 8a, 8b 

Case (8) Observed=T{Model A} +T{other 
models} 

6,000 0 Figure 9a, 9b 

Case (9) Incompatible Observed Point 
Pattern 

>10,000 021 Figure 10a, 10b 
Figure 11, 12 

GA Same as Case (7) — Pc=O, Pm=0.02 > 10,000 50 Figure 13 
Same as Case (7) — Pc=0, Pm=1 > 10,000 50 Figure 14 

SA Same as Case (1) 300 0 Figure 15 
Same as Case (2) 1,000 0 Figure 16 
Same as Case (7) 4,000 20 Figure 17 

Simple 
Hill 

Climbing 

Same as Case (7) > 10,000 22 Figure 18 

Random 
Search 

Same as Case (7) >10.000 =24 Figure 19 

t For GA, the number of iterations to reach (near) optimal solution = 30x(number of generations). 



CHAPTER 6 

CONCLUSIONS 

We have introduced the two heuristic methods for point pattern recognition. The 

robustness and fast convergence of our algorithms have been demonstrated through 

experimental results. To find the "best" match between a set of m model points and a 

set of n observed points, our GA only needs to evaluate NG search nodes where N is 

the population size and G is the number of generations at which the algorithm 

converges or stops. In our experimental results, it usually takes less than 200 

generations, and in some cases less than 10 generations, for GA to converge as 

compared to a total of 

search nodes that are to be evaluated using exhaustive search. 

Simulated Annealing is sequential in nature , but it avoids the search getting 

stuck in a local minima. If GA can be implemented in parallel, it converges faster than 

SA even though they may takes the same number of iterations to reach the steady state. 

In our implementation, each generation of GA evaluated 30 search nodes that is 

equivalent to 30 iterations in SA. It has been demonstrated through experiments that the 

proposed heuristic methods perform the point pattern matching task well. 
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