

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT
Graphical Image Persistence and Code Generation

For Object Oriented Databases

by
Subrata Chatterjee

Attached is the detailed description of the design and implementation of graphical

image persistence and code generation for object oriented databases. Graphical image

persistent is incorporated into a graphics editor called OODINI. OODINI creates and

manipulates graphical schemas for object-oriented databases. This graphical image on

secondary storage is then translated into an abstract, generic code for dual model

databases. This abstract code, DAL can then be converted into different dual model

database languages. We provide an example by generating code for the VODAK Data

Modeling language. It is also possible to generate a different abstract language code,

OODAL from a graphical schema. This language does not have any dual model

database architectural dependencies.

GRAPHICAL IMAGE PERSISTENCE AND CODE GENERATION
FOR OBJECT ORIENTED DATABASES

by
Subrata Chatterjee

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science
Department of Computer and Information Science

May 1992

APPROVAL PAGE
Graphical Image Persistence and Code Generation

for Object Oriented Databases

by
Subrata Chatterjee

•

Dr. Yehoshua Perl, Thesis Adviser
Professor of Computer and Information Science, NJIT

BIOGRAPHICAL SKETCH

Author: Subrata Chatterjee

Degree: Master of Science in Computer and Information Science

Date: May, 1992

Date of Birth:

Place of Birth:

Undergraduate and Graduate Education:

• Master of Science in Computer and Information Science, New Jersey
Institute of Technology, Newark, NJ, 1992

• Bachelor of Science in Computer and Information Science, New Jersey
Institute of Technology, Newark, NJ, 1987

Major: Computer and Information Science

This thesis is dedicated to
my parents and family.

ACKNOWLEDGEMENT

The author wishes to express his sincere gratitude to Professor Yehoshua Pen and

Professor James Geller for their guidance, friendship, and moral support throughout this

work.

The author also wishes like to acknowledge and express appreciation to the following

people for their invaluable contribution to this document: Mike Halper, Ashish Mehta,

Ram Mohan Madapati, Steve Beck and Walter Jones.

TABLE OF CONTENTS

Page

1 INTRODUCTION 1

1.1 Scope 1

1.2 Audience 2

1.3 Terminologies 2

2 GRAPHICAL IMAGE PERSISTENCE 7

2.1 Problem Statement 7

2.2 Design Solutions 8

2.2.1 A Traditional Approach 8

2.2.2 A Generic Approach 9

2.3 Implementation Details 13

2.4 Design Advantages 15

2.5 Performance Evaluation 17

2.6 Porting Issues 18

3. CODE GENERATION 20

3.1 Problem Statement 20

3.2 Implementation of DAL 22

3.2.1 Object Types 22

3.2.2 Attributes 23

3.2.3 Set-of and Member-of 24

vii

Page

3.2.4 Category-of 25

3.2.5 Role-of 26

3.2.6 Part-of 27

3.2.7 Tuple-of 28

3.2.8 Ordinary Relationships 29

3.2.9 Essential Relationships 30

3.2.10 Multi-valued Relationships 31

3.2.11 Dependent Relationships 32

3.2.12 Multi-valued Essential Relationships 32

3.2.13 Multi-valued Dependent Relationships 33

3.2.14 Methods 34

3.3 Syntax For DAL 35

3.4 User API For DAL 35

3.5 Implementation of Structural and Semantic Hierarchy 38

3.6 VML Code Generation 39

3.6.1 Conversion Of Object Types 39

3.6.2 Conversion Of Object Classes 44

3.7 Implementation Of OODAL 48

3.7.1 Implementation Of Object Classes 49

3.7.2 Implementation Of Attributes 49

3.7.3 Implementation Of Relations 50

viii

Page

3.7.4 Implementation Of Relationships 50

3.7.5 Implementation Of Methods 51

3.8 Syntax For OODAL 51

3.9 User API for OODAL 52

4 CONCLUSIONS 54

APPENDIX A: MANUAL PAGES: IMAGE PERSISTENCE 56

APPENDIX B: BNF DESCRIPTION FOR DAL 66

APPENDIX C: USER API HEADER FILE FOR DAL 68

APPENDIX D: USER API LIBRARY CALL FOR DAL 71

APPENDIX E: MANUAL PAGE: DAL EXECUTABLE 73

APPENDIX F: MANUAL PAGE: VML EXECUTABLE 74

APPENDIX G: MANUAL PAGE: HEAP FILE COPY 76

APPENDIX H: BNF DESCRIPTION FOR OODAL 77

APPENDIX I: USER API HEADER FILE FOR OODAL 79

APPENDIX J: USER API LIBRARY CALL FOR OODAL 81

APPENDIX K: MANUAL PAGE: OODAL EXECUTABLE 83

APPENDIX L: SOURCE TREE AND SOURCE COMPILATION 84

REFERENCES 88

ix

LIST OF TABLES

Table Page

1 DAL Source File Names 84

2 DAL Executable/Library File Names 85

3 OODAL Source File Names 85

4 OODAL Executable/Library File Names 85

5 VML Source File Names 86

6 VML Executable File Name 86

7 MAPAMLLOC Source File Names 86

8 MAPMALLOC Object File Name 87

9 OOCOPY Source File Names 87

10 OOCOPY Executable File Names 87

x

LIST OF FIGURES

Figure Page

1 Memory Mapping of Persistent Heap File 12

2 Persistent Heap File Configuration Layout 15

3 Data Flow Diagram For Code Generation 21

4 Data Flow Diagram for VML Code Generation 22

5 OODINI Attribute Graphical Notation 24

6 OODINI Setof/Memberof Graphical Notation 25

7 OODINI Categoryof Graphical Notation 26

8 OODINI Roleof Graphical Notation 27

9 OODINI Partof Graphical Notation 28

10 OODINI Tupleof Graphical Notation 29

11 OODINI Ordinary Relationship Graphical Notation 30

12 OODINI Essential Relationship Graphical Notation 30

13 OODINI Multi-valued Relationship Graphical Notation 31

14 OODINI Dependent Relationship Graphical Notation 32

15 OODINI Multi-valued Essential Relationship Graphical Notation 33

16 OODINI Multi-valued Dependent Relationship Graphical Notation 34

17 DAL User API Data Structures 37

18 VML Semantic MetaClass Keywords 47

xi

Figure Page

19 OODAL User API Data Structures 53

20 Source Code Tree Hierarchy 84

xii

CHAPTER 1
INTRODUCTION

This document describes in detail the design and implementation of graphical image

persistence and code generation for object oriented databases. In order to represent

large networks of classes, their attributes and relationships for an object oriented

database a graphics editor called OODINI (Object-Oriented Diagrams at the New

Jersey Institute of Technology) was designed and developed in the Computer Science

Department at New Jersey Institute of Technology [2]. OODINI's intent was to

facilitate designers to graphically represent object oriented database schemas. A major

portion of the work detailed in this document entails secondary storage representation of

such graphical schemas, i.e., graphical image persistence. The obvious benefit derived

is the iterative execution and update operations of the same graphical schema under

OODINI. This graphical image representation on secondary storage is then translated

into an abstract, generic code, DAL (Dual Model Abstract Language), for dual model

databases. A complete description of dual model object oriented databases can be found

in [1], [4] and [5]. Briefly, in the dual model there is a distinct separation of the

structural and semantics aspects in the definition of an object class [6]. This abstract

code, DAL, can then be converted into different object oriented database languages. We

provide an example by generating code for the VODAK Data Modeling Language

(VML). A complete description of VML semantics and syntax can be found in [3]. It is

also possible to generate a different abstract code from a graphical schema. This code,

OODAL (OODINI Abstract Language), does not have any dependencies on the dual

model database architecture.

1.1 Scope

This document is intended for publication towards a Master's Thesis at NJIT.

2

1.2 Audience

This document is intended for system planners, architects, developers and testers of

Dual Model Object Oriented Database project ongoing at New Jersey Institute of

Technology. For other audiences the materials in the Reference Section is a mandatory

prerequisite to this document.

1.3 Terminologies

API: Application programming interface.

Attribute: A structural aspect of a class that is composed of a name and a data type.

BNF: Backus-Naur Form. BNF is a metalanguage for programming languages. A

metalanguage is a language that is used to describe yet another language. BNF is used

to describe the syntax of a programming language. It uses abstractions for syntactic

structures.

Category-of: A semantic relation between two classes. It relates a specialized class to a

more general class where both these classes are viewed within the same application

context.

Class: A container of objects which are similar in their structure and their semantics.

DAL: Dual Model Abstract Language. The graphical image for a database schema is

first converted to this abstract language and then to other object oriented database

languages. The DAL syntactic form closely resembles the language proposed under the

Dual Model architecture.

Dependent relationship: A relationship where the existence of an object depends on

the existence of yet another object. If the class A has a dependent relationship to class

B, then the existence of an instance of A is dependent on the existence of an instance of

3

B. That is, if an instance a of A depends on an instance b of B, and b is deleted, then a

must also be deleted.

Dual Model: A database model in which the object type description is separated from

the description of object class. This model gives a clear distinction between the

structural and semantic elements in the definition of an object class.

Essential Attribute: The existence of an object is conditioned on the existence of this

attribute. An instance of a class can only exist if the value of its essential attributes are

all different from NIL.

Essential Relationship: A relationship which is not permitted to have a nil value.

Heap: Described within the context of a programming language. It is that portion of a

user process's virtual address space from which dynamic memory is allocated.

Malloc: A memory allocation routine. Allocates dynamic memory from a user

process's virtual address space. This dynamic memory is not persistent across execution

sessions. This routine is typically implemented as a library call in UNIX operating

systems.

Member-of: A connection between two object types. Here an object type is said to

belong-to or be a member of another object type - the latter object type representing a

set. This is also a relation.

Method: A program segment with one required parameter of some object type, and any

number of optional parameters. A method always returns a value of an object type or

data type.

Mmap: Memory mapping of objects. This is an operating system terminology. It

represents a system call that can map objects (e.g., files, devices, etc) into a user

4

process's virtual address space.

Multi-valued relationship: A one-to-many relationship between two classes. It

indicates that an instance of one class can be related to any number of instances of the

class to which the relationship is directed. An example of this can be the relationship

between the classes section and student, where a given section can have many students.

Part-of relation: A relation which is used to connect a part of a complex or assembled

(real-world) object to its integral object. An example of this relation can be used to

represent parts of a book, e.g., the classes chapter and page can be in a part-of relation

with the class book.

Object: The concept of an object is universal. Literally everything, from items as

simple as the integer constant 1, to a file-handling system, memory, data structures, etc.,

are objects. As objects, they are treated uniformly. Objects have local memory, inherent

processing ability, the capability for communicating with other objects, and the ability

to inherit characteristics from ancestor objects.

Object type: In order to express that all instances of a class have a common structure

and behavior one can consider them to be of the same abstract data type. This type is

called the object type of that class.

OODAL: OODINI Abstract Language. The graphical image for a database schema is

first converted to this abstract language and then to other object oriented database

languages.

OODINI: Object-Oriented Diagrams at the New Jersey Institute of Technology. A

graphics editor for drawing and manipulating object oriented database schemas.

Part-of: A connection of a part of a complex or assembled (real-world) object to its

5

integral object.

Relations: Generic or system defined connection between object types or object classes.

Set-of, member-of and subtype-of constitutes relations between object types.

Category-of, role-of and part-of constitutes relations between object classes.

Relationship: User defined connection between classes that can contain either

structural or semantic information in the context of the application.

Role-of: A semantic relation between two classes. It relates a specialized class to a

more general class, where both these classes are viewed in different application

contexts.

Semantic aspect: An aspect of a specification is considered to be semantic if either (1)

it refers to actual instances of objects in the application or (2) one cannot decide

whether this aspect of information describes an object properly, based solely on its

mathematical structure and without relying on an intuitive understanding of the

application.

Set-of: A connection between two object types. Here an object type represents a set of

other member object types. In a mathematical sense this is also a relation.

Structural aspect: An aspect of a specification is considered structural if either (1) it is

composed of names, types and logical arithmetic operations, or (2) one can decide

whether this aspect of information describes an object properly based solely on the

mathematical structure of this aspect, without relying on an intuitive understanding of

the application.

Tuple-of relation: A relation constructor used to gather a group of classes (constituent

classes) into a single class (the tuple class) for some purpose. A concrete example of

6

this can be the tuple class shipment which is involved in a ternary relation with its

constituent classes supplier, product and department.

VML: The VODAK Data Modeling Language.

CHAPTER 2
GRAPHICAL IMAGE PERSISTENCE

GRAPHICAL IMAGE PERSISTENCE OODINI is a graphics editor that allows

designers to graphically represent dual model database schemas. It runs under a SUN-

SPARC work station in a UNIX operating system environment. The application makes

use of X-Window and Motif tools for creation and manipulation of graphical images

representing classes, attributes, relations, relationships, methods, etc, of a dual model

database schema. This section of the document describes the problems associated with

obtaining secondary storage representation of such graphical objects, describes a

traditional solution approach, presents an innovative generic solution, its

implementation details, performance statements and software porting issues.

2.1 Problem Statement

It is obvious that the graphical representation of any object as viewed on a screen need

not be of concern. It is the internal memory representation of the graphical object by the

application (in our case, OODINI) that needs to be saved on secondary storage. This is

because any application will eventually invoke primitive library routines (e.g., X-

Window library calls) to draw the physical image on the screen using the internal

memory representation of the object. Hence with each graphical object, whether it be a

line, segment, text, arc, etc., there has to be an associated internal memory

representation. This internal memory representation of a graphical object also has to be

a part of user's program (OODINI) execution image. More specifically this memory

can either be a part of the user's data segment or the heap (from which dynamic memory

is obtained). It should now be evident that if we can achieve data persistence of the

user data space and the heap - we will also have achieved graphical image persistence.

This is the linchpin of our proposed design solutions.

7

8

2.2 Design Solutions

First we present a crude, traditional design approach to save graphical images generated

by OODINI on secondary storage. Then we present a more elegant, sophisticated and

generic design that will work not only for OODINI but for other graphical editors as

well. The scope of the latter approach is however not restricted to graphical editors.

This new design can be useful in other application environments - this will be justified

appropriately.

2.2.1 A Traditional Approach

A rather crude, cumbersome and traditional approach to obtain data persistence for an

executable's execution environment is to write out each internal memory representation

of graphical objects one at a time to a file on secondary storage. It is obvious that this

should be performed prior to execution termination. The primary obstacles to this

approach are outlined below:

1. Implementation of this design can be tedious and time consuming. It is true that

it is easy to write out individual memory objects to secondary storage. But the

major implementation hurdle lies in dealing with pointers. Data variables in

memory will for the major portion use pointer variables to reference other data

objects. It is easy to save, for example, the name of a class in the file. On the other

hand, directly writing out the contents of pointer variables will never work. In

such case the developer needs to come up with a labeling scheme that associates a

label (usually an integer variable) with each graphical object. This requires a

detailed understanding of the graphics editor and its internal data structures.

2. Performance of the software is also an issue. Prior to termination of the graphics

editor, expensive searches on extensive data structures needs to be made and each

object must be written back to secondary storage one at a time. Prior to program

9

execution the image has to be loaded back from secondary storage and the data

structures needs to be restored to their original state. Besides such I/O

considerations memory allocation/deallocation also creates performance

problems. Image saving and restoring for large number of graphical objects can

easily lead to sluggish software response.

3. Maintenance of this software will become tedious. For example assume that a

new object is incorporated into the design or a new pointer variable is added to an

existing data structure. This is typical in a development organization where

several developers might attempt modifications to the same software. Every time

such changes are made - a corresponding change needs to be made to the portion

of the software that writes out the object to secondary storage. Hence at least one

developer needs to be maintained for this software every time such modifications

are anticipated. There is either a cost issue involved with maintaining a developer

for this software or it requires every developer that makes changes to the graphics

editor to have knowledge about that piece of the software that writes out images

to secondary storage.

4. Furthermore this obviously is not a generic solution. If a new graphics editor

other than OODINI is targeted for development, the current software that writes

out images to disk will have to be changed extensively. This solution is heavily

dependent on internal data structure representation.

In any case this design approach is attainable but hardly desired.

2.2.2 A Generic Approach

In this section we propose a more generic solution to our problem. Our solution

• attempts to achieve user dynamic memory persistence of the heap space of an

execution image. We seek a mechanism where all updates to the heap of a running

executable is automatically written to secondary storage; and to demonstrate persistence

10

we also need a mechanism to restore the heap to its existingl old state prior to program

execution. In order to grasp this design approach one needs to understand some UNIX

Operating System concepts. We proceed to explain a relatively new feature of the UNIX

Operating System - the mmap() system call.

The word mmap implies memory mapping. It is a UNIX system call that establishes a

mapping between a process's address space and a virtual memory object, e.g., a device

or a file. In our case the object being mapped is a flat UNIX file. Traditionally, in the

UNIX world accesses to files were done using the standard read() and write() system

calls. Using mmap() on an existing file allows users to manipulate the file without using

read() and write() system calls. Once a file is mapped into the user virtual address

space, all the process has to do to access the file is to use the data at the address range to

which the file was mapped. Assume that the user requests a mapping of an existing file

and the operating system maps the file at user virtual address V. The virtual address

range accessible to the user would then be from V to V + N, where N is the length of the

file. Then if the user process writes to location V this would be equivalent to writing out

data in file at logical offset 0. If the user process reads from location M, where V <= M

< V+N, this would be equivalent to reading from the file at logical offset M - V. In

other words, by touching memory address from V to V+N the user process can

manipulate the entire file. It should be noted that mappings to objects need not start at

logical offset 0 of the object being mapped.

There are two ways of mapping an object. One can achieve a private mapping to a file

using the MAP PRIVATE flag as an argument to the mmap() system call. In such a

case, whenever the user attempts to update data in the file by writing memory in the

mmap()-ed address space, the user gets its own, private copy of the physical page being

touched. This is analogous to how the copy-on-write feature works in UNIX. When a

process creates a child process, one of them gets its own private page during the first

11

write attempt to that page. Hence, when a process maps a file using the

MAP PRIVATE feature, all the pages corresponding to that file are initially marked as

read-only. A write access on any page causes copy-on-write to take effect. When the

operating system is low on memory, it tries to swap pages out. When copy-on-write

occurs on a page, the page becomes dirty in memory. Such dirty pages are then swapped

to the swap device.

Another way of mapping a file is to use the MAP SHARED flag. In such a case, all

processes can share the file - everybody has the right to read and write pages

corresponding to the file. During swapping activity such dirty pages are written back

into the file, i.e., these pages do not have swap-device associations. An interesting

feature to note is that it is the operating system's responsibility to flush dirty pages for a

file back to secondary storage -- it is not the user process's responsibility (this is very

different from read()Iwrite() system calls). So even if the user process terminates

prematurely - the operating system will flush out the dirty pages to disk.

The following diagram summarizes the discussion of the mmap() system call.

Figure 1. Memory Mapping of Persistent Heap File

Our solution uses the mmap() system call to achieve persistent of the heap of any user

process. During process execution, the process will allocate dynamic memory from the

heap. This allocated memory would then be used to represent graphical images. Our

solution to achieve persistent is extremely simplistic - instead of allocating dynamic

memory from the traditional heap space, we allocate memory from a mmap()-ed

file. How this is done is discussed in the next section.

13

2.3 Implementation Details

In the UNIX world dynamic memory allocation is done from the heap using the

malloc() library call. Dynamic memory deallocation is done using the free() library

call. These two routines perform necessary memory management of the user process's

heap address space. Briefly, it maintains a linked list of blocks of memory that are

currently allocated/used and another linked list of blocks of memory that are currently

being unused or were deallocated. It maintains a header section (a block of memory) in

the heap address space - that maintains pointers to the beginning of each linked

(used/free) list. However note that the pages in memory corresponding to the heap

address space are not associated with any file, these pages are associated with the swap

device. During swapping activity these pages are swapped back and forth from the swap

area. Upon program termination the operating system simply throws (returns pages to

the free page pool) these pages out, and frees the swap space reserved for these pages.

Such memory that have swap association are often referred to as anonymous memory.

Our solution implements the entire heap of a user process in the mmap0-ed address

space. This simply means that all memory allocation and deallocation buffers, list

pointers, user data, etc. - are preserved during process execution and even after process

termination. Remember, it is the operating system's responsibility to write out pages for

mmap0-ed address space. We use the MAP SHARED flag during the mmap() system

call, so that all updates to the heap are reflected back into a file that was mapped. We

provide a new library - libmapmalloc.a that provides equivalent functionality of the

traditional malloculfree library calls. More specifically, the following library routines

are critical from the implementation point of view:

1. mapmalloc_init() - This library routine takes in as an argument a file name. If the

file does not exist it creates one. It then maps the file into user memory. The

initial file created is of a default or user specified size.

14

2. mapmalloc() - This library routine takes in as argument the number of bytes to

allocate from the heap (the mmap()-ed address space). If the file contents are full

(heap overflow) this routine first unmaps the file from memory, grows the file by a

default size and maps the file back into memory.

3. mapfree() - This library routine frees a previously allocated block of memory.

The heap (mmap()-ed address space) is updated to reflect the change.

4. map_set_base_addr() - This library routine saves a pointer value in the header

portion of the file being mapped. Why is this needed? It is true that we have

achieved dynamic memory persistence once a program finishes execution. But

when it starts execution again - how does it know which portion of the dynamic

memory is the starting point of all its data structures? That is, the program upon

re-execution needs to know the root pointer(s) of all its data structures. Notice

that all the root pointers of multiple data structures can be in turn saved into a

single data structure. This routine simply saves that root pointer in the file's

header section.

5. map_get_base_addr() - This library routine returns to a program the saved root

pointer of all its data structures. If a NULL value is returned it implies that either

the user did not perform a map _setbase_addr() in its prior execution state or the

file being mapped is in its initial state.

It is worthwhile to note that our actual implementation allows for multiple heaps (and

multiple corresponding files) to be managed by the library. Multiple heaps can

modularize heap management of a process. A complete description of the usage of these

and other library routines are given in standard UNIX manual page formats in

APPENDIX A.

We also provide a high level diagram depicting the contents of a sample memory

mapped file being used as a heap.

2.4 Design Advantages

In this section we justify why this solution is generic and can even be used outside our

particular programming environment. Consider the following observations:

1. Genericity: Traditionally UNIX does not provide persistence of dynamic

memory allocation. This is the first time such a solution has been concretely

proposed. Dynamic memory persistence is useful in other programming

environments - it is not restricted to graphical editors. Any data structure, whether

a complex network of nodes or a simple linked list, stack, queue, etc. - can easily

16

be saved on disk - without requiring the programmer to worry about its internal

representation on secondary storage.

2. Performance: It is proven that mmap() is faster than using read() and write()

system calls. This is because during a read() system call there is an additional

overhead of copying data from disk to the kernel buffer cache and then to the user

address space. Similarly during a write() system call the data is first copied from

the user address space to the kernel buffer cache and then to disk. It should be

noted that the implementation of the mmap() system call in UNIX Release 4.0

was possible as the page pool is the buffer pool! During mmap() copying of data

from/to the kernel buffer cache is not necessary.

3. Sharing: When processes create other children processes - there is no easy way

of allowing them to share a single heap. Shared memory regions are an option -

but cumbersome. With our solution multiple processes can work with a single

heap. Semaphore control operation features during memory allocation and

deallocation are built into the library to resolve concurrency issues. This also

implies that while the user is creating a graphical schema under OODINI we can

also dynamically generate code for that schema, although OODINI is in

execution mode.

4. Reliability: Using mmap() rather than usual read()/write() system calls makes the

software more reliable. The user is relieved of writing persistent data to disk! The

operating system guarantees all data in the mmap()-ed address space will

eventually be written back to disk. It is very rational to assume that the user

software or the underlying graphical application (e.g., X-Window) might abort

execution prematurely (e.g., core dumps, kill signal, etc.) without giving the user

software control to write out the data to disk. With mmap(), it is the kernel's

responsibility to sync back last changes to the memory mapped file(s) to disk.

17

Finally, the operating system might crash. On some fault tolerant machines, e.g.,

Tandem, the kernel attempts to flush the buffer pool to disk before taking the

hardware out of service. Since in UNIX Release 4.0 the page pool is the buffer

pool, all memory mapped files will be synced back to disk during kernel panics.

5. Modularity: Our solution also allows for creation of multiple heaps within a

single process's address space. This allows modular programming and better

maintenance of dynamic memory usage.

6. Ease of Programming: In order to lessen code impact changes during

transitioning of code from traditional heap management using malloculfree()

library calls, we have provided two new macros, MALLOCO/FREEO that

performs the equivalent operations of mapmalloc() and mapfree(). Changes in

existing code are thus minimal. We effectively provide a malloc/free-like

interface for minimum perturbation on existing programs.

7. Cost Effective: With this solution there is now no need for maintaining

additional developer(s) for making changes to the portions of the software that

achieves persistence. The simplicity and generic nature of the design makes this

an achievable goal.

2.5 Performance Evaluation

We have mentioned earlier that using mmap() is faster than using read()/write() system

calls. Since our memory allocation is also based on existing malloculfree() library

interface, we thus do not predict any performance degradation during allocation and

deallocation. However there is an obvious extra overhead. Since we are saving data into

a file (actually, the operating system does it) - file block allocation will obviously be a

factor. But this is an inescapable reality - data must be preserved in a file. One can

argue on file space considerations. Since the entire file must exist prior to the mmap()

18

system call - are we not wasting file system blocks when using a large file for a heap -

while memory allocation might use only a small percentage of the actual file size? This

is easily avoided since UNIX supports holes within a file. All we do during file creation

is to write the first and the last byte of the file, thus allocating only 2 file system blocks -

leaving a hole in the middle of the file. Only when memory is requested from un-

allocated blocks, touching (reading/writing) memory results in block allocation by the

operating system. However, space and time considerations are always in conflict.

Dynamic block allocation can reduce a process's response during run time. To avoid

this we provide an additional flag in mapmalloc_init() that pre-allocates all the disk

blocks for the file being created.

2.6 Porting Issues

The library code, libmapmalloc.a, is portable across all UNIX System V Release 4.x

versions. It has been developed on a 80386 AT&T SVR 4.2 operating system and then

ported to the SUN-OS 4.1.1 system. For earlier versions of UNIX operating systems the

mmap() system call is non-existent. For such systems we provide a similar interface

based on shared memory. There is one more issue regarding porting concerns. It

should be noted that mmap() might map a file at different virtual addresses on different

machines. For example, mmap() of a file on the 80386 AT&T machine returns a virtual

address of 0x80030000 - while on the SUN-OS returns 0xf7000000. Hence it should be

noted that the heap image saved on a disk on one hardware platform cannot be ported

directly to yet another different hardware platform. To reduce this effect, mmap() does

provide mapping a file at a fixed, user defined virtual address - this feature is preserved

by our library interface.

It has also been detected that on some hardware platform(s) the virtual address returned

by the underlying operating system for a memory mapped file is not always a constant

19

address. There seems to be some relationship between the virtual address allocated and

the code and the size of the executable generated by the compiler for the OODINI

executable. In such a case, future releases of the OODINI software will not work with

the persistent heap files containing graphical schemas that were created with the current

version of OODINI. We thus allow users to specify the constant, fixed virtual address

at which all heap files will be mapped. This is implemented by creating a ".config" flat

file in the user's current working directory. This file contains 2 tunable values: (i) the

fixed address for memory mapped files (a hexadecimal value), and (ii) the maximum

allowable heap file size (in bytes). The format of this file is illustrated with the

following ".config" file used for a SUN-OS operating system:

HEAPADDRESS=e0000000
HEAPSIZF=26214400

CHAPTER 3
CODE GENERATION

The graphical schema from the OODINI graphics editor is stored on secondary storage.

This schema is parsed and code is generated for dual model object oriented databases.

This section of the document describes the problems associated with code generation,

presents implementation details of an abstract dual model language, DAL (Dual Model

Abstract Language), and provides a conversion algorithm for translating the abstract

language to VML syntax and semantics. Finally, to facilitate developers who are not

familiar with the dual model architecture we present a different abstract language,

OODAL (OODINI Abstract Language). This language can be used to generate code for

object oriented databases that do not support the dual model architecture.

3.1 Problem Statement

To convert the graphical schema on secondary storage directly to different dual model

object oriented database languages (e.g., VML) would require extraordinary

implementation efforts. Developers would need to know the complex internal data

structure representation of OODINI, its heap management techniques and the

representation of graphical objects on secondary storage. This will evidently introduce

redundancy in development efforts. Different parsing techniques, object representation

methods, etc. will evolve when individual developers translate the graphical

representation to different object oriented database languages. Furthermore, future

changes to the OODINI software will also necessitate changes to the software that

generate database code.

We thus propose the conversion of the graphical representation to a single, generic

abstract language, DAL (Dual Model Abstract Language). We provide implementation

details of DAL using examples and also provide its complete syntax in BNF format.

The DAL code generated is then translated to other (e.g., VML) object oriented

20

21

database languages. The following diagram provides a high level data flow diagram of

the entire system.

There is also a difficulty associated with generating code for an object oriented language

from DAL. The DAL code generated will reside in a flat file. Developers still need to

parse the file in accordance with DAL syntax considerations. This is not difficult but

tedious as it requires developers to minimally write a token generation scanner and a

parser for DAL code. Hence, as an alternative we also present a user application

programming interface (API) that facilitates code generation from DAL. This API is

incorporated into a library, dallib.a, and contains routines that returns pointers to data

structures for DAL's internal representation of a graphical schema. These data

structures can then easily be traversed at a programming level to generate code for

various object oriented database languages. The following data flow diagram

summarizes this view.

3.2 Implementation Of DAL

This section describes explicitly how each graphical object representation of OODINI

is converted into DAL syntax. Rather than presenting the DAL syntax immediately we

give examples to illustrate our implementation. The actual DAL syntax is described in

the following section. APPENDIX B gives the complete DAL syntax in BNF format.

3.2.1 Object Types

Implementing object types for object classes is difficult and not straight forward. This is

because OODINI does not allow graphical representation of object types. OODINI

provides partial structural hierarchy in its dual model database schema representation.

Given this limitation we proceed to create an object type definition for each object

class. An algorithm for generating an object type specification from its corresponding

object class specification has already been described in [1]. For each object class DAL

generates the following syntactical template:

The object type name is derived from the class name by suffixing the latter with the

23

"Type" keyword. For example, if the class name is abc, then its corresponding object

type name is abcType. For each object class, DAL generates a corresponding object

type using the following syntactical template:

objecttype <class-name>Type

<objecttype-definition>
end;

rr NOTE: In the dual model two or more object classes may share the same object

type. This is not reflected in DAL. This is because it is not clearly apparent how

OODINI supports this concept. In order to support this feature OODINI must be

changed appropriately to incorporate this notion or partial structural integration

[7, 8, 9] must be done during DAL code generation to collapse object types. This is

an open issue that is currently under investigation.

co- NOTE: However, we collapse two object types when the following situation

arises: Object type B is a subtypeof object type A and the setof, memberof, attribute

list, relationships and methods are not defined for B. In such a case, the NULL object

type B is deleted. A becomes the object type for the class corresponding to object type

B.

3.2.2 Attributes

OODINI allows for attribute names only. The attribute's data type is not represented

under OODINI. Hence when DAL code is generated for an attribute listing, the

keyword unknown_type is used as a place holder. This information eventually needs to

be provided by the user prior to conversion of the DAL code to other object oriented

languages (e.g., VML).

Essential attributes provide semantic information and they are listed in the <class-

definition> body. All attributes are listed in the <objecttype-definition> body. The

following example illustrates code generation from a graphical representation of

attribute listing under OODINI to DAL syntactical template:

3.2.3 Set-of And Member-of

Set-of and member-of are relations that connect object types into object type

hierarchies. Hence they represent structural information. All structural informations are

incorporated in the <objecttype-definition> body. The following example illustrates

code generation from graphical representation to DAL syntactical template:

3.2.4 Category-of

The category-of relation connects a specialized class to a more general class where both

are viewed in the same application context. Since the category-of relation embodies a

semantic relation - this information is incorporated into the <class-definition> body.

However in [4] we find a formal proof that whenever a class A is a category-of another

class B then the corresponding object type of A must be a subtype-of of the

corresponding object type of B. We thus make appropriate code changes within the

<objecttype-definition> body to reflect subtype inheritance. Code generation from

graphical representation to DAL syntactical templates is illustrated below:

3.2.5 Role-of

The role-of relation connects a specialized class to a more general class, where the two

classes are seen in different contexts of the application. Since this relation conveys

semantic behavior - this information is incorporated into the <class-definition> body.

The syntactical template generated by DAL from a graphical representation is

illustrated below:

3.2.6 Part-of

The part-of relation is used to connect a part of a complex or assembled (real-world)

objects to its integral object. This connection information is reflected both in the

<class-definition> body and the <objecttype-definition> body. A syntactical template

for a graphical view follows:

3.2.7 Tuple-of

The tuple-of relation is used to connect a tuple class to its constituent classes. The tuple

connector definition is reflected in both the <objecttype-definition> as well as the

<class-definition> body. A syntactical template for a graphical view follows:

a Note that in <objecttype-definition> body the connector names (e.g., P and S) refers

to object types, while in the <class-definition> body the reference is to object classes. If

in the OODINI representation, a connector name was not provided by the user then

connector name defaults to the name of the corresponding constituent class.

3.2.8 Ordinary Relationships

Relationships, unlike relations, are user defined connections between classes. A

relationship can convey either a structural or a semantic connection. All user defined

relationships are incorporated both in the <class-definition> and the <objecttype-

definition> body. In the former, the relationship reference is to an object class and in

the latter the relationship reference is to the corresponding object type. The DAL

syntactical template for its corresponding graphical representation is illustrated below:

3.2.9 Essential Relationships

Essential relationships are incorporated both into the <class-definition> and the

<objecttype-definition> bodies. This is illustrated below:

31

objecttype employeeType class employee

objecttype : employeeType;

relationships relationships
Works-for : departmentType; Works-for :+ department;
endrelationships; endrelationships;

end; end;

rr NOTE: The :+ separator is used to distinguish essential relationships from

ordinary relationships in the <class-definition> body. Since essentiality is a semantic

property such a separator is not reflected in the corresponding <objecttype-definition>

body.

3.2.10 Multi-valued Relationships

Multi-valued relationships are incorporated both into the <class-definition> and the

<objecttype-definition> bodies. This is illustrated below:

objecttype studentType class student

objecttype : studentType;

relationships relationships
Takes :: courseType; Takes :: course;
endrelationships; endrelationships;

end; end;

rr NOTE: The :: separator is used to distinguish multi-valued relationships from

other relationships.

32

3.2.11 Dependent Relationships

Dependent relationships are also incorporated both into the <class-definition> and the

<objecttype-definition> bodies. This is illustrated below:

Figure 14. OODINI Dependent Relationship Graphical Notation

objecttype secuonType class section

objecttype : sectionType;

relationships relationships
of : courseType; of :> course;
endrelationships; endrelationships;

end; end;

(0- NOTE: The :> separator is used to distinguish dependent relationships from other

relationships in the <class-definition> body. Since dependent relationships convey

semantic information this separator is not reflected in the <objecttype-definition>

body.

3.2.12 Multi-valued Essential Relationships

Multi-valued essential relationships are incorporated both into the <class-definition>

and the <objecttype-definition> bodies. This is illustrated below:

Figure 15. OODINI Multi-valued Essential Relationship Graphical Notation

objecttype employeeType class employee

objecttype : employeeType;

relationships relationships
Works-In :: departmentType; Works-In ::+ department;
endrelationships; endrelationships;

end; end;

a- NOTE: The ::+ separator is used to distinguish multi-valued essential relationships

from other relationships in the <class-definition> body. In the <objecttype-definition>

body the multi-valued aspect of the relationship is denoted by the :: separator since

essentiality is a semantic concept.

3.2.13 Multi-valued Dependent Relationships

Multi-valued dependent relationships are incorporated both into the <class-definition>

and <objecttype-definition> bodies. This is illustrated below:

Figure 16. OODINI Multi-valued Dependent Relationship Graphical Notation

objecttype ChildType class Child

objecttype : ChildType;

relationships relationships
Has :: ParentType; has ::> Parent;
endrelationships; endrelationships;

end; end;

Ear NOTE: The ::> separator is used to distinguish multi-valued dependent

relationships from other relationships in the <class-definition> body. The :: separator is

used in the <objecttype-definition> body to convey only the multi-valued aspect of the

relationship since dependency is a semantic concept.

3.2.14 Methods

For each object class, only the names of all the methods are listed within the

corresponding object type's <objecttype-definition> body. Methods are implemented

in OODINI as derived attributes. Pictorially, they are depicted as dashed ellipses,

very much like attributes. The following syntactical template is generated in DAL for

methods:

35

objecttype <objecttype-name>

methods
method-name-10;
method-name-20;

endmethods;
end;

3.3 Syntax For DAL

The syntax for DAL is simple and concise. Most of the syntax has followed the

guidelines outlined in [1] and [4]. The code generated in the file is line-oriented. Every

line can be individually read and easily parsed. Every line contains a single syntactical

definition, e.g, relation, relationships, class name, object type name, etc. The following

set of keywords are valid for DAL:

class end objecttype relationships

end relationships methods endmethods attributes

endattributes mem berof setof categoryof

subtypeof roleof parlor unknown_type

tupleof

APPENDIX B gives a complete description of the DAL language in BNF format.

3.4 User API For DAL

The BNF specification of DAL provides programmers a framework for converting DAL

into other object oriented programming languages. As mentioned before this entails

knowledge of token generation, parsing and syntax validation. Depending on the

programming environment this might be a tedious, if not difficult, task. As such we

provide a description of a user application programming interface (API) that allows

programmers to access the internal data structure layout of DAL. This API is provided

in the form of a library routine, dallib.a. A single invocation to the library routine,

dal(), returns two pointer values: (i) a pointer to the list of existing object types, and (ii)

36

a pointer to the list of existing object classes. A complete description of the dal()

routine is given in standard UNIX/C manual page form in APPENDIX D.

Associated with this library is also a header file, dal.h. This header file describes the

internal data structure layout for using the API. APPENDIX C lists the contents of this

header file. Understanding this header file is critical to programmers generating code

for object oriented languages.

Briefly, we describe in this header file 3 records or C language structures and their

relationships to each other. The first structure is the basestruct record that represents

different types of relations, relationships, subtypes, attributes, etc. This structure

contains pointers to other classes or object types. This record is analogous to arcs

connecting two graphical objects along with relevant informations. The next structure

represents an objecttype. This structure contains the object type name, a pointer to the

class it was derived from, along with pointers for attribute lists, member-of, set-of and

subtype-of relation list pointers. Finally, the oclass structure contains relevant

informations about an object class. This includes the class name, a pointer to its object

type, pointers for all essential attribute lists, role-of, category-of, part-of, tuple-of as

well as all other user defined relationship pointers.

The following diagram depicts the relationships between these 3 structures for a simple

graphical model provided by OODINI.

38

3.5 Implementation Of Structural And Semantic Hierarchy

According to the dual model architecture the structural hierarchy for object types

(defined by the subtypeof, setof and memberof connections between object types) and

the semantic hierarchy (defined by the roleof, categoryof and partof connections

between object classes) must be in the form of Directed Acyclic Graphs (DAGs). This

hierarchy constraint can be maintained by the user implementing a schema under the

OODINI software.

This constraint is sometimes necessary for generating code. Some languages might have

the restriction that an object type must be explicitly declared prior to its reference.

Similarly, a super class must be declared prior to its subclass declaration. It should be

noted that this is a restriction of a programming language and not the dual model. Thus

we sometimes have to take this restriction into account prior to code generation from

DAL to other object oriented languages.

It should be obvious that if we sort the DAL internal data structure lists for object types

and object classes - we can achieve our goal. Sorting in this context implies associating

with each object type or class a level number. This number is analogous to the level of

occurrence of an object type or class in its DAG representation. Top level classes or

object types in the DAG gets lower level numbers. The leaf nodes (object types or

object classes) in the DAG gets higher level numbers. The lists of object classes and

object types are then sorted based on the level number. This is done prior to code

generation from DAL to an object oriented database language. Sorting nodes in a

network to generate level numbers can easily be done using a depth first search

algorithm which produces an algorithm of order 0(N).

39

3.6 VML Code Generation

In this section we provide algorithms for converting the DAL representation of a dual

model database schema to VML. Object types and object classes are converted to their

equivalent representation in VML. It should be noted that sharing of object types by

object classes are still under investigation. We describe our algorithmic steps using

examples.

3.6.1 Conversion Of Object Types

We provide the following object type description under DAL and convert it to its

equivalent representation under VML:

objecttype oType

subtypeof : aType;
subtypeof : bType;

setof : c Type;
mem berof : dType;

attributes
abc : unknown_type;
xyz : unknown_type;
endattributes;

relationships
is : dType;
of :+ eType;
as :> fType;
has :: gType;
has-a ::+ hType;
is-a ::>
endrelationships;

methods
methodAO;

endmethods;

end;

We now present the following algorithm for converting the DAL code to its equivalent

VML representation:

40

1. Replace all occurrences of the objecttype keyword with OBJECTTYPE; the

end keyword with END and the attributes keyword with PROPERTIES. Also

replace the multi-valued relationship syntactical structure:

<relationshipname> <objecttype>

with

<relationshipname> : <objecttype> }

Also replace the "::" separator in all multi-valued relationships with the ":"

separator. Also remove essentiality and dependent separators from all

relationships. The new VML representation is shown below:

OBJECTTYPE oType

subtypeof : aType;
subtypeof : bType;

setof : cType;
memberof : dType;

PROPERTIES
abc : unknown_type;
xyz : unknown_type;
endattributes;

relationships
is : dType;
of : eType;
as : frYPe;
has : { gType ;
has-a : hType } ;
is-a : { iTYPe ;
endrelationships;

methods
methodAO;

endmethods;
END;

2. Delete all occurrences of the keywords endattributes, endrelationships and

relationships. Also delete the partof and tupleof syntactical templates since

VML do not have equivalent representation for these. For the setof template

create a new multi-valued relationship called setof. Translate the memberof

41

relation into a relationship. For multiple memberof relations we also create new

variables with an unique suffix identifier, e.g., memberofl, memberof2,

memberofn. The new VML code is given below:

OBJECTTYPE oType

subtypeof : aType;
subtypeof : bType;

PROPERTIES
abc : unknown_type;
xyz : unknown_type;

setof : cType } ;
memberof : dType ;
is : dType;
of : eType;
as : fFype;
has : gType } ;
has-a : hType } ;
is-a : { iTYPe ;

methods
methodAO;

endmethods;
END;

3. For each subtypeof : <objecttype> syntactical template delete the occurrences

and collapse all the subtypes in the header declaration "OBJECTTYPE

<objectname> SUBTYPEOF <type-1> <type-2> ...". If the subtypeof relation

do not exists for an object type, then we use the predefined VML keywords:

SUBTYPEOF MetaClass InstType. The new VML code generated is as

follows:

42

OBJECTTYPE oType SUBTYPEOF aType, bType

PROPERTIES
abc : unknown_type;
xyz : unknown_type;

setof : cType 1 ;
memberof : dType ;
is : dType;
of : eType;
as : fType;
has : gType 1 ;
has-a : hType 1 ;
is-a : { iType } ;

methods
methodAO;

endmethods;

END;

4. For each relationship create parametrized object types in the OBJECTTYPE

<objectname> header declaration. Note that under our DAL representation each

objecttype abcType has a corresponding class, literally written as abc. Then each

parameter takes on the form of : "abcClass : abcType", where we added the

suffix "Class" to the original class name abc. Also in each relationship

declaration replace the <objecttype> syntactical form by its corresponding

parameter name. Create a parameter for the object type itself (in this case create

the parameter oclass that refers to the objecttype oType). Also if the object type

is a subtype of other object types, then each parameter of the super types must be

suffixed in the parameter list of this subtype. For example, in this case oType has

2 super types, aType and bType. Assume that the parameter list for aType

consists only of "aClass : aType" and that for bType is "bClass : bType". Then

incorporate these two parameters in the parameter list for oType. The

corresponding VML code for a DAL object type representation is as follows:

43

OBJECTTYPE oType
[aClass : aType, bClass : bType, oClass : oType,

cClass : cType, dClass : dType, eClass : eType,
fClass : frype, gClass : gType, hClass : hType,
iClass : iType I

SUBTYPEOF aType [aClass, bClass 1, bType

PROPERTIES
abc : unknown_type;
xyz : unknown_type;

setof : cClass } ;
memberof : dClass ;
is : dClass;
of : eClass;
as : fClass;
has : gClass 1 ;
has-a : hClass } ;
is-a : iClass } ;

methods
methodAO;

endmethods;
END;

5. Finally, for each method defined in the DAL object type definition, we add the

VML keywords METHODS and IMPLEMENTATION, and change each DAL

<method-name>O; syntactic template to its corresponding VML template:

<method-name() : READONLY { };. The formal parameters of the method

along with the actual code needs to be added by the user. With these changes the

final VML code for an object type representation is as follows:

44

OBJECTTYPE oType
[aClass : aType, bClass : bType, oClass : oType,

cClass : cType, dClass : dType, eClass : eType,
fClass : fType, gClass : gType, hClass : hType,
iClass : iType]

SUBTYPEOF aType [aClass, bClass], bType
PROPERTIES
abc : unknown_type;
xyz : unknown_type;
setof : { cClass } ;
memberof : dClass ;
is : dClass;
of : eClass;
as : fClass;
has : { gClass } ;
has-a : { hClass } ;
is-a : { iClass } ;
IMPLEMENTATION

METHODS
methodA() : READONLY
{
};

END;

3.6.2 Conversion Of Object Classes

We provide the following object class description under DAL and convert it to its

equivalent representation under VML:

class oclass

objecttype : oType;
roleof : class-1;
categoryof : class-2;

attributes
id : unknown_type;
endattributes;

relationships
is : d;
of : e;
as : f;
has : g;
has-a : h;
is-a : i;
endrelationships;

end;

We now present the following algorithm for converting the DAL code to its equivalent

45

VML representation:

1. Delete the entire relationships ... endrelationships block. The relations are

already listed using parameters in the corresponding object type description

block. Also delete the entire attributes ...

endattributes block, since the attributes are already listed in the object type for

the object class. Furthermore, VML has no concept of essentiality of attributes.

Making these changes we have a new VML representation:

class °class

objecttype : oType;
roleof : class-1;
categoryof : class-2;

end;

2. Replace the keyword class with CLASS and the keyword end; with END. Also

replace the syntactical template objecttype : <objectname>; with the new

syntactical representation INSTTYPE <objectname>. Making these changes we

have the new VML format:

CLASS oclass

INSTTYPE : oType
roleof : class-1;
categoryof : class-2;

END;

3. Parametrize the INSTTYPE <objectname> declaration. For example, if the

corresponding object type header declaration has the following parameter list:

OBJECTTYPE otype [AClass : AType, BClass : BType

Then after parametrization the class INSTTYPE's declaration is changed as

follows:

INSTTYPE otype [A, B

0:7. NOTE: This is possible because under the DAL representation if a class

46

name is A, then its corresponding object type name is AType, and when used as a

parameter it is AClass, literally. Making these changes we have the following

VML view:

CLASS oclass

INSTTYPE : °Type [a, b, o, c, d, e, f, g, h, i];
roleof : class-1;
categoryof : class-2;

END

4. If there exists a roleof and/or category of declaration within a class definition we

have to add the following syntactical template in the class declaration header

statement of the form:

CLASS <class-name> METACLASS <semantic-keyword>

This definition must be used in both the specialized and the generalized classes.

In our example, the specialized class is otype while the classes being generalized

are class-1 and class-2. The <semantic-keyword> to be used depends on what

combination of semantic relations applies to the class. For example, the class

could be a specialized class (via a roleof connection) and at the same time a

generalized class (via a categoryof connection), etc. However, there are only

some distinct possibilities and the semantic keyword for each possibility is

depicted in the following figure.

47

Roles played by a class

ROLE
GENERAL-
IZATION

ROLE
SPECIAL-
IZATION

CATEGORY
GENERAL-
IZATION

CATEGORY
SPECIAL-
IZATION

<semantic-keyword>
to use

CATEGORY-SPECIALIZATION-CLASS
\,,,,...„------

_
CATEGORY-GENERALIZATION-CLASS

C-GEN-C-SPEC-CLASS

ROLE-SPECIALIZATION-CLASS

R-SPEC-C-SPEC-CLASS

R-SPEC-C-GEN-CLASS

\/
\.........„..---"-- R-SPEC-C-GEN-C-SPEC-CLASS

ROLE-GENERALIZATION-CLASS

,..,'"- R-GEN-C-SPEC-CLASS

\....„...„.---*-- R-GEN-C-GEN-CLASS

\- \, 7- R-GEN-C-GEN-C-SPEC-CLASS

R-GEN-R-SPEC-CLASS

\.,/-- R-GEN-R-SPEC-C-SPEC-CLASS

R-GEN-R-SPEC-C-GEN-CLASS

R-GEN-R-SPEC-C-GEN-C-SPEC-CLASS

Figure 18. VML Semantic MetaClass Keywords

Using the previous table we find out the <semantic-keyword> to use in the class

declaration header. In our example, the object class oclass has both a roleof and a

category of semantic connection. Hence the <semantic-keyword> to use is R-SPEC-

C-SPEC-CLASS - as this class plays a specialized role in both the semantic relations.

Finally, for role specialized class VML needs the following syntactical definition:

INIT : SELF->defRoleOf({ <role-generalized-class-name> });

Similarly, for category specialized classes VML needs the following definition:

INIT : SELF->defCategory0f({ <category-generalized-class-name> });

The final VML object class representation is then as follows:

48

CLASS oclass METACLASS R-SPEC-C-SPEC-CLASS

INSTTYPE : otype d, e, f, g, h,

INIT: SELF->defRole0f({ class-1 });
SELF->defCategoryOf({ class-2 });

END

cr Note that the INIT clause is used to invoke the predefined method(s), e.g., defRoleof

and/or defCategoryOf of the metaclass, e.g., R-SPEC-C-SPEC-CLASS. Also note

that the actual argument in these method calls are treated as a list of classes (by using

braces around the arguments). This is how semantic relations, e.g., roleof and

categoryof, between a single specialized class and multiple generalized classes are

handled. More specifically, for example, if the object class oclass has multiple roleof

semantic relations to object classes class-1, class-2, ..., class-n, then we would have

generated the following syntactical format:

SELF->defRoleOf({ class-1, class-2, ..., class-n });

r Note that in the semantic relation roleof the object class class-1 plays a more

generalized role. Hence this object class must have a header declaration of the

following format:

CLASS class-1 METACLASS ROLE-GENERALIZATION-CLASS

ar Similarly the object class class-2 is the more generalized class with regards to the

categoryof semantic connection. This object class must also then have a header

declaration of a similar format:

CLASS class-2 METACLASS CATEGORY-GENERALIZATION-

CLASS

3.7 Implementation Of OODAL

Converting a OODINI graphical schema to DAL code often requires an understanding

49

of the Dual model architecture. Most object oriented database languages do not adhere

to this architecture. As such the DAL code generated might impose difficulty for

developers generating object oriented database code. For this purpose, we propose a

new and different abstract language, OODAL (OODINI Abstract Language), that

removes any dependencies on the dual model architecture. However to maintain

consistency between these abstract languages, the OODAL syntax closely resembles

that described for DAL. OODAL is almost identical to DAL, except that the <object-

type definition> is completely removed from this language. Only code for object

classes are generated. All necessary information for an object class, e.g., relations,

relationships, attributes and methods, are represented entirely in the <object-class

definition> syntactical template. Unlike DAL, in OODAL there is no reference to a

corresponding object type from an object class.

3.7.1 Implementation Of Object Classes

For each OODINI object class, OODAL generates the following syntactical template:

class <class-name>

<class-definition>
end;

3.7.2 Implementation Of Attributes

The attributes for an object class are listed within the <class-definition> body. Since an

attribute's data type or object type information is not represented under OODINI, the

keyword unknown_type is used as a place holder. The attributes are listed using the

following syntactical template:

class <class-name>

attributes
<attribute-name> : unknown_type;
<essential-attribute-name> :+ unknown_type;

endattributes;
end;

cr. NOTE: The usage of the :+ separator to distinguish essential attribute declaration

50

from non-essential ones.

3.7.3 Implementation Of Relations

All relations for an object class are listed within the <class-definition> body. The setof,

memberof, categoryof, roleof, partof and tupleof relations are generated using the

following syntactical template:

class <class-name>

setof : <class-name>;
memberof : <comma separated class-name list>;
categoryof : <comma separated class-name list>;
roleof : <comma separated class-name list>;
partof : <comma separated class-name list>;
tupleof : <comma separated <connector : class-name> list>;

end;

3.7.4 Implementation Of Relationships

All relationships for an object class are listed within the <class-definition> body.

OODAL makes a distinction between ordinary, essential, dependent, multi-valued,

multi-valued essential and multi-valued dependent relationships by using the same

separators that were used for DAL. More specifically, the : separator is used to list

ordinary relationships. The :+ separator is used for essential relationships. The :>

separator is used to distinguish dependent relationships. The :: separator is used for

multi-valued relationships. The ::+ separator is used for multi-valued essential

relationships. The ::> separator is used to distinguish multi-valued dependent

relationships. Relationships are generated using the following syntactical template:

51

class <class-name>

relationships
ordinary-relationship-name : <class-name>;
essential-relationship-name :+ <class-name>;
dependent-relationship-name :> <class-name>;
multivalued-relationship-name :: <class-name>;
multivalued-essential-relationship ::+ <class-name>;
multivalued-dependent-relationship ::> <class-name>;

endrelationships;
end;

3.7.5 Implementation Of Methods

All methods for an object class are listed within the <class-definition> body. Only

method names are generated using the following syntactical template:

class <class-name>

methods
method-name-10;
method-name-20;

endmethods;
end;

3.8 Syntax For OODAL

The syntax for OODAL closely resembles the one described for DAL, except that the

<object-type definition> is not present in OODAL. The code is generated in a flat file

and is line-oriented. Individual lines can easily be read and parsed for further code

generation. The following set of keywords are valid for OODAL:

class end relationships endrelationships

methods endmethods attributes endattributes

memberof setof categoryof roleof

partof unknown_type tupleof

APPENDIX H gives a complete description of the OODAL language in BNF format.

52

3.9 User API For OODAL

The BNF description of OODAL allows programmers for converting OODAL into

other object oriented database languages. However this would entail parsing a flat file

containing OODAL code, often a tedious task. As such, like in DAL, we provide a

description of an API that allows programmers to access the internal data structure

layout of OODAL. This API is provided in the form of a library routine, oodallib.a.

An invocation to the library routine, oodal(), returns a pointer to a list of existing object

classes. A complete description of the oodal() library routine is given in standard

UNIX/C manual page form in APPENDIX J.

Associated with the library is also a header file, oodal.h. This header file describes the

internal data structure layout for using the API. APPENDIX I gives the content of this

header file. The data structures described in this header file closely resembles the one

described for DAL. Like in DAL, we describe only 2 records or C language structures

and their relationships to each other. The first structure is the basestruct record which is

almost identical to the one described for DAL. This structure contains pointers to

another structure, the object class structure (oclass), which also resembles closely the

structure described for DAL. This class structure contains the class name and pointers

to list of attributes, relations, relationships and method names.

The following diagram depicts the relationships between these 2 structures for a simple

graphical model implemented under OODINI.

53

facing 52
assistant Class Class instructor

category-of category-of Essential Attribute

4112D#311

Class teaching_assistant Attribute

Dept

OODINI Representation

OODAL Representation ;.
V

basestruct basestruct f • -<
NULL ...EX- category-of category-of

r .
category-of-list ointer

instructor assistant teaching_assistant

(Object Class) (Object Class) (Object Class)
start next next

• ›.
class class null

attribute-list-pointer

Attribute.
Dept

.6_
1-- Attribute:

NULL ID# •
basestruct

Figure 19. OODAL User API Data Structures

CHAPTER 4
CONCLUSIONS

In this paper we have provided a generic solution for storing graphical images for an

object oriented database graphics editor on secondary storage. Our solution achieves

dynamic data persistence for the heap of a process's address space. This is done using

memory mapped files. Memory for all graphical images are allocated from the heap

portion of the virtual address space of the graphics editor. This solution is generic,

innovative, reliable, easily programmable, performance conscious and even cost

effective in the sense that it removes the necessity for having developers to maintain the

software that saves graphical images on secondary storage.

We also present a formal definition of a dual model object oriented abstract language,

DAL. The graphical image representation on secondary storage is converted to DAL.

We provide concrete examples of each graphical image representation and its

corresponding syntactical form in DAL. The entire graphical database schema is

converted into object classes and corresponding object types. To facilitate code

generation from DAL we also provide a user application programming interface.

We also provide an example of code generation into an object oriented database

language. The DAL code generated for a graphical schema is converted to its equivalent

representation for the VODAK data modeling language (VML). Using concrete

algorithms and examples we demonstrate this conversion.

Finally, we present a formal definition of yet another object oriented abstract language,

OODAL. This language removes dependencies on the dual model architecture. This

will help developers to generate object oriented database code without having them to

know about the relatively new dual model schema representation. It should be noted that

both these abstract languages (DAL and OODAL) will help developers in generating

54

55

object oriented database code. These developers need not have knowledge about

OODINI's complex data structures or operating system concepts, e.g., mmap().

Furthermore, by establishing a static syntax for these languages, any future changes to

the OODINI software will minimize code generation efforts that might affect these

developers.

In the future releases of this software we are targeting our efforts on the following

specificities:

• Although we collapse object types, in certain cases we still need a mechanism to

show that different object classes share the same object type. Two future looking

work can be done in this respect. One possibility is to represent this graphically in

the graphics editor itself. Another possibility is to use partial/structural integration

prior to DAL code generation.

• From the graphical schema it is not clearly evident whether user defined

relationships are structural or semantic in nature. Structural relationships should

only be incorporated into object types, while semantic relationships should only be

declared in object classes. Clearly, changes to the graphics editor must be made if

this kind of information needs to be extracted. The same concern holds for method

definitions.

• Given the DAL or OODAL representation we would like to generate the graphical

schema. This will immensely facilitate schema modifications.

56

APPENDIX A: MANUAL PAGES: IMAGE PERSISTENCE

This section contains UNIX style manual page for the libmapmalloc.a library.

NAME
mapmalloc_init - mapmalloc initialization operation.

C SYNOPSIS
#include <sys/types.h>
#include "mapmalloc.h"

int _mapmalloc_init(fixed_addr, size, flags, filename, offset)

char *fixed_addr;
size_t size;
int flags;
char *filename;
off t offset;

DESCRIPTION
This routine initializes a memory mapped region for a file. This
memory mapped region can then be used for dynamic memory
allocation and deallocation. Data allocated from this region is always
persistent across program execution sessions.

ARGUMENTS
The fixed_addr argument specifies the virtual address in the user
address space where the file should be mapped from. If the user does
not want a fixed mapping, then this argument should be 0.

The size argument is the length of the file being mapped. If the file
specified by the filename argument does not exist, the file is created.
In such a case if the size argument is 0, the file is created with an
initial size of 64 K bytes. If the file exists and the size argument is 0 -
then the entire length of the file is mapped. It should be noted that
specifying a size value other than 0 will not cause the file to be grown
when its contents are full (heap overflow).

The flags argument could be a combination of any one of the
following values defined in the mapmalloc.h header file:

MAPMALLOC READ ONLY - the file is mapped as read-
only into the users's address space.

MAPMALLOC FORCE INIT - the original contents of the
file being mapped. are ignored,— and the file is re-initialized.

MAPMALLOC NO CREATE - No new file is created. The
file must exist. If does not then mapmalloc_init() fails.

MAPMALLOC_PRE ALLOC DISK - Forces block
allocation for the entire file during this initialization process.

57

No holes are left in the file.

MAPMALLOC NO PRE ALLOC DISK - Not ail the
blocks are allocated for the file during initialization. Only the
first and the last blocks are created leaving a hole in between.

MAPMALLOC_EXCLUSIVE - Locks the file exclusively
for the first process that gains access through the library. If the
file is already locked, the invocation fails and errno is set to
EAGAIN. However, if the
MAPMALLOC WAIT EXCLUSIVE flag is set (see below)
- the process blocks on the file lock.

MAPMALLOC LOCK SHARED - Causes file locking
between cooperating processes sharing the file during memory
allocation and deallocation. This prevents simultaneous
updates to the file being mapped when processes share the file.

MAPMALLOC NO GROW - When the file contents are
full and no further memory can be allocated (heap overflow) -
usage of this flag prevents the file from growing.

MAPMALLOC WAIT EXCLUSIVE - If the file has
already been locked by —another process, this flag causes the
process to block on the lock.

MAPMALLOC MK MMAP FILE - Tells this initialization
routine to create -an mmap() based memory region.

MAPMALLOC_MK SHM FILE - Tells this initialization
routine to create a shared memory region instead of a mmap()
based file. If this flag is used along with
MAPMALLOC MK MMAP FILE then this flag takes
precedence.

MAPMALLOC BEST FIT - During memory allocation a
best-fit strategy is to be used.

MAPMALLOC_FIRST_FIT - During memory allocation a
first-fit strategy is to be used.

FREE COALESCE - During memory deallocation coalesce
as many free blocks as possible. Coalescing is done only on the
free blocks occurring on the left side of the memory block
being deallocated.

FREE_COALESCE RIGHT - During memory deallocation
coalesce as many free blocks as possible. Coalescing is done
only on the free blocks occurring on the right side of the
memory block being deallocated.

FREE_NO COALESCE - During memory deallocation do
not do any Coalescing.

58

0 - If a value of 0 is passed in for this argument, then by
default, the following flag value combinations are or-ed in:
FREE NO COALESCE,
MAPMALLOC PRE ALLOC DISK, and
MAP1VIALLOCMK SHM FL E.

The filename argument specifies the name of the file being mapped
into memory. If the file does not exist on secondary storage, the file is
created. If the file exists the file is simply opened; the contents of the
file are not changed.

The offset argument specifies the offset into the file from which the
mapping should be started. The offset value should be greater than or
equal to 0 and less than or equal to the entire length of the file being
mapped.

Upon invocation this routine initializes a memory mapped region
based on the file named by the argument filename. The file is assumed
not yet to be opened. If the named file already exists, then the contents
of the file are not initialized.

RESULTS
On success mapmalloc_init() returns the virtual address where the file
is mapped by the operating system. On failure it returns a value of
(char *) -1.

EXAMPLE
Sample code to initialize a memory mapped file:

char *vathir;

/* Map a 1 Megabyte file at logical file offset 0 */

if (mapmalloc init(0, 1024 * 1024, 0, "/tmp/heapfile", OL) ==
(char *) -1) { —

/* init failed -- execute your error processing code */
}

WARNINGS
If shared memory region is being used then it should be noted that the
file corresponding to the shared memory cannot be grown if the file
contents are full. Also in such cases, the operating system does not
automatically flush the pages for the shared memory to the file. The
user needs to invoke mapregion_sync() prior to process termination -
to force memory contents to be synced back to secondary storage.

SEE ALSO
mapmalloc(), mapfree(), map_set base user_addr(),
map_get_base_user_addr(), mapregion_sync(), —mapcfose().

59

NAME
mapmalloc - Memory allocation routine.

C SYNOPSIS
#include <sys/types.h>
#include "mapmalloc. h "

char * mapmalloc(region_addr, size, strategy)

char * mapcalloc(region_addr, nelem, size, strategy)

char * maprealloc(region_addr, nelem, newsize, strategy)

char * MALLOC(size)

char * CALLOC(nelem, size)

char * REALLOC(addr, size)

char *region_addr;
size_t size;
int strategy;
size_t nelem;
size t newsize;
char *addr;

DESCRIPTION
All of the above routines provide a simple general-purpose memory
allocation package based on memory mapped files or shared memory
regions.

ARGUMENTS
The region addr argument is one of the memory mapped regions in
the user address— space. A user can map as many files as possible
(limited by operating system restrictions) into its address space.
Memory is then allocated from the region specified by address
returned during the mapmalloc init() invocation. If this value is 0 then
memory allocation is done on the first region that is memory mapped
in the user's address space.

The size argument is a non-negative integer value greater than 0
specifying the number of bytes to allocate.

The strategy argument can take in two values,
MALLOC BEST FIT and MALLOC FIRST FIT. If
MALLOC BEST FIT is used then a best-fit search striiegy is used
to find a piece of available memory. If MALLOC FIRST FIT is
used then a first-fit search strategy is used to find a piece of available—
memory. If this value is 0 then it defaults to MALLOC_BEST_FIT.

The nelem argument is a value greater than 0 specifying that n
elements of size size are to be allocated contiguously in the virtual

60

address space.

The newsize argument is a value greater than 0 specifying the new
number of bytes to be allocated.

The addr argument value is an address that was returned from a
previous invocation to any one of these routines.

mapmalloc() allocates the requested number of bytes using the
strategy option (best/first fit) requested by the user from the memory
region corresponding to the file that was mapped.

maprealloc() changes the size of the previously allocated memory
block pointed to by addr to newsize bytes and returns a pointer to the
(possibly moved) memory block. The contents will be unchanged up
to the lesser of the old and newsize values. If no free block of size
bytes is available then maprealloc() will ask mapmalloc() to enlarge
the arena by newsize bytes and will then move the data to the new
space.

mapcalloc() allocates space for an array of nelem elements of size
size. The space is initialized to zeroes.

MALLOC() invokes mapmalloc() with the strategy argument set to
MALLOC_BESTFIT. The region_addr value passed in is 0. Hence
memory allocation is done from the first region mapped in.

REALLOC() invokes maprealloc() with region_addr set to 0 and
strategy set to MALLOC_BEST_FIT.

CALLOC() invokes mapcalloc() with region_addr set to 0 and
strategy set to MALLOC_BEST_FIT.

RESULTS
On success all of the memory allocation routines return a valid virtual
address of the memory block(s) allocated. On failure a value of (char
*) NULL is returned.

It should also be noted that when the contents of the file from which
memory allocation takes place are full (heap overflow) - the file is
automatically grown by the library. However, if a size value other than
0 was specified during the mapmalloc_init() call, the file is not grown -
and memory allocation will fail. Note that except for the super user a
file cannot be grown beyond the ulimit value specified for a user.

Another interesting case occurs when the
MAPMALLOC NO PRE ALLOC DISK flag is used in the

suchmapmalloc_init() call. In a case, -file block allocation can be done
by the operating system when the library attempts to allocate memory
for which file blocks never existed before. It just might happen that
during this memory allocation, the operating system runs out of

61

available file system blocks or a user quota is exceeded. In such a case
the kernel sends a SIGBUS signal to that process - the effect will be
an unfortunate core dump. To avoid this from happening the memory
allocation routines performs appropriate signal handling (by doing
setjmpullongjmp()) and does return back a NULL pointer to the user.

EXAMPLE
Sample code to allocate 100 bytes of memory.

char *vaddr;

if ((vaddr = MALLOC(100)) == (char *) NULL) {

/* Error processing code */
}

WARNINGS
Unpredictable results may occur if the user corrupts the heap space
that is being memory mapped.

SEE ALSO
mapmalloc_init(), ma pfree(), map_set_base_user_addr(),
map_get_base_user_addr(), mapregion_sync(), mapclose().

62

NAME
mapfree - Memory deallocation routine.

C SYNOPSIS
#include <sys/types.h>
#include " mapmalloc. h "

void mapfree(addr, strategy)

void FREE (addr)

char *addr;
int strategy;

DESCRIPTION
mapfree() deallocates the memory associated with the value of addr.

ARGUMENTS
The addr argument must be a valid pointer obtained from a previous
invocation to any one of the memory allocation routines.

The strategy argument values can be any one of the following:
FREE COALESCE - Here coalescing is attempted on all of
the free blocks that are left adjacent to the memory block being
freed.

FREE_COALESCE_RIGHT - Here coalescing is attempted
on all of the free blocks that are right adjacent to the memory
block being freed.

FREE _ NO COALESCE - Here no coalescing of existing free _
memory blocks is attempted when a memory block is being
deallocated. This is the default value used.

Upon invocation the previously allocated block of memory is freed to
the appropriate region that it was allocated from. The FREE() macro
invokes mapfree() with FREE_NO_COALESCE flag.

RESULTS
On success the memory block is deallocated and returned to the free
buffer pool. If the address specified is an invalid one - no action is
taken.

WARNINGS
Undefined results, e.g. heap corruption, will occur if an allocated freed
memory block is freed a second time.

SEE ALSO
mapmalloc_init0, mapmalloc(), map_set_base_user_addr(),
map_get_base_user_addr(), mapregion_sync(), mapclose().

63

NAME
map_set_base_user_addr/map_get_base-user_addr - Save/retrieve
pointer value.

C SYNOPSIS
#include <sys/types.h>
#include "mapmalloc.h"

void map_set_base_user_addr(region_addr, user_addr)

char * map_get_base_user_addr(region_addr)

char *region_addr;
char *user addr;

DESCRIPTION
These routines allows programmers to store and retrieve in the header
section of a given memory mapped region a pointer value usually
pointing to the base user information. Such a pointer value usually
reflects the root pointer value for user data structures, so that between
each program execution sessions the user will have a known point of
reference for the data structures it is using.

ARGUMENTS
The region-addr argument is the starting address of the memory
mapped region.

The user addr is a pointer variable value that is provided by the user.

RESULTS
map_set_base_user_addr() simply stores a pointer value without
validating the value. map_get_base_user_addr() returns a pointer
variable value to the user. This value will be 0 if the user did not
previously do a map_set_base_user_addr().

SEE ALSO
mapmalloc_init(), mapmalloc(), mapfree(), mapregion_sync(),
mapclose().

64

NAME
mapregion_sync - Sync back memory pages for memory mapped
region to file.

C SYNOPSIS
#include <sys/types.h>
#include "mapmalloc.h"

int mapregion_sync(region_addr, flags)

char *region_addr;
int flags;

DESCRIPTION
This routine forces the contents of an entire memory mapped region to
be written out to its corresponding file storage. This routine must be
used prior to process termination if shared memory region has been
selected during mapmalloc _init() instead of mmap().

ARGUMENTS
The region_addr argument is the virtual address where the memory
mapped region is attached to the user's address space.

The flag argument could take in one of the following values:
MS_SYNC - Perform synchronous writes to disk. For shared
memory region based heaps this flag is the only option
available.

MS ASYNC - Perform asynchronous writes to disk. This flag
can only be used when mmap() has been used to memory map
the file.

If a flag value of 0 is used then it defaults to MS_SYNC.

RESULTS
On success mapregion_sync() returns a value of 0. On failure it
returns the value of -1.

SEE ALSO
mapmalloc_initO, mapmalloc(), mapfreeO,
map_set_base_user_addr(), map_get_base_user_addrO,
mapcloseO.

65

NAME
mapclose - Unmap entire memory mapped region for a file.

C SYNOPSIS
#include <sys/types.h>
#include "mapmalloc.h"

int mapclose(region_addr)

char *region_addr;

DESCRIPTION
This routine simply unmaps and closes the file associated with
region_addr. The address space that was previously memory mapped
is now inaccessible.

ARGUMENTS
The region_addr argument is the virtual address where the memory
mapped region is attached to the user's address space.

RESULTS
On success mapclose() returns a value of 0. On failure it returns the
value of -1.

SEE ALSO
mapmalloc_init(), mapmalloc(), mapfree(),
map_set_base_user_addr(), map_get_base_user_addr(),
mapregion_sync().

66

APPENDIX B: BNF DESCRIPTION FOR DAL

This section gives the BNF description of the DAL language.

<Start> --> <objecttype> <class>

<objecttype> --> <objectdefinition> <objecttype> I <objectdefinition>

<objectdefinition> --> objecttype <objectname> <objectbody> end;

<objectname> --> <classname>Type

<objectbody> --> <subtypeof> <setof> <memberof> <opartof> <otupleof> <attributes>
<orelationships> <methods>

<subtypeof> --> subtypeof : <objectname-list> ; I <NULL>

<setof> --> setof : <objectname-list> ; I <NULL>

<memberof> --> memberof : <objectname-list> ; I <NULL>

<opartof> --> partof : <objectname-list> ; I <NULL>

<otupleof> --> <otuple> ; <otupleof> I <otuple> ; I <NULL>
<otuple> --> tupleof : < oconnector-list> ;
<oconnector-list> --> < <connector-name> : <objectname> <more-oconnector>
<more-oconnector> --> I , <connector-name> : <objectname> <more-oconnector>

<attributes> --> attributes <4ttrs> endattributes; I <NULL>
<attrs> --> <attr> ; <attrs> I <attr> ;
<attr> --> <attribute-name> : unknown_type

<orelationships> --> relationships <orelationbody> endrelationships; I <NULL>

<orelationbody> --> <relationshipname> <typeoforelation> <objectname> ;
<orelationbody> I <NULL>

<typeoforelation> --> : I ::

<methods> --> methods <method-body> endmethods; I <NULL>
<method-body> --> <method-name> 0; <method-body> I <method-name> 0;

<class> --> <classbody> <class> I <classbody>

<classbody> --> class <classname> <classdefinition> end ;

<classdefinition> --> <relations> <eattributes> <relationships> <methods>

<relations> --> <classtype> <categoryof> <roleof> <partof> <tupleof>

67

<classtype> --> objecttype : <objectname> ;

<categoryof> --> categoryof : <class-name-list> ; I <NULL>

<roleof> --> roleof : <class-name-list> ; I <NULL>

<partof> --> partof : <class-name-list> ; I <NULL>

<tupleof> -> tupleof : <connect-list> ; <tupleof> I <NULL>
<connect-list> --> «connector-name> : <classname> <more-connect>
<more-connect> --> > I , <connector-name> : <classname> <more-connect>

<eattributes> --> attributes <eattrs> endattributes; I <NULL>
<eattrs> --> <attributename> ; <eattrs> I <attributename> ;

<relationships> --> relationships <relationbody> endrelationships; I <NULL>

<relationbody> --> <relationshipname> <typeofrelation> <classname>
<relationbody> ; I

<relationshipname> <typeofrelation> <classname> ;
<relationbody>

<typeofrelation> --> : I :: I :+ I :> I ::+ I ::>

<classname> --> Character string constituting a class name

<class-name-list> --> <classname> , <class-name-list> I <classname>

<objectname-list> --> <objectname> , <objectname-list> I <objectname>

<attributename> --> Character string constituting an attribute name

<relationshipname> --> Character string constituting a relationship name

<connector-name> --> Character string, a connector name in a tuple-of relation

<method-name> --> Character string constituting a method name

<NULL> --> " "

68

APPENDIX C: USER API HEADER FILE FOR DAL

This section lists the contents of the user API header file, dal.h.

typedef struct basestruct

struct basestruct *next; /* Next list element pointer */

int flag; /* What kind of arc */
char *name; /* Name field */

union /* Variant */

struct oclass *classp; /* Class pointer */
struct objecttype *objectp; /* or objecttype pointer */

un;

char *foruser[2]; /* 2 private slots for users */
char *future[4]; /* Future expansion slots */

} basestructt;

typedef basestructt orelation_t; /* Ordinary relationships */
typedef basestruct_t erelation_t; /* Essential relationships */
typedef basestruct_t drelationt; /* Dependent relationships */
typedef basestruct_t mvrelation_t; /* Multi-valued relationships */
typedef basestruct_t mverelation_t; /* Multi-valued Essential */
typedef basestruct_t mvdrealtion_t; /* Multi-valued Dependent */
typedef basestruct_t roleof t; /* Role-of connection */
typedef basestruct_t categoryof t; /* Category-of connection */
typedef basestruct_t partof t; /* Part-of connection */
typedef basestruct_t setof t; /* Set-of connection */
typedef basestruct_t memberof_t; /* Member-of connection */
typedef basestruct_t tupleof t; /* Tuple-of connection */
typedef basestruct_t subtypeoft; /* Subtype-of connection */
typedef basestruct_t attributeof t; /* Attribute list */
typedef basestruct_t essential t; /* Essential attribute list */
typedef basestruct_t method_t; /* Method name list */
typedef basestructt oconnectiont; /* List of classes connected */

69

typedef struct otype {

struct objecttype *next; /* Next object type */

long flag; /* Flags */

char *name; /* Name of object type */
int level; /* DAG level number */
struct oclass *denvedclass; /* Corresponding class */
oconnection_t *connectionlist; /* List of classes */
attribute_t *attributelist; /* Attribute list */
subtype_t *subtypeoflist; /* Subtype-of list */
setof t *setoflist; /* Set-of list */
memberof t *memberoflist; /* Member-of list */
memberof t *tupleoflist; /* Tuple-of list */
orelation_t *orelationlist; /* ordinary relationships */
mvrelation_t *mvrelationlist; /* Multi-valued */
method_t *methodlist; /* Method name list */
long attributecnt; /* Attribute count */
long supertypecnt; /* Super-Type count */
long subtypeofcnt; /* Sub-Type count */
long memberofcnt; /* Memberof count */
long setofcnt; /* Setof count */
long relationshipcnt; /* Relationship count */
long methodcnt; /* Method count */

char *foruser[2]; /* 2 private slots for users */
char *future[8]; /* Future expansion */

} otype_t;

70

typedef struct oclass

struct oclass *next; /* Next class pointer */

struct oclass *nexthashp; /* Next hash pointer */

char *name; /* Name of class */
int level; /* DAG level number */
long flag; /* Flags */
otype_t *derivedtype; /* Derived object type */
otype_t *actualtype; /* Actual object type */
roleof_t *roleoflist; /* Role-of connection list */
categoryof t *categoryoflist; /* Category-of list */
partof_t *partoflist; /* part-of connection list */
partof t *tupleoflist; /* tuple-of connection list */
roleoft *rolegenlist; /* Role-Generalized list */
categoryof t *categorygenlist; /* Catg.-Generalized list */
partoft *partgenlist; /* Part-Generalized list */
eattribute_t *eattributelist; /* Essential attribute list */
orelation_t *orelationlist; /* ordinary relationships */
erelation_t *erelationlist; /* Essential relationships */
drelation_t *drelationlist; /* Dependent relationships */
mvrelation_t *mvrelationlist; /* Multi-valued */
mverelationt *mverelationlist; /* Multi-valued Essential */
mvdrelation_t *mvdrelationlist; /* Multi-valued Dependent */
long attributecnt; /* Attribute count */
long roleofcnt; /* Roleof count */
long groleofcnt; /* Generalized count */
long categoryofcnt; /* Categoryof count */
long gcategoryofcnt; /* Generalized count */
long partofcnt; /* Partof count */
long gpartofcnt; /* Generalized count */
long tupleofcnt; /* Tupleof count */
long gtupleof; /* Generalized count */

long *foruser[2]; /* User private slots */
char *future[8]; /* Future expansion */

} oclass_t;

/* Global externs for library users */
extern oclass_t *classptr; /* Pointer to list of object classes */
extern otype_t *typeptr; /* Pointer to list of object types */
extern oclass_t **classhashptr; /* Pointer to list of hashed classes */

/* Hash table size */
#define CHASHSIZE 256

/* Hashing Function -- use first character of classname into an ASCII table */
#define CHASHINDX(classname) (((int)(*(classname))) % CHASHSIZE)

71

APPENDIX D: USER API LIBRARY CALL FOR DAL

This section contains the manual page for the User API routine dal() incorporated in the
dal I ib.a library.

NAME
dal - DAL library routine invocation.

C SYNOPSIS
#include "dal.h"

int dal(heapfilename, oclassp, objectp, dag, integrate, debug_on)

char *heapfilename;
oclass_t **oclassp;
otype_t **objectp;
int dag;
int integrate;
int debug_on;

DESCRIPTION
Upon invocation this routine parses the heap file generated from the
OODINI object oriented database graphics editor. It returns a pointer
to a list of object classes and a pointer to a list of object types defined
by the user during the OODINI session.

ARGUMENTS
The heapfilename argument is the heap file name where the graphical
image for OODINI was stored by the user.

The oclassp argument is pointer to an object class whose definition is
given in the dal.h header file.

The objectp argument is a pointer to an object type whose definition is
given in the dal.h header file.

The dag argument if set to 1 will allow the dal() routine to verify if the
database schema is a directly acyclic graph (DAG) or not. If the
schema is not a DAG then a comment is generated on the standard
output to indicate this during DAL code generation. If the value of this
argument is 0 then dal() does not verify if the schema is a DAG or not.

The integrate argument if set to 1 will allow the dal() routine to
collapse object types. Object types that have a super type and do not
have any out-going relationships, relations and attributes are deleted
from the system. All object classes that originally referred to this
object type has these references changed to that of the super object
type. If the value of this argument is 0 then dal() ignores this feature.
In the future releases of this library this option will allow for
partial/full structural integration of object types.

The debug_on argument allows the dal() to generate debugging
messages (if any) on the standard output. A value of 1 turns on

72

debugging, while a value of 0 turns off debugging.

RESULTS
On success dal() returns a value of 1. On failure it returns a value of 0
and the values of the last 2 arguments are undefined. Severe errors in
input database schema aborts execution and prints appropriate error
messages on the standard error file descriptor.

EXAMPLE
Sample code to invoke dal():

int ret;
oclass t *oclassp;
otype_t *objectp;

if ((ret = dal("/tmp/heapfile", &oclassp, &objectp, 0, 0, 0)) !=
0) {

error processing code;
}

73

APPENDIX E: MANUAL PAGE: DAL EXECUTABLE

This section contains the manual page for the dal executable invocation.

NAME
dal - DAL executable invocation.

USAGE

dal -h heapfilename [-d] -t] [-x] [-f outpuOlename] [-e
errorfilename]

DESCRIPTION
Upon invocation this executable parses the heap file generated from
the OODINI object oriented database graphics editor. It generates an
abstract textual code form of the database schema.

ARGUMENTS
The -h heapfilename argument is used to specify the heap file name
where the graphical image for OODINI was stored by the user.

The -d optional argument allows dal() to verify if the database schema
is a directly acyclic graph (DAG) or not. If the schema is not a DAG
then a comment is generated on the standard output to indicate this
during DAL code generation. If this optional argument is not used
then dal does not verify if the schema is a DAG or not.

The -t argument allows dal to collapse object types. Object types that
have a super type and do not have any out-going relationships,
relations and attributes are deleted from the system. All object classes
that originally referred to this object type has these references changed
to that of the super object type. If this optional argument is not used
then dal ignores this feature. In the future releases of this software this
option will allow for partial/full structural integration of object types.

The -x optional argument allows dal to generate debugging messages
(if any) on the standard output. If this optional argument is not used
then dal does not generate any debugging messages.

The -f outpuffilename optional argument allows dal to generate the
DAL code in outpuOlename. If this option is not used then the dal
output is generated on the standard output which can also be redirected
to an output file at the UNIX shell level.

The -e errorfilename optional argument allows dal to generate all
error messages (if any) in errorfilename. If this option is not used then
all error messages are generated on the standard error which can also
be redirected to an output file at the UNIX shell level.

RESULTS
On success dal exits with an exit code value of 0. On failure the exit
code value is non-zero. Severe errors in input database schema aborts
execution and prints appropriate error messages.

74

APPENDIX F: MANUAL PAGE: VML EXECUTABLE

This section contains the manual page for the vml executable invocation.

NAME
vml - vml executable invocation.

USAGE

vml -h heapfilename [-d] [-t [-x] [-f outpuOlename] [-e
errorfilename]

DESCRIPTION
Upon invocation this routine parses the heap file generated from the
OODINI object oriented database graphics editor. It generates VML
(VODAK Data Modeling Language) code syntax of the OODINI
database schema.

ARGUMENTS
The -h heapfilename argument is used to specify the heap file name
where the graphical image for OODINI was stored by the user.

The -d optional argument allows vml to disable verification if the
database schema is a directly acyclic graph (DAG) or not. By default,
vml always sorts the object types and object classes into a DAG. This
is necessary for generating correct code for parametrized VML object
types. Using the -d option allows the user to disable sorting of object
types and object classes. In such a case, however, correct generation of
VML parameterized object types are not guaranteed. If the -d option
is not used and the schema is not a DAG then VML code generation
will fail.

The -t argument allows vml to collapse object types. Object types
that have a super type and do not have any out-going relationships,
relations and attributes are deleted from the system. All object classes
that originally referred to this object type has these references changed
to that of the super object type. If this optional argument is not used
then vml ignores this feature. In the future releases of this software
this option will allow for partial/full structural integration of object
types.

The -x optional argument allows vml to generate debugging messages
(if any) on the standard output. If this optional argument is not used
then vml does not generate any debugging messages.

The -f outputfilename optional argument allows vml to generate the
VML code in outpuOlename. If this option is not used then the vml
output is generated on the standard output which can also be redirected
to an output file at the UNIX shell level.

The -e errorfilename optional argument allows vml to generate all
error messages (if any) in errorfilename. If this option is not used then
all error messages are generated on the standard error which can also

75

be redirected to an output file at the UNIX shell level.

RESULTS
On success vml exits with an exit code value of 0. On failure the exit
code value is non-zero. Severe errors in input database schema aborts
execution and prints appropriate error messages.

76

APPENDIX G: MANUAL PAGE: HEAP FILE COPY

This section contains the manual page for the oocopy executable invocation.

NAME
oocopy - OODINI Persistent Heap file copy command.

USAGE

oocopy from-filename to-filename

DESCRIPTION
The oocopy command should be used to copy persistent heap files
used by the OODINI executable. The persistent heap file used by the
OODINI executable is often very large in size. However, the heap file
has holes in between, i.e., disk blocks for unused portions of the file
are not allocated by the underlying file system. But if the traditional
UNIX cp (copy command) is used to copy a heap file to another file,
then this new file will have disk blocks allocated for unused portions
of the file. This is a typical file system behavior. To avoid this problem
oocopy only copies the used/allocated blocks and the header portion
of the unused/free blocks from the persistent heap file to the new file.
The saving in disk blocks in the new file are due to 2 reasons. First, the
holes in the persistent heap file are ignored by the oocopy command.
Second, too many allocations followed by deallocations from the
persistent heap file by the OODINI process will allocate file system
blocks for the unused/free portions. The oocopy only copies the
header portion of these deallocated (and now free) blocks. The entire
freed block is not copied and is not necessary.

ARGUMENTS
The from-filename argument is used to specify the persistent heap file
name where the graphical image for OODINI was stored by the user.

The to-filename is used to specify the new file where the persistent
heap file will be copied to.

RESULTS
On success oocopy exits with an exit code value of 0. On failure the
exit code value is 1 and a failure notification message is generated on
the standard output.

77

APPENDIX H: BNF DESCRIPTION FOR OODAL

This section gives the BNF description of the OODAL language.

<Start> --> <class>

<class> --> <classbody> <class> I <classbody>

<classbody> --> class <classname> <classdefinition> end ;

<classdefinition> --> <relations> <attributes> <relationships> <methods>

<relations> --> <setof> <memberof> <categoryof> <roleof> <partof> <tupleof>

<setof> --> setof : <class-name-list> ; I <NULL>

<memberof> --> memberof : <class-name-list> ; I <NULL>

<categoryof> --> categoryof : <class-name-list> ; I <NULL>

<roleof> --> roleof : <class-name-list> ; I <NULL>

<partof> --> partof : <class-name-list> ; I <NULL>

<tupleof> -> tupleof : <connect-list> ; <tupleof> I <NULL>
<connect-list> --> < <connector-name> : <classname> <more-connect>
<more-connect> --> > I , <connector-name> : <classname> <more-connect>

<attributes> --> attributes <pnrs> endattributes; I <NULL>
<attrs> --> <attr> ; <attrs> I <attr> ;
<attr> --> <attribute-name> <attr-separator> unknown_type
<attr-separator> --> : I :+

<relationships> --> relationships <relationbody> endrelationships; I <NULL>

<relationbody> --> <relationshipname> <typeofrelapon> <classname> ;
<relationbody> I <NULL>

<typeofrelation> --> : :+ I :> I :: I ::+ I ::>

<methods> --> methods <method-body> endmethods ; I <NULL>
<method-body> --> <method-name>O; <method-body> I <method-name>O;

<classname> --> Character string constituting a class name

<class-name-list> --> <classname> , <class-name-list> I <classname>

<attributename> --> Character string constituting an attribute name

<relationshipname> --> Character string constituting a relationship name

78

<connector-name> --> Character string, a connector name in a tuple-of relation

<method-name> --> Character string constituting a method name

<NULL> --> ""

79

APPENDIX I: USER API HEADER FILE FOR OODAL

This section lists the contents of the user API header file, oodal.h.

typedef struct basestruct

struct basestruct *next; /* Next list element pointer */

int flag; /* What kind of arc */
char *name; /* Name field */

union { /* Variant */

struct oclass *classp; /* Class pointer */
un;

char *foruser[2]; /* 2 private slots for users */
char *future[4]; /* Future expansion slots */

I basestructt;

typedef basestruct_t orelation_t; /* Ordinary relationships */
typedef basestruct_t erelation_t; /* Essential relationships */
typedef basestruct_t drelation_t; /* Dependent relationships */
typedef basestruct_t mvrelation_t; /* Multi-valued relationships */
typedef basestruct_t mverelation_t; /* Multi-valued Essential */
typedef basestruct_t mvdrealtion_t; /* Multi-valued Dependent */
typedef basestruct_t roleof t; /* Role-of connection */
typedef basestruct_t categoryof_t; /* Category-of connection */
typedef basestruct_t partof t; /* Part-of connection */
typedef basestruct_t setof t; /* Set-of connection */
typedef basestruct_t memberof t; /* Member-of connection */
typedef basestruct_t tupleof t; /* Tuple-of connection */
typedef basestructt subtypeof t; /* Subtype-of connection */
typedef basestruct_t attributeof t; /* Attribute list */
typedef basestruct_t essential t; /* Essential attribute list */
typedef basestructt method t; /* Method name list */

80

typedef struct oclass {
struct oclass *next; /* Next class pointer */
struct oclass *nexthashp; /* Next hash pointer */
char *name; /* Name of class */
int level; /* DAG level number */
long flag; /* Flags */
setof_t *setoflist; /* Set-of connection list */
memberof_t *memberoflist; /* Member-of list */
roleof_t *roleoflist; /* Role-of connection list */
categoryof t *categoryoflist; /* Catg.-of list */
partof t *partoflist; /* part-of connection list */
partof_t *tupleoflist; /* tuple-of connection list */
roleof_t *rolegenlist; /* Role-Generalized list */
categoryof t *categorygenlist; /* Category-Generalized list */
partof_t *partgenlist; /* Part-Generalized list */
eattribute_t *eattributelist; /* Essential attribute list */
orelation_t *orelationlist; /* ordinary relationships */
erelation_t *erelationlist; /* Essential relationships */
drelation_t *drelationlist; /* Dependent relationships */
mvrelation_t *mvrelationlist; /* Multi-valued */
mverelauont *mverelationlist; /* Multi-valued Essential */
mvdrelation_t *mvdrelationlist; /* Multi-valued Dependent */
method_t *methodlist; /* Method-name list */
long attributecnt; /* Attribute count */
long setofcnt; /* Setof count */
long memberofcnt; /* Memberof count */
long roleofcnt; /* Roleof count */
long groleofcnt; /* Generalized count */
long categoryofcnt; /* Categoryof count */
long gcategoryofcnt; /* Generalized count */
long partofcnt; /* Partof count */
long gpartofcnt; /* Generalized count */
long tupleofcnt; /* Tupleof count */
long gtupleof; /* Generalized count */
long methodcnt; /* Method count */

long *foruser[2]; /* User private slots */
method_t *future[8]; /* Future expansion */

oclasst;

/* Global externs for library users */
extern oclass_t *classptr; /* Pointer to list of object classes */
extern oclass_t **classhashptr; /* Pointer to list of hashed classes */

/* Hash table size */
#define CHASHSIZE 256

/* Hashing Function -- use first character of classname into an ASCII table */
#define CHASHINDX(classname) (((int)(*(classname))) % CHASHSWF)

81

APPENDIX J: USER API LIBRARY CALL FOR OODAL

This section contains the manual page for the User API routine oodal() incorporated in
the oodallib.a library.

NAME
oodal - OODAL library routine invocation.

C SYNOPSIS
#include "oodal.h"

int oodal(heapfilename, oclassp, dag, debug_on)

char *heapfilename;
oclass_t **oclassp;
int dag;
int debug_on;

DESCRIPTION
Upon invocation this routine parses the heap file generated from the
OODINI object oriented database graphics editor. It returns a pointer
to a list of object classes defined by the user during the OODINI
session.

ARGUMENTS
The heapfilename argument is the heap file name where the graphical
image for OODINI was stored by the user.

The oclassp argument is pointer to an object class whose definition is
given in the oodal.h header file.

The dag argument if set to 1 will allow the oodal() routine to verify if
the database schema is a directly acyclic graph (DAG) or not. If the
schema is not a DAG then a comment is generated on the standard
output to indicate this during OODAL code generation. If the value of
this argument is 0 then oodal() does not verify if the schema is a DAG
or not.

The debug_on argument allows the oodal() to generate debugging
messages (if any) on the standard output. A value of 1 turns on
debugging, while a value of 0 turns off debugging.

RESULTS
On success oodal() returns a value of 1. On failure it returns a value of
0 and the values of the last 2 arguments are undefined. Severe errors in
input database schema aborts execution and prints appropriate error
messages on the standard error file descriptor.

EXAMPLE

Sample code to invoke oodal():

82

int ret;
oclass _t *oclassp;

if ((ret = oodal ("/tmp/heapfile", &oclassp, 0, 0)) != 0) {
error processing code;

}

83

APPENDIX K: MANUAL PAGE: OODAL EXECUTABLE

This section contains the manual page for the oodal executable invocation.

NAME
oodal - OODAL executable invocation.

USAGE

oodal -h heapfilename [-d] [-x] [-f outputfilename] [-e
errorfilename]

DESCRIPTION
Upon invocation this executable parses the heap file generated from
the OODINI object oriented database graphics editor. It generates an
abstract textual code form of the database schema.

ARGUMENTS
The -h heapfilename argument is used to specify the heap file name
where the graphical image for OODINI was stored by the user.

The -d optional argument allows oodal() to verify if the database
schema is a directly acyclic graph (DAG) or not. If the schema is not a
DAG then a comment is generated on the standard output to indicate
this during OODAL code generation. If this optional argument is not
used then oodal does not verify if the schema is a DAG or not.

The -x optional argument allows oodal to generate debugging
messages (if any) on the standard output. If this optional argument is
not used then oodal does not generate any debugging messages.

The -f outputfilename optional argument allows oodal to generate the
OODAL code in outputfilename. If this option is not used then the
oodal output is generated on the standard output which can also be
redirected to an output file at the UNIX shell level.

The -e errorfilename optional argument allows oodal to generate all
error messages (if any) in errorfilename. If this option is not used then
all error messages are generated on the standard error which can also
be redirected to an output file at the UNIX shell level.

RESULTS
On success oodal exits with an exit code value of 0. On failure the exit
code value is non-zero. Severe errors in input database schema aborts
execution and prints appropriate error messages.

84

APPENDIX L: SOURCE TREE AND SOURCE COMPILATION:

This section describes the source tree layout for the DAL, OODAL, VML, mapmalloc
and oocopy implementations. The following diagram gives a high level view of the
source tree layout. Note that beret is the login name under which all the source were
implemented.

Figure 20. Source Code Tree Hierarchy

DAL Source:

The following table lists the DAL source files and corresponding high level
implementation comments.

TABLE 1. DAL Source File Names
No. Source File High Level Source Comment(s)

1. makefile Make file to generate DAL executable and library.
2. genlisp.h Header file for generic list manipulations.
3. dalcode.h Header file for DAL code generation.
4. dal.h Header file for dalib.a library.
5. genlisp.c Generic List manipulation code.
6. dallib.c dallib.a library source code.
7. daltype.c DAL object type handling source code.
8. dalclass.c DAL object class handling source code.
9. dal.c DAL high level source code for dal executable.
10. globals.c Global variable declarations source file.

85

Source Compilation:

To compile the source execute the following command at the user prompt:

make -f makefile all

Target(s) Generated:

Upon successful compilation the following targets are generated.

TABLE 2. DAL Executable/Library File Names
No. Target Name Target Description

1. dal The DAL executable.
2. dallib.a The DAL library.

OODAL Source:

The following table lists the OODAL source files and corresponding high level
implementation comments.

TABLE 3. OODAL Source File Names
No. Source File High Level Source Comment(s)

1. makefile Make file to generate OODAL executable and library.
2. oodalcode.h Header file for OODAL code generation.
3. oodal.h Header file for oodalib.a library.
4. oodallib.c oodallib.a library source code.
5. oodalclass.c OODAL object class handling source code.
6. oodal.c OODAL high level source code for oodal executable.
7. globals.c Global variable declarations source file.

Source Compilation:

To compile the source execute the following command at the user prompt:

make -f makefile all

Target(s) Generated:

Upon successful compilation the following targets are generated.

TABLE 4. OODAL Executable/Library File Names
No. Target Name Target Description

1. oodal The OODAL executable.
2. oodallib.a The OODAL library.

VML Source:

86

The following table lists the VML source files and corresponding high level
implementation comments.

TABLE 5. VML Source File Names
No. Source File High Level Source Comment(s)

1. makefile Make file to generate VML executable.
2. vml.h Header file for VML source code generation.
3. vmltype.c VML object type handling source code.
4. vmlclass.c VML object class handling source code.
5. vml.c VML high level source code for vml executable.
6. vmlsemantic.c Code for VML metaclasses.

Source Compilation:

To compile the source execute the following command at the user prompt:

make -f makefile all

Target(s) Generated:

Upon successful compilation the following targets are generated.

TABLE 6. VML Executable File Name
No. Target Name Target Description

1. vml The VML executable.

MAPMALLOC Source:

The following table lists the persistent heap (MAPMALLOC) source files and
corresponding high level implementation comments.

TABLE 7. MAPMALLOC Source File Names
No. Source File High Level Source Comment(s)

1. mapmalloc.h Header file for MAPMALLOC feature.
2. mapmalloc.c Source file for MAPMALLOC object code generation.

Source Compilation:

To compile the source execute the following command at the user prompt:

cc -c mapmalloc.c

Target(s) Generated:

Upon successful compilation the following targets are generated.

87

TABLE 8. MAPMALLOC Object File Name
No. Target Name Target Description

1. mapmalloc.o The MAPMALLOC object file.

OOCOPY Source:

The following table lists the OOCOPY source files and corresponding high level
implementation comments.

TABLE 9. OOCOPY Source File Names
No. Source File High Level Source Comment(s)

1. makefile Make file to generate OOCOPY executable.
2. oocopy.c OOCOPY source file.

Source Compilation:

To compile the source execute the following command at the user prompt:

make -f makefile all

Target(s) Generated:

Upon successful compilation the following targets are generated.

TABLE 10. OOCOPY Executable File Names
No. Target Name Target Description

1. oocopy The oocopy executable.

REFERENCES

1. Neuhold, E. J., Perl, Y., and Turau, V. "The Dual Model for Object-Oriented
Databases, Institute for Integrated Systems." CIS Department and Center for
Manufacturing Systems, New Jersey Institute of Technology, Newark, NJ,
Research Report: CIS-91-30.

2. Halper, M., Geller, J., and Perl, Y. "An OODB Graphical Schema Represen-
tation." CIS Department, New Jersey Institute of Technology, Newark, NJ,
Research Report: CIS-92-01.

3. "User's Guide to PSG." Praktische Informatik, Technische Hochschule Darmstadt,
MagdalenestraBe 11c, D-61 Darmstadt, West Germany, Report PI-R4/88,
October 1989.

4. Geller, J., Neuhold, E. J., Perl, Y., and Turau, V. "A Theoretical Underl-
ying Dual Model for Knowledge-based Systems." Proceedings of the First
International Conference on Systems Integration, Morristown, NJ, pages 96-103,
1990.

5. Neuhold, E. J., Perl. Y, Geller, J., and Turau, V. "Separating Structural
and Semantic Elements in Object-Oriented Knowledge Bases." Proceedings of
the Advanced Database System Symposium, Kyoto, Japan, pages 67-74, 1989.

6. Geller, J., Perl, Y., and Neuhold, E. J. "Structure and Semantics in OODB
Class Specifications." SIGMOD Record, Vol. 20, pages 40-43, December, 1991.

7. Geller, J., Perl, Y., and Neuhold, E. J. "Structural Schema Integration with
Full and Partial Correspondence using the Dual Mode." Institute for Integrated
Systems, CIS Department and Center for Manufacturing Systems, New Jersey
Institute of Technology, Newark, N.J. 07102; Institute for Integrated Publication
and Information Systems, GMD, Darmstadt, Federal Republic of Germany,
Research Report: CIS-91-11.

8. Geller, J., Perl, Y., Cannata, P., and Sheth, A. "Structural Intergration:
Concepts and Case Study." Institute for Integrated Systems, CIS department and
Center for Manufacturing Systems, New Jersey Institute of Technology,
Newark, N.J. 07102; Bellcore 444 Hoes Lane, Piscataway, N.J. 08854; GMD-
IPSI Integrated Publication and Information Systems Institute, Dolivostr. 15,
D-6100 Darmstadt, Germany, Research Report: CIS-92-02.

9. Kambayashi, Y., Rusinkiewicz, M., and Sheth, A. "Structural Schema
Integration in Heterogeneous Multi-Database Systems using the Dual Model."
First International Workshop on Interoperability in Multidatabase Systems,
Kyoto, Japan, April 7-9, 1991.

88

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgement
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: Graphical Image Persistence
	Chapter 3: Code Generation
	Chapter 4: Conclusions
	Appendix A: Manual Pages: Image Persistence
	Appendix B: BNF Description for DAL
	Appendix C: User API Header File for DAL
	Appendix D: User API Library Call for DAL
	Appendix E: Manual Page: DAL Executable
	Appendix F: Manual Page: VML Executable
	Appendix G: Manual Page: Heap File Copy
	Appendix H: BNF Description for OODAL
	Appendix I: User API Header File for OODAL
	Appendix J: User API Library Call for OODAL
	Appendix K: Manual Page: OODAL Executable
	Appendix L: Source Tree and Source Compilation
	References

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

