

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

Efficient Hypercube Communications

by

Shreyas R. Bhatt

Thesis submitted to the Faculty of the Graduate School of

the New Jersey Institute of Technology

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering.

Jan. 1992

APPROVAL SHEET

Title of Thesis: Efficient Hypercube Communications

Name of candidate: Shreyas R. Bhatt

Master of Science in Electrical Engineering, 1991

Thesis and abstract approved: 91

Dr. S. G. Ziavras Date

Assistant Professor

Department of Electrical and

Computer Engineering

New Jersey Institute of Technology

 Dr. J. Carpinelli Date

Assistant Professor

Dept. of Electrical and

Computer Engineering

New Jersey Institute of Technology

Dr. E. Hou Date

Assistant Professor

Dept. of Electrical and

Computer Engineering

New Jersey Institute of Technology

Contents

Abstract v

1 Introduction 1
1.1 Hypercubes and some applications 1
1.2 Hypercube communications 4
1.3 Motivations and Objectives 5

2 Analysis of some special communication transfers 7
2.1 Introduction 7
2.2 One-to-many communication 8
2.3 Many-to-one communication transfers 11

3 Existing Hypercube Communication Algorithms 16
3.1 Introduction 16
3.2 Some Existing Algorithms 16
3.3 Hypercube communication algorithms by Johnsson and Ho 20
3.4 Brute-Force Algorithm 22

4 Proposed Hypercube Communication Algorithms 24
4.1 Introduction 24
4.2 Algorithm I: Equibalancing 25
4.3 Algorithm II: One-step time-lookahead equibalancing 27

5 Simulation results and comparative analysis 31
5.1 Introduction 31
5.2 Simulation results and comparative analysis 31

6 Conclusion 37

7 Bibliography 39
Appendix 43

List of Figures

1.1 A 3-cube 2

2.1 One-to-two personalized communication 8
2.2 One-to-many communication 10
2.3 Two-to-one communication 12
2.4 Many-to-one communication (I is one hop away) 13
2.5 Many-to-one communication (I is two hops away) 15

3.1 Brute-Force Algorithm 23

4.1 Equibalancing algorithm 25
4.2 One-step time-lookahead equibalancing algorithm 28

List of Tables

5.1 Simulation results for a 6-cube (all-to-all communication) 33
5.2 Simulation results for a 5-cube (all-to-all communication) 33
5.3 Simulation results for a 4-cube (all-to-all communication) 33
5.4 Simulation results for a 6-cube (many-to-many communication) 35
5.5 Simulation results for a 5-cube (many-to-many communication) 35
5.6 Simulation results for a 4-cube (many-to-many communication) 35
5.7 Communication time as a function of the threshold (6-cube) 36
5.8 Communication time as a function of the threshold (5-cube) 36

ABS TRACT

EFFICIENT HYPERCUBE COMMUNICATIONS

Shreyas R. Bhatt, Master of Science, Electrical and Computer Engineering De-

partment, 1991

Thesis directed by : Dr. Sotirios G. Ziavras, Assistant Professor

Hypercube algorithms may be developed for a variety of communication-intensive

tasks such as sending a message from one node to another, broadcasting a message

from one node to all others, broadcasting a message from each node to all others,

all-to-all personalized communication, one-to-all personalized communication, and

exchanging messages between nodes via fixed permutations. All these communica-

tion patterns are special cases of many-to-many personalized communication. The

problem of many-to-many personalized communication is investigated here.

Two routing algorithms for many-to-many personalized communication are pre-

sented here. The algorithms proposed yield very high performance with respect

to the number of time steps and packet transmissions. The first algorithm yields

high performance through attempts to equibalance the number of messages at in-

termediate nodes. This technique tries to avoid creating a bottleneck at any node

and thus reduces the total communication time. The second algorithm yields high

performance through one-step time-lookahead equibalancing. It chooses from the

candidate intermediate nodes the one which will probably have the minimum num-

ber of messages in the next cycle.

The proposed algorithms are compared with two existing algorithms. Simulation

results for all these algorithms are given for the purpose of comparison. Analytical

results for some special types of communication patterns are also presented.

Chapter 1

Introduction

1.1 Hypercubes and some applications

An n-cube or n-dimensional hypercube consists of 2' nodes each with its own mem-

ory and directly connected with n neighboring nodes [1]. If distinct n-bit binary

addresses are assigned to the nodes, then two nodes are directly connected with

each other if and only if their binary addresses differ by a single bit. A 3-cube can

be represented as an ordinary cube in three dimensions where the vertices are the

8 = 23 nodes of the 3-cube; see Fig. 1. More generally, one can construct an n-cube

as follows. First, the 2' nodes are labelled by the 2' binary numbers from 0 to

2' — 1. Then a link between two nodes is drawn if and only if their binary numbers

differ by one and only one bit.

Figure 1.1: A 3-cube

Any connected multiprocessor system should allow for its processors to exchange

data in all possible combinations. Let A and B be any two nodes of the n-cube and

consider the problem of sending data from node A to node B. The way in which

this is achieved in ensemble architectures is to move the data along a path from

A to B crossing a (possibly minimum) number of processors. By definition, the

length of a path between two nodes is simply the number of edges in the path.

The Hamming distance between a pair of nodes in an n-cube, which is the shortest

distance between the two nodes, is equal to the number of bits the two nodes' binary

addresses differ. It can be shown that there exist j parallel paths (paths which do

not have common nodes) of length j between any pair of nodes with Hamming

distance equal to j. If we relax the restriction that the length must be Hamming,

then as many as n parallel paths can be found between any pair of nodes with the

length of each path being at most Hamming length plus 2.

Mapping other topologies into the hypercube is important due to the following

reasons.

1. Some algorithms may be developed for other architectures for which they fit

perfectly. Then one might wish to implement such an algorithm on a hypercube-

based system with little additional programming effort. If the original architecture

could be embedded into the hypercube, this will be easy to achieve.

2. A given problem may have a well-defined structure which leads to a particular

pattern of communication. When running the algorithm on a hypercube-based

system, the efficient mapping of the structure may result in substantial savings in

communication time.

Efficient embeddings into the hypercube have been developed for several simple

configurations. Rectangular meshes have been embedded by Chan and Saad [14],

Ma and Tao [15], and Johnsson and Ho [16]. Algorithms for embedding binary trees

into hypercubes have been developed by Wu [17], Bhatt and Ipsen [20]. and Bhatt

et. al. [22]. Algorithms for embedding rings into hypercubes have been suggested

by Chan and Lee [18]. Algorithms for embedding pyramids into hypercubes have

been proposed by Patel and Ziavras [13], Stout [23], Miller and Stout [24], and

Chang et. al. [25]. Finally, the embedding of d-dimensional grids into hypercubes

has been suggested by Chan [19].

The hypercube network has been used in a wide variety of application domains,

including image processing. Image processing is concerned with the manipulation

of pictorial data. An image is generally represented as a two-dimensional array

of numbers (pixels) each of which corresponds to the brightness or color value at

some point in the image. There are many operations commonly performed on

images for specific purposes: filtering, level transformations and thresholding, edge

and region enhancements, feature recognition, statistical measurements, and so on.

Such operations are efficiently performed on hypercubes.

Another application of the hypercube is for some computation-intensive numeric

applications, like matrix manipulations.

1.2 Hypercube communications

When algorithms are executed in a network of parallel processors, it is often nec-

essary to exchange some intermediate information between the processors. The

interprocessor communication time which is considered overhead, may be substan-

tial relative to the time needed exclusively for computations, so it is important to

carry out the information exchange as efficiently as possible. Information is trans-

mitted along the hypercube links in groups of bits called packets. In our algorithms

we assume that the time required to cross any link is the same for all packets and is

taken to be one unit of time. Thus, our analysis applies to communication problems

where all packets have roughly equal length.

Various types of communication transfers have been analyzed by Johnsson and

Ho [21. Their analysis includes one-to-all broadcasting, one-to-all personalized com-

munication, all-to-all broadcasting, and all-to-all personalized communication. Con-

trary to broadcasting, where a data set is copied from one node to all other nodes

or a subset of them, in personalized communication each sender sends different data

sets to different destinations. Thus, personalized communication differs from broad-

casting in the sense that there is no replication or reduction of data. Some special

cases of routing with small buffers in the nodes were also analyzed by Kuszmaul [3].

His analysis assumes injective routing in which no two nodes are allowed to send

messages to the same node at the same time. In addition, efficient routing using

randomization for arbitrary permutations has been suggested by Valiant [4]. Stout

and Wager have analyzed various communication patterns including broadcasting,

opposite corner transfers, transfers between pairs of arbitrary nodes, and one-to-all

personalized communication [5]. Their analysis assumes a link-bound model for hy-

percubes in which each node can fully utilize all of its bidirectional communication

links simultaneously. Bertsekas, Ozveren. StamenEs, and Tsitsiklis have analyzed

some basic hvpercube communication problems, including the problem of a single

processor sending a different packet to each of the other processors, the problem of

simultaneous broadcast of the same packet from every processor to all other proces-

sors, and the problem of simultaneous exchange of different packets between every

pair of processors [7]. In their analysis, they assume that all incident links of a

node can be used simultaneously for packet transmission (this is the Multiple Link

Availability model).

1.3 Motivations and Objectives

As already noted in the previous section, several algorithms may be proposed for dif-

ferent communication patterns which are all special cases of many-to-many person-

alized communication. Analytical solutions for some special cases of communication

transfers have been presented by Johnsson and Ho, and Stout and Wager. Their

analyses present lower bounds on the communication time. Hence, we decided to

present absolute total communication time for some special communication trans-

fers. Chapter 2 is dedicated on the analytical treatment of some communication

transfers.

Since there is no general analytical solution possible for the important problem

of many-to-many personalized communication, we decided to develop heuristics to

efficiently solve the problem. We developed two new routing algorithms which

tend to yield reasonably small communication times. The main objective of both

algorithms is to keep equal numbers of messages at neighboring intermediate nodes

during each communication cycle. This is called the equibalancing principle. It

avoids creating communication bottlenecks at intermediate nodes and thus reduces

the overall communication time. The second algorithm is a modified version of

the first algorithm. Not only does the latter algorithm apply the equibalancing

principle. but also looks ahead one step in the future. In addition. the performance

of our algorithms is compared with the performance of two existing algorithms.

Even though the computation complexity of the proposed algorithms is a little

higher than the computation complexity of the latter two algorithms, simulation

results show that the former pair of algorithms achieve higher performance.

Our analysis focuses on the following hypercube model:

• Each node may receive more than one message at a time on different channels,

but may send only one message at a time to a single channel.

• The architecture operates in the SIMD (Single-Instruction stream, Multiple-Data

stream) mode of computation.

• All channels are bidirectional and operate in the full duplex mode.

• Each node of an n-dimensional hypercube has n infinite capacity buffers attached

to its n channels.

• All packets are of the same length.

Chapter 2

Analysis of some special
communication transfers

2.1 Introduction

In this chapter, we present analytical results for some special communication trans-

fers. The analysis includes one-to-one, one-to-many, and many-to-one transfers.

Our analysis makes use of the model presented in the previous chapter. The prob-

lem of many-to-many communication is too complicated to be solved analytically.

Heuristics are developed for this communication problem and are discussed in the

remaining chapters.

Figure 2.1: One-to-two personalized communication

2.2 One-to-many communication

We start with a very special case where one node transmits m messages to another

node.

Proposition 1:

In an n-cube, if m messages are to be transmitted from one node to another node

which is / links away from it, then the communication time T, is / + (m — 1).

Next, we consider one-to-two personalized communication in which one node trans-

mits two different messages to two different nodes.

Proposition 2:

In an n-cube, two messages are to be transmitted from node A to two different

nodes B and C located i and k links away from it (one to each node), where i, k < n

(Fig. 2.1).

(a) If i < k, in order to minimize the communication time, the message to node C

should be transmitted first and the communication time is 71, = 1c.

(b) If i = k, any message can be transmitted first and TT = i 1.

(c) If i > k, the message to node B should be transmitted first and T. = 1.

Next, we consider the case where one node transmits m messages to rn nodes (one

message to each node).

Proposition 3:

If m messages are to be transmitted from one node to m different nodes (one message

to each node) with Hamming distances /1 ,12,— ,/„, (after arranging these distances

in ascending order), then the messages should be transmitted in a sequence such

that the distances of the nodes are in descending order (i.e., the message to the

node having maximum Hamming distance should be transmitted first).

(a) If none of the lengths is repeated, T, =1,.

(b) If some of the lengths are repeated, T, = (rn — 1).

Finally, we consider a generalized case of one-to-many communication where the

source node can transfer any number of messages to any destination.

Proposition 4:

If m l , m2 , , and m, messages are to be transmitted from one node to nodes hav-

ing Hamming distances /1,12 , , and /, respectively, then the messages should be

transmitted in a sequence such that the Hamming distances of the nodes are in

descending order (i, > > > /1 in Fig. 2.2).

(a) If /, (rn, — 1) > (/i — 1), then 7', = 1, + (m, — 1), where Sn„ is the total

number of messages the given node must transmit.

(b) If l, (m, — 1) < (/1 — 1), then T, S, (11 — 1).

In the above case, if Ti, is the transmission time for the node which is /k links

away from the source (k = 1,2, ... , i) and STk _i is the sum of T1, T2 , ... ,Tk-1, then,

if Tk >> STk _l , the order of transmission for nodes which are /1,12 , ,1k _1 links

away from the given node can be altered.

Figure 2.2: One-to-many communication

2.3 Many-to-one communication transfers

In this section, we will consider various cases where one node receives messages from

more than one node and transmits to a single other node. While considering this

type of transfer, all the paths to the given node should be parallel (non-intersecting

and, of course, Hamming) in order to minimize the communication time. If it is

not possible to select parallel paths, the amount of intersection should be kept to a

minimum and the corresponding intersecting points should be near the destination

node. In the case of parallel paths, the communication time is equal to the maximum

distance traveled.

First of all, we consider the case where a node receives messages from two nodes

and sends a single message to another node.

Theorem 1:

If a node receives m1 and m2 messages from two different nodes being /1 and 12 links

away from it respectively and transmits a message to a node 13 links away from it

(see Fig. 2.3), then

(a) If /1 + (m1 — 1) < /2 , then L , (12 + 13) + (m2 - 1).

(b) If /1 + (mi — 1) > /2 , then 7', = (11 + 13) + (mi + m2 — 1).

Proof:

(a) Let node C receive m1 and m2 messages from nodes A and B respectively and

transmit a message to node D. Now, if the transmission time from A to C is less

than the distance between B and C, node C would have transmitted all of m1 mes-

sages to node D by the time the first message from B reaches C. Hence, in this case,

the communication time will depend on the transmission time from node B to node

D. But the transmission time from A to C is /1 + (m1 — 1) and the transmission

time from B to D is (/ 2 + /3) + (m2 — 1). This proves the theorem.

Figure 2.3: Two-to-one communication

(b) If the transmission time from A to C is greater than the distance between B

and C, at time /2 C will have transmitted (12 — /1) of its m1 messages and will be left

with m1 — (12 — li) + m2 more messages. Hence, T, = /2 -I- /3 + (mi — (12 — li) + m2);---1

or T, = (11 +13) + (mi + m2 -1). ❑

Next, we consider a special case where many nodes transmit different messages

to a single destination node via an intermediate node located one hop away from

all the source nodes. In this case, the intermediate node becomes a bottleneck for

the communication. This situation is shown in Fig. 2.4. Source node Si sends

mi messages to the destination node D via intermediate node I, where 1 < i < lc

and k is the number of source nodes. Also, messages are arranged in ascending

order, i.e., m1 < m2 < m3 < ... < mk. Let 1 be the Hamming distance between

the intermediate node I and the destination node D. Hence, the Hamming distance

between each source node and the destination node D is 1 +1. The communication

time of this transfer can be minimized by properly utilizing the intermediate node.

Figure 2.4: Many-to-one communication (I is one hop away)

Whenever a source node is utilizing this intermediate node, the rest of the source

nodes should divert their messages onto other paths which may be longer than the

Hamming path. By imposing some condition on the length of these diverted paths,

it is possible to minimize the communication time of the transfer. This condition

is investigated in the following theorem.

Theorem 2:

Let i be the length of the diverted path between the source node Si and the destina-

tion node D, where 2 < i < k. If i = (mi — mi_i) -I- (1+ /), then the communication

time will be minimum and will be equal to (mk — 1) + (1 + 1).

Proof: Here, let us assume that node Si first starts transmitting via the interme-

diate node I. At this time, nodes Si transmit to the destination node D via paths

/i, where 2 < i < k. As soon as the node Si completes its transmission and I be-

comes available, node S2 transmits the rest of its messages through node I and so

on. Node S1 will take (m1 — 1) + (1 + /) time for its transfer. For node S2. ril l

messages out of P79 will be transmitted on path /2 , the communication time for

that will be (mi — 1) + /2 , and the rest of the 7779 — m 1 messages will be transmitted

through the Hamming path of length 1+ /, the communication time of which will be

m1 + (m2 — m1) — 1+ (1 + 1) or (m 2 —1) (1 + 1). Hence, the overall communication

time for S2 will be the maximum of these two quantities. Similarly, for node Sk , the

communication time will be the maximum of (mk — 1) (1 I) and (mk_1 — 1) + 1k•

Since mk is the maximum number of messages, the overall communication time of

the system is simply the communication time of the node Sk. Hence, for the com-

munication time to be minimum, the following condition must be satisfied.

(777k-i — 1) + 1k = (rnk — 1) + (1 + 1)

Or, ik = (M k — + (1 + l). ❑

Corollary. If the distance between the source nodes and the intermediate node

is 2 (see Fig. 2.5), then the condition for minimum communication time becomes

ik = (mk — mk_1) + + 2).

Proof: Node Sk transmits mk _1 messages through path /k , the communication time

for which is mk _1 + / k — 1, and mk — mk _1 messages through the Hamming path of

length 2+l, for which the communication time is mk_i +(mk — mk _i)+ (2+0-1. For

minimum communication time, mk _i /k —1 _ = mk +1+/ or 1k = (Mk — Mk_i)+(2+/).

The analysis of more complex communication transfers is very difficult. For that,

new routing algorithms are developed based on heuristics, which will be described

in the following chapters.

Figure 2.5: Many-to-one communication (I is two hops away)

Chapter 3

Existing Hypercube
Communication Algorithms

3.1 Introduction

In this chapter, we present existing algorithms for some special communication

transfers. Several algorithms have been suggested for many variations of broadcast-

ing and personalized communications. Most of the algorithms give the lower bound

on the communication time. Two existing algorithms, which are compared with the

proposed ones in Chapter 5, are described here in detail.

3.2 Some Existing Algorithms

Various types of communication transfers have been analyzed by Johnsson and Ho

[2]. Their analysis includes one-to-all broadcasting, one-to-all personalized commu-

nication. all-to-all broadcasting and all-to-all personalized communication. Some

special cases of routing with small buffers in the nodes were analyzed by Kuszmaul

[3]. He presented two formulations of the routing scheme. The first formulation

delivered messages in 0(0) bit times using 0(k) bits of buffer space at each node

in the k-dimensional hypercube. The second formulation assumed that there were

several batches of messages to be delivered, and made certain assumptions about

the cost of sending messages along the various dimensions of the hypercube. In this

case, the latency for delivery time is still 0(k2) bit times. but the throughput is

increased to one set of messages every 0(k) bit times. For the first formulation, the

routing was restricted to subsets of permutations (i.e., every node sends at most

one message and receives at most one message). The second formulation indicated

a way to perform routings which are subsets of H-permutations (i.e., every node

sends at most H messages and receives at most H messages). His analysis assumed

injective routing in which no two nodes are allowed to send messages to the same

node at the same time.

Stout and Wager have analyzed various communication patterns including broad-

casting, opposite corner transfers, transfers between pairs of arbitrary nodes, and

one-to-all personalized communication [5]. Their algorithms are for link-bound

hypercubes in which local processing time is ignored, communication time predom-

inates, message headers are not needed because all nodes know the task being per-

formed, and all nodes can use all communication links simultaneously. They present

the lower bound on the communication time for each type of transfer. Their algo-

rithms provide support to the belief that it is useful to build machines where all

communication links can be used simultaneously.

Bertsekas, 0zveren, Stamoulis and Tsitsiklis [7] have analyzed basic communi-

cation problems for hypercubes, including the problem of a single processor sending

different packets to each of the other processors, the problem of simultaneous broad-

cast of the same packet from every processor to all other processors, and the problem

of simultaneous exchange of different packets between every pair of processors. In

their analysis, they assume that all incident links of a node can be used simulta-

neously for packet transmission (this is the Multiple Link Availability model). In

addition, they assume that each of their algorithms is simultaneously initiated at

all processors. This is a somewhat restrictive assumption, essentially implying that

all processors can be synchronized with a global clock. The algorithms proposed

are optimal in terms of execution time and commmunication resource requirements;

that is, they require the minimum possible number of time steps and packet trans-

missions.

Adaptive fault-tolerant routing algorithms were presented by Chen and Shin

[8]. They proposed some routing schemes for an injured hypercube with faulty

links and/or nodes. To enable any nonfaulty node to communicate with any other

nonfaulty node in an injured hypercube, the information on component failures has

to be made available to nonfaulty nodes so as to route messages around the faulty

components. They proposed a distributed adaptive fault-tolerant routing scheme for

an injured hypercube in which each node was required to know only the condition

of its own links. Despite its simplicity, this scheme was shown to be capable of

routing messages successfully in an injured n-dimensional hypercube as long as the

number of faulty components was less than n. Moreover, it was proved that this

scheme routed messages via shortest paths with a rather high probability and the

expected length of a resulting path was very close to that of a shortest path. Due

to the insufficient information on faulty components, however, the paths chosen by

the above scheme might not always be the shortest. To guarantee the routing of

all messages via shortest paths, they proposed the inclusion in every node of more

information than that on its own links. The effects of this additional information

on routing efficiency were analyzed. and the additional information to be kept at

each node for the shortest path routing was determined.

Katseff has proposed routing algorithms for the incomplete hypercube [9]. Un-

like hypercubes, incomplete hypercubes can be used to implement systems with any

number of processors. However, the basic building block is the hypercube. The rout-

ing and broadcast algorithms were proved to be simple and deadlock-free. Lan, Es-

fahanian and Ni proposed algorithms for multicast (one-to-many) communication in

hypercube multiprocessors [11]. They first proposed a graph theoretical model, the

Optimal Multicast Tree (0MT), for interprocessor communication in distributed-

memory multiprocessors. A heuristic Greedy multicast algorithm which guaranteed

a minimum message delivery time was then proposed. It was proved by simulation

results that the performance of the Greedy algorithm was very close to the optimal

solution. Routing of multicast messages was done in a distributed manner. The

hardware design of a VLSI router which supports all types of communications was

also briefly discussed. In addition, efficient routing using randomization for arbi-

trary permutations has been suggested by Valiant [4]. Saad and Schultz presented

optimal algorithms for single node scatter, multinode broadcast and total exchange

problems [6]. Their analysis assumed hypercube links to be unidirectional.

All of these existing algorithms deal with some special cases of many-to-many

communication transfers. Algorithms proposed by Johnsson and Ho deal with some

special cases of the communication transfers that our proposed algorithms deal with

and make similar assumptions. Hence, the next section describes their algorithms

in some detail.

3.3 Hypercube communication algorithms by
Johnsson and Ho

Johnsson and Ho have investigated broadcasting and personalized communication

on hypercubes [2]. In broadcasting, a data set is copied from one node to all other

nodes, or a subset of them. In personalized communication, a node sends a unique

data set to all other nodes, or a subset of them. They consider broadcasting from

a single node to all other nodes, one-to-all broadcasting, and concurrent broadcast-

ing from all nodes to all other nodes, or all-to-all broadcasting. For personalized

communication. they consider one-to-all personalized communication and all-to-all

personalized communication. The difference between broadcasting and personalized

communication is that in the latter no replication/reduction of data takes place. If

a tree is used to represent the transfers, then the bandwidth requirement is high-

est at the root and is reduced monotonically towards the leaves. For single-source

broadcasting and personalized communication, a one-to-all communication graph

is required. Graphs of minimum height have minimum propagation time which is

the overriding concern for small data volumes, or a high overhead for each commu-

nication action. For large data volumes, it is important to use the bandwidth of

a Boolean cube effectively, in particular, if each processor is able to communicate

on all its ports concurrently. Johnsson and Ho have proposed three new span-

ning graphs for Boolean n-cubes: one consisting of n edge-disjoint binomial trees

(nESBT); one that consists of n rotated spanning binomial trees (nRSBT); and one

balanced tree (SBnT), i.e., a tree with fan-out n at the root and approximately N In

nodes in each subtree. They prove some of the critical topological properties of the

new one-to-all communication graphs and compare them to Hamiltonian paths and

binomial tree embeddings. They derive lower bounds on communication time for

each type of communication they consider.

They generalize the one-to-all communication to all-to-all communications and

study the interleaving of communications from different sources by defining all-to-

all communication graphs as the union of one-to-all communication graphs. They

investigate four types of communication transfers: 1) one-to-all broadcasting; 2)

one-to-all personalized communication; 3) all-to-all broadcasting, and 4) all-to-all

personalized communication. They show that for communications restricted to one

port at a time, their spanning binomial tree scheduling results in communication

times within a factor of two of the best known lower bounds for communications

2. 3. and 4. For case 1. they claim that the scheduling they define for the 77 edge-

disjoint spanning binomial trees completes within a fador of four of the best known

lower bound. also for concurrent communication on all ports.

Their scheduling discipline defines the communication order for each port, and

the order between ports for every nonleaf node. They basically describe two types

of sceduling disciplines: reverse-breadth-first and postorder scheduling disciplines.

The Reverse-Breadth-First (RBF) scheduling discipline defines the order of com-

munication for each node of the hypercube. For each sender, a minimum spanning

tree of height h, which is the maximum Hamming distance for all transfers in the

n-dimensional hypercube, is first constructed with the root being the sender. Then,

the scheduling discipline is such that the root sends out the data for the nodes at

level h— p during the pth cycle, where 0 < p < h. The data received by an internal

node are propagated to the next level during the next cycle, if the data are not

destined for the node itself. Thus, higher priority is given to the transmission of

messages going to nodes corresponding to larger Hamming distances. In the pos-

torder scheduling discipline, each node sends out the entire data set to each of its

children before accepting its own data. They have also proposed various schedul-

ing disciplines for the implementation of special types of communication transfers.

For each type of transfer and scheduling discipline. they have found a lower bound

on the communication time. Nevertheless, our comparative analysis involves only

their algorithm for many-to-many communication that uses the RBF scheduling

discipline. As discussed in the first chapter, the reason for this is that all other

communication transfers are special cases of many-to-many communication.

3.4 Brute-Force Algorithm

Another existing routing algorithm uses a brute-force approach. The scheduling

discipline is such that messages for destination nodes which are at Hamming dis-

tance 77 - (i - 1) have transmission priority i, where 1 < i < n, and priority 1 is

the highest priority. If j is the Hamming distance between a source node i and a

destination node k, there exist j parallel paths between nodes i and k. Hence, there

are j candidates for the next intermediate node to which i can forward a message

destined for node k. In the brute-force approach, selection of this next intermedi-

ate node out of the j candidate nodes is done at random. Fig. 3.1 demonstrates

this idea. Node A is a source node and node H is a destination node at Hamming

distance 3 away from it. Nodes B,C, and D are next intermediate nodes to which

A can forward messages destined for H. In the brute-force approach, node A selects

one node out of B,C and D at random and forwards a message destined for node H

to this node.

As it can be expected, this algorithm cannot give very good communication

time. This is because of the selection procedure for the next intermediate node.

There are all chances that the next intermediate node selected might be the busiest

node (having the maximum number of messages to be transmitted). This will

certainly result in poor total communication time. If the selection procedure for

Figure 3.1: Brute-Force Algorithm

the next intermediate node can be improved, better overall communication time can

be obtained. This is the main idea of our proposed algorithms which are presented

in the following chapter.

Chapter 4

Proposed Hypercube
Communication Algorithms

4.1 Introduction

This chapter proposes two new routing algorithms for efficient many-to-many per-

sonalized transfers in an n-cube. The main objective of both algorithms is to main-

tain equal numbers of messages at neighboring intermediate nodes during each

communication cycle. This is called the equibalancing principle. It avoids creating

communication bottlenecks at intermediate nodes and thus reduces the overall com-

munication time. The second algorithm is a modified version of the first algorithm.

Not only does the latter algorithm apply the equibalancing principle, but it also

looks ahead one step into the future.

Figure 4.1: Equibalancing algorithm

4.2 Algorithm I: Equibalancing

This routing algorithm attempts to equibalance the numbers of messages in neigh-

boring intermediate nodes all the time. The scheduling discipline is such that mes-

sages to destination nodes at Hamming distance n — (i — 1) have priority i, where

1 < i < n, and priority 1 is the highest priority. For any given message that goes

from a source node i to a destination node k, with j being the Hamming distance

between the two nodes, there exist j parallel paths between nodes i and k. Hence,

there exist j neighbors to i which are candidates to receive the message. Out of

these j nodes, node i selects a node which currently has the smallest number of

messages to transmit. Fig. 4.1 illustrates this idea. Node A is a source node and

node H is a destination node at Hamming distance 3. Hence, there exist 3 parallel

Hamming paths between A and H. Nodes B, C and D are intermediate nodes to

which A can forward messages destined for H. The proposed algorithm selects out of

these three nodes the node which has the minimum number of messages to transmit.

The algorithm is described below-. It assumes that in the beginning of each com-

munication cycle. the messages are already ordered in each node with respect to

their Hamming distance. It also assumes that the head of the ordered list contains

the message with the largest Hamming distance. The algorithm is:

Do in parallel for all nodes i, where 0 < i < 2" — 1:

Step 1: If the ordered list is empty then Stop, else go to Step 2.

Step 2: Let j be the Hamming distance for the message at the head of the ordered

list. Find j possible next intermediate nodes for this message.

Step 3: Select out of the j nodes the one which currently has the minimum num-

ber of messages to transmit. If two or more nodes have this minimum number of

messages, then select one of them at random.

Step 4: Transmit the message to this next intermediate node. Go to Step 1.

Hence, for an n-dimensional Hypercube, a queue of messages is formed at each

node. Then, the messages at each queue are sorted and arranged with respect

to their Hamming distances. The head of each queue contains the message with

the largest Hamming distance. All the nodes then start transmitting messages

to corresponding destination nodes. This process continues until all the queues

become empty. Selection of a next intermediate node is based on the number of

messages it has to transmit. The node with the minimum number of messages to

be transmitted is selected as the next intermediate node. If more than one node

has the same minimum number of messages to transmit, one node is selected at

random out of these nodes as the next intermediate node. Hence, it can be seen

that the algorithm tries to keep an equal number of messages at each intermediate

node. It avoids creating a bottleneck at any intermediate node. This results in a

reduced overall communication time.

4.3 Algorithm II: One-step time-lookahead
equibalancing

This algorithm is a modified version of Algorithm I which attempts equibalancing.

Even though it employs the same scheduling discipline, it differs from the previous

algorithm in the procedure that selects the next intermediate node. Algorithm I

each time selects the node that has the minimum number of messages to transmit.

The one-step time-lookahead algorithm chooses from the candidate intermediate

nodes the one which will probably have the minimum number of messages in the

next cycle. It makes predictions with regard to messages that nodes which are

neighbors to these candidate nodes will also send in the next cycle. Since it cannot

be determined in advance which neighbor will send a message to such a node, it is

first determined how many neighbors have a message which can be transmitted to

this node in the next cycle. This value is then multiplied by a threshold and the

result is added to the number of messages that the node currently has in its buffer.

The threshold represents a fraction of the maximum number of messages which the

node may receive from its neighbors. The threshold may vary between 0 and 1. Fig.

4.2 demonstrates this idea. Node A is a source node and node H is a destination

node at Hamming distance 3 away from it. Nodes B, C and D are next intermediate

nodes to which A can forward messages destined for H. B1-B2, C1-C2 and D1-D2

are neighbors of B, C and D respectively. For each of these next intermediate nodes,

it is first determined how many neighbors can transmit a message to it in the next

cycle. This value is multiplied by the threshold and is added to the number of

Figure 4.2: One-step time-lookahead equibalancing algorithm

messages for the next cycle. Node A will transmit the message destined for node H

to the one of B. C' and D which has the minimum predicted number. Of ourse, this

routing algorithm can be applied only to deterministic algorithms. The sequence of

operations to be performed by deterministic algorithms is known at static time.

Similarly to Algorithm I, an ordered list of messages is maintained for each node

with respect to their Hamming distances. All nodes i, where 0 < i < 2' — 1, start

executing the following routing algorithm.

Step 1: If the ordered list of messages is empty then Stop. else go to Step 2.

Step 2: Let j be the Hamming distance of the message at the head of the ordered

list (i.e., y is the largest Hamming distance for the set of messages in the node).

Find the j possible next intermediate nodes for this message.

Step 3: For each next intermediate node x, determine how many neighbors of x

(except i) have a message that can be transmitted to node x in the current com-

munication cycle. Multiply this number by the threshold and add it to the number

of messages currently contained in the buffers of x to get m.

Step 4: Select that node x with the minimum value for rn. If more than one nodes

have the minimum value, then select one of them at random.

Step 5: Transmit the message to the selected node x. Go to Step 1.

As can be seen from the above, this algorithm looks one step in advance. The

next intermediate node to be selected is the one that will probably have the min-

imum number in the next communication cycle. Although this algorithm makes

only a prediction for selecting the next intermediate node, it should be expected to

minimize the overall communication time.

Both of these proposed algorithms are simulated and their performance is com-

pared with the existing ones. Simulation results and comparative analysis are pre-

sented in the next chapter.

Chapter 5

Simulation results and
comparative analysis

5.1 Introduction

In this chapter, we simulate the two existing algorithms of Sections 3.3 and 3.4 and

algorithms proposed in Chapter 4. Simulation results are tabulated and a com-

parative analysis involving the four routing algorithms is carried out. Simulation

programs are attached in the appendix.

5.2 Simulation results and comparative analysis

All the four algorithms were simulated for an n-dimensional hypercube using the C

language. The algorithms mainly differ in terms of their scheduling disciplines and

the procedure that select the next intermediate node.

The following set of initialization parameters were used in our simulations.

• lnoml, lnom2 : The number of messages per node is uniformly distributed

between these two limits, with lnomi < lnon22.

• %senders : the percentage of nodes in the system that have messages to send.

• c70 dest : the percentage of destinations per sender. This represents a fraction

of the total number of nodes to which a sender will send messages.

• n : the dimension of the hypercube.

com_time represents the total communication time, expressed in communication

cycles, for given data sets.

Simulation results for the four algorithms are shown for the same data sets.

BR_FC: Brute_force ; RBF: suggested by Johnsson and Ho.

lnoml lnom2 %senders %dest com_time
ALG II ALG I RBF

a. 1 1 100 100 201 205 213
b. 2 2 100 100 405 409 422
c. 3 3 100 100 609 613

819
623
831 j d. 4 4 4 100 100 814

e. 5 5 100 100 1018 1022 1043 I
Table 5.1: Simulation results for a 6-cube (all-to-all communication).

lnoml lnom2 %senders %dest com_time
ALG II ALG I RBF

a. 1 1 100 100 84 85 103
b. 2 2 100 100 167 170 179
c. 3 3 100 100 252 255 262
d. 4 4 100 100 337 340 348
e. 5 5 100 100 421 425 436
Table 5.2: Simulation results for a 5-cube (all-to-all communication).

lnoml lnom2 %senders %dest com_time
ALG II ALG I RBF

a. 1 1 100 100 33 34 37
b. 2 2 100 100 67 68 68
c. 3 3 100 100 100 102 105
d. 4 4 100 100 133 135 141
e. 5 5 100 100 167 168 169
Table 5.3: Simulation results for a 4-cube (all-to-all communication).

Tables 5.1 through 5.3 show results for all-to-all communication and Tables 5.4

through 5.6 show- results for many-to-many personalized communication. In the

simulation results. the communication time for the one-step time-lookahead algo-

rithm is shown for the optimum threshold value. It was found that at lower loads,

the threshold has more effect on the communication time than at higher loads.

From the simulation results, it is apparent that the algorithm that attempts

equibalancing performs much better than the two existing algorithms. i.e., the al-

gorithm that applies a brute force approach and the algorithm that applies reverse

breadth first scheduling (as suggested by Johnsson and Ho). The reason is that the

equibalancing algorithm avoids the creation of bottlenecks at intermediate nodes

and thus tends to reduce the total communication time. The poor performance

of Johnsson's algorithm is due to its scheduling discipline. Recall that in reverse

breadth first scheduling, the root node (sender) sends out data for nodes at level h—p

during the pt h cycle, where h is the maximum Hamming distance and 0 < p < h.

Hence, if the root does not have any message to send to nodes at level h — p, that

cycle is just wasted. The brute force algorithm has performance inferior to that

of the equibalancing algorithm because random selection of the next intermediate

node does not generally give better performance.

As can be seen from the simulation results, when the system is lightly loaded,

i.e., the percentage of senders is more and the percentage of destinations per sender

is less, the one-step time-lookahead algorithm performs slightly better than the

equibalancing algorithm. The former algorithm tends to avoid the next intermediate

node which is expected to receive more messages from its neighbors in the next cycle.

Optimum range for the threshold turns out to be between 0.7 and 1.0. Tables 5.7

and 5.8 show the communication time as a function of the threshold.

lnoml lnom2 %senders %dest coni_time

ALG II ALG I BR_FC
a. 3 7 90 20 149 155 215
b. 1 9 40 80 237 241 384
c. 1 5 20 90 127 127 160
d. 2 8 50 70 267 267 369
e. 5 7 50 50 287 287 421

Table 5.4: Simulation results for a 6-cube (many-to-many communication).

lnoml lnom2 %senders %dest com_time
ALG II ALG I BR_FC

a. 5 10 90 20 111 113 147
b. 2 15 90 40 207 207 314
c. 1 9 30 80 100 100 135
d. 2 10 90 10 52 53 83
e. 2 15 20 90 173 173 215
Table 5.5: Simulation results for a 5-cube (many-to-many communication).

lnoml lnom2 %senders %dest com_time
ALG II ALG I BR_FC

a. 1 j 8 90 40 43 44 59
b. 2 8 20 90 39 39 40
c. 1 I 10 80 80 68 68 97
d. 3 23 50 90 196 196 234

j e. 3 9 90 10 15 15 19
Table 5.6: Simulation results for a 4-cube (many-to-many communication).

threshold com_time
0.2 153
0.4 153
0.6 151
0.8 149
1.0i 149

Table 5.7: Communication time as a function of the threshold.
6-cube: lnoml = 3 : lnom2 = 7 : senders = 90 ; %dest = 20.

threshold com_time
0.2j 113
0.4j 113
0.6 112
0.8 112
1.0 111

Table 5.8: Communication time as a function of the threshold.
5-cube: lnoml = 5 ; lnom2 = 10 ; %senders = 90 ; %dest = 20.

Chapter 6

Conclusion

This research has proposed two routing algorithms for efficient implementation of

many-to-many personalized transfers in an n-dimensional hypercube. For some

very special cases of communication transfers, we presented analytical results for

the overall exact communication time. These special cases included mainly one-to-

many and many-to-one personalized communication. The performance of the pro-

posed algorithms was compared with the performance of two existing algorithms;

the first algorithm was suggested by Johnsson and Ho, while the other algorithm

applies a Brute-Force technique. The algorithm suggested by Johnsson and Ho gives

poor performance with regards to the total communication time. This is due to its

Reverse-Breadth-First scheduling discipline. If a root does not have any message to

send to nodes at a particular level, that cycle is just wasted. The poor performance

of the Brute-Force algorithm is due to the random selection of the next interme-

diate node. The first algorithm proposed attempts to equibalance the number of

messages at intermediate nodes and was shown to perform superior to both exit-

ing algorithms. The reason is that this algorithm selects as the next intermediate

node the one which has the minimum number of messages to transmit. In some

special cases, when the system is lightly loaded, the second proposed algorithm,

which applies one-step time-lookahead equibalancing, performs slightly better than

the equibalancing algorithm. This is because it avoids the next intermediate node

which is expected to receive more messages from its neighbors in the next cycle.

Both of the proposed algorithms attemps to avoid the creation of a bottelneck

at any node. Hence. this avoids unbalance of traffic in the system. This, in turn.

results in a reduced overall communication time. This clearly shows that the careful

selection of the next intermediate node reduces the total communication time. The

one-step time-lookahead algorithm can be extended to multiple-step time-lookahead

algorithm for even better communication time.

We also need to emphasize that the proposed algorithms are recommended for

deterministic application algorithms; otherwise, the associated overhead may be too

high.

Chapter 7

Bibliography

Bibliography

[1] Y. Saad and M. Schultz, "Topological Properties of Hypercubes," IEEE Trans.

Computers, Vol. C-37, No. 7, July 1988, pp. 867-872.

[2] S. L. Johnsson and C. T. Ho, "Optimum Broadcasting and Personalized Com-

munication in Hypercubes," IEEE Trans. Computers, Vol. C-38, No. 9, Sept.

1989, pp. 1249-1268.

[3] B. Kuszmaul, "Fast Deterministic Routing on Hypercubes Using Small

Buffers," IEEE Trans. Computers, Vol. C-39, No. 11, Nov. 1990, pp 1390-1393.

[4] L. Valient and G. J. Brebner, "Universal Schemes for Parallel Communication,"

Proc. 13th ACM Symposium on the Theory of Computation, ACM, 1981, pp.

263-277.

[5] Q. F. Stout and B. Wager, "Intensive Hypercube Communication," Journal of

Parallel and Distributed Computing, Vol. 10, pp. 167-181.

[6] Y. Saad and M. H. Schultz, "Data Communication in hypercubes," Res. Rep.

YALEU/DCS/RR-428, Yale University, Oct. 1985 (revised Aug. 1987).

[7] D. P. Bertsekas, C. Ozveren, G. D. Stamoulis, P. Tseng, and J. N. Tsitsiklis,

"Optimal Communication Algorithms for Hypercubes," Journal of Parallel and

Distributed Computing, Vol. 11, pp. 263-275, 1991.

[8 M. S. Chen and K. G. Shin, "Adaptive Fault-Tolerent Routing in Hypercube

Multicomputers." IEEE Trans. on Computers. Vol. C-39. pp. 1406-1416. 1990.

[9; H. P. hat seff. -Incomplete Hypercube," IEEE Trans. on Computers, Vol. C-37,

pp. 604-608, 1988.

[10; 0. A. Olukotun and T. N. Mudge, "Hierarchical Gate-Array Routing on a

Hypercube Multiprocessor," Journal of Parallel and Distributed Computing,

Vol. 8. pp. 313-324, 1990.

[11] Y. Lan, A. H. Esfahnian and L. M. Ni, "Multicast in Hypercube Multiproces-

sors... Journal of Parallel and Distributed Computing, Vol. 8. pp. 30-41, 1990.

[12 C. T. Ho and S. L. Johnsson, "Spanning Balanced Trees in Boolean Cubes,"

SIAM Journal Sci. Stat. Compt., Vol. 10. No. 4, July 1989. pp. 607-630.

[[13] S. C. Patel and S. G. Ziavras, "Comparative Analysis of Techniques that Map

Hierarchical Structures onto Hypercubes," Parallel and Distributed Computing

and Systems Conference, Oct. 8-11, 1991, Washington, D.C.

[14] T. F. Chan and Y. Saad, "Multigrid algorithms on the hypercube multiproces-

sor," IEEE Trans. Comput., C-35, No. 11 (Nov. 1986), pp. 969-977.

[15] Y. E. Ma and L. Tao, "Embeddings among toruses and meshes," Proc. 1987

Internat. Conf. on Parallel Processing, Aug. 1987, pp. 178-187.

[16] S. L. Johnsson and C. T. Ho, "On the embedding of arbitrary meshes in Boolean

cubes with expansion two dilation two," Proc. 1987 Internat. Conf. on Parallel

Processing, Aug. 1987, pp. 188-191.

[17] A. Y. Wu, "Embedding of tree networks into hypercubes," Journal of Parallel

and Distributed Computing, Vol. 2, No. 3 (Aug. 1985), 238-249.

[18] M. Y. Chan and S. J. Lee, "Distributed Fault-Tolerant Embeddings of Rings

in Hypercubes." Journal of Parallel and Di4ribuied Computing. Vol. 11. No.

1. pp. 63-71. 1991.

[19] M. Y. Chan. "Embedding of d-dimensional grids into optimal hypercubes,"

Proc. ACM Symposium on Parallel Algorithms and Architectures, 1989.

[201 S. N. Bhatt and I. F. Ipsen, "How to Embed Trees in Hypercubes," Tech. Rep.

YALEL7CSD/RR-443, Dept. of Computer Science, Yale Univ., New Haven,

CT. December 1985.

121: T. H. Lai and W. White, "Embedding Pyramids in Hypercubes," Tech. Rep.,

Dept. of Computer and Information Science, Ohio State 'Univ., November 1987.

:22, S. N. Bhatt, F. Chung. T. Leighton. and A. Rosenberg, "Optimal simulation

of tree machines," Proc. 27th Annu. Symp. Foundations Comp. Sci., Oct. 1986,

pp. 274-282.

[23, Q. F. Stout. "Sorting, merging, selecting, and filtering on tree and pyramid

machines," Proc. 1983 Internat. Conf. on Parallel Processing, 1983, pp. 214-

221.

[24] R. Miller and Q. F. Stout, "Data movement techniques for the pyramid com-

puter," SIAM J. Comput., Vol. 16, No. 1 (Feb. 1987), pp. 38-60.

[25] J. H. Chang, 0. H. Ibarra, T. C. Pong, and S. M. Sohn, "Two-dimensional

convolution on a pyramid computer," Proc. 1987 Internat. Conf. on Parallel

Processing, Aug. 1987, pp. 780-782.

APPENDIX

Simulation of Equibalancing Algorithm

F include "stdio.h"

I* EQUIBALANCING ALGORITHM :
Purpose of this program is to find communication time in a hypercube
when all of its nodes are communicating with each other.The scheduling
descipline is such that every node will transmit a message to the node
having largest hamming distance,after transmitting all the messages to
node, it will transmit messages to the node having smaller hamming distance,
and so on..The next node will be selected such that all nodes have almost
equal no. of messages to be transmitted (equibalance) i.e.,the node with
minimum no. of messages (to be transmitted) will be selected as a next
node.If more than one nodes have minimum no. of messages,one node will
be selected randomly.

ix is the seed for random number generator,
n is the dimension of the hypercube,

a[] is the array used to store addresses of next nodes on hamming path
with given source and destination,

src[i].dest[j] : is the destination address for node i,
src[i].message[j] : is the no. of messages to be transmitted from node i

to the destination address src[i].dest[j],
src[i].mtotal : is the total no. of messages to be transmitted from node i,

.ong int ix ;

.nt n ,a[130] ;

rtruct sdm {
int dest[130) ;
int message[130] ;
int mtotal ;

} ;

* Function rannum() generates pseudo-random number uniformly distributed
between 0-1 */

aoat rannum()
ix = (ix*32949) + 8237 ;
if (ix < 0) ix = (ix + 2147483647) + 1 ;
return (ix * 0.4656613e-9);

'* Function exp(x) calculates 2**x */

.nt exp(x)

.nt x
int pl = 1,11;
for (11 = 1 ; 11 <= x ; ++11)

pl = pl * 2 ;
return (pl);

'lc Function hamdis (sr,dest) calculates hamming distance between
source sr and destination dest */

.nt hamdis (sr,dest)
sr,dest ;

int il,m,y,hamdist = 0 ;

for (it = n ; it >= 1 ;)
{ m = exp (il-1) ;

y = m & (sr ^ dest) ;
if (y == m)

hamdist += 1 ;

return (hamdist) ;

}

/* Function search (s,d) finds a set of next intermediate nodes towards
destination on hamming paths & then randomly selects one */

void search (s,d)
int s,d ;
{ int il,jl,kl,hl,y,z ;

kl = 0 ;
for (it = n ; ii >= 1 ; --il)

{ hi = exp(il-1);
y = hl & (s ^ d);
z = hl & s;
if (y == hl)

{ kl += 1;
if (hl == z)

a[k1-1] = ((exp(n) - 1) & (s & (-h1)));
else

a[kl-i] = s 1 hi ;
}

}
}

nain()

{
int i,p,j,N,k,l,t,com time = 0,q,na,r,v,m[130],aa[130] ;
int temp,templ,temp2
float rn ;
struct sdm src[130] ;

scanf ("%d96d",&ix,&n) ;

N = exp(n) ;

for (1 = 0 ; 1 < N ; ++1)
{ for (v = 0 ; v < N-1 ; ++v)

scanf ("%d%d",&src[1].dest[v],&src[1].message[v]) ;
}

for (1 = 0 ; 1 < N ; ++1)
{ src[1].mtotal = 0 ;
for (v = 0 ; v < N-1 ; ++v)

src[1].mtotal = src[1].mtotal + src[1].message[v] ;
}

b3: for (i = 0 ; i < N ; ++i)
{ j = n ;
br: k = 0 ;
brl: tempi = src[i].dest[k] ;

if (j != hamdis (i, tempi))
{ k += 1 ;

if (k <= N-2)
goto brl ;

j -= 1 ;
if (j > 0)

goto br ;
continue ;

}

if (src[i].message[k] == 0)

{ k += 1 ;
if (k <= N-2)

goto brl ;
j -= 1 ;
if (j > 0)

goto br ;
continue ;

temp2 = src[i].dest[k] ;
search (i,temp2) ;

for (1 = 0 ; 1 < j ; ++1)
{ t = a[1] ;
m[1] = src[t].mtotal ;

}

/* Following segment finds address of the next node having minimum
no. of messages to be transmitted and stores that address in a[0] */

for (1 = 1 ; 1 < j ; ++1)
{ if (m[0] > m[1])

{ temp = m[0] ;
m[0] = m[1] ;
m[1] = temp ;

temp = a[0] ;
a[0] = a[1] ;
a[1] = temp ;

}

/* Following segment finds the set of addresses having this minimum
no. of messages and stores in array aa[] */

= 0 ;
as [0] = a[0] ;
for (1 = 1 ; 1 < j ; ++1)

{ if (m[0] == m[1])
{ p += 1 ;
aa[p] = a[1] ;

}
}

/* Following segment selects the next address randomly from the set of
next addresses (aa[]) and stores it in na */

rn = rannum() ;
for (q = 0 ; q <= p ; ++q)

{ if ((rn >= (float) q / (p+1)) && (rn <= (float) (q+1) / (p+1)))
na = aa[q] ;

/* Following segment transmits a message to the next node selected */

if (j == 1)
{ src[i].message[k] -= 1 ;
src[i].mtotal -= 1 ;

}
else

{ src[i].message[k] -= 1 ;
src[i].mtotal -= 1 ;

for (r = 0 ; r < N-1 ; ++r)
{ if (src[i].dest[k] == src[na].dest[r])

t sruinaj.messageirj 1-= 1 ;
goto br2 ;

}
}

}

br2: src[na].mtotal += 1 ;
}

/* Following segment checks if all the messages are transmitted or not;
if not, it repeats the cycle and increments the communication time
parameter */

for (v = 0 ; v < N ; ++v)
{ for (1 = 0 ; 1 < N-1 ; ++1)

if (src[v].message[1] != 0)
{ com time += 1 ;
got6 b3 ;

}
}

com time += 1 ;

printf (" Communication time is %d \n ",com time) ;

r

Simulation of One-Step Time-Lookahead Equibalancing
Algorithm

F amc.iucte -stua.o.n

/* ONE-STEP TIME-LOOKAHEAD ALGORITHM :

Purpose of this program is to find communication time in a hypercube
when all of its nodes are communicating with each other.The scheduling
descipline is such that every node will transmit a message to the node
having largest hamming distance,after transmitting all the messages to
node, it will transmit messages to the node having smaller hamming distance,
and so on..The next node will be selected such that all nodes have almost
equal no. of messages to be transmitted (equibalance) i.e.,the node with
minimum no. of messages (to be transmitted) and is going
to receive min. no. of messages in the next cycle ,will be
selected as a next
node.If more than one nodes have minimum no. of messages,
one node will
be selected randomly.

ix is the seed for random number generator,
n is the dimension of the hypercube,
a[] is the array used to store addresses of next nodes on hamming path

with given source and destination,
src[i].dest[j] : is the destination address for node i,
src[i].message[j] : is the no. of messages to be transmitted from node i

to the destination address src[i].dest[j],
src[i].mtotal : is the total no. of messages to be transmitted from node i,

Long int ix ;
Lnt n ,a[130] ,aaa[100];

5truct sdm {
int dest[130] ;
int message[130] ;
int mtotal ;

1 ;

1* Function rannum() generates pseudo-random number uniformly distributed
between 0-1 */

float rannum()
[ix = (ix*32949) + 8237 ;
if (ix < 0) ix = (ix + 2147483647) + 1 ;
return (ix * 0.4656613e-9);

1* Function exp(x) calculates 2**x */

int exp(x)
int x ;
(int pl = 1,11;
for (11 = 1 ; 11 <= x ; ++11)

pl = pl * 2 ;
return (pl);

}

/* Function hamdis (sr,dest) calculates hamming distance between
source sr and destination dest */

int hamdis (sr,dest)
int sr,dest ;
{ int il,m,y,hamdist = 0 ;

for (ii = n ; ii >= 1 ;)
{ m = exp (il-1) ;

Y I

if (y == m)
hamdist += 1 ;

return (hamdist) ;

}

void next (51)
int sl ;
{ int z, g,h = 0 ;

for (z = n ; z >= 1 ; --z)
{ g = exp(z-1) ;
if (g == (g & sl))

aaa[h] = sl & (-g) ;
else

aaa[h] = sl 1 g ;
h += 1 ;

}
}

/* Function search (s,d) finds a set of next intermediate nodes towards
destination on hamming paths */

void search (s,d)
int s,d ;
{ int il,j1,k1,h1,y,z ;

kl = 0 ;
for (i1 = n ; it >= 1 ;)

{ hl = exp(il-1);
y = hl & (s ^ d);
z = hl & s;
if (y == hl)

{ kl += 1;
if (hl == z)

a[k1-1] = ((exp(n) - 1) & (s & (-h1)));
else

a[k1-1] = s 1 hl ;

}
}

int ns ()
{ float rnl ;
int vv ;

rnl = rannum() ;
vv = (int) (exp (n) * rnl) ;

return (vv) ;
}

int nom (xl, y1)
int xl, yl ;
{ float rn2 ;

int uu ;

rn2 = rannum() ;
uu = (int) (xl + (yl - xl) * rn2) ;

return (uu) ;

main()

{
int i,p,j,N,k,l,t,com time ,q,na,r,v,m[130],aa[130] ,ss,qq ,b[100] ;
int temp,templ,temp2 Tadd,tt,11,12,d,c[100],tempp ,templl ,rr ;
int lnoml , lnom2 , nd ,11 ,q1 ,nm , sum diff = 0 , total messages = 0 ;
int nsenders , avg_diff , avg_message ,—ee , con ;
float rn , psenders , pnod ,ratio = 0. ,step ;
struct sdm src[130],srci[130] ;
FILE *in, *out;

in = fopen ("data52cut","r") ;
out = fopen ("datai","w") ;

/* printf ("Enter values for ix,n,lnoml,1nom2,psenders,pnods,step \n") ; */
/* scanf ("%d%d%d%d%f%f%f",&ix,&n,&lnoml,&lnom2,&psenders,&pnod,&step) ; */
scanf ("%d%d%d%f",&ix,&n,&con,&step) ;

N = exp(n) ;

for (1 = 0 ; 1 < N ; ++1)
{ for (v = 0 ; v < N-1 ; ++v)

{ if (v < 1)
src[1].dest[v] = v ;

else
src[1].dest[v] = v + 1 ;

}
}

for (1 = 0 ; 1 < N ; ++1)
{ for (v = 0 ; v < N - 1 ; ++v)

src[1].message[v] = con ;
}

/* nsenders = psenders * N ; */

/* for (1 = 0 ; 1 < nsenders ; ++1)
nd = nod (lnod1,11nod2) ;

nd = pnod * N ;
ee = ns() ;

printf (" nsenders = %d nd = %d ee = %d \n ",nsenders,nd,ee) ;
for (11 = 0 ; 11 < nd ; ++11)

{ rn = rannum() ;
for (ql = 0 ; ql <= N-2 ; ++qi)
{ nm = nom (lnom1,1nom2) ;
if ((rn >= (float) ql / (N - 1)) &&

(rn <= (float) (ql + 1) / (N - 1)))
src[ee].message[ql] = nm ;

}
}

}
*/
printf ("%d %d \n) ;
/* fprintf (out," lnosl = %f lnos2 = %f \n ",lnosl,1nos2) ;
printf (" lnodl = %f lnod2 = %f \n ",lnodi,1nod2) ;
fprintf (out," lnoml = %d lnom2 = %d \n ",lnoml,lnom2) ;
*/
for (1 = 0 ; 1 < N ; ++l)
{ for (v = 0 ; v < N-1 ; ++v)

printf (" %d %d \n ",src[1].dest[v],src[1].message[v]) ;

/* for (1 = 0 ; 1 < N ; ++1)

printf (" %d %d \n ",src[1].dest[v],src[1].message[v]) ;
} */

for (1= 0 ; 1 < N ; ++l)
{ for (v = 0 ; v < N-1 ; ++v)

{ srcl[1].dest[v] = src[1].dest[v] ;
srcl[1].message[v] = src[1].message[v] ;

}

for (1 = 0 ; 1 < N ; ++1)
{ src[1].mtotal = 0 ;
for (v = 0 ; v < N-1 ; ++v)

src[1].mtotal = src[1].mtotal + src[1].message[v] ;
}

/* for (1 = 0 ; 1 < N ; ++1)
total messages = total messages + src[1].mtotal ; */

/* avg message = (float) total messages / nsenders ; */

while (ratio <= 1.)
{

com time = 0 ;

for (1 = 0 ; 1 < N ; ++1)
{ for (v = 0 ; v < N-1 ; ++v)

{ src[1].dest[v] = srcl[1].dest[v] ;
src[1].message[v] = srcl[1].message[v] ;

}

for (1 = 0 ; 1 < N ; ++1)
{ src[1].mtotal = 0 ;
for (v = 0 ; v < N-1 ; ++v)

src[1].mtotal = src[1].mtotal + src[1].message[v] ;
}

ratio = ratio + step ;

)3: for (i = 0 ; i < N ; ++i)
j = n ;

br: k = 0 ;
brl: tempi = src[i].dest[k] ;

if (j != hamdis (i,templ))
k += 1 ;
if (k <= N-2)

goto bri ;
j -= 1 ;
if (j > 0)

goto br ;
continue ;

if (src[i].message[k] == 0)
{ k += 1 ;

if (k <= N-2)
goto bri ;

j -= 1 ;
if (j > 0)

goto br ;
continue ;

}

SUM (11ZI = SUM c1111 T j
temT2 = src[i]Tdest[k] ;
search (i,temp2) ;

for (1 = 0 ; 1 < j ; ++1)
c[1] = a[1] ;

/* Following segment finds all the neighbours of the next node
and then selects rr neighbours randomly and stores them in
array b[] */
for (1 = 0 ; 1 < j ; ++l)
{ next (c[1]) ;

/* rr = (int) (ratio * n) ;
ss = 0 ;
while (ss < rr)
{ br5: rn = rannum() ;

for (qq = 0 ; qq <= n-1 ; ++qq)
{ if ((rn >= qq / (float) n) && (rn <= (qq + 1)

/ (float) n))
{ if (aaa[qq] == i)

goto br5 ;
b[ss] = aaa[qq] ;

}

ss += 1 ;
*/

/* Following segment checks if any of selected neighbours
have messages to transmit to destinations whose hamming
path passes through the next node; if so,the no. of messages
which are going to be transmitted are incremented.. */

add = 0 ;

for (11 = 0 ; 11 < n ; ++11)
{ tt = aaa[11] ;
if (tt == i)

continue ;
for (v = 0 ; v < N-1 ; ++v)

{
if (src[tt].message[v] == 0)

continue ;
templl = src[tt].dest[v] ;
d = hamdis (tt,templl) ;
if (d == 1)

continue ;

search (tt,templl ;

for (12 = 0 ; 12 < d ; ++12)
{ if (a[12] == c[1])

{ add += 1 ;
goto br7 ;

}
}

}

br7: continue ;

/* printf (" add = %d \n ",add) ; */
tempp = c[1] ;
rr = (int) (ratio * add) ;
m[1] = src[tempp].mtotal + rr ;

/* printf ("m[%d] = %d rr = %d \n ",1,m[1],rr) ; */

/* Following segment finds address of the next node having minimum
no. of messages to be transmitted and stores that address in c[0] */

for (1 = 1 ; 1 < j ; ++1)
{ if (m[0] > m[1])

{ temp = m[0] ;
m[0] = m[1] ;
m[1] = temp ;

temp = c[0] ;
c[0] = c[1] ;
c[1] = temp ;

}
}

/* Following segment finds the set of addresses having this minimum
no. of messages and stores in array aa[] */

p = 0 ;
aa[0] = c[0] ;
for (1 = 1 ; 1 < j ; ++1)

{ if (m[0] == m[1])
{ p += 1 ;

aa[p] = c[1] ;

/* Following segment selects the next address randomly from the set of
next addresses (aa[]) and stores it in na */

rn = rannum() ;
for (q = 0 ; q <= p ; ++q)

{ if ((rn >= (float) q / (p+1)) && (rn <= (float) (q+1) / (p+1)))
na = aa[q] ;

/* Following segment transmits a message to the next node selected */

if (j == 1)
{ src[i].message[k] -= 1 ;

src[i].mtotal -= 1 ;
}

else
{ src[i].message[k] -= 1 ;

src[i].mtotal -= 1 ;

for (r = 0 ; r < N-1 ; ++r)
{ if (src[i].dest[k] == src[na].dest[r])

{ src[na].message[r] += 1 ;
goto br2 ;

}
}

}

br2: src[na].mtotal += 1 ;
}

/* Following segment checks if all the messages are transmitted or not;
if not, it repeats the cycle and increments the communication time
parameter */

for (v = 0 ; v < N ; ++v)
{ for (1 = 0 ; 1 < N-1 ; ++1)

f com time += 1 ;
goto b3 ;

}

/* avg_diff = (float) sum diff / total messages ; */

corn time += 1 ;
printf (" ratio = %f com time = %d \n ",ratio,com time) ;

}
/* printf (" total messages = %d \n ", total messages) ;
printf (" avg_message = %d \n ", avg message) ;
printf (" psenders = %f \n ", psenders) ;
printf (" avg_diff = %d \n ", avg diff) ;
printf (" nsenders = %d \n ", nsenders) ; */

Simulation of Johnsson's Algorithm

'* JOHNSSON'S ALGORITHM:
Purpose of this program is to find communication time in a hypercube
when all of its nodes are communicating with each other.
The scheduling discipline follows Johnsson's Reverse Breadth First
scheduling.

'* ix is the seed for random number generator,
n is the dimension of the hypercube,
a[] is the array used to store addresses of next nodes on hamming path

with given source and destination,
src[i].dest[j] : is the destination address for node i,
src[i].message[j] : is the no. of messages to be transmitted from node i

to the destination address src[i].dest[j],
src[i].mtotal : is the total no. of messages to be transmitted from node i,

ong int ix ;
nt n ,a[130] ;

truct sdm {
int dest[130] ;
int message[130] ;
;

* Function rannum() generates pseudo-random number uniformly distributed
between 0-1 */

Moat rannum()
ix = (ix*32949) + 8237 ;
if (ix < 0) ix = (ix + 2147483647) + 1 ;
return (ix * 0.4656613e-9);

'* Function exp(x) calculates 2**x */

nt exp(x)
.nt x ;
int pl = 1,11;
for (11 = 1 ; 11 <= x ; ++11)

pl = pl * 2 ;
return (p1);

r* Function hamdis (sr,dest) calculates hamming distance between
source sr and destination dest */

.nt hamdis (sr,dest)

.nt sr,dest ;
int il,m,y,hamdist = 0 ;

for (it = n ; ii >= 1 ;)
m = exp (il-1) ;
y = m & (sr A dest) ;
if (y == m)

hamdist += 1 ;
}

return (hamdist) ;

}

/* Function search (s,d) finds a set of next intermediate nodes towards
destination on hamming paths & then randomly selects one */

void search (s,d)
int s,d ;
{ int il,j1,k1,h1,y,z ;

kl = 0 ;
for (it = n ; it >= 1 ;)

{ hl = exp(il-1);
y = hl & (s ^ d);
z = hl & s;
if (y == hl)

{ kl += 1;
if (hl == z)

a[k1-1] = ((exp(n) - 1) & (s & (-h1)));
else

a[k1-1] = s I hl ;
}

}
}

aain()

int i,j,N,k,l,com time = 0,q,na,r,v ;
int temp,templ ;
float rn ;
struct sdm src[130] ;
/* FILE *in, *out;

in = fopen ("datal in","r") ;
out = fopen ("data7 out", "w") ;

fscanf (in, "%d%d",&ix,&n) ; */
scanf ("%d%d", &ix,&n) ;

N = exp(n) ;

for (1 = 0 ; 1 < N ; ++1)
{ for (v = 0 ; v < N-1 ; ++v)

scanf ("%d%d",&src[1].dest[v],&src[1].message[v]) ;
}

/* for (1 = 0 ; 1 < N ; ++1)
{ for (v = 0 ; v < N-1 ; ++v)

printf (" src[%d].dest[%d] = %d src[%d].message[%d] = %d
\n ",1,v,src[1].dest[v],l,v,src[1].message[v]) ;

*/

br: for (j = n ; j >= 1 ; --j)
{ for (i=0;i<N; ++i)

{ k = 0 ;
brl: temp = src[i].dest[k] ;
if (j != hamdis (i,temp))

{ k += 1 ;
if (k <= N-2)

goto bri ;
continue ;

if (src[i].message[k] == 0)
{ k += 1 ;
if (k <= N-2)

goto bri ;
continue ;

tempi = src[i].dest[k] ;
/* printf (" k = %d i = %d tempi = %d \n ", k,i,templ) ; *

search (1, tempi) ;

rn = rannum 0 ;

for (q = 0 ; q <= j-1 ; ++q)
{ if ((rn >= q / (float) j) && (rn <= (q+1) /

(float) j))
na = a[q] ;

/* printf (" na = %d \n ", na) ; */

if (j == 1)
src[i].message[k] -= 1 ;

else
src[i].message[k] -= 1 ;

for (r = 0 ; r < N-1 ; ++r)
{ if (src[i].dest[k] == src[na].dest[r])

{ src[na].message[r] += 1 ;
break ;

}
}

com time += 1 ;
/* printf (" com time = %d \n ", com time) ; */

}

for (1 = 0 ; 1 < N ; ++1)
{ for (v = 0 ; v < N-1 ; ++v)

{ if (src[1].message[v] != 0)
goto br ;

}
/* for (1 = 0 ; 1 < N ; ++1)

{ for (v = 0 ; v < N-1 ; ++v)
printf (" src[%d].message[%d] = %d \n ", 1,v,src[1].message[v]) ;

} */

printf (" Communication time is %d \n ",comtime) ;

Simulation of Brute-Force Algorithm

* BRUTE-FORCE ALGORITHM :
Purpose of this program is to find communication time in a hypercube
when all of its nodes are communicating with each other.The scheduling
descipline is such that every node will transmit a message to the node
having largest hamming distance, after transmitting all the messages to
node, it will transmit messages to the node having smaller hamming distance,
and so on..The next node will be selected at random.

ix is the seed for random number generator,
n is the dimension of the hypercube,
a[] is the array used to store addresses of next nodes on hamming path

with given source and destination,
src[i].dest[j] : is the destination address for node i,
src[i].message[j] : is the no. of messages to be transmitted from node i

to the destination address src[i].dest[j],
src[i].mtotal : is the total no. of messages to be transmitted from node i,

ong int ix ;
nt n ,a[130] ;

truct sdm {
int dest[130] ;
int message[130] ;
int mtotal ;

} ;

* Function rannum() generates pseudo-random number uniformly distributed
between 0-1 */

loat rannum()
ix = (ix*32949) + 8237 ;
if (ix < 0) ix = (ix + 2147483647) + 1 ;
return (ix * 0.4656613e-9);

* Function exp(x) calculates 2**x */

.nt exp(x)

.nt x ;
int pl = 1,11;
for (11 = 1 ; 11 <= x ; ++11)

pl = pl * 2 ;
return (pl);

f* Function hamdis (sr,dest) calculates hamming distance between
source sr and destination dest */

Lnt hamdis (sr,dest)
Lnt sr,dest ;
[int il,m,y,hamdist = 0 ;

for (ii = n ; it >= 1 ;)
{ m = exp (il-1) ;

y = m & (sr ^ dest) ;
if (y == m)

hamdist += 1 ;
}

return (hamdist) ;

* Function search (s,d) finds a set of next intermediate nodes towards
destination on hamming paths & then randomly selects one */

oid search (s,d)
nt s,d ;
int il,j1,k1,h1,y,z ;
kl = 0 ;
for (it = n ; it >= 1 ; --il)

{ hl = exp(il-1);
y = hl & (s ^ d);
z = hl & s;
if (y == hl)

{ kl += 1;
if (hl == z)

a[k1-1] = ((exp(n) - 1) & (s & (-h1)));
else

a[k1-1] = s I hl ;
1

1
1

ain()

int i,p,j,N,k,l,t,com_time = 0,q,na,r,v ;
int temp,templ,temp2 ;
float rn ;
struct sdm src[130] ;

scanf ("%d%d",&ix,&n) ;

N = exp(n) ;

for (1 = 0 ; 1 < N ; ++1)
{ for (v = 0 ; v < N-1 ; ++v)

scanf ("%d%d",&src[1].dest[v],&src[1].message[v]) ;
1

3: for (i = 0 ; i < N ; ++i)
{ j = n ;
br: k = 0 ;
brl: tempi = src[i].dest[k] ;

if (j != hamdis (i,templ))
{ k += 1 ;

if (k <= N-2)
goto brl ;

j -= 1 ;
if (j > 0)

goto br ;
continue ;

1

if (src[i].message[k] == 0)
{ k += 1 ;

if (k <= N-2)
goto brl ;

j -= 1 ;
if (j > 0)

goto br ;
continue ;

1

temp2 = src[i].dest[k] ;
search (i,temp2) ;

°* Following segment selects next intermediate at random */

rn = rannum() ;
for (q = 0 ; q < j ; ++q)

{ if ((rn >= (float) q / j) && (rn <= (float) (q+1) / j))
na = a[q] ;

}

/* Following segment transmits a message to the next node selected */

if (j == 1)
src[i].message[k] -= 1 ;

else
{ src[i].message[k] -= 1 ;

for (r = 0 ; r < N-1 ; ++r)
{ if (src[i].dest[k] == src[na].dest[r])

{ src[na].message[r] += 1 ;

}
}

/* Following segment checks if all the messages are transmitted or not;
if not, it repeats the cycle and increments the communication time
parameter */

for (v = 0 ; v < N ; ++v)
{ for (1 = 0 ; 1 < N-1 ; ++1)

if (src[v].message[1] !=. 0)
{ com time += 1 ;

goto b3 ;

com time += 1 ;

printf (" Communication time is %d \n ",com time) ;

	Copyright Warning & Restrictions
	Personal Information Statement
	Title Page
	Approval Sheet
	Contents
	Chapter 1: Introduction
	Chapter 2: Analysis of Some Special Communication Transfers
	Chapter 3: Existing Hypercube Communication Algorithms
	Chapter 4: Proposed Hypercube Communication Algorithms
	Chapter 5: Simulation Results and Comparative Analysis
	Chapter 6: Conclusion
	Chapter 7: Bibliography
	Appendix

	List of Figures
	List of Tables
	Abstract (1 of 2)
	Abstract (2 of 2)

