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ABSTRACT  

Title of Thesis: Computer Aided Shape Optimization Using Finite Element 

Analysis. 

Thesis By: Charanpreet Singh Bagga, 

Master of Science in Mechanical Engineering 

Thesis Directed By : Dr. Raj S. Sodhi, 

Associate Professor, 

Department of Mechanical Engineering 

Various theories behind Computer Aided Shape Optimization are studied. A spe-

cial attention is paid to the shape representation, mesh generation and refinement 

during the shape optimization process. Shape optimization process for a wall 

bracket is performed using the Computer Aided Engineering package of IDEAS. 

Finite element analysis of the wall bracket is done and the stress distribution over 

the bracket is studied. The bracket is trimmed in the selected low stress regions 

using shape optimization capability of I-DEAS and an optimized shape of the wall 

bracket is obtained. The end product is evaluated using Supertab module of I-

DEAS as well as the Finite Element Analysis package of ANSYS. 
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CHAPTER INTRODUCTION 

(1.1) An Introduction to Shape Optimization  

The problem of finding the optimum shape of a structural component can be called 

shape optimization. In other words, shape optimization may be defined as the rational 

establishment of a structural design that is the best of all possible designs within a 

prescribed objective and a given set of geometrical and/or behavioral limitations. 

Shape optimization is different from structural optimization as structural 

optimization is limited to resizing of structural members to obtain optimum 

crossections or thickness. Shape optimization solves another class of optimization 

problems involving continuous structural components where optimum shape of 

boundaries and surfaces of components is determined. Shape optimization is more 

complex than pure sizing optimization. Since the shapes are continuously changing in 

the design process, a special attention has to be paid to the following areas : 

(1) To describe the changing boundary shape. 

(2) To maintain an adequate finite element mesh. 

(3) To enhance the accuracy of the sensitivity analyses. 



(4) To impose proper constraints. 

(5) To utilize existing optimization methods to solve the shape optimization 

problems. 

Analytical methods for solving shape optimization problems have been used for a 

long time. Perhaps the best known early work is the study by Michell(1904). Zienkiewicz 

and Campbell(1973) were among the first to use numerical methods for selecting an 

optimum shape of the structure. They utilized the finite element method with node 

co- ordinates as the design variables to find an optimum shape. Since then several 

authors have published practical successful applications of general optimization. 

Furthermore, a number of commercial optimization systems based on well established 

finite element codes have been introduced. Systems such as ANSYS, IDEAS, OASIS, 

MSC-NASTRAN, SAMTECH and NISAOPT are widely known examples. 

(1.2) Need for Shape Optimization  

The need for shape optimization has been there since long and has attracted many 

people into this field but the urge for shape optimization grew stronger with the 

availability of high speed digital computers. Considerations of limited energy 

resources, shortage of economic and material resources, strong technological 

competition and environmental problems motivate the considerable current research 

going on in the field of shape optimization, and indicate increasing significance for the 

field in future. 

The principal motivating forces are tough market competition and limited resources. 

Optimized product among other things can imply lesser material cost, lighter weight which 

may result in many secondary benefits. For example decreasing the weight of 

transportation systems means lesser energy consumption, higher speed, lesser 

vibrations and noise and lower pollution. Similarly, it has great significance in the 

biomedical field. A lighter artificial limb means better comfort for the patient who is using it 



(1.3) Scope And Purpose of this Thesis  

The objective of this thesis is twofold. First, to study the shape optimization process using 

finite element analysis. Second objective is to use 1-DEAS package to optimize a given 

wall bracket. 

Before discussing the shape optimization problem, it is necessary to understand how a 

shape can be represented in the definition of the problem. Similarly it is very important to 

study how the finite element mesh is generated over the defined shape. There is no 

common approach being used for shape representation, so various methods of shape 

representation will be studied. The second objective we have is to use a commercial 

software to solve a practical problem using shape optimization and 1-DEAS is selected for 

the purpose. Thus the first part of the thesis deals with the theoratical aspect of shape 

optimization, while the second part deals with its practical application. 
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(2.1) AN INTRODUCTION TO FINITE ELEMENT METHODS  

Finite element method is a method of finding an approximate solution to a boundary 

and/or initial value problem by assuming that the domain is divided into well defined 

elements and the unknown function of the state variable is defined approximately 

within each element. With these individually defined functions matching each other at the 

element nodes or at certain points at the interfaces, the unknown function is 

approximated over the entire domain. 

There are many other approximate computational methods like Galerkin method, 

Rayleigh-Ritz method, finite difference method, least squares method etc. to solve the 

boundary value problems but the basic difference between finite element method and 

most other methods is that in the finite element method, the approximation is confined 

to relatively small subdomains. It is, in a way, a localized version of Rayleigh-Ritz 

method. Instead of finding an admissible function satisfying the boundary conditions 

for the entire domain, which is often difficult for irregular domains, the finite element 

methods define the admissible functions over element domains with simple geometry, 

which obviates the complications at the boundaries. This is one of the reasons that 

finite element method has gained superiority over the other approximate methods. 



(2.2) STEPS INVOLVED IN THE FINITE ELEMENT ANALYSIS OF A  

TYPICAL PROBLEM  

Regardless of the physical nature of the problem, a standard finite element method 

involves the following steps. Each step requires a great deal of different planning and 

operations depending upon the physical nature and mathematical modeling of the 

problem. 

(2.2.1) Step 1:  
Definition of the Problem and its Domain. 

(2.2.2) Step 2:  
Discretization of the Domain into a Collection of Preselected Elements. 

This step can be subdivided into the following three steps 

(1.) Construct the finite element mesh of the preselected elements. 

(2.) Number the nodes and elements. 

(3.) Generate the geometric properties (e.g.,coordinates, crossectional areas 

etc.) needed for the problem. - 

An important part of this step is to decide the number of nodes and elements. It is true 

that finer the mesh (with smaller elements), the more accurate the solution should be. But 

the finer mesh means more number of nodes and elements and results in larger number 

of equations to be solved and rather decreases the accuracy apart from taking more 

computational time. Thus one needs to have an optimal mesh This problem has been 

solved to a great extent by automatic mesh generation and adaptive meshing. 

Research studies indicate that best mesh is the one based upon strain energy 

distribution. 



Physical Problem Conservation 
principle 

State variable Flux Material con- 
stants 

Source Constitutive 
equation 

Deformation of an 
elastic body 

Equilibrium of 
forces 

Displacement or 
forces 

Stress or 
strain 

Young's modu- 
lus of elasticity, 
Poisson,s ratio 

Body forces 
or surface 

Hooke's Law 

Electric network 
Equilibrium of 

currents 
Voltage or cur- 

rent Electric flux 
Electrical con- 

ductivity 
External elec- 

tric charge 
Kirchhof's 

Law 

Torsion 
Conservation of 
potential energy 

Stress function or 
warping function Rate of twist Shear 

-2 x angle of 
twist Hooke's Law 

Heat transfer Conservation of 
energy 

Temperature Heat flux Thermal con- 
ductivity 

Internal or 
external heat 

Fourier's Law 

Fluid flow Conservation of 
momentum 

Velocity Shear stress Viscosity Body forces Stoke's Law 

Flow through porous 
media 

Conservation of 
mass 

Hydraulic head Flow rate Permeability Fluid sources Darcy's Law 

Electrostatics Conservation of 
electric flux 

Electric potential Electric flux Permittivity Charge Coulomb's 
Law 

Magnetostatic Conservation of 
magnetic poten- 

Magnetic poten- 
tial 

Magnetic flux Magnetic per- 
meability 

Current Maxwell's 
Law 

Table (2.1) Classification of various physical problems  



(2.2.3) Step 3:  
Identification of Physical(State) Variable(s). 

Until this step, no reference has been made to the physical nature of the problem. 

Whether it is a heat- transfer problem, fluid or solid-mechanics problem or an 

electricity problem etc. . Table (2.1), Ref. (17) presents various physical problems 

with associated state variables and constitutive equations. 

(2.2.4) Step 4:  
Establishment of Coordinate Systems. 

There are primarily two reasons for choosing special coordinate axes for the elements 

in addition to the global axis for the entire system. The first is the ease of constructing trial 

functions for the elements and the second is the ease of integration within the elements. 

However, since the elements have to finally assembled in the global frame for 

calculations, this step introduces additional computations in the form of coordinate 

transformations. Still it is better the than the complicacies of having the entire finite 

element analysis be carried out directly in the global system. 

Depending upon the element shape, one can choose from cartesian, cylinderical or 

spherical coordinate system. Other coordinate systems known as natural coordinates 

such as area or volume coordinates are often employed in the finite element analysis 

since numerical integration is much simpler in respect to these coordinate systems. 

(2.2.5) Step 5:  
Construction of Approximate Functions for the Elements. 

Once the state variable and the local coordinate system has been choosen, the function 

can be approximated in numerous ways. It is to be noted that there are two entities that 

need to be approximated. The first is physical (the state variable) and the second is 

geometrical (the shape of the element). The analyst has to decide whether to 



approximate physics (state variable) and geometry (element shape) equally or to give 

preference to one or the other in the various regions of the domain. This leads to three 

different categories of elements as follows. 

Let "r" and "s" represent degree of approximation for element shape (coordinate 

tranformation) and interpolation (state variable),then: 

(a) Subparametric elements: r < s 

(b) lsoparametric elements: r = s 

(c) Superparametric elements: r > s 

It has been recommended in the literature that: 

(1.) The local functions be so constructed that their discontinuities (in terms of 

their derivatives as well) should not make the functional itself undefined over 

the entire domain. In other words, not only the local functions but the 

derivatives of one order less than that occurring in the functional must be 

continuous. 

(2.) The intergrand of the functional must be single-valued and represent a 

constant as the element size approaches zero. 

(2.2.6) Step 6:  

Derivation of Element Equations for all Typical Elements in the Mesh. 

(a) Construct the variational formulation of the given differential equation over 

the typical element. 

(b) Assume that a typical dependent variable 'u' is of the form 



n 

U= I lli Vj 
t = 1 

and substitute it into (a) to obtain element equations in the form 

[ K(e) ]{u(e)} = [F(0) 

(c) Derive or select, if already available in the literature, element interpolation 

functions and compute the element matrices. 

Ref. (37) gives a detailed account of the above three steps. 

(2.2.7) Step 7:  
Assembly of Element Equations to Obtain the Equations of the whole Problem. 

(a) Identify the interelement continuity conditions among the primary variables 

(relationship between the local degrees of freedom and the global degrees 

of freedom- connectivity of elements) by relating element nodes to global 

nodes. 

(b) Identify the equilibrium conditions among the secondary variables (relationship 

between the local source or force components and the globally specified 

source components). 

(c) Assemble element equations using (a) and (b) and the superposition. 

(2.2.8) Step 8:  
Imposition of the Boundary Conditions of the Problem. 



(a) Imposition of Loads. 

(b) Imposition of Restraints. 

With the application of boundary conditions, the complete set of equations obtained 

in step7 are condensed to its final form, ready for solution. 

(2.2.9) Step 9:  
Solution of the Assembled Equations. 

Until this step, no reference has been made to whether the problem is linear or nonlinear, 

or to whether it is an eigen value problem or not. Regardless of the nature of the problem, 

the finite-element methods eventually yield the solution of a set of simultaneous 

equations. The solution ,procedure for simultaneous equations can be categorized into 

three parts: 

(1) Direct 

(2) Iterative 

(3) Stochastic 

The direct solution techniques consist of a set of systematic steps and are used a good 

deal in finite element solutions. The accuracy of results is largely determined by the 

condition of the equations, the number of equations and the computer. The Guass 

elimination and Cholesky's factorization (LU decomposition) are the most commonly 

used direct procedures. These methods are well suited to a small or moderate number of 

equations. 

When the systems are of a large order, iterative procedures such as Gauss-Seidel 

or Jacobi iterations are more suited. Iterative methods are generally self correcting and 



the accuracy of the solution depends on the number of iterations. The solution time is 

considerably less than that required by direct procedure. When the set of equations to 

be solved is nonlinear, the modified Newton-Raphson iteration method is the most 

commonly used method. 

Stochastic solution procedures have received very little attention because the finite 

element methods are generally applied to deterministic rather than to probabilistic 

problems. 

(2.2.10) Step 10:  
Postprocessing/lnterpretation of the Results. 

This is the decision making step and is probably the most important step in the entire 

process. Two important questions have to be dealt with at this point: How good the 

results are ? and What should be done with them ? The first requires the estimation of 

error bounds, and the second involves the physical nature of the problem. The answers 

to these questions either terminate the analysis or require that certain steps be 

repeated. In some cases, the reanalysis begins with stepl , until a satisfactory result is 

obtained. 

(2.3) Guidelines for Element Usage  

Since selection of proper elements is an important first step in finite element modeling, it 

was considered necessary to discuss it in brief over here. 

It is always desired for elements to have ideal shapes , which involve a little or no error in 

numerical computation of individual stiffness matrices. It would be convenient if triangles 

could always be equilateral, quadrilaterals always be squares, and hexahedra always be 

cubes. However, it is almost impossible to model complex systems with a mesh of ideally 

shaped elements. Therefore it is always wise to match the mesh refinement to stress 

gradients and deformation patterns. This means that elements must vary in size, have 

unequal side lengths, and, possibly, be distorted. We now discuss the modeling problems 



associated with elements having unequal side lengths, distorted elements, and 

transitioning patterns for varying refinements. 

(2.3.1) Aspect Ratio :  

The element aspect ratio is the ratio between the longest and the shortest element 

dimensions. Acceptable ranges for aspect ratio are element and problem dependent but 

generally it is considered safe to put a ceiling of 3 : 1 for stresses and 10 : 1 for deflections 

Actually there is no hard and fast rule governing all elements. The limit to aspect ratio is 

affected by the order of the element displacement function, the numerical integration 

pattern for stiffness, the material behaviour and even the resulting deflection and stress 

solution patterns. 

ASPECT RATIO = a / c  



Elements with higher order displacement functions and higher order numerical 

quadratures for a given displacement function are less sensitive to large aspect ratios. 

Elements in the regions of material nonlinearities are more sensitive to changes in the 

aspect ratio than those in the linear regions. 

The best gauge according to Ref (17) for aspect ratio is the ability of the element to 

simulate the deflection and stress gradient of the given problem. In a general stress field 

with gradients in all directions, most elements should have aspect ratios near 1 : 1. Since 

no particular direction dominates, the mesh refinement must be nearly equal in all 

directions. If a problem has a deflection or stress gradient dominant in a single direction, 

elements may have relatively high aspect ratios, provided the shortest element dimension 

is in the direction of the maximum gradient. 

Since an element's sensitivity to aspect ratio is dependent upon both element 

developement and actual problem limits, general tests and problem dependent checks 

must be implemented before using any of the elements. Simple "patch tests" for constant 

stress and similar tests under linear or other stress gradients can be run for each element 

type. However a user should also create simple models with loadings to simulate 

expected problem distortions and stresses. The problem like tests are necessary to 

develop cost-effective and accurate models. 

In this chapter, we discussed the basic concepts behind the finite element analysis. Finite 

element analysis is the base on which the shape optimization process works. Various 

steps involved in the finite element analysis were studied. The choice of element is a very 

important step as the accuracy of the solution depends on it. Thus a special emphasis 

was placed on the choice of elements. Now the next step in the shape optimization 

problem is the problem formulation itself. The next chapter discusses the mathematical 

formulation of the shape optimization problem and its solution. 
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(3.1) Mathematical Problem Formulation  

The shape optimization problem can be stated mathematically as 

Find minimum F(S1,S2,..,Sh) 

Subject to 

hi(St  ,S2,..,Sh) =0, j = 1,..,p 

9k(51,S2,..,Sh) < 0 k = 1,..,q 

Ski < Sk  _. Sku k = 1,..,n 

(1) 

Where 

F : Objective function 

hi  : Equality constraint function describing ith  structural response. 



gi : Inequality constraint function describing ith  structural 

response. 

Si : Vector of n design variables defining shape of the 

object. 

Ski  : Lower limit of shape variables. 

Sku  : Upper limit of shape variables. 

Sk  : Shape variable. 

p : Number of equality constraints. 

q : Number of inequality constraints. 

n : Number of shape variables. 

(3.2) Objective Function  

Objective function can be defined depending upon the optimization requirement. 

la)  Weight or Volume Optimization : 

In most of the cases, the weight or volume of the object is choosen as the objec-

tive function, which can be defined as : 

F(S1,S2,..,Sh) = yieeQe(Si,S2,..Sh) 
e 

Where Qe(S1,S2,..Sh) is the volume of the eth  finite element, and is normally a 

nonlinear function with respect to Sk. 



(b) The maximum Von Mises Stress,  that is : 

F(S1,S2,..,Sn) = Max Gym 

(c) The difference between the maximum and the minimum tangential stresses , that is : 

F(S1,S2,..,Sn) = aO. max - 0.0min 

(d) Stress levelino , that is : 

F(Si,S2,..,Sn) = § (a- aa) 2 dA 
A 

Where a is the maximum principal stress and ca is the average stress at the initial 

shape, A is the part in question. 

(e) Weighted objective function , that is : 

F(Si,S2,..,Sn) = 0.5 W (S20) + 4 (a - ua) 2 dA) / (f (Go - ua) 2 dA) 

Where 

S2 : The volume of the object. 

C20 : The volume at initial shape. 

G : The maximum principal stress. 

ua : The average stress at the initial shape. 

60 : The maximum principal stress at initial shape. 



The pupose of using the objective functions is to decrease the peak of stress concentra-

tion in the changed boundary and simultaneously to consider the control of boundary 

shape. 

In most cases, the objective function is to minimize the weight or volume. If an objective 

function is to be maximized, one may just substitute F = - G and the rest of the process is 

just the same. 

The resulting shape optimization problem is a nonlinear mathematical programming 

problem to which standard minimization techniques can be applied. However this prob-

lem exhibits some characteristics that make it complicated when practical design appli-

cations are considered. The main difficulties arise from the large number of design 

variables and the large number of nonlinear inequality constraints that are computation-

ally burdensome implicit functions of the design variables. Moreover their precise numer-

ical evaluation requires a complete finite element analysis. Since the solution scheme is 

iterative, it involves a large number of structural reanalysis and the computational cost 

often becomes prohibitive when large structural systems are dealt with. 

(3.3) Method of Solution  

The functions F, h j  and g k depend both on design and state, and the equality con-

straints comprise the state equations. Assuming F, h j and g k to be continuously differen-

tiable functions of S, we may formally solve the problem (1) using the calculus of 

variations. Based on F, we form an augmented objective function F* to be minimized. 

P q 

F* = F(S1,S2,..,Sn) + E Xj.h j(S1,S2,..,Sn) + I Ilk  [g k(S1,S2,..,Sn) + Sk2] 
j=1 k = 1 

 (2) 

where A, j andµ k are Langrangian multipiers. 

The conditions of stationarity of F* with respect to arbitrary admissable variations of 

(S1,S2,..,Sn) lead to a number of n optimality conditions : 



aF P  a + I X • -Ltd + i = 1,..,n asi i asp I 14  -a7Sigk = ° ' j=1 k = 1 

 (3) 

and stationarity with respect to Langrangian multipliers X j , j= 1,..,p, recovers the equal-

ity constraints in (1), 

h j(S1,S2,..,Sn) = 0 , j= 1,..,p 

 (4) 

Stationarity of F* with respect to Sk, k=1,..,q, yields the so called switching conditions 
2  

4k.Sk = 0, and the necessary conditions 
a Sk 

u
2 

F. 0 for a minimum of F* imply that 

the Langrangian multipliers µk  must be non-negative, 

i.e., Ilk .- 0, k = 1,• • ,q. 
A combination of the latter result with the switching conditions and the defining equations 

for Sk  yields the conditions : 

11  k= 0 if g k(S1,S2,..,5n) < 0 

k = 1, . . , q 

11  k .- 0 if g k(Si ,S2,..,Sn) = 0 

(5) 

Which are seen to imply simplification in (3) if one or more of the inequality are not tight. 

Equations (3) - (5) constitute the formal set of governing equations for the shape optimi-

zation problem and are often called the generalized Kuhn - Tucker conditions. The gov-

erning equations derived here are generally not sufficient conditions for global optimality. 

Sufficient conditions are possible only in the case of simple cases where a linear relation-

ship exists. In reference (32), Prager and Taylor have derived sufficiency conditions for a 

variety of such problems by making use of extremum priniciples of structural mechanics. 

Thus for a vast majority of the problems, it is necessary to apply iterative numerical 

methods of solutions. The numerical methods commonly used for solution of problems 

where optimality conditions are contained in the discretized or initially discrete set of gov- 



erning equations are usually termed as optimality creterian methods. References 

(25,29,39,40) can be seen for more detailed description. 

For complex shapes, optimality conditions together with the state equations and other 

constraint conditions form such a large and complicated set of algebraic equations that it 

may be advantageous to apply a purely numerical solution procedure from the very out-

set. Direct procedures of this type are identified as methods of mathematical program-

ming, such as linear, nonlinear, geometric or integer programming. References 

(25,29,38,39) contain accounts of these methods. 

In this chapter we discussed the shape optimization problem formulation. It is very 

important to define the problem and objective function accurately in order to obtain accu-

rate solution. The mathematical equations involved in the solution were also discussed 

here. The next task is to define the shape of the boundary. The boundary shape is con-

tinuously changing in the shape optimization process. Thus the definition of the bound-

ary has to be such that it can accomodate those changes. Various researchers have 

devised different techniques for shape representation. The next chapter discusses those 

techniques in detail. 
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(4.1) Shape Representation  

The shape representation is a very important step in the process of obtaining an optimum 

shape. If the shape variables are not carefully selected, the reliability of the results is 

affected seriously. In the following are listed some of the major techniques being used 

for the shape representation of an object during shape optimization. 

(1) Boundary nodes are used for shape optimization ; 

(2) Boundary shape is described by piecewise polynomials ; 

(3) Design element technique ; 

(4) Surfaces are defined by curves known as Super Curves ; 

(5) Boundary shape is described by spline or spline blending functions ; 

(6) The structural optimization system CAOS. 



(4.2) Use Of Boundary Nodes For Shape Representation  

Use of coordinates for boundary nodes in the finite element model as shape variables is 

the earliest used method. The approach is simple and instinctive, and associated with the 

finite element method. This choice of design variables has however the following severe 

drawbacks : 

(1) The number of design variables often becomes very large which leads to high costs 

and difficult optimization problems to solve : 

(2) It is difficult to assure compatibility and slope continuity between boundary nodes, 

which may lead to an undesirable or impractical shape ; 

(3) It is difficult to maintain an adequate finite element mesh during the optimization 

process. 

This idea, therefore is not practical except for some special cases where there may not 

be any other choice. 

(4.3) Polynomial Representation  

Many researchers use polynomials to describe the boundary shape when solving shape 

optimization problem in two or three dimensions. There are several possibilities. A few 

boundary nodes may be used to control the boundary shape. Coordinates or moving 

directions of the control may be used as design variables. Shape functions are used to 

define the shape of the boundary between those control nodes. 

The use of polynomials with control nodes for shape representation can obviously reduce 

the total amount of shape variables, but can result in oscillatory boundary shape with high 

order polynomials due to the numerical instability of the higher order curves. 



Fig. (4.1) Three Dimensional Isoparametric Element 



Fig. (4.2) The Design Element 



(4.4) The Design Element Technique  
The proponent of this technique is M. H. Imam. He has done an extensive work using the 

design element technique. References ( 19,20,21) give a detailed account of his works. 

(4.4.1) The Design element 

The concept of a design element in shape optimization for 3-D solids emerges from the 

fact that 20 noded isoparametric solid finite element shown in Fig. (4.1) can be used to 

represent the shape of a curved hexahedron. The shapes of its six surfaces can be varied 

by moving some or all of the 20 nodes which describe the element shape. The shape 

representation is inherent in the isoparametric formulation which uses the following set of 

equations to compute the x, y, z coordinates of any point on the outside surfaces or inside 

of the element : 

N 

x= E hi  xi 
i=1 
N 

Y = I hi Yi 
i=1 

N 

Z= E hi zi 
i=1 

where N is the number of nodes used to describe the element geometry; xi, yi  and zi (i= 1 

to N) are the nodal coordinates of the ith  node ; and hi's are the quadratic functions of of 

the parametric variables r, s and t. These parametric quantities (see Fig. (4.1)) uniquely 

identify the points on or inside of the element. 

The design element shown in the Fig. (4.2) is a 20 noded isoparametric solid element 

used for shape representation of complex components. One design element may 

describe the shape of the whole structural component like a cantilever beam or, for more 

complex shaped components, it may be used as a building block. The concept is very 

useful for shape optimization because it simplifies the numerical representation of 



complex surfaces. Design elements with extreme aspect ratio and distorted shape can 

be used because the design element model is not used for analysis. The outside surfaces 

are approximated as piecewise parabolic, but the errors in the mass and the structural 

properties of the component due to this approximation have been observed to be small. 

The idea of using the isoparametric finite element shape representation can be extended 

to avoid discontinuity at the element interface and to reduce the number of design 

variables by introducing the concept of a design element, which consists of more than one 

three dimensional finite elements. The whole structural component or parts of it are 

considered as one single 20 noded element for the purpose of shape representation as 

shown in Fig (4.2) by thick lines. The finite element mesh is contained in this design 

element. The isoparametric shape representation as used for the individual elements, is 

used to determine the coordinates of any point on the surfaces of the design element. The 

coordinates of the 20 nodes of the design element are the shape variables in this case. 

The parametric quantities, r, s and t, locate any point on the six surfaces. This technique 

also allows the determination of the coordinates of node points inside the design element 

for finite element mesh generation, which is required every time the shape is changed 

during the optimization. One apparent drawback of this technique is the restriction of the 

shape of the surfaces and edges to be no more than parabolic. 

The finite element mesh can be generated automatically within each design element by 

specifying the number of elements along the natural (r, s, t) coordinates of the elements. 

The mesh is generated by the method of isoparametric mapping the details of which have 

been covered in Ref. (21) . The generated mesh is a function of the location of the design 

element nodes. The finite element mesh points are relocated every time the design 

element nodes move and therefore the finite element mesh distortion due to shape 

change during optimization process can be kept to a minimum. Care must be taken, 

however when using the design element as a building block to match the number of 

generated nodes and elements at the design element boundaries. This idea of design 

element modeling with automatic mesh generation has been presented in Ref. (4) for 

plate and shell components modelled by triangular flat plate elements. Its use for the 3-D 

solid components has been observed to be very helpful because it eliminates the 



Fig. (4.3) Generated Mesh for Initial Shape  



Fig. (4.4) Generated Mesh for Final Shape  



laborious finite element modeling which otherwise had to be done either manually or by 

the use of some interactive graphic capability. MH Imam has done a considerable amount 

of work in this field and Figs. 4.3 and 4.4 have been taken from one of his works (ref. 

20,21) for illustration. Fig. 4.3 shows the changes in the mesh configuration from one 

design to another during the optimization process, where both designs are being 

represented by the same design element model. Fig. 4.4 shows the design element 

model of an engine main bearing cap and the generated finite element meshes of two 

different refinements. 

(4.4.2) GENERIC SHAPE OPTIMIZATION MODEL 

In a production environment, the design of a component is represented by a drawing with 

detailed dimensioning. Some of those are key dimensions and are considered as design 

parameters because the mass of the component and its structural properties are sensitive 

to them. The designer thinks of changes in those key dimensions when considering any 

modification in the design or shape of the component. The design element technique 

discussed in the previous section requires the description of the component in terms of 

the x, y, and z coordinates of the design element nodes. Such a description of the 

component obviosly is very awkward from a designer's point of view. For complex parts 

it is very laborious and time consuming to build a design element model starting from the 

drawings. Also, any change in the design, which may be very simple in terms of the actual 

dimensions of the part shown on its drawing may require substantial changes in the 

design element model . 

The problems mentioned above can be avoided if the difficult task of finite element 

modeling is completely automated so that the required input information is only in terms 

of the key dimensions of a component . The design element technique with automated 

mesh generation is a major step in this direction because it automates the finite element 

modeling (for a given component whose design model has been built ). 

The basic idea in the generic modeling concept is to allow the user to specify the shape 

and topological details of the component in terms of the key dimensions only. For this 



Fig. (4.5) Concept of Generic Modeling, Ref. (19)  



purpose, a general design element model of a given component is first created in such a 

way that all feasible shapes and topological configrations can be described by the same 

model simply by moving the node points (offcourse there will be a limit on the shape 

changes which can be allowed, and a drastic change in the configration cannot be 

accomodated by the same model). The locations of these node points are are expressed 

as functions of the preselected key dimensions of the component. Thus, any changes in 

these key dimensions cause relocation of the nodes of the design element model to 

represent the new shape. A block diagram has been shown in Fig. (4.5) to explain this 

concept. It must be noted that data for the loads, the boundary conditions and the 

constraints on stresses and displacement are also regenerated as a result of any shape 

change. Therefore the generic shape optimization model must have built into it all 

necessary information relating to the key dimensions to all such details. 

(4.5) Super Curves Technique  

In the shape optimization problem, the shape of a surface is fully determined sif the 

shapes of a few curves on the surface are determined because on;y the points on those 

curves are required to construct a finite element model. For example, in FIG(4.6), the 

shape of the top surface is fully defined (for finite element modeling) if the shapes of the 

three curves ( reffered to as 'super curves') are fully determined. In such cases, the 

parametric representation of the curves with polynomial expressions may be used as 

described in the following : 

x = ao + al  s + a2s2 

y = bp + bat s + b2s2  

z = co + cis + c252  

. In most cases, it is possible to reduce the representation of the shape of a surface to 

the representation of the shapes of a few super curves. This approach also has the 



Fig. (4.61 Shape Representation by Parametric Curves  



advantage of allowing higher order surfaces without the use of complex polynomial 

expressions. Each curve can be handled individually with relatively simpler polynomial 

expressions. The coefficients of the polynomial are the shape or design variables. 

A further step in this direction is the idea of super position of curves. The shape algorithm 

may consist of a table of numbers, input by the user and a computer subroutine to read 

them in and compute the co-ordinates of the selected points which determine the shape. 

This idea can be used to to superimpose two or more shapes (specified in terms of nodal 

locations of points on a curve or surface) in varying proportions to to generate a variety of 

shapes. If d1, d2, . . , dN  are the shape variables associated with N different shapes given 

by the coordinate vectors {x1}, {x2}, . . , {x}, then a general shape {x} can be expressed 

as : 

{x} = di  {xi} + d2{x2} + . . + dN{xN} 



There are two basic ingredients which are required using this technique of shape 

representation : 

1. Node numbers of a finite element mesh which are on a curve or a surface. 

2 The vectors {xi} which give the nodal co-ordinates of the respective nodes for each input 

shape. 

The figure on the last page shows the diagram for this technique. A similar technique was 

used by Vanderplaats for airfoil optimization. It allows representing complicated shapes 

without increasing the number of design variables. It is necessary to mention the following 

two points overhere : 

1. A constant and a linear function should always be included among the input shapes 

to allow for a translation and rotation of the shapes. 

2. It may be required to constrain the nodes the nodes to move between certain limits. 

These constraints are complex functions of design variables and cannot be expressed 

as simple side constraints on the design variables as can be done with the previous 

three techniques of shape representation explained before. Therefore, the constraints 

are treated as behavior constraints. These additional constraints are linear and they 

have no significant on the speed of the optimization process. 

(4.6) Boundary Shape described by Spline or Spline blending functions  

The technique used over here is similar to the design element technique used by Imam. 

The region of the structure that will be modified during the optimizaton process is also 

defined by one or more design elements which still contain a part of the mesh (see Fig. 

4.8). 

However the two approaches differ in the representation of the design element. Instead 

of using the shape functions of a two - dimensional finite element, blending functions 



Fig. (4.8)  



typical of computer graphic methods are employed to determine the coordinates of any 

point inside the design element or on its boundaries. More precisely, the blending 

functions are those used in the the Bezier or the B - spline techniques. Therefore the 

shape variables are no longer the positions of the the nodes of an isoparametric element 

but the points which control two familiesof curves whose Cartesian product defines the 

design element. Moreover, the degree of the boundaries may be more than cubic. 

At this point, it becomes necessary to discuss Bezier curves or B- splines in brief to get a 

brief idea of what this technique really means, so next few lines will discuss these issues. 

(a) Bezier Curves  

In the following are discussed some of the highlights of the Bezier curves 

Bezier curves are variation diminishing : 

Each curve lies within the convex hull of control points that define it. 

Axis independence : 

A Bezier curve is independent of the coordinate system used to measure the location of 

the control points. 

Multiple Values : 

The parametric formulation of Bezier curves permits representation of very general 

functions (including multivalued functions such as spirals, closed curves, ...). 

At the end points, the curve is tangent to the corresponding edge of the polygon of control 

points (Fig. 4.9). 

Two characteristics of the blending functions limit the flexibility of this type of curve 

(1) The number of control points fixes the degree of the polynomial which defines the 

curve. For instance, the four points of Fig. (4.9) define a cubic. The only way to 

reduce the degree of the curve is to reduce the number of vertices. Conversely, the 

only way to increase the degree of curve is to increase the number of vertices. There 



Fig. (4.9)  



Zero Order Continuity  

First Order Continuity  

Fig. (4.10)  



exist thus two ways of desribing a complex geometry : the first one consists in using 

high degree curves ; in the second one, Bezier curves of modest order are pieced 

together using simple geometric rules to insure continuity at at the different joints. 

For instance, to achieve zero order continuity at the at a joint, it is sufficient to impose 

the end control points of the curve to coincide. First-order continuity can be obtained 

by stating that the edges of the two polygons adjacent to the common end point must 

lie on a straight line (Fig. 4.10). 

(2) The second major characteristic of the Bezier curves is that they do not provide local 

control : moving any control point will change the shape of the every part of the curve. 

this can be seen from the blending functions being nonzero everywhere. 

Consequently the location of each control point influences the whole curve. 

(b) B - spline curves  

B - splines share many of the characteristics of the Bezier curves : axis independence, 

variation diminishing property etc. The main advantages of the the B - splines are on one 

hand that local control of the curve shape can be achieved by using a set of blending 

functions that have local support only, and on the other hand, that additional control points 

can be introduced without increasing the degree of the curve. B-splines offer more 

parameters to the designer than Bezier curves : the degree can be selected (Fig. 4.11), 

as well as the multiplicities of control points (Fig. 4.12). Consequently, complex shapes 

may be represented by the quadratic or cubic splines which are automatically pieced 

together to form the B- spline. On the other hand, for a given number of vertices, the 

degree fixes the smoothness of the curve. 

(4.6.1) Bezier's and B-splines in the definition of a design element 

The formulations of Bezier and B-spline curves are easily extended to the generation of 

surfaces. A surface may be defined by the cartesian product of two curves so that the 

properties of the blending functions are not modified. 

Applications of this approach show that the B-spline parametric curves representation is 



Fig. (4.11)  

Fig. (4.12)  



F = Fixed Node 
I = Internal Node 
B = Boundary Node 

Fig. (4.13)  



a very tractable tool for the shape optimization by the "design element technique" . By 

using the possibility of automatically piecing together splines of modest order to define a 

B-spline, and by controlling the continuity of the generated curve, design elements may 

exhibit very complex geometries. A few design elements are generally sufficient to fully 

describe the region that is modified during optimization. Moreover, selecting the degree 

according to the variation diminishing properties provides a rational scheme to avoid 

unrealistic designs. 

At last the mesh may be easily updated inside the design element as follows : regular 

mesh is defined in the curvilinear coordinate system of the design element and coordinate 

transformations are applied to the definition of the mesh within it. When boundary nodes 

move, it is however necessary to actualize the positions of the the internal control nodes 

in order to insure a constant density. In the optimization code, it is assumed that all the 

design variables are the locations of the control nodes for a same edge of the design 

element. These vertices, together with the corresponding ones located on the opposite 

side, define 'meridian' directions along which the design control nodes are translated (see 

Fig. 4.13). Internal nodes that are located on these meridians are next moved 

homothetically. 

(4.7) The Structural Optimization System CAOS  

CAOS (Computer Aided Optimization of Structures) has been devised and developed by 

J. Rasmussen (Ref 35,36) using the foundations laid by the work of Bennet and Botkin 

(1), Esping (14), and Braibant and Fleury (5,6,7,8). The shape representation in CAOS is 

based on an adaption of the concept of design element as presented by Braibant and 

Fleury (5). 

This approach is based on a subdivision of the geometry into a number of topologically 

similar quadrangular design elements. These elements have a number of attractive 

features : 

1. The mesh generation is very easy using quadrangular elements. A number of 

randomly placed nodes on a boundary is the only input needed for a complete mesh 



generation in the design element. 

2. The boundaries of the design elements can be curves of almost any character. It is 

therefore very simple to generate relatively complicated geometries with a small 

number of design elements. 

3. The shapes of the boundaries are controlled by a number of master nodes. This 

creates an evident connection between the design variables (namely the positions 

of the master nodes) and the shape of the geometry, thereby forming the necessary 

description of the shape by a set of design variables. 

4. With the drawing aids of the CAD system it is very easy to draw the design elements 

in a separate drawing layer on the top of the original drawing. 

Each of the four edges of a design element is a design boundary. Using these 

boundaries, the designer can control the outcome of the optimization process in two ways 

1. Design boundaries with a predefined function can be forced to take on a certain 

shape, e.g. a circular arc or a piecewise straight line. 

2. If the designer desires a boundary to locally or globally maintain its shape, one or 

several of the master nodes can be fixed. This is simply accomplished by not 

assigning any design variable to the particular master node. 

Design elements are simply drawn on top of the original geometry using the drawing tools 

of the CAD system. This is performed with a number of predefined geometrical entities. 

These entities have attributes assigned to them. Attributes are variable numbers or text 

strings that describe the entity. This is a very common facility which is normally used for 

storing dimensions etc. of standard components on a drawing. The CAD system can 

automatically scan the drawing for attributes of a given type and generate a text file 



containing the data. In this particular case, the attributes describe curve types, number of 

finite element nodes, state variables etc. ; in other words, all the specification necessary 

to define an optimization problem. 

When the definition of the optimization problem is completed, the system automatically 

generates a number of text files containing the information. Based on these files, the 

optimization system generates its own copy of the geometry and starts optimizing. 

The widely used CAD system AutoCAD has been used for actual implementation of 

CAOS. AutoCAD is well suited for the present purpose because of its advanced LISP 

programming facilities. However, the integraton method does not rely on theCAD system 

data stucture. This makes the method sufficiently general to work in connection with a 

number of different CAD systems. 

Various techniques for shape representation were discussed in this chapter. The generic 

model and the CAOS were discussed to consider the practical applications. The next 

most important step in shape optimization is to accurately generate the mesh. The basic 

principles were discussed in Chapter(2) so the next chapter pays more attention to 

advanced topics. Automatic mesh generation and adaptive mesh refinement are 

discussed in detail in the next chapter. 
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(5.1) Mesh Generation  
The problem of finite element mesh generation in shape optimization is due to the fact that 

in most cases the definition of a finite element mesh is manual rather than an automatic 

process. That is, the analyst uses judgement and experience based intution to select the 

mesh. Often the mesh is changed based on the result of a trial analysis, which reveals 

regions where the mesh needs to be refined. This manual approach is not adequate for 

shape optimization problems, because the analyst needs to define the mesh for a series 

of structures, without knowing their shape. 

According to Ref. (17), in conventional finite-element models, the finite element mesh 

must satisfy the following three requirements : 

(1) The essential geometric details of the object to be modeled must be 

represented. 

This is a very difficult task in the shape optimization as the shape of the object is 

continously changing.There are two basic solutions to the problem of adapting 

the mesh to the changing boundaries. 

The first is to use simple modification rules for deforming the initial mesh. But 

such simple modification rules often run into trouble. This has been illustrated by 



Fig. (5.1) Initial Design  



Fig. (5.2) Final Design  



simple mesh in Fig. (5.1) . The 3 x 4 mesh for initial design is adequate for stress 

calculation. In the second Fig. (5.2) , the mesh is deformed so as to preserve a 3 

x 4 uniform mesh. However, the final design has sharp corners and the mesh is 

not adequate for accurate stress calculation. Also this approach may lead to 

some elements having undesirably high aspect ratio. Therefore, when a simple 

modification rule is used, it is often necessary to stop the optimization process 

and remesh manually. 

The second approach is based on the use of sophisticated automated mesh 

generation techniques, which generate mesh and adaptively improve it based on 

the calculated response. 

(2) The element size must be sufficiently small to keep the error of 

approximation within acceptable bounds. 

This does not mean that very small elements should be used as they create even 

more problems. Chapter (2) discusses this issue. 

(3) The aspect ratios of the elements should be close to one in order to avoid 

degradation of their numerical performance. 

Chapter (2) discusses this issue in detail. 

Taken together, these requirements can create considerable practical problems . Which 

impose serious limitations on the usefulness of three dimensional models in engineering 

practice. In two dimensional analysis, it is practical to grade finite element meshes, so that 

fine meshes are used only at the critical areas. In the three dimensional case, mesh 

grading is a far more difficult task, and the topological constraints usualy force the analyst 

to use fine meshes on the entire domain if a fine mesh is required over one or more 

subdomains. 



(5.2) MESH REFINEMENT 

Due to the continuous change of boundaries in the shape optimization process, some of 

the elements distort badly, the finite element model becomes incapable of evaluating high 

stresses in the valleys of the wavy boundary. Once the mesh is not capable of accurately 

modeling the problem, a refined mesh should be created. Mesh refinement can be done 

in two ways : 

(1) Complete Remesh ; 

(2) Localized Mesh Refinement. 

(5.2.1) Complete Remesh  

Oda and Yamazaki (30) regenerated the mesh after a number of optimization iterations. 

Yang et al. (41) manually remeshed the optimum shape design and then restarted the 

optimization procedure with that design for a final correction by the optimizer. 

(5.2.2) Localized Mesh Refinement  

A natural way of improving the quality of finite element mesh is to increase the number of 

degrees of freedom. The new degrees of freedom are added in the selected regions by 

either increasing the order of the polynomial approximation inside the elements or by 

subdivision of elements. In the following are listed some of the widely used methods of 

mesh refinement : 

(1) h - method ; 

(2) p - method. 

(3) degrees of freedom fixed 



(1) h - method  

In the h - method, the new degrees of freedom are added by selectively subdividing 

elements into the regions where finite element approximation is less accurate. An 

example of the implementation of this method is presented in references (17,22,26). 

(2) p - method  

In the p - method, the new degrees of freedom are added by increasing the order of 

polynomial approximation inside the selected elements 

(3) degrees of freedom fixed  

The objective of finite element mesh refinement methods is to improve some aspects of 

the selection of a discretized finite element model, in order to facilitate the best possible 

finite element solution.The addition of degrees of freedom to the finite element model is a 

natural way of improving the quality of the approximate solution. In much of the grid 

optimization literature, new degrees of freedom are added by either subdividing selected 

elements into smaller ones or by selectively incresing the order of polynomial 

approximation inside some elements. In many cases, however it may be desired to keep 

the number of degrees of freedom fixed and, under this limitation, to obtain the best 

possible finite element solution. Diaz et al. (11,12) did an appreciable work in this type of 

grid optimization. It consists of finding the location of nodes that yield the best possible 

finite element solution for a given number of elements and a specified order of 

polynomials. 

(5.3) ADAPTIVE MESH REFINEMENT  

Adaptive mesh refinement is a very important tool for shape optimization process using 

completely automated mesh generation. With this concept, information from an analysis 



with a trial mesh is used to identify regions of the finite element mesh element mesh which 

need further improvement (refinement). This refinement can take either the form of adding 

additional elements in the area to be refined or of increasing the order of finite element as 

discussed in h & p methods. The finite element mesh points are relocated whenever the 

boundary shape changes, and thus individual element distortion due to shape changes 

during the optimization process can be kept to a minimum. Thus, a good adaptive mesh 

refinement strategy can avoid jagged shape otherwise produced by using the coordinates 

of the finite element grid as design variables. 

The most important step in the adaptive mesh refinement is to identify the regions which 

require mesh refinement. There are mainly two approaches being widely used to select 

the region for mesh refinement. 

(1) The first approach considers the potential energy of the trial finite element solution 

for selecting the critical region. It is argued that since the approximate solution 

gives an upper bound on the true value of potential energy, the best grid may be 

defined as the one that gives lowest possible upper bound. In practice however, 

the formal solution of the problem is avoided because of the highly nonlinear form 

of the objective and of the geometry constraints that depend on nodal locations. 

Optimality conditions are normally too complicated to be operationally useful and, 

rather than working with these equations directly, several authors have developed 

guidelines that approximate the true optimality conditions and at the same time are 

easy to implement computationally (11,15,16). 

(2) In the second approach, the finite element model accuracy is improved by an 

adaptive mesh refiement scheme using strain energy density gradients to identify 

regions which require mesh refinement. A contour plot of the Strain Energy 

Density (SED) for the object is taken. The areas with undesirably high SED 

variation are identified and the elements belonging to those regions are refined 

using techniques which have been already discussed. 



The value of SED variation above which an element will be refined is obtained from the 

following expression : 

CV = AEav  + 3(AEmax  - AEav) 

Where 

CV : SED difference cut off value ; 

AEav  : The average SED variation for all elements ; 

A Emax  : The max SED variation in an element ; 

13 : A parameter to be selected based upon the problem but 

generally lies between 0 and 0.5. 

This concept has been extended by Botkin and Bennett (1) to three dimensional 

structures. The mesh generation is not an inexpensive part of optimization ; it took 

approximately one third of the total CPU time in the applications reported by Botkin and 

Bennett (1). However, the subsequent improvements in the efficiency of the mesh 

generator reduced its cost to a few percent of the total. 

Because automated mesh generation must be an integral part of the shape optimization, 

optimal mesh refinement is a closely related concept to optimum shape design. The two 

concepts of optimum mesh and optimum shape converge in the field of Kikuchi, Taylor 

and their coworkers. Thus their earlier work on optimal grids (12) and optimal shape 

modification (24) led to the combination of the two (10,23). Luch et al. (27) used automatic 

mesh generation at each step of optimization in designing a gas turbine disc. Queau and 

Trompette (33) used an automated mesh generation for several two dimensional 

problems. The idea of local automatic mesh generation during the process of design has 

been presented by Botkin (4) for plate and components modelled by triangular flat plate 

elements. The techniques of 3-D shape optimization for solid components have been 



reported by Imam (20) and demonstrated on simple cantilever beams modelled by 3-D 

solid finite elements. Applicationn of those techniques to the engine main bearing cap has 

been reported by Imam. An integrated shape design program was developed by Bennett 

and Botkin (1,2) for 2-D problems. The program includes finite element analysis, 

automatic mesh generation, and structural optimization as an integrated package. 

This chapter discussed the mesh generation and refinement during shape optimization 

process. By now, we get a fair idea of the theory behind shape optimization process. 

Thus we have achieved our first objective of understanding the shape optimization 

process. Now we go to the practical application of shape optimization. The next chapter 

discusses the various capabilities of I-DEAS and how shape optimization can be achieved 

using the finite element analysis capability of IDEAS. 
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(6.1) CAE Package of IDEAS  

I-DEAS is a comprehensive Computer Aided Engineering package. It is a complete 

package in itself which can be used right from the concept to the final production of the 

product. In the following are listed some of the major features of IDEAS : 

(1) Solid Modeling ( Geomod ) ; 

(2) Drafting ( Geodraw ) ; 

(3) Engineering Analysis ( Supertab ) ; 

(4) Graphic Numerical Control ( G.N.C. ). 

The major advantage with IDEAS is that it is interactive and menu driven . Thus it is 

very user friendly and convenient. The whole software has been divided into families, 

like Solid Modeling is one family and Engineering Analysis is other. Each family has 

been further divided into tasks and each task has its own subdivisions. Here our study 

will be restricted to the Finite Element Analysis family. To be more precise, our study will 



be on shape optimization and related tasks. 

(6.2) Geometry Modeling Task  

Geometry modeling task is used to create the finite element model of the object or to 

modify an existing finite element model. It is similar to the construction geometry task of 

the solid modeling family but is less powerful. The finite element model of an object can 

be created by two ways : 

(1) Transfer from object modeling ; 

(2) Creation of a new model. 

(1) This method is used when the geometry is simple and easily transferably. 

(2) This method is used in two cases 

(a) When the geometry is too complex to be transferred from objet modeling. 

(b) When the geometry is too simple (especially for 2-d modeling). 

In most cases, there is a partial transfer of the geometry from the object modeling and 

the rest of the geometry is completed in the geometry modeling task. The major part of 

the geometry modeling is done using create wire, copy and orient, modify and delete 

menu's. 

(6.3) Mesh Creation Task  

Mesh creation task is used to create mesh areas & mesh volumes, to generate mesh, to 

create and modify nodes and elements and to define the material and physical properties 

of the object. 

Creation of Mesh Areas  



The geometry created in the geometry modeling task is used to form mesh areas. For-

mation of mesh area decides the type of element and the type of mesh to be used for 

mesh generation. There are two types of mesh : 

(1) Manual or Mapped mesh ; 

(2) Automatic or free mesh. 

In manual mesh, the user has to define the number and size of the elements along each 

curve while in automatic or free mesh, the user just has to define the size of the element 

and the I-DEAS package automatically generates the mesh. The automatic mesh can 

be refined at a particular point/area by giving a new local element size at that particular 

point. IDEAS also has the capability of identifying a hole while defining the mesh area 

For that, the mesh area is created using auto_create option. 

Once the mesh is formed, it can be checked by exploding it using explode option to 

check that the mesh area is made of right curves. 

Creation of Mesh Volumes : 

Mesh volumes are needed when we are dealing with 3-D object. The mesh volume for a 

particular piece of object is made up of the mesh areas bounding that piece. Thus the 

mesh volume for a cube would be made up of six mesh areas which are defined by its six 

faces. Once created, the mesh volumes can be checked by exploding them. 

Generation of Mesh : 

Generation of mesh is done using generate mesh menu. Nodes and elements are gen-

erated on the specified mesh areas and mesh volumes using generate mesh menu. 

Another feature of generate mesh menu is that it can generate mesh directly from the 

solid model of the object for simple shapes and thus saves all the trouble of creating 



geometry, forming mesh areas and mesh volumes and defining mesh size. Thus in case 

of simple objects, all one has to do is to make a solid model of the object in the solid 

modeling family and then generate the mesh in Finite Element family just by giving one 

command. 

Nodes and Elements : 

Nodes and elements are created by generating the mesh. Also, they can be created 

independently by creating nodes and then creating elements from nodes. I-DEAS also 

allows the option of modifying nodes and elements once they have been generated. 

Also, if the user doesn't like the generated mesh, he can generate a new mesh but 

before that, he has to delete all the existing nodes and elements in that particular mesh 

area or volume. 

Material and Physical Properties : 

At the time of creation of mesh areas, I-DEAS gives user the option of defining the Mate-

rial and Physical properties of the object or accept the default values. Most of the times, 

user just accepts the default values to concentrate more on mesh areas at that time. 

Default values are actually the values for ordinary Steel. There are two separate menu's 

in the mesh creation task which manage the Physical and Material properties which can 

be changed anytime by the user. 

(6.4) Boundary Conditions Task  

The boundary conditions task in I-DEAS is used to define the constraints and restraints 

on an object. It is also used to define the magnitude and type of loading acting on the 

object. Since the object may be under different loading conditions at different times, 

IDEAS provides case management. A case set defines one particular condition of loads 

and restraints on an object and more than one case sets can be defined for an object. 

(6.5) Model Solution Task :  



The finite element problem is solved in model solution. Model solution task has further 

subtasks : 

(1) Linear Statics Task ; 

(2) Normal Mode Dynamics Task ; 

(3) Constraint Mode Dynamics Task ; 

(4) Heat Transfer Task ; 

(5) Forces Response Task ; 

(6) Potential Flow Task ; 

For static loading, linear statics task is used so only linear statics task will be discussed 

in detail here. 

Linear Statics Task : 

Linear statics task is used for solving finite element problems with static loading. First 

the user has to specify the case set he wants to use for solution, then he has to select 

the executive options, whether he wants the solution in interactive mode or batch mode 

etc. Then the user has to select the method of solution. Verification_Only method is 

used when the user just wants to check the any error in the model. Most of the time, 

Solution_No_Restart method is used . In this method, the solution stops the moment 

some error is found thus avoids unnecessary calculations. The most important task 

before the problem is solved is to select the types of output needed. Output_Selection 

menu is used to select the type of output needed, for example displacement, stresses, 

reaction forces, strain energies etc. . Ultimately when all the formalities are done, 

Solve_Linear_Statics provides the solution. Depending upon the complexity of the prob- 



lem, IDEAS might take one to twenty minutes in general to get the solution. 

(6.6) Post Processing Task  

Once the solution has been prepared in the model solution task, the results are viewed, 

interpreted and processed in the post processing task. The first step is to go to analysis 

dataset selection menu to choose the type of result which the user needs to view. Then 

depending upon the requirement, there are Contour, Criterian and Deformed Geometry 

options to view the results. A plot of stresses can be taken using XYZ_Plot menu. The 

most important and most commonly used option is Contour. It gives the distribution of 

stresses or forces or strain energies over the selected group of elements and is best to 

visualize the results. 

(6.7) ADAPTIVE MESHING  

Adaptive meshing task is used to get an optimal mesh for getting best results. Adaptive 

meshing can be done on the following two basis : 

(1) Elemental Distortion 

(2) Analysis Results 

(1) Elemental Distortion  : 

Sometimes the mesh generated in the mesh creation task has elements with distortion 

exceeding the allowable limit. Adaptive meshing technique analysis the distortion sum-

mary of the existing mesh, locates the elements to be modified and then modifies the 

mesh to bring the elemental distortion down to the allowable level. 

(2) Analysis Results : 

This is the most common use of adaptive meshing to get a better solution. Most of the 



time, the refinement is done based upon the strain energy distribution. This technique 

analysis the strain energy distribution over the object and identifies the regions which 

need refinement for getting a better solution and then refines the selected regions. The 

desired refinement may not take place in a single step, so it is an iterative process and 

can be continued till acceptable results are obtained. 

Method of Modification :  

The method of adaptive meshing can be choosen depending upon the type of the prob-

lem. I-DEAS uses the following methods for adaptive meshing : 

(1) By moving nodes 

(2) By splitting elements 

(3) Complete Remesh 

The first method just shifts the node positions to get optimal mesh and is used only when 

smal changes in mesh are required. The second method splits the current elements to 

get more elements in the required region to refine the mesh and the third method gener-

ates a completely new mesh. The user can combine these methods to get better results. 

Most of the times, method one and method two are used in tandom to get the benefits of 

both. The second method works only when a surface is attached to the selected mesh 

area. Because of this reason, the second method is mostly used when we start with 

mapped meshing as mapped meshing generates a surface on the mesh area using 

Coon's patch technique. Complete remesh method is usually used when the user starts 

with automatic free mesh. 



(6.8) OPTIMIZATION  

After the part has been completely analyzed, optimization task is used to optimize the 

design. The following steps have to be followed by the user to achieve optimization : 

(1) To create an optimization design model 

(2) To setup optimization 

(3) To control solution 

(4) To solve 

(5) To check for solution errors 

(6) To view the results 

(7) To update Finite Element model 

To Create An Optimization Design Model : 

In this step, the user has to create or activate an optimization design model which will 

store all the optimization results. This is done in the Manage_Designs menu of the opti-

mization task. 

To Setup Optimization : 

This is the most important step in the optimization process. This is done in the Setup-

Optimization menu. The whole optimization problem is defined at this step. It has the 

following sub menus : 

(a) Optimization node group ; 



(b) Optimization element group ; 

(c) Optimization variables ; 

(d) Optimization constraint set. 

(a) Optimization Node Group  : 

Optimization node group includes all the nodes which are to be included in the optimiza-

tion problem. This group is very important for shape optimization problem as it optimizes 

the shape by node movement at the boundary. All the required node movement has to 

be specified in this menu. Care has to be taken avoid the distortion of the elements. 

This group only includes those nodes which are required to be moved for optimization. 

(b) Optimization Element Group : 

Optimization element group includes all the nodes which are to be included in the optimi-

zation problem. In case of shape optimization, since the whole object has to be opti-

mized to obtain an optimal shape, all the elements are included in the optimization 

element group. 

(c) Optimization Variables : 

This menu is used to define all the variables for the given optimization problem. In case 

of shape optimization, shape is the variable so user chooses shape redesign as the vari-

able. 

(d) Optimization Constraint Set : 

Optimization constraint set is created to define the constraints of the optimization prob-

lem. Most common constraints are stress constraint, deformation constraint and mass 

constraint. 



To Control Solution  : 

Once the optimization problem is defined, it is necessary to specify the type of output 

desired, which is done in the Control Solution menu. The following selections can be 

made using IDEAS : 

Method  : 

The user can define the method according to the type of problem, for example Linear 

Statics is choosen for a problem with static loading. 

Iteration Control  : 

Iteration control can be provided to limit the iterations. Also convergence is defined here. 

In the case of shape optimization problems, since there is no iterations, it is specified as 

zero. 

Output Selection : 

Here the user chooses the type of output needed like stresses, displacement etc. 

To Solve  : 

Finally when everything has been set, the problem is given to optimization solver for 

solution. 

To View the Results  : 

After the optimization problem has been solved, the results are viewed by going to Dis-

play_Results menu. The optimized object can be viewed, its iteration history, mass his-

tory, stress history can be observed apart from other things. This menu is similar to post 

processing task. 

Update Object  : 



Once the optimized object has been viewed, if the user is satisfied with the result, he can 

transfer the result to his original finite element model. In other words, he can update his 

finite element model. Sometimes in shape optimization problem, a situation might arise 

where the user may want to modify the shape in the pattern specified but he might like to 

modify the object at a smaller magnitude or may be bigger magnitude, thus an option is 

provided in IDEAS at the time of update by which the user can do so. Thus after the 

original finite element has been updated, the user has the optimized object for presenta-

tion. But in the case of shape optimization, since it is not iterative process, the updated 

model is only a step towards the final desired shape. The whole optimization process is 

repeated again and again until the final desired optimized shape is obtained. 

In this chapter we discussed the use of IDEAS for shape optimization problem with 

emphasis on shape optimization. The next chapter discusses the use of IDEAS for the 

shape optimization of a given design of wall bracket. 
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Fig (7.1) gives the detailed geometry of the Wall Bracket before the optimization process 

Flow chart (7.2) shows the process involved in the Shape Optimization using IDEAS. 

The following steps are involved : 

(7.1)  Solid Modeling of the initial object 

The given wall bracket has a uniform thickness, so we make a profile of the wall bracket 

in the construction geometry task using the given dimensions and the extrude it in the 

create menu of the object modeling task to obtain the desired solid model of the object 

as shown in the fig. 0. 

(7.2) Finite Element Modeling 

There are two ways to start the Finite Element Modeling of an object : 

(1) Transfer the data from solid modeling ; 

(2) Creation of a new wireframe in the geometry modeling task of the finite element mod-

ule. 

Both ways are quite feasible in the Finite Element Analysis Wall Bracket but since the 

thickness of the wall bracket is too small and uniform, it was decided to analyze it by 2-d 
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Yield Stress = 8.0E08 N/m2 

Density = 0.00761 Kg/cm2 

Thickness = 0 3 cm 
E=20.74E06 

INITIAL DESIGN 

Fig. (7.1) 
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Fig. (7.2) Shape Optimization using IDEAS 
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modeling (easy and quick), for which creation of a new wireframe is quite convenient so 

a new wireframe was created for finite element modeling. 

(7.2.1)  Creation of wireframe  

Wireframe was created in the create wire menu of the geometry modeling task. It was 

done by first making circles at the three points, then tangents were drawn to these cir-

cles, unwanted curves were trimmed in the modify menu using divide curves method 

and then join curves option to get the final desired wireframe. 

(7.2.2) Choice of meshing 

It was decided to have automatic and free meshing because of the obvious and already 

discussed benefits they provide. 

(7.2.3)  Formation of mesh areas  

This is done in mesh generation task. Auto-create option was used to create a single 

mesh area for the whole object. The advantage of this method was easy and accurate 

definition the three holes present in the object. Without auto-create option, it is very diffi-

cult and cumbersome to define a hole in finite element modeling. 

(7.3) Mesh Generation  

This is also done in the mesh generation task. The most important step at this point is 

the right choice of element type. Thin quadrilateral shell elements have been choosen 

in our case. Local mesh elements were defined at the two support holes to give a finer 

mesh at those areas for better results. 

With generation of the required mesh, the next step is to check the nodes and elements 

The mesh area was checked for free edges and no free edges were found. Nodal coin-

cidence was checked to remove unwanted coincident nodes. No coincident nodes were 

found. Similarly element coincidence was checked and no coincident elements were 
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found. Also all the elements were checked for interior angle and distortion and all the 

elements were found to be within the allowable limits. The elemental bandwidth and 

nodal wavefront were also optimized. 

(7.4)  Boundary Conditions  

This is done in the boundary conditions task. At this step, we define the loading and 

the restraints on the wall bracket as shown in fig. . The nodes on two support holes are 

fixed and the load is applied on the top of hole as shown. After creating the load set and 

the restraint set, a Case Set is defined to be used for Model Solution. 

The last step before going for the model solution is to define the Physical and the Mate-

rial Properties of the object. This can be done right at the time of formation of the mesh 

area but can be postponed till the end by accepting default values at that time. Most 

important Physical property is the thickness and important Material Properties are 

Young's Modulus of elasticity, Poisson's Ratio, ultimate strength, yield strengh etc. 

(7.5) Model Solution  

The case set defined in the boundary conditions task is used in the model solution task to 

obtain the final solution. The analysis data set is formed in the Execution Options 

menu to select the type of output needed and then model solution is obtained for further 

analysis in the post processing task. 

(7.6) Post Processing 

This is done in Post Processing task. First we go to Analysis Dataset Selection to 

select the type of output to be processed from the analysis dataset. Then we go to con-

tour menu to view the results in different formats. Deformed geometry can be viewed by 

going to deformed geometry menu. In the post processing, the display options play 

major role in the depicting of results in various forms. Arrow plot menu gives us the 

option of having the arrow plot. A plot of stresses is taken by going to XYZ Plot menu 
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(7.7) Shape Optimization of Wall Bracket  

Till now, we were just analyzing the initial wall bracket. Now comes the real task of 

shape optimization. Once we have analyzed the existing design, we get a fair idea of the 

areas which could be trimmed to get the final optimized shape. First we create a design 

model using manage designs. The next step is to define the optimization problem, so 

we go to setup optimization menu. First we create an optimization node group to 

select all the nodes for which we need to change the position. Then we define the dis-

placement of each of the selected nodes. This is a very tedious process as we don't 

know how the displacement of each node is going to affect all the related elements and 

we have to keep the element distortion within limits to avoid misleading results. The 

best thing is to sketch the modified nodes after the changes to visualize the node move-

ment. The next thing is to form an optimization element group. In this problem we 

include all the elements in the optimization node group. Nextly we have to define the 

optimization variables, we choose shape redesign as the variable. The last thing in the 

setup routine is to define the optimization constraint set. Since we just have to bother 

about the upper limit of the stress, so Max. Stress is the only constraint we have. 

After the problem is defined, the type of solver to be used and the type of output required 

is defined in the Control Solution menu. Linear Statics method of solution is used. The 

kind of output needed like stresses, displacement etc. are chosen in the output selection 

menu. Finally the problem is given to the solver to sove. 

After the solution has been obtained, the results are viewed the most important things in 

this case are the elemental distortion, max. stress and the weight reduction. If the 

results are good then the finite element model is updated to include the optimization 

changes, and the next optimization cycle is started until the final optimized shape is 

obtained. 

This chapter discussed the procedure involved in the shape optimization of wall bracket. 

The next chapter discusses the results and the conclusions drawn from that results. 
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(8.1) Results:  

Fig. (8.1) shows that the wall bracket before the optimization has a weight of 310 grams. 

Fig. (8.2) shows the shape optimized wall bracket, which has a weight of 188 grams, so 

the net weight reduction due to the optimization process is 39.35% which are good sav-

ings. 

Fig. (8.3) shows the stress distribution over the initial wall bracket, from where we 

identify the areas with lower stresses, which are at the sides, bottom and inside hole. 

Fig.(8.4) shows the shape and stress distribution after two steps, the weight at this stage 

is 268 grams, max. stress is 3.94E08 N/m2. Fig.(8.5) shows the shape and stress distri-

bution after three steps, the weight at this stage is 242 grams, max. stress is 5.61E08. 

Fig. (8.6) shows the finite element mesh at this stage, which shows a lot of distorted ele-

ments, so the next few steps only try to minimize the distortion of the elements. Figures 

(8.7) and (8.8) show the stress distribution over the object at these steps. It can be 

noticed that due to minor change in shape at the upper neck, the weight has been 

reduced slightly to 240 grams and the more accurate solution gives the maximum stress 

at 5.59E08. Fig. (8.9) shows a further decrease in weight, to 233 grams by taking out 

material at the inner section which is virtually stress free and also the stress has 

reduced to 5.55E08, which is just because of change in element shape. Practically, the 
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weight loss at this step doesn't affect the max. stress at all. Fig. (8.10) shows the results 

of the next shape optimization step. The weight has been reduced to 200 grams. An 

interesting observation made here is that the maximum stress has rather reduced to 

5.52E08, which is due to change in element shape. Practically, the weight loss at this 

step doesn't affect the max. stress at all. Fig. (8.11) shows the final step output of the 

shape optimization. The weight has been reduced to 188 grams and the maximum 

stress is shown as 5.52E08. A closer look at the solution shows that there is a great pos-

sibility of inaccurate solution because of high elemental distortion, which was proved 

right as the next optimization step tries to minimize the elemental distortion for the same 

shape, and the results are as expected. Fig. (8.12) shows that maximum stress is 

increased to 5.63E08N/m2,which is still within the allowable range. At this stage, the 

side elements have high aspect ratio, so more elements are added at the side and the 

mesh is further refined to get a final max. stress at 5.58E08 N/m2. Fig. (8.13) shows the 

final shape and the stress distribution over the final shape. Fig. (8.14) shows the shaded 

image of the final shape. Fig.'s (8.15) and (8.16) show the plots for stress distribution 

over the nodes and the elements respectively. 

INITIAL WEIGHT = 310 grams 

FINAL WEIGHT = 188 grams 

%age Weight Reduction = 39.35% 

(8.2) Evaluation of IDEAS package for Shape Optimization  

Fig. (8.17) shows the output of the same model using ANSYS. The results obtained from 

Ansys are similar to those obtained from IDEAS. ANSYS does not work well when there 

is elemental distortion, which is unavoidable in Shape Optimization. Otherwise, the 

results from ANSYS are more accurate. Thus ANSYS is more accurate while I-DEAS is 

more flexible as well as user friendly. This thesis tries to take the advantage of both. 

As is clear from the excellent results obtained for shape optimization of wall bracket, I-

DEAS is a very good package for shape optimization problem. Still there are certain 



areas which can be improved to make it a better package. The shape optimization pro-

cess, as done by I-DEAS is semi-automatic. Only the mesh generation is automatic, if 

desired. The identification of lower stress areas as well as boundary change is manual 

and may not be efficient. It is suggested that it should have adaptive shape change 

capability. It is a current research problem but there is still one area, which could be 

improved. The suggestion is to have an algorithm for adaptive mesh refinement during 

the shape optimization process to avoid high elemental distortion. It is possible as I-

DEAS does have adaptive mesh refinement capability. The only thing to be done is to 

combine it with shape optimization process. It will make the shape optimization process 

more convenient and faster and thus increase its efficiency. 

(8.3) Conclusion :  

The thesis was started with two objectives : 

1. To study the shape optimization process. 

2. To use IDEAS package for shape optimization of wall bracket. 

The process of shape optimization was studied in detail. The methods of representing 

the boundary shape during shape optimization were studied. The recently developed 

techniques for automatic mesh generation were also studied. 

In the second part of the thesis, shape optimization of wall bracket was done using I-

DEAS. As discussed before, the weight of the wall bracket was considerably reduced. 

Thus both the objectives were satisfactorily achieved. 

(8.4) Scope for Future : 

Shape optimization as of today is limited mostly to 2-dimensional applications. It is 

applied to three dimensions only in very simple cases. There is a tremendous scope of 

shape optimization as applied to complex three dimensional shapes. Artifitial limbs, 

Aerospace, Automobile industry etc. are only a few of the vast applications it can have 

with three dimensional capability. A lot of research is going on in this field and even more 

research is needed to achieve the desired goal. I personally feel that shape optimization 

has a tremendous scope for the future. 
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