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ABSTRACT 
Computational Aspects of a Three 

Dimensional Non-Intrusive 
Particle Motion Tracking System. 

by 
Avadhani S. Ashok 

Development of a technique for non-intrusive particle motion tracking in three 

dimensions is considered. This technique is based on the principle of magnetic induc-

tion. In particular, the determination of the position and onentation of the particle from 

the information gathered is the pnncipal focus of this thesis. The development of such a 

system is motivated by the need to understand the flow patterns of granular material. 

This is of cntical importance in dealing with problems associated with bulk solids 

flows which occur in almost all industries and in natural geological events. A study of 

the current diagnostic techniques reveals the limitations in their ability to track the 

motion of an individual particle in a mass flow of other particles. These techniques fail 

when the particle must be tracked in three dimensions in a non-intrusive manner. The 

diagnostic technique we consider results in an unconstrained minimization problem of 

an overdetennined system of nonlinear equations. The Levenberg-Marquardt algorithm 

is used to solve such a system to predict the location of the particle. The viability of this 

technique is established through simulated and actual expenmental results. Practical 

problems such as the effect of noise are considered. Directions for future work are pro-

vided. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

Expenmental studies are essential to validate theories for complex systems and may 

even be the only source to gam msight in cases where the theoretical models and solu-

tions are unavailable. A diagnostic technique is considered to experimentally obtain data 

to validate developing theories of granular flow which has applications in bulk solids 

handling in many industries and in natural geological events.  

1.2 Bulk Solids Handling 

Today, the variety of matenals being handled in bulk is almost endless. It ranges in size 

from fine dust to rocks introducing a high degree of complexity into the understanding 

of its flow. Examples of bulk solids handling can be found in almost every kind of indus-

try and the problems associated with the design, installation and operation of plant for 

the storage and transport of matenals in bulk are many and varied. Hence considerable 

attention has been devoted in the technical literature to the problem of bulk solids han-

dling. Interest in the problem was aroused by the epidemic of flow stoppages in coal 

bunkers of steam power plants predominantly in the United States (Stepanoff 1969). 

The principle concerns are those of maintaining an uninterrupted flow of bulk sol-

ids granular matenal by avoiding the phenomena of arching, doming and bndgmg with-

out compromising the safety aspects under all possible conditions. 

Bulk matenals can take the form of granulated substances, crushed rock, powdered 

materials such as flours, sand and cement, or slurries and liquids. The problem of trans-

port of solids in suspension is closely connected with the problem of storage of grain and 



pulverized solids. Thus storage facilities for bulk solids represent an important part of 

the equipment for a number of major industries handling materials such as grain, coal, 

ore, sand, gravel, cement and flour. The storage of bulk material in the form of powder 

and other granular materials is usually done in tanks, bins, hoppers, bunkers, silos, etc. 

and is usually transported through chutes, channels, conveyors, pipes, etc. 

A good understanding of the nature of bulk solids flow is an essential prerequisite 

to the design of virtually any system involving the storage or handling of such materials. 

There are innumerable examples in industry of problems that have been attributable to 

insufficient attention being paid to the properties of the bulk solid involved. Failure of a 

material to discharge from a storage hopper, blockage of a pneumatic conveying line and 

uncontrollable flushing of material through a weigh-feeder are typical of lesser prob-

lems. More serious problems include dust explosions and other mechanical damages. 

There are many records of serious mechamcal damage occumng to bulk solids storage 

vessels, notably grain silos, as a result of an apparent physical weakness of the vertical 

walls. Investigations subsequently showed that the problem was basically due to the fail-

ure of the designer to appreciate that during discharge of the material from the bin or silo 

the lateral pressures developed could be considerably greater than existed with the mate-

rial at rest. 

Many bulk particulate solids, when dispersed in air to form a dust cloud, constitute 

a potentially explosive mixture which may be ignited by a naked flame, a hot surface or 

an electrical discharge. The range of products that are hazardous in this respect is quite 

wide and includes common foodstuffs such as sugar, flour and cocoa; synthetic materials 

such as plastics, chemicals and pharmaceuticals; metals such as aluminium and magne-

sium; and traditional fuels such as coal and wood. 

Whilst there are certainly some similarities between the flow characteristics of 

bulk solids and liquids, it is more appropriate to model a bulk solid as a plastic solid than 



as a fluid continuum. In general, it is much easier to handle liquids than dry materials. 

Vanation of the properties of solids with time is the main cause of the difficulties. 

Bulk solids at rest can transfer shearing stresses and, in many cases, possess suffi-

cient cohesive strength after consolidation to retain their shape under pressure. Further-

more, when a bulk solid "flows" slowly, the shearing stresses within it are dependent 

upon the mean pressure to a much greater extent than the rate of shear. Thus, there are 

distinctive features of liquids which are not shared by bulk solids. The ability of a bulk 

solid to flow may be regarded as the summation of a number of different effects, but it 

is essentially concerned with the forces of attraction between constituent particles. Thus, 

when these forces of attraction are low, the bulk material can easily be made to flow 

under the influence of gravity with the particles moving as individuals relative to one 

another. Dry sand and granulated sugar are familiar examples of free - flowing matenals. 

However, the high interparticle forces, which may be caused by such effects as moisture 

or electrostatic charging and are especially pronounced in very fine materials, result in 

a tendency for agglomerates to form so that the matenal flows in an erratic manner as 

"lumps", if indeed it flows at all. Examples of cohesive materials which usually exhibit 

this sort of behavior are flour and cocoa powder. 

Even the prediction of the flow rate in various circumstances is somewhat of an 

intractable problem. Because of the complex nature of the gravity flow of bulk solids 

there is as yet no single convenient method that leads to a consistently reliable prediction 

of discharge rates for the full range of matenals and various designs of bins and hoppers. 

Indeed, for matenals of a fine cohesive nature no method has yet been developed that 

could be confidently recommended to the designer of storage vessels. 

The assessment of the flow charactenstics of a bulk solid is very much a matter of 

judgement based on experience assisted by evidence provided from various tests. These 

tests measure voidage and bulk density, particle density, size, shape, surface area, hard- 



ness, cohesion and adhesion, angle of repose, wall friction, moisture content, explosive- 

ness, etc.  

At the present time our level of knowledge is not sufficient to enable a reliable pre-

diction to be made of the behavior of a bulk solid solely from the characteristics of its 

constituent particles. Expert knowledge of conveying of solids is denved by building 

full scale models which is a very inefficient way to design the handling and storage sys-

tems. The theory available from textbooks is more useful as a guide than as a complete 

answer to a problem (Allegri 1984). 

Thus there is clearly a need for developing a diagnostic technique to study the flow 

characteristics under various conditions. The present methods exhibit fundamental inad-

equacies in that they are either not non-intrusive or not three dimensional or both. The 

presently available techniques are discussed in detail in the next Chapter. 

1.3 Statement of the Problem 

Expenmental investigation of the flow patterns of granular matenal undergoing flows 

and other mechanical disturbances poses many formidable difficulties. The most prom-

inent of these is the problem of obtaining measurements of individual particle motion in 

a non-intrusive manner. Expenmental studies are essential in order to gain insight into 

the behavior of systems involving flow of solids, liquids and/or gases for which exact 

theoretical models and solutions are not available for most system configurations. In the 

past, experimental studies for dry granular flows have employed vanous techniques in 

order to obtain pertinent data. Measurement of individual particle velocities, in particu-

lar angular velocities, have been very difficult using these techniques. Such measure-

ments in full three dimensional flows have not been reported. There is obviously a need 

for developing a technique for measuring the three dimensional position of an individual 

particle in a mass of other particles. 



In this thesis, the development of a non-intrusive tracking system is described. 

This system is based on the principle of radiosonde transmitters coupled to a set of 

receiving antennae through magnetic induction. Feasibility of such a system is estab-

lished unequivocally. The proposed system has many crucial stages. But, the focus of 

this thesis is on the development of the techniques and algorithms to compute the three-

dimensional position and orientation of the particle from the data obtained in the exper-

iments. 

1.4 Overview of the Remaining Chapters 

Chapter 2 discusses the flow of bulk solids in chutes and the various diagnostic tech-

niques that have been developed for similar experimental studies and provides the goals 

to be met by any new method to mimmize, if not totally eliminate the limitations of the 

present techmques. 

Chapter 3 presents the pnnciples and the methodology of our experimental tech-

mque. Different methods to obtain the three-dimensional position and orientation are 

discussed. 

Chapter 4 discusses the numerical methods employed to solve the nonlinear over-

determined system which arises in our attempt to track the trajectory of a particle. 

Chapter 5 provides the results obtained from simulated data and from actual exper-

imental data. The effect of noise in the signals is considered and it is shown that the algo-

rithms are stable and converge even under these conditions. 

Appendix A presents bnefly the important properties of bulk solids. The phenom-

ena of arching or doming which is an important cause for flow stoppages is discussed in 

Appendix B. The solution to elliptic integrals which arise in model #2, discussed in 

Chapter 3, is provided m Appendix C. Homogeneous coordinates and transformations 

are used in generating the relative positions and orientations for each transmitter- 



receiver pair and is discussed in Appendix D. In using the numerical methods of solution 

we discuss the convergence rates of various methods. The terms associated with the con-

vergence is defined in Appendix E. 



CHAPTER 2 

TECHNICAL BACKGROUND 

2.1 Introduction 

In this chapter we discuss the flow of bulk solids in chutes briefly as our diagnostic tech-

nique can be directly used to study the flow pattern in such flows. We also discuss the 

currently available diagnostic techniques to study the flow parameters in the flow of dry 

granular matenal. This will provide the background for the development of our tech-

mque discussed in the next chapter. 

2.2 Flow of Bulk Solids in Chutes 

2.2.1 Introduction 

There are many instances in bulk solids handling installations of gravity flow of a par-

ticulate or granular matenal along an inclined channel or chute. For example, where a 

bulk solid is to be discharged at a point below and to the side of a hopper outlet, it would 

be common practice to rely on gravity flow through a simple transfer chute. In such sit-

uations both straight and curved chutes are used. 

Amongst common applications of transfer chutes for bulk materials, perhaps the 

most familiar occurs at the loading point of a belt conveyor. In this case it is important 

that the horizontal velocity component of the matenal leaving the chute is matched to 

the velocity of the belt in order to mimmize the acceleration of this matenal and so effect 

reductions in power consumption and belt wear. Other situations may require that the 

exit velocity is as large as possible and of a direction to obtain the maximum possible 



"throw" of the flowing matenal. Thus it is important that the design of gravity-flow 

chutes and channels is undertaken in the fight of a clear appreciation of the charactens-

tics of flow in such situations. 

2.2.2 Flow Patterns in Straight Inclined Chutes 

Bulk solids in gravity flow may be expected to exhibit two possible modes: varied flow 

or uniform flow. But these terms do not exactly correspond to "rapid" and "tranquil" 

flow used to descnbe liquid flow in channels. 

If a particulate bulk solid is fed into a steeply inclined straight chute or channel of 

constant width, "fast flow" occurs, with the matenal accelerating, and consequently the 

depth of the flowing bed decreasing, until some steady condition is achieved, at which 

the downward component of the gravity force is balanced by the vanous drag forces on 

the particles (Figure 2.1a). If the slope of the channel is decreased, the rate of accelera-

tion will also decrease, since the component of the gravity force on the material is 

smaller. As the slope of the channel approaches the angle of internal friction (0) of the 

bulk solid, the flow tends to become uniform. This condition of fully - developed flow 

at constant depth or "slow flow" is observed in straight chutes or channels at relatively 

shallow inclinations, normally only in the very restricted range between the angle of 

repose (a) and the angle of internal friction (0) of the bulk solid concerned 

(Figure 2.1b). 





Placing an obstruction near the downstream end of a chute in which a bulk solid is 

flowing in the fast mode can cause a surge wave or stationary jump (sometimes called a 

"granular jump") to occur in much the same way as a hydraulic jump occurs in a flowing 

liquid (Woodcock & Mason 1987). 

2.2.3 Flow Patterns in Curved Chutes 

The general flow patterns that may be observed when a bulk solid flows through a 

curved, enclosed chute are illustrated in Figure 2.2. As with straight inclined chutes, two 

modes of flow have been observed to occur, termed "fast flow" and "slow flow" accord-

ing to whether the stream of matenal is accelerating or travelling at a uniform slow 

velocity. 

Figure 2.2a shows the general case of fast flow in which the particulate material 

first accelerates as it falls freely from a hopper into the chute, but then decelerates as a 

result of the curvature of the channel and the decreasing slope of the bottom sur-

face.There exists an "optimum cut-off angle" (0co  in Figure 2.2b) at which the velocity 

of the stream is a maximum and the stream thickness is a mimmum. Ideally the chute 

should be terminated at this optimum cut-off angle, since any additional length of chute 

will result in an increase of stream thickness, frequently leading to an unstable flow con-

dition (Figure 2.2a). 

When the cut-off angle exceeds the optimum value, it is quite possible for the 

thickness of the stream at the lower end of the chute to increase to the point where the 

flowing matenal comes into contact with the top surface of the chute. The velocity of the 

stream of bulk material will then be considerably reduced and a surge wave travels 

upstream as illustrated in Figure 2.2c. This surge wave indicates a change from "fast" to 

"slow" flow as the channel becomes completely full of the bulk solid which is then in 

contact with all four internal surfaces (Figure 2.2d). 



Even a temporary obstruction to fast flow in a chute having a cut-off angle greater 

than the optimum value can be sufficient to initiate a change to slow flow. Indeed, if the 

cut-off angle is too large (Figure 2.2e) the chute may become choked and flow cease 

altogether, or flood over the sides if the chute is not enclosed. In order to ensure that fast 

flow is maintained in a curved chute, the cut-off angle should not exceed some limiting 

value Of which depends upon the sliding friction between the particulate material and 

the internal surfaces of the chute. 







2.3 Background on Existing Techniques 

2.3.1 Classification 

The experimental investigations (Tuzun et al. 1982)of the flow fields produced by gran-

ular solids employ a variety of techniques some of which are described below. The 

choice of a particular method seems to be decided by two primary considerations: 

(1) the depth, i.e. the three-dimensionality of the flow field under investigation; 

(2) the nature of the flow parameters to be measured. 

The majority of the experimental work is carried out with two-dimensional, plane 

strain equipment which restricts observations to a single plane. Due to the much 

increased complexity of the three-dimensional experiments the complexity of the prob-

lem is reduced with the assumption of axial symmetry which reduces it to a 2-D problem 

despite the wide scale use of 3-D bunkers in industrial processes. 

Aspects of the flow field which are of practical interest are given by the distribu-

tions with respect to time and position of: 

(1) the components of particle velocity; 

(2) the interstitial voidage and hence the bulk density; 

(3) interstitial fluid pressure (not for dry granular flow); 

(4) interparticle stresses. 

The experimental techniques used to gather information are either "continuous flow" 

type or "stop-start" type and may be classified as: 

• Tracer Techniques 

■ Direct Detection 

❑ Visual and Photographic work 

❑ X-ray and y-ray investigations 

❑ "Flow freezing" techniques 



■ Remote Detection 

❑ Radio-isotope 

❑ 

❑ Magnetic tracer 

• Probe Techniques 

■ Obstacle probe 

■ Capacitance probe 

■ Fibre optic probe 

2.3.2 Tracer Techniques 

Motion of distinct tracers within bulk materials are followed either directly or with the 

aid of remote detection equipment. The accuracy of the measurements is thus a direct 

function of the ability of the tracer to closely follow the bulk flow. It has to be ensured 

that there is no preferential segregation of the tracer from the bulk matenal. Otherwise 

irreproducible and hence inaccurate measurements will result. Preferential segregation 

of the tracer from the bulk matenal can result from differences in either size, specific 

gravity or frictional properties. The tracer movements may be followed continuously or 

by "stop-start" mode which is useful in the study of transient effects. 

2.3.2.1 Visual and Photographic Work: Many investigators have made visual 

observations of the flow field next to a transparent wall plane using distinct dyed tracers. 

But this provides only the qualitative measurements. Hence, others have determined 

velocity fields with the use of high speed photography (Drake 1991). Long-exposure 

time photographs of the flow field have also been used to detect changes in the shape and 

position of the flow boundary during continuous discharge. An alternative way of ana-

lyzing photographic data is the "stereoscopic technique". Photography can also be 



employed to reveal the voidage distribution within a plane-strain bin with transparent 

walls if the bulk material is also transparent. 

2.3.2.2 X-Ray and y-Ray Investigations: X-ray radiography (Bransby et al. 

1973) is used in place of photography to study flow m bins of relatively large depth/ 

width ratios. An X-ray source is used to pass radiation through the matenal in the bunker 

and expose the radiographic film placed behind. The radiographs exposed at different 

stages of flow help to build a dynamic picture of the flow pattern. The voidage profiles 

within the flow fields may be measured using a y-ray absorption technique. A caesium 

source is employed to beam y-radiation through the silo contents and a detector placed 

at the back is used to measure that part of the beam not absorbed by the bulk material. 

2.3.2.3 "Flow-Freezing Techniques": Layers of colored matenal are placed at 

various heights dunng the initial filling of the bunker. The flow fields corresponding to 

different time intervals after the start of discharge are obtained by closing the onfice at 

a given time and "freezing" the bunker contents in a cast of self-hardening substance. 

The flow patterns at different planes can then be investigated by cutting longitudinal 

slices of appropriate thickness of the resulting solid cake. 

2.3.2.4 Radio-Isotope Tracer: McCabe (1974) has measured particle trajectories 

within the converging flow zone immediately above the discharge port from a cyhndri-

cal bunker. The trajectories were traced using gold isotopes. The tracer was followed 

using a mobile isotope scanner (Lin et al. 1985). 

2.3.2.5 Radio-Pill: Radio-pills have been used extensively for measurements of 

internal pressures within a flowing medium as well as the velocity distributions. The 



pills used for velocity measurements transmit radio signals at a set frequency thereby 

indicating the position of the pill within the flow field as a function of time. To measure 

the internal pressures within a flowing medium, Perry et al. (1970), Rao and Ven-

kateswarlu (1975) have placed a pressure sensitive diaphragm inside the radio-pill. In 

this case, the frequency of the signals obtained from the pill is allowed to vary according 

to the external force exerted on the diaphragm. 

2.3.2.6 Magnetic Tracer: Smallwood and Thorpe (1980) have determined the 

velocity distributions in cylindrical bunkers by measuring the distribution of the resi-

dence times inside the bunker. The passage of the steel ball bearings was detected by the 

perturbations caused in the magnetic fields of the two coils placed around the entry tube. 

The residence time data thus obtained is inverted by numerical integration to yield the 

corresponding velocity distribution. 

Nuclear magnetic resonance (NMR) and electron magnetic resonance (EMR) are 

closely related in principle. NMR senses the nuclei of a selected species contained 

within a material while EMR senses the free or unpaired electrons present. Both require 

that the sample material be exposed to a strong static magnetic field. Detection is then 

accomplished by sensing the interactions between an applied electromagnetic field and 

the magnetic moment of the subatomic particles of interest. 

In the specific case of NMR (Altobelli et al. 1991) the flowing matenal enters the 

permanent magnetic field and undergoes nuclear magnetization. It then enters a second 

magnetic field where resonance occurs when the correct radio-frequency signal is 

applied. A modulating magnetic field creates demagnetized pockets and the modulating 

effects are detected by a final RF detector coil. The magmtude of the NMR response is 

proportional to the number of appropnate nuclei (EMR proportional to unpaired elec-

trons) and the modulation provides velocity information (Beck et al. 1987). 



2.3.3 Probe Techniques 

A number of methods using specially designed probes are used for measuring flow prop-

erties in conveying media with low solids content. 

2.3.3.1 Obstacle Probe: McCabe (1974) has measured the plug flow velocities in 

cylindrical bins using an obstacle probe. A 4 cm. diameter horizontal disc is attached to 

a fine steel wire which is allowed to slide freely in a flexible cable supported from the 

top of the silo. The velocity of descent during discharge is followed by observing the 

rate at which the steel wire enters the flexible cable at top. Another variation is the mea-

surement of the drag force exerted on an obstacle suspended within the flowing material. 

The local velocity is then calculated from the measured drag force (Oh et al. 1977). 

2.3.3.2 Capacitance Probe: Lockett (1967), Hancock (1970) and Burkett et al. 

(1971) have used capacitance plates to measure local values of the interstitial voidage in 

plane-strain silos. This method consists of measuring the change in capacitance between 

two fixed plates of a small capacitance probe due to a change in voidage of the material 

between the plates. 

2.3.3.3 Fibre Optic Probe: Old et al. (1977) report that with the use of a light-

detecting circuit and an automatic signal correlator device, the velocities as well as the 

sizes of individual particles can be measured within a field of high solids flowrate. The 

probe consists of two pairs of small optical fibres which can be made of either glass or 

plastic. One fibre of each pair is used to illuminate individual particles and the other 

member of the pair detects the light reflected by the particles (Katsuya et al. 1975; Sav-

age 1978; Ahn et al. 1989; Louge et al. 1991). 



2.4 Limitations of Current Techniques 

We now provide some of the limitations of the vanous methods discussed above. Visual 

observations are mostly qualitative and for 2-D only. Usually the walls and the bulk 

material has to be transparent. X-ray radiography requires increasing amount of radia-

tion for a larger investigation area and bunker thickness. This can pose a health hazard. 

Also it provides no information as to the magmtude of flowing densities. Only a small 

section of the flow field can be covered using the y-ray investigation. Moreover, the 

facilities required tend to be expensive besides requiring specially trained staff. Flow 

freezing technique is messy and time consuming as it involves using a self hardemng 

substance. Secondly, it is rather difficult to distinguish the genuine flow deformation suf-

fered by the tracer layers dunng discharge from further possible distortions during cast-

ing and cutting of the solid cake. 

Radio-isotopes suffer from the problems of high cost, radiation safety and licens-

ing problems. Radio-pills make assumptions as to the directions of the principal stresses 

and their variation with time and position which are not valid in reality. Magnetic tracers 

suffer from an accumulation of errors which become significant near the bin walls. 

The probe techniques have the drawback at the outset itself because of their intru-

sive nature. The obstacle probe is suited for measurements in large-scale apparatus only. 

The parallel plate capacitors in the capacitance probe are subject to fringing electrostatic 

fields at their edges. Furthermore, the method can provide only one voidage reading over 

a relatively large cross-sectional distance at a given height. The fibre optic probe can 

give inaccuracies m the measurement of both the distance and the time of passage if the 

separation distance between the detecting points is small, while a given particle may not 

pass through both the points if the separation distance is large. 

Thus the current techniques cannot track the trajectory of an individual particle 

within a mass flow in three dimensions non-intrusively. Moreover, none of the present 



methods can detect the orientations of the particle or provide quantitative information in 

the whole region of the flow field. 



CHAPTER 3 

THE PROPOSED TRACKING SYSTEM 

3.1 Introduction 

In the previous chapter we discussed the various diagnostic techniques to study the flow 

parameters in the flow of dry granular material. We showed the limitations of the present 

techniques and clearly established the need for a new diagnostic technique to track the 

individual trajectory of a particle within a mass of particles non-intrusively in three 

dimensions. We also established the requirements to be met by the new method. 

In this chapter we describe in detail our technique to track the motion of a particle 

in a three dimensional flow of a mass of particles. We discuss the method of determining 

the position and orientation of the particle from the information obtained. 

3.2 Description of the Tracking System 

The proposed tracking system is a novel system based on the principle of magnetic 

induction coupling (Dave et al. 1992). Radiosonde transmitters (Tug 1989) mounted 

inside the particle to be tracked, henceforth called the tracking sphere, are coupled to a 

set of receiving antennae through magnetic induction. One or more orthogonally placed 

transmitters, which are basically loops of wire carrying currents at different frequencies 

are mounted inside the tracking sphere with its own power source (battery) to act as the 

"source" or the "emitter". Three or more large receiving antennae loops are orthogo-

nally positioned around the experimental space and serve as the "receivers" in which the 

voltages are induced by the pnnciple of magnetic induction. 

The voltage signals in the receiving antennae are first amplified using amplifiers, 

and then pass through bandpass filters and a 12-bit A/D converter. The digital data is 



recorded on the hard-disk of a IBM-PC AT486 compatible, which houses an AT-MIO-

16 multi function card controlled through the data acquisition LabWindows software. 

The data is sampled and recorded 100 or more times per second and each data sample 

consists of a set of receiver voltages. The data is then transferred to a SUN SPARC2 

workstation, where it is processed to compute the position corresponding to each set of 

receiver voltages. Figure (3.1) shows the block diagram of the complete system. 



3.3 The Principle of Triangulation 

The position of an rf electromagnetic source radiating at a fixed frequency may be com-

puted by applying the triangulation principle either on amplitude measurements or on 

phase measurements made at several different receivers. Triangulation based on the 

phase shift measurements is similar to many radar based position tracking and homing 

systems. The accuracy of position measurement depends on the accuracy with which 

phase shift can be measured. Another critical requirement is that of a stable frequency 

of transmission. For our application, measurements requiring better than 1/4" resolution 

demands phase shift measurements to an accuracy of better than one nano-second. Such 

systems would be expensive and unrealistic. A system based on amplitude triangulation 

would ideally require an isotropic radiator. Unfortunately, all practical sources are aniso-

tropic. Moreover, there are problems associated with reflected radio-waves from metal-

lic surfaces and the design of receiving antennae adequately. Hence, for the spatial scales 

in our applications, it is best if the triangulation is based on purely magnetic coupling 

between the transmitter and the receiver, with the transmitter frequency selected in order 

to minimize the effect of standing waves and reflections. To illustrate this concept, con-

sider a small loop of wire carrying a sinusoidal current /=/osin(t). This loop would 

behave like a small magnetic dipole, and would have a magnetic field around it. If 

another loop is placed anywhere in this magnetic field, then there would be a corre-

sponding voltage induced in it. The strength of the induced voltage would depend on the 

relative position and orientation between the loops. If the space scale is comparable to 

the size of the dipole, then the induced voltage would be a function only of the magnetic 

field strength and the relative position and orientation. 

To understand the principle of this system, consider for the time being that the 

motion of the tracking sphere in space is restricted such that its orientation is always the 

same, and is known. Also, assume that there is only one transmitter in the tracking 



sphere. In that configuration, for a given value of the induced voltage in a receiver, the 

sphere must be on a hypothetical constant-voltage surface around the receiver. By find-

ing the intersection of these surfaces of three or more receivers, one may find the loca-

tion of the transmitting sphere. In general, there may be more than one solution to the 

intersection problem. One can use, however, the motion continuity condition to resolve 

this situation. 

In practice, this approach is quite involved and becomes even more complex when 

the onentation also changes as in real experiments. Thus, the problem of determining 

the position and onentation from the measured voltages information, also called the 

"Inverse Solution problem", is not a trivial task. Several approaches to solve this prob-

lem are discussed in the next section. 

3.4 The Problem of Inverse Solution 

Every three dimensional location of the tracking sphere can be represented by six param-

eters, three for the position, and three for the orientation. Let x be the location vector, 

x = (xi  ,x2  ,x3,x4  j5,x6) , of a transmitter i inside the tracking sphere with respect to an 

external receiving antenna j. Then Vu, the voltage induced in receiver j due to transmitter 

i, can be expressed as a function of x: 

V j = g• (x) (3.4.1) 

If there are p transmitters and q receivers, then (3.4.1) represents m = pq nonlinear 

equations in six positional variables x. Here, we adopt the following terminology: For a 

given value of x, determination of 1/ is called the Forward Solution, while determina-

tion of x given the values of Vu  is called the Inverse Solution. 

One must have the Forward Solution available before it can be inverted. From the 

practical point of view, obtaining a good Forward Solution itself is a challenging prob-

lem. There are two cases for the Forward Solution; when a closed form solution exists - 



that is, gli(x) are known functions, and when a closed form solution does not exist or is 

very difficult to obtain. Closed form equations for the functions g11  can be obtained for 

simple transmitter-receiver geometries using the governing laws for magnetic induction 

(Gnffiths 1989). For complex geometries, closed form equations are difficult, if not 

impossible to obtain. In that case, the function map (fitting a function to discrete points) 

can be generated empirically by obtaining the experimental data. Therefore, the problem 

of Forward Solution can be solved either way. 

The Inverse Solution to equation (3.4.1) can be obtained in several ways, at least 

in principle. We consider three different approaches to this problem. The first approach 

is based on a brute-force method, where an exhaustive search of the solution space is 

conducted in the vicimty of the expected solution. The advantage of this approach is that 

it would work for both the cases of Forward Solution, that is closed-form or empirical 

map. The second approach is a refinement of the first approach, where interpolation is 

used based on regression analysis. This approach is specifically suitable when closed-

form equations are not available for the Forward Solution. Using regression analysis, the 

empirical map can be fit to a polynomial form of equations and inverted simultaneously 

(Rosato et al 1991). The third approach is based on numerically solving the system of 

equations represented by (3.4.1) with Vu  known, and x unknown. This approach is suit-

able when the Forward Solution is known in closed-form. Details of the first two 

approaches are considered next. The third approach is discussed in detail in the next 

Chapter. 

3.4.1 The Look-Up Table Method 

The first approach uses the empirical map of the Forward Solution. In general, it is a map 

from six dimension sphere parameters space to m dimension voltage space. In other 

words, it is a map of x onto V = {Vu} so that for each value of x, there is a corresponding 



unique value of the voltage vector V. Let there be N locations in the map, each being a 

node point in the expenmental space, so that the map can be described 

as { (xk  Vk) ,k=1,..., N } . If the map has a sufficiently high-resolution, then for a given 

value of the received voltages V*, the Inverse Solution is x* = xk, such that the magmtude 

of (V*-Vk) is a minimum. This technique would work well only if the search space is 

limited to the immediate vicinity of the expected value of x*. In practice, one would 

know the location of the tracking sphere in the beginning of the experiment. Then, for 

the subsequent measurements, the sphere would not have moved too far, so that the 

search space can be limited. This approach is simple, but requires a large empirical map 

of equation (3.4.1). Consider for example, the experimental space of 12"x12"x72", 

which represents a typical chute flow expenmental space. For an accuracy of 0.1" in 

position and 10 degrees in angle, one would require over 4.5x1011 nodes in the table. 

This is a gigantic table requiring a formidable amount of memory. Moreover, if this 

table, that is, the map, is to be created empirically, the amount of time required to build 

it is unrealistic. 

3.4.2 Interpolation Using Regression Analysis 

The above strategy can be improved by using interpolation techniques. A regression 

model is constructed by using a simulated empmcal map of equation (3.4.1), and by 

treating voltages, that is, Vki  as independent variables, and x as dependent variables. By 

setting up regression functions this way, the inverted solution of (3.4.1) is directly 

obtained. As can be realized, even with the use of interpolation, the empirical map is still 

required. However, the resolution needed is lower. Several regression models were tried 

on a subset of the experimental space. One example is where every length variable was 

divided in steps of 3" and every angle variable was divided in steps of 60 degrees. Only 

one third of the space was considered. This resulted in a map having 27,648 nodes, each 



node corresponding to a six-dimensional position stonng m voltage values. The result-

ing regression model includes all these nodal values. The accuracy obtained was not sat-

isfactory, for example, predicted location was off by almost two inches on an average. 

Improvements can be made by trying out many different regression models, but unfor-

tunately, it is difficult to develop a systematic procedure for selecting different regres-

sion models. 

3.4.3 The Numerical Solution Method 

The Numencal Solution method is the third and most viable approach. The only issue is 

whether a numerical procedure can be developed to solve the system of m equations for 

six unknowns. In the case when the closed-form equations are not available, one may 

use "approximate" equations which may be empirically fine-tuned. This approach also 

tells that in order to solve for the six unknowns, m, the number of equations must be 

greater than or equal to six (m z 6). Since the system of equations is nonlinear, it is bet-

ter if more equations are available than the number of unknowns. For example, one may 

use three transmitters and three receivers to obtain mne equations, or one may use two 

transmitters and six receivers to obtain twelve equations. The direct mathematical anal-

ysis to determine whether the system of equations is independent is not trivial. It is easier 

to use physical insight in positiomng the transmitters and receivers so as to increase the 

probability of the equations being independent, or not completely redundant. For exam-

ple, the transmitters can be positioned orthogonally to reduce redundancy of informa-

tion. In the next chapter numerical procedures are described to solve the nonlinear 

equations represented by (3.4.1). 

To solve the inverse problem by the numencal methods, there needs to be a "the-

oretical model" to relate the positions and orientations to the expected measured volt-

ages at the receiving antennae. Hence, we present below three models which have been 



developed for various geometries of the transmitting and receiving antennae (Parasar A. 

1992; Rosato et al. 1992). A ngorous discussion of the denvation, the assumptions and 

the limitations of these models is beyond the scope of this thesis. 

33 Transfer Function Between the 
Transmitters and the Receivers 

3.5.1 Model #1 

The model #1 is a simplified model to obtain a very crude functional form with which 

to begin. The assumptions made are that a point receiver is used, the transmitter is of 

finite size and of circular shape, and that the distance between the transmitter and the 

receiver is much greater than the dimensions of the transmitter or receiver. Figure (3.2) 

shows a transmitter-receiver pair with the various relative location (position and onen-

tation) parameters defined for use in model #1 and model #2. 



The voltage induced in receiver j due to transmitter i according to the first model 

is given by 

tA ./%/ .N .w 
V1.1 = 3 [2cos0 .cosi3 L./ + 

4 TC r 
tj 

where is the permeability of the transmission medium, 

/1  is the current in the transmitter i, 

Al  is the area of the transmitter i, 

AJ  is the area of the receiver j, 

N1  is the number of turns of the ith transmitter coil, 

N is the number of turns of the jth receiver coil, 

CO is equal to 2mf, 

f is the frequency of transmitter i, 

r1.1 is the distance between transmitter i and receiver j, 

elf and pu  are angles as defined in Figure (3.2). 

Model #1 is developed for the case where the tracking sphere is to have three 

orthogonal transmitters. The transmitters were intended to be IC monolithic chips with 

integral loop antennae. Each antenna transmits at a different frequency at around 

220MHz approximately. The Colpitts oscillator is used for the transmitting chips. Three 

or more orthogonally placed external circular receiving antennae are to be used. While 

the above model has the advantage of simplicity, the receiver loops are large, indicating 

that the assumption of point receiver is invalid. Mathematical difficulties associated with 

consideration of firute-sized receiver loops are eliminated by applying the principle of 

reciprocity which states that in a linear network the source and the effect are inter-

changeable. Therefore the receiver is assumed to be the "transmitter" and the transmitter 

the "receiver" in deriving the transfer function for Model #2. 



3.5.2 Model #12 

Model #2 assumes that we have a point transmitter and a circular receiver of finite diam-

eter with the dimensions of the receiver being of the same order as of the distance 

between the transmitter and the receiver. The voltage induced in receiver j due to trans-

mitter i according to the second model is given by 

Ni/s/joiAji cos 13 cos 
Vi =  sing (r.A ) — (A sine ) V•-  r liarif if ci) sin 04 De q' ' _ 

where N1  is the number of turns of the ith transmitter coil, 

NJ  is the number of turns of the jth receiver coil, 

Cl.) is equal to 27-cf, 

f is the frequency of transmitter i, 

Al  is the area of the transmitter i, 

II  is the current in the transmitter i, 

rlj is the distance between transmitter i and receiver j, 

Ow  pip y are angles as defined in Figure (3.2). 

Act) is the magnetic vector potential given by 

7,2 dy 
A = 

 f(z,—/c ) fo/2 n/2  
 — 
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in which ji is the permeability of the transmission medium, 

1 = r1.1 et./ sin .' = z rt.j.cose1j and k2  =  
Z2 

4al 

+ (a + /) 2 
where the lengths a and 1 are as defined in Figure (3.2). 

The magnetic vector potential, Act)  is the sum of two elliptic integrals of the first and the 

second kind. For the second model, three orthogonal transmitters and three or more 

orthogonally placed external receiving antennae are used. 



3.5.3 Model 43 

The use of a circular loop on a rectangular shaped chute results in a "dead space" with 

a resulting reduction in the signal to noise ratio. Therefore, model #3 uses rectangular 

shaped receiving loop which can follow the contours of the chute or the rectangular 

experimental space very closely. By proper positiomng and size adjustments it can be 

made more sensitive to movements in one direction only. 

Since the monolithic transmitters did not provide adequate signal levels and since 

their operating frequency of 220 MHz was not suitable for measurements because of 

room resonances and standing waves, the operating frequency was changed to the lower 

frequency of 2Mhz where the wavelength is much larger than the dimensions of the 

room. Moreover, the "noise" due to other stray transmissions from vanous other sources 

is mammal at this frequency. But, in order to maintain the same signal strength the capac-

itance has to be much larger for the lower frequency. This results in building the trans-

mitter using discrete components as such high capacitances cannot be supported on 

monolithic IC chips. Only one transmitter along with its battery can be accommodated 

inside the tracking sphere of 3/4" due to the use of discrete components which require 

more space than the IC chips. 

With respect to computations the third model is simpler due to the absence of ellip- 



tic integral terms of model #2. The rectangular receiving loop is treated as four indepen-

dent filament sources and the Superposition Theorem is applied to get the composite 

response by summing up the individual responses. The voltage induced in receiver j due 

to transmitter i according to the third model is given by 

Vt..] = [Bxcos a. + By cos13 + Bz  cosyii ] 

where N1  is the number of turns of the ith transmitter coil, 

N is the number of turns of the jth receiver coil, 

0) is equal to 2mf, 

f is the frequency of transmitter i, 

Al  is the area of the transmitter i, 

au, 13u  and yu  are the direction cosine angles which the normal to the 

plane of the transmitter coil makes with the x, y and z axes respectively 

and are related by 

cos 2atj + cos 2(31) + cos 2y = 1 
if 

Bx,  By, Bz  are x, y and z components respectively of the magnetic field 

density h, given by 

4 r - 
B =   (coscpki  — cos pk2) ek 

k 1 L- - 
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in which p is the permeability of the transmission medium, 

/1  is the current in the transmitter i, 

Rk, coscpk and are functions of the position (xu, yu, zu), denoted 

below as (x, y, z), and the loop dimensions of the receiver (/j, a'), denoted 

as (1, a) for simplicity: 
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3.6 Practical Considerations 

There are many aspects to the development of this tracking system: 

(1) Design and construction of the miniature transmitters, 

(2) Derivation of the magnetic radiation pattern for these transmitters (Rosato et al., 

1991, 1992), 

(3) Design and construction of the receiving antennae, 

(4) Design and construction of the amplifiers, the bandpass filters and the detectors, 

(5) Measurement of the magnetically induced voltages in the receivers using the 

data acquisition system, 



(6) Packaging the electronics and the power source (battery) inside a sphere of the 

smallest size possible. Indeed, the size of the battery is the limiting factor for the 

dimensions of the sphere. The sphere has to be dynamically balanced 

(7) Design and construction of the expenmental space (chute, hopper, etc.) 

(8) Computing the position and the orientation of the particle from the 

induced voltages, 

(9) Simulating the complete trajectory of the particle. 

Each of the above mentioned tasks is a crucial part in the development of the com-

plete system and is not trivial. The details of each task is not provided here and is beyond 

the scope of this thesis, since we focus on computing the location of the sphere from the 

induced voltage values. 



CHAPTER 4 

THE NONLINEAR OVERDETERMINED SYSTEM 

4.1 Introduction 

In the previous chapter a technique based on magnetic coupling to track the motion of a 

particle in three dimensions was discussed. Three approaches to the problem of inverse 

solution were described. In this chapter we consider the third and most viable method to 

be used for the problem of inverse solution. The methods of solution employed to 

numerically solve the system of nonlinear equations is discussed. We first discuss the 

general nonlinear least-squares problem which leads to the Gauss-Newton and Leven-

berg-Marquardt algonthms. Line searches and the model trust region approaches are 

descnbed m terms of their ability to achieve global convergence (Byrd 1987). The the-

ory and the implementation details of the algorithms are provided. The readers inter-

ested in the proofs are referred to the references provided. 

Since the number of nonlinear equations is greater than the number of unknown 

parameters, the system is over-determined, and it is usually not possible to obtain an 

exact solution. Therefore a least squares solution is sought. The numencal methods of 

solution to the overdetermined system of nonlinear equations take advantage of the spe-

cial structure of the objective function to be minimized (Fletcher 1987). 

4.2 The Nonlinear Least-Squares Problem 

The nonlinear least-squares problem is 
tn 

minimize f (x) = 1 
1 

(x)
T
R (x) = r•• (x) 2 (4.2.1) 

xERn 2 
= 

where m > n, the nonlinear residual functionR : Rn  —> Rm  has components 



rk  (x) (k = 1, 2,. . . , m) which are given by 

rk  (x) = g k  (x) — v k, k = 1, 2, . . . , m 

In the above equation, a single subscript k is used for g which is denoted as gtj in equa-

tion (3.4.1). Here vk  is the experimentally measured voltage values. Subscript k goes 

from 1 to m, which is equivalent to i ranging from 1 top and j ranging from 1 to q, since 

m = p x q. An attempt is made to fit the data (v1), i = 1,..., m, with a model M(x), pre-

viously discussed in Chapter 3, which is nonlinear in x. In this case r1(x) = M(x1) - v1, and 

the nonlinear least-squares problem consists of choosing x so that the fit is as close as 

possible in the sense that the sum of the squares of the residuals - r1(x)'s is minimized. 

In general, there are more equations m than unknowns n. In the application considered 

here m is greater than or equal to nine and n is equal to six. 

When m = n, it includes as a special case solving a system of nonlinear equations, 

and for any value of m, it is Just a special case of unconstrained minimization. 

The first-derivative matrix of R(x) is simply the Jacobian matrix J (x) E Rm n, where 

J (x) = at- 1 (x) /axj. Thus an affine model or linear approximation of R(x) around a 

point xc  is 

(x) = R (xe) + J (xe) (x — x,) , 

The first denvative of f (x) = R (x) TR (x) is given by its gradient, i.e., 
2 

V f (x) = L r t  (x) • V rt (x) = J (x)
T
R (x) . 

= 

Similarly, the second denvarive is 

V2f (x) = L ( v rt  (x) • V r i (x) T  r • t (x) • V2  r (x)) = J (x) T  J  (x) + S (x) 
= 



where 
m 

S (x) = L r1  (x) • V2  r 1  . (x) 
i = i 

denotes the second-order information inV2f(x) . Thus the quadratic model of f(x) 

around xc  is 

m, (x) = f (xc) + V f (xc) T (x - xc 2 ) + -
1 

(x - x c) TV2 f (xc ) (x - xc) 

= 2 
-
1

R (x
c

) ) TR (xc) + R (X c)
T
J (xc ) (x - xc) 

1 
+ 

2 
 (x - xc) T (J(x,) TJ (xc) + S (xc)) (x - xc) . (4.2.2) 

This is a specialization of the Taylor senes quadratic model for mimmization of objec- 

tive functions of form (4.2.1). 

Using (4.2.2), Newton's method applied to (4.2.1) is 

x, = x, - [J (x c) T j (xc) + S (xc) ] 
-1 

.1 (x c) T  R (xc) . (4.2.3) 

where x+  is the next iterate and xc  is the current iterate. (4.2.3) is locally q-quadratically 

convergent under standard assumptions (Dennis and Schnabel 1983). But, the problem 

with the full Newton approach is that S(x) is usually either unavailable or inconvenient 

to obtam, and it is too computationally intensive to approximate by finite differences. 

Although frequently used in practice, a secant approximation to all of V2f(x) is unde-

sirable, because the portion J(x)TJ(x) of V2f(x) is already readily available, since J(x) 

must be calculated analytically or by finite differences to calculate V f (x) . 

In discussing the vanous methods for nonlinear least-squares, we will want to dis-

tinguish between zero-residual, small-residual and large-residual problems. These terms 

refer to the value of R(x) [or f(x)] at the mimmizer x* of (4.2.1). A problem for which 

R(x*) = 0 is called a zero-residual problem; this means that the model m(x) fits the data 

v1  exactly at each data point. 



4.3 Gauss-Newton Type Methods 

The first method for solving the nonlinear least-squares problem comes from using the 

affine model of R(x) around xc, 

M, (x) = R (xc) +J (x,) (x - x c) , (4.3.1) 

where M, : R'2  ---> Rin  and m > n. 

We cannot in general expect to find an x+  for which Mc(x+) = 0, since this is an 

overdetermined system of linear equations. However, a logical way to use (4.3.1) to 

solve the nonlinear least-squares problem is to choose the next iterate x+  as the solution 

to the linear least-squares problem 

1 2 

mimmize - M (x) I = in, (x) . (4.3.2) 
2 1 c 2 

Assuming that ./(xc) has full column rank, then the solution to (4.3.2) is 

x+ = x - [J (x,) TJ (x,)] -1.1 (x,)TR (x c) . c (4.3.3) 

The iterative method that consists of using (4.3.3) at each iteration is called the Gauss-

Newton method. 

Companng (4.2.3) and (4.3.3), the two equations differ only in the term S(x), 

included by Newton's method m the second-denvative matrix J(xc) r./(xc)+S(xc) but 

omitted by the Gauss-Newton method. Equivalently, the only difference between the 

quadratic model mc(x), (4.2.2), from which the Newton's method was derived, and the 

quadratic model Mc  (x) , (4.3.2), that gives the Gauss-Newton method, is that the por-

tion S(xc) of V2f (x,) is omitted from rn, (x) . Since Newton's method is locally q-qua-

dratically convergent under standard assumptions, the success of the Gauss-Newton 

method depends on whether the omitted term S(xc) is important - that is, whether it is a 

large part of V2f (xc) = J (x,)TJ (xc) + S (xc) . If S(x*) = 0, then the Gauss-Newton 

method is also q-quadratically convergent. This occurs when R(x) is linear, or when we 

have a zero-residual problem. If S(x*) is small relative to./(x*)TJ(x*), the Gauss-Newton 



method is locally q-hnearly convergent. However, if S(x*) is too large, the Gauss-New-

ton method may not be locally convergent at all. Thus the speed of convergence of the 

Gauss-Newton method decreases as the relative nonlinearity or the relative residual size 

of the problem increases; if either of these is too large, the method may not converge at 

all. Alternatively, the larger S(x*) is in comparison to J (x *)T  J(x*), the worse the Gauss-

Newton method is likely to perform. 

The Gauss-Newton is in a descent direction. But the Gauss-Newton method may 

take bad steps by taking steps that are too long, but in the correct direction. Two ways 

of improving the Gauss-Newton algorithm are by using it with a line search or with a 

trust region strategy. These two approaches lead to two algorithms that are used in prac-

tice. 

The algorithm that uses the Gauss-Newton method with a line search is simply 

x+ = x — X (J (x,)TJ (x,)) -1J (xe)TR  (x,) , c (4.3.4) 

where X,c  is chosen by the Line search method. 

Equation (4.3.4) is referred to as the damped Gauss-Newton method (Dennis & 

Schnabel 1983). Since the damped Gauss-Newton method always takes descent steps 

that satisfy the line-search criteria, it is locally convergent on almost all nonlinear least-

squares problems, including large-residual or very nonlinear problems. However, it may 

still be very slowly convergent on the problems that the Gauss-Newton method had trou-

ble with. Also, the damped Gauss-Newton algorithm still is not well defined if .1(xc) 

doesn't have full column rank. 

Another modification of the Gauss-Newton algorithm is to choose x+  by the trust 



region approach: 

minimize R (xe) + J ()cc) (x4_ - x2) 2 

subject to x+  - xe  
2 

oc . (4.3.5) 

The solution to (4.3.5) is 

x+ = xe — [J (xe) TJ  (xe) + 11,1] -1.1 (xe) TR (xe) , (4.3.6) 

where µ, = 0 if Sc  z [J (re) TJ (xe) ] 1J (xe) TR (xe) 2 ) and 1..t, > 0 otherwise. 

Formula (4.3.6) is referred to as the Levenberg-Marquardt algorithm (Dennis & Schna-

bel 1983; Levenberg 1944; Marquardt 1963; More 1977). 

The local convergence properties of the Levenberg-Marquardt method are similar 

to those of the Gauss-Newton method. Several factors make the Levenberg-Marquardt 

algorithms preferable to the damped Gauss-Newton algorithms. One is that the Leven-

berg-Marquardt method is well defined even when J(xc) doesn't have full column rank. 

Another is that when the Gauss-Newton step is much too long, the Levenberg-Mar-

quardt step is close to being in the steepest - descent direction -J(xcT)R(xc) and is often 

supenor to the damped Gauss-Newton step. 

4.4 Globally Convergent Modifications 
of Newton's Method 

Newton's method is locally q-quadratically convergent. This means that when the cur-

rent solution approximation is good enough, it will be improved rapidly and with rela-

tive ease. Unfortunately, it is not unusual to expend significant computational effort in 

getting close enough. In addition, the strategies for getting close constitute the major 

part of the program and the programming effort, and they can be sensitive to small dif-

ferences in implementation. 

Two major ideas for proceeding when the Newton step is unsatisfactory are used. 

The first major global approach, is modern versions of the traditional idea of backtrack- 



ing along the Newton direction if a full Newton step is unsatisfactory. The second major 

approach is based on estimating the region in which the local model, underlying New-

ton's method can be trusted to adequately represent the function and taking a step to 

approximately minimize the model in this region. 

4.4.1 The Quasi - Newton Framework 

The basic idea in forming a successful nonlinear algorithm is to combine a globally con-

vergent strategy with a fast local strategy in a way that derives the benefits of both. The 

most important point is to try Newton's method, or some modification of it, first at each 

iteration. If it seems to be taking a reasonable step - use it. If not, fall back on a step dic-

tated by a global method. Such a strategy will always end up using Newton's method 

close to the solution and thus retain its fast local convergence rate. An algorithm that 

takes this approach is quasi-Newton (Dennis and More 1977). 

4.4.2 Descent Directions 

The basic idea of a global method is to choose a direction p from the current point xc  in 

which f decreases initially, and a new point x+in this direction from xc  such that 

f (x+) < f (x,) . Such a difection is called a descent direction. Mathematically, p is a 

descent direction from xc  if the directional denvative off at xc  in the direction p is neg- 

ative - that is, 

V f (x c)T p < O. 

Newton direction sly  = V f (xc) , where I-Ic  is either V2f (xc) or an approx-

imation to it, is in a descent direction if and only if, 

Vf (x,) Tsiv  = —Vf (x,) V f (x c) < 0, 

which is true if lic-1  or, equivalently, He  is positive definite. 



The quasi-Newton algorithm is far more efficient than the method of steepest 

descent. However, when the global strategy must take steps much smaller than the New-

ton step, it may take steps in, or close to, the steepest descent direction. 

4.5 Line Searches 

The first strategy for proceeding from a solution outside the convergence region of New-

ton's method is the method of line searches. 

The line search method deals exclusively with the problem of finding an accept-

able step length in a given direction of search with the assumptions that the direction 

would be the quasi-Newton direction, and that the full quasi-Newton step would always 

be the first trial step. If the full quasi-Newton step is unsatisfactory, it indicates that the 

quadratic model does not adequately model f in a region contaimng the full quasi-New-

ton step. The line search algorithms retain the same step direction and choose a shorter 

step length. This new length is determined by building a new one-dimensional quadratic 

or cubic model, based only on function and gradient information in the quasi-Newton 

direction. 

The idea of a line-search algorithm is simple: given a descent direction pk, we take 

a step in that direction that yields an "acceptable" xk+1. That is, 

at ]teration k: 

calculate a descent direction pk, 

set xkl_i = xk  + k pk  for some Xk  > 0 that makes xk.f.i  

an acceptable next iterate (4.5.1) 

The term "line search" refers to a procedure for choosing Xk  in (4.5.1) 

The common procedure is to try the full quasi-Newton step first and, if Xk  =1 fails 

to satisfy the cnterion in use, to backtrack m a systematic way along the direction 

defined by that step. Computational experience has shown the importance of taking a 



full quasi-Newton step whenever possible. Failure to do so leads to forfeiture of the 

advantage of Newton's method near the solution. 

While no step - acceptance rule is always optimal it is reasonable to expect that 

f (xk+ 1) <f (xk) . Armijo (1966) and Goldstein (1967) have suggested conditions to 

remove problems associated with very small decreases in f values relative to the lengths 

of the steps and with steps that are too small relative to the initial rate of decrease off 

f (x+) S f (x) + a V f (xe)T (X+  — Xc) (4.5.2) 

Algorithm (4.5): Backtracking Line-Search Framework 

Given aE (0,-
1 
2),0<1<u< 1 

= 1; 

whilef (xk  + 2tkpk) > f  (xk) + oak  f (xk) Tpk, do 

4k  = pk for some p E [1, u] ; 

(*p is chosen anew each time by the line search*) 

= p • x k + 1 x k + k' 

a is usually set quite small (a = 10-4) so that hardly more than a decrease in function 

value is required. 

Strategy for reducing 4k  (choosing p) 

Let .f( = f (xk  + XP k) , 

the one dimensional restriction off to the line through xk  in the direction pk. If we need 

to backtrack we use our most current information about f to model it, and then take the 

value of X that minimizes this model as our next value of 4k  in Algorithm (4.5). Initially, 

we have two pieces of info' niation about f(4) , 

f( 0) = f(xk) and f' (0) = V f(xk) Tpk . (4.5.3) 

After calculating f(xk+pk), we also know that 

( 1) = f(xk +Pk), (4.5.4) 



so if >1(0) + ocf ' (0) , we model /(X) by the one-dimensional quadratic satisfy- 

ing (4.5.3) and (4.5.4). 

m(X) = [1(1) —1(0) —1'(0)] X2  +1"(0) +1(0), 

and calculate the point 

= 
—P(0) 

2 L1( 1) —f(0) —P(0) ] 

for which /ni g  (X) = 0. 

Thus X minimizes in' q  (X) and also X > 0 

Therefore we take X as our new value of A,k. We impose a lower bound of 1= 1/10 and 

a upper bound of u = 1/2 on the first value of p. This means that at the first backtrack at 
1 

. 
each iteration, if X S 0.1, then X

k 10 
= If /(Xk) = f(xk +Xkpk), does not satisfy 

f (x k  + XkPk) + aXkV f(xk)Tpk, 

we use a cubic model of /, mcu  (X) and calculate the value of X at which mcu  (X) has 

its local minimizer. If (Xprev) and (X2prev)  are the last two previous values of itk, then 

eu  (X) = aX3  +bX2  +/1 (0) X + 1(0) , 

where 

1 —1 1 

a = 
1 X p X2p„v 1(Xp„v) —1(0) —1'  (0) prev 

Lb Xprey- 2prev 
x 

—X 
L 2prevprey  

x2 x2  f (X(X2prev) -1(0) —1(0) X2prev 
L prey 2prev 

Its local minimizing point X is 

— b + b2  — 3 a:f ' (0) 
3a 

The lower bound 1 = 1/10 and the upper bound u = 1/2 are imposed. That is, if 
1 1 - 1 1 > Xprev, then Xk  = -,-) X and if X < 

10 
Xprev, then Xk  = —

10X prev prey 



Thus a quadratic model is used for backtracking at the first iteration and if needed, 

a cubic model is used for backtracking for subsequent backtrack during the current iter-

ation. 

Also, a minimum step length is imposed called minstep. If condition (4.5.2) is not 

satisfied, but 1 4kp k l 
2 

is smaller than minstep, then the line search is terminated. A max-

imum allowable step length is also imposed to prevent excessively long steps which 

could occur in practice when pk  = sk  = -Hk-1V f(xk) and Hk is nearly singular. This 

maximum step length prevents taking steps that would result in the algorithms leaving 

the domain of interest. 

4.6 The Model Trust Region Approach 

In the model trust region approach an attempt is made to achieve global convergence 

without sacnficing the local convergence properties of the quasi-Newton method by 

dropping the assumption that shortened steps must be in the quasi-Newton direction. In 

the line search algonthms, while the step length is calculated based on function and gra-

dient information, it has the disadvantage that it makes no further use of the n-dimen-

sional quadratic model, including the model Hessian. In the model trust region 

approach, when a shorter step is needed, a shorter step length is chosen and then the full 

n-dimensional quadratic model is used to choose the step direction. 

Suppose that we have xc  and some estimate be  of the maximum length of a suc-

cessful step we are likely to be able to take from xc. The quasi-Newton step scN  is rea-

sonable because it is the step from xc  to the global minimizer of the local quadratic 

model me  (if the model Hessian He  is positive defimte). If we add the idea of bounding 

the maximal step length by be  > 0, then the best way to select a step of maximal length 



8, from xe  is to try the step se  that solves 

minimize me  (xc  + s) = f (xc) + V f (xc)T s + 2s
T 
H

c
s, 

subject to s112  5 be (4.6.1) 

Problem (4.6.1) is the basis of the "model - trust region" approach to mimmization. The 

name comes from viewing Sc  as providing a region in which we can trust me  to ade-

quately model f. The solution is given by 

s (µ) = - (H + 111) -1V f (xc) (4.6.2) 

for the unique[i 0 such that s (µ) 2 = oc, unless s (0) 11 6,, in which case 

s (0) = is the solution, For any µ. Z 0, s(g) defines a descent direction for f from xe. 

A complete step of a trust-region algorithm will have the following form: 

Algorithm (4.6.1): A Global step by the Model-Trust Region approach 

Given f: R'1  R, > 0, (xc, E R") , He  E R" " symmetric and posi- 

tive defimte: 

repeat 

(1) sc  := approximate solution to (4.6.1), 

x+  := xe  + Sc, 

(2) decide whether x+  is acceptable, and calculate a new value of 5c  

until x+  is an acceptable next point; 

6+ := 6c 



4.6.1 The Locally Constrained Optimal ("Hook") Step 

Hook step method is an algorithm for finding an approximate solution j.ic  to the scalar 

equation 

(DM = s(µ) 2 - oc  = 0. (4.6.3) 

To solve (4.6.3) we use a local model of the form 

aic 
inc. (Ili) = - 8 

13,, + lit c 

with two free parameters a and 13. The subscnpt i is used for the current values of the 

quantities laic, Pic,  j.tis that are changing in the inner iteration on j.i, and the normal type 

without the subscnpt i is used for the current value of öc, xc, V f (xc) , He  that come from 

the outer iteration (the main x iteration), and are unchanged dunng the solution of 

(4.6.3). Thus gc  is the inner iteration's last approximation j.tic  to la*, the exact solution 

of (4.6.3). Therefore, we define x+  = xc  + s (µc) . 

Choose alc and Pic  to satisfy the two conditions: 

a 
mc (tlic) = ic 

13, + ilic 
- 6c :.-- (1) 0-tic) = s ( lic) 2 — 8c 

and 

-a  1c ( lic)  T (I I c + 4 11) -1 s  (II  id  

06 

ic  
m i  C GI IC) ' = 1:13' 0- t d i = 

11 2 tc + tc) ' S (111c) 2 

This gives 

(1:13  (P'tc) +  oc) 
2 

CC LC = — (4.6.4) 
(13' (P'w) ' 

( 213  (11,,) + 8,) 
Pi, = — , — ,,• (4.6.5) 

(I)  0-tid 
11 

 



Choose III+  such that me  (Ili+) = 0 that is, 

CX/c 

µl+ z--  8 — vic • (4.6.6) 
c 

Substituting (4.6.3), (4.6.4) and (4.6.5) into (4.6.6), gives 

n - (I)  (Ilic) +  Sc-  r  (13  ( itc) - s GO - 0 ( -L ic) - 
P't-i- = t-'tc — Le.' (iiic)_ - gm.  

- - 6, 4--.' (4,d 
(4.6.7) 

6,c c -  

4.6.2 Details of More's Implementation 

We have used the implementation by More in MINPACK (More 1980). The following 

algorithm is based on More (1977) and Hebden (1973). 110, the starting value for p. is 

set to zero in solving (4.6.3) by Reinsch (1971). But, each iteration of (4.6.7) involves 

solving a linear system. Hence, to get a closer start More's implementation uses the 

approximate solution la_ to the last instance of (4.6.3) to generate an imtial guess for the 

current instance. If the current step bound 6, is p times the last value of the step bound 

6 p, , then =  is used to start (4.6.7). 
0 

1-1, _ 
p 

4.6.3 Generation and Update of Lower and Upper Bounds 

III+  is restricted to be in [6, u14.7, the lower and upper bounds on jii.f. Take 
cl) (0) (43 iiid  

/, = — . Then calculate j..1,Ni+  = li. — along with each calculation of o (0) ic 0' (g
i
d 

(4.6.7), and update the lower bound to /i+  = max { /,,,,ii7+  } , where 4c  is the current 
!Vf(xc) 

lower bound. Take // to  = 
6 

and at each iteration, if (13 (gic) < 0 update the 
2 

upper bound to ui+  = min { uic,Iii,} , where ulc  is the current upper bound. 

If, at any iteration, p,i+  is not in [11+, u1+], More chooses 1.11+  by 

Iii+  = max { (l ,+ • u i+) 1/ 2 ,10-314 H.
} , the second term being a safeguard against near- 

zero values of 11+. 

More's implementation does not solve (4.6.3) to any great accuracy, settling 



instead for s (I) 2 E [0.96,,1.16,] . Finally, More uses the scale trust region 

approach so that the steepest-descent step becomes 

x+  = XD:2Vf (x,.) , 

and the hook step becomes 

s ( 1.t) = — (I- I + x2 
)
-1 V f (x,) . 

where DX  is the positive diagonal scaling matrix. 

4.6.4 The Double Dogleg Step 

The Double Dogleg step is a modification of the trust region algorithm introduced by 

Powell (1970). It also finds an approximate solution to problem (4.6.1) by a piecewise 

linear function connecting the "Cauchy point", the minimizer of the quadratic model mc  

in the steepest - descent direction, to the Newton direction for mc. Then it chooses x+  to 

be the point on this polygonal arc such that x+ e 2 = 6,, unless 

1; I/C  1 V f (xC 2  ) < 6c,  in which case x+  is the Newton point. This strategy is a simple 
II  

strategy for looking in the steepest - descent direction when oc  is small and more toward 

the quasi - Newton direction as sc  increases. 

4.6.5 Updating the Trust Region 

To complete the global step given in Algorithm (4.6.1), one needs to decide whether the 

point x+  found by using the techniques of optimal "Hook" step or the double dogleg step, 

is a satisfactory next iterate. If x+  is unacceptable, one reduces the size of the trust region 

and minimizes the same quadratic model on the smaller trust region. If x+  is satisfactory, 

one must decide whether the trust region should be increased, decreased, or kept the 

same for the next step. 



The condition for accepting x+  is 

f (x+) 5 f (xc) + agTc. (x+  -xc) , (4.6.8) 

where gc  = Vf (xc) or an approximation to it, and a is a constant set to le. If x+  does 

not satisfy the above condition, reduce the trust region by a factor between 1/10 and 1 /2 

and return to the approximate solution of the locally constrained minimization problem 

by the locally constrained optimal step or double dogleg method. The reduction factor 

is determined by the same quadratic backtrack strategy used to decrease the line-search 

parameter in Algonthm (4.5). Model f (xc  + X (x+  - xc)) by the quadratic model 

mq  (X) that fits f(xc),f(x+), and the directional derivative gcT(x+  - xc) off at xc  in the 

direction x+  - xc. The new trust radius is extended to the minimizer of this model, which 

occurs at 

—gc(X+— xc) 
,, 

2 [f (x÷) -f (xc) - gc  (x+  xc)] 

, 1 1 - 
Thus, 6+  = X* xc 2. If X*  x+  - xc 2 

n 

10 6c' 2 - 6 , then 6+  is set to the closer 

end-point of this interval. Suppose x+  satisfies condition (4.6.8). If x+  is a full Newton 

step from xc, then make the step, update 6, form the new model, and go to the next iter-

ation. However, if (x+  - xc) isn't the Newton step then consider whether to try a larger 

step using the current model. 

To decide whether to attempt a larger step from xc, compare the actual reduction 

Of = f (x+) - f (xc) to the predicted reduction Afwed  = me  (x+) - f (xc) . And x+  is 

the next iterate unless: 

(1) Afpred  - 0./1 S 0.1 Afi  which implies that the agreement is so good that 

6c  is an underestimate of the radius in which me  adequately represents f 

(2) f (x+) (xc) +V f (xc) T  (X+ — Xe) which implies the presence of negative 

curvature and thus a continuing rapid decrease in f because of the large actual 

reduction in f 



In both the above cases save (x+) andf(x+), double Sc  and compute a new x+  using 

the current model. If the condition (4.6.8) isn't satisfied for the new x+, drop back to the 

last good step. But, if it is satisfied, consider doubling again. 

If x+  is acceptable as the next iterate, then update Sc  to o+  according to the follow-

ing rules. If the current quadratic model predicts the function well, increase the trust 

region, but if it predicts poorly, decrease the trust region. 

(1) If the quadratic model has predicted the actual function reduction sufficiently 

well, Af S 0.750fpred  then 6+  = 2 Sc. 

(2) If the model has greatly overestimated the decrease m f(x), Af> 0.1Afpred  then 

o+  = oc/2. 

(3) otherwise 6+  = Sc. 

4.7 The Homogeneous Transformation 

Our objective is to determine the position and onentation of the sphere with respect to a 

base co-ordinate frame defined conveniently by the user. Hence, we attach a co-ordinate 

frame at the centre of the sphere. We also attach co-ordinate frames to each transmitting 

and receiving antennae with the z - axis of each co-ordinate system parallel to the axis 

of the loop antennae. 

We know the position and orientation of each transmitter with respect to each other 

and with respect to the centre of the sphere. We also know the position and orientation 

of each receiver with respect to each other and with respect to the base co-ordinate 

frame. This information is represented in the form of Homogeneous transformation 

matrices. Therefore, we know cTi 1=1,...,p and baseTr J=1,...,q, where Cl't  is the 
1 

transformation from transmitter i to the centre of the sphere and baseTr  is the transfor- 
1 

'nation from the receiver j to the base co-ordinate frame. 

The transfer function between the transmitter and the receiver includes parameters 



for the relative position and orientation of the transmitter with respect to the receiver. 

Hence, to calculate the voltages induced in each receiving antenna, we need to compute 

the relative position and orientation of each transmitter with respect to the corresponding 

receiving antenna. This is done by computing the transformation between each transmit-

ter - receiver pair: 

=
T baseT cT 

t, base c t, 

where r'Tbase = [baseT] -1, the transformation from the base co-ordinate frame to the 

receiver j, and base'', is the transformation from the centre of the sphere to the base co-

ordinate frame. From riT1 ' we compute the x necessary to compute the voltage 17u  in 

equation (3.4.1). 



CHAPTER 5 

RESULTS AND CONCLUSIONS 

5.1 Introduction 

In this Chapter we present the results obtained by using the numerical methods dis-

cussed in Chapter 4. We show from the results that the numerical method of solution to 

the problem at hand is a viable and, perhaps the only, efficient method. We show that a 

particle's trajectory can be tracked accurately within limits of expenmental error thereby 

establishing the feasibility of our techmque to track a particle in a mass flow of granular 

matenal non-intrusively. Results from simulated and actual expenmental data are pro-

vided. The effect of and remedies to signal noise are discussed. 

5.2 The Forward Solution 

The forward solution involves computing the voltages induced in the different receiving 

antennae for a given location of the sphere using the models discussed in Chapter 3. The 

forward solution is essential to compute the residuals needed in the inverse solution. 

Moreover, the forward solution helps in validating and "fine tuning" the models by com-

paring them with the actual expenmental radiation pattern of the transmitter. It also 

helps in generating the voltage values for the simulated experiments in the absence of 

the experimental set-up to conduct the experiments. Thus a concurrent approach to var-

ious phases of the diagnostic technique can be adopted with the method of solution for 

the inverse problem decided even before the actual expenmental voltage values are 

available. The forward solution was obtained for all the three models discussed previ-

ously. 



To verify the cosine behavior of the model #3, the transmitter was oriented at var- 

ious angles with the X and Y axes. Measurements of the induced voltage was made by 

(1) Fixing angle a = 90°  and varying y between 0°  and 90°, and 

(2) Fixing angle 13 = 90°  and varying y between 0°  and 90°. 

Figure 5.1: Output versus Coil Orientation. 

Figure (5.1) shows the predicted output voltages and the actual cosine function as 

the coil onentation is varied. The trend shown in Figure (5.1) agrees well with the cosine 

function. 



Figure 5.2: Output versus Coil Separation. 

Figure (5.2) shows the plots of the predicted and the actual experimental measured 

voltages as the transmitter is moved along the Z axis. There is a strong correlation 

between the measured and the predicted voltages for displacement of the transmitter 

along the Z axis. It should be noted that a scale factor related to attenuation was applied 

to the theoretical values. 

Figure (5.3) shows the plots of the predicted and the actual experimental measured 

voltages as the transmitter is moved along the X axis. There is a strong correlation 

between the measured and the predicted values of the induced voltage for variation of 

the transmitter along the X axis. The experimental as well as the predicted voltage 

curves display a minimum at X = 0" and a maxima at X = -4.7" and 4.7". 



Figure 5.3: Output versus X Axis Displacement. 

5.3 The Inverse Solution 

The form of the equations (3.4.1) is dependent on the assumed geometric shapes of the 

transmitters and the receivers. As discussed in Chapter 2, the transmitters are assumed 

to be small circular loops while the receivers are modeled in three different geometric 

shapes. All the three models were considered for inverse solution using the numencal 

techniques descnbed in Chapter 4. For the first and second models there are three 

orthogonal transmitters inside the tracking sphere with three orthogonal receivers 

around the expenmental space which is shown in Figure (5.4). The figure is not shown 

to scale in order to clearly show the arrangement of the transmitters within the sphere. 

Thus there are nine equations for the six location variables. For the third model there is 

a single transmitter with six receivers. Hence, there are six equations for the five inde-

pendent vanables in model #3. Thus there is an overdetermined system in each case and 



the method of solution remains the same. The results were excellent in each case. 

The reason for using only one or two transmitters is due to the size limitation of 

the tracking sphere. More transmitters take up more space and forces a higher drain on 

the power supply. Model #3 is the most realistic as the configuration closely corresponds 

to the experimental set-up. It should be noted that only the direction cosine angles are 

present in model #3 which does not uniquely determine the orientation. Moreover, the 

voltage induced in the receiving antenna is independent of the rotation of the transmitter 

about its own axis because of the symmetric geometry of the transmitter. Thus at least 



two transmitters are needed to umquely determine the orientation. The model in this case 

shows that the induced voltages are functions of five location variables, and not six. 

There are multiple solutions in the case of orientation for model #3. But the 3-D position 

is solved unambiguously. Model #3 is used because experimental results are available 

only for this case. 

Initially the simple Gauss-Newton method was used for the inverse solution. Even 

though the algonthm was able to converge to the correct solution in individual cases, it 

suffered from its inability to achieve global convergence. The algorithm would converge 

only to the local minima. Hence the initial guess, as required by all these methods, had 

to be close to the actual solution. It had problems especially in the regions of high non-

linearity and would get entrapped in "troughs" associated with local minima. 

Hence, the damped Gauss-Newton method incorporating the line search to achieve 

global convergence was teed next. It was successful in achieving global convergence 

over the domain of the problem at hand. But the rate of convergence was unsatisfactory. 

Figure (5.5) shows the slow convergence rate of the damped Gauss-Newton method. 

The residual voltages tend to zero as convergence is achieved with the damped Gauss-

Newton algonthm. 

The Levenberg-Marquardt algonthm was tried to achieve faster convergence rate. 

We used the implementation by More (1980) in MINPACK. A modified Levenberg-

Marquardt algonthm is used in this implementation. More uses the scaled trust region 

approach using Hook step method as discussed in Chapter 4. The ability to converge to 

a solution was good throughout the domain of the experiment. The rate of convergence 

proved to be satisfactory. Figure (5.6) shows the relatively quick convergence rate of the 

Levenberg-Marquardt method. The residual voltages tend to zero as convergence is 

achieved with the Levenberg-Marquardt algonthm. 



Figure 5.5: Slow Convergence Rate of Damped Gauss-Newton Algorithm. 

Figure 5.6: Faster Convergence Rate of Levenberg-Marquardt Algorithm. 



Thus the Levenberg-Marquardt algorithm was successfully used for the inverse 

solution to predict the trajectory of the tracking sphere. Simulated experiments are con-

sidered first. Assuming that the induced voltage values are available, we were able to 

track the trajectory of the sphere. The voltage values are generated at suitable intervals 

of the trajectory using the forward solution. This is then used in the inverse solution in 

place of the actual expenmental voltage values. Figure (5.7) shows the arrangement of 

the six receiving antennae around the experimental space. 



Two hypothetical trajectories are considered, a straight line trajectory and a sinu-

soidal trajectory. These trajectones have no special sigmficance in that they were used 

for the sole reason that the voltages for these trajectories are easy to generate using the 

forward solution. Figure (5.8) shows the results of the simulated experiments without 

noise. The solid curves are actual trajectories while the markers are the predicted trajec-

tones. The results are excellent as is to be expected because these are the ideal situations 

with no noise or experimental errors. Thus, in actuality it is a zero-residual problem. 

Figure 5.8a: Projection of the Trajectories onto the XY Plane. 

Figure (5.8a) and (5.8b) shows the projection of the trajectories onto the XY plane and 

the XZ plane respectively. 



Figure 5.8b: Projection of the Trajectories onto the XZ Plane. 

Figure 5.8: Simulated Experiment Without Noise. 

To study the prediction of the onentarion angles a simulated experiment was car-

ried out with the angles varying linearly. Again, the linear vanation of the angles was 

selected only because it is easy to generate the voltage values for the inverse solution 

using the forward solution. The angles may vary in any manner and still the inverse solu-

tion would predict the onentarion correctly. Figure (5.9) shows the results obtained for 

the simulated experiment for calculating the sphere orientation using the inverse solu-

tion.As can be seen, the predicted orientation is in close agreement with the actual 

angles. The solid curves represent the actual orientation angles while the markers denote 

the predicted values. 



Figure 5.9: Simulated Experiment to Predict Sphere Orientation. 

At the time of writing this thesis, the construction of the experimental set-up is not 

complete. Hence, tracking the sphere in one dimension is considered. Using two receiv-

ers and one transmitter, one can track the trajectory in one dimension perpendicular to 

the plane of the receivers. An experiment is conducted where the tracking sphere is 

moved along the lines AB and CD shown in Figure (5.10) with the other positions and 

orientations fixed. Figure (5.10) also shows the experimental set-up with two parallel 

receiving antennae. 





Figure 5.11 a: Predicted Trajectory versus Actual Trajectory for Sphere 
Movement: Along Line AB in Actual Experiment. 

Figure 5.11 b: Predicted Trajectory versus Actual Trajectory for Sphere 
. Movement: Along Line CD in Actual Experiment. 



The voltages induced in the two receivers are used to predict the trajectory of the 

sphere. Figure (5.11) shows the predicted versus the actual trajectory for sphere move-

ments along lines AB and CD. 

The theoretical forward model has not been fine tuned using the empirical data. 

The deviations are due to the combined effects of the discrepancy between the theoreti-

cal model and the actual radiation pattern and the noise m the signals and measuring 

instruments. Thus the problem is no longer a zero residual problem. Considering that, 

the results are excellent and are highly promising. 

5.4 Effect of Noise in Signal Voltages 

In reality there is always noise along with the signals. The noise may be due to the instru-

ment errors or because of some spurious signals. To study the noise pattern an experi-

ment was conducted by placing the transmitter at a stationary position. The induced 

voltage was measured for a second at a rate of 10000 samples per second. This high rate 

of measurement ensures that the signal level does not change appreciably between indi-

vidual readings. In the ideal case all the 10000 readings should give the same signal level 

because the transmitter is fixed at a location. Due to the errors associated with the mea-

suring instrument, it is reasonable to expect a Gaussian distribution around the actual 

signal level. But, because of other noise sources we do not get a true Gaussian distribu-

tion. Figure (5.12) shows the plot of the signal level versus the frequency of its occur-

rence. As can be seen there is a second smaller "peak" associated with noise of a lower 

frequency. 



Figure 5.12: Signal Level versus its Frequency of Occurrence. 

To get nd of this low frequency noise, a fast fourier transform (fft) was performed 

on the signal. It was found that the noise was at the low frequency of 120 Hz., 240 Hz. 

and its higher harmonics and beat frequencies. This can be removed by setting the fft val-

ues of the noisy signal corresponding to 120 Hz., 240 Hz., etc. to zero and then perform-

ing an inverse fft to get back to the signals. But the low frequency noise was removed in 

the hardware itself by incorporating certain electronics (Troiano, A. 1992). Figure (5.13) 

shows the plot of the power spectral density versus the frequency before the noise 

removal and after the noise removal. The Power spectral density values are high before 

noise removal and comparatively very low after noise removal. 



Figure 5.13a: Power Spectral Density versus Frequency: Before Noise Removal. 

Figure 5.13b: Power Spectral Density versus Frequency: After Noise Removal. 



Figure 5.14: Gaussian Instrument Error Function Obtained after 
Removal of Spurious Noise. 

After the noise removal in the hardware we find that we have Gaussian instrument 

error function (Figure 5.14). This can be further removed by using any data smoothing 

routine (Hayden 1987). To study the effect of noise on the predicted trajectory, a urn-

formly distributed noise with an amplitude of 5% is added to the set of voltage values 

given by the forward model. The noise added voltage values are then used to obtain the 

sphere trajectones. Figure (5.15) shows trajectories obtained from noise added voltages. 

Again, the solid curves are the actual trajectories while the markers are the predicted tra-

jectones. The error m prediction of the trajectory is because of the introduction of noise 

winch makes the problem no longer one of zero-residual. But the algorithm is robust and 

does not completely fail and is still able to converge to a solution. 



Figure 5.15a: Projection of the Trajectories onto the XY Plane. 

Figure 5.15b: Projection of the Trajectories onto the XZ Plane. 

Figure 5.15: Simulated Experiment with Added Noise. 



After processing the signals to remove the noise the voltage values are closer to 

those predicted by the model. So, it gives better results. Figure (5.16) shows the plot of 

error in the predicted positions before and after noise smoothing. 

Figure 5.16: Reduced Error in Prediction of Trajectories after Noise 
Removal as Compared to Before Noise Removal. 

5.5 Conclusions 

A new system based on the pnnciple of magnetic induction is presented. The inverse 

solution techniques to predict the location of the particle is presented. We have shown 

that the Levenberg-Marquardt algorithm is an appropriate choice for this problem. Sim-

ulated experiments for different transmitter-receiver geometry and dimensions were 

successfully completed. The solution technique is the same and is proved to be adequate 

for all the different cases. Convergence is achieved even if the initial guesses are far 

away. This is significant as the predicted location becomes the initial guess for the next 



trajectory point. Hence, convergence from a relatively far off initial guess ensures that 

there is no accumulation or propagation of errors from a single bad point. The bad point 

could always be eliminated by a simple heuristic check based on the principle of conti-

nuity of motion. 

The dynamic range of the predicted voltage values is still not exactly the same as 

that of the expenmental values. Hence the model predicts voltage values which are dif-

ferent from the actual values particularly near the plane of the receiving antenna. Hence 

the error in the prediction of the trajectory is the greatest near to the antenna. A simple 

remedy to this problem could be to use sufficiently large dimensions of the receiving 

antenna so that the expenmental space is in the relatively linear region of the voltage 

space. But increasing the distance of the transmitter from the receiver results in lower 

signal levels and hence inferior signal to noise ratios. A more desirable solution to this 

problem would be to fine tune the model using the empirical map. 

Actual expenmental results support our premises based on simulated experiments. 

Hence, the feasibility of the technique is established beyond any reasonable doubt. If the 

functions are highly nonlinear, the solution technique may not be adequately robust 

against signal noise and bad initial guesses. More expenmental data in full three dimen-

sions is necessary to study the robustness of the solution technique. Noise smoothing to 

remove the Gaussian instrument error can be used to increase the accuracy and the 

robustness of the solution technique. 

In summary a new expenmental technique to track the particle motion non-intru-

sively is presented. The feasibility of the method is established using computational and 

actual expenmental results. It is an extremely useful technique having applications in 

many fields. The technique developed will directly be used in the study of inclined chute 

granular flows. 



APPENDIX A 

PROPERTIES OF BULK SOLIDS 

Some of the important properties of bulk solids are as given below. 

(1) Granular and pulverized material sustain shear forces. 

(2) The pressure is not uniformly transmitted throughout the grain mass. 

(3) Coarse bulk solids (lumps of coal or ore) can have voids and thus are not 

continuous, not even homogeneous. 

(4) Archimedes' pnnciple of buoyancy does not hold for granular substances. 

(5) The angle of repose for granular materials is that which the material will assume 

when piled on itself. The coefficient of static friction m of grain against grain is 

1..t = tan 

(6) Ketchum (1919) found that the amount of grain discharged through an onfice in 

the center of the bottom of the bin under gravity forces varies as the cube of the 

opemng 

diameter. For fluids, the discharge varies as the square of the opemng diameter. 

(7) The volume of bulk solids discharged through an onfice in the side of a bin near 

the bottom varies as the diameter of the opemng. 

(8) In both cases, the volume of flow is independent of the head above the onfice. 



APPENDIX B 

ARCHING PHENOMENA 

The terms "arching", "bridging", and "doming" are used interchangeably to designate 

the cause of the stoppages of flow of bulk goods from bunkers, silos and hoppers. The 

terms are very descriptive since the free surface of the blocked material has the form of 

an arch, a bndge, or a dome. Thus one of the most important practical consequences of 

the cohesiveness of a bulk solid is that the material can develop sufficient "strength" to 

form a stable "arch" (or "bndge" or "dome") over an opening, even when the opemng 

is very large in comparison to the particle size of the bulk solid concerned. The mechan-

ical strength of arches is usually such that flow cannot be promoted by such means as 

poking by a crowbar from the top, bottom or side. 

The main factors contributing to the tendency of a bulk solid to form a stable arch 

across an opening are the presence of very fine particles or of moisture, both of which 

increase the cohesiveness of the material. Compaction dunng storage also tends to 

increase the strength of the material and so aggravate the flow situation. Thus solids 

which run satisfactorily in the process of continuous operation may not flow after a 

period at rest owing to arching. 

Two forms of stable arch can occur across an opemng. A simple "mechanical arch" 

can develop directly as a result of interlocking of particles that are of large size com-

pared with the opemng. However, this problem can usually be avoided by ensuring that 

the hopper outlet is at least ten times the largest particle size. A "cohesive arch" is some-

what more difficult to predict as it forms as a result of the consolidation and strength of 

a cohesive bulk solid and can therefore occur even with materials of very fine particle 

size. The shear strength of a particulate bulk solid is a function of the consolidating pres-

sure. Of special significance to the ability of a bulk solid to form a cohesive arch is the 



"unconfined yield stress" which represents the strength of the material at the free sur-

face. For a free-flowing (non-cohesive) material, such as dry sand, the unconfined yield 

stress is zero and therefore a cohesive arch could not occur. 

The internal solids friction (grain against grain) is the cause of the pressure distn-

bution (Stepanoff 1969). Internal friction is also the cause of arching. Since average 

grain velocities in the bin are neghgible, the distinction between static and kinetic coef-

ficients is negligible. All properties of solids affect the value of the coefficient of fric-

tion: nature of solid, grain size, grain screen test, grain shape, moisture, temperature, 

adhesion and cohesion. It should be noted that cohesion is independent of pressure. 

Also, the mobility of grain is reduced at higher temperatures, which is contrary to the 

behavior of Newtonian fluids. It has been established that solids graded as to size are 

more fluid than the mixture of sizes. 

It is for these reasons that a knowledge of the flow behavior of bulk solids is essen-

tial when designing storage containers and other components of bulk handling installa-

tions. 



APPENDIX C 

SOLUTION OF ELLIPTIC INTEGRALS 

The solution to the elliptic integrals which are present in model #2 discussed in chapter 

3 is given below. 
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APPENDIX D 

HOMOGENEOUS COORDINATES AND 
TRANSFORMATION MATRIX 

Since a 3 x 3 rotation matrix does not give us any provision for translation and scaling, 

a fourth coordinate or component is introduced to a position vector p = (px, py, pz)T  in a 

three-dimensional space which makes it p = (wpx, wpy, wpz, w)T. The position vector p 

is said to be expressed in homogeneous coordinates. The concept of a homogeneous-

coordinate representation of points in a three-dimensional euclidean space is useful in 

developing matrix transformations that include rotation, translation, scaling and per-

spective transformation. In general, the representation of an N-component position vec-

tor by an (N + 1) - component vector is called homogeneous coordinate representation 

(Fu, Gonzalez & Lee 1987). In a homogeneous coordinate representation, the transfor-

mation of an N-dimensional vector is perfoinied in the (N+1)-dimensional space, and 

the physical N-dimensional vector is obtained by dividing the homogeneous coordinates 

by the (N+1)th coordinate, w. Thus, in a three-dimensional space, a position vector p = 

(p x, p y, p z)T  is represented by an augmented vector (wpx, wp y, wpz, w)T  in the homoge-

neous coordinate representation. The physical coordinates are related to the homoge-

neous coordinates as follows: 

wpx wpy wpz 
PA= w ' Py =  w  , Pz = w 

There is no unique homogeneous coordinates representation for a position vector 

in the three-dimensional space. Thus, the fourth component of the homogeneous coor-

dinates, w, can be viewed as a scale factor. 

The homogeneous transformation matrix is a 4 x 4 matrix which maps a position 

vector expressed in homogeneous coordinates from one coordinate system to another 

coordinate system. A homogeneous transformation matrix can be considered to consist 



of four submatnces: 

Position [Rotation 

T- 
R3 x3:p3 xl 

Matrix Vector 

— Perspective f1)43 1x1 Scaling 
. - Transformation 

The upper left 3 x 3 submatnx represents the rotation matrix; the upper right 3 x 1 sub-

matrix represents the position vector of the ongin of the rotated coordinate system with 

respect to the reference system; the lower left 1 x 3 submatnx represents perspective 

transformation; and the fourth diagonal element is the global scaling factor. 

A homogeneous transformation matrix geometrically represents the location of a 

rotated coordinate system (position and orientation) with respect to a reference coordi-

nate system. 



APPENDIX E 

CONVERGENCE OF SEQUENCES OF REAL NUMBERS 

Given an iterative method that produces a sequence of points xl, x2,..., from a starting 

guess x0, it is useful to know if the iterates converge to a solution x*, and if so, how 

quickly. If we assume that we know what it means to write 

lim a k  = 0 
k ---> co 

for a real sequence { ak}, then the following definition charactenzes the properties we 

need. 

Let x*  E R, xk  E R, k = 0, 1, 2,.... Then the sequence {xk} = {x0, xl , 

x2,... } is said to converge to x* if 
lira Xk -X*1 = 0. 

k —> .0 

If in addition, there exists a constant c E [0, 1) and an integer k z 0 such that for all 

kk, 

ixk+1 -X*1 _<_C 1 Xk -X* 

then {xk  } is said to be q-linearly convergent to x*. If for some sequence {ck  } that con- 

verges to 0, 

Xk+1 -X*II<Ck Xk -X* 

then {xk} is said to converge q-superlinearly to x*. If there exist constants p > 1, c z 0, 

and k z 0 such that {xk} converges to x* and for all kk, 

xk +1-X* SCXk -X* P, 

then {xk  1 is said to converge to x* with q-order at least p. If p = 2 or 3, the convergence 

is said to be q-quadratic or q-cubic, respectively (Dennis & Schnabel 1983). 
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