Copyright Warning \& Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page \# to: last page \#" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

ABSTRACT
 A Computer Implementation of a Multi-Neuron Expandable Network
 by
 Mary Ellen Aleksza

The primary goal of this thesis is to develop a small, expandable neural network that oscillates when presented with an appropriate stimulus. This model will be used in the future as a base to create larger networks. Future studies of these larger networks may be used in the simulation of neuronal activity such biological oscillators.

This thesis encompasses a study of neuron activity, neural networks, neuron models and biological oscillators. The focus of the thesis is the modification and expansion of a single neuron simulation into a simulation of an interconnected multi-neuron oscillatory network.

A single neuron model based on the work of HodgkinHuxley is used to develop a simulation of a generalized, expandable, 3x3 (9 neuron) interconnected network.

The model is general enough to be expanded, include multiple neurons (inhibitory and excitatory) with multiple inputs and outputs, and be able to handle any set of random interconnections.

A COMPUTER IMPLEMENTATION

OF A MULTI-NEURON EXPANDABLE NETWORK
by
Mary Ellen Aleksza

This Thesis
Submitted to the Faculty of New Jersey Institute of Technology in Partial Fulfilment of the Requirements for the Degree of Master of Science in Biomedical Engineering May 1992

APPROVAL PAGE
A Computer Implementation of a Multi-Neuron Expandable Network
by
Mary Ellen Aleksza

$4 / 27 / 92$
 Dr. S. Reisman, Thesis Adviser
 Professor and Associate Chairman of Graduate Studies, Electrical and Computer Engineering Department

BIOGRAPHICAL SKETCH

Author: Mary Ellen Aleksza

Degree: Master of Science in Biomedical Engineering

Date: May, 1992
Date of Birth:
Place of Birth:
Undergraduate and Graduate Education

* Master of Science in Biomedical Engineering, NewJersey Institute of Technology, Newark, NJ, 1992
* Bachelor of Science in Biomedical Engineering,Milwaukee School of Engineering, Milwaukee, WI,1988
* Associate of Science in Electrical Engineering,Middlesex County College, Edison, NJ, 1986
* Associate of Applied Science in ElectricalTechnology, Middlesex County College, Edison, NJ,1986
Major: Biomedical Engineering
Presentations and Publications:
Aleksza, Mary Ellen. "Computer Implementation of a
Multi-Neuron Expandable Network." Presented in Kingston, Rhode Island, March, 1992, at the Eighteenth Annual I.E.E.E. Northeast Bioengineering Conference. Kingston, Rhode Island: 1992.
Hause, L. L., F. Ganyon and M. E. Aleksza. "Impedance Measurements During Simulated Blood Flow." Presented in Seattle, Washington, November, 1989, at the I.E.E.E. Engineering in Medicine and Biology Society Eleventh Annual International Conference. Seattle, Washington: 1989.
This thesis is dedicated
In loving memory of:
Stephen Aleksza
To give up would have been
My only true failure!
I stuck it out for you!

ACKNOWLEDGMENT

The author wishes to express her sincere gratitude to her adviser Dr. S. S. Reisman, for his never ending patience, tolerance, guidance and support throughout this thesis.

Special thanks to Dr. D. Kristol and Dr. J. Carpinelli for serving as members of the committee.

The author would like to thank Dr. W. Tapp for the basic instructions and concepts he provided.

The author would also like to acknowledge the Department of Veteran's Affairs Medical Center, East Orange for the financially supporting this thesis. And finally, a thank you to the author's husband, family and friends for enduring the wait.

Page

1 BACKGROUND 1
1.1 Introduction 1
1.2 Neuron Physiology 1
1.3 Introduction to Neural Networks 4
1.4 Hodgkin-Huxley Neuron Model 4
1.5 Computer Simulation of the Hodgkin-Huxley Model 8
1.5.1 Introduction 8
1.5.2 Outline of The Computer Simulation 9
2 SCOPE 11
3 MODEL DEVELOPMENT 12
3.1 General Model and Simulation Concepts 12
3.2 Neuron Model and Simulation 13
3.2.1 Introduction 13
3.2.2 Simulation of the Neuron 14
3.2.3 Neuron Interconnections 14
3.3 Series Two Neuron Pool Model and Simulation 16
3.4 Multi-Neuron Pool Model and Simulation 17
3.4.1 General Model and Simulation Concepts 17
3.4.2 2X2 Model 18
3.4.3 3X3 Model 19
3.5 Multi-Neuron Pool Simulation Program 20
4 SIMULATION RESULTS 22
4.1 General Information 22
4.2 Series Two Neuron Simulation 23
TIABLE OF CONTENTS (continued)
Page
4.3 Multi-Neuron Pool Simulation 23
4.3.1 2×2 model 23
4.3.2 3x3 model 25
4.3.2.1 3×3 model (simple) 25
4.3.2.2 3×3 model (complex) 26
4.4 Other Results 29
4.5 Discussion 29
5 INTRODUCTION TO BIOLOGICAL OSCILLATORS 31
5.1 Introduction 31
5.2 General Theory 31
5.3 Integrate and Fire Model 32
6 CONCLUSIONS 35
APPENDIX A. 37
APPENDIX B 46
APPENDIX C 65
APPENDIX D 67
REFERENCES 69

LIST OF TABLES

TablePage3.1 2X2 Matrix Assignments 17
3.2 3X3 Matrix Assignments 18

LIST OF FIGURES

Figure
Page
1.1 Hodgkin-Huxley Electrical Equivalent of a Neuron Membrane 5
1.2 Samples From the Randall Simulation facing 10
3.1 Series 2 Neuron Model Connections 17
3.2 MULTIN1/1A (2X2) Interconnections 18
3.3 MULTIN2/2A (3X3, simple) Interconnections 19
3.4 MULTIN2/2B (3X3, complex) Interconnections 19
3.5 Flow Chart for the Multi-Neuron Simulation Program facing 21
4.1 Sample Results From HHMOD5A facing 23
4.2 Initial Results From MULTIN1 facing 23
4.3 Results From MULTIN1 (No Oscillations) 24
4.4.1 MULTIN1 Results (MV vs Time Format) facing 25
4.4.2 MULTIN1 Results (Neuron Number vs Time Format) facing 25
4.5 MULTIN2A Results (N1,N4,N7 Initiate System \& No Oscillations) facing 26
4.6 MULTIN2A Results (Similar to \#4.5 with Oscillations) facing 27
4.7 MULTIN2B Results (N1, 1N3, N4 Initiate the System) 27
4.8 MULTIN2B Results (N3 Only Initiates the System) facing 28
4.9 MULTIN2B Results (Inhibitory Values Used) 28
5.1 Sample Results From Integrate \& Fire Model 34

CHAPTER 1 BACKGROUND

1.1 Introduction

This chapter provides an overview of neural networks and physiological theory of neurons. A section of this chapter is dedicated to the Hodgkin-Huxley neuron model. The simulations developed in this thesis are based on this model. The final section of this chapter discusses a computer implementation of the Hodgkin-Huxley model (1).

1.2 Neuron Physiology (3)

The nervous system is the body's control center and communications network responsible for three basic functions: sensory, integrative and motor. This system is comprised of two major cell groups, neurons and neuroglia. Neuroglial cells are the support and connecting tissue around the neurons. Neurons are the functional unit of the nervous system. These specialized cells are used to convert stimuli to nerve impulses. The neuron cell itself is divided into three sections: the dendrites, for incoming stimuli, the cell body, for processing and the axon, for outgoing stimuli.

The electrical characteristics of a neuron are based on the membrane potential. The membrane potential is caused by the differences between the inside and the outside charges across the membrane. This difference causes a potential difference across the membrane (4).

The charges are caused by unequal concentrations of sodium and potassium ions on opposite sides of the membrane. Also, there are large negatively charged non-diffusible ions trapped within the membrane that facilitate this ion concentration difference. An electric field along with a drift current are products of the concentration differences (4). The resting potential of a neuron is approximately 70 mV with respect to the inside of the cell. A neuron in this state, i.e. not producing impulses, is known as polarized.

A stimulus is any condition within the environment that would cause alterations in the membrane potential. Stimuli may have an inhibitory or excitatory influence on the membrane. A neuron's ability to respond to stimuli and convert it to a nerve impulse is called excitability. Neurons have inherent thresholds that must be exceeded in order to produce a response from a stimulus. A stimulus strong enough to produce an action potential is call a threshold stimulus. Sub-threshold stimuli are those that do not produce an action potential. A series of subthreshold stimuli have a summing effect and the total, over a given period of time, may produce an action potential.

The membrane becomes permeable to sodium ions when a stimulus or a combination of stimuli is strong enough to exceed the threshold potential (4). This causes the membrane to depolarize, initiating an action potential.

The inside membrane potential begins to increase from -70 mV to 0 mV until the membrane potential is reversed. After this, the inside membrane potential continues to increase to about 30 mV , at which time the membrane permeability changes towards potassium and the membrane repolarizes. The depolarization/repolarization "wave" self-propagates along the outside of the membrane. This action is then transferred via an electro-chemical process to another neuron or muscle. This "stimulus" will either have an excitatory (promote firing) or inhibitory (suppresses firing) characteristic on the next neuron/muscle. The speed of the impulse is dependent upon the temperature and the diameter of the fiber.

A neuron can not generate another action potential until the cell has repolarized. This period of time is called the refractory period. During the absolute refractory period, the cell can not regenerate an action potential regardless of the amplitude of the stimulus present. During the relative refractory period, the cell will produce an action potential only if the amplitude of the stimulus is greater than the normal value.

Neurons are organized in definite patterns called neuron pools. The pools can consist of thousands and/or millions of neurons. The pools are also arranged in organized combinations of different patterns. Neurons in series (one neuron directly affects one neuron) is the simplest pattern. The patterns may be diverging (one
neuron affecting many) or converging (many affecting one). A diverging neuron pattern that eventually converges is known as a parallel network. A reverberating pattern is one that has feedback.

1.3 Introduction to Neural Networks (5)

Neural networks are models that simulate biological neurons. These models are studied because of the possibility of achieving human-like performance from a computer simulation for systems such as biological oscillators. The neural net concept consists of a mass parallel network made up of interconnected computational elements (6). The network is very dependent upon how the individual neurons are interconnected. The connections are usually a set of variable weighted links. The weights control the strength of the incoming signal to the network. The basic unit of a neural network consists of a weighted sum that is compared to a threshold value to see if a response is to be generated.

1.4 Hodgkin-Huxley Neuron Model

The Hodgkin and Huxley model (HH) is a widely known and accepted model of a neuron. This model was generated from data obtained from experiments that were performed on a giant squid axon. The results from the experiments lead to the analogy between the electrical behavior of the membranes and a parallel resistive-capacitive network (1),
(2), (4). The network is shown below in Figure 1.1.

Figure 1.1: Hodgkin and Huxley Electrical Circuit Equivalent of a Neuron Membrane (1).

Ionic current is the current caused by the movement of ions through the resistances. Ina and Ik are currents respectively associated with the sodium and potassium ions. A small leakage current (Il) is caused by chloride and other ions. By using Kirchoff's current laws, the total ionic current is (7): (All equations are adapted from the Hodgkin and Huxley reference (1))

$$
\begin{align*}
& \text { Ii }=\operatorname{Ina}+I k+I l \tag{1.0}\\
& \text { where } I n a=\text { gna * }(E-E a) \tag{1.1}\\
& \quad I k=g k *(E-E k) \tag{1.2}\\
& \text { and } \quad I l=g l *(E-E l) \tag{1.3}
\end{align*}
$$

The conductances are gna (for sodium), gk (for potassium) and gl (for the leakage). The equilibrium potentials are Ea (for sodium), Ek (for potassium) and El (the potential at which the leakage current is zero). E is the membrane potential.

The total membrane current (I) (the sum of the capacitor and ionic currents) is given by:
$I=C m d V / d t+I i$
Cm is the membrane capacitance per unit area (V/cm^3). [^ is used to signify something is raised to a power] V is the displacement of the membrane potential from its resting value in millivolts. Ii is the initial value of the capacitor current. The time variable is t.

The equations for the ionic currents can be modified to reflect potential measured directly as displacements from the resting potentials versus the absolute value of the resting potentials. These equations for sodium, potassium and leakage respectively are:

$$
\begin{align*}
& \text { Ina = gna * (V - Vna } \tag{1.5}\\
& \text { where } \quad V=E-E r \tag{1.6}\\
& \text { and } \quad V n a=E n a-E r \tag{1.7}\\
& I k=g k *(V-V k) \tag{1.8}\\
& \text { where } \quad V k=E k-E r \tag{1.9}\\
& I l=g l *(V-V l) \tag{1.10}\\
& \text { where } \quad V I=E l-E r
\end{align*}
$$

Er is the resting potential.
Through experimentation, Hodgkin \& Huxley found that Ena, Ek, Ei, Cm and gl may be taken as constants, but gna and gk are functions of time and membrane potential (5). Thus, the potassium conductance is given by:

$$
\begin{equation*}
\mathrm{gk}=\mathrm{gk} \mathrm{k}^{\prime} * \mathrm{n}^{\wedge} 4 \tag{1.12}
\end{equation*}
$$

" gk " $"$ is a constant ($\mathrm{mS} / \mathrm{cm}^{\wedge} 3$). " $\mathrm{n} "$ is a dimensionless
variable between 0 and 1 and is obtained by:

$$
\begin{equation*}
\mathrm{dn} / \mathrm{dt}=\mathrm{an}(1-\mathrm{n})-\mathrm{Bn} * \mathrm{n} \tag{1.13}
\end{equation*}
$$

The rate constant of potassium ions being transferred from the outside to the inside of the cell (an) is:

$$
\begin{align*}
& \text { an }=0.01 *(\mathrm{~V}+10) /[\exp ((\mathrm{V}+10) / 10)-1 \tag{1.14}\\
& \text { where } \mathrm{n} \quad=\mathrm{an} /(\mathrm{an}+\mathrm{Bn}) \tag{1.15}\\
& \text { and } \tag{1.16}
\end{align*}
$$

The rate constant for potassium ions being transferred from the inside to the outside of the cell (Bn) is:

$$
\begin{equation*}
\mathrm{Bn}=-0.125 * \exp (\mathrm{~V} / 80) \tag{1.17}
\end{equation*}
$$

The Sodium Conductance is given by:

$$
\begin{equation*}
\text { gna }=\mathrm{m} \wedge 3 \text { * } h \text { * gna' } \tag{1.18}
\end{equation*}
$$

"gna'" is a constant (mS/cm^2). "h" is the proportion of inactivating molecules outside and is obtained by:

$$
\begin{equation*}
\mathrm{dh} / \mathrm{dt}=\mathrm{ah} *(1-\mathrm{h})-\mathrm{Bh} * \mathrm{~h} \tag{1.19}
\end{equation*}
$$

The proportion of activating molecules inside the cell is m. The m values are obtained by:

$$
\begin{equation*}
\mathrm{dm} / \mathrm{dt}=\mathrm{am}(1-\mathrm{m})-\mathrm{Bm} \tag{1.20}
\end{equation*}
$$

The rate constant for sodium ions being transferred from the outside to the inside of the cell (am) is:

$$
\begin{equation*}
a m=0.1 *(\mathrm{~V}+25) /(\exp ((\mathrm{V}+25) / 10)-1 \tag{1.21}
\end{equation*}
$$

The rate constant of sodium ions being transferred from the inside to the outside of the cell (Bm) is given as:

$$
\begin{equation*}
\mathrm{Bm}=4 * \exp (\mathrm{~V} / 18) \tag{1.22}
\end{equation*}
$$

The rate constants for the inactivation process are (ah \&

Bh) :

$$
\begin{align*}
& \mathrm{ah}=0.07 * \exp (\mathrm{~V} / 20) \tag{1.23}\\
& \mathrm{Bh}=1 /(\exp \{[\mathrm{V}+30 / 10)+1\} \\
& \text { The total membrane current }(\mathrm{I}) \text { as a function of time }
\end{align*}
$$ and voltage is:

$$
\begin{align*}
I= & C m * d V / d t+g k^{\prime *} n^{\wedge} 4 *(V-V k)+g n a \prime \\
& * m^{\wedge} 3 * h *(V-V n a)+g l^{\prime} *(V-V l) \tag{1.25}
\end{align*}
$$

This final equation is the basis of the simulation.

1.5 Computer Simulation of the Hodgkin-Huxley Model

1.5.1 Introduction

The computer simulation for an axon action potential is based on a HH computer model implementation (2). The simulation solves for transmembrane potentials, major ionic currents and for the membrane conductances to sodium and potassium. The model is initiated by using the amplitude and duration of two electrical stimuli separated by a time delay and is developed for ease of documentation but not for the minimization of run time.

The simulation determines the membrane conductances as voltage and time dependent variables described by nonlinear differential equations. The membrane currents are obtained by using the conductances and a "driving force." The net rate at which the charged particles are crossing the membrane is equal to the sum of the inward and outward currents and the input stimulus (if any.) The membrane potential is updated according to the net charge which is
transferred during the finite computation interval.

1.5.2 Outline of Computer Simulation

The simulation is divided into seven sections for ease of documentation. The first section contains the initialization of variables, the input stimulus set up and the iteration loop. The program is set so the total current flowing during a time increment is used to calculate the new membrane voltage.

The second section is a subroutine that calculates the initial membrane conductances and currents. The values are determined from the dimensionless variables computed from the initial membrane potentials and the electrochemical driving force.

The third section is a subroutine that calculates the rate constants for the membrane voltage. The conductances are assumed to respond instantly to the voltage.

The fourth section is a subroutine that calculates the new conductances. Rectangular integration approximations are used.

The fifth section is a subroutine that calculates the currents during a time interval. The input stimulus, if any, is taken into consideration in this section. The stimulus is added directly to the total current.

The sixth section is a subroutine that updates the membrane voltage. The model accounts for both the voltage expressed as a displacement from the resting value (V) and

FIGURE 1.2.A

FIGURE 1.2.B

FIGURE 1.2.C
FIGURE 1.2: Sample Run From the Randall Model (8): Values for Stimulus 1 is 100 @ . 1 , Stimulus 2 is 100 @ . 1 and a delay of 5ms. A: Conductances; B: Total Current and Membrane Potential; C: Action potential only.
the absolute voltage (MV). V is the conventional voltage presented by Hodgkin \& Huxley. Randall arbitrarily chose a resting membrane potential of -90 mV . This value can range from -70 to -90 mV .

The seventh section is a subroutine that is used to print/plot the output. The program is designed to produce graphic output to the monitor. The program is listed in Appendix A under the HHMODEL series with the name HHMODEL1 and HHMODEL2. The output for HHMODEL1 is not given because it is coded for a graphics display only. The model was adapted for a printed output (HHMODEL2) and is listed in Appendix A. Sample output for HHMODEL2 is shown in FIGURE 1.2, on the facing page.

The HHMODEL1 model was used as a means to became familiar with the capabilities of the model. The graphics display made it easier to see how the amplitude, duration and delay values affect the response of the model.

CHAPTER 2 SCOPE

The primary goal of this thesis is to develop a small, expandable neural network that would oscillate when presented with an appropriate stimulus. This model would then be used in the future as a base to create a larger network. Future studies of this larger network may show that it is a viable option to be used to simulate neuronal activity such as synchronous bursting and biological oscillators.

This thesis encompasses a study of neuron activity, neural networks, neuron models and biological oscillators. The focus of the thesis is the modification and expansion of a single neuron simulation into a simulation of an interconnected multi-neuron oscillatory network.

This thesis demonstrates the development of a single neuron model simulation to a generalized, expandable, 3x3 interconnected network. The neuron simulation is based on the Hodgkin-Huxley model (1).

The final model is a multi-neuron (3x3, or 9 neurons) network. Each neuron has multiple inputs and outputs. These neurons can be either inhibitory or excitatory. The model is general enough to be expandable. The model should can handle any set of random interconnections.

CHAPTER 3

MODEL DEVELOPMENT

3.1 General Model and Simulation Concepts

 The simulations are written in BASIC (ProDos 3.3). The programs are run on an Apple 2E enhanced personal computer with extended memory.The development of the neuron pool starts with a single neuron simulation and continues to an expandable 3X3 interconnected network with multi-input/output capabilities. It is assumed that once a basic multineuron network is developed, it can be expanded to any size network.

The HH computer simulation by Randall (described in Section 1.5.2) is used as the starting block for the network. All the assumptions made by Hodgkin \& Huxley and Randall are kept. The Randall simulation was generalized for ease of expansion. The computational sections remained the same except for the code used for the addition of the stimulus values. The program is modified so that any time the simulation time falls between a chosen delay and duration time, the appropriate stimulus would be added.

All stimuli values (amplitude, duration and delay) are chosen by the user. These values remain constant throughout the simulation but have to be continuously adjusted to coincide with the simulation time. "Time adjustment" code is required so that the appropriate
neurons are stimulated after the respective neuron fires. [Example: For a given stimulus, the duration chosen is 0.2 ms and the delay chosen is 2.0 ms . If an action potential occurs at 5 ms for a particular neuron, the stimulus will reach the next neuron at 7.0 ms and will last until 7.2 ms. The program does not calculate initial stimuli that start at 0.0 ms . (Inherent to the Randall program.) A small initial delay of 0.04 ms (or one simulation time interval) is arbitrarily chosen to compensate for this. The stimulus values are set equal to dummy variables at the start of the program. The values are transferred to working variables after the appropriate neuron fires. This prevents the stimuli from being accounted for prematurely.

The models use predominately large excitatory values and times to ensure that the neurons fire. Negative amplitudes are used to indicate an inhibitory stimulus.

3.2 Neuron Model and Simulation

3.2.1 Introduction

The goal of this thesis is to develop a oscillatory, multi-neuron interconnected network simulation. The Randall simulation (discussed in Section 1.5) accommodated a single neuron with two input stimuli. The Randall simulation had to be adapted to accommodate for multiple neurons with multiple input stimuli. The program had to be generalized for ease of expansion. This section
describes how a neuron is simulated.

3.2.2 Simulation of the Neuron

The neuron is described by three characteristics: the conductances (Na, K and leakage), the ionic currents (Na , K and leakage) and the membrane potential (2). The associated equations are outlined in Sections 1.4 and 1.5. This computational group of equations predominantly remain the same throughout the simulation development. The stimulus addition sequence (see Appendix A.1 lines 40704100) are modified to account for multiple stimuli that may be present at any given time as described in Section 3.1. A stimulus will be added as long as the simulation time is greater than the associated delay time but less then the associated duration time. This group is a major subroutine in the simulation as outlined in Section 3.5. It is generalized so that no matter which neuron is being activated the same code is called. Matrices keep track of which neuron and associated stimulus is being calculated. The matrix assignments for the 2×2 and the 3×3 model are shown in TABLES 3.1 and 3.2.

3.2.3 Neuron Interconnections

The interconnection pattern for the network is chosen by the user prior to running the simulation. (Example: FIGURES 3.2, 3.3 and 3.4) The simulation is developed based on which neurons are affected by the "firing" of a particular neuron. (i.e. What effect does the firing of N1 have on the rest of the pool?)

Stimulus values are used for connecting the neuron. The values are triggered by an action potential of another neuron. These values are chosen by the user. An arbitrary threshold value is chosen to signify when an action potential has occurred. The membrane potential is compared to this value and a stimulus is activated if the threshold is exceeded. An arbitrary threshold value of 0.0 mV was chosen.

The stimuli that are used for the interconnections must be adjusted to the simulation time during the simulation run as described in Sections 3.1 and 3.2.2. A flag is used to prevent the program from recalculating the updated stimulus values during an action potential.

The flag used to prevent the program from recalculating the time adjustment values during the action potential period must be reset so that the multi-neuron network can oscillate. This is addressed by using an arbitrary reset threshold value. The membrane potential will be compared to this value. The flag will be reset if the membrane potential is less then this value. The reset value was first set to -100.0 and a trial run, using standard values showed that the network would not oscillate easily. The value was increased to -95.0 which proved to be sufficient.

The interconnections are achieved by assigning values to a stimulus set (amplitude, duration and delay) for a particular neuron. That is, values assigned to
$(1,4)$ matrix block indicate that when neuron 4 "fires" a stimulus will be sent to neuron 1. Initial values are assigned to the (*,1) matrix block values. (* indicates any neuron) In other words, the matrix assignments reflect which neurons are influenced by the respective neuron. The models assume that neurons can receive stimuli from an external source and/or from any of the other neurons in the matrix. The models do not consider neurons that feedback directly onto themselves. "Time adjustment" code is written for each neuron connected to another.

The "time adjustment" code consists of converting the dummy variables to working variables. The stimulus amplitude is a direct relation. (dummy $=$ working) The working delay value is the sum of the simulation time (at which the respective action potential occurred) and the dummy variable. The working duration value is the sum of the working delay value and the dummy value.

The final simulation program is outlined in section 3.5 (including a flow chart) and the programs are listed in Appendix B.

3.3 Series Two-Neuron Pool Model and Simulation

 The initial model development is to set up the simplest neuron pattern, a two neuron series model. The model is shown on the next page in FIGURE 3.1 This model would serve as the base for the extended multi-neuron pools.The computational code from the Randall single neuron model is used to signify a neuron. The code is set as one subroutine and is called by each neuron. Matrices are used to keep track of the neurons.

FIGURE 3.1: Series 2 Neuron Model Connections The code used for the series 2 neuron simulation is listed in Appendix A and the program is named HHMOD6D.

3.4 Multi-Neuron Pool Model and Simulation

3.4.1 General Model and Simulation Concepts

This series of models includes a 2×2 (4 neuron pool, [N1N4) and a 3×3 (9 neuron pool, $[\mathrm{N} 1-\mathrm{N} 9$) network. Matrices are used to keep track of which stimulus comes from which neuron. The assigned values are shown below in TABLE 3.1 and TABLE 3.2 on the next page.

ALL $S, D, Y(*, 1)$ VALUES ARE INITIAL STATES

NI VALUES
$(1,2)=2>1$
$(1,3)=3>1$
$(1,4)=4>1$
NZ VALUES
$(2,2)=1>2$
$(2,3)=3>2$
$(2,4)=4>2$
$(3,2)=1>3$
$(3,3)=2>3$
$(3,4)=4>3$
$(4,2)=1>4$
$(4,3)=2>4$
$(4,4)=3>4$

TABLE 3.1: 2X2 Matrix Assignments.

ALL S,D.Y(*,1) VALUES ARE IHITTAL STATES

M1 VALUES	N2 VALUES	N3 VALUES
(1,2) $=2>1$	(2,2) ${ }^{(2)}$	(3,2) $=1>3$
(1,3)-3>1	(2.3) - $3>2$	(3,3) $=2>3$
(1.4)-4>1	$(2,4)-4>2$	$(3,4)=4>3$
(1.5) $=5>1$	(2,5) - 5>2	$(3,5)=5>3$
(1.6)-6>1	(2.6) $=6>2$	$(3,6)=6>3$
(1.7) $=7>1$	(2.7) $=7>2$	$(3,7)=7>3$
(1.8) $=8>1$	(2,8)-8>2	$(3,8)=8>3$
(1,9)=9>1	(2.9) - 9>2	$(3,9)-9>3$
N4 VALUES	HS VALUES	N6 VALUES
(4,2) $=1>4$	(5,2)-1>5	(6,2)-1>6
$(4,3)=2>4$	(5,3) - 2>5	$(6,3)=2>6$
$(4,4)=3>4$	(5.4) - $3>5$	(6,4)-3>6
$(4,5)=5>4$	$(5,5)=4>5$	$(6.5)=4>6$
$(4,6)=6>4$	(5.6) $=6>5$	$(6,6)=5>6$
(4,7)=734	(5.7) $=7>5$	$(6,7)-7>6$
$(4,8)=8>4$	(5.8$)=8>5$	$(6,8)=8>6$
(4.9) = 9>4	(5,9) $=9>5$	$(6,9)->6$
N7 VALUES	H8 VALUES	N9 VALUES
$(7,2)=1>7$	(8,2) $=1>8$	(9,2) - $1>9$
$(7,3)=2>7$	$(8,3)=2>8$	(9.3)= $2>9$
$(7,4)-3>7$	$(8.4)=3>8$	$(9.4)=3>9$
$(7,5)=4>7$	(8.5) $=4>8$	(9,5)=4>9
(7.6) - 5>7	$(8.6)=5>8$	(9,6) $=5>9$
(7.7)-6>7	(8.7) ${ }^{(8, ~ 5>8}$	(9,7) $=6>9$
(7,8) - 8>7	(8,8) $=7>8$	(9,8) $=7>9$
$(7,9)=9>7$	$(8,9)=9>8$	(9,9) $=8>9$

TABLE 3.2: 3X3 Matrix Assignments
3.4.2 2X2 Pool

The 2×2 pool arbitrary interconnections are shown below in FIGURE 3.2. The connections were arbitrarily chosen. The program is named MULTIN1A and is displayed in Appendix B.

FIGURE 3.2: MULTIN1/1A Interconnections
The 2×2 model, shown in FIGURE 3.2, is used for
trial runs prior to using the values on any of the 3×3 models. It is used due to the small number of neurons, thus, achieving a faster run time. This network is used as the base for the 3×3 model.

3.4.3 3X3 Pool

The 3×3 basic model simulation is generalized to accommodate most combinations of the nine neurons. The 3×3 model is arbitrarily connected in two different formats. The first format (simple) is shown below in FIGURE 3.3. This program is named MULTIN2A. (see Appendix B)

The second arbitrary format is slightly more complex and is shown in the below in FIGURE 3.4. This program is named MULTIN2B. (see Appendix B)

FIGURE 3.3: MULTIN2A (3X3, simple) Interconnections

FIGURE 3.4: MULTIN2B (3X3, complex) Interconnections

3.5 Multi-Neuron Network Simulation Program

 The generalized final simulation code is broken down into eight sections as shown in Appendix B. The first section consist of REM statements that identify the program and provide general user information.The second section is used to initialize values, set up dimension statements and obtain user input values. The user input values are obtained by a subroutine described below under section 4.

The third section is the main routine. This section controls the flow of the subroutines and also tracks the simulation time. Initial values are transferred from holding variables to working variables in this section.

The fourth section is a subroutine called from section 2. This subroutine is used to obtain user input. The user values are the date of the run, the number of the simulation that was run that day (i.e. 1,2,3...), the amplitude, duration and delay values for each of the neurons stimuli and the total simulation time.

The fifth section consists of two subroutines that are called from the main program (section 3). The first routine routes the program to the initial value computational section. The second directs the program to the value updating computational section and is also used to reset the time adjustment overrun flag (= 0).

The sixth section is a subroutine that is used to convert the dummy variables into working variables. This

FIGURE 3.5: Flow Chart For the Multi-Neuron
Simulation Program
section is used for interconnecting the neurons. Only neurons affecting other neurons have time adjustment code. The flag used to prevent this section from recalculating during an action potential is set (= 1). This is further discussed in section 3.2.

The seventh section is the computational portion of the program for both the initial calculations and the updated calculations. This is further discussed in sections 1.5 .1 and 3.2 .

The eighth section is used to print the output.
The program flow chart is shown on the facing page
in FIGURE 3.5.

Chapter 4
 SIMULATION RESULTS

4.1 General Information

Results are displayed on the following pages. These are selected samples of the data obtained. The membrane potential is used as the demonstration variable for the output, although the simulation calculates all the characteristics of the neuron. The results obtained are printed numerical values that are run specific. The data was manually transferred from the printed information to LOTUS 123, release 2.01, for graphing. The simulation programs are written in BASIC (ProDos) and run on an APPLE 2 E enhanced personal computer.

Two types of graphs are used to present the data. The first type (membrane potential versus time) is one that displays the entire cycle of neuron activity including the polarized state, the action potential and the repolarization. This graph shows how stimuli cause the membrane potential to change but may not fully trigger an action potential. This graph can be used to compare the simulation results to theory. This graph became "crowded" as the number of neurons increased.

The second type (neuron number versus time) indicates when an action potential occurred. This graph is used to demonstrate the oscillatory characteristics of the simulation.

Stimulus amplitude values ranged for 50 to 200

FIGURE 4.1: (HHMOD5A) Sample Results: Series 2 neuron model simulation using excitatory values only

FIGURE 4.2: (MULTIN1) Initial Results: 2X2 simulation run. Only excitatory values are used.
$\mathrm{A} / \mathrm{cm}^{\wedge} 2$. Amplitude values between 50 and $100 \mathrm{~A} / \mathrm{cm}^{\wedge} 2$ are used to show a combination effect if more than one stimulus influenced a neuron. The duration values ranged from 0.24 - 0.5 ms . The delays varied between 0.5 and 5 ms , except for the initial delay of 0.04 ms . Delay times of 2 ms or greater are used to ensure that the system would oscillate. The delay has to be greater than the absolute refractory period in order for the oscillation to occur.

The average run time over a simulated 50 ms interval for the 2×2 model is 2.5 hours and for the 3×3 is 4.5 hours.

4.2 Series Two Neuron Simulation

FIGURE 4.1, on the facing page, shows the final run of the series 2 neuron model (FIGURE 3.1) prior to converting to a matrix system. Only excitatory values are used. The simulation is set up such that each neuron has three input stimuli and N1 triggers N2. N2 then feeds back to N1 using the third stimulus value. The system can not oscillate because N 2 flags are not programmed to be reset.

4.3 Multi-Neuron Pools

4.3.1 2X2 Pools

In FIGURE 4.2, on the facing page, are the results from the first trial of the 2 X 2 network shown in FIGURE 3.2. N1 is initially stimulated by an external source. N2 and

N3 are stimulated by N1. The stimulus values for each are the same. N4 is stimulated by both N2 and N3. N4 then feedbacks to $N 1$. Large stimulus values are chosen to ensure oscillations occur.

In FIGURE 4.3, below, are results from the 2×2 model (FIGURE 3.2). The stimulus values were decreased to see the effect. This trial did not oscillate. N 2 was triggered, the second time, by a stimulus that was not strong enough to produce another action potential. N3's stimulus alone was not strong enough for N 4 to produce another action potential. Thus, N1 was not triggered by N4. Therefore, the system can not oscillate. All the neuron eventually returned to the resting potential of 89.9 (not shown on the graph).

FIGURE 4.3: (MULTIN1) 2X2 simulation using excitatory values only. The system failed to oscillate.

FIGURE 4.4.1: (MULTIN1) 2×2 model simulation using excitatory values only. The system achieves oscillations.

FIGURE 4.4.2: (MULTIN1) FIGURE 4.4.1 information in neuron number versus time format.

In FIGURE 4.4.1, shown on the facing page, are results from the 2 X 2 model simulation (FIGURE 3.5) that achieved oscillations. N1 is initiated by an outside source. N2 and N3 are triggered by N1 but with a difference in the stimulus delays. N4 is again triggered by a combination of N 2 and N 3 . The delay between N 4 and N1 was increased to produce oscillations.

FIGURE 4.4.2, shown on the facing page, is used for a comparison of the two graph types as described in Section 4.1. This graph displays the same results, as used in Figure 4.4.1, but in neuron number versus time format.

4.3.2 3X3 Pools

4.3.2.1 3X3 Model (Simple)

In FIGURE 4.5, shown facing page 26 , are results from the initial run of the first 3×3 network (FIGURE 3.4). N1, N4 and N7 are triggered initially by an external stimulations. Only excitatory values are used. Stimulus amplitude values range between 100 and 150 with short delays (no greater than 2 ms). $\mathrm{N} 1, \mathrm{~N} 4$ and N 7 did not receive any further stimuli because N4, N5, N6, N8 and N9 did not produce a second action potential. Therefore, the system did not oscillate.

FIGURE 4.6, shown on facing page 27 , is similar to that shown in FIGURE 4.5 except the delay values were increased (no greater than 5ms) along with the amplitude values (100 to 200). The system achieved oscillations.

FIGURE 4.5: \{(MULTIN2A) 3X3 network\} Only excitatory values used with short delay times. N1, N4 and N7 initiated the network. No oscillations.

4.3.2.2 3X3 Model (Complex)

FIGURE 4.7, on page 27, displays the initial run of the second 3×3 network (FIGURE 3.5). N1, N3 and N4 are initially stimulated by an external source. All excitatory values are used. The simulation achieved oscillations.

FIGURE 4.8, shown on facing page 28, also displays results from the second 3 X 3 network shown in FIGURE 3.5. A single neuron (N3) is used to initiate the system. Only excitatory values were used. The simulation period is extended to show how the system responds over a long time period. The delay between N5 and N6 appears to become negligible as the simulation evolved. It is as if the two neurons became synchronized with each other.

FIGURE 4.9, shown on page 28, displays results from the 3×3 network shown in FIGURE 3.5. N9 is used as the starting neuron. N5 and N9 have three input stimuli whereas the rest of the neurons have only 1 or 2. This allowed one of the stimuli to be inhibitory. The value from N6 to $N 5(6,6)$ and the value from $N 3$ to $N 9(9,4)$ are chosen as the inhibitory values. The graph is in the membrane potential versus time format to show the overall network response. The system achieved oscillations.

FIGURE 4.6: \{(MULTIN2A) 3X3 network \} Only excitatory values used. Delay times increase compared to Figure 10. N1, N4 and N7 initiated the system.

FIGURE 4.7: \{(MULTIN2B) 3X3 network\} Only excitatory values used. N1, N3 and N4 initiate the system.

FIGURE 4.8: \{(MULTIN2B) 3 X 3 network Only excitatory values used. N3 used to initiate system.

4.4 Other Results

Sample runs were done using a different threshold value for the flag (-1.0) as discussed in Section 3.4.1. The data used for FIGURE 4.9 were used for one of the test runs. The results were the same as shown in FIGURE 4.9. Other sample runs (results not shown) showed that if the delays are long enough the threshold for the flag does not matter. Future studies are required to determine the full impact of this value on the simulation.

4.5 DISCUSSION

The neural network models have been programmed to be very adaptable for future expansions. The primary change should be the translation of the program from BASIC to a complied language such as FORTRAN, C or compiled BASIC. This would allow for the data to enter and leave the program through other files, reducing run time. The output can be stored for future use (printed/plotted) versus having run specific output and manually transferring the information to a separate plotting program. The run time of a compiled program will be reduced.

The current 9 neuron (3x3) models are expandable to 10 neurons but the program can be renumbered to accommodate for different numbers of neurons, limited by only the capabilities of the computer. This expansion is done by changing the programming associated with the
neuron interconnections and adjusting for the number of neurons accordingly. The model can then be adapted to take into account neurons that directly feedback onto themselves by adding another matrix series.

A future model possibility is a 10 X 10 matrix (100 neuron) model. A 10 X 10 model is described by Traub, et. al. (8) (9) The Traub model is capable of simulating hippocampal responses such as synchronous bursting. The future model(s) and the Traub model(s) could be compared to produce other possible expansion.

The interconnections between the neurons can also be expanded. The model would be able to accommodate possible functions that link the previous neuron's activities to the activities of the next. The automatic setup of neuron connections should also be considered. Traub, et. al. set up the connections through a random process. This process automatically determines the number of inhibitory to excitatory neurons which would be present and how each neuron affects the others.

CHAPTER 5
 INTRODUCTION TO BIOLOGICAL OSCILLATORS

5.1 Introduction

Future possibilities of oscillatory neural networks are to simulate biological oscillators (BO). This chapter is an introduction to BOs. It provides a very basic understanding of what they are; how they work and BO^{\prime} s importance in biological (human) systems.

The integrate and fire model (demonstrated in Section 5.3) is for example purposes. It is used to help visualize how simplified BOs function.

5.2 General Theory

Biological oscillators are inherent cycles of biological systems. Human BOs include, but are not limited to, temperature regulation, breathing, menstrual cycle, heart rate variability and circadian rhythms (10). The oscillations appear to be either self-initiated (i.e. pacemaker cells or electrically coupled isopotential cells) or controlled by the nervous system. The period of the oscillation is dependent upon many things some of which are not fully understood.

Biological oscillators can be affected by oscillations within that particular system or by oscillations external to that system (4). The interactions may lead to entrainment. Entrainment is also known as synchronization or phase locking (11). This
phenomenon allows for a biological system to "latch - on" to its environment (i.e. circadian rhythms entraining to the day-night cycle).

5.3 Integrate and Fire Model

One of the basic introductory models for phase locked biological oscillators is the integrate and fire (I\&F) model (10), (11), (12). This model is used due to its ease of implementation.

The I\&F model assumes a variable (the activity) increases linearly with time until a threshold is reached. Upon reaching this threshold the activity instantly and discontinuously resets to zero. This process is then repeated.

The ratio between the synchronized mode of the frequency of modulation and the oscillator is known as $\mathrm{N}: \mathrm{M}$ phase locking. The simplest ratio is $N: 1$ phase locking.

The example used in this chapter is adapted from the Glass \& Mackey model in order to be implemented on the Apple 2E enhanced personal computer. The threshold is sinusoidally modulated (SMT) in time. This allows for the oscillator to become synchronized to the sinusoidal stimulus. The activity reaches the threshold at definite fixed phases of the SMT.

The associated mathematical equations are (5.1),
(5.2) and (5.3) as shown on the next page.

The activity (X) is:

$$
\begin{equation*}
x=X O+(P C * T) \tag{5.1}
\end{equation*}
$$

XO is the initial activity value. PC is a positive constant. T is time.

The SMT (SS) is given by:

$$
\begin{equation*}
S S=S O+K * S I N((W * T)+P A) \tag{5.2}
\end{equation*}
$$

SO is the initial SMT value. K is the amplitude of the SMT. K must be greater than 0 but less then the initial SMT value ($0<=\mathrm{K}<\mathrm{SO}$). The angular frequency (W) and the phase angle (PA) must be greater than 0. After the threshold is reached, for the first time, the activity becomes:

$$
\begin{equation*}
X=P C *(T-T P) \tag{5.3}
\end{equation*}
$$

$T P$ is the time at which the activity and the SMT are equal.

Dimensionless parameters are used in the simulation to expedite numerical computations. The final dimensionless equations for the activity (XX) and the SMT (S3) respectively are:

$$
\begin{align*}
\mathrm{XX}= & \mathrm{X} 2+(\mathrm{LA} * \mathrm{TT}) \quad\{\mathrm{TT}>0\} \tag{5.4}\\
\mathrm{S} 3= & \mathrm{S} 2+\mathrm{KK} * \mathrm{SIN}(6.28319 * \mathrm{TT}+\mathrm{PA}) \\
& \{0<=\mathrm{KK}<1\} \tag{5.5}
\end{align*}
$$

The variable $\mathrm{X} 2, \mathrm{~S} 2, \mathrm{LA}, \mathrm{KK}$ and TP are the dimensionless equivalent to those shown above in equations 5.2 and 5.3.

The ratio of the frequency of the SMT to the frequency of the unperturbed oscillator (R) when $K=K K=$

0 is given by:

$$
\begin{equation*}
\mathrm{R}=1 / \mathrm{LA} \tag{5.6}
\end{equation*}
$$

where $1 / L A=(W * S O) /(6.28319) * P C)$
Results from the I\&F simulation are shown below in FIGURE 5.1. The program associated with the integrate and fire model and the program variables are listed in Appendix C and is named PROG3. The simulation program is further discussed in that section.

FIGURE 5.1: Sample Results From the Integrate \& Fire Model: The values used are as follows: $\mathrm{XO}=0$, $\mathrm{SO}=\mathrm{W}=1, \mathrm{PC}=\mathrm{DT}=.1, \mathrm{~K}=.75, \mathrm{~T} 3=75$ and $\mathrm{n}=2$.

The Randall simulation as described in Section 1.5 is used to find out minimum input values of both amplitude and duration, in order to produce an action potential. It is found that the duration of the input stimulus and the amplitude of the stimulus play an important role in the response of the neuron. The smaller the threshold the longer duration is required for a response and vice versa. The delay between the stimuli is also a key factor. Depending on the delay, the second stimulus would either be added to the first or it would not have any effect on the neuron at all. The second stimulus could even act as a separate initial stimulus, if the delay is long enough. The model is found to have a long repolarization period. During this period the simulation is in a state of hyperpolarization of at least 11 mV below the resting potential. It was found that the model had to repolarize to at least 5 mV below the resting potential before an average stimulus would produce a response. The simulation is based on constant input stimuli values. Thus, the long refractory period becomes important when choosing a delay value for the next stimulus.

It was found that the timing from one neuron to the initiation of the next neuron is very important. A neuron will not produce a response if it is in the refractory period. This caused many attempts not to self oscillate.

The delay times are critical in order to properly stimulate the neuron for the program to continue. The reset value plays an important role in the oscillating capabilities of the overall network. The value can appear to "extend" the refractory period if the delay values chosen are not long enough. The value has no effect on the output if the delay values are long enough. This value is a weak link in the model and should be a focal point for future developments.

The overall general characteristics of the network appear to be comparable to theory. The neuron did not fire if the input stimulus was not greater than the threshold value. This and delays became very important factors when trying to obtain oscillations. The action potential responses remained similar to theoretical values as compared to the Randall model.

Appendix A HHMOD SERIES PROGRAMS

This series uses Randall's simulation of the HodgkinHuxley model. The program variables are listed below.

HHMMOD SERIES	STMEOLS AND DEFINITONS (ATPGABETICAL ORDER)
AH (10)	ALPHA-T, NA+ OFF-ON
AM(10)	ALPHA-H, NAT OFE-ON
AN(10)	AIFEAS N, Rt OFP-ON
AS	Y/N REPTY TO RESTMRT TEE PROGRAM
BH(10)	BETA-A, NA+ OK-OEF
EM(10)	BETA-H, NAT OX-OFF
EN(10)	BETA-N, K+ OSTOET
DI (10,10)	WORKING VALIE FQR THE STRMULUS DETAY
DT	CHANGE IS TLIEE
DU(10,10)	WORKIMG VALUE FOR THE STLEMULUS DURATIDN
FI-FE	ELFES USED EOR PREVENTING DUET CALCULATICNS
GK(10)	St COnducmence
GN(10)	NA+ CONDUCHAMCE
G(10)	NA+ IEACMIVATION
IK(10)	Kt corrabsi
II(10)	IEARAGE CURRESTI
IN(10)	NA + CUERENTT
IIP(10)	TOTAL CURRENST
MV(10)	MEMPRANCE VOTNESE (IUSIDE - OUISIDE)
M(10)	NA+ ACIIYAMIDA
N1	NN HOTDING VRRIAELE
NH	NOMPER OF NEURONS IN TEE MATRIX
N(10)	K+ ACMIYATIGM
Q. Q(1-7)	FOR-NEET HOTOISG VARIABME FOR NN AND 21
SA(10,10)	HORKING VALUE FOR LEE SMEUULUS AMPLITUEE
T	TIME (MSEC)
T1-T6, 28	TIPIES USED TO ADUUST EDOR DEEAT
29	PRINT TIME
V(10)	MEMERANE VOLTRGE (DISEINCEMEATT FROM RES:)
Y(10,10)	HOLITMG VALUE FOR STHMULUS DELAY
21	NUMEER OF STIMULT PER NEURON

A1. HHMODEL1 - Randall's model adapted for the Apple IIe using the graphic display option. (pp 38-41)

A2. HHMOD6D - $(8 / 6,18,25 / 91,9 / 8,11,17 / 91)$ The HHMOD6D is the final 2 neuron series simulation. The model is general and is used as the base for the MULTIN series. (pp 42-45)

A. 1 HHMODEL1 Program

```
    10 REM AXON ACTION POTENTIAL
    20 REM
    30 REM
    40 REM
    50 REM
    6 0 ~ R E M
    65 REM
    70 :
    80 :
    99 REM %%%%%%%%%%%%%%%%%%%%
    100 REM FET STIM; SET STEADY STATE VALUES
    150 TEXT : HOME :
    151 REM CLEAR SCREEN
    199 REM GET STIMULUS PARAMETERS
    200 gOSUB 2000
    300 LET T = 0
    301 LET DT = 1 / 25
    400 LET MV = - 90
    499 REM SET ALPHA AND BETA
    500 GOSUB 3000
    599 REM REM S-S N,M,H
    6 0 0 ~ G O S U B ~ 3 2 0 0 ~
    699 REM S-S G,I'S
    700 GOSUB 3500
    709 REM AXES LABELS
    710 GOSUB 6000
    720:
    730 :
    799 REM
    800 REM LOOPS HERE EACH ITERATION
    899 REM DISPLAY VARIABLES
    900 GOSUB 4000
    999 REM SET ALPHA AND BETA
    1000 GOSUB 3000
    1099 REM UPDATE G'S
    1100 GOSUB 5000
    1199 REM UPDAT I'S
    1200 GOSUB 5500
    1299 REM UPDATE VOLTS
    1300 GOSUB 5700
    1400 LET T = T + DT
    1499 REM NEXT ITERATION
    1500 GOTO 800
    1600:
    1610 :
    1999 REM ###########################
    2000 : REM GET STIMULUS VALUES
    2001 TEXT : HOME : UTAB 5: HTAB 5
    2002 PRINT "ENTER STIMULUS UALUES"
    2003 PRINT ; PRINT
    2100 INPUT "STIM #1";SA(1)
    2200 INPUT " DURAT ";SD(1)
    2300 INPUT "DELAY ";DLY
```

```
A. }1\mathrm{ HHMODEL1 Continued
    2400 INPUT "STIM#2";SA<2)
    2500 INPUT " DURAT a;SD(2)
    2600 RETURN
    2700 :
    2999 REM ******************************
    3000 REM RATE CONSTANTS FOR VOLTS
    3020 LET V = - MU - 90
    3029 REM AVOID 1/0
    3030 IF V + 25 = 0 THEN V = - 25.1
    3040 IF V + 10=0 THEN V = - 10.1
    3050 :
    3060 LET BN = 0.125 * EXP (V / 80)
    3070 LET BM = 4* EXP (U / 18)
    3080 LET BH=1/(EXP ((U)+30)/10) + 1)
    3100 LET AN = 0.01* (V+10)/{ EXP ((U + 10)/10) - 1)
    3110 LET AM = 0.1* (U + 25) / ( EXP ((U + 25)/10) - 1)
    3120 LET AH = 0.07 * EXP (U / 20)
    3140 RETURN
    3199 REM &&&k&&&&&&&&&&&&|&&&&&&&&&&
    3200 REM STEADY STATE VARIABLES
    3210 LET N = AN / (AN + BN)
    3220 LET M = AM / (AM + BM)
    3230 LET H = AH / (AH + BH)
    3240 RETURN
    3250 :
    3499 REM \>>>>>>>>>>>>>>>>>>>>>>>>>>>
    3500 REM INITIAL G'S AND I'S
    3520 LET GK = 36*N*N*N*N
    3530 LET GNA = 120 *M*M*M*H
    3550 LET IK = GK * (U - 12)
    3560 LET INA = GNA * (U + 115)
    3570 LET IL = 0.3* (V + 10.6)
    3590 LET IT = IK + INA + IL
    3610 RETURN
    3998 REM *****************************
    3999 :
    4000 REM APPLE II GRAPHICS DISPLAY
    4020 LET X = 25 + (T / DT)
    4025 REM OR X=25+250*(T/10)
    4030 HPLOT X,20 - (MU / 1.5)
    4039 REM ABSOLUTE CONDUCTANCE
    4040 HPLOT X,150 - 1.5 * GK
    4050 HPLOT X,150 - 1.5 * GNA
    4070 REM STIMULUS IF ANY
    4 0 8 0 ~ L E T ~ S T ~ = ~ 0 ~
    4090 IF T < SD(1) THEN ST = SA(1)
    4100 IF T = > DLY AND T < (DLY + SD(2)) THEN ST = ST + SA(2)
    4110 HPLOT X,110 - (ST / 20)
    4129 REM SOFTWARE HALT
    4130 IF }X=>275\mathrm{ THEN GOTO 4130
    4 1 4 0 ~ R E T U R N
    4198 REM &&&&&&&&&&&&&&&&&&&&&&&&&&
```

```
A. }1\mathrm{ HHMODELI Continued
    4199 :
    5000 REM UPDATE CONDUCTANCES
    5020 LET DN = AN * (1 - N) - BN * N
    5030 LEET DM = AM * (1 - M) - BM * M
    5040 LET DH = AH * (1 - H) - BH * H
    5060 LET N = N + ON * DT
    5070 LET M = M + DM * DT
    5080 LET H = H + DH * DT
    5100 LET GK=36*N*N*N*N
    5110 LET GNA = 120*M*M*M*H
    5130 RETURN
    5139 REM ***************************
    5140 :
    5500 REM NEW CURRENTS
    5520 LET IK = GK * (U - 12)
    5530 LET INA = GNA * (U + 115)
    5540 LET IL = 0.3* (U + 10.6)
    5550 LET IT = IK + IN + IL
    5560 :
    5570 REM IS THERE A STIMULUS TO ADD
    5580 IF T < SD(1) THEN IT = IT + SA(1)
    5590 IF T = > (DLY + SD(2)) THEN RETURN
    5600 IF T = > DLY THEN IT = IT + SA(2)
    5620 RETURN
    5699 REM %%%%%%%%%%%%%%%%%%%
    5700 REM NEW VOLTAGE
    5710 LET DV = IT * DT
    5720 LET U = V - DV
    5730 LET MU = - U - 90
    5740 RETURN
5750 :
5760 :
5999 REM +++++++++++++++++++++++++++++
6000 REM PLOT AXES AND LABELS
6010 HGR ; HOMME
6020 HPLOT 25,151 TO 275,151
6030 FOR I = 0 TO 10
6040 HPLOT 25 + I * 25,152 TO 25 + I * 25,154
6 0 5 0 ~ N E X T ~ I ~
6060 HPLOT 20,0 TO 20,86
6070 FOR I = 0 TO 13
6080 HPLOT 17,I * 6.67 T0 19,I * 6.67
6 0 9 0 ~ N E X T ~ I ~
6100 HPLOT 15,20 TO 275,20
6110 HOME : UTAB 21
6120 HTAB 4: PRINT "0";
6130 HTAB 22: PRINT "5";
6140 HTAB 39: PRINT "10";
6150 :
6155 REM DISPLAY STIMULUS PARAMETERS AT BOTTOM OF SCREEN
```


A. 1 HHMODEL1 Continued

```
6160 UTAB 24: HTAB 1
6170 PRINT "#1";SD(1);"3";SA(1);
6180 HTAB 17: PRINT "DELAY=";DL;
6 1 9 0 \text { HTAB 29}
6200 PRINT "#2=";SD(2);" a ";SA(2);
6 2 0 5 ~ : ~
6210 REM PLOT INITIAL STEADY STATE VALUES
6220 FOR X = 21 TO 24
6230 HPLOT X,20 - (MU / 1.5)
6240 HPLOT X,110
6250 HPLOT X,150-1.5 * GK
6260 HPLOT X,150 - 1.5 * GN
6270 NEXT X
6280 RETURN
6 2 9 0 ~ : ~
9 9 9 9 ~ E N D ~
```


A. 2 HHMOD6D Program

```
10 REM AXON ACTION POTENTIAL
20 REM HODGKIN AND HUXLEY
30 REM J.OF PHYSIO 177:500 (1952)
40 REM THIS UERSION COMPUTES EXP() AS USED
50 REM ABSOLUTE CONDUCTANCES
5 5 ~ R E M ~ G E N E R A L I Z E D ~ M O D E L ~ 1 ~ N E U R O N ~ S E T ~ W I T H ~ I N D I V I D U A L ~ N E U R O N ~ M A I N
    NE
57 REM N1 = # OF NEURONS
59 REM J1 & J2 ARE EXCITE FROM N2 TO N1
65 REM THIS IS A MODIFIED HH MODEL
66 REM NO GRAPHICS PRINTS TEXT
67 REM UPDATE 8/6,8/18,8/25,9/8,9/11,9/17/91
6 8 \text { REM HHMOD6D}
6 9 \text { REM COMBINES N1 AND N2 UIA SYNAPES}
70 REM OUTPUT N1 TO INPUT N2 WHERE
71 REM A USER CHOSEN SIMULUS IS USED
75 REM ALL SUB ROUTINES ARE AT THE END OF THE PROGRAM
77 REM STIM 3 OF NI COMES FROM N2
78 REM TIME DLY USED FROM N2 TO N1
80 REM MULTI STIMULUS INPUTS
82 REM INHIBITORY VALUES TO BE USED
84 REM PRINTS EUERY 4TH UALUE ONLY
86 REM LOOPS USED FOR MULTI STIMS
87 REM ADDS STIMS AS LONG AS THERE IS ONE
99 REM %%%%%%%%%%%%%%%%%%%%%%
100 REM INITIALIZE UALUES
200 DIM SA(10,10),DU(10,10),DL(10,10)
204 DIM U(10);MV(10)
206 DIM N(10),M(10),H(10)
208 DIM GK(10),GN(10)
210 DIM IK(10),IN(10),IT(10),IL(10)
212 DIM DN(10),DM(10),DH(10)
214 DIM BN(10),BM(10),BH(10)
216 DIM AN(10),AM(10),AH(10)
300 T = 0.00
301 LET DT = 1/25
305 BN(N1) = BM(N1) = BH(N1) = 0
310 REM CHANGE TU TO SET THRESHOLD VALUE
312 TN = T4 = T5 = T6 = TP = 0
313 F3 = 0
314 F1 = 0
315 F2 = 0
316 25 = 2T = 2P = 0
318 MM(1) = - 90
319 MV(2) = - 90
320 N1 = 2
325 J1 = 200
420 REM </\\</\\</\\</\\/\\</>\\/>\
421 REM START OF PROGRAMMING
425 REM GET USER VALUES
4 2 7 ~ G 0 S U B ~ 2 0 0 0 ~
489 N1 = 1
```

A. 2 HHMOD6D Continued
499 REM SET ALPHA AND BETA
500 REM SS N,M,H,G,I
505 GOSUB 3000
799 REM
800 REM LOOPS HERE EACH ITERATION
$998 \mathrm{Ni}=1$
999 REM SET ALPHA AND BETA
1000 REM UPDATE G,I, V
1005 GOSUB 3050
1305 IF FI $>=1$ THEN GOTO 1515
1310 IF MU(1) > $=0.00$ THEN GOSUB 1400
1320 IF F3 > $=1$ THEN GOTO 1450
1350 IF T > $=$ TM THEN GOTO 19000
$1355 \mathrm{~T}=\mathrm{T}+\mathrm{DT}$
1360 REM NEXT ITERATION
1365 GOTO 800
1400 REM SET UP COUNTER BETWEEN N1 AND N2
1402 F3 $=1$
1408 FOR C $=1$ TO 21 STEP 1
$1410 \mathrm{DL}(2, \mathrm{C})=\mathrm{DL}(2, \mathrm{C})+\mathrm{T}$
$1412 D U(2, C)=D U(2, C)+D L(2, C)+T$
1414 NEXT C
1420 REM /- $/-\backslash /-\backslash /-\backslash$
1450 REM START OF N2 PROGRAMMING
$1460 \mathrm{Fi}=1$
$1465 \mathrm{TT}=0$
1480 REM SET UP ALPHA AND BETA
$1481 \mathrm{~N} 1=2$
1482 PRINT "N2 PROGRAMMING STARTED"
1485 REM SS N,M,H,G,I
1490 GOSUB 30001510 REM ++++++++++++++++++++++++++++++++++++1515 REM LOOPS HERE EACH ITERATION$1518 \mathrm{Ni}=2$
1520 REM UPDATE G,I,V
1525 GOSUB 3050
1595 IF F2 $>=1$ THEN GOTO GOTO 1350
1600 IF MV(2)) = TV THEN GOSUB 6000
1989 REM NEXT ITERATION1990 GOTO 13501999 REM \#
2000 : REM GET STIMULUS VALUES
2002 PRINT "ENTER STIMULUS VALUES"
2005 INPUT "HOW MANY STIMS PER $N(M X=3) " ; 21$2008 FOR QO $=1$ TO N1 STEP 12010 FOR Q $=1$ TO 21 STEP 1
2015 PRINT "STIM UALUES FOR $N=" ; Q 0 ; " A N D$ STIM="; Q
2020 INPUT "STIM UALUE";SA (QO,Q)
2022 INPUT "DURAT VALUE";DU(QO,Q
2024 INPUT "DELAY UALUE";DL(QO,Q)
2026 NEXT Q
2027 NEXT QO

```
A. }2\mathrm{ HHMOD6D Continued
2527 INPUT "DLY FROM N2 TO N1";25
2528 REM DLY GREATER THEN REFRACT PERIOD TO STIM N1
2530 INPUT "MAX SIMULATION TIME";TM
2700 RETURN
2999 REM *****************************
3000 REM ++++++++++++++++########################+++++++++++++++
    ###+#+#
3001 REM FIRST GOSUB SUB SET
3010 GOSUB 8000
3015 GOSUB 8200
3020 RETURN
3050 REM ()()()()()()()()()()())()()()()()()()()()()()()\)()0
    ()0
3051 REM SECOND GOSUB SET
3055 GOSUB }800
3060 GOSUB 9000
3065 RETURN
6000 REM /-\/-\/-\/-\/-\/-\/-\/-\/-\/-\/\/-\/-\/-\/
6001 REM OBTAIN STIM 3 N1 VALUES
6005 SA(1,3) = J1
6 0 0 7 \mathrm { DL } ( 1 , 3 ) = T + 2 5
6010 DU(1,3) = T + 25 + J2
6015 F2 = 1
6017 PRINT "REACHED FEEDBACK UALUES"
6 0 2 5 ~ R E T U R N
7999 REM ++++++++++++++++++++++++++++++++++++
8000 REM RATE CONSTANTS FOR VOLTS
8020 V(N1) = - MV(N1) - 90
8029 REM AVOID 1/0
8030 IF V(N1) + 25 = 0 THEN U(N1) = - 25.1
8040 IF U(N1) + 10 = 0 THEN U(N1) = - 10.1
8060 BN(N1) = 0.125* EXP (V(N1) / 80)
8070 BM(N1) = 4 * EXP (U(N1) / 18)
8081 BH(N1) = 1/( (EXP ({V(N1) + 30) / 10) + 1)
8100 AN(N1) = 0.01 * (V(N1) + 10)/(EXP((V(N1) + 10) / 10) - 1)
8110 AM(N1) = 0.1 * (V(N1) + 25) /( (EXP ((V(N1) + 25) / 10) - 1)
8120 AH(N1) = 0.07 * EXP (V(N1) / 20)
8130 RETURN
8200 REM STEADY STATE UARIABLES
8210 N(N1) = AN(N1) / (AN(N1) + BN(N1))
8220 M(N1) = AM(N1) / (AM(N1) + BM(N1))
8230 H(N1) = AH(N1) / (AH(N1) + BH(N1))
8500 REM INITIAL G AND I
8520 LET GK(N1) = 36 * N(N1) * N(N1) * N(N1) * N(N1)
8525 LET GN(N1) = 120*M(N1) *M(N1) *M(N1) * H(N1)
8530 IK(N1) =GK(N1) * (V(N1) - 12)
8535 IN(N1) = GN(N1) * (U(N1) + 115)
8540 IL(N1) = 0.3*(V(N1) + 10.6)
8545 IT(N1) = IK(N1) + IN(N1) + IL(N1)
8550 RETURN
8999 REM %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
9000 REM UPDATE CONDUCTANCES
```


A. 2 HHMOD6D Continued

```
9020 DN(N1) = AN(N1) * (1 - N(N1)) - BN(N1) * N(N1)
9030 DM(N1) = AMM(N1) * (1 - M(N1)) - BM(N1) * M(N1)
9040 DH(N1) = AH(N1) * (1 - H(N1)) - BH(N1) * H(N1)
9060 N(N1) = N(N1) + DN(N1) * DT
9070 M(N1) = M(N1) + DM(N1) * DT
9080 H(N1) = H(N1) + DH(N1) * DT
9100 GK(N1) = 36*N(N1) *N(N1) * N(N1) * N(N1)
9110GN(N1) = 120*M(N1) *M(N1) *M(N1) * H(N1)
9200 IK(N1) = GK(N1) * (U(N1) - 12)
9210 IN(N1) = GN(N1) * (U(N1) + 115)
9215 IL(N1) = 0.3 * (V(N1) + 10.6)
9220 IT(N1) = IK(N1) + IN(N1) + IL(N1)
9554 FOR Q3 = 1 TO 21 STEP 1
9556 IF T > DL(N1,Q3) AND T < DU(N1;Q3) THEN IT(N1) = IT(N1) +
    SA(N1,Q3)
9558 NEXT Q3
9 7 0 0 ~ R E M ~ N E W ~ V O L T A G E ~
9710 DU(N1) = IT(N1) * DT
9720 U(N1) = U(N1) - DU(N1)
9730MV(N1) = - U(N1) - 90
9732 PRINT "MM OF";N1;"=";MV(N1);" ";"U OF";N1;"=";V(N1)
9733 PRINT "TIME = ";T
9740 RETURN
9899 REM +++++++++++++++++++++++++++++++++++++++++++++++++++
19000 INPUT "RESTART SIM. Y/N";A$
19002 IF AF = "Y" THEN GOTO 300
19999 END
```

Appendix B
MULTIN SERIES PROGRAMS
This series simulates the 2×2（ 4 neuron）and the 3×3（ 9 neuron）pools．The program variables are listed below：

vulutis Smits	
AHP（10）	
N（10）	
Ax（10）	
15	T／N REPLIT TO RESTART THIL
昰（10）	
暒（10）	
樶（10）	日ETA－N，
区（10，10）	
D2	CBANGE In ITME
w（10．10）	
D（10．10）	
K（10）	
Gs（10）	$\mathrm{k}+\mathrm{C}$ ¢
E（10）	m＋
［xidi）	It curavary
［ᄑ⑽	meacacre curduri
ET（10）	mit Curghir
Ex（10）	zerar chirar
Mv（10）	
M（10）	
昭	
$\underline{80}$	
$x(10)$	It acinguran
de ${ }^{\text {d }}$（1－i）	
REs	\％omats mute
SX 10,10 ）	
3（10，10）	
5	Tzact（z5EE］
78	PRIXT
V（10）	
－	Rms nimiser

B． 1 MULTINI：（ $11 / 2,3,12,13 / 91$ ）This is the 2×2 pool （FIGURE 3．2）．（pp．47－50）

B． 2 MULTIN2：（11／12／91）This is the generalized base
3×3 simulation program．（ $\mathrm{pp} 51-54$ ）
B． 3 MULTIN2A：（11／12，17／91）This is the simplified 3×3 simulation program．（FIGURE 3．3）（pp 55－59）

B． 4 MULTIN2B：（ $11 / 12 / 17 / 91$ ）This is the complex 3×3 pool simulation program．（FIGURE 3．5）（pp 60－64）
B. 1 MULTIN1 Program
100 REM INITIALIZE VALUES
109 REM NN = NUMBER OF NEURONS
$110 \mathrm{NN}=4$
111 REM RS = RESET THRESHHOLD VAL.
112 RS = - 95.0
114 REM 21=NLMBER OF STIMS/N
$11621=4$
$190 \mathrm{~T}=0.00$
192 DT $=1 / 25$
195 DIM $S(10,10), D(10,10), Y(10,10)$
$200 \operatorname{DIM} \operatorname{SA}(10,10), D U(10,10), D L(10,10)$
204 DIM $V(10), \operatorname{MM}(10), F(10)$
206 DIM N(10), M(10), H(10)
208 DIM GK(10), GN(10)
$210 \operatorname{DIM} \operatorname{IK}(10), \operatorname{IN}(10), \mathrm{IT}(10), \mathrm{IL}(10)$
212 DIM DN(10), DM (10), DH(10)
214 DIM $\operatorname{BN}(10), \mathrm{BM}(10), \mathrm{BH}(10)$
$216 \operatorname{DIM} \operatorname{AN}(10), \operatorname{AM}(10), A H(10)$
225 FOR Q6 $=1$ TO NN STEP 1
227 FOR Q7 = 1 TO 21 STEP 1
$229 \mathrm{SA}(\mathrm{Q}, \mathrm{Q} 7)=0.0$
231 DL(Q6,Q7) $=0.0$
233 DU(Q6,Q7) $=0.0$
235 NEXT Q7
$237 M(Q 6)=-90$
$239 F(Q 6)=0$
241 NEXT Q6
$305 \mathrm{BN}(\mathrm{N} 1)=\mathrm{BM}(\mathrm{N} 1)=\mathrm{BH}(\mathrm{N} 1)=0$
310 REM CHANGE TU TO SET THRESHOLD VALUE
$312 \mathrm{TN}=\mathrm{T} 4=\mathrm{T} 5=\mathrm{T} 6=\mathrm{TP}=0$
$31625=2 T=2 \mathrm{P}=0$

421 REM START OF PROGRAMMING
425 REM GET USER UALUES
427 GOSUB 2000
430 FOR Q8 = 1 TO NN STEP 1
432 SA(Q8,1) $=\mathrm{S}(Q 8,1)$
$434 \mathrm{DU}(\mathrm{QB}, 1)=\mathrm{D}(Q 8,1)$

```
B.1 MULTIN1 Continued
    436 DL(Q8,1) = Y(Q8,1)
    4 3 8 ~ N E X T ~ Q 8 ~
    499 REM SET ALPHA AND BETA
    500 REM SS N,M,H,G,I
    505 GOSUB 3000
```



```
    800 REM LOOPS HERE EACH ITERATION
    999 REM SET ALPHA AND BETA
    1000 REM UPDATE G,I,V
    1005 GOSUB 3050
    1350 IF T > = TM THEN GOTO 19000
    1355 T = T + DT
    1360 REM NEXT ITERATION
    1365 GOTO 800
    1999 REM ###########################
    2000 : REM GET STIMULUS UALUES
    2002 PRINT "ENTER STIMULUS VALUES"
    2008 FOR QO = 1 TO NN STEP 1
    2010 FOR Q = 1 TO 21 STEP 1
    2015 PRINT "STIM UALUES FOR N=";QO;"AND STIM=";Q
    2020 INPUT "STIM VALUE = ";S<QO,0)
    2022 INPUT "DURAT VALUE = ";D(QO,Q)
    2024 INPUT "DELAY VALUE = ";Y(QO,Q)
    2026 NEXT Q
    2027 NEXT Q0
    2530 INPUT "MAX SIMULATION TIME";TM
    2700 RETURN
    3000 REM ++++++++++++++++#######################+++
        ###+#+#
    3001 REM FIRST GOSUB SUB SET
    3005 FOR Q4 = 1 -E NH, STEP 1
    3007 N1 = Q4
    3010 GOSUB 8000
    3015 GOSUB 8200
    3017 NEXT Q4
    3020 RETURN
    3050 REM ()()()()\)()()()()()())()00()()()()()()
        ()()
    3051 REM SECOND GOSUB SET
    3053 FOR Q5 = 1 TO NN STEP 1
3054 N1 = Q5
3055 GOSUB 8000
3060 GOSUB 9000
3062 IF MU(Q5) < = RS THEN F(Q5) = 0
3064 IF F(Q5) = 1 THEN GOTO 3068
3066 IF MN(Q5) > = 0.0 THEN GOSUB 4000
3068 NEXT Q5
3070 RETURN
4000 REM ------------------------------------------
4001 REM ASSIGN ACTUAL NETUORK UALUES
4002 REM PROGRAM HERE TO CONTROL INTERCONNECTIONS
4010 IF N1 = 1 THEN GOTO 4020
4012 IF N1 = 2 THEN GOTO 4037
```


B. 1 MULTIN1 Continued

```
4 0 1 4 ~ I F ~ N 1 ~ = ~ 3 ~ T H E N ~ G O T O ~ 4 0 5 0 ~
4016 IF N1 = 4 THEN GOTO 4060
4 0 1 8 \text { RETURN}
4020 REM PROGRAMMING FOR N=1
4021 SA(2,2) = S(2,2)
4023 DL(2,2) = Y(2,2) +T
4025 DU(2,2) = D(2,2) +Y(2,2) +T
4027 SA(3,2) = S(3,2)
4029 DL(3,2) = Y(3,2) + T
4031 DU(3,2) = D(3,2) + Y(3,2) +T
4 0 3 2 F ( 1 ) = 1
4033 GOTO 4018
4037 REM PROGRAMMING FOR N=2
4039 SA(4,3) = S(4,3)
4041 DL(4,3) = Y(4,3) +T
4043 DU(4,3) = D(4,3) +Y(4,3) +T
4044 F(2) = 1
4 0 4 5 ~ G O T O ~ 4 0 1 8 ~
4050 REM PROGRAMMING FOR N=3
4052 SA(4,4) = S(4,4)
4054 DL(4,4) = Y(4,4) +T
4056 DU(4,4) = D(4,4) +Y(4,4) +T
4057 F(3) = 1
4058 G0T0 4018
4060 REM PROGRAMMING FOR N=4
4062 SA(1,4) = S(1,4)
4064 DL(1,4) = Y(1,4) + T
4066 DU(1,4) = D(1,4) + Y(1,4) +T
4068 F(4) = 1
4070 GOTO 4018
7999 REM ++++++++++++++++++++++++++++++++++++
8000 REM RATE CONSTANTS FOR VOLTS
8020 U(N1) = - MN(N1) - 90
8029 REM AVOID 1/0
8030 IF V(N1) + 25 = 0 THEN V(N1) = - 25.1
8040 IF V(N1) + 10 = 0 THEN V(N1) = - 10.1
8060 BN(N1) = 0.125* EXP (V(N1) / 80)
8070 BM(N1) = 4* EXP (U(N1) / 18)
8081 BH(N1) = 1 / ( EXP (@V(N1) + 30) / 10) + 1)
8100 AN(N1) = 0.01 * (V(N1) + 10)/( EXP ((V)N1) + 10)/10) - 1)
8110 AM(N1) = 0.1 * (V(N1) + 25)/( EXP ((U(N1) + 25) / 10) - 1)
8120 AH(N1) = 0.07* EXP (V(N1) / 20)
8130 RETURN
8200 REM STEADY STATE VARIABLES
8210 N(N1) = AN(N1) /(AN(N1) + BN(N1))
8220M(N1)=AM(N1)/(AM1(N1) + BM(N1))
8230H(N1) = AH(N1) / (AH(N1) + BH(N1))
8500 REM INITIAL G AND I
8520 LET GK(N1) = 36 * N(N1) * N(N1) * N(N1) *N(N1)
8525 LET GN(N1) = 120 * M(N1) * M(N1) * M(N1) * H(N1)
8530 IK(N1) = GK(N1) * (V(N1) - 12)
8535 (N(N1) = GN(N1) * (V(N1) + 115)
```


B. 1 MULTIN1 Continued

```
8540 IL(N1) = 0.3*(V(N1) + 10.6)
8545 IT(N1) = IK(N1) + IN(N1) + IL(N1)
8550 RETURN
8999 REM %%%/%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
9000 REM UPDATE CONDUCTANCES
9020 DN(N1) = AN(N1) * (1 - N(N1)) - BN(N1) * N(N1)
9030 DM(N1) = AM(N1) * (1 - M(N1)) - BM(N1) * M(N1)
9040 DH(N1) = AH(N1) * (1 - H(N1)) - BH(N1) * H(N1)
9060 N(N1) = N(N1) + DN(N1) * DT
9070 M(N1) = M(N1) + DM(N1) * DT
9080 H(N1) = H(N1) + DH(N1) * DT
9100GK(N1) = 36 *N(N1) * N(N1) * N(N1) * N(N1)
9110GN(N1) = 120 * M(N1) * M(N1) * M(N1) * H(N1)
9200 IK(N1) = GK(N1) * {U(N1) - 12)
9210 IN(N1) = GN(N1) * (V(N1) + 115)
9215 1L(N1) = 0.3* (U(N1) + 10.6)
9220 IT(N1) = IK(N1) + IN(N1) + IL(N1)
9 5 5 4 ~ F O R ~ Q 3 ~ = ~ 1 ~ T O ~ Z 1 ~ S T E P ~ 1 ~
9556 IF T > DL(N1,Q3) AND T < DU(N1,Q3) THEN IT(N1) = IT(N1) +
    SA(N1,Q3)
9558 NEXT Q3
9 7 0 0 ~ R E M ~ N E W ~ v O L T A G E ~
9710 DU(N1) = IT(N1) * DT
9720 U(N1) = U(N1) - DV(N1)
9730 MV(N1) = - V(N1) - 90
9732 PRINT "MN OF";N1;"=";MU(N1);" ";"U OF";N1;"=";V(N1)
9733 PRINT "TIME = ";T
9740 RETURN
9899 REM +++++++++++++++++++++++++++++++++++++++++++++++++++
19000 INPUT "RESTART SIM. Y/N";A*
19002 1F A韦 = "Y" THEN GOTO 300
19990 END
```


B. 2 mulitin2 Program

REM HODGKIN AND HUXLEY
30 REM J.OF PHYSIO 177:500 (1952)
40 REM THIS UERSION COMPUTES EXP() AS USED
50 REM ABSOLUTE CONDUCTANCES
52 REM THIS IS A MODIFIED HH MODEL
54 REM NO GRAPHICS PRINTS DATA ONLY
56 REM USER DETERMINED NETWORK USING
57 REM NEURON VALUES (S, D, Y)
58 REM MODEL NAME: MULTIN2
60 REM UPDATE 11/12/91
63 REM 3 BY 3 NETINORK
64 REM 9 STIMS PER N, NO FEEDBACK ONTO ITSELF BUT UCAN BE ADDED R
66 REM STIMS FROM OTHER N'S AND 1 EXTRN
99 REM $\% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \%$
100 REM INITIALIZE UALUES
109 REM NN $=$ NUMBER OF NEURONS
$110 \mathrm{NN}=9$
111 REM RS = RESET THRESHHOLD VAL.
112 RS $=-95.0$
114 REM Z1=NUMBER OF STIMS/N
$116 \mathrm{Z1}=9$
$118 \mathrm{TP}=0.0$
$190 \mathrm{~T}=0.00$
192 DT $=1$ / 25
195 DIM $S(10,10), D(10,10), Y(10,10)$
200 DIM SA(10,10),DU(10,10),DL(10,10)
204 DIM U(10),MM(10),F(10)
$206 \operatorname{DIM} \mathrm{~N}(10), \mathrm{M}(10), \mathrm{H}(10)$
208 DIM GK(10), GN(10)
$210 \operatorname{DIM} \operatorname{IK}(10), \operatorname{IN}(10), \mathrm{IT}(10), \mathrm{IL}(10)$
212 DIM $\operatorname{DN}(10), \operatorname{DM}(10), \mathrm{DH}(10)$
214 DIM $\operatorname{BN}(10), B M(10), B H(10)$
216 DIM AN (10), AM (10), AH(10)
225 FOR Q6 $=1$ TO NN STEP 1
227 FOR Q7 = 1 TO 21 STEP 1
$229 \mathrm{SA}(Q 6, Q 7)=0.0$
231 DL(Q6,Q7) $=0.0$
233 DU(Q6,Q7) $=0.0$
235 NEXT Q7
$237 \mathrm{MV}(Q 6)=-90$
$239 F(Q 6)=0$
241 NEXT Q6
$305 \mathrm{BN}\left(\mathrm{N}_{1}\right)=\mathrm{BM}(\mathrm{N} 1)=\mathrm{BH}(\mathrm{N} 1)=0$
310 REM CHANGE TV TO SET THRESHOLD VALUE
420 REM 〈/>\</>\</<\</>\//
421 REM START OF PROGRAMMING
425 REM GET USER VALUES
427 GOSUB 2000
430 FOR Q8 = 1 TO NN STEP 1
$432 \mathrm{SA}(Q 8,1)=S(Q 8,1)$
434 DU(Q8,1) $=D(Q 8,1)$

```
B.2 MULTIN2 Continued
    436 DL(Q8,1) = Y(Q8,1)
    4 3 8 ~ N E X T ~ Q 8 ~
    499 REM SET ALPHA AND BETA
    500 REM SS N,M,H,G,I
    505 GOSUB 3000
    799 REM ......^^....................................................
    800 REM LOOPS HERE EACH ITERATION
    999 REM SET ALPHA AND BETA
    1000 REM UPDATE G,I,V
    1005 GOSUB 3050
    1350 IF T > = TM THEN GOTO 19000
    1355 T = T + DT
    1360 REM NEXT ITERATION
    1365 GOTO 800
    1999 REM ############################
    2000 : REM GET STIMULUS VALUES
    2001 PRINT "MODEL NAME - MULTIN2"
    2002 PRINT "ENTER STIMULUS VALUES"
    2008 FOR QO = 1 TO NN STEP 1
    2010 FOR Q = 1 TO Z1 STEP 1
    2015 PRINT "STIM UALUES FOR N=";Q0;"AND STIM=";Q
    2020 INPUT "STIM VALUE = ";S(QO,Q)
    2022 INPUT "DURAT VALUE = ";D(QO,Q)
    2024 INPUT "DELAY UALUE = ";Y(QO,Q)
    2 0 2 6 ~ N E X T ~ Q ~
    2027 NEXT QO
    2530 INPUT "MAX SIMULATION TIME";TM
    2700 RETURN
    3000 REM +++++++++++++++#######################+++++++++
    ###+#+#
3001 REM FIRST GOSUB SUB SET
3005 FOR Q4 = 1 TO NN STEP 1
3007 N1 = Q4
3010 GOSUB 8000
3015 GOSUB 8200
3 0 1 7 ~ N E X T ~ Q 4 ~
3020 RETURN
3050 REM ()()()()()()0()()()())()()()()()()()()0)()()()
    ()0)
3051 REM SECOND GOSUB SET
3053 FOR Q5 = 1 TO NN STEP 1
3054 N1 = Q5
3055 GOSUB 8000
3060 GOSUB 9000
3062 IF MU(Q5) < = RS THEN F(Q5) = 0
3064 IF F(Q5) = 1 THEN GOTO 3068
3066 IF MN(Q5) > = 0.0 THEN GOSUB 4000
3068 NEXT Q5
3070 RETURN
4000 REM --------------------------------------------
4001 REM ASSIGN WORKING UALUES HERE
4002 REM CONTROLS INTERCONECTIONS BY CHOICE OF S,D AND Y
```

```
    B. }2\mathrm{ MULTIN2 Continued
    4003 REM EACH SET PROGRAMS WHAT IS EFFECTED BY THAT PARICULAR N
    T EFFECTS IT
    4008 IF N1 = 1 THEN GOTO 4030
    4 0 0 9 ~ I F ~ N 1 ~ = ~ 2 ~ T H E N ~ G O T O ~ 4 0 6 0
    4010 IF N1 = 3 THEN GOTO 4090
    4011 IF N1 = 4 THEN GOTO 4120
    4012 IF N1 = 5 THEN GOTO 4150
    4013 IF NI = 6 THEN GOTO 4180
    4014 IF N1 = 7 THEN GOTO 4210
    4015 IF N1 = 8 THEN GOTO 4240
    4016 IF N1 = 9 THEN GOTO 4270
    4 0 2 0 ~ R E T U R N
    4030 REM PROGRAMMING FOR N1=1
    4058F(1) = 1
    4 0 5 9 ~ G O T O ~ 4 0 2 0 ~
    4060 REM PROGRAMMING FOR N1=2
    4088 F(2) = 1
    4089 GOTO 4020
    4090 REM PROGRAMMING FOR NI=3
4118 F(3) = 1
4 1 1 9 ~ G O T O ~ 4 0 2 0 ~
4120 REM PROGRAMMING FOR N1=4
4148 F(4) = 1
4149 GOTO 4020
4150 REM PROGRAMMING FOR N1=5
4178 F(5) = 1
4179 -GOTO 4020
4180 REM PROGRAMMING FOR NI=6
4208 F(6) = 1
4 2 0 9 ~ G O T O ~ 4 0 2 0 ~
4210 REM PROGRAMMING FOR NI=7
4238 F(7) = 1
4 2 3 9 ~ G O T O ~ 4 0 2 0 ~
4240 REM PROGRAMMING FOR N1=8
4268 F(8) = 1
4 2 6 9 ~ G O T O ~ 4 0 2 0 ~
4 2 7 0 ~ R E M ~ P R O G R A M M I N G ~ F O R ~ N 1 = 9
4298 F(9) = 1
4 2 9 9 ~ G O T O ~ 4 0 2 0 ~
7999 REM ++++++++++++++++++++++++++++++++++++
8000 REM RATE CONSTANTS FOR VOLTS
8020 V(N1) = - MV\N1) - 90
8029 REM AVOID 1/0
8030 IF U(N1) + 25 = 0 THEN U(N1) = - 25.1
8040 IF V(N1) + 10 = 0 THEN U(N1) = - 10.1
8060 BN(N1) = 0.125 * EXP (U(N1) / 80)
8070 BM(N1) = 4* EXP (U(N1) / 18)
8081 BH(N1) = 1/( (EXP ((V)(N1) + 30) / 10) + 1)
8100 AN(N1) = 0.01 * (V(N1) + 10)/( EXP ((U(N1) + 10)/ 10) - 1)
8110 AM(N1) = 0.1 * (V(N1) + 25) /(EXP((V(N1) + 25)/ 10) - 1)
8120 AH(N1) = 0.07 * EXP (U(N1) / 20)
8130 RETURN
```


B. 2 MULTIN2 Continued

```
8200 REM STEADY STATE UARIABLES
8210N(N1) = AN(N1) / (AN(N1) + BN(N1))
8220 M(N1) = AM(N1) / (AM(N1) + BM(N1))
8230 H(N1) = AH(N1) / (AH(N1) + BH(N1))
8500 REM INITIAL G AND I
8520 LET GK(N1) = 36 *N(N1) *N(N1) *N(N1) *N(N1)
8525 LET GN(N1) = 120 * M(N1) *M(N1) *M(N1) * H(N1)
8530 IK(N1) = GK(N1) * (U(N1) - 12)
8535 IN(N1) = GN(N1) * (U(N1) + 115)
8540 IL(N1) = 0.3*(U(N1) + 10.6)
8545 IT(N1) = IK(N1) + IN(N1) + IL(N1)
8550 RETURN
8999 REM %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
9000 REM UPDATE CONDUCTANCES
9020 DN(N1) = AN(N1) * (1 - N(N1)) - BN(N1) * N(N1)
9030 DM(N1) = AM(N1) * (1 - M(N1)) - BM(N1) * M(N1)
9040 DH(N1) = AH(N1) * (1-H(N1)) - BH(N1) * H(N1)
9060N(N1) = N(N1) + DN(N1) * DT
9070 M(N1) = M(N1) + DM(N1) * DT
9080 H(N1) = H(N1) + DH(N1) * DT
9100 GK(N1) = 36*N(N1) * N(N1) *N(N1) *N(N1)
9110GN(N1) = 120 * M(N1) * M(N1) * M(N1) * H(N1)
9200 IK(N1) = GK(N1) * (V(N1) - 12)
9210 IN(N1) = GN(N1) * (V(N1) + 115)
9215 IL(N1) = 0.3*(U(N1) + 10.6)
9220 IT(N1) = IK(N1) + IN(N1) + IL(N1)
9 5 5 4 ~ F O R ~ Q 3 ~ = ~ 1 ~ T 0 ~ 2 1 ~ S T E P ~ 1 '
9556 IF T > DL(N1,Q3) AND T < DU\N1,Q3) THEN IT(N1) = IT(N1) +
        SA(N1,Q3)
9558 NEXT Q3
9700 REM NEW VOLTAGE
9710 DV(N1) = IT(N1) * DT
9720V(N1) = V(N1) - DN(N1)
9730MV(N1) = - V(N1) - 90
9 7 3 2 ~ I F ~ T ~ > ~ = ~ T P ~ T H E N ~ G O T O ~ 9 7 3 5 ~
9 7 3 3 ~ R E T U R N
9734 REM PRINT PROGRAMMING
9735 PRINT "TIME= ";T;" N= ";N1;
9737 PRINT "MV= ";M\NN1);"U= ";V(N1)
9739 IF N1 = 9 THEN TP = TP + 0.2
9740 GOTO 9733
```



```
19000 INPUT "RESTART SIM. Y/N";A$
19002 IF Aま = "Y" THEN GOTO 300
19999 END
```


B. 3 multin2A Program

10 REM AXON ACTION POTENTIAL
20 REM HODGKIN AND HUXLEY
30 REM J.OF PHYSIO 177:500 (1952)
40 REM
50 REM
THIS VERSION COMPUTES EXP() AS USED ABSOLUTE CONDUCTANCES
52 REM THIS IS A MODIFIED HH MODEL
54 REM NO GRAPHICS PRINTS DATA ONLY
56 REM USER DETERMINED NETWORK USING
57 REM NEURON UALUES (S, D, Y)
58 REM MODEL NAME: MULTIN2A
59 REM TRAIL 1 INTERREALATED SINGLE PATHLNAYS
60 REM UPST 11/12,17/91
63 REM 3 BY 3 NETINORK
64 REM 9 STIMS PER N, NO FEEDBACK ONTO ITSELF BUT UCAN BE ADDED R
66 REM STIMS FROM OTHER N'S AND 1 EXTRN
99 REM $\% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \%$
100 REM INITIALIZE VALUES
109 REM NN = NUMBER OF NEURONS
$110 \mathrm{NN}=9$
111 REM RS = RESET THRESHHOLD VAL.
112 RS $=-95.0$
114 REM 21=NUMBER OF STIMS/N
$11621=9$
192 DT = $1 / 25$
195 DIM $S(10,10), D(10,10), Y(10,10)$
200 DIM SA(10,10$), D U(10,10), D L(10,10)$
204 DIM V(10),MV(10),F(10)
206 DIM $\mathrm{N}(10), \mathrm{M}(10), \mathrm{H}(10)$
208 DIM GK(10), GN(10)
210 DIM $\operatorname{IK}(10), \operatorname{IN}(10), \mathrm{IT}(10), \mathrm{IL}(10)$
212 DIM DN(10), DM(10), DH(10)
214 DIM BN(10), BM(10), BH(10)
216 DIM AN(10), AM(10), AH(10)
$220 \mathrm{~T}=0.0$
$222 \mathrm{TP}=0.0$
225 FOR QS $=1$ TO NN STEP 1
227 FOR Q7 = 1 TO 21 STEP 1
$229 \mathrm{SA}(\mathrm{Q}, \mathrm{Q7})=0.0$
231 DL(Q6,Q7) $=0.0$
233 DU(Q6,Q7) $=0.0$
235 NEXT Q7
$237 M(Q 6)=-90$
$239 F(Q 6)=0$
241 NEXT Q6
$305 \mathrm{BN}(\mathrm{N} 1)=\mathrm{BM}(\mathrm{N} 1)=\mathrm{BH}(\mathrm{N} 1)=0$
310 REM CHANGE TU TO SET THRESHOLD VALUE

421 REM START OF PROGRAMMING
425 REM GET USER VALUES
427 GOSUB 2000
430 FOR Q8 = 1 TO NN STEP 1
$432 \mathrm{SA}(\mathrm{QB}, 1)=\mathrm{S}(Q 8,1)$

```
B. }3\mathrm{ MULTIN2A Continued
    434 DU(Q8,1) = D(Q8,1)
    436 DL(Q8,1) = Y(Q8,1)
    4 3 8 ~ N E X T ~ Q 8 ~
    4 9 9 ~ R E M ~ S E T ~ A L P H A ~ A N D ~ B E T A ~
    500 REM SS N,M,H,G,I
    505 GOSUB 3000
```



```
    800 REM LOOPS HERE EACH ITERATION
    9 9 9 ~ R E M ~ S E T ~ A L P H A ~ A N D ~ B E T A ~
    1000 REM UPDATE G,I,V
    1005 GOSUB 3050
    1350 IF T > = TM THEN GOTO 19000
    1355 T = T + DT
    1360 REM NEXT ITERATION
    1365 GOTO 800
    1999 REM ############################
    2000 : REM GET STIMULUS UALUES
    2001 PRINT "MOD NAME MULTIN2A"
    2002 PRINT "ENTER STIMULUS VALUES"
    2003 PRINT "11/18/91 - TRIAL1 DATA"
    2008 FOR QO = 1 TO NN STEP 1
    2 0 1 0 ~ F O R ~ Q ~ = ~ 1 ~ T O ~ 2 1 ~ S T E P ~ 1 / ~
    2015 PRINT "STIM UALUES FOR N=";Q0;"AND STIM=";Q
    2020 INPUT "SA= ";S(QO,Q)
    2022 INPUT "DU= ";D(QO,Q)
    2024 INPUT "DL= ";Y(QO,Q)
    2026 NEXT Q
    2027 NEXT QO
    2530 INPUT "MAX SIMULATION TIME";TM
    2700 RETURN
    3000 REM +++++++++++++++########################++
    ###+#+#
3001 REM FIRST GOSUB SUB SET
3005 FOR Q4 = 1 TO NNN STEP 1
3007 N1 = Q4
3010 G0SUB 8000
3015 GOSUB 8200
3 0 1 7 ~ N E X T ~ Q 4
3020 RETURN
3050 REM ()00()()0()()()()())()()()()()()0()(
    ()()
3051 REM SECOND GOSUB SET
3053 FOR Q5 = 1 TO NN STEP 1
3054 N1 = Q5
3055 GOSUB 8000
3060 G0SUB 9000
3062 IF MN(Q5) < = RS THEN F(05) = 0
3064 IF F(Q5) = 1 THEN GOTO 3068
3066 IF MN(Q5) > = 0.0 THEN GOSUB 4000
3068 NEXT Q5
3070 RETURN
4000 REM ---------------------------------------------
4001 REM ASSIGN WORKING UALUES HERE
```


B. 3 MULTIN2A Continued

```
4 0 0 2 ~ R E M ~ C O N T R O L S ~ I N T E R C O N E C T I O N S ~ B Y ~ C H O I C E ~ O F ~ S , D ~ A N D ~ Y ~
4003 REM EACH SET PROGRAMS WHAT IS EFFECTED BY THAT PARICULAR N
    T EFFECTS IT
4008 IF N1 = 1 THEN GOTO 4030
4009 IF N1 = 2 THEN GOTO 4060
4010 IF N1 = 3 THEN GOTO 4090
4011 IF N1 = 4 THEN GOTO 4120
4012 IF N1 = 5 THEN GOTO 4150
4013 IF N1 = 6 THEN GOTO 4180
4014 IF N1 = 7 THEN GOTO 4210
4015 IF N1 = 8 THEN GOTO 4240
4016 IF N1 = 9 THEN GOTO 4270
4 0 2 0 ~ R E T U R N
4030 REM PROGRAMM1NG FOR NI=1
4032 SA(5,2) = S(5,2)
4034 DL(5,2) = Y(5,2) + T
4036 DU(5,2) = D(5,2) + Y(5,2) +T
4058 F(1) = 1
4 0 5 9 ~ G O T O ~ 4 0 2 0 ~
4060 REM PROGRAMMMING FOR N1=2
4062 SA(9,3) = S(9,3)
4064 DL(9,3) = Y(9,3) + T
4066 DU(9,3) = D(9,3) + Y(9,3) +T
4088 F(2) = 1
4 0 8 9 ~ G O T O ~ 4 0 2 0 ~
4090 REM PROGRAMMING FOR Ni=3
4092 SA(4,4) = S(4,4)
4094 DL(4,4) = Y(4,4) + T
4096 DU(4,4) = D(4,4) + Y(4,4) + T
4118 F(3) = 1
4 1 1 9 \text { GOTO 4020}
4 1 2 0 ~ R E M ~ P R O G R A M M I N G ~ F O R ~ N i = 4
4122 SA(2,4) = S(2,4)
4124 DL(2,4) = Y(2,4) + T
4126 DU(2,4) = D(2,4) + Y(2,4) +T
4148 F(4) = 1
4 1 4 9 ~ G O T O ~ 4 0 2 0 ~
4150 REM PROGRAPMING FOR NI=5
4152 SA(3,5) = S(3,5)
4 1 5 4 ~ D L \{ 3 , 5 ) ~ = ~ Y ( 3 , 5 ) ~ + ~ T ~
4156 DU(3,5) = D(3,5) +Y(3,5) +T
4178 F(5) = 1
4179 GOTO 4020
```



```
4182 SA(1,6) = S(1,6)
4 1 8 4 D L ( 1 , 6 ) = Y ( 1 , 6 ) + T
4186 DU(1,6)=D(1,6)+Y(1,6)+T
4208 F(6) = 1
4209 GOTO 4020
4 2 1 0 ~ R E M ~ P R O G R A M M 1 I N G ~ F O R ~ N 1 = 7
4212 SA(8,8) = S(8,8)
4214 DL(8,8) = Y(8,8) + T
```

```
B.3 MULTIN2A Continued
    4216 DU(8,8) = D(8,8) + Y(8,8) + T
    4238 F(7) = 1
    4 2 3 9 ~ G O T O ~ 4 0 2 0 ~
    4240 REM PROGRAMMING FOR N1=8
    4242SA(6,8)=S(6,8)
    4244 DL (6,8) = Y(6,8) + T
    4246 DU(6,8)= D(6,8) + Y(6,8) +T
    4268 F(8) = 1
    4 2 6 9 ~ G O T O ~ 4 0 2 0 ~
    4 2 7 0 ~ R E M ~ P R O G R A M M I N G ~ F O R ~ N 1 = 9 ~
    4272 SA(7,9) = S(7,9)
    4274 DL(7,9) = Y(7,9) + T
    4276 DU(7,9) = D(7,9) + Y(7,9) +T
    4298 F(9) = 1
    4 2 9 9 ~ G O T O ~ 4 0 2 0
    7999 REM t++++++++++++++++++++++++++++++++++++++++
    8000 REM RATE CONSTANTS FOR UOLTS
    8020 U(N1) = - MU(N1) - 90
    8029 REM AVOID 1/0
    8030 IF U(N1) + 25 = 0 THEN U(N1) = - 25.1
    8040 IF U(N1) + 10 = 0 THEN V(N1) = - 10.1
    8060 BN(N1) = 0.125 * EXP (U(N1) / 80)
    8070 BM(N1) = 4 * EXP (V(N1) / 18)
    8081 BH(N1) = 1/(EXP((V(N1) + 30)/10) + 1)
    8100 AN(N1) = 0.01 * (V(N1) + 10)/(EXP((V(N1) + 10)/ 10) - 1)
    8110 AM(N1) = 0.1 * (V(N1) + 25)/(EXP((U(N1) + 25) / 10) - 1)
    8120 AH(N1) = 0.07 * EXP (V(N1)/20)
8130 RETURN
8200 REM STEADY STATE UARIABLES
8210 N(N1) = AN(N1) / (AN(N1) + BN(N1))
8220 M(N1) = AM(N1) / (AM(N1) + BM(N1))
8230 H(N1) = AH(N1) / (AH(N1) + BH(N1))
8500 REM INITIAL G AND I
8520 LET GK(N1) = 36 * N(N1) * N(N1) * N(N1) * N(N1)
8525 LET GN(N1) = 120 * M(N1) * M(N1) * M(N1) * H(N1)
8530 IK(N1) = GK(N1) * (V(N1) - 12)
8535 IN(N1) = GN(N1) * (V(N1) + 115)
8540 IL(N1) = 0.3*(U(N1) + 10.6)
8545 IT(N1) = IK(N1) + IN(N1) + IL(N1)
8550 RETURN
8999 REM %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
9000 REM UPDATE CONDUCTANCES
9020 DN(N1) = AN(N1) * (1 - N(N1)) - BN(N1) * N(N1)
9030 DM(N1) = AM(N1) * (1 - M(N1)) - BM(N1) * M(N1)
9040 DH(N1) = AH(N1) * (1 - H(N1)) - BH(N1) * H(N1)
9060 N(N1) = N(N1) + DN(N1) * DT
9070 M(N1) = M(N1) + DM(N1) * DT
9080 H(N1) = H(N1) + DH(N1) * DT
9100 GK(N1) = 36 * N(N1) * N(N1) * N(N1) *N(N1)
9110 GN(N1) = 120 * M(N1) * M(N1) *M(N1) * H(N1)
9200 IK(N1) = GK(N1) * (U(N1) - 12)
9210IN(N1) = GN(N1) *(U(N1) + 115)
```


B. 3 MULTIN2A Continued

```
9215 IL(N1) = 0.3 * (V(N1) + 10.6)
9220 IT(N1) = IK(N1) + IN(N1) + IL(N1)
9554 FOR Q3 = 1 TO 21 STEP 1
9556 IF T > DL(N1,Q3) AND T < DU(N1;Q3) THEN IT(N1) = IT(N1) +
        SA(N1,Q3)
9558 NEXT Q3
9700 REM NEW UOLTAGE
9710 DN(N1) = IT(N1) * DT
9720 U(N1) = U(N1) - DV(N1)
9730MV(N1) = - U(N1) - 90
9732 IF T > = TP THEN GOTO 9735
9 7 3 3 ~ R E T U R N
9734 REM PRINT PROGRAMMING
9735 PRINT "TIME= ";T;" N= ";N1;
9737 PRINT "MU= ";NU(N1);"V= ";V(N1)
9739 IF N1 = 9 THEN TP = TP + 0.2
9740 GOTO 9733
```



```
19000 INPUT "RESTART SIM. Y/N";A$
19002 IF A$ = "Y" THEN GOTO 220
19999 END
```


B. 4 MULTIN2B Program

10 REM AXON ACTION POTENTIAL
20 REM HODGKIN AND HUXLEY
30 REM J.OF PHYSIO 177:500 (1952)
40 REM THIS UERSION COMPUTES EXP() AS USED
50 REM ABSOLUTE CONDUCTANCES
52 REM THIS IS A MODIFIED HH MODEL
54 REM NO GRAPHICS PRINTS DATA ONLY
56 REM USER DETERMINED NETWORK USING
57 REM NEURON VALUES (S, D, Y)
$5 B$ REM MODEL NAME: MULTIN2B
59 REM TRIAL 2 RANDOM EXCIT CONNECTIONS
60 REM UPDATE 11/12,17/91
63 REM 3 BY 3 NETWORK
64 REM 9 STIMS PER N, NO FEEDBACK ONTO ITSELF BUT UCAN BE ADDED R
66 REM STIMS FROM OTHER N'S AND 1 EXTRN
99 REM $\% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \%$
100 REM INITIALIZE UALUES
109 REM NN = NUMBER OF NEURONS
$110 \mathrm{NN}=9$
111 REM RS = RESET THRESHHOLD VAL.
112 RS $=-95.0$
114 REM 21=NUMBER OF STIMS/N
$11621=9$
192 DT = 1/25
195 DIM S(10,10),D(10,10),Y(10,10)
200 DIM SA(10,10), DU(10,10), DL(10,10)
204 DIM V(10),MV(10),F(10)
$206 \operatorname{DIM} N(10), M(10), H(10)$
208 DIM GK(10), GN(10)
$210 \operatorname{DIM} \operatorname{IK}(10), \operatorname{IN}(10), I T(10), \operatorname{IL}(10)$
212 DIM DN(10), DM(10), DH(10)
214 DIM BN(10), BM(10), BH(10)
216 DIM AN(10), AM (10), AH(10)
$220 \mathrm{~T}=0.0$
$222 T P=0.0$
225 FOR Q6 $=1$ TO NN STEP 1
227 FOR Q7 = 1 TO 21 STEP 1
$229 \operatorname{SA}(Q 6, Q 7)=0.0$
$231 \mathrm{DL}(Q 6, Q 7)=0.0$
233 DU(Q6,07) $=0.0$
235 NEXT Q7
$237 M(Q 6)=-90$
$239 F(Q 6)=0$
241 NEXT Q6
$305 \mathrm{BN}(\mathrm{N} 1)=\mathrm{BM}(\mathrm{N} 1)=\mathrm{BH}(\mathrm{N} 1)=0$
310 REM CHANGE TV TO SET THRESHOLD VALUE

421 REM START OF PROGRAMMING
425 REM GET USER VALUES
427 GOSUB 2000
430 FOR Q8 $=1$ TO NN STEP 1

```
B.4 MULTIN2B Continued
    432 SA(Q8,1) = S(Q8,1)
    434 DU(Q8,1) = D (Q8,1)
    436 DL.(Q8,1) = Y(Q8,1)
    4 3 8 ~ N E X T ~ Q 8 ~
    4 9 9 ~ R E M ~ S E T ~ A L P H A ~ A N D ~ B E T A ~
    500 REM SS N,M,H,G,I
    505 GOSUB 3000
```



```
    800 REM LOOPS HERE EACH ITERATION
    999 REM SET ALPHA AND BETA
    1000 REM UPDATE G,I,U
    1005 GOSUB 3050
    1350 IF T ) = TM THEN GOTO 19000
    1355 T = T + DT
    1360 REM NEXT ITERATION
    1365 GOTO 800
    1999 REM ############################
    2000 : REM GET STIMULUS VALUES
    2001 PRINT "MODEL NAME - MULTIN2B"
    2002 PRINT "ENTER STIMULUS VALUES"
    2003 PRINT "NAME: MULTIN2B 3X3"
    2004 INPUT "TODAY'S DATE IS (EG:11/22/91) ";R#
    2005 INPUT "RUN NUMBER IS ";XX
    2008 FOR QO = 1 TO NN STEP 1
    2010 FOR Q = 1 TO Z1 STEP 1
    2015 PRINT "STIM UALUES FOR N=";Q0;"AND STIM=";0
    2020 INPUT "STIM UALUE = ";S(QO,Q)
    2022 INPUT "DURAT VALUE = ";D(QO,Q)
    2024 INPUT "DELAY UALUE = ";Y<QO,Q 
    2026 NEXT Q
    2027 NEXT QO
    2530 INPUT "MAX SIMULATION TIME";TM
    2700 RETURN
    3000 REM ++++++++++++++++########################+++++++
    ###+#+#
3001 REM FIRST GOSUB SUB SET
3005 FOR Q4 = 1 TO NN STEP 1
3007 N1 = Q4
3010 GOSUB 8000
3015 GOSUB 8200
3017 NEXT Q4
3020 RETURN
3050 REM ()()()()()()0()()()())()()()0()0()()00) (0)
    ()()
3051 REM SECOND GOSUB SET
3053 FOR Q5 = 1 TO NN STEP 1
3054 N1 = Q5
3055 GOSUB 8000
3060 GOSUB 9000
3062 IF MV(05) < = RS THEN F(05) = 0
3064 IF F(05) = 1 THEN GOTD 3068
3066 IF MU(Q5) > = 0.0 THEN GOSUB 4000
```

```
B.4 MULTIN2B Continued
    3068 NEXT Q5
    3070 RETURN
    4000 REM
    4001 REM ASSIGN WORKING UALUES HERE
    4 0 0 2 ~ R E M ~ C O N T R O L S ~ I N T E R C O N E C T I O N S ~ B Y ~ C H O I C E ~ O F ~ S , D ~ A N D ~ Y ~
    4003 REM EACH SET PROGRAMS WHAT IS EFFECTED BY THAT PARICULAR N
        T EFFECTS IT
    4008 IF NI = 1 THEN GOTO 4030
    4009 IF N1 = 2 THEN GOTO 4060
    4010 IF N1 = 3 THEN GOTO 4090
    4011 IF N1 = 4 THEN GOTO 4120
    4012 IF N1 = 5 THEN GOTO 4150
    4013 IF N1 = 6 THEN GOTO 4180
    4014 IF N1 = 7 THEN GOTO 4210
    4015 IF NI = 8 THEN GOTO 4240
    4016 IF N1 = 9 THEN GOTO 4270
    4 0 2 0 ~ R E T U R N
    4030 REM PROGRAMMING FOR NI=1
    4032 SA(2,2) = S(2,2)
    4034 DL(2,2) = Y(2,2) + T
    4036 DU(2,2) = D(2,2) +Y(2,2) +T
4038 SA(8,2) = S(8,2)
4040 DL(8,2) = Y(8,2) +T
4042 DU(8,2) = D(8,2) + Y(8,2) + T
4058 F(1) = 1
4059 GOTO 4020
4060 REM PROGRAMMING FOR N1=2
4062 SA(6,3) = S(6,3)
4064 DL(6,3) = Y(6,3) + T
4066 DU(6,3) = D(6,3) +Y(6,3) +T
4068 SA(9,3) = S(9,3)
4070 DL(9,3) = Y(9,3) +T
4072 DU(9,3) = D(9,3) + Y(9,3) +T
4088 F(2) = 1
4 0 8 9 ~ G D T O ~ 4 0 2 0 ~
4090 REM PROGRAMMING FOR N1=3
4092 SA(5,4) = S(5,4)
4094 DL(5,4) = Y(5,4) + T
4096 DU(5,4) = D(5,4) + Y(5,4) + T
4098 SA(9,4) = S(9,4)
4100 DL(9,4) = Y(9,4) +T
4102 DU(9,4) = D(9,4) + Y(9,4) + T
4118 F(3) = 1
4 1 1 9 ~ G O T O ~ 4 0 2 0 ~
4120 REM PROGRAMMING FOR NI=4
4122 SA(7,5)=S(7,5)
4124 DL(7,5) = Y(7,5) + T
4126 DU(7,5) = D(7,5) + Y(7,5) + T
4128 SA(8,5) = S(8,5)
4130 DL(8,5) = Y(8,5) + T
4132 DU(8,5) = D(8,5) + Y(8,5) + T
4148 F(4) = 1
```

```
B.4 MULTIN2B Continued
    4 1 4 9 ~ G O T O ~ 4 0 2 0
    4150 REM PROGRAMMING FOR NI=5
    4152 SA(1,5)=S(1,5)
    4154DL(1,5)=Y(1,5) + T
    4156 DU(1,5)=D(1,5) +Y(1,5) +T
    4158SA(4,5)=S(4,5)
    4160 DL(4,5)=Y(4,5) +T
    4162 DU(4,5) = D(4,5) +Y(4,5) +T
    4178 F(5) = 1
    4179 GOTO 4020
    4180 REM PROGRAMMING FOR NI=6
    4182 SA(4,6)=S(4,6)
    4184 DL(4,6)=Y(4,6) +T
    4186 DU(4,6) = D(4,6) +Y(4,6) +T
    4188 SA(5,6)=S(5,6)
    4190 DL(5,6)=Y(5,6) + T
    4192DU(5,6)=D(5,6)+Y(5,6) +T
    4208 F(6) = 1
    4 2 0 9 ~ G O T O ~ 4 0 2 0
    4210 REM PROGRAMMING FOR NI=7
4212 SA(5,7)=S(5,7)
4214 DL (5,7) = Y(5,7) +T
4216 DU(5,7) = D(5,7) + Y(5,7) +T
4218 SA(6,7) = S(6,7)
4220 DL(6,7) = Y(6,7) +T
4222 DU(6,7) = D(6,7) +Y(6,7) +T
4238 F(7) = 1
4 2 3 9 ~ G O T O ~ 4 0 2 0
4240 REM PROGRAMMING FOR NI=8
4242SA(3,8)=S(3,8)
4244 DL(3,8)=Y(3,8) +T
4246 DU(3,8)=D(3,8) + Y(3,8) +T
4248 SA(9,9)=S(9,9)
4250 DL (9,9)=Y(9,9) +T
4252 DU(9,9) = D(9,9) + Y(9,9) +T
4268 F(8) = 1
4 2 6 9 ~ G O T O ~ 4 0 2 0
4270 REM PROGRAMMING FOR N1=9
4272 SA(1,9) = S(1,9)
4274 DL(1,9) = Y(1,9) +T
4 2 7 6 ~ D U ( 1 , 9 ) = D ( 1 , 9 ) ~ + ~ Y ( 1 , 9 ) ~ + T
4278 SA(7,9) = S(7,9)
4 2 8 0 \mathrm { DL } ( 7 , 9 ) = Y ( 7 , 9 ) + T
4 2 8 2 ~ D U ( 7 , 9 ) = D ( 7 , 9 ) + Y ( 7 , 9 ) ~ + T
4298 F(9) = 1
4 2 9 9 ~ G O T O ~ 4 0 2 0
7999 REM +++++++++++++++++++++++++++++++++++++++++
8000 REM RATE CONSTANTS FOR VOLTS
8020V(N1) = - MV(N1) - 90
8029 REM AVOID 1/0
8030 IF V(N1) + 25 = 0 THEN U(N1) = - 25.1
8040 IF U(N1) + 10 = 0 THEN U(N1) = - 10.1
```

```
B.4 MULTIN2B Continued
    8060 BN(N1) = 0.125 * EXP (U(N1) / 80)
8070 BM(N1) = 4 * EXP (U(N1) / 18)
8081 BH(N1) = 1/(EXP((U{N1) + 30)/10) + 1)
8100 AN(N1) = 0.01 * (U(N1) + 10) / (EXP ((U(N1) + 10) / 10) - 1)
8110 AM(N1) = 0.1 * (V(N1) + 25)/(EXP((U(N1) + 25)/10) - 1)
8120 AH(N1) = 0.07 * EXP (U(N1) / 20)
8130 RETURN
8200 REM STEADY STATE UARIABLES
8210 N(N1) = AN(N1) / (AN(N1) + BN(N1))
8220 M(N1) = AM(N1) / (AM(N1) + BM(N1))
8230 H(N1) = AH(N1) / (AH(N1) + BH(N1))
8500 REM INITIAL G AND I
8520 LET GK(N1) = 36*N(N1) *N(N1) *N(N1) * N(N1)
8525 LET GN(N1) = 120*M(N1) * M(N1) *M(N1) * H(N1)
8530 IK(N1) = GK(N1) * (U(N1) - 12)
8535 IN(N1) = GN(N1) * (V(N1) + 115)
8540 IL(N1) = 0.3 * (U(N1) + 10.6)
8545 IT(N1) = IK(N1) + IN(N1) + IL(N1)
8550 RETURN
8999 REM %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
9000 REM UPDATE CONDUCTANCES
9020 DN(N1) = AN(N1) * (1 - N(N1)) - BN(N1) * N(N1)
9030 DM(N1) = AM(N1) * (1 - M(N1)) - BM(N1) * M(N1)
9040 DH(N1) = AH(N1) * (1 - H(N1)) - BH(N1) * H(N1)
9060N(N1) = N(N1) + DN(N1) * DT
9070M(N1) = M(N1) + DM(N1) * DT
9080 H(N1) = H(N1) + DH(N1) * DT
9100 GK(N1) = 36*N(N1) * N(N1) * N(N1) *N(N1)
9110GN(N1) = 120*M(N1) * M(N1) *M(N1) * H(N1)
9200 IK(N1) = GK(N1) * (U(N1) - 12)
9210 IN(N1) = GN(N1) * (V(N1) + 115)
9215 IL(N1) = 0.3*(U(N1) + 10.6)
9220 IT(N1) = IK(N1) + IN(N1) + IL(N1)
9 5 5 4 ~ F O R ~ Q 3 ~ = ~ 1 ~ T 0 ~ 2 1 ~ S T E P ~ 1 ~
9556 IF T > DL(N1,Q3) AND T < DU(N1,Q3) THEN IT(N1) = IT(N1) +
        SA(N1,Q3)
9558 NEXT Q3
9 7 0 0 ~ R E M ~ N E W ~ U O L T A G E ~
9710 DU(N1) = IT(N1) * DT
9720 U(N1) = U(N1) - DV(N1)
9730MN(N1) = - U(N1) - 90
9732 IF T > = TP THEN GOTO 9735
9733 RETURN
9 7 3 4 ~ R E M ~ P R I N T ~ P R O G R A M M M I N G ~
9735 PRINT "TIME= ";T;" N= ";N1;
9737 PRINT "MN= ";{隹(N1);"(V= ";V(N1)
9739 IF N1 = 9 THEN TP = TP + 0.2
9740 GOTO 9733
9899 REM ++++t+++++++++++++++++++++++++t++++++++++++++++++++
```



```
19002 IF A$ = "Y" THEN GOTO 220
19999 END
```

APPENDIX C PROG SERIES PROGRAMS

This series is the simulation of the Glass \& Mackey Phase Lock Biological Oscillation Model. The program variable are listed below:
table:

Symbol	VARIABLE DEFFINITION
Dr	change in tric
K	SINUSOID AMPLITUDE
PA	PHASE ANGLE
PC	POSITIVE CONSTANT
R	Ratio
RA	Y/N TRY AGAIN
so	INITIAL VALUE OF SINUSOID
SS	VALUE OF SINUSOID
T	TIME
T3	Maximuy tire for running the program
TP	TIME WHEN $X=S 5$
w	VALUE OF SIA(VV)
W	ANGULAR FREQUENCY
x	ACTIVITY
x0	fintital value acrivity
	(pImensioncess variables)
λ	STABIETITY Tinit
DV	dumy variable for holding data
K2	AbS (LA * ($\mathrm{N}-\mathrm{I}$)
KK	K VALUE
IA	POSITIVE CONSTANT
N	phase ratio
S2	dnitidal ss value
TT	TIME
T0	TIME UNSTABLE
X2	intital activity value
xX	ACPIVITY VALUE

PROG3B (shown on the next page) is the integrate and fire simulation described in Chapter 5.3. The program is broken down as follows:
(1 - 155) - REM statements that describe the program and give user information;
(200-280) - User input values entered here;
(299-325) - Initial Dimensionless values calculated (335-405) - " " Activity and SMT values calculated and printed;
(406-475) - Updated values are calculated and printed; (500-1004) - Retry Option
: REM THEEIS PROJEL:
贶 MARY ELIEN ALEKSZA (NJIT)
RET 日IE゚EGICAL OSEILATORS
qEy GLASS AND MACKEY'S SIMPLE MODEL
TE! SEE THEEIS DOS FITR CETAILS
REM MPDED STARTED 09 APRIL 1990
REY OR S REISYN DR LH TAPP
10 REM DIMENSICNLESS PARAME:ER MODER 30
:E RE: PROGRAM ANMED PROSK 305
100 REY START OF THE PRCGRAM 310

::0 REM PART 1 FROERAM MARIABLE5
182 RE: $K=$ ATP OF SIMUSOID
$1!3$ REM SO = MNET. UALUE OF SINE
114 REM T- THKE
::5 RET $0 T=$ CHONGE IN TTHE
16 REY $72=$ THE X X 2 S3
$::-$ ial $x=$ Incessasine intivity
118 RE $55=$ Smusgid
119 REM XO = MITT.HALUE ACTVITY
120 RE: PC $=$ PASITJVE CONTSTANT

TE: WDRERUEICY
:24 25: PA = PYASE ANGLE $=0$
126 SEH W = TIE UALIE OF THE SIN(
$: 29$ REM $73=$ ThNE TO RLN PROGRAY TOO
132 RE: 0.t co $\mathrm{X}: 58$
:34 REY 0<akイS5

144 REY KK oxnass X UMUUE
146 PEY IA O ORUESS PC TALUE
848 REA S3- OMREESS SS VALUE
IEA REM TTE AMmess TVALUE
15E REM $x=9$ aness halle of x
:FP RIT: :N PHASE RATION
15: REY KZ AES (IA $N-1$)
161 贶: $A=$ STABLLITY TEHE :ALPHA)
: 83 REY TO = TENE INSTAELE
: 15 REY 75 FTME STABLE
167 REM DV = OVYET TARIABLE
170 REa KR Jo iLAMN -11

201 REY PAFTT 2 INPUT DATR
205 PRINT "aRHAT IS XC VALLE ";
210 INPUT X0
9:E PRINT 'LNHT :S SD VALUE ';
270 1NPYT 59
27E PRINT TRDAT iS PC :MALCE ";
270 iNPLT PC

2EO INPUT L
EEE PRINT "HHAT IS K VALLE •;
260 INPUT K
EEE PRINT "OHAT IS OT VALCE';
270 INPPT DT
2TE FRINT "JHAT :S T3 VALLE - ;
282 INPLT -3

2ge INPUT N
285 LET $T=0$

C. 1 PROG3B Program
 C． 1 PROG3B Program

APPENDIX D

 INSTRUCTIONS FOR EXECUTING PROGRAMSAll programs are written in BASIC and are to be run on an Apple 2E enhanced (128K) using ProdOS 3.3. The printer used is an IMAGEWRITER I. All programs are started the same way as follows:

1. Insert program disk into disk drive.
2. Turn on machine
3. Make sure CAPS LOCK on
4. Type CATALOG to see list of programs on disk
5. Load desired model (e.g. LOAD MULTIN1A)
6. Type LIST to view programming
7. Type RUN to execute model
8. CONTL S - controls the screen scrolling
9. CONTL C - stops the program (BREAK)
10. Program will display on the screen automatically
11. For printer display
a. Type PR\#1 prior to running the program b. Type RUN - program will display on printer only
c. Type PR\#O when complete to return to screen

I. MULTIN SERIES:

12. Enter the date after first prompt; (e.g. TODAYS DATE: 5/5/92)
13. Enter run number next; (The run number represents a number assigned to the data set run on a particular day. This number is for record keeping purposes only.)
14. Enter neuron information next: stimulus amplitude (S/SA), duration (D/DU) and the delay (Y/DL); (The header will indicate which neuron and stimulus number is being entered)
D. Program Instructions Continued:
15. Enter the maximum run time next;
16. Enter Y / N to continue after the program is completed.
II. HHMOD SERIES:
[HHMOD6D]
17. Enter the number of stimuli/neuron;
18. Enter stimuli information (amp, duration, delay);
19. Enter the N2 to N1 delay;
20. Enter the maximum simulation time;
21. Enter y / n to restart the simulation.
[HHMODEL1]
22. Enter stimulus 1 amplitude;
23. Enter stimulus 1 duration;
24. Enter delay time between stimuli;
25. Enter stimulus 2 amplitude;
26. Enter stimulus 2 duration;
27. CONTL C is used to end program.

REFERENCES

1. Hodgkin, A. L. and A. F. Huxley. "A Quantitative Description of Membrane Current and its Application to Conduction and Excitation in Nerve". The Journal of Physiology, Vol. 117, March 10, 1952.
2. Randall, J. E. Microcomputers and Physiological Simulation. Addison-Wesley Pub. Co., Cambridge, MA. 1983.
3. Tortora, G. and N. P. Anagnostakos. Principles of Anatomy \& Physiology, 5th. ed. Harper \& Row, Pub., New York, NY. 1987.
4. Bahill, T. A. Bioengineering Biomedical, Medical and Clinical Engineering. Prentice-Hall, Inc., Englewood Cliffs, NJ. 1981.
5. Stanley, J. and S. Luedeking. Introduction to Neural Networks: Computer Simulations of Biological Intelligence. California Scientific Software, CA. 1989.
6. Lippmann, R. P. "An Introduction To Computing With Neural Nets". IEEE ASSP Maqazine. April, 1987.
7. Nilsson, J.W. Electric Circuits. Addison-Wesley Pub. Co., Cambridge, MA. 1983.
8. Traub, R.D. and R. Llina. "Hippacampal Pyramidial Cells: Significance of Dendrite Ionic Conductances for Neuronal Functions and Epilepogenesis". Journal of Neurophysiology, Vol. 42, No. 2, March, 1979.
9. Traub, R.D. and K. S. Wong. "Synchronized Burst Discharge in Disinhibited Hippocampal Slice: Model of Cellular Mechanics". Journal of Neurophysiology. Vol. 49, No. 2, February, 1983.
10. Glass, L., C. Graves, G. Petrillo and M. C. Mackey. "Unstable Dynamics of a Periodically Driven Oscillator in the Presence of Noise". The Journal of Theoretical Biology, Vol. 86, 1980.
11. Glass, L. and M. C. Mackey. From Clocks to Chaos: The Rhythms of Life. Princeton University Press, Inc., Princton, NJ. 1988.
12. Glass, L. and M. C. Mackey. "A Simple Model For Phase Locking of Biological Oscillators". Journal of Mathematical Biology, Vol. 7, 1979.
