Copyright Warning \& Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page \# to: last page \#" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

ABSTRACT

I: REACTION OF $\mathrm{CH}_{3} \mathrm{Cl}$ WITH H_{2} AND CH_{4}

 UNDER OXIDATION AND PYROLYSIS CONDITIONS
II: $\begin{aligned} & \text { KINETIC ANALYSIS OF } \\ & \text { AND } \\ & \mathrm{C}_{2} \mathrm{H}_{2} \\ & \mathrm{H}_{6}, \\ & \mathrm{C}_{2} \mathrm{H}_{4}, \\ & \text { REACTIONS WITH OH, } \mathrm{O}, \\ & \mathrm{H}, ~ A N D ~ C l\end{aligned}$
 Qing-Rui Yu

Experimental and detailed modeling are presented for the high temperature combustion systems involving $\mathrm{CH}_{3} \mathrm{Cl} / \mathrm{CH}_{4} / \mathrm{O}_{2}$ and $\mathrm{CH}_{3} \mathrm{Cl} / \mathrm{H}_{2} / \mathrm{O}_{2}$ reactions. More important C_{2} species reaction rate constant are created. A mechanism incorporating 263 step elementary reactions and 76 stable compounds and active radicals is developed based on (1) fundamental thermochemical and Kinetic principles (2) Quantum Rice-Ramsperger-Kassel (QRRK) theory analysis (3) accurate thermodynamic Properties and thermochemical analysis (4) reliable experimental data to validate our model.

The study of Part II evaluates and analyzes theoretically the rate constants of $\mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{4}$, and $\mathrm{C}_{2} \mathrm{H}_{2}$ reactions with $\mathrm{OH}, \mathrm{O}, \mathrm{H}$, and Cl important to incineration based on detailed selection of accurate experimental data and QRRK analysis. Recommended rate constants can be applied to model research.

I:
 REACTION OF $\mathrm{CH}_{3} \mathrm{Cl}$ WITH H_{2} AND CH_{4} UNDER OXIDATION AND PYRLYSIS CONDITIONS
 II: KINETIC ANALYSIS OF $\mathrm{C}_{2} \mathrm{H}_{6}, \quad \mathrm{C}_{2} \mathrm{H}_{4}$, AND $\mathrm{C}_{2} \mathrm{H}_{2}$ REACTIONS WITH OH, O, H, AND Cl

by
Qing-Rui Yu

A Thesis
Submitted to the Faculty of New
Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree
of Master of Science
Department of Chemical Engineering, Chemistry,
and Environmental Science
May 1992

APPROVAL PAGE

I Reaction of $\mathrm{CH}_{3} \mathrm{Cl}$ with H_{2} and CH_{4} under Oxidation and Pyrolysis Conditions II Kinetic Analysis of $\mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{4}$, and $\mathrm{C}_{2} \mathrm{H}_{2}$ Reactions with $\mathrm{OH}, \mathrm{O}, \mathrm{H}$, and Cl
by
Qing-Rui Yu

Dr. Joseph W. Bozzelli, Thesis Adviser Distinguished Professor of Chemical Engineering, Chemistry, and Environmental Science, NJIT

Dr. L. Dauerman, Committee Member Associated Professor of Chemical Engineering, Chemistry, and Environmental Science, NJIT

BIOGRAPHICAL SKETCH

Author: Qing-Rui Yu

Degree: Master of Science in Environmental Science

Date: May, 1992

Undergraduate and Graduate Education:

- Master of Science in Environmental Science, New Jersey Institute of Technology, Newark, NJ, 1992
- Master of Science in Chemistry, Hangzhou University Hangzhou, P. R. China, 1991
- Bachelor of Science in Chemistry, Peking University Peking, P. R. China, 1965

Major: Environmental Science

Presentations and Publications:

Wenpin Ho, Qing-Rui Yu, and J. W. Bozzelli "Kinetic Study on Pyrolysis and Oxidation of $\mathrm{CH}_{3} \mathrm{Cl}$ in $\mathrm{Ar} / \mathrm{H}_{2} / \mathrm{O}_{2}$ Mixture" Combustion Science and Technology 1992 England Publishing.

This Thesis is dedicated to NJIT and Dr. Bozzelli

ACKNOWLEDGEMENT

The author appreciates Dr. Joseph W. Bozzelli's advice and patience toward the completion of this thesis. I am deeply indebted to him for the opportunities which he made available to me. I also acknowledge the helpful corrections and productive comments by Dr. L. Dauerman and Dr. John W. Liskowitz.

For the love and inspiration I shall be eternally grateful to my wife, Pei-Bin Zou and son, Ying-Kui Yu. Also I must thank all of my colleagues at the Kinetics Research Laboratory of New Jersey Institute of Technology, especially, Dr. Yo-Ping Wu and Mr. Wenpin Ho for their support and guidance.

TABLE OF CONTENTS

PART I
Page
1 INTRODUCTION 1
1.1 Review of Previous Research 1
1.2 The Objectives of Research 9
2 EXPERIMENTAL METHOD 11
2.1 The Basis of Use of Tabular Flow Reactor 11
2.2 Experimental Method 11
2.3 Kinetic Model Computer Integration 18
3 RESULTS AND DISCUSSION 22
3.1 Thermal Reaction of $\mathrm{CH}_{3} \mathrm{Cl} / \mathrm{H}_{2} / \mathrm{O}_{2} / \mathrm{Ar}$ Systems 23
3.1.1 Initial Conversion and Complete Conversion Temperature 23
3.1.2 Residence Time and Temperature Effects 23
3.1.3 Oxygen Content Effects 45
3.1.4 Effects of S / V 51
3.2 Thermal Reaction of $\mathrm{CH}_{3} \mathrm{Cl} / \mathrm{CH}_{4} / \mathrm{O}_{2} / \mathrm{Ar}$ Systems 53
3.2.1 Initial Conversion and Complete Conversion Temperature 53
3.2.2 Residence Time and Temperature Effects 53
3.2.3 Oxygen content Effect 76
3.2.4 HCl Effect on CO Conversion to CO_{2} 77
3.3 Quantum Rice-Ramsperger-Kassel (QRRK) Analysis 79
3.4 Kinetic Mechanism and Modeling 92
4 CONCLUSIONS 114
APPENDIX 120
BIBLIOGRAPHY 134
Page
1 INTRODUCTION 135
2 REACTION OF $\mathrm{C}_{2} \mathrm{H}_{6}$ WITH OH, H, O, AND Cl 137
3 REACTION OF $\mathrm{C}_{2} \mathrm{H}_{4}$ WITH OH, H, O, AND Cl 139
4 REACTION OF $\mathrm{C}_{2} \mathrm{H}_{2}$ WITH OH, H, O, AND Cl 143
4.1 Reaction of $\mathrm{C}_{2} \mathrm{H}_{2}$ with OH 143
4.2 Reaction of $\mathrm{C}_{2} \mathrm{H}_{2}$ with O 146
4.3 Reaction of $\mathrm{C}_{2} \mathrm{H}_{2}$ with H 148
4.4 Reaction of $\mathrm{C}_{2} \mathrm{H}_{2}$ with Cl 149
5 CONCLUSIONS 150
BIBLIOGRAPHY 169

LIST OF TABLES

PART I

Table
Page
1 Average Retention Time of Products 16
2 Relative Response Factors of Several Compounds 17
3 The Effect of HCl Concentration in Products on CO Conversion78

4 Detailed Reaction Mechanism for $\mathrm{CH} 3 \mathrm{Cl} / \mathrm{CH} 4 / \mathrm{O} 2$ Systems86 PART II

1 Rate Data on $\mathrm{C}_{2} \mathrm{H}_{6}$ Reaction 138
2 Rate Date on $\mathrm{C}_{2} \mathrm{H}_{4}$ Reaction 140
3 Calculated Apparent Rate Constants for Reaction $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{O} \Rightarrow$ Products142

4-1 Rate Data on $\mathrm{C}_{2} \mathrm{H}_{2}$ Reaction with OH 145
4-2 Rate Data on $\mathrm{C}_{2} \mathrm{H}_{2}$ Reaction with OH 145
5 Calculated Apparent Rate Constants for Reaction $\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{OH} \Rightarrow$ Products146

6 Rate Data on $\mathrm{C}_{2} \mathrm{H}_{2}$ Reaction with 0 148
7 Rate Data on $\mathrm{C}_{2} \mathrm{H}_{2}$ Reaction with H 149
8 Rate Data on $\mathrm{C}_{2} \mathrm{H}_{2}$ Reaction with Cl 149

PART I

Figure	Page
1-3	Product distribution vs Time at 1098K, "10.5" Tube for $\mathrm{Ar}: \mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=97: 1: 1: 1 \ldots . . .25$
4-6	Product distribution vs Time at 1123 K , "10.5" Tube for $\mathrm{Ar}: \mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=97: 1: 1: 1 \ldots . . .26$
7-9	Product distribution vs Time at 1148 K , "10.5" Tube for $\mathrm{Ar}: \mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=97: 1: 1: 1 \ldots . . .27$
10-12	Product distribution vs Time at 1173 K , "10.5" Tube for $\mathrm{Ar}: \mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=97: 1: 1: 1 \ldots . . .28$
13-15	Product distribution vs Time at 1198 K , "10.5" Tube for $\mathrm{Ar}: \mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=97: 1: 1: 1 \ldots . . .29$
16-18	Product distribution vs Time at 1223 K , "10.5" Tube for $\mathrm{Ar}: \mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=97: 1: 1: 1 \ldots . . .30$
19-21	Product distribution vs Time at 1098 K , "10.5" Tube for $\mathrm{Ar}: \mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=96: 2: 1: 1 \ldots . . .31$
22-24	Product distribution vs Time at 1123 K , "10.5" Tube for $\mathrm{Ar}: \mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=96: 2: 1: 1$....... 32
25-27	Product distribution vs Time at 1148 K , "10.5" Tube for $\mathrm{Ar}: \mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=96: 2: 1: 1 \ldots . . .33$
28-30	Product distribution vs Time at 1173 K , "10.5" Tube for $\mathrm{Ar}: \mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=96: 2: 1: 1 \ldots . . .{ }^{2} 4$
31-33	Product distribution vs Time at 1198 K , "10.5" Tube for $\mathrm{Ar}: \mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=96: 2: 1: 1 \ldots . . .35$
34-36	Product distribution vs Time at 1223 K , "10.5" Tube for $\mathrm{Ar}: \mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=96: 2: 1: 1$....... 36
37	Oxygen Effect on $\mathrm{CH}_{3} \mathrm{Cl}$ Decay vs Time at 1098K, "10.5" Tube $\mathrm{CH}_{3} \mathrm{Cl} / \mathrm{H}_{2} / \mathrm{O}_{2} / \mathrm{Ar}$ System 47
38	Oxygen Effect on CH_{4} Yield vs Time at $1098 \mathrm{~K}, \quad " 10.5$ " Tube $\mathrm{CH}_{3} \mathrm{Cl} / \mathrm{H}_{2} / \mathrm{O}_{2} / \mathrm{Ar}$ System47
39	Oxygen Effect on $\mathrm{C}_{2} \mathrm{H}_{2}$ Yield vs Time at 1098K, "10.5" Tube, $\mathrm{CH}_{3} \mathrm{Cl} / \mathrm{H}_{2} / \mathrm{O}_{2} / \mathrm{Ar}$ System 47

40	Oxygen Effect on $\mathrm{C}_{2} \mathrm{H}_{4}$ Yield vs Time at 1098K, "10.5" Tube, ${ }^{4} \mathrm{CH}_{3} \mathrm{Cl} / \mathrm{H}_{2} / \mathrm{O}_{2} / \mathrm{Ar}$ System48
41	Oxygen Effect on $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$ Yield vs Time at 1098K, "10.5" Tube $\mathrm{CH}_{3} \mathrm{Cl} / \mathrm{H}_{2} / \mathrm{O}_{2} / \mathrm{Ar}$ System48
42-44	Product distribution vs Time at 1098 K , "10.5" Tube for Ar: $\mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=96: 1: 1: 2 \ldots . . .54$
45-47	Product distribution vs Time at 1123 K , "10.5" Tube for Ar: $\mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=96: 1: 1: 2 \ldots . . .55$
48-50	Product distribution vs Time at 1148 K , "10.5" Tube for Ar: $\mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=96: 1: 1: 2 \ldots . . .56$
51-53	Product distribution vs Time at 1173 K , "10.5" Tube for $\mathrm{Ar}: \mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=96: 1: 1: 2 \ldots . . .57$
54-56	Product distribution vs Time at 1198 K , "10.5" Tube for Ar: $\mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=96: 1: 1: 2 \ldots . . .{ }^{2} 58$
57-59	Product distribution vs Time at 1223 K , "10.5" Tube for Ar: $\mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=96: 1: 1: 2 \ldots . . .59$
60-62	Product distribution vs Time at 1098 K , "10.5" Tube for Ar: $\mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=95: 2: 1: 2 \ldots . .60$
63-65	Product distribution vs Time at 1123 K , "10.5" Tube for Ar: $\mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=95: 2: 1: 2 \ldots . . .61$
66-68	Product distribution vs Time at 1148 K , "10.5" Tube for Ar: $\mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=95: 2: 1: 2$....... 62
69-71	Product distribution vs Time at 1173 K , "10.5" Tube for Ar: $\mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=95: 2: 1: 2 \ldots . . .63$
72-74	Product distribution vs Time at 1198 K , "10.5" Tube for Ar: $\mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=95: 2: 1: 2 \ldots . . .64$
75-77	Product distribution vs Time at 1223 K , "10.5" Tube for $\mathrm{Ar}: \mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=95: 2: 1: 2 \ldots . . .65$
78-80	Product distribution vs Time at 1098 K , "16.0" Tube for Ar: $\mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=97: 1: 1: 1$..... 37
81-83	Product distribution vs Time at 1123 K , "16.0" Tube for Ar: $\mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=97: 1: 1: 1 \ldots . . .38$
84-86	Product distribution vs Time at 1148 K , "16.0" Tube for $\mathrm{Ar}: \mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=97: 1: 1: 1 \ldots39$
87-89	Product distribution vs Time at 1173 K , "16.0" Tube for $\mathrm{Ar}: \mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=97: 1: 1: 1 \ldots . .40$

90-92	Product distribution vs Time at 1098 K , "16.0" Tube for $\mathrm{Ar}: \mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=95.5: 1: 1: 2.5$
93-95	Product distribution vs Time at 1123 K , "16.0" Tube for $\mathrm{Ar}: \mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=95.5: 1: 1: 2.5$...42
96-98	Product distribution vs.Time at 1148 K , "16.0" Tube for $\mathrm{Ar}: \mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=95.5: 1: 1: 2$.
99-101	Product distribution vs Time at 1173 K , "16.0" Tube for Ar: $\mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=95.5: 1: 1: 2.5$...44
102-104	Product distribution vs Time at 1098 K , "16.0" Tube for Ar: $\mathrm{CH}_{3} \mathrm{Cl}: \mathrm{CH}_{4}: \mathrm{O}_{2}=96: 1: 1: 2 \ldots . .66$
105-107	Product distribution vs Time at 1123 K , "16.0" Tube for $\mathrm{Ar}: \mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=96: 1: 1: 2 \ldots . . .67$
108-110	Product distribution vs Time at 1148 K , "16.0" Tube for $\mathrm{Ar}: \mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=96: 1: 1: 2 \ldots . . .68$
111-113	Product distribution vs Time at 1173 K , "16.0" Tube for $\mathrm{Ar}: \mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=96: 1: 1: 2 \ldots . . .69$
114-116	Product distribution vs Time at 1098 K , "16.0" Tube for Ar: $\mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=94: 1: 1: 4 \ldots . .$.
117-119	Product distribution vs Time at 1123 K , "16.0" Tube for Ar: $\mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=94: 1: 1: 4 \ldots . .$.
120-122	Product distribution vs Time at 1148 K , "16.0" Tube for Ar: $\mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=94: 1: 1: 4 \ldots . . .{ }^{2}$
123-125	Product distribution vs Time at 1173 K , "16.0" Tube for Ar: $\mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=94: 1: 1: 4 \ldots . . .73$
126	Oxygen Effect on $\mathrm{CH}_{3} \mathrm{Cl}$ Yield vs Time at 1098K, "16.0" Tube $\mathrm{CH}_{3} \mathrm{Cl} / \mathrm{H}_{2} / \mathrm{O}_{2} /$ Ar System 49
127	Oxygen Effect on $\mathrm{CH}_{3} \mathrm{Cl}$ Decay vs Time at 1098 K , "16.0" Tube $\mathrm{CH}_{3} \mathrm{Cl} / \mathrm{H}_{2} / \mathrm{O}_{2} / \mathrm{Ar}$ System 49
128	Oxygen Effect on CH_{4} Yield vs Time at 1098K, "16.0" Tube $\mathrm{CH}_{3} \mathrm{Cl} / \mathrm{H}_{2} / \mathrm{O}_{2} /$ Ar System 49
129	Oxygen Effect on $\mathrm{C}_{2} \mathrm{H}_{2}$ Yield vs Time at 1098K, "16.0" Tube $\mathrm{CH}_{3} \mathrm{Cl} / \mathrm{H}_{2} / \mathrm{O}_{2}$ /Ar System50
130	Oxygen Effect on $\mathrm{C}_{2} \mathrm{H}_{4}$ Yield vs Time at 1098K, "16.0" Tube $\mathrm{CH}_{3} \mathrm{Cl} / \mathrm{H}_{2} / \mathrm{O}_{2} / \mathrm{Ar}$ SYSTEM 50
131	S/V Effect on CH3Cl Decay vs Time at 1098 K , for Ar: $\mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=97: 1: 1: 1 \ldots$.

$132 \mathrm{~S} / \mathrm{V}$ Effect on CH3Cl Decay vs Time at 1123 K ,
for $\mathrm{Ar}: \mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=97: 1: 1: 1 \ldots$.
S/V Effect on CH3Cl Decay vs Time at 1148 K ,
for Ar: $\mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=97: 1: 1: 1$52

S/V Effect on CH3Cl Decay vs Time at 1148 K , for Ar: $\mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=97: 1: 1: 1$
S/V Effect on CH3Cl Decay vs.Time at 1173 K , for Ar: $\mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=97: 1: 1: 1$ 52
Oxygen Effect on $\mathrm{CH}_{3} \mathrm{Cl}$ Decay vs Time at 1098K, "16.0" Tube $\mathrm{CH}_{3} \mathrm{Cl} / \mathrm{CH}_{4} / \mathrm{O}_{2} / \mathrm{Ar}$ System 74
Oxygen Effect on CH_{4} Concentration vs Time at 1098K, "16.0" Tube $\mathrm{CH}_{3} \mathrm{Cl} / \mathrm{H}_{4} / \mathrm{O}_{2} / \mathrm{Ar}$ System 74
Oxygen Effect on $\mathrm{C}_{2} \mathrm{H}_{2}$ Yield vs Time at 1098K, "16.0" Tube $\mathrm{CH}_{3} \mathrm{Cl}^{2} / \mathrm{CH}_{4} / \mathrm{O}_{2} /$ Ar System 74
Oxygen Effect on $\mathrm{C}_{2} \mathrm{H}_{4}$ Yield vs Time at 1098K, "16.0" Tube $\mathrm{CH}_{3} \mathrm{Cl} / \mathrm{CH}_{4} / \mathrm{O}_{2} / \mathrm{Ar}$ System 75
Oxygen Effect on $\mathrm{C}_{2} \mathrm{H}_{6}$ Yield vs Time at 1098 K , "16.0" Tube $\mathrm{CH}_{3} \mathrm{Cl} / \mathrm{CH}_{4} / \mathrm{O}_{2} / \mathrm{Ar}$ System 75
Oxygen Effect on $\mathrm{CH}_{3} \mathrm{Cl}$ Yield vs Time at 1098K, "16.0" Tube, $\mathrm{CH}_{3} \mathrm{Cl} / \mathrm{CH}_{4} / \mathrm{O}_{2} / \mathrm{Ar}$ System 75
Energy Diagram for the Reaction $\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{OH}$ 82
Energy Diagram for the Reaction $\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{O}$ 83
Energy Diagram for the Reaction $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{OH}$ 84
Energy Diagram for the Reaction $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{O}$ 85
Product distribution vs Time at 1173 K , "10.5" Tube for Ar: $\mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=97: 1: 1: 1$ 99
Product distribution vs Time at 1173 K , (M) for $\mathrm{Ar}: \mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=97: 1: 1: 1$ 99
Product distribution vs Time at 1173 K , "10.5" Tube for Ar: $\mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=97: 1: 1: 1$ 100
Product distribution vs Time at 1173 K,(M) for $\mathrm{Ar}: \mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=97: 1: 1: 1 \ldots100$Product distribution $1.0 \mathrm{sec} 1098 \mathrm{~K}-1223 \mathrm{k}$,"10.5" Tube for Ar: $\mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=97: 1: 1: 1 \ldots . . .101$
Product distribution 1.0 sec $1098 \mathrm{~K}-1123 \mathrm{~K}$,(M) for Ar: $\mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=95.5: 1: 1: 2.5$101

151	Product distribution $1.0 \mathrm{sec} 1098 \mathrm{~K}-1223 \mathrm{~K}$, "10.5" Tube for $\mathrm{Ar}: \mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=97: 1: 1: 1 \ldots . . .102$
152	Product distribution $1.0 \mathrm{sec} 1098 \mathrm{~K}-1223 \mathrm{~K}$, (M) for $\mathrm{Ar}: \mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=97: 1: 1: 1 \ldots$.
153	Product distribution vs Time at 1173 K , "10.5" Tube for $\mathrm{Ar}: \mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=96: 2: 1: 1 \ldots 103$
154	Product distribution vs Time at 1173 K , (M) for $\mathrm{Ar}: \mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=96: 2: 1: 1 \ldots$.
155	Product distribution vs Time at 1173 K , "10.5" Tube for Ar: $\mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=96: 2: 1: 1$..... 104
156	Product distribution vs Time at 1173 K , (M) for $\mathrm{Ar}: \mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=96: 2: 1: 1 \ldots104$
157	Product distribution 1.0 sec $1098 \mathrm{k}-1223 \mathrm{~K}$, "10.5" Tube for $\mathrm{Ar}: \mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=96: 2: 1: 1 \ldots . . .105$
158	Product distribution $1.0 \mathrm{sec} 1098 \mathrm{~K}-1223 \mathrm{~K}$, (M) for Ar: $\mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=96: 2: 1: 1 \ldots105$
159	Product distribution 1.0 sec $1098 \mathrm{k}-1223 \mathrm{~K}$, "10.5" Tube for $\mathrm{Ar}: \mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=96: 2: 1: 1$...... 106
160	Product distribution 1.0 sec $1098 \mathrm{~K}-1223 \mathrm{~K}$, (M) for Ar: $\mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=96: 2: 1: 1 \ldots$.
161	Product distribution vs Time at 1173 K , "10.5" Tube for $\mathrm{Ar}: \mathrm{CH}_{3} \mathrm{Cl}: \mathrm{CH}_{4}: \mathrm{O}_{2}=96: 1: 1: 2 \ldots 107$
162	Product distribution vs Time at 1173 K , (M) for $\mathrm{Ar}: \mathrm{CH}_{3} \mathrm{Cl}: \mathrm{CH}_{4}: \mathrm{O}_{2}=96: 2: 1: 1 \ldots$.
163	Product distribution vs Time at 1173 K , "10.5" Tube for $\mathrm{Ar}: \mathrm{CH}_{3} \mathrm{Cl}: \mathrm{CH}_{4}: \mathrm{O}_{2}=96: 1: 1: 2 \ldots . .108$
164	Product distribution vs Time at 1173 K , (M) for Ar: $\mathrm{CH}_{3} \mathrm{Cl}: \mathrm{CH}_{4}: \mathrm{O}_{2}=96: 1: 1: 2 \ldots$.
165	Product distribution 1.0 sec $1098 k-1223 \mathrm{~K}$, "10.5" Tube for Ar: $\mathrm{CH}_{3} \mathrm{Cl}: \mathrm{CH}_{4}: \mathrm{O}_{2}=96: 1: 1: 2 \ldots . .109$
166	Product distribution $1.0 \mathrm{sec} 1098 \mathrm{~K}-1223 \mathrm{~K}$, (M) for $\mathrm{Ar}: \mathrm{CH}_{3} \mathrm{Cl}: \mathrm{CH}_{4}: \mathrm{O}_{2}=96: 1: 1: 2 \ldots$.
167	Product distribution $1.0 \mathrm{sec} 1098 \mathrm{k}-1223 \mathrm{~K}$, "10.5" Tube for $\mathrm{Ar}: \mathrm{CH}_{3} \mathrm{Cl}: \mathrm{CH}_{4}: \mathrm{O}_{2}=96: 1: 1: 2 \ldots . .110$
168	Product distribution 1.0 sec $1098 \mathrm{~K}-1223 \mathrm{~K}$, (M) for $\mathrm{Ar}: \mathrm{CH}_{3} \mathrm{Cl}: \mathrm{CH}_{4}: \mathrm{O}_{2}=96: 1: 1: 2 \ldots110$

169	Product distribution vs Time at 1173 K , "10.5" Tube for $\mathrm{Ar}: \mathrm{CH}_{3} \mathrm{Cl}: \mathrm{CH}_{4}: \mathrm{O}_{2}=95: 2: 1: 2$
170	Product distribution vs Time at 1173 K , (M) for $\mathrm{Ar}: \mathrm{CH}_{3} \mathrm{Cl}: \mathrm{CH}_{4}: \mathrm{O}_{2}=95: 2: 1: 2 \ldots .$.
171	Product distribution vs Time at 1173 K , "10.5" Tube for $\mathrm{Ar}: \mathrm{CH}_{3} \mathrm{Cl}: \mathrm{CH}_{4}: \mathrm{O}_{2}=95: 2: 1: 2$
172	Product distribution vs Time at 1173 K , (M) for Ar: $\mathrm{CH}_{3} \mathrm{Cl}: \mathrm{CH}_{4}: \mathrm{O}_{2}=95: 2: 1: 2 \ldots .$.
173	Product distribution $1.0 \mathrm{sec} 1098 \mathrm{k}-1223 \mathrm{~K}$, "10.5" Tube for $\mathrm{Ar}: \mathrm{CH}_{3} \mathrm{Cl}: \mathrm{CH}_{4}: \mathrm{O}_{2}=95: 2: 1: 2$
174	Product distribution $1.0 \mathrm{sec} 1098 \mathrm{~K}-1223 \mathrm{~K}$, (M) for $\mathrm{Ar}: \mathrm{CH}_{3} \mathrm{Cl}: \mathrm{CH}_{4}: \mathrm{O}_{2}=95: 2: 1: 2$
175	Product distribution 1.0 sec $1098 \mathrm{k}-1223 \mathrm{~K}$, "10.5" Tube for $\mathrm{Ar}: \mathrm{CH}_{3} \mathrm{Cl}: \mathrm{CH}_{4}: \mathrm{O}_{2}=95: 2: 1: 2$
176	Product distribution 1.0 sec $1098 \mathrm{~K}-1223 \mathrm{~K}$, (M) for $\mathrm{Ar}: \mathrm{CH}_{3} \mathrm{Cl}: \mathrm{CH}_{4}: \mathrm{O}_{2}=95: 2: 1: 2$

PART II

Figure
Page
1 Rate Data on $\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{6} \Rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{C}_{2} \mathrm{H}_{5} \ldots151$
2 Rate Data on $\mathrm{H}+\mathrm{C}_{2} \mathrm{H}_{6}=>\mathrm{H}_{2}+\mathrm{C}_{2} \mathrm{H}_{5} \ldots152$
3 Rate Data on $\mathrm{O}+\mathrm{C}_{2} \mathrm{H}_{6}=>\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{5} \ldots \ldots153$
4 Rate Data on $\mathrm{Cl}+\mathrm{C}_{2} \mathrm{H}_{6}=>\mathrm{HCl}+\mathrm{C}_{2} \mathrm{H}_{5} \ldots154$
5 Rate Data on $\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{4}=>\mathrm{H}_{2} \mathrm{O}+\mathrm{C}_{2} \mathrm{H}_{3} \ldots155$
6 Rate Data on $\mathrm{H}+\mathrm{C}_{2} \mathrm{H}_{4}=>\mathrm{H}_{2}+\mathrm{C}_{2} \mathrm{H}_{3} \ldots156$
7 Rate Data on $\mathrm{Cl}+\mathrm{C}_{2} \mathrm{H}_{4}=>\mathrm{HCl}+\mathrm{C}_{2} \mathrm{H}_{3} \ldots \ldots157$
8 Rate Data on $\mathrm{O}+\mathrm{C}_{2} \mathrm{H}_{4}=>\mathrm{CH}_{2} \mathrm{CHO}+\mathrm{H} \ldots158$
9 Rate Data on $\mathrm{O}+\mathrm{C}_{2} \mathrm{H}_{4} \Rightarrow \mathrm{CH}_{2}+\mathrm{CH}_{2} \mathrm{O} \ldots159$
10 Rate Data on $\mathrm{O}+\mathrm{C}_{2} \mathrm{H}_{4} \Rightarrow \mathrm{CH}_{3}+\mathrm{CHO} \ldots160$
11 Rate Data on $\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{2}=>\mathrm{H}_{2} \mathrm{O}+\mathrm{C}_{2} \mathrm{H} \ldots161$
12 Rate Data on $\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{2} \Rightarrow \mathrm{HOCCH}+\mathrm{H} \ldots162$
13 Rate Data on $\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{2} \Rightarrow \mathrm{CH}_{2} \mathrm{CHO}+\mathrm{H}$ 163
14 Rate Data on $\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{2} \Rightarrow \mathrm{CH}_{3}+\mathrm{CO}$ 164
15 Rate Data on $\mathrm{O}+\mathrm{C}_{2} \mathrm{H}_{2}=>\mathrm{HCCO}+\mathrm{H}$ 165
16 Rate Data on $\mathrm{O}+\mathrm{C}_{2} \mathrm{H}_{2} \Rightarrow \mathrm{CO}+\mathrm{CH}_{2}$ 166
17 Rate Data on $\mathrm{H}+\mathrm{C}_{2} \mathrm{H}_{2}=>\mathrm{H}_{2}+\mathrm{C}_{2} \mathrm{H}$ 167
18 Rate Data on $\mathrm{Cl}+\mathrm{C}_{2} \mathrm{H}_{2} \Rightarrow \mathrm{HCl}+\mathrm{C}_{2} \mathrm{H}$ 168

LIST OF CHART

Chart Page
1 Schematic Digram of Experimental Apparatus 15
2 Structure of the CHEMKIN Package 20

CHAPTER 1

INTRODUCTION

1.1 Review of Previous Research

Earlier kinetic studies on methyl chloride pyrolysis were reported in 1959 by Shilov and Sabirova [1]. Measurements were made at initial $\mathrm{CH}_{3} \mathrm{Cl}$ pressures of 10.1-34.3 torr, temperatures of $1062 \mathrm{~K}-1147 \mathrm{~K}$, and at contact times of $0.4-$ 5.0 seconds; They found $\mathrm{HCl}, \mathrm{CH}_{4}$, and $\mathrm{C}_{2} \mathrm{H}_{2}$ in the ratios of 3:1:0.6. These yields were reported to be consistent with the following proposed mechanism:

$$
\begin{aligned}
& \mathrm{CH}_{3} \mathrm{Cl}=\mathrm{CH}_{3}+\mathrm{Cl} \\
& \mathrm{CH}_{3}+\mathrm{CH}_{3} \mathrm{Cl}=\mathrm{CH}_{4}+\mathrm{CH}_{2} \mathrm{Cl} \\
& \mathrm{Cl}+\mathrm{CH}_{3} \mathrm{Cl}=\mathrm{CH}_{2} \mathrm{Cl}+\mathrm{HCl} \\
& 2 \mathrm{CH}_{2} \mathrm{Cl}=\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl} \\
& \mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}=\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}+\mathrm{HCl} \\
& \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}=\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{HCl}
\end{aligned}
$$

They also reported that the measured apparent first-order rate constants increased with increasing pressure.

Slater's theory was used by Holbrook [2] to calculate the rate constant for the decomposition of $\mathrm{CH}_{3} \mathrm{Cl}$ in the fall-off region. The value obtained was by $5-6$ orders of magnitude lower than the reported experimental values above. Frost and Laurent [3] obtained a better fit to this value using RRKM theory, where rotations were considered inactive, and activation energy was taken from the experimental data. With Harmonic energy levels the calculated
rate constant was 32 times smaller than experimental value, and with a correction for an harmonicity the calculated rate constant was only 20 times smaller. These modeling calculation may have indicated that the experimental data was not correctly fit rate constants.

In 1980, Kondo, Saito, Murakami [4] pyrolyzed $\mathrm{CH}_{3} \mathrm{Cl}$ in shock tube at temperatures between 1680 K and 2430 K , at total pressures of $1-5 \mathrm{~atm}$, for reactant mixtures of $0.2 \%-0.5 \%$ methyl chloride in argon. CH_{3} concentrations were measured via their absorption band at 216 nm . From the initial rate of CH_{3} formation the elementary rate constant for breaking the $\mathrm{C}-\mathrm{Cl}$ bond was obtained. The reaction in the fall-off region even at the highest pressures. For these high temperature shock tube data, the mechanism was considered to include the following likely reactions:
$\mathrm{CH}_{3} \mathrm{Cl}+\mathrm{M}=\mathrm{CH}_{3}+\mathrm{Cl}+\mathrm{M}$ (1)
$\mathrm{CH}_{3} \mathrm{Cl}+\mathrm{Cl}=\mathrm{CH}_{2} \mathrm{Cl}+\mathrm{HCl}$
$\mathrm{CH}_{3} \mathrm{Cl}+\mathrm{CH}_{3}=\mathrm{CH}_{2} \mathrm{Cl}+\mathrm{CH}_{4}$
$\mathrm{CH}_{3} \mathrm{Cl}+\mathrm{CH}_{2} \mathrm{Cl}=\mathrm{CH}_{3}+\mathrm{CH}_{2} \mathrm{Cl}_{2}$
$\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{M}=2 \mathrm{CH}_{3}+\mathrm{M}$ (5)
$\mathrm{Cl}_{2}+\mathrm{M}=2 \mathrm{Cl}+\mathrm{M}(6)$
$2 \mathrm{CH}_{2} \mathrm{Cl}=\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$ (7)
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}=\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}+\mathrm{HCl}$ (8)
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}+\mathrm{M}=\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{HCl}+\mathrm{M}$ (9)
$\mathrm{CH}_{2} \mathrm{Cl}+\mathrm{CH}_{3}=\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$ (10)
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}=\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{HCl}$ (11)
$\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{M}=\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{H}_{2}+\mathrm{M}$ (12)
Computer simulation of the CH_{3} profiles without reaction (4), and with k_{7} and k_{10} equal to k_{5} fitted the experimental data at high temperatures exactly and were higher by a factor of 2 at low temperatures. Low- and High-pressure rate constants ($k_{0}[A r]$ and k_{∞}) were obtained from the experimental data applying a refined RRKM theory which involved a weak collision effect: $\log k_{o} /[A r]=12.56-$ $59 / \theta \mathrm{L} / \mathrm{mol} . \mathrm{s} \log \mathrm{k}_{\infty}=13.86-91.0 / \theta \mathrm{s}^{-1}$. The low-pressure rate constant is in agreement with the value derived by Holbrook [2] from the data reported in [1].

Data on the pyrolysis of $\mathrm{CH}_{3} \mathrm{Cl}$ at a high degree of conversion were reported by Lemoan [5]. The reaction was run at 993 K in 30 hours in batch reactor at conversion larger than 95%. The gas phase contained $\mathrm{HCl}, \mathrm{CH}_{4}$, and small quantities of $H 2$, benzene, and toluene. At the beginning of the pyrolysis low transient concentrations of $\mathrm{CH}_{2} \mathrm{Cl}, \mathrm{C}_{2} \mathrm{H}_{6}$, and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$ were detected at 993 K . In the liquid phase benzene (72%), toluene (11%), xylene (1%), and monochlorobenzene (12%) were identified. There were two distinct solid phases: carbon in the reactor and naphthalene and soot at the exit from the reactor. The reaction mechanism, despite the large number of products identified, was considered to be schematically simple. It was proposed that, initially, $\mathrm{CH}_{3} \mathrm{Cl}$ would decompose into

HCl and CH_{2}, which would dimerize into $\mathrm{C}_{2} \mathrm{H}_{4}$ or decompose into $\mathrm{CH}+\mathrm{H}$ or $\mathrm{C}+\mathrm{H}_{2}$. The combination of two CH radicals would form acetylene, which could cyclize to form benzene, from which the identified higher molecular weight compounds would be formed. The hydrogenation of CH_{2} radicals would lead to methane. As we shall see later, this mechanism is not plausible.
M. Weissman, and S. W. Benson [6] presented results obtained in batch laboratory experiments and detailed modeling of the chlorine-catalyzed polymerization of methane at $1260-1310 \mathrm{~K}$. The reaction can be separated into two stages, the chlorination of methane and pyrolysis of $\mathrm{CH}_{3} \mathrm{Cl}$. The pyrolysis of $\mathrm{CH}_{3} \mathrm{Cl}$ formed $\mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{C}_{2} \mathrm{H}_{2}$ in increasing yields as the degree of conversion decreased and the excess of methane increased. In the absence of CH_{4} $\mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{C}_{2} \mathrm{H}_{2}$ are formed by the recombination of CH_{3} and $\mathrm{CH}_{2} \mathrm{Cl}$ radicals. With added CH_{4} recombination of CH_{3} forms $\mathrm{C}_{2} \mathrm{H}_{6}$, which dehydrogenates to $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \cdot \mathrm{C}_{2} \mathrm{H}_{4}$ in turn dehydrogenates to $\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{H}_{2}$. They thought that HCl, C, CH_{4} and H_{2} were the ultimate stable products, $\mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{4}$, and $\mathrm{C}_{2} \mathrm{H}_{2}$ are produced as intermediates and appear to approach stationary concentrations in their reaction system. The secondary reactions can be described by radical reactions. CH_{3}-initiated polymerization of $\mathrm{C}_{2} \mathrm{H}_{4}$ was negligible relative to the $\mathrm{C}_{2} \mathrm{H}_{3}$ formation through H abstraction by Cl . The fastest reaction of $\mathrm{C}_{2} \mathrm{H}_{3}$ is its
decomposition to $\mathrm{C}_{2} \mathrm{H}_{2}$. About 20% of the consumption of $\mathrm{C}_{2} \mathrm{H}_{2}$ can be accounted for by the addition of $\mathrm{C}_{2} \mathrm{H}_{3}$ to $\mathrm{C}_{2} \mathrm{H}_{2}$ with formation of the butadienyl radical ($\mathrm{C}_{4} \mathrm{H}_{5}$ or C*CC*C.); About 10% of $\mathrm{C}_{4} \mathrm{H}_{5}$ was indicated to abstract H from HCl and form butadiene $\left(\mathrm{C}_{4} \mathrm{H}_{6}\right.$ or $\left.\mathrm{C} * \mathrm{CC} * \mathrm{C}\right)$. Successive additions of $\mathrm{C}_{2} \mathrm{H}_{3}$ to butadiene and the respective products of addition were reported to form benzene, styrene, naphthalene, and higher polyaromatics under the condition of pyrolysis of $\mathrm{CH}_{3} \mathrm{Cl}$.

A mechanism was written to describe the early stages (10% conversion) of $\mathrm{CH}_{3} \mathrm{Cl}$ decomposition in $\mathrm{CH}_{3} \mathrm{Cl} / \mathrm{CH}_{4}$ system:

$$
\begin{equation*}
\mathrm{CH}_{3} \mathrm{Cl}=\mathrm{CH}_{3}+\mathrm{Cl} \tag{1}
\end{equation*}
$$

$\mathrm{Cl}+\mathrm{CH}_{3} \mathrm{Cl}=\mathrm{CH}_{2} \mathrm{Cl}+\mathrm{HCl}$
$\mathrm{Cl}+\mathrm{CH}_{4}=\mathrm{CH}_{3}+\mathrm{HCl}$ (3)
$2 \mathrm{CH}_{3}=\mathrm{C}_{2} \mathrm{H}_{6}$
$2 \mathrm{CH}_{2} \mathrm{Cl}=\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$ (5)
$\mathrm{CH}_{3}+\mathrm{CH}_{2} \mathrm{Cl}=\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$ (6)
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}=\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{HCl}$ (7)
$\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}=\mathrm{HCl}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$ (8)
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}=\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{HCl}$ (9)
$\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{Cl}=\mathrm{HCl}+\mathrm{C}_{2} \mathrm{H}_{5}$ (10)
$\mathrm{C}_{2} \mathrm{H}_{5}=\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}$ (11)
$\mathrm{H}+\mathrm{HCl}=\mathrm{H}_{2}+\mathrm{Cl}$ (12)
$\mathrm{Cl}+\mathrm{C}_{2} \mathrm{H}_{2}=\mathrm{C}_{2} \mathrm{H}+\mathrm{HCl}$ (13)
$\mathrm{Cl}+\mathrm{C}_{2} \mathrm{H}_{4}=\mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{HCl}$ (14)

$$
\begin{align*}
& \mathrm{CH}_{3}+\mathrm{C}_{2} \mathrm{H}_{4}=\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \text { (15) } \\
& \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}=\mathrm{CC} * \mathrm{C}+\mathrm{H} \text { (16) } \\
& \mathrm{CH}_{3}+\mathrm{CC} * \mathrm{C}=\mathrm{C}_{2} \mathrm{CC} \text {. (17) } \\
& \mathrm{C}_{2} \mathrm{CC} .=\mathrm{C}_{2} \mathrm{C} * \mathrm{C}+\mathrm{H}(18) \\
& \mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{C}_{2} \mathrm{H}_{4}=\mathrm{C} * \mathrm{CCC} \text {. (19) } \\
& \mathrm{C} * \mathrm{CCC} \text {. }=\mathrm{C} * \mathrm{CC} * \mathrm{C}+\mathrm{H} \text { (20) } \\
& \mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{C}_{2} \mathrm{H}_{2}=\mathrm{C} * \mathrm{CC} * \mathrm{C} \text {. (21) } \\
& \mathrm{C} * \mathrm{CC} * \mathrm{C} .=\mathrm{C} \# \mathrm{CC} * \mathrm{C}+\mathrm{H} \text { (22) } \\
& \mathrm{C} * \mathrm{CC} * \mathrm{C} .+\mathrm{HCl}=\mathrm{C} * \mathrm{CC} * \mathrm{C}+\mathrm{Cl} \text { (23) } \\
& \text { Benson postulated that once formed, butadiene can add } \\
& \text { rapidly to } \mathrm{C}_{2} \mathrm{H}_{3} \text { and through subsequent cyclizations and } \\
& \text { dehydrogenations, which are very fast processes, lead to } \\
& \text { benzene: } \\
& \mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{C} * \mathrm{CC} * \mathrm{C}=\mathrm{C} * \mathrm{CcC} \cdot \mathrm{C} * \mathrm{C} \tag{24}\\
& \mathrm{C} * \mathrm{CCC} . \mathrm{C} * \mathrm{C}=\mathrm{C} * \mathrm{CC} * \mathrm{CC} * \mathrm{C}+\mathrm{H} \text { (25) } \\
& \mathrm{C} * \mathrm{CC} * \mathrm{CC} * \mathrm{C}=\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{H}_{2} \tag{26}\\
& \text { Other pathways for } \mathrm{C}_{6} \mathrm{H}_{6} \text { formation were reported through } \\
& \text { the additions of } \mathrm{C}_{4} \text { radicals to } \mathrm{C}_{2} \mathrm{H}_{2} \text { and } \mathrm{C}_{2} \mathrm{H}_{4} \text {. The path- } \\
& \text { ways leading to polyaromatics and soot are through } \\
& \text { reactions of } \mathrm{C} 2 \mathrm{H} 3 \text { radical addition to multiple bonds as, } \\
& \text { for example, } \\
& \mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{C}_{6} \mathrm{H}_{6}=\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{C}_{2} \mathrm{H}_{3}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{H} \\
& \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{C}_{2} \mathrm{H}_{3}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{4} \mathrm{H}_{6}=\mathrm{C}_{10} \mathrm{H}_{10}+\mathrm{H} \\
& \text { Benson's modeling did not consider } \mathrm{CH}_{3} \text { addition to } \\
& \mathrm{C}_{2} \mathrm{H}_{2} \text { to form } \mathrm{C}_{3} \text { species followed by reactions between } \mathrm{C}_{3} \\
& \text { to lead to } \mathrm{C}_{6} \mathrm{H}_{6} \text {. }
\end{align*}
$$

Westbrook C. K. [7] reported his studies on inhibition and extinction of hydrocarbon oxidation by halogen acids and halogenated hydrocarbons formed by combining cl , Br , or I atoms with methyl, ethyl or vinyl radicals in both laminar flame and detonations both in experiment and theory. In all of cases examined, halogenated species act by catalyzing the recombination of H atoms into relatively non-reactive H_{2} molecules reducing the available radical pools and lowing the overall rate of chain breaching. In agreement with experimental observations, his modeling study indicated I atoms are the most effective. Br atoms are slingtly less effective than I atoms and $C l$ atoms are very much less effective as kinetic inhibitor. The additional fuel content of halogenated hydrocarbons makes their inhibition efficiency vary with equivalence ratio, and for all of the inhibitors increased pressure also increases the inhibition efficiency. The reported inhibition mechanism for $\mathrm{HI}, \mathrm{HBr}$, and HCl can be summarized in cycle I of reactions.
$\mathrm{H}+\mathrm{X}_{2}=\mathrm{HX}+\mathrm{X}$
$\mathrm{H}+\mathrm{HX}=\mathrm{H}_{2}+\mathrm{X}$
$X+X+M=X_{2}+M$
$H+X+M=H X+M$
In cycle $I X$ refers to the halogen atom. The first three reactions in cycle I about constitute a catalyzed recombination of H atoms which are the unavailable for chain
breaching through reaction with O_{2} molecules or reactions fuel molecules in the pre-flame pyrolysis region. For the halogenated hydrocarbons $C-X$ bond energies are much less than the $\mathrm{C}-\mathrm{H}$ bond energies (ie. $\mathrm{CH}_{3}-\mathrm{H} 104 \mathrm{Kcal} / \mathrm{mole} ; \mathrm{CH}_{3}-$ Cl 83.5; $\mathrm{CH}_{3}-\mathrm{Br} 70 ; \mathrm{CH}_{3}-\mathrm{I} 56$ [8]) so halogen atom abstraction have a much larger rate than H atom abstraction for these inhibitors. For the halogenated hydrocarbon species the reported inhibition pattern is dominated by cycle II of reactions:
$H+R X=H X+R$
$\mathrm{R}+\mathrm{X}_{2}=\mathrm{RX}+\mathrm{X}$
$\mathrm{H}+\mathrm{HX}=\mathrm{H}_{2}+\mathrm{X}$
$X+X+M=X_{2}+M$
Like the earlier cycle I, the net result of these reactions is $H+H=H_{2}$ a catalyzed recombination of H atoms and a reduction in chain breaching.

In 1988, Senkan et al. [9] constructed the $\mathrm{CH}_{3} \mathrm{Cl}$ combustion mechanism by combining a mechanism describing CH_{4} combustion together with sub-mechanism describing the chlorine inhibition of $C O$ oxidation. This mechanism was used to calculate the stable species concentration profiles in atmospheric pressure sooting $\mathrm{CH}_{3} \mathrm{Cl} / \mathrm{CH}_{4} / \mathrm{O}_{2} / \mathrm{Ar}$ premixed flat flames [10]. Their studies concluded that $\mathrm{CH}_{3} \mathrm{Cl}$ promotes not only the decay of CH_{4} to CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ but also soot formation by simultaneously increasing the rates of $\mathrm{C}_{2} \mathrm{H}_{3}$ and $\mathrm{C}_{2} \mathrm{H}_{2}$ formation. However a number of their
rate constants were from estimation techniques and their mechanism extended only up to C_{2}-species. C_{1} reaction mechanism involving unimolecular decomposition, abstraction, and oxidation is reasonably well understood in describing CH_{4} combustion at present. The C_{2} chemistry, however, is in need of improvement and specially reactions of chlorinated C_{2} radicals. CH_{3} and C_{2} radical reactions: thermal decomposition, oxidation by O and O_{2}, recombination and addition are four competitive reactions because Cl abstracts H rapidly (high Arrhenius A factor and low energy of activation), which produces and active hydrocarbon or H radical pool early in the reaction. These hydrocarbon radicals combine to C_{2} radical more in presence of Cl. Therefore, the C_{2} chemistry is important here even though the amount of $\mathrm{C}^{+}{ }_{2}$ species account under 15% of carbon in the $\mathrm{CH}_{3} \mathrm{Cl} / \mathrm{CH}_{4} / \mathrm{O}_{2}$ system.

1.2. The Objectives of Research

In view of above review, the objectives of this thesis are as follow:
(1). Analysis of selected C_{2}-species reactions with OH, O, H , and Cl important to incineration and creation of reasonable reaction rate constants of important C_{2} species. (2). Clarifying the important species reaction behavior and their effects on other reations in the studied systems.
(3). Developing a detail model describing $\mathrm{CH}_{3} \mathrm{Cl}$ combustion to shed some light on these issues discussed in review.

CHAPTER 2
EXPERTMENTAL METHOD

2.1. The Basis on Use of Tubular Flow Reactor

Isothermal tubular reactors are commonly used for fundamental reaction rate studies. The encountered problem of relating axial distance along the reactor with residence time has been resolved well by Chang and Bozzelli [11]. They have solved the continuity equation for laminar flow in a tubular reactor considering a parabolic velocity profile with radial dispersion, parallel bulk and wall reactions with coupled first order rate constants. They show a method to determine homogeneous and heterogeneous rate parameters simultaneously from their optimum values. The plug flow model is a good approximation for our present reactors.

2.2. Experimental Method

The thermal reaction of $\mathrm{CH}_{3} \mathrm{Cl}$ in $\mathrm{H}_{2} / \mathrm{O}_{2}$ or $\mathrm{CH}_{4} / \mathrm{O}_{2}$ mixtures in an Ar bath gas was studied at 1 atmosphere total pressure in a $10.5 / 16.0 \mathrm{~mm}$ ID tubular flow reactors. The reaction systems were analyzed systematically over a temperature range from 1098 K to $1173 / 1223 \mathrm{~K}$, with average residence times ranging from $0.2 / 0.4$ to 2.0 secands.

A schematic of the apparatus is shown in chart 1. The feed gases $\mathrm{CH}_{3} \mathrm{Cl}, \mathrm{O}_{2}$, and H_{2} were added into the argon flow stream as required and flow rate is measured with calibrated rotameter. Make-up Ar was also introduced after
the mixture to adjust to the total concentration. A small computer code is used to calculate the flow of each reagent for the desired residence times at each temperatures. Complete feed gas mixing occurred in 38 cm of the flow tube located upstream of the furnace and held at 423 K .

The high temperature quartz, tubular flow reactors were heated in a three zone electric tube furnace. Temperature profiles were obtained using a type K thermocouple probe moved axially within the reactor under representative flow conar: ions. Tight control resulted in temperature profiles isothermal to within $\pm 5 \mathrm{~K}$ over the central 80% of the furnace length throughout the temperature range studied.

The reactor effluent was monitored by an on-line Perkin Elmer 900 Gas Chromatograph (GC) equipped with dual Flame Ionization Detector (FID). A methanizer catalyst is used to convert CO and CO 2 to CH 4 so that they can be detected by the FID. The GC peak areas corresponding to the inlet concentrations were determined by sampling a reactor bypass stream. All connecting lines from reactor to the GC (ca 1 meter in length) were heated to 373 K to limit condensation. Two VALCO 6 port gas sampling valves were used to direct the reactor effluent to the GC columns. A 1\% ALLTECH AT-1000 on Graphpac-GB 60/80 column $3.175 \mathrm{~mm} \times 2.43 \mathrm{~m}$ length was used to separate C_{2} through
C_{6} compounds (acetylene through chlorobenzene). A GCA-013 SPHEROCARB $100 / 120$ column $3.175 \mathrm{~mm} \times 1.8 \mathrm{~m}$ length was used to separate $\mathrm{CO}, \mathrm{CO}_{2}, \mathrm{CH}_{4}$, and $\mathrm{CH}_{3} \mathrm{Cl}$ before the methanizer and second FID.

A series of seven to eight residence times were run for each given inlet concentration matrix by systematic variation in the methyl chloride, hydrogen, oxygen, and make-up argon flowrates. Every third run was repeated to ensure reproducibility of results. The relative deviation on GC results is less than $\pm 15 \%$.

Quantitative analysis of product HCl was performed for all cases. The samples for HCl analysis were collected independently from GC sampling as illustrated in Chart 1. In this analysis, the effluent was passed through a two stage bubbler containing 0.01 M NaOH before being exhausted to the hood. The effluent HCl concentration was then calculated based upon titration of the solution with 0.01 M HCl to its phenolphthalein end point. Several titrations were performed using buffered solution (pH 4.7) to discern if CO_{2} was effecting the quantitative measurement of HCl . No significant effect was observed due to the relatively low levels of CO_{2}. The relative deviation on HCl analysis is less than $\pm 5 \%$.

Positive identifications of all reactor effluent species were made by GC/Mass Spectrometer applied to batch samples drawn from the reactor exit into previously evacu-
ated 25 ml stainless steel or Pyrex glass sample cylinders. A Finnigan 4000 series GC/MS, with a $0.22 \mathrm{~mm} \times 50 \mathrm{~m}$ methyl silicone stationary phase column was used. Gas samples were inlet by cryofocussing (ie 77 K) on a 12 cm length of the capillary column.

Chart 1 SC-EMATIC DIAGRAM OF EXPERIMENTAL APPARATUS

Table 1. Average Retention Time of Products

Average Retention Time (min.)		
Compound	Column A	Column B
CH_{4}	6.82	1.73
CO_{2}	9.63	
$\mathrm{C}_{2} \mathrm{H}_{2}$	12.48	2.39
$\mathrm{C}_{2} \mathrm{H}_{4}$	14.44	2.66
$\mathrm{C}_{2} \mathrm{H}_{6}$	16.87	
$\mathrm{CH}_{3} \mathrm{Cl}$	30.64	4.43
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$		7.42
$\mathrm{C}_{2} \mathrm{Cl}_{2}$ *		9.97
$\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{2}$		12.78
$\mathrm{C}_{6} \mathrm{H}_{6}$		17.97
* Estimated reaction ** A column, B column, 3.18 mm *	sed on it CH 3 Cl . RO CARB 1 AT-1000 o below is	$\begin{aligned} & \text { and } \\ & 18 \mathrm{~m} . \\ & 80, \end{aligned}$

Table 2. Relative Response Factors of Several Compounds

2.3 Kinetic Model Computer Integration - A Thinking Experimental Tool

The CHEMKIN computer program package is used in interpreting and integrating the detailed reaction mechanism (model) of the reaction system. The CHEMKIN program [12], Chart 2 , reads the user's symbolic description of the reaction mechanism. The thermodynamic data base, which has the appropriate thermodynamic information and mass for all species present in mechanism. The information on the elements, species, and reactions in the mechanism; and finally the CHEMKIN gas phase subroutines, which can be called to return information on the elements, species, reactions equations of state, thermodynamic properties, chemical production rates, and derivatives of thermodynamic properties relative to any time in the integration. The input to these subroutines are usually the state variables of gas pressure or density, temperature and species composition at initial time of reaction. The routines can be called with the species composition defined in terms of either mass fraction or molar concentration. Numerical calculations were carried out using the CHEMKIN computer code coupled to LSODE a linear solver of ordinary differential calculations.

The input data requirement to run CHEMKIN program include:

- Detailed reaction mechanism

Mole fraction of all gases present in the reaction system

- Pressure and temperature at which the reaction system being studied
- Time increament at which the concentration of species present in the system be reported

A thermodynamic data base for species with $\mathrm{C} / \mathrm{H} / \mathrm{Cl} / \mathrm{O}$ elements is developed at NJIT and used for modeling the kinetic scheme of elementary reactions input to the program. For those species where thermodynamic information was not available in the data base, thermo data was generated utilizing Thermfit program. This program requires heat of formation and entropies, as well as heat capacities, from 298 to 1000 K as input. These parameters were calculated by group additivity method of Benson [8] when not available in literature and computer code THERM [13].

RESULTS and DISCUSSION

The experimental conditions of the reaction of $\mathrm{CH}_{3} \mathrm{Cl} / \mathrm{H}_{2} / \mathrm{O}_{2}$ and $\mathrm{CH}_{3} \mathrm{Cl} / \mathrm{CH}_{4} / \mathrm{O}_{2}$ mixtures with argon are listed below: Reactant molar ratios:
(I). $\quad \mathrm{Ar}: \mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=97: 1: 1: 1$
(II). Ar: $\mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=96: 2: 1: 1$
(III). Ar: $\mathrm{CH}_{3} \mathrm{Cl}: \mathrm{CH}_{4}: \mathrm{O}_{2}=96: 1: 1: 2$
(IV). Ar: $\mathrm{CH}_{3} \mathrm{Cl}: \mathrm{CH}_{4}: \mathrm{O}_{2}=95: 2: 1: 2$

Reactor Internal Diameter (ID) is 10.5 mm .
Reaction Temperature $\left({ }^{\circ} \mathrm{K}\right): 1098,1123,1148,1173,1198$, 1223.

For the 16.0 mm ID reactor,
Reactant molar ratios:
(I). Ar: $\mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=97: 1: 1: 1$
(V). Ar: $\mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=95.5: 1: 1: 2.5$
(III). Ar: $\mathrm{CH}_{3} \mathrm{Cl}: \mathrm{CH}_{4}: \mathrm{O}_{2}=96: 1: 1: 2$
(VI). Ar: $\mathrm{CH}_{3} \mathrm{Cl}: \mathrm{CH}_{4}: \mathrm{O}_{2}=94: 1: 1: 4$

Reaction Temperature $\left({ }^{\circ} \mathrm{K}\right): 1098,1123,1148$, 1173.
Residence Time (second=sec):

$$
\begin{aligned}
& 0.2,0.4,0.6,0.8,1.0,1.5,2.0(I D=10.5 \mathrm{~mm}) \\
& 0.4,1.0,1.2,1.4,1.8,2.0 \quad(I D=16.0 \mathrm{~mm})
\end{aligned}
$$

Operation Pressure: 1 atm.
Effective Reactor Length: 38.0 cm .

3.1 Thermal Reaction of $\mathrm{CH}_{3} \mathrm{Cl} / \mathrm{H}_{2} / \mathrm{O}_{2} / \mathrm{Ar}$ Systems

In the thermal reaction systems of $\mathrm{CH}_{3} \mathrm{Cl} / \mathrm{H}_{2} / \mathrm{O}_{2} / \mathrm{Ar}$ of this study, $\mathrm{CH}_{3} \mathrm{Cl}, \mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}, \mathrm{CO}, \mathrm{CO}_{2}$, and HCl were major products. small amounts of $\mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{2}$, $\mathrm{C}_{2} \mathrm{Cl}_{2}$, and $\mathrm{C}_{6} \mathrm{H}_{6}$ were sometimes measured depending on residence time, temperature. Experimental results on product distribution of thermal reaction of methyl chloride are in Figure 1 to 36 (ID=10.5 mm) and 78 to 101 (ID=16.0 mm). These Figures show normalized concentration (Cx/Co) as a function of the average residence time for several temperatures.

3.1.1 Initial Conversion and Complete Conversion Temperatures

The temperature of initial conversion (around 5\%) for methyl chloride at 0.4 s is 1098 K and the temperature of complete conversion (around 99%) is 1173 K at less than 1.0 second reaction time for the ratio of $\mathrm{Ar}: \mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=$ 95.5:1:1:2.5 (close to stoichiometric ratio). The ratios of $\mathrm{CH}_{3} \mathrm{Cl}$ and H_{2} to O_{2} (mole) and of reactor surface (S) to volume (V) influence the conversion of $\mathrm{CH}_{3} \mathrm{Cl}$ and product distribution.

3.1.2 Residence Time and Temperature Effects

The figures 1 to 36 and 78 to 101 show the effects of time and temperature on the reaction system. Methyl chloride decay, and the formation of CO_{2}, and HCl increase with time and temperature. $\mathrm{CH}_{4}, \mathrm{CO}, \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}, \mathrm{C}_{2} \mathrm{H}_{6}$,
$\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{2}, \mathrm{C}_{2} \mathrm{Cl}_{2}, \mathrm{C}_{6} \mathrm{H}_{6}$ increases with time at lower temperature. Their maxima were present with time increase. These maxima shift to lower times with increasing temperature.

PRODUCT DISTRIBUTION
Ar:CH3C1:H2:O2-97:1:1:

PRODUCT DISTRIBUTION

Ar:СН3Cl:H2:O2-97:1:1:1

Fig. 1 1098K ${ }^{\prime} 10.5^{\prime}$ Tube

Fig. 2 inear racer rone

PRODUCT DISTRIBUTION

Ar:CH3Cl:H2:O2-97:1:1:1

Fig. 4 112SK ${ }^{*} 10.5^{*}$ Tube

PRODUCT DISTRIBUTION Ar:CH3C1:H2:O2-97:1:1

PRODUCT DISTRIBUTION Ar:CH3Cl:H2:O2-97:1!

DUCI DISIRUBUTION
Ar:CH3C1:H2:O2-97:1:1:1

PRODUCT DISTRUBUTION

Ar:CH3Cl:H2:O2-97:1:1:1

Fig. 7 1148K ${ }^{10.6^{*}}$ Tube

Fic. 4 ncer rac.8 tebe

PRODUCT DISTRUBUTION Ar:CH3Cl:H2:O2-97:1:1:1

PRODUCT DISTRIBUTION

Ar:CH3Cl:H2:O2-97:1:1:1

$$
-\mathrm{CH} 3 \mathrm{Cl} \rightarrow \mathrm{CH} 4 \quad-\mathrm{CO} \rightarrow \mathrm{CO}_{2} \quad-\times \mathrm{HCl}
$$

FIG. 10 1175K ${ }^{\prime} 10.5^{*}$ Tube

PRODUCT DISTRIBUTION Ar:CH3Cl:H2:O2-97:1:1:1

He. 11 Intint riose tame

PRODUCT DISTRIBUTION Ar:CH3CL:H2:O2-97:1:1:1

Fig. 12 itar rase rabe

PRODUCT DISTRIBUTION Ar:CH3C1:H2:O2-97:1:11

PRODUCT DISTRIBUTION

Ar:CH3Cl:H2:O2=97:1:1:1

PRODUCT DISTRIBUTION Ar:CH $3 \mathrm{Cl}: \mathrm{H} 2: O 2-97: 1: 1]$

C2H $+\mathrm{CaBM}^{2}$

PRODUCT DISTRIBUTION
Ar:CH3Cl:H2:O2-97:LI:1

PRODUCT DISTRIBUTION

Ar:CH3Cl:H2:O2-96:2:1:1

FIg. 19 1098x $\cdot 10.5^{*}$ Tube

PRODUCT DISTRIBUTION Ar:CH3Cl:H2:O2-90:2:1:

10. 301000 I 10.4• 7abe

PRODUCT DISTRIBUTION
Ar:CH3Cl:H2:O2-96:2:1:1

PRODUCT DISTRIBUTION

Ar:CH3Cl:H2:O2-96:2:1:1

Fig. 22 112sk ${ }^{10.5^{*}}$ Tube

19. 28 uzar ques tabe

PRODUCT DISIRIBUTION Ar:CH3C1:H2:O2-96:21:1

- can + cam

Fis. 26 1123I '10.6" tathe

PRODUCT DISTRUBUTION
 Ar:CH3Cl:H2:O2-96:2:1:1

Fig. 25 1148x " 10.5° Tub*

PRODUCT DISTRIBUTION Ar:CH3Cl:H2:O2-96:2:1:1

Fig. 2 m near tiace rube

PRODUCT DISTRIBUTION Ar:CH3Cl:H2:O2-96:2:1:1

Fie. 27 Hest rios tabe

Fig. 28 1173K ${ }^{-10.5^{*}}$ Tube

PRODUCT DISTRIBUTION

Ar:CH3Cl:H2:O2-96:2:1:1

PRODUCT DISTRBUTION Ar:CH3Cl:H2:O2-96:2:111

Fid. 28 unver ras- tabe

PRODUCT DISIRIBUTION Ar:CH3Cl:H2:O2-96:2:1:1

$-\mathrm{cecl}_{2}$

+ C2ab
$\rightarrow \mathrm{ClOM2Cl}^{\rightarrow}$

Fig. 30 nirst rose tene

PRODUCT DISTRIBUTION

Ar:CH3C1:H2:O2-96:2:1:

PRUDUCT DISTRIBUTION

Ar:СН3Cl:H2:O2-96:2:1:1

Fig. 31 1198K ${ }^{10.5 *}$ Tube

Fig. 32 nour rac.4 fabe

PRODUCT DISTRIBUTION Ar:CH3Ci:H2:O2-90:2:1:1

PRODUCT DISTRIBUTION

Ar:CH3Cl:H2:O2-96:2:1:1

Fig. 34 122sk ${ }^{10.5^{\circ}}$ Tube

PRODUCT DITRIBUTION Ar:CH3Cl:H2:O2mos:2:1:1

PRODUCT DISTRIBUTION
Ar:CH3C1:H2:O2-96:2:1:1

Fig. 34 122atr yoa' tube

PRODUCT DISTRIBUTION

Ar:CH3Clin2:O2-97:1:11

Pig. 78 1098K 16.0° Tube

PRODUCT DISTRIBUTION
Ar:CH3Cl:H2:O2-97:1:1!

PRODUCT DISTRIBUTION

Ar:CH3Cl:H2:O2-97:1:1:1

Fig. 81 1123k ${ }^{16.0^{*}}$ Tubo

PRODUCT DISTRIBUTION АгСС $\mathbf{C H}$ CL:H2:O2097:1:1:

PRODUCT DISTRIBUTION

PRODUCT DISIRIBUTION AFCH3Cl:H2:O2"97:LI

PRODUCT DISTRIBUTION

Ar:СН3Cl:H2:O2"97:1:1:1

Fig. 87 147SK ${ }^{16.0^{\circ}}$ Tabe

PRODUCT DISTRIBUTION A.CH3CL:H2:O2-97:1:1

PRODUCT DISTRIBUTION

Ar:СH3Cl:H2:O2-95.5:1:1:2.5

Fig. 901098 x - 16.0° Tube

PRODUCT DISTRIBUTION
Ar:CH3C1:H2:O2-95.5:11:2.5

Mig. 91 lover rias trie

PRODUCT DISTRIBUTION
Ar:CH3C1:H2:O2-95.5:L:1:2.5

PRODUCT DISTRIBUTION

Ar:CH3Cl:H2:O2-95.5:1:1:2.5

Fig. 93 11235 16.0° Tube

PRODUCT DISTRIBUTION Ar:CH3Cl:H2:O2-95.5:1:1:2.5

PRODUCT DISTRIBUTION
Ar:CH3Cl:H2:O2-95.5:1:1:2.5

PRODUCT DISTRIBUTION

Ar:CH3Cl:H2:O2-95.5:1:1:2.5

Fig. 96 1148K 16.0° Tube

Fig. en near 'uas turn

PRODUCT DISTRIBUTION
Ar:CH3Cl:H2:O2-95.5:1:1:2.5

Fig. 99 117SE 16.0^{*} Tube

PRODUCT DISTRIBUTION
Ar:CH3Cl:H2:O2-95.5:1:1:2.5

- C2H2 + C2H

Fit. 1an ityar rese teme

PRODUCT DISIRIBUTION
Ar:CH3Cl:H2:O2-95.5:1:125

+ Carsel
Fig. 101 1185 gan tabe

3.1.3 Oxygen Content Effects

A. Oxygen Initiation Effect

We consider data from 10.5 mm ID reactor and two reactant ratios (Ar: $\mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=97: 1: 1: 1$ and Ar: $\mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}$ =96:2:1:1) $\mathrm{CH} 3 \mathrm{Cl} / \mathrm{O}, 1 / 1$ and $2 / 1$ respectively. In order to show the effect of oxygen, the low temperature (1098 K) results are taken for illustration. These results indicate that oxygen contributes to increased $\mathrm{CH}_{3} \mathrm{Cl}$ conversion but also to major product formation (Figures 37-41). In order to verify the reliability of the results, another controll experiment was performed for $\left(\mathrm{Ar}: \mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=97: 1: 1: 1\right.$ and $\mathrm{Ar}: \mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=95.5: 1: 1: 2.5$) in the 16.0 mm ID reactor. A more clear set of results (Figures 126-130) was obtained. This reason may stem from the following reactions:
$\mathrm{CH}_{3} \mathrm{Cl}=\mathrm{CH}_{3}+\mathrm{Cl}$ (1) $\mathrm{CH} 3+\mathrm{O}_{2}=\mathrm{CH} 2 \mathrm{O}+\mathrm{OH}$
$\mathrm{CH}_{3} \mathrm{Cl}+\mathrm{O}_{2}=\mathrm{CH}_{2} \mathrm{Cl}+\mathrm{HO}_{2}$
$\mathrm{H}_{2}+\mathrm{O}_{2}=\mathrm{H}+\mathrm{HO}_{2}\left(\mathrm{O}_{2}\right.$ stimulates reactive H formation)
$\mathrm{H}+\mathrm{CH}_{3} \mathrm{Cl}=\mathrm{CH}_{3}+\mathrm{HCl}$ (5)
$\mathrm{CH}_{3}+\mathrm{H}=\mathrm{CH}_{4}$ (The path of CH_{4} formation) (6)
$\mathrm{CH}_{2} \mathrm{Cl}+\mathrm{CH}_{3}=\mathrm{CH}_{2} \mathrm{ClCH}_{3}$
$\mathrm{CH}_{2} \mathrm{ClCH}_{3}=\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{HCl}$ (8)
$\mathrm{H}+\mathrm{O}_{2}=\mathrm{OH}+\mathrm{O}$ (reactive H atoms abstract 0 from less reactive O_{2} to produce more reactive OH and O) (9)
$\mathrm{CH}_{3}+\mathrm{CH}_{3}=\mathrm{C}_{2} \mathrm{H}_{6}$ (10)
$\mathrm{C}_{2} \mathrm{H}_{6}+(\mathrm{H}, \mathrm{O}$, and OH$) \Rightarrow \mathrm{C}_{2} \mathrm{H}_{5}+\left(\mathrm{H}_{2}, \mathrm{OH}\right.$, and $\left.\mathrm{H}_{2} \mathrm{O}\right)$
$\mathrm{C}_{2} \mathrm{H}_{5}=\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}$ (12)
$\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{OH}=\mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{H}_{2} \mathrm{O}$ (13)
$\mathrm{C}_{2} \mathrm{H}_{3}=\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{H}(14) \mathrm{CH}_{2} \mathrm{Cl}+\mathrm{CH}_{2} \mathrm{Cl}=\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}$
$\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}=\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}+\mathrm{HCl}$ (16)
It can be seen that the reaction (2)-(3) show oxygen effect on $\mathrm{CH}_{3} \mathrm{Cl}$ decay; the reactions (4)-(6) indicate oxygen stimulates CH_{4} formation. Reactions (3), (5), (7), and (8) though (12) show that oxygen contributes to $\mathrm{C}_{2} \mathrm{H}_{4}$ formation. The reactions (2), (9), and (13)-(14) show oxygen contribution to $\mathrm{C}_{2} \mathrm{H}_{2}$ formation. The final result of reactions (3) and (16) is that oxygen also stimulates $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$ production.
B. Oxygen Effect on the Complete Oxidation of All Species

Controlled oxidation of $\mathrm{CH}_{3} \mathrm{Cl}$ and intermediate products (as $\mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}, \mathrm{CO}, \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{2}, \mathrm{C}_{2} \mathrm{Cl}_{2}$, and $C_{6} \mathrm{H}_{6}$) for above reaction systems via changing oxygen content in the reaction system or controlling reaction temperature can help us to evaluate the $\mathrm{CH}_{3} \mathrm{Cl}$ combustion mechanism. Information about oxygen effect on complete oxidation of all species was obtained that when oxygen content is about stoichiometric $\left(\mathrm{O}_{2} / \mathrm{CH}_{3} \mathrm{Cl} / \mathrm{H}_{2}=2.5 / 1 / 1\right)$ almost all of species are converted completely to CO_{2} at 1173 K and 1.2 sec residence time. We can predict that the temperature of $\mathrm{CH}_{3} \mathrm{Cl}$ complete conversion to CO_{2} will be reduced if the oxygen concentration is increased.

Fig. 37 1098x 10.5° Tube

OXYGEN EFFECT ON CR2H2 YIELD

- craci/o2-2/1 - Craci/o8-1/n

OXYGEN EFFECT ON C2H4 YIELD сн3C1/H2/O2/Ar SYSTEM

Fig. $401098 \mathrm{~K} \cdot 10.5^{\circ}$ Tube

OXIGEN EFFECT ON C2H3Cl YIELD CH3Cl/H2/O2/AT SYSTEM

Fig. 4l 1098K '10.5* Tube

Fig. 126 1098K ${ }^{16.0} 0^{\circ}$ Tabe

OXYGEN EFFECT ON C2H2 YIELD CH3CI/H2/O2/Ar SYSTEM

Fig. 129 1098K 16.0^{\prime} tube

OXYGEN EFFECT ON C2H4 YIELD CH3CI/H2/O2/AT SYSTEM

$-\mathrm{O} 2 / \mathrm{CH} 3 \mathrm{Cl}-1 / 1+\mathrm{O} / \mathrm{CH} 3 \mathrm{Cl}-2.5 / 1$

Fig. 130 1098K - 16.0' Tube

3.1.4 Effects of S/V

In order to indicate the effect of S / V on $\mathrm{CH}_{3} \mathrm{Cl}$ conversion and product distribution, the results for two types of reactor at the same reactant ratio (Ar: $\mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=97: 1: 1: 1$) are compared. S / V increase contributes to increased $\mathrm{CH}_{3} \mathrm{Cl}$ conversion (Figures 131134) but also contributes to $\mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}$, $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}, \mathrm{CO}$, and $\mathrm{CO}_{2}, \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{2}, \mathrm{C}_{2} \mathrm{Cl}_{2}, \mathrm{C}_{6} \mathrm{H}_{6}$ formation (Figures 1-12 and 80-91). That is, When ID 10.5 mm reactor was used, these species formation temperatures were lowered and their concentration were increased. These reasons are likely due to effects of heat and mass transfer difference between two types of reactor. In view of higher temperature gradient presence for 16.0 mm ID reactor, experimental results obtained in 10.5 mm were used to validated our model.

S/V EFFECT ON CH3Cl DECAY

Fig. 131 109ex

S/V EFFECT ON CH3Cl DECAY ArCHSCLH2O2097:LL!

- 16.0° Tube $+10.5^{\circ}$ Tube

Fig. $135 \mathrm{ll4} \mathrm{EL}$

S/V EFFECT ON CH3Cl DECAY
Ar:CHSCtR2:02-97:EL:I

- -16.0 Tube +-10.6" Tube

Fig. $132 \mathbf{1 2 3 5}$

S/V EFFECT ON CH3CI DECAY ArCH3CrH2:O2-97:타:

- 16.0^{*} Tube -10.5° Tube

Fig. 13411735
3.2. Thermal Reaction of $\mathrm{CH}_{3} \mathrm{Cl} / \mathrm{CH}_{4} / \mathrm{O}_{2} / \mathrm{Ar}$ systems In the thermal reaction systems of $\mathrm{CH}_{3} \mathrm{Cl} / \mathrm{CH}_{4} / \mathrm{O}_{2} / \mathrm{Ar}, \mathrm{CH}_{3} \mathrm{Cl}$, $\mathrm{CH}_{4}, \quad \mathrm{C}_{2} \mathrm{H}_{4}, \quad \mathrm{C}_{2} \mathrm{H}_{2}, \quad \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}, \mathrm{CO}, \quad \mathrm{CO}_{2}$, and HCl are major products. $\mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{2}, \mathrm{C}_{2} \mathrm{Cl}_{2}$, and $\mathrm{C}_{6} \mathrm{H}_{6}$ are small amounts of products.

3.2.1 Initial Conversion and Complete Conversion Temperatures

The temperature of initial conversion (about 5\%) for $\mathrm{CH}_{3} \mathrm{Cl}$ at 0.4 sec is 1098 K . The temperature of complete conversion (99%) is 1173 K at 1.0 sec for the ratio of Ar: $\mathrm{CH}_{3} \mathrm{Cl}: \mathrm{CH}_{4}: \mathrm{O}_{2}=96: 1: 1: 4$ (close to stoichiometric). The ratios of $\mathrm{CH}_{3} \mathrm{Cl}$ and CH_{4} to O_{2} and of S / V influence the conversion of $\mathrm{CH}_{3} \mathrm{Cl}$ and affect the product distribution to a small extent as $\mathrm{CH}_{3} \mathrm{Cl} / \mathrm{H}_{2} / \mathrm{O}_{2} / \mathrm{Ar}$ system.

3.2.2 Residence Time and Temperature Effects

The figures 42-77 and 102-125 show the effects of time and temperature, which are similar to that discussed earlier in $\mathrm{CH}_{3} \mathrm{Cl} / \mathrm{H}_{2} / \mathrm{O}_{2} / \mathrm{Ar}$ system.

PRODUCT DISIRIBUTION Ar:CH3Cl:CH4:O2-96:1:1:2

PRODUCT DISTRIBUTION
Ar:CH3Cl:CH4:O2-96:11:2

Fig. 42 1098K $\cdot 10.5^{*}$ Tube

Fig. 46 laper "ta.ac tabe

PRODUCT DISTRIBUTION Ar:CH3Cl:CH4:O2-9 6:1:1:2

PRODUCT DISTRIBUTION Ar:CH3Cl:CH4:O2~96:1:1:2

RODUCT DISTRIBUTION Ar:CH3C1:CH4:O2-96:11:2

11. al nact 90s• тube

PRODUCT DISTRIBUTION Ar:CH3C1:CH4:O2096:142

PRODUCT DISTRIBUTION AR:CH3Cl:CH4:O2-96:1:1:2

PRODUCT DISTRIBUTION

AR:CH3Cl:CH4:O2-96:1:1:2

Fig. 51 1173x ${ }^{\prime} 10.5^{\circ}$ Tube

PRODUCT DISTRIBUTION
 Ar:CH3Cl:CH4:O2-96:1:1:2

Fig. $541190 \mathrm{AK}{ }^{10.5^{\circ}}$ Tube

PRODUCT DISTRIBUTION Ar:CH3CI:CH4:02-96:11:2

PRODUCT DISTRIBUTION Ar:CH3Cl:CH4:O2-96:14:2

PRODUCT DISTRIBUTION Ar:CH3Cl:CH4:O2-96:1:1:2

PRODUCT DISTRIBUTION
Ar:CH3Cl:CH4:O2-96:1:1:2

PRODUCT DISTRIBUTION

PRODUCT DISTRIBUTION

Ar:CH3Cl:CH4:O2-95:2:1:2

Fig. 60 10985 ${ }^{-10.6 *}$ Tube

Ar:CH3Cl:CH4:O2-95:2:1:2

Fit. al 1990(108 fube

PRODUCT DISITIBUTION Ar:CH3Cl:CH4:O2-95:2:1:2

PRODUCT DISTRIBUTION
 Ar:CH3Cl:CH4:O2-95:2:1:2

Fig. 6s li2sk ${ }^{10.5^{*}}$ Tube

PRODUCT DISTRIBUTION
Ar:CH3Cl:CH4:O2-95:2:1:2

PRODUCT DISIRIBUTION
Ar:CH3Cl:CH4:O2-98:2:1:2

PRODUCT DISTRIBUTION

Ar:CH3Cl:CH4:O2-95:2:1:2

Fig. 66 1148K 10.5° Tubs

Fid. Ab hent rear trie

PRODUCT DISTRIBUTION Ar:СН3С1:СН4:O2-95:2:1:2

PRODUCT DISTRIBUTION

 Ar:СН3 $\mathrm{Cl}: \mathrm{CH} 4: 02-95: 21: 12$

Fig. 69 1173x 10.6^{*} Tube

PRODUCT DISTRIBUTION Ar:CH3Cl:CH4:O2-95:2:1:2

Fig. ne near 7nas tive

PRODUCT DISTRIBUTION

Ar:CH3CtCH4:O2-952:12

PRODUCT DISTRIBUTION Ar:CH3C1:CH4:O2-95:2:1:2

Fig. Mizas riade nime

PRODUCT DISTRIBUTION Ar:CH3C1:CH4:O2-985:2:12

Ma. 712208 7en Tame

PRODUCT DISTRIBUTION
Ar:CH3Cl:CH4:02~06:1:1:2

PRODUCT DISIRIBUTION
Ar:CH3Cl:CH4:02-96:1:1:2

PRODUCT DISTRIBUTION Ar:CH3Cl:CH4:02-96:1:1:2

PRODUCT DISTRIBUTION
Ar:CH3Cl:CH4:02-96:1:1:2

PRODUCT DISTRIBUTION Ar:CH3C1:CH4:02-96:1:1:2

PRODUCT DISTRIBUTION

 Ar:CH3Cl:CH4:02-96:1:1:2

Fig. 108 1148K ' 16.0^{\prime} Tube

PRODUCT DISTRIBUTION Ar:CH3Cl:CH4:02-96:11:2

PRODUCT DISTRIEUTION
Ar:CH3Cl:CH4:02-96:11:2

PRODUCT DISTRIBUTION
Ar.СНзС:СС44:02-94:1:1:4

PRODUCT DISIRIBUTION Ar:CH3CL:CH4:02-94:1:1:4

PRODUCT DISTRIBUTION Ar:CH3C1:CH4:02-94:1:1:4

PRODUCT DISTRIBUTION

 Ar:CH3Cl:CH4:02-94:1:1:4

Fig. 117 1123k $\cdot 16.0^{\circ}$ Tube

Fig. 110 nitar radir febe

PRODUCT DISTRIBUTION
Ar:CH3Cl:CH4:02-94:1:1:4

PRODUCT DISIRIBUTION Ar.CH3Cl:CH4:02-94:1:1:4

PRODUCI DISTRIBUTION Ar:CH3Cl:CH4:02-94:1:1:4

Fif. 120 hint 908 rame

PRODUCT DISTRIBUTION Ar:CH3Cl:CH4:02-94:1:1:4

$\mathrm{CaHO}_{\mathrm{A}}+\mathrm{CFBSI}$
Fin. 198 ungr rase tame

OXYGEN EFFECT ON CHA CONCENTRATION chsci/cha/ov/at mitm

OXYGEN EFFECT ON C2H2 YIELD chacycsedoz A misu

OXYGEN EFFECT ON CRH6 YIELD

OXYGEN EFFECT ON C2H3CI YIELD

3.2.3 Oxygen Content Effect

In order to discuss oxygen initiation effects in $\mathrm{CH}_{3} \mathrm{Cl} / \mathrm{CH}_{4} / \mathrm{O}_{2} / \mathrm{Ar}$ system, Results at 1098 K in the 16.0 mm ID reactor are used for illustration. These indicate that oxygen participates in initiation of $\mathrm{CH}_{3} \mathrm{Cl}$ decay and contributes to intermediate product formation (Figures 135140). These reasons may stem from the following reactions: $\mathrm{CH}_{3} \mathrm{Cl}=\mathrm{CH}_{3}+\mathrm{Cl}$ (1)

$$
\mathrm{CH}_{3}+\mathrm{O}_{2}=\mathrm{CH}_{2} \mathrm{O}+\mathrm{OH}
$$

$$
\begin{equation*}
\mathrm{CH}_{3} \mathrm{Cl}+\mathrm{O}_{2}=\mathrm{CH}_{2} \mathrm{Cl}+\mathrm{HO}_{2} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{CH}_{4}+\mathrm{O}_{2}=\mathrm{CH}_{3}+\mathrm{HO}_{2} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{CH}_{3} \mathrm{Cl}+\mathrm{Cl}=\mathrm{CH}_{2} \mathrm{Cl}+\mathrm{HCl} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{CH}_{4}+\mathrm{Cl}=\mathrm{CH}_{3}+\mathrm{HCl} \tag{6}
\end{equation*}
$$

$$
\mathrm{CH}_{3}+\mathrm{HO}_{2}=\mathrm{CH}_{4}+\mathrm{O}_{2}
$$

$$
\mathrm{CH}_{3}+\mathrm{HCl}=\mathrm{CH}_{4}+\mathrm{Cl}(8)
$$

$$
\begin{equation*}
\mathrm{CH}_{3}+\mathrm{CH}_{3} \mathrm{Cl}=\mathrm{CH}_{4}+\mathrm{CH}_{2} \mathrm{Cl} \tag{9}
\end{equation*}
$$

$$
\mathrm{CH}_{3}+\mathrm{CH}_{2} \mathrm{Cl}=\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}
$$

$$
\begin{equation*}
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}=\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{HCl} \tag{11}
\end{equation*}
$$

$$
\mathrm{CH}_{3}+\mathrm{CH}_{3}=\mathrm{C}_{2} \mathrm{H}_{6}
$$

$$
\mathrm{C}_{2} \mathrm{H}_{6}+(\mathrm{Cl} \text { or } \mathrm{OH})=\mathrm{C}_{2} \mathrm{H}_{5}+\left(\mathrm{HCl} \text { or } \mathrm{H}_{2} \mathrm{O}\right)(13)
$$

$$
\mathrm{C}_{2} \mathrm{H}_{5}=\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}
$$

$$
\mathrm{H}+\mathrm{O}_{2}=\mathrm{OH}+\mathrm{O}(15)
$$

$$
\begin{equation*}
\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{OH}=\mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{H}_{2} \mathrm{O} \tag{16}
\end{equation*}
$$

$$
\mathrm{c}_{2} \mathrm{H}_{3}=\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{H}(17)
$$

$$
\mathrm{CH}_{2} \mathrm{Cl}+\mathrm{CH}_{2} \mathrm{Cl}=\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}
$$

$$
\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}=\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}+\mathrm{HCl} \text { (19) }
$$

Reactions (2) and (3) show oxygen contributes to $\mathrm{CH}_{3} \mathrm{Cl}$ decay at very early time. The overall effects of reactions (1), (6), (7), (8), and (9) leads to a slightly increase in CH_{4} at 1098 K (see Figure 136); the result of reactions $(1)-(6)$, and (10) - (14), lead to $\mathrm{C}_{2} \mathrm{H}_{4}$ formation. The general result of reactions (15) - (17) shows oxygen effect on $\mathrm{C}_{2} \mathrm{H}_{2}$ formation. Reactions (3), and (19) show oxygen's stimulation effect on $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$ formation.
3.2.4 HCl Effect on CO Conversion to CO_{2} When the concentration of CH_{4} and O_{2} is maintained at values of ca 1% and 2% respectively and $\mathrm{CH}_{3} \mathrm{Cl}$ concentration is changed, the effect of HCl produced in reaction can be obtained. The following experimental results (Table 3) indicate that HCl inhibits oxidation of CO to CO_{2}. Since $\mathrm{C} . . \mathrm{concentration} \mathrm{of} \mathrm{component} \mathrm{II} \mathrm{is} \mathrm{two}$ times that of component I, the concentration of HCl produced in II is about two times that of I under same reaction conditions. The data tell us that the concentration ratio of CO to CO_{2} in II is greater than that in I, which means the greater, HCl concentration in reaction system; the lower, the conversion of CO to CO_{2}.

Table 3. The Effect of HCl Concentration in Products on CO Conversion

Temperature	Reactant Component	(HCl)	(CO)/(CO2)
	I	0.06	1.6
825C			
	II	0.14	2.0
850 C	I	0.14	3.6
	II	0.42	8.3
875C	I	0.44	7.8
	II	0.83	9.4
900C	I	0.74	11.9
	II	1.45	13.9
925C	I	0.97	11.5
	II	1.94	13.0
950C	I	0.99	6.9
	II	1.98	10.3

* Reaction Time is at 1.0 second; () denotes mole
concentration.

I denotes Ar: $\mathrm{CH}_{3} \mathrm{Cl}: \mathrm{CH}_{4}: \mathrm{O}_{2}=96: 1: 1: 2$.
II denotes Ar: $\mathrm{CH}_{3} \mathrm{Cl}: \mathrm{CH}_{4}: \mathrm{O}_{2}=95: 2: 1: 2$.

3.3 Quantum Rice-Ramsperger-Kassel (QRRK) Analysis

 Quantum Rice-Ramsperger-Kassel (QRRK) is a straightfoward method for calculating apparent rate constants of energized complexes. A brief description of its theoretical basis is derived from the article by Westmoreland and Dean [14]. The energized radical and molecular complexes are modeled using the QRRK analyses. The details of bimolecular QRRK method have been presented and discussed [14,15]. This computer code has been modified by Ritter and Bozzelli [16] to use gamma function instead of factorials. The QRRK computer code was used to determine the energy dependent rate constants for all reaction channels of the energized complexes and calculates rate constants as function of both temperature and pressure. The use of this formalism is important in determination of accurate rate constants needed for input to the mechanism, specifically in choice of the important reaction paths. This is also applied to accurate product distribution prediction from the activated complex.QRRK analysis of the chemically activated system, using generic estimates or literature values for high pressure rate constants and species thermodynamic properties for the enthalpies of reaction, can yield thermodynamically and kinetically plausible apparent rate constants which are needed for the temperatures and pressures of our reaction systems. The input rate parameters used in
these calculations and results from the calculations are summarized in APPENDIX I Table A-E. In order to illustrate this calculation method, the reaction, $\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{OH} \Rightarrow$ products as a example is presented:

The reaction of $\mathrm{C}_{2} \mathrm{H}_{2}$ with OH will be considered first as addition reaction to form the energized complex [HOCH*C.H]\# (\# denotes energized complex). It can further react as shown in reactions (2) to (3) or be stabilized and or return to initial reactant.

$$
\begin{array}{ccc}
\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{OH} \stackrel{(1)}{(63.7)} \begin{array}{cc}
{[\mathrm{HOCH} * \mathrm{C} . \mathrm{H}] \#} & \Rightarrow \\
\vdots & \mathrm{C}_{2} \mathrm{H}+\mathrm{H}_{2} \mathrm{O} \quad(74.2) \\
\vdots & \\
\vdots & \mathrm{HOC} \mathrm{\# CH}+\mathrm{H}(72.4) \\
\mathrm{V} \\
\mathrm{HOCH} * \mathrm{C} . \mathrm{H} \\
(28.3)
\end{array} & &
\end{array}
$$

Reaction (2) is not important comparing with abstraction reaction $\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{OH}=\mathrm{C}_{2} \mathrm{H}+\mathrm{H}_{2} \mathrm{O}$. So this channel is omitted in QRRK analysis. Channel (3) has a higher energy barrier than channel (4). Based on BAC-MP4 potential-energy-surface information and statistical-theoretical methods presented by Miller [17], however, channel (3) is important path at combustion conditions. Reaction (4) is thermodynamically favorable relative to initial energy of the reactants (Isomerization through H shift from oxygen to carbon atom). The species. $\mathrm{CH}_{2} \mathrm{CHO}$ can form $\mathrm{CH}_{2} \mathrm{CHO}$ and H via beta scission reaction (5) or further isomerize (7) to product $\mathrm{CH}_{3} \mathrm{C} .0$. It is interesting that $\mathrm{CH}_{3} \mathrm{C} .0$ converts to

$$
\begin{align*}
& \mathrm{CH}_{2} \mathrm{CO}+\mathrm{H} \text { (9) but also reacts to form } \mathrm{CH}_{3}+\mathrm{CO}(8) . \\
& {\left[. \mathrm{CH}_{2} \mathrm{CHO}\right]^{\#} \Rightarrow \mathrm{CH}_{2} \mathrm{CO}+\mathrm{H}(40.7) \text { (5) }} \\
& (3.2) \Leftrightarrow\left[\mathrm{CH}_{3} \mathrm{C} .0\right]^{\#}(-5.4) \\
& \\
& {\left[\mathrm{CH}_{3} \mathrm{C} .0\right]^{\#} \Rightarrow \mathrm{CH}_{3}+\mathrm{CO}} \tag{8}\\
& {\left[\mathrm{CH}_{3} \mathrm{C} .0\right]^{\#} \Rightarrow \mathrm{CH}_{2} \mathrm{CO}+\mathrm{H}} \tag{9}
\end{align*}
$$

The energy diagram for above reaction channels is illustrated in Figure 141. The QRRK calculation results for this reaction system indicate that the reactions for $\mathrm{CH}_{3}+\mathrm{CO}$ and $\mathrm{CH}_{2} \mathrm{CO}+\mathrm{H}$ are the dominant channels. The rate constant for the $H O C \# C H+H$ channel increase faster than other channels with increasing temperature. When temperature increases from 1200 K to 1500 K , the rate constant for $\mathrm{CH}_{3}+\mathrm{CO}$ decreases slightly. The rate constant for $\mathrm{CH}_{2} \mathrm{CO}$ + H increases slightly. The rate constant increase for HOC\#CH +H is three times greater, however, which is agreement with data reported by Miller.

The important elementary reactions and their energy diagrams for the reaction systems $\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{O}, \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{O}$, and $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{OH}$ are shown in Figures 142-144.

Ea(Kcal/mol)

Figure 141. Energy Diagram for the Reaction $\mathrm{C} 2 \mathrm{H} 2+\mathrm{OH}$

Ea(Kcal/mol)

Figure 142. Energy Diagram for the Reaction C2H2+O

Tahle 4. Detajled Feartion Mectiatise for CHED/CH4/RE SyEtere

Reaction	A	n	Es	Saurcew
1. $\mathrm{C}_{2} H_{5}+\mathrm{CH}_{3}=\mathrm{C}_{2} H_{5}+\mathrm{CH}_{4}$ (LIKE CLARKODIME-OPT)	0.550	4.60	8300.	[1]
	$5.505+13$	0.60	0.	[2]
3. $\mathrm{CHF}_{2} \mathrm{Cl}=[\mathrm{HCl}+\mathrm{HC}$	1.82E+36	-7.43	85730.	[2]
4. $\mathrm{CHES}_{2}=[\mathrm{Cf}]+\mathrm{Cl}$	$1.505+40$	-7.84	E550.	[2]
5. $\mathrm{CH}_{5} \mathrm{C}=\left[\mathrm{H}_{3}+\mathrm{Cl}\right.$	$1.265+37$	-6.91	90540,	[2]
5. CHf$]=\mathrm{CH} \mathrm{S}+\mathrm{HCl}$	8.525+27	-5.13	10,640,	[2]
7. $\mathrm{CHCl} \mathrm{Cl}^{2}+H^{2}=\mathrm{CHCl}+\mathrm{HCl}$	$7.005+13$	0.00	7100.	[3]
9. $\mathrm{CHCl}_{2}+\mathrm{H}_{2}=[42 \mathrm{Cl}+\mathrm{H}$	$3.65 E+12$	0.00	1225.	[3]
9. $\mathrm{CHES}_{2}+\mathrm{H}_{2}=\left[\mathrm{H}_{3} \mathrm{Cl}+\mathrm{H}\right.$	$1.70 \mathrm{E}+12$	0.00	13057.	[3]
10. $\left[4.512+[]=\mathrm{CHCl}_{2}+\mathrm{HCl}\right.$	$2.51 E+13$	$0.00=$	3100.	[3]
11. CH C$]+\mathrm{H}=\left[\mathrm{HH}_{3}+\mathrm{HCl}\right.$	$3.72 E+13$	0.00	760.	[3]
12. $\mathrm{CH}_{4}=\mathrm{CH}_{3}+\mathrm{H}^{\text {a }}$	$1.055+33$	-5.58	111500.	[2]
13. $\mathrm{CH}_{4}+\mathrm{H}=\mathrm{CH}_{3}+\mathrm{H}_{2}$ (TSA)	$2.205+04$	3.00	8743.	[16]
[i. $\left[\mathrm{H}_{4}+\left[\mathrm{Cl}=\mathrm{CH}_{3}+\mathrm{HCl}\right.\right.$	$3.695+13$	0.60	3600.	[3]
15. $\left[\mathrm{CH}\left[1+[]=\mathrm{CH} \mathrm{C}^{\prime}\right.\right.$] HCl	$3.15 E+13$	0.69	3300.	[3]
16. $\mathrm{CHSC}_{2}+\mathrm{CH}_{5}=\mathrm{CH}_{4}+\mathrm{CHCl}_{2}$	$6.765+10$	9.00	7200.	[3]
17. $\mathrm{CH}_{2} \mathrm{l}_{2}+\mathrm{CH}_{3}=\mathrm{CH}_{3} \mathrm{Cl}+\mathrm{CH}_{2} \mathrm{Cl}$	$1.40 \mathrm{c}+11$	0.60	4500.	[2]
19. $\mathrm{CH}_{5} \mathrm{l}+\mathrm{CH}_{3}=\mathrm{CH}_{4}+\mathrm{CH} \mathrm{Cl}$	$3.35 E+1$	(1) 06	9400.	$[3]$
17. $\left.[4]^{2}\right]^{2}+[4 C]_{2}=\left[5^{4} 5^{2}\right]_{4}$	$9.085+45$	-11.85	17170.	[45]
2. $\mathrm{CHCl}_{5}+\mathrm{CHCl}_{5}=\mathrm{CP}^{2} \mathrm{Cl}_{3}+\mathrm{Cl}$	$1.358+30$	-5.53	14183.	[4i]
	$6.725+35$	-7.11	1320.	[4, 5
22. $\mathrm{CH}_{2} \mathrm{~S}+\mathrm{CH}_{2} \mathrm{C}=\mathrm{C}_{2} \mathrm{C}_{4} \mathrm{Cl}$	1.00E +13	0.60	0.	[4]
23. $\mathrm{Cl}_{2} \mathrm{Cl}+\mathrm{CH}_{2} \mathrm{Cl}=\mathrm{CH}_{2} \mathrm{ClH} \mathrm{C}_{2}+\mathrm{Cl}$	$4.675+29$	-4.75	14070.	[2]
	$1.885+35$	- 5.73	13160.	[2]
	3.412+33	-10.22	12510.	[E]
25. $\mathrm{CH}_{2} \mathrm{C}+\mathrm{CHCl}_{5}=\mathrm{CHCOL}_{5}+\mathrm{HCl}$	3.75E+36	-7.22	15320.	[2]
27. $\left.\mathrm{CHCl}+[\mathrm{HC}]_{2}=\mathrm{CHClCHO}^{2}+\mathrm{HC}\right]$	1.22E+37	-7.20	13640.	[2]
23. $\mathrm{CH}_{5} \mathrm{Cl}+\mathrm{CH}_{3}=\mathrm{C}_{2} \mathrm{~S}_{3} \mathrm{l}$	$5.01 \mathrm{E}+13$	0.60	0.	[45]
E5. $\quad\left[\mathrm{H}_{2} \mathrm{C}\right]+\mathrm{CH}_{3}=\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{HC]}$	$3.505+5$	-4.49	7120.	[2]
31. $[4,2]+\mathrm{CH}_{3}=\left[\mathrm{C}_{5} \mathrm{H}_{5}+[]\right.$	$9.27 \mathrm{Et17}$	-2.07	10150.	[2]
31. $\mathrm{CHC}_{2}+\mathrm{CH}_{3}=\left[\mathrm{HfS}^{\mathrm{HCl}}{ }_{2}\right.$	2.25E+41	-3.68	11620.	[2]
32. $\mathrm{CHCl}_{5}+\mathrm{CH}_{3}=\mathrm{C}_{5} \mathrm{f} \mathrm{Cl}+\mathrm{HCl}$	$1.355+30$	-4.93	11550.	[2]
33. $\mathrm{CHEL}_{2}+\mathrm{CH}_{3}=\mathrm{CH} G 4 C 1+C 1$	$2.74 E+35$	-3.45	15010.	[2]
34. $\mathrm{CH}_{2} \mathrm{Cl}+\mathrm{H}=2 \mathrm{Hf}_{5}$	$3.13 \mathrm{E}+27$	-5.02	4380.	[2]
35. $\mathrm{CH}_{2} \mathrm{Cl}+\mathrm{H}=\mathrm{CH}_{3}+\mathrm{Cl}$	4.49E+15	-0.50	760.	[2]
36. $\mathrm{CH} 51+\mathrm{H}=\left[\mathrm{CH}_{5} \mathrm{C}+\mathrm{HC]}\right.$	1.14E+16	1.55	3500.	[46]
37. $\mathrm{CHCl}_{3}+\mathrm{H}=\mathrm{CH} 532$	4.815+26	-4.82	3810.	[2]
33. $\mathrm{CHCl}_{2}+\mathrm{H}=\mathrm{CH} 51+\mathrm{Cl}$	1.25E+14	-0.03	570.	[2]
37. $\mathrm{C}_{2} \mathrm{f}_{5} \mathrm{l}+\mathrm{H}=\mathrm{CH}_{2} \mathrm{CICH}$	5.015+23	-4.23	8470.	[46]
40. $\mathrm{C}_{2}^{4} \mathrm{z}$] $+\mathrm{H}=\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}$ ((REC)	1.59E+14	0.00	5040.	[5]
41. $\mathrm{C}_{2} \mathrm{~S}_{3}$] $\mathrm{H}=\mathrm{C}_{2}^{4} 3+\mathrm{HE}$ (ALC)	6.655+37	-7.07	18400.	[5]
	1.53E+23	-4.15	7520.	GREK
	2.57E+22	-4.09	10850.	QREK
44. $\mathrm{CPCl}_{2}+\mathrm{H}=\left[\mathrm{HCCl}_{2}+\mathrm{Cl}\right.$	$1.458+13$	-0.01	5230,	QRS
4E. 5 St $]_{3}+\mathrm{H}=[\mathrm{HClCHE}]+[]$	$7.375+12$	- 0.01	920	00\%

	$1.39 E+20$	-2.13	60450.	Heme
47. $\mathrm{C}_{2} \mathrm{fl}_{3}=\mathrm{CH}_{2} \mathrm{Cl}_{2}+\mathrm{HCl}$	$3.135+19$	-2,00	60930.	mene
	2.94Eta	-2.37	57469	nese
49. $\mathrm{CHFHO}_{2}=\mathrm{CH}$ [HC] +Cl	3.17E+42	-3.10	92670.	Disede
	8. $62 \mathrm{E}+21$	-2.57	51870.	niase
	6. $73 \mathrm{E}+19$	-1.93	5970.	wesec
	3.33E+13	(1, \%	57400.	dessoc
53. [245$]=\left[{ }^{1} 5+C 1\right.$	$2.35 \mathrm{E}+43$	-5.50	83980.	nese
54. $\mathrm{C}_{2} \mathrm{H} \mathrm{Cl}+\mathrm{Cl}=\mathrm{HCl}+\mathrm{CH}_{3} \mathrm{HCl}$	3. $5.5 \mathrm{E}+13$	0.00	Smo.	日for
	$1.12 \mathrm{E}+13$	0.00	1500.	Why
55. $\left.C^{2} 45\right]+H=H C 1+C 2^{2} 5$	1.00E+14	0.00	7700.	Ont
57. $\left[4{ }^{4} \mathrm{f}\right]=\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{HCl}$	1. $65 \mathrm{E}+28$	-4.29	75750.	neer
59. CHf [$=\mathrm{CH}_{2}+\mathrm{Cl}$	1.715+39	-7.13	92370.	nesed
59. $\int_{2} 4_{6}=C^{4} 5+H$	$6.235+47$	-4.75	H12Es.	Dese
60. $\mathrm{C}_{2} \mathrm{H}_{6}=\mathrm{CH}_{3}^{2}+\mathrm{CH}_{3}$	5.34E+54	-11.12	112310.	Hest
	8.52E 4 43	-7.32	121240.	173
	8.53E 30	-5.57	119240	[45]
	$7.25 \mathrm{E}+12$	6, 0	750.	05
64. $\left.\mathrm{CHCOH} \mathrm{Cl}+\mathrm{H}=\mathrm{C} \mathrm{P}^{4} \mathrm{C}\right]+\mathrm{Cl}$	$3.44 E+13$	-6.63	580.	ncte
	$3.245+06$	2.53	6300.	[5]
	$5.435+13$	0.09	24.	[5]
	$2.628+09$	2.6	- 540.	[5]
63. $\mathrm{C}_{2} 5+\mathrm{CH}=\mathrm{C}_{2} \mathrm{~s}+\mathrm{H}_{2}$ (FEC)		1.99	1406.	5
	$1.835+39$	-7.75	5fes.	[463
	1.3EE+2?	-2.17	760.	a
71. $\mathrm{C}_{5} \mathrm{H}_{5}+0=\mathrm{CH}+\mathrm{CH}^{3}$	1.OE+13	0.6	0.	13
	$2.00 \mathrm{E}+12$	0.0	4976.	[1]
	$3.01 \mathrm{E}+11$	0.60	0.	[15
	1.57c+16	-1.4 ?	1270.	0
	$3.505+34$	-6.3?	1650.	[5]
	7.41E+13	0.00	823.	[5]
	7.10E+15	(1.00)	2125s.	[17]
78. $\mathrm{CH}_{5} \mathrm{H} 5+\mathrm{CH}=\left[\mathrm{H}_{5} \mathrm{O}+\mathrm{H}_{2}\right.$	1.006+13	4.6)	0.	0
	$5.605+12$	0.09	1790.	(1)
50. \quad CHFH2 $+\mathrm{H}=\mathrm{CHf0}+\mathrm{H}_{2}$	4.00E +13	0.6	4230.	(7)
	2. $205+13$	-0.65	1760.	[5]
82. $\int_{2}{ }^{4} 4+0=\mathrm{CH}_{3}+\mathrm{CHO}$ (EEC$)$	2. $305+30$	-4,54	35350.	[5]
	4. $235+13$	0.6	57623.	[16]
	$1.315+15$	3.10	11400.	[5]
	$2.005+13$	0.60	1000.	[5]
	$3.845+23$	-2.21	3650.	[5]
	1. $645+19$	-1.83	7749.	[54]
	$5.095+23$	-3.65	644.	[5]
	$5.645+27$	-4.73	8497.	[54
	1. $615+14$	(1.6)	27700.	[5]
91. $\mathrm{C}_{2} \mathrm{O}_{2}+\mathrm{Ca}=\mathrm{CH}_{2}+\mathrm{CO}(\mathrm{REC})$	7.115+14	-0.6. 6	100.	[5]
92. $\mathrm{CH}^{2} \mathrm{C}^{2}+0=4 \mathrm{CO}+\mathrm{H}$ (REC)	$7.048+69$	0.76	579.	[5]
93. $\mathrm{CH}_{4}+\mathrm{CH}=\mathrm{CH}_{3}+\mathrm{CO}(\mathrm{REC})$	2. $695+17$	-1.44	3310.	[s]
94. $\mathrm{CH}_{2}+\mathrm{CH}=\mathrm{CH}(\mathrm{CD}+\mathrm{H}$ (SEC)	1.235+12	-6, 32	22^{40}.	5
	$3.37 \mathrm{E}+68$	2.0	14000.	[5]

76. $\mathrm{CH}_{4}+\mathrm{O}_{2}=\mathrm{CH}_{3}+\mathrm{HO}_{2}$	$7.945+13$	0.60	55900.	[46]
77. $\mathrm{CH}_{4}+8=\mathrm{CH}_{3}+\mathrm{CH}$	$1.20+017$	2.10	7020.	[2]
98. $\mathrm{CH}_{4}+\mathrm{CH}^{\text {C }} \mathrm{CH}_{3}+\mathrm{H}_{2}$	$1.608+06$	2.10	245.	[2]
77. $\mathrm{CH}_{4}+\mathrm{HO}_{2}=\mathrm{CH}_{3}+\mathrm{H}_{5}$	$1.81 E+11$	0.00	1850.	[16]
100. $\mathrm{CH}_{3}+\mathrm{O}_{2}=\mathrm{CH} \mathrm{C}^{2}+\mathrm{OH}$	1.5s5 14	0.60	30 J	[3]
101. $\mathrm{CH}_{2}+\mathrm{O}_{2}=\mathrm{CH}_{3}+0$	$2.805+15$	-1.15	30550.	[2]
102. $\mathrm{CH}_{3}+\mathrm{O}=\mathrm{CH}+{ }^{\text {d }}+\mathrm{H}$	1.05E+14	0.60	0.	[11]
63. $\mathrm{CH}_{3}+\mathrm{OH}=\mathrm{CH}_{3}{ }^{5}+\mathrm{H}$	$3.87 \mathrm{E}+12$	-0.19	13741.	[12]
104. $\mathrm{CH}_{3}+\mathrm{HO}_{2}=\mathrm{CH}_{3}+\left[\mathrm{HH}^{\text {a }}\right.$	$2.00 \mathrm{E}+13$	0.00	0.	[16]
	1.00E 613	0.00	7125.	[7]
106. $\mathrm{CH} \mathrm{Cl}^{\text {d }}+\mathrm{CH}_{3}=\mathrm{CH}_{4}^{2}+\mathrm{CHO}^{\text {(}}$ (HAR)	$1.00 \mathrm{E}+11$	0.00	6090.	[7]
10. $\mathrm{CH} \mathrm{C}+\mathrm{H}=\mathrm{CHO}+\mathrm{H}_{2}$ ((\%AR)	$2.505+13$	0.00	3570.	[7]
102. $\mathrm{CH}^{5}+0 \times \mathrm{CH}$	$3.50 E+13$	0.60	3510.	[4]
109. $\mathrm{CH} 50+64=\mathrm{CHO}+\mathrm{H}_{2} 0$	$3.008+13$	0.00	1190.	[4]
H10. $\mathrm{CH}^{2} \mathrm{D}+\mathrm{HO} 5 \mathrm{CHO}+\mathrm{H}_{2}^{2} \mathrm{O}$	1.00E+12	0.00	500.	[19]
115. $\left[4 \mathrm{~S}^{2}+[]=[40+\mathrm{HC}]\right.$	$5.005+13$	0.00	50.	[49]
112. $\mathrm{CH} \mathrm{H}+\mathrm{H}=\mathrm{H}=\mathrm{CHO}+\mathrm{H}+\mathrm{H}$	S. Wetic	0.60	76200.	[7]
	$2.152+13$	0.00	38945.	[16]
	$2.505+14$	0.00	16740	[7]
115. $\quad \mathrm{CHO}+\mathrm{H}=\mathrm{CO}+\mathrm{H}_{2}$	2.00E 14	0.60	0.	[4]
116. $6 \mathrm{Ha}+\mathrm{O}_{2}=\mathrm{CO}+4 \mathrm{O}_{2}$	$3.005+12$	0.00	0.	[4]
117, $\quad 10+0 H^{2}=00_{2}+11$	$4.405+06$	1.56	-741.	[15]
	1.515+14	0.00	23600.	[13]
18. $\left[0+00^{2}=\left[0^{2}+0\right.\right.$	$2.505+12$	0.60	4780 C ,	[15]
120. $\left[0+\mathrm{CH}_{2} \mathrm{O}=\mathrm{CO}_{2}+\mathrm{CH}_{3}\right.$	$1.575+13$	0.00	11200.	[16]
f3. $H+00_{2}=0+[4$	$2.205+14$	0.60	16750.	[45]
E2, $0+H_{2}^{2}=4+0 H$	$1.865+10$	1.60	gezi.	[46]
13. $0+\mathrm{H}_{2}=0 \mathrm{H}+0 \mathrm{OH}$	1.565tio	1.14	17240.	[4b],
124. $\mathrm{H}+\mathrm{HEO}=\mathrm{H}_{2}+\mathrm{HH}$	$4.608+68$	1.60	1560.	[45]
SE, $H+0 H+M=4 S_{2}+N$	7.5ict23	-2.60	0.	[45]
15. $0_{2}+M=0+0+M$	$1.205+14$	0.60	197550	[46]
127. $H+0+K=0 H+K$	2.295 +14	0.00	3500	[46]
	$1.695+14$	0.00	574.	[45]
12. $\mathrm{H}+\mathrm{HO}_{2}=\mathrm{H}_{2}+\mathrm{O}_{2}$	$2.50 E+13$	0.00	190.	[4b]
129. $\mathrm{H}+40_{2}=6+4{ }^{2}$	5.50E+13	0.610	15:	[46]
131. $0+40^{2}=04+02$	2.00E+13	0.60	0.	[46]
12. $4+402=H 2+02$	2.005+13	0.00	0.	[45]
[53. $0+\mathrm{HCl}=[\mathrm{H}+\mathrm{Cl}$	$5.24 E+12$	0.00	6400.	[45]
134. $0 \mathrm{H}+\mathrm{HCl}=\mathrm{Cl}+45$	2.45E+12	0.00	1100.	[45]
55. $\mathrm{H}+\mathrm{H}+\mathrm{M}=\mathrm{H}_{2}+\mathrm{H}$	$6.40 \mathrm{E}+17$	-1.00	0.	[45]
136. $[1+[]+M=[] 2+H$	1.255+15	0.60	-1630,	[46]
137. $\mathrm{H}+\mathrm{Cl}+\mathrm{K}=\mathrm{HC1}+\mathrm{H}$	1.00E+17	0.00	0.	[46]
135. $\mathrm{H}+\mathrm{HCl}=\mathrm{H}_{2}+\mathrm{Cl}$	2.30E+13	0.00	3500.	[46]
37. $\mathrm{Cl}+40_{2}=\mathrm{O}_{2}+\mathrm{HCl}$	3.00E+13	0.00	0.	[45]
40. $\mathrm{Cl}+\mathrm{H0} 0_{2}=810+[4$	$2.42 E+13$	0.06	$9 E 0$.	[45\}
4. $\mathrm{ClO}+\mathrm{C0}=\mathrm{Cl}+\mathrm{CD}_{2}$	6.035+11	0.00	17400.	[45]
42. $\mathrm{CHCO} 0+\mathrm{H}=[\mathrm{HO}+\mathrm{HCl}$	$9.33 \mathrm{E}+13$	0.00	7400.	[45]
143. $\mathrm{CHClO}+\mathrm{H}=[4.0+\mathrm{Cl}$	3.99E+14	-0.59	3363.	[46]
44. $\mathrm{CH}_{3}+\mathrm{ClO}=\left[\mathrm{H}_{3}\right]+\mathrm{Cl}$	$3.335+11$	0.46	30.	[46]
45. $\quad[43+[10=[H 2]+H C]$	$3.472+18$	-1.80	290.	[45]

$1.355+13$	0.00	51800.	[46]
6.67E 12	0.00	13270.	[4b]
$4.235+12$	0.00	2259.	[4b]
1.10E+13	0.00	ssou.	[45]
$1.91 E+14$	-1.27	3810,	[46]
4.00E+13	0.618	3400.	[4b]
$1.295+15$	-1.95	1100.	QRat
$5.575+13$	-3.13	710.	OREX
1.24E+2?	-2.72	3960.	QREK
$2.005+12$	0.29	3270.	(0\%)
1.335+13	0.00	0.	[2]
$1.835+27$	-5.13	23170.	[2]
$4.535+31$	-6.41	22500	[2]
$8.965+59$	-5.15	9590.	[2]
1.105+30	-5.17	93760.	[2]
$4.155+12$	0.70	1110.	[2]
$4.135+19$	-2.22	2360.	[2]
$2.005+11$	0.00	6000.	[2]
2.02E+13	0.00	54000.	[46]
1.70E+13	0.00	7300.	[3]
$2.455+12$	0.00	2700.	[3]
1.00E 13	0.00	21360.	[19]
1.0EEtiz	0.00	800.	[3]
3.03E+11	0.00	150m.	[47]
$3.03 E+11$	0.00	1709.	[49]
$1.815+12$	0.00	950.	[49]
3.01E+12	6.00	0.	[47]
1.815+12	0.00	260.	[49]
$7.62 \mathrm{E}+12$	0.00	180.	[49],
$6.035+12$	0.00	4370	[49]
1.69E+18	-3.01	1790.	[46]
$1.73 \mathrm{E}+12$	-0.10	3200.	[46]
$2.515+12$	0.60	2750	[17]
9.595+13	0.00	1170.	[17]
$7.94 E+13$	0.00	55900.	[45]
$2.415+12$	0.60	0.	[16]
$1.00 \mathrm{E}+13$	0.00	0.	[7]
$1.815+13$	0.00	0.	[16]
1.21E+13	0.00	0.	[15]
1.21E 144	0.00	0.	[23]
$3.61 E+12$	0.00	0.	[16]
$1.60 \mathrm{E}+12$	0.00	854.	[48]
1.00E+14	0.60	0.	[34]
1.50E+14	0.00	0.	[34]
$3.005+15$	0.00	25600.	[34]
$1.505+14$	0.00	0.	[34]
$1.25 E+13$	0.00	74520.	[16]
$6.035+09$	0.00	7949.	[!6]
$7.505+12$	0.60	c00\%.	[49]
$1.13 E+13$	0.60	3483.	[35]

196. $\mathrm{CH} 20+0=4 \mathrm{COO}+\mathrm{OH}$	1.005+13	0.6	Rom.	[48]
197. $\mathrm{CH}_{3}+\mathrm{H}=\mathrm{C}_{2} \mathrm{C}_{2}+\mathrm{H}_{2}(\mathrm{REC})$	9.64E+13	0.60	0.	[5]
195. $\mathrm{CH} \mathrm{H}_{2}+\mathrm{O}=\mathrm{CH} \mathrm{CO}+\mathrm{H}$	$9.645+13$	0.00	0.	[16]
199. $\mathrm{CH}_{3}+\mathrm{CH}_{3}=\mathrm{CH}_{2}+\mathrm{CH}_{4}$	$2.42 E+13$	0.00	0.	[16]
200. $\mathrm{Ca}_{3} \mathrm{H}_{3}+\mathrm{CH}_{4} \mathrm{C}=\mathrm{C}_{2}{ }_{4}+\mathrm{CHO}^{\text {d }}$	$5.43 E+03$	2.81	5652.	$[16]$
201. $\mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{H}_{2} \mathrm{O}_{2}=\mathrm{CH}_{2}+{ }_{4}+\mathrm{HO}_{2}$	$1.21 E+10$	0.06	-596.	[16]
	1.94E-13	7.07	-3510.	[40]
203. $\mathrm{CH}_{2} \mathrm{H}_{3}+\mathrm{C}_{2}^{4}{ }_{3}=\mathrm{C}+\mathrm{CO}+\mathrm{C}$	$1.00 E+12$	0.00	0.	[20]
204. $\mathrm{CtCCtC}+\mathrm{H}=\mathrm{C}+\mathrm{CC+C}+\mathrm{H}_{2}$	$6.30 \mathrm{E}+10$	0.70	5790.	[19]
205. $\mathrm{CtCCtC}+\mathrm{CH}_{3}=\mathrm{CtCC+C}+\mathrm{CH}_{4}$	$7.06 \mathrm{E}+13$	0.6	1950].	[35]
	$2.885+12$	0.00	4 ecol .	[20]
207. $C^{4} \mathrm{H}_{3}+\mathrm{C}_{2} \mathrm{C}_{2}=\mathrm{CACCEC}+\mathrm{H}$	$1.585+13$	0.00	2509.	[21]
	$1.83 E+13$	0.60	39549.	[52]
	1.00E+12	0.00	s600.	[20]
	$4.47 \mathrm{E}+11$	0.00	30992.	[22]
211. $\mathrm{COCO}+\mathrm{Cl}=\mathrm{CHCLC},+\mathrm{HCl}$	$1.005+16$	0.00	1000.	[E]
	3.955+13	0.00	0.	[21]
	$2.87 \mathrm{E}+14$	0.60	817.	[23]
214. $\mathrm{C}_{2}{ }^{+}+\mathrm{CH}_{2}=\mathrm{CaCREC}$.	1.00F+13	0, 00	0.	[23]
215. $\mathrm{CH}_{2}+\mathrm{C} \mathrm{S}^{4} 2=\mathrm{CHCC},+\mathrm{H}$	$2.705+12$	0.60	0.	[37]
2it. $\mathrm{CH}_{3}^{2}+\mathrm{C}_{2}^{4} \mathrm{~S}=\mathrm{CHCC}+\mathrm{H}$	6.195+12	0.00	16999.	[39]
217. $\mathrm{CH}_{3}+\mathrm{CH}+5=\mathrm{CL} 5$.	1.6IE+4!	-8.59	2933.	[24]
289. $\mathrm{CH}_{3}+\mathrm{C}_{2} \mathrm{H}_{2}=\mathrm{CtCOC}+4$	$6.74 \mathrm{E}+17$	-2.09	31595.	[24]
217. $\mathrm{CH}_{3}+\mathrm{CLCL} .=\mathrm{CaCCC}$	$5.005+12$	0.60	a.	[39]
20. $\mathrm{CH}_{3}+\mathrm{C}_{2} \mathrm{H}_{2}=\mathrm{CaCC}$.	6.0EE+11	a, 0	7704.	115
	$2.10 \mathrm{E}+11$	0.09	\%092.	[30]
	$7.24 E+11$	0.00	16392.	[5]
23. $\mathrm{CACC}=\mathrm{Ctc}+\mathrm{C}+\mathrm{H}$	$2.635+13$	0.00	59791.	[53]
	2.EEE+11	0.60	199%	[39]
	3.6)t+11	0.65	4.	[39]
	7.015+14	-6.56	657.	[40] ${ }^{\text {c }}$
227. $C^{4} \mathrm{H}_{5}+\mathrm{H}=\mathrm{C}_{5} \mathrm{H}_{5}$	$3.165+13$	0.00	0.	[41]
23. $\mathrm{CH}_{6}+H=\mathrm{C}_{5} \mathrm{~S}_{5}+\mathrm{H}_{2}$	$3.01 \mathrm{E}+12$	0.60	910.	[25]
	$2.908+13$	0.60	4250	[26]
23. $\mathrm{CH}_{5} \mathrm{H}_{5}+\mathrm{OH}=\mathrm{C}_{4} \mathrm{H}_{5}+\mathrm{H}_{2}$	1.45E+ 33	0.60	4490.	[27]
231. $\mathrm{Cg} \mathrm{g}_{6}+\mathrm{OH}=\mathrm{C} H \mathrm{H} 04+\mathrm{H}$	$1.318+13$	0.09	1060.	[27]
	$3.605+12$	0.00	3090.	[29]
233. $\mathrm{CHH}_{6}+\mathrm{CH}_{3}=\mathrm{CHSCH}_{3}+\mathrm{H}$	1.205+12	0.60	15940.	[30]
24. $\mathrm{CH}_{4}+\mathrm{CH}_{3}=\mathrm{C}_{2}{ }_{5}+\mathrm{H}_{2}$	1.00E+13	0.00	23000.	[31]
235. $\mathrm{C}_{2}^{4} 5+\mathrm{CH}_{4}=\mathrm{CH}_{4}+\mathrm{CH}_{3}$	1.44	4.02	5473.	[16]
E36. $\mathrm{CH}^{+}+\mathrm{CH}_{4}=\mathrm{CH}_{2}+\mathrm{CH}_{3}$	$1.805+12$	0.00	497.	[16]
237. $\mathrm{CH}_{2}+\mathrm{CH}_{4}=\mathrm{CH}_{3}+\mathrm{CH}_{3}$	$4.305+12$	0.60	10030.	[32]
23. $\mathrm{CH}_{2}{ }^{5}+\mathrm{CH}_{4}=\mathrm{CH}_{3}+\mathrm{CH}_{3}$	4.005+13	0.00	3.	[16]
239. $\mathrm{CH}_{5} 5+\mathrm{C}_{2}{ }^{4}=\mathrm{C}^{4}{ }^{4} 5+\mathrm{CH}_{3}$	1.20E+14	0.00	0.	[16]
240. $\mathrm{CH}_{2}^{2}+\mathrm{O}_{2}=\mathrm{CO}+\mathrm{CH}+\mathrm{H}$	$3.005+13$	0.00	0.	[16]
241. $\mathrm{CH}^{2}+\mathrm{O}=\mathrm{CO}+\mathrm{H}+\mathrm{H}$	$1.515+13$	0.06	0.	[16]
243. $\mathrm{CH}_{2}^{2}+\mathrm{CH}=\mathrm{CH}_{2} \mathrm{O}+\mathrm{H}$	$3.01 \mathrm{E}+13$	0.60	0.	[16]
243. $\mathrm{CH}_{2}^{2}+\mathrm{H}_{2} \mathrm{~B}_{2}=\mathrm{CH}+\mathrm{OH}$	$3.01 \mathrm{E}+13$	0.00	6.	[16]
24. $\mathrm{CH}^{2} \mathrm{~S}+\mathrm{CH}_{3}=\mathrm{CH}_{4}+\mathrm{H}$	$1.815+13$	0.60	0.	[16]
	$1.915+13$	0.06	0.	[1]

24. $\mathrm{CH}_{5} \mathrm{~S}+\mathrm{CH}_{3} \mathrm{C}=\mathrm{CH}_{3}+\mathrm{CH}_{2} \mathrm{C}$	1.51E+13	0.60	0.	[16]
24. $\mathrm{CH}^{2} \mathrm{~S}+\mathrm{H}_{2}=\mathrm{CH}_{3}+\mathrm{H}$	7.00E +13	0.00	0.	[13]
248. $\mathrm{CH}_{2}+\mathrm{H}=\mathrm{CH}_{2}+\mathrm{H}$	2.00E+14	0.6	0.	[16]
205. $\quad \mathrm{H}_{2} \mathrm{~S}^{2}+\mathrm{H}=\mathrm{CH}_{2}+N$	$2.00 \mathrm{E}+12$	0.60	3.	[16]
35. $\mathrm{C}_{2} \mathrm{H}_{6}+40_{5}=\mathrm{H}_{5} \mathrm{I}_{2}+\mathrm{CH}_{5} \mathrm{H}_{5}$	$6.00 \mathrm{E}+12$	0.00	17407.	[7]
251. $\mathrm{CH}_{2} \mathrm{H}_{3}+\mathrm{CH}=\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{CO}$	$9.045+13$	0.60	0.	[16]
25s. $\mathrm{C}_{5} \mathrm{H}_{6}+\mathrm{C}_{5 \mathrm{H}^{3}}=\mathrm{C}^{5} \mathrm{H}^{2}+\mathrm{C}_{5} \mathrm{H}^{4}$	$1.50{ }^{2}+13$	0.00	10000.	[42]
	$5.25 E+12$	0.00	-400.	[43]
254. $\mathrm{CH}_{3}+\mathrm{CH}_{3}=\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2}($ WAR $)$	1. COE +16	0.00	32058	[7]
255. $\mathrm{CH}_{3}+\mathrm{CH}_{4}=\mathrm{C}_{2}{ }^{4}+\mathrm{H}$ (TAB)	8.00E+13	0.60	40000.	[31]
26. $\mathrm{CH}_{3}+\mathrm{CH}=\left[\mathrm{H}_{2}+\mathrm{H}_{2}\right.$ (DEAN)	$3.19 E+12$	-0.53	$10 \mathrm{S10}$.	[24]
E5. $\mathrm{CH}_{3}+\mathrm{CO}=\mathrm{CH}_{3} \mathrm{O}$	$1.44 E+38$	-7.56	10910.	[16]
2EP. $\mathrm{CH}_{3}+\mathrm{CH}_{2}=\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}\{$ TSA $\}$	$4.22 E+13$	0.00	0.	[16]
E59. $\mathrm{CH}_{3}=\mathrm{CH}_{2}+\mathrm{H}$ (TSA)	1.60E +16	0.00	90500.	[16]
20. $\mathrm{CH}_{3}+\left[4 \mathrm{CH}=\mathrm{CH}_{4}+[0(T 5 A)\right.$	1.21E+14	0.69	0.	[16]
	1.58E+13	0.60	47501.	[16]
	1. $60 \mathrm{E}+13$	0.60	47005.	[44]
	$2.515+67$	0.09	0.	[45]

SOURCES OF INFORMATION FOR TABLE 4

1
Clark, T. C., and Dove, J. E., Can. J. Chem. 51 (1973) 2147.

Ho, W. P., Yu, Q. R., and Bozzelli, J. W., Combust. Sci. and Tech. to be published (1992).

3 Kerr, J. A. and Moss, S. J., \{Handbook of Bimolecular and Termolecular Gas Reaction\}, Vol. I \& II, CRC Press Inc., (1981).

4 Warnatz, J., Bockhorn, Moser, A., and Wenz, H. W., Nineteenth Symposium (Intrnationl) on Combustion/ The Combstion Institute, (1982): 167-179.

5 Recommended by this study.
6 Cohen, N., Int. J. of chem. Kinetics, 18 (1986): 5982.

7 Warnatz, J. in Combustion Chemistey (W. C. Gardiner, Jr., Ed.) Springer--Verlag, NY. (1984).

8 Tsang, W. and Hampson, R. F., J. Phys. Chem. Ref. data 15 (1986): 1087.

9 Westbrook, C. K., and Dryer, f. A., Prog. Energy Combust. Sci., 10 (1984).

Allara, S., et al., J. Phys. Chem. Ref. Data 9 (1980). Biordi, J. C., Lazzara, C. P., and Papp, J. F. symp. Int. Combust. Proc. 15 (1975): 917.

12 Olson, D. B. and Gardiner, W. C., Combus. Flame, 32 (1978): 151.

13 Cathonnet, M., Gaillard, F., Boettener, J. C., Cambray, P., Karmed, D., and Bellet, J. C., Twentieth Symposium (International) on Combustion/The Combustion Institute, (1984): 819--829.

14 Demore, W. B., Molina, M. J., Waston, R. T., Golden, D. M., Hampson, R. F., Kurylo, M. J., Howard, C. J., and Vishankara A. R., Chemical Kinetic and Phtochemical Data for use in stratospheric Modeling Evaluation No. 6, JPL Publication 85 (1985): 37.

15 Miller, J. A., Mitchell, R. E., Smooke, M. D., and Kee, R. J., Nineteenth Symposium (International) on Combustion/The Combustion Institute (1982): 127-141.

16 Tsang, W., Hampson, R. F., J. Phys Chem. Ref. Data 15 (1986): 1087.

17 Baulch, D. L., and Duxbury, J., J. Phys. Chem. Ref. Suppl. Data 1 (1981): 1-1.

18 A factor taken as $1 / 3$ that for $\mathrm{CH}_{4}+\mathrm{HO}_{2}$ $\mathrm{Ea}=\wedge \mathrm{H}_{\mathrm{rxn}}+8$.

19 Benson, S. W. and Weissman, M., Int J. Chem, Kinet. 16 (1984): 307.

Benson, S. W., Int. J. Chem. Kinet. 21 (1989): 233. Tanzawa, T. et al., J. phy. Chem. 84 (1980): 236.

22 Chanmugthas, C. H., Int. J. Chem. Kinet. 18 (1986): 701.

23 Duran. R. P., Amorebieta, V. T., and Colussi, A. J., J. phys. Chem. 92 (1988): 636.

24 Dean, A. M. and Westmoreland, P. R., Bimolecular QRRK analysis of methyl radical reaction, Int. J. Chem. Kinet. 19 (1987): 207.

25 Nixovich, J. M., and Ravishankara, A. R., Reaction of hydrogen atom with benzene: Kinetics and Mechanism J. Phys. Chem. 88 (1984): 2534.

26 Schliephake, V., Mix, K. h. and Wagner, H. Gg., Z. Phys. Chem. (Munich) 150 (1986): 1.

27 Tully, F. P., Ravishankara, A. R., and Thompson, R. L, J. Phys Chem. 85 (1981): 2262.

28 He, Y. Z., Mallard, W. G., and Tsang, W., J. Phys. Chem. 92 (1988): 2196.

29 Ritter, E.R., Bozzelli, J. W., and Dean, A. M., J. Phys. Chem. 94 (1990): 2493.

30 Robaugh, D., and Tsang, W., J. Phys Chem. 9 (1986): 4159.

31 Tabayashi, K., and Bauer, S. H., Combust. Flame 34 (1979): 63.

32 Bohland, T., Dabe, S., Temps, F., and Wager, H. Gg., Ber. Bunsenges. Phys. Chem. 89 (1985): 1110.

33 Miller J. A., et al., Prog Energy Combust Sci 15 (1989): 287-338.

34 Frank, P., and Bhaskaran, K.A., The 21 th Symp. Int. Combust, Proc, 21 (1986): 85.

35 Michael, J. V., Nava, D. F., Payne, W. A., and Stief, L. J., J. Chem. Phys. 70 (1979): 5222.

36 Kern, R.D., Singh, H.J., and Wu, C.H., Int. J. Chem. Kinet. 20 (1988): 731.

Homann, K. H., Wellmann, C., Ber. Bunsenges. Phys. Chem. 87 (1983): 609.

Hidaka, Y., Nadamura, T., and Kawano, H., Int. J. Chem. Kinet. 21 (1989): 643.

Wu, C.H., and Kern, R.D. J.Phys Chem. 91 (1987): 6291.

Westnoreland, P.R., Dean, A. M., and Howard, J.B., J. phys. Chem. 93 (1989): 8171.

Muller-Markgraf, W., Troe, J., J. Phys. Chem. 92 (1988): 4914.

Hidaka, Y., Shiba, S., Takuma, H., Suga, M., Int. J. Chem. Kinet. 17 (1985): 441.

Timonen, R. S., Russell, J. J., Sarzynski, D., and Gutman, D., J. Phys. Chem. 91 (1987): 1873.

44 Colket, M. B., Naegeli, D. W. and Glassman, I., Int. J. Chem. Kinet. 7 (1975): 223.

45 Schuchmann, H. P. and Laidler, K.J., Can. J. Chem 48 (1979): 2315.

46 Ho, W. P. detailed mechanism for $\mathrm{CH}_{3} \mathrm{Cl} / \mathrm{CH}_{4} / \mathrm{O}_{2} / \mathrm{Ar}$ systems's input file.

47 Borisov, A. A., Zamanskii, V. M., and Konnov, A. A., J. Chem. Phys. (1985): 3815.

48 Miller, A. J., and Craig, T., Bowman Prog. Energy. Sci. 15 (1989): 287.

Demore, W. B., Chemical Kinetic and Photochemical Data for use in Stratospheric Modeling, Evaluation No. 8 JPL Publication (1987): 87-41.

Weissman, M., and Benson, S. W., Int. J. Chem Kinet. 16 (1984): 307.

51 Loser, U., Scherzer, K., Wever, K., Phys. Chem. Leipzig 270 (1989): 237.

Ogura, H., Bull. Chem. Soc. Jpn 53 (1980): 1210.
53 Naroznik, M., and Niedzielski, J. J. Photochem. (1986): 32281.

54 Bozzelli, J. W. and Dean, A. M., Hydrocabon Radical Reactions with O_{2} : Comparison of Allyl, Formyl and Vinyl to Ethyl, to be published (1992).

3.4. Kinetic Mechanism and modeling

The reaction mechanism for the oxidation and pyrolysis of $\mathrm{CH}_{3} \mathrm{Cl} / \mathrm{H}_{2} / \mathrm{O}_{2} / \mathrm{Ar}$ has been published [18]. This study is trying to develop and improve this chemical kinetic mechanism to model the results of thermal reaction system $\mathrm{CH}_{3} \mathrm{Cl} / \mathrm{CH}_{4} / \mathrm{O}_{2} / \mathrm{Ar}$ (see page 86 , Table 4). Thermochemical parameter for some C_{2} oxy-Carbon intermediates that have not been previously measured or calculated are also developed because these are important to the chemical kinetic rate constant evaluation.

The kinetic reaction mechanism used in this study (Table 4) includes 263 elementary reaction steps involving 76 radical and stable compounds. Important unimolecular reactions, addition and recombination reactions are analyzed by the DISSO and CHEMACT computer codes [16]. The rate constants for theimportant C_{2} species abstraction reactions are evaluated.

A comparison of calculated and experimental data on $\mathrm{CH}_{3} \mathrm{Cl}$ decay, important intermediate, and final product versus reaction times at 1173 K and versus temperatures between $1098 \mathrm{~K}-1223 \mathrm{k}$ at 1.0 sec are shown in Figures 145160 respectively. For $\mathrm{CH}_{3} \mathrm{Cl} / \mathrm{H}_{2} / \mathrm{O}_{2} / \mathrm{Ar}$ systems, the agreement between the model and experiment is quite good. The model slightly underpredicts the $\mathrm{C}_{2} \mathrm{H}_{2}$ concentration prior to 0.4 sec for the ratio $\mathrm{Ar}: \mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=97: 1: 1: 1$ (I) and prior to 0.8 sec for $\mathrm{Ar}: \mathrm{CH}_{3} \mathrm{Cl}: \mathrm{H}_{2}: \mathrm{O}_{2}=96: 2: 1: 1$ (II) and
somewhat overpredicts it after 0.4 sec for (I) and after 0.8 sec for (II) at 1173 K (Figure 147, 148 and 155, 156). The model initially predicts higher conversion of $\mathrm{CH}_{3} \mathrm{Cl}$ and higher yield of CO and HCl than those observed at $1098 \mathrm{~K}-1148 \mathrm{~K}$. But at 1173 K and above, the model has good fits to experiments of these three species for (I) and (II) (Figure 149, 150 and 153,154). For CO_{2} yield, model has underprediction. Figures 161-176 illustrate the fit of the model (Table 4) to data of experiment for $\mathrm{CH}_{3} \mathrm{Cl} / \mathrm{CH}_{4} / \mathrm{O}_{2} / \mathrm{Ar}$ reaction. The comparison between model and experiment on $\mathrm{CH}_{3} \mathrm{Cl}$ decay, $\mathrm{CH}_{4}, \mathrm{CO}, \mathrm{HCl}$, and $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$ formation with reaction time at 1173 K or with reaction temperature at 1.0 sec is reasonably good over the general trend (Figures 161 to 176). The model underpredicts conversion of $\mathrm{CH}_{3} \mathrm{Cl}$ and formation of $\mathrm{CO}, \mathrm{HCl}, \mathrm{C}_{2} \mathrm{H}_{2}$, and $\mathrm{C}_{2} \mathrm{H}_{4}$ for Ar: $\mathrm{CH}_{3} \mathrm{Cl}: \mathrm{CH}_{4}: \mathrm{O}_{2}=96: 1: 1: 2$ (III) and Ar: $\mathrm{CH}_{3} \mathrm{Cl}: \mathrm{CH}_{4}: \mathrm{O}_{2}=95: 2: 1: 2$ (IV) and overpredicts the production of CO for system (III) after 1.6 sec and for system (IV) after 1.8 sec at 1173 K . Model prediction for CH 4 and C 2 H 3 Cl formation is better for (III) than (IV) at 1173 K . Experimental data are compared also with model prediction for $\mathrm{CH}_{3} \mathrm{Cl}$ decay and other product distribution between 1173-1223K at 1.0 sec . Results show that the general reaction trend for $\mathrm{CH}_{3} \mathrm{Cl}$ decay and the formation of CH_{4}, $\mathrm{CO}, \mathrm{CO}_{2}, \mathrm{HCl}, \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}$, and $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$ is agreement between modeling and observed data. However, the model underpre-
dicts the $\mathrm{CH}_{3} \mathrm{Cl}$ decay and formation of $\mathrm{CO}, \mathrm{HCl}, \mathrm{C}_{2} \mathrm{H}_{2}$, and $\mathrm{C}_{2} \mathrm{H}_{4}$ and overpredicts the formation of CO_{2} for systems (III and IV); the model prediction for CH 4 is also better for system (III) than for (IV).

PRODUCT DISTRIBUTION Ar:CH3C1:H2:02-97:11:1

Fig. $1451173 \mathrm{X}{ }^{1} 10.5^{\prime}$ Tube

PRODUCT DISTRIBUTION Ar:CH3C1:H2:O2-97:11:1

Fig. 146 1173X (M)

PRODUCT DISTRIBUTION Ar:CH3Cl:H2:O2-97:1:1:1

PRODUCT DISTRIBUTION
 Ar:CH3Cl:H2:O2-97:1:1:1

FIG. $1481173 \mathrm{~K}(\mathrm{M})$

PRODUCT DISTRIBUTION
 Ar:CH3Cl:H2:O2-97:1:1:1

Fig. $1491.0 \mathrm{sec}{ }^{\prime} 10.5^{\prime}$ Tube

PRODUCT DISTRIBUTION Ar:CH3Cl:H2:O2-97:1:1:1

PRODUCT DISTRIBUTION
 Ar:CH3Cl:H2:O2= 97:1:1:1

Fig. $1511.0 \mathrm{sec}{ }^{\prime} 10.5^{\prime}$ Tube

PRODUCT DISTRIBUTION Ar:CH3Cl:H2:O2-97:1:1:1

F152. 1.0 : $1098-1123 \mathrm{~K}(\mathrm{M})$

PRODUCT DISTRIBUTION Ar:CH3Cl:H2:O2=96:2:1:]

Fig. 153 1173K '10.5' Tube

PRODUCT DISTRIBUTION Ar:CH3Cl:H2:O2-96:2:1:1

Fig. 1541173 X (M)

PRODUCT DISTRBUTION
 Ar:CH3C1:H2:O2-96:2:1:1

Fig. 1551173 X " 10.5 " Tube

PRODUCT DISTRIBUTION Ar:CH3Cl:H2:O2-96:2:1:1

Fig. 156900 C (M)

PRODUCT DISTRIBUTION Ar:CH3Cl:H2:O2= 96:2:1:1

Fig. $1571.0 \mathrm{sec} \cdot 10.5^{\prime}$ Tube

PRODUCT DISTRIBUTION Ar:CH3Cl:H2:O2-96:2:1:1

Fig. 158 1.0 : 1098-1223X (M)

PRODUCT DISTRIBUTION Ar:CH3Cl:H2:O2= 96:2:1:1

Fig. 1591.0 sec ' 10.5 ' Tube

PRODUCT DISTRIBUTION

Ar:СН3Cl:H2:O2-96:2:1:]

Fig. 1601.0 s $1098-1123 \mathrm{~K}(\mathrm{M})$

PRODUCT DISTRIBUTION
 AR:CH3Cl:CH4:O2-96:1:1:2

Fig. 101 1173K "10.5* Tube

PRODUCT DISTRIBUTION

Ar:CH3Cl:CH4:O2-96:1:1:2

FIg. 162 1173K (M)

PRODUCT DISTRIBUTION AR:CH3Cl:CH4:O2-96:1:1:2

Fig. 163 1173K '10.5' Tube

PRODUCT DISTRIBUTION Ar:CH3Cl:CH4:O2-96:11:1:2

Fig. 164 1173K (M)

PRODUCT DISTRIBUTION Ar:CH3Cl:CH4:O2-96:1:1:2

Fig. 1651.0 sec ' 10.5 ' Tube

PRODUCT DISTRIBUTION

 Ar:CH3Cl:CH4:O2-96:1:1:2

Fig.lo6 1.0 : $1098-1223 \mathrm{~K}$ (M)

PRODUCT DISTRIBUTION Ar:CH3Cl:CH4:O2-96:1:1:2

Fig. 1671.0 sec ' 10.5 ' Tube

PRODUCT DISTRIBUTION
 Ar:CH3Cl:CH4:O2-96:1:1:2

Fig. 168 1.0: $1098-1223 \mathrm{~K}(M)$

PRODUCT DISTRIBUTION Ar:CH3Cl:CH4:O2-95:2:1:2

Fig. 1891173 K " 10.5^{\prime} Tube

PRODUCT DISTRIBUTION Ar:CH3Cl:CH4:O2-95:2:1:2

Fig. 1701173 K (M)

PRODUCT DISTRIBUTION Ar:CH3Cl:CH4:O2"95:2:1:2

F1g. 171 1173X 10.5^{\prime} Tube

PRODUCT DISTRIBUTION Ar:CH3Cl:CH4:O2-95:2:1:2

Fig. 1721173 K (M)

PRODUCT DISTRIBUTION Ar:CH3Cl:CH4:O2*95:2:1:2

Fig. $1731.0 \mathrm{sec} \cdot 10.5^{\prime \prime}$ Tube

PRODUCT DISTRIBUTION Ar:CH3Cl:CH4:O2"95:2:1:2

PRODUCT DISTRIBUTION Ar:CH3Cl:CH4:O2-95:2:1:2

Fig. $1751.0 \mathrm{sec}{ }^{\prime} 10.5$ ' Tube

PRODUCT DISTRIBUTION

 Ar:CH3Cl:CH4:O2-95:2:1:2

Fig. $1761.0: 1098-1223 \mathrm{~K}(\mathrm{M})$

The sensitivity computer code SENS (Lutz et al. 1987, Won and Bozzelli 1991) was utilized to determine reactions exhibiting high sensitivity to various species in the given reaction system.

The dominant initiation step either in $\mathrm{CH} 3 \mathrm{Cl} / \mathrm{H} 2 / \mathrm{O} / \mathrm{Ar}$ or in $\mathrm{CH} 3 \mathrm{Cl} / \mathrm{CH} 4 / \mathrm{O} / \mathrm{Ar}$ reaction is unimolecular decomposition of $\mathrm{CH}_{3} \mathrm{Cl}$ to $\mathrm{CH}_{3}+\mathrm{Cl}$ due to its relatively low Ea and higher A factor (Table 4). Reactions of O_{2} with reactants also are very important at the beginning stage including H abstraction by O_{2}. A brief reaction rate comparison has been done as the following example is shown:
for $\mathrm{Ar}: \mathrm{CH}_{3} \mathrm{Cl}: \mathrm{CH}_{4}: \mathrm{O}_{2}=96: 1: 1: 2$, at 727 C (1000K).
Reaction Rate (mol/ $\mathrm{cm}^{3} * \mathrm{~s}$)
$\mathrm{CH}_{3} \mathrm{Cl}=\mathrm{CH}_{3}+\mathrm{Cl} \quad 5.85 \mathrm{E}-11$
$\mathrm{CH}_{3} \mathrm{Cl}={ }^{1} \mathrm{CH}_{2}+\mathrm{HCl} \quad 2.00 \mathrm{E}-16$
$\mathrm{CH}_{3} \mathrm{Cl}+\mathrm{O}_{2}=\mathrm{CH}_{2} \mathrm{Cl}+\mathrm{HO}_{2} \quad 5.60 \mathrm{E}-14$
$\mathrm{CH}_{4}=\mathrm{CH}_{3}+\mathrm{H} \quad$ 1.50E-15
$\mathrm{CH}_{4}+\mathrm{O}_{2}=\mathrm{CH}_{3}+\mathrm{HO}_{2} \quad 1.16 \mathrm{E}-14$
It should be noted that the relative reaction rate between $\mathrm{CH}_{3} \mathrm{Cl}$ unimolecular decomposition and H abstraction from $\mathrm{CH}_{3} \mathrm{Cl} / \mathrm{CH}_{4} / \mathrm{H}_{2}$ by O_{2} molecule is dependent on not only their kinetic rate constant but also these species relative concentration. At the initial reaction stages, the above reactions contribute to initiation. At the stage for medium to high conversion of $\mathrm{CH}_{3} \mathrm{Cl}$, sensitivity analysis indicates that these reactions proceed in reverse.

Sensitivity analysis tells us that the most significant routes for formation of CH_{3} radical in $\mathrm{Ar}: \mathrm{CH}_{3} \mathrm{Cl}: \mathrm{CH}_{4}: \mathrm{O}_{2}=$ 96:2:2:1 system at 1.0 sec and 1173 K are following reactions:
$\mathrm{CH}_{2} \mathrm{Cl}+\mathrm{HCl}=\mathrm{CH}_{3} \mathrm{Cl}+\mathrm{Cl}$
$\mathrm{CH}_{3} \mathrm{Cl}=\mathrm{CH}_{3}+\mathrm{Cl}$
The production for CH_{4} stems from the reactions:
$\mathrm{CH}_{3} \mathrm{Cl}+\mathrm{CH}_{2} \mathrm{Cl}=\mathrm{CH}_{2} \mathrm{Cl}_{2}+\mathrm{CH}_{3}$
$\mathrm{CH}_{3} \mathrm{Cl}=\mathrm{CH}_{3}+\mathrm{Cl}$
Results from both model and experiment show that CH_{4} production is close to or greater than its loss at the temperature below 1173 K and 1.0 sec in $\mathrm{CH}_{3} \mathrm{Cl} / \mathrm{CH}_{4} / \mathrm{O}_{2} / \mathrm{Ar}$ systems. These results from the important reaction $\mathrm{CH}_{3} \mathrm{Cl}=$ $\mathrm{CH}_{3}+\mathrm{Cl}$.

Sensitivity analysis also help us probe key reaction channel for the CO conversion to CO_{2}. The reaction $\mathrm{CO}+$ $\mathrm{OH}=\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ for formation of CO_{2} is an important pathway. While when the concentration of HCl is comparable to that of CO , the reaction $\mathrm{HCl}+\mathrm{OH}=\mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}$ depletes OH and effectively inhibits co conversion. As the rate for the latter is faster than that of the former (the latter $\mathrm{k}=1.5 \mathrm{E}+12 \mathrm{~cm} 3 / \mathrm{mol} * \mathrm{sec} ;$ the former $\mathrm{k}=2.42 \mathrm{E}+11$ cm $3 / \mathrm{mol} * \mathrm{sec}$ at 1000 K). Model research results further indicate reactions of CO with HO_{2} and ClO become more important for Co conversion to CO_{2} under the conditions stated above:
$\mathrm{CO}+\mathrm{HO}_{2}=\mathrm{CO}_{2}+\mathrm{OH}$
$\mathrm{CO}+\mathrm{ClO}=\mathrm{CO}_{2}+\mathrm{Cl}$
The channel $\mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{O}_{2}=\mathrm{CH}_{2} \mathrm{CHO}+\mathrm{O}$ is an important reaction that is analyzed by Bozzelli and Dean. Input of this reaction into mechanism leads to increases of major species $\left(\mathrm{CH}_{3} \mathrm{Cl}, \mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}, \mathrm{CO}\right)$ conversion to CO 2 with The reaction $\mathrm{CH}_{2} \mathrm{CHO}=\mathrm{CH}_{2} \mathrm{CO}+\mathrm{H}$ is also important here. Model research found that $\mathrm{C}_{2} \mathrm{H}_{3}$ could liberate reactive O atom from less active O_{2} molecule and $\mathrm{CH}_{2} \mathrm{CHO}$ decomposition could release active H atom.

Another interesting species is ${ }^{1} \mathrm{CH}_{2}$. Model research indicated that it was not important for all reactions at below 1173 K . Whereas at temperature above 1198 K the following reactions accelerate conversion of $\mathrm{CH}_{4}, \mathrm{CH}_{3} \mathrm{Cl}$, $\mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}$, and $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$ to CO and CO_{2}. ${ }^{1} \mathrm{CH}_{2}+\mathrm{H}_{2}=\mathrm{CH}_{3}+\mathrm{H}$ ${ }^{1} \mathrm{CH}_{2}+\mathrm{O}_{2}=\mathrm{CO}+\mathrm{OH}+\mathrm{H}$

When temperature increases to above 1173 K , the reaction rate for $\mathrm{CH}_{3} \mathrm{Cl}={ }^{1} \mathrm{CH}_{2}+\mathrm{HCl}$ is increased because of its higher A factor. The reaction of ${ }^{1} \mathrm{CH}_{2}$ with O_{2} and H_{2} causes more active OH and H production, which leads to $\mathrm{CH}_{4}, \mathrm{CH}_{3} \mathrm{Cl}, \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}$, and $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$ further conversion.

Modeling research found formaldehyde is important product in our studied systems. It has yet to be experimentally monitored.

CHAPTER 4

CONCLUSIONS

Comparison between experimental data and detailed modeling is presented for the high temperature combustion systems involving $\mathrm{CH}_{3} \mathrm{Cl} / \mathrm{H}_{2} / \mathrm{O}_{2} / \mathrm{Ar}$ and $\mathrm{CH}_{3} \mathrm{Cl} / \mathrm{CH}_{4} / \mathrm{O}_{2} / \mathrm{Ar}$ reaction systems. Rate constants of important C_{2} species reaction with O and $O H$ are analyzed and reported.

Experimental and modeling results indicate:

1. The initiation step is unimolecular decomposition of $\mathrm{CH}_{3} \mathrm{Cl}$ to $\mathrm{CH}_{3}+\mathrm{Cl}$ in all studied systems under all given conditions.
2. O_{2} contributes to accelerated decay of $\mathrm{CH}_{3} \mathrm{Cl}, \mathrm{CH}_{4}, \mathrm{H}_{2}$ and C_{2} intermediates (as $\mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}$, and $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$) formation in fuel rich conditions and O_{2} also serves to help $\mathrm{CH}_{3} \mathrm{Cl}$ conversion to CO_{2} in fuel lean conditions.
3. The reaction $\mathrm{OH}+\mathrm{HCl}=\mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}$ is an important source of OH loss, which strongly effects the rate of conversion of CO to CO_{2} in fuel rich conditions. Therefore, $\mathrm{CO}+$ $\mathrm{HO}_{2}=\mathrm{CO}_{2}+\mathrm{OH}$, and $\mathrm{CO}+\mathrm{ClO}=\mathrm{CO}_{2}+\mathrm{Cl}$ both become more important for CO conversion to CO .
4. CH_{4} formation occurs in $\mathrm{CH}_{3} \mathrm{Cl} / \mathrm{H}_{2} / \mathrm{O}_{2} / \mathrm{Ar}$ reaction systems from CH_{3} reactions with H_{2} an $\mathrm{H}_{2} \mathrm{O}_{2}$.
5. Conversion of C_{1} to C_{2} species results from combination reactions $\mathrm{CH}_{3}+\mathrm{CH}_{3}, \mathrm{CH}_{3}+\mathrm{CH}_{2} \mathrm{Cl}$, and $\mathrm{CH}_{2} \mathrm{Cl}+$ $\mathrm{CH}_{2} \mathrm{Cl}$.
6. ${ }^{1} \mathrm{CH}_{2}$ reactions with $\mathrm{O}_{2}, \mathrm{H}_{2}$, and contributes to
CH_{4} and $\mathrm{C}_{2} \mathrm{H}_{2}$ conversion and CO and CO_{2} formation at higher tempertures. This comes from above ${ }^{1} \mathrm{CH}_{2}$ reactions liberating more active OH , and H radicals.
7. $\mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{O}_{2}=\mathrm{CH}_{2} \mathrm{CHO}+\mathrm{o}$ is very important. Its small rate changes drastically influences the $\mathrm{CH}_{3} \mathrm{Cl}$ conversion due to production of significant O atoms from O_{2}. 8. Modeling research found that formaldehyde is an important product, which has yet to be experimentally monitored.

APPENDIX

GISOQRRK INPUT DATA and CALCULATION RESULTS

Table A-a

$$
\begin{aligned}
\mathrm{CH}_{2} \mathrm{Cl}+\mathrm{H}<====>\left(\mathrm{CH}_{3} \mathrm{Cl}\right)^{\#} \stackrel{2}{3}=\underset{\mathrm{CH}}{3}+\mathrm{Cl} \\
===\mathrm{CH}_{3} \mathrm{CH}_{2}+\mathrm{HCl}
\end{aligned}
$$

K	A	Ea	Source
1	$1.00 E+14$	0.00	a
-1	$1.44 \mathrm{E}+16$	100.50	b
2	$1.39 E+15$	82.50	c
3	$1.69 \mathrm{E}+14$	103.10	d
$A=(\mathrm{cc} / \mathrm{sec}$, $\mathrm{sec} . \mathrm{Ea}=\mathrm{Kcal} / \mathrm{mol}$ below is same			
$\langle v\rangle=1565.261 / \mathrm{cm}$			
Sigma $=4.18 \mathrm{~A}$		$e / \mathrm{k}=350 \mathrm{~K}$	f
Number of Oscillator for $\mathrm{CH}_{3} \mathrm{Cl}=9$ Its Mass $=50.5$			
Mass $=40$ Sigma $=3.330 \mathrm{~A} \quad \mathrm{e} / \mathrm{K}=113.8 \mathrm{~K}$			
Energy Transferred $=630 \mathrm{cal} / \mathrm{mol}$			

a. A1 and Eal are taken as those for $1-\mathrm{C}_{3} \mathrm{H}_{7}+\mathrm{H}=\mathrm{C}_{3} \mathrm{H}_{8}$. Allara and Shaw J. Phys. Chem. Ref. Data 9, 528, (1980)
b. k-1 is based on Thermodynamic Analysis for Reaction.
c. $\mathrm{A}=2 \mathrm{E} 13$, data of reference reaction, $\mathrm{CH} 3+\mathrm{C} 2 \mathrm{H} 5=\mathrm{C} 3 \mathrm{H} 8$ as $A-2$. A2 is based on thermrxn. Reference is same as that of a. $\mathrm{Ea}=\triangle \mathrm{H}-\mathrm{RT}$ (data are from Thermorxn.).
d. A3 is based on Transition State Theory (TST), $A=e k T / h$, $\triangle S=$ (no rotor is lost), Ea3 $=\angle \mathrm{H}+3.75$. (K range between 800-1500K).
e. V is based on the cpfit.
f. Sigma and e / k are based on the equation from The Properties of Gases and Liquids by Robert, C. Reid et al. (McGRAW-HILL).

Table A-b

Calculated Apparent Reaction Rate Constants*

Reaction P	A	N	E
76.0	$1.560 \mathrm{E}+26$	-4.94	4.27
$\mathrm{CH}_{2} \mathrm{Cl}+\mathrm{H}=\mathrm{CH}_{3} \mathrm{Cl}$	$1.622 \mathrm{E}+27$	-4.95	4.29
	$2.305 \mathrm{E}+28$	-4.99	4.50
	7.921E+29	-5.12	5.68
$\mathrm{CH}_{2} \mathrm{Cl}+\mathrm{H}=\mathrm{CH}_{3}+\mathrm{Cl}$	$3.267 \mathrm{E}+15$	-0.46	0.69
	$3.453 \mathrm{E}+15$	-0.47	0.71
	$5.774 \mathrm{E}+15$	-0.53	0.96
	$7.938 \mathrm{E}+16$	-0.82	2.50
$\mathrm{CH}_{2} \mathrm{Cl}+\mathrm{H}={ }^{1} \mathrm{CH}_{2}+\mathrm{HC}$	$2.420 \mathrm{E}+06$	1.26	7.64
	$2.460 \mathrm{E}+06$	1.25	7.65
	$2.890 \mathrm{E}+06$	1.24	7.72
	$1.089 \mathrm{E}+07$	1.08	8.35

* P Unit is Torr; The below is same. Bath gas is Ar; Temperatures range 800-1500K.

Table B-a

$$
\begin{aligned}
& \mathrm{CH} \# \mathrm{CH}+\mathrm{O} \stackrel{1}{1}==^{3}[\mathrm{O} . \mathrm{CH} * \mathrm{CH} .]^{\#} \stackrel{2}{--->} \mathrm{HCCO}+\mathrm{H}
\end{aligned}
$$

$$
\begin{aligned}
& \text { : } \\
& \text { : : } 5 \\
& { }^{3} \mathrm{CH}_{2}+\mathrm{CO}
\end{aligned}
$$

k	A	Ea	Source
1	7.00 E 12	1.00	a
-1	2.19 E 13	46.20	b
2	6.60 E 13	30.00	c
4	5.62 E 13	21.50	d
-4	1.12 E 14	38.00	e
5	2.55 E 13	19.20	f
6	1.07 E 14	46.20	g

Units: $A=(c c / s e c ~ m o l)$ or $1 / \mathrm{sec}$ Ea $=\mathrm{Kcal} / \mathrm{mol}$
<v> = $1091.31 / \mathrm{cm}$
h
LJ Parameters:
Sigma $=4.25 \mathrm{~A} \quad e / k=301.8 \quad i$
Number of Oscillator for $\mathrm{OCHCH}=9$ Mass $=42$
Third body is Ar
Mass $=40 \quad$ Sigma $=3.33 \mathrm{~A} \quad \mathrm{e} / \mathrm{k}=136.50$
Energy Transferred $=630 \mathrm{cal} / \mathrm{mol}$
a. A and Ea are estimated using for the kinetic data of acetylene reaction with hydroxyl radical.
b. Reverse reaction data are from thermrxn and thermodynamics.
C. $\mathrm{A}=3.98 \mathrm{E} 12, \mathrm{Ea}=2.7$ data of reference reaction, $\mathrm{H}+\mathrm{CH}_{2} * \mathrm{C} * \mathrm{CH}_{2}=\mathrm{CH}_{2} \mathrm{CHC} . \mathrm{H}_{2}$ Dean A. M. J. Phys. Chem. 89,

4600, (1985) and based on thermrxn.
d. Based on TST: Ea4 $=$ Rs $+\triangle \mathrm{H}+\mathrm{Eab}=16+0+5.5=21.5$.
$A_{4}=10^{13.75}=5.62 \mathrm{E} 13$; degeneracy=1; Eab is obtained using for Eab=5.5 of reference reaction, $\mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{CH}_{4}=\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{CH}_{3}$ Tsang, W. et al. J. Phys. Chem. Ref. Data 15, 1087, (1986).
e. Based on TST: degeneracy=2; Ea-4=16+16.5+5.5=38.0.
f. Reference reaction, $\mathrm{CO}+\mathrm{CH}_{3}=\mathrm{CH}_{3} \mathrm{CO} \mathrm{A}=5.19 \mathrm{Ell} \mathrm{Ea}=6.5$ Anastasi, C. et al. J. Chem. Soc. Faraday I 78, 2423, (1982) and based on thermrxn.
g. CH2C.O. species β scisson forms HC\#CO. + H. HC\#CO. is easy to convert HCCO . Reference reaction $\mathrm{CH}_{3} \mathrm{C} \# \mathrm{CH}+\mathrm{H}=$ $\mathrm{CH}_{3} \mathrm{C}$. * CH .
k. <v> is based on cpfit.

1. IJ parameters are based on refernce species $\mathrm{CH}_{2} \mathrm{CO}$.

Table B-b

Reaction P	A	n	Ea
76.0	$4.41 \mathrm{E18}$	-3.27	2.79
$\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{O}=\mathrm{OCHCH} 760.0$	$4.44 \mathrm{El9}$	-3.27	2.79
7600.0	4.72E20	-3.28	2.83
76.0	6.38 E 09	0.81	0.53
$\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{O}=\mathrm{HCCO}+\mathrm{H} 760.0$	$7.04 \mathrm{E09}$	0.76	0.59
7600.0	7.55 E 09	0.75	0.62
76.0	$1.87 \mathrm{El7}$	-2.96	2.65
$\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{O}=\mathrm{CH}_{2} \mathrm{C} .0 .760 .0$	$1.89 \mathrm{El8}$	-2.96	2.65
27600.0	2.04 E 19	-2.97	2.69
76.0	$7.06 \mathrm{El4}$	-0.66	1.80
$\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{O}={ }^{3} \mathrm{CH}_{2}+\mathrm{CO} 760.0$	$7.11 \mathrm{E14}$	-0.66	1.80
7600.0	7.72E14	-0.67	1.84

* Bath gas is Ar; Temperatures range from 800-1500 K.

k	A	Ea	Sou
1	$5.12 \mathrm{El2}$	1.40	a
-1	5.50 E 13	38.40	b
2	3.12 E 13	47.48	c
4	7.60E12	25.00	d
-4	$1.52 \mathrm{E13}$	49.50	e
5	8.23E12	42.71	f
7	7.59 E 12	33.60	9
-7	$2.28 \mathrm{E13}$	42.89	h
8	$1.61 \mathrm{E13}$	20.78	i
9	$3.39 \mathrm{E13}$	51.31	j
Units: $A=(\mathrm{cc} / \mathrm{sec} \mathrm{mol})$ or $1 / \mathrm{sec} \mathrm{Ea}=\mathrm{Kcal} / \mathrm{mol}$			
$\langle\mathrm{v}\rangle=1278.51 / \mathrm{cm}$			k
LJ Parameters:			1
Sigma $=4.29 \mathrm{~A} \quad e / k=334.0$			
Number of Oscillator for HOCHCH. $=12$ Mass $=43$Third body is Ar			
Mass $=40 \quad$ Sigma $=3.33 \mathrm{~A} \quad \mathrm{e} / \mathrm{k}=136.50$			
Energy Transferred $=630 \mathrm{cal} / \mathrm{mol}$			

a. A and Ea derived from Liu, A. et al. J. Chem. Phys., 92 3942, (1988).
b. Reverse reaction data are from thermrxn and thermodynamics.
c. $\mathrm{A}=5.8 \mathrm{El2}, \mathrm{Ea}=2.414$, data of reference reaction $\mathrm{C}_{2} \mathrm{H}_{3}$ $\Leftrightarrow \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{H}$ (4 Refs. of NIST) to obtain A. Ea comes from thermrxn and thermodynamics.
d. Based on TST: loss of one rotor and degeneracy $=1$
$10^{13.75-4.0 / 4.6}=7.6 \mathrm{El2}_{2} ; \mathrm{Ea}_{4}=\mathrm{Rs}+\triangle \mathrm{H}+\mathrm{Eab}=15+0+10=25.0$
Eab is obtained using for Eab=10 data of reference reaction: $\mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{C}_{2} \mathrm{H}_{6}=\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{2} \mathrm{H}_{5}$ Hidaka, Y . et al Int. J. Chem. Kinet. 17, 441 , (1985).
e. Based on TST: degeneracy $=2$; Ea-4 $=15+25.4+10=50.4$
f. Use for reference reaction $\mathrm{H}+\mathrm{C} * \mathrm{C} * \mathrm{C}=\mathrm{C} * \mathrm{CCH}_{2}$. $\mathrm{A}=4$. OE12 Ea=2.7 and on thermrxn and thermodynamics.
g. Based on TST: loss of 1 rotor and degeneracy $=1$
$10^{13.75-4.0 / 4.6}=7.6 \mathrm{El2}^{12} \mathrm{Ea}_{7}=\mathrm{Rs}+\triangle \mathrm{H}+\mathrm{Eab}=27.6+0+6.0=33.6$ Eab is obtained using for that of reference reaction: $\mathrm{CH}_{3}+\mathrm{CH}_{3} \mathrm{CHO}=\mathrm{CH}_{3} \mathrm{CO}+\mathrm{CH}_{4}$
h. Based on TST: degeneracy $=3 ; \mathrm{Ea}_{-7}=27.6+9.29+6.0=42.89$
i. Based on $\mathrm{A}=6.2 \mathrm{Ell}, \mathrm{Ea}=6.7$, data of reaction $\mathrm{CH}_{3}+\mathrm{CO}=$ $\mathrm{CH}_{3} \mathrm{CO}$ and thermrxn. The above data are from the fit of that of two references from NIST.
j. Based on rate data of reaction $\mathrm{CH}_{2} \mathrm{CO}+\mathrm{H}=\mathrm{CH}_{3} \mathrm{CO}$ and thermrxn. Wagner, H. Gg. et al. Ber Bunsenges, Phys. Chem. 76, 667, (1972).
k. <v> is based on cpfit.

1. LJ parameters are based on arithmetic mean of that of $\mathrm{CH}_{3} \mathrm{CHO}$ and $\mathrm{CH}_{2} \mathrm{CO}$.

Table C-b
Calculated Apparent Reaction Rate Constants*

Reaction	P	A	n	Ea
	76.0	1.64 E 27	-5.38	5.58
$\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{OH}=\mathrm{HOCHCH}$.	760.0	3.37 E 28	-5.46	5.93
	7600.0	4,49E30	-5.75	7.71
	76.0	$2.59 \mathrm{E09}$	0.93	12.41
$\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{OH}=\mathrm{HOCCH}+\mathrm{H}$	760.0	$3.24 \mathrm{E09}$	0.90	12.51
	7600.0	1.97 ElO	0.69	13.30
	76.0	1.74 E 25	-4.83	5.29
$\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{OH}=\mathrm{C}$.	760.0	5.07 E 26	-4.95	5.80
	0	7.02E29	-5.51	8.72
	-	$1.33 \mathrm{El2}$	-0.03	2.15
$\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{OH}=\mathrm{CH}_{2} \mathrm{CO}+\mathrm{H}$	760.0	$1.22 \mathrm{E13}$	-0.32	2.84
	7600.0	1.31 El 6	-1.13	6.15
	76.0	5.19E20	-3.87	4.40
$\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{OH}=\mathrm{CH}_{3} \mathrm{CO}$	760.0	1.66 E 22	-4.00	4.93
	7600.0	5.47 E 25	-4.67	8.05
	76.0	$7.89 \mathrm{El6}$	-1.30	3.27
$\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{OH}=\mathrm{CH}_{3}+\mathrm{CO}$	760.0	$2.68 \mathrm{El7}$	-1.44	3.81
	7600.0	1.56 E 20	-2.18	7.04

[^0]Table D-a

	$0<\frac{1}{=} \text {; }$	$\left[\mathrm{H}_{2} \cdot\right]^{\#}$ $\left(\mathrm{CH}_{2} \cdot\right]^{\#}$ 7 0] ${ }^{\#}$	
k	A	Ea	Sou
1	$6.40 \mathrm{El2}$	1.59	a
-1	1.87 E 13	21.23	b
2	2.46 E 13	5.70	c
3	7.70E13	20.40	d
4	1.00 E 13	15.00	e
-4	$1.42 \mathrm{El3}$	26.90	e
7	4.28E12	9.30	f
-7	$6.42 \mathrm{El2}$	89.63	f
8	2.85E16	83.90	9
9	8.30E13	85.39	h
Units: $\mathrm{A}=(\mathrm{cc} / \mathrm{sec} \mathrm{mol})$ or $1 / \mathrm{sec} \mathrm{Ea}=\mathrm{Kcal} / \mathrm{mol}$			
```<v> = 1328.7 1/cm LJ Parameters: Sigma = 4.64 A e/k = 396.4 Number of Oscillator for . OCH2 CH2. = 15 Mass = 44 Third body is Ar Mass =40 Sigma = 3.33 A e/k = 136.50 Energy Transferred = 630 cal/mol```			

a. A and Ea are derived from Cvetanovic, R. J. et al. J. Chem. Phys. Ref. Data 16, 261, (1987).
b. Thermodynamic data for the reverse reaction are from Takayuki FUENO, et al. Chem Phys. Letter 167, 4, 291 (1990) and thermodynamics.
c. $A=7.94 \mathrm{E} 12$; $\mathrm{Ea}=2.9$, data of reference reaction as $\mathrm{k}_{-2}$ $\mathrm{CH}_{3} \mathrm{CH} * \mathrm{CH}_{2}+\mathrm{H}=\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}$ Dean, A. M. J. Phys. Chem. 89, 4600, (1985) and based on thermodynamics.
d. $A=5.19 \mathrm{E} 11$; $\mathrm{Ea}=6.6$, data of reference reaction as $\mathbf{k}_{-3}$ $\mathrm{CH}_{3}+\mathrm{CO}=\mathrm{CH}_{3} \mathrm{C} .0$ Anastasi, C. et al. J. Chem. Soc. Faraday Trans $I$, 78, 2423 (1982) and based on thermodynamics.
e. $\mathrm{K}_{4}$ reference reaction $\mathrm{CH}+\mathrm{N} 2=\mathrm{HCN}+\mathrm{N}$ spin forbidden Ea=15 as Ea ${ }_{4} A_{4}$ is estimated $k_{-4}$ is based on thermodynamics and microreversibility.
f. Ea $7_{/-7}$ are from data of Takayuki FUENO. $A_{7 /-7}$ are based on TST degeneracy $=2$ for $A_{7}$; degeneracy $=\frac{3}{3}$ for $A_{-7}$.
g. $A=1.8 E 13 ; E a=0$, data of reference reaction $\mathrm{CH}_{3}+\mathrm{CHO}=\mathrm{CH}_{3} \mathrm{CHO}$, Tsancj, ?. J. Phys. Chem. Ref. data 15, 1087, (1987) and bascc $\because$ thermodynamics.
h. $A=1 E 14$, data of reaction $\mathrm{CH}_{2} \mathrm{O}=\mathrm{CHO}+\mathrm{H}$ and $\mathrm{A}_{9}$ is adjusted to be $(30 / 44)^{1 / 2 * 1 E 14}=8.3 \mathrm{E} 13$ and Ea is based on thermodynamics.
i. <v> is based on cpfit.
j. LJ parameters are used for that of. $\mathrm{CH}_{2} \mathrm{CHOH}$.

## Table D-b

Calculated Apparent Reaction Rate Constants*

Reaction	P	A	n	Ea
$\mathrm{C}_{2} \mathrm{H}_{4}+{ }^{3} \mathrm{O}={ }^{3}[\mathrm{CH} 2 \mathrm{CH} 2$	76.0	5.67E16	-2.82	2.61
	0]760.0	5.69 E 17	-2.82	2.61
	7600.0	5.85E18	-2.82	2.63
	76.0	$2.69 \mathrm{E13}$	-0.20	1.76
$\mathrm{C}_{2} \mathrm{H}_{4}+{ }^{3} \mathrm{O}=. \mathrm{CH}_{2} \mathrm{CHO}+$	H 760.0	2.70E13	-0.20	1.76
	7600.0	2.78E18	-0.21	1.78
$\mathrm{C}_{2} \mathrm{H}_{4}+{ }^{3} \mathrm{O}={ }^{3} \mathrm{CH}_{2}+\mathrm{CH}_{2}$	76.0	9.49E-02	3.91	-0.35
	0760.0	$9.53 \mathrm{E}-02$	3.91	-0.35
	7600.0	9.93E-02	3.90	-0.33
$\mathrm{C}_{2} \mathrm{H}_{4}+{ }^{3} \mathrm{O}=1{ }^{1} \mathrm{CH}_{2} \mathrm{CH}_{2}$	\%..	2.99E08	-0.48	1.13
	01750.0	3.05 E 09	-0.48	1.14
	7600.0	3.63 E 10	-0.50	1.24
$\mathrm{C}_{2} \mathrm{H}_{4}{ }^{3} \mathrm{O}=\mathrm{CH}_{3} \mathrm{CHO}$	76.0	1.22 E 07	1.28	1.08
	760.0	1.50 E 06	1.57	0.81
	7600.0	4.06E05	1.75	0.71
$\mathrm{C}_{2} \mathrm{H}_{4}+{ }^{3} \mathrm{O}=\mathrm{CH}_{3} \mathrm{CO}+\mathrm{H}$	76.0	2.03 E 33	-6.23	40.35
	760.0	1.11 E 27	-4.34	39.74
	7600.0	1.61 El 6	-1.17	36.82
$\mathrm{C}_{2} \mathrm{H}_{4}+{ }^{3} \mathrm{O}=\mathrm{CH}_{3}+\mathrm{CHO}$	76.0	3.32 E 37	-6.65	40.57
	760.0	2.70 E 30	-4.54	39.49
	7600.0	1.89 E 19	-1.29	36.32

[^1]Table E-a


$k$	A	Ea	Source
1	$5.42 \mathrm{El2}$	0.00	a
-1	2.10 E 13	29.70	b
2	$1.27 \mathrm{El3}$	39.62	c
4	$1.31 \mathrm{El2}$	38.44	d
-4	2.28 E 13	35.00	e
5	5.40 E 13	20.72	f
6	2.00 E 14	23.30	g

Units: $A=(c c / s e c ~ m o l)$ or $1 / \mathrm{sec} \mathrm{Ea}=\mathrm{Kcal} / \mathrm{mol}$
<v> $=1404.721 / \mathrm{cm}$
IJ Parameters:
Sigma $=4.641 \mathrm{~A}$
$e / k=396.36$
Number of Oscillator for $\mathrm{HOCH}_{2} \mathrm{CH}_{2}$. $=18$ Mass $=45$
Third body is Ar
Mass $=40 \quad$ Sigma $=3.330 \mathrm{~A} \quad \mathrm{e} / \mathrm{k}=113.8$
Energy Transferred $=630 \mathrm{cal} / \mathrm{mol}$
a. A and Ea derived from Atkinson, R. et al. J. Chem. Phys., Ref. Data 18, 881, (1989).
b. Reverse reaction is from thermrxn and thermodynamics.
c. Reference reaction $\mathrm{CH}_{3} \mathrm{C} * \mathrm{C}+\mathrm{H}=\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \cdot \mathrm{~A}_{-2}=$ $7.94 \mathrm{E} 12 \mathrm{Ea}_{-2}=2.9$ and on thermrxn and thermodynamics.
d. Based on TST: loss of two rotors and degeneracy $=1$
$10^{13.75-7.5 / 4.6}=1.31 \mathrm{E12} ; \mathrm{Ea}_{4}=\mathrm{Rs}+\triangle \mathrm{H}+\mathrm{Eab}=26+3.44+9=38.44$
e. Based on TST: degeneracy $=3 ; \mathrm{Ea-4}=26+0+9=35$
f. Reference reaction $\mathrm{CH}_{3}+\mathrm{C} * \mathrm{C}=\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}$ $\mathrm{A}=3.16 \mathrm{El1}, \mathrm{Ea}=7.7^{3}$ as $\mathrm{k}_{5}$ and on thermrxn and thermodynemics.
g. A and Ea are from Heicklen, J. Advances in Photochem. 14, 177, (1988).
h. <v> is based on the cpfit.
i. Sigma and $e / k$ of HOCH2CH2. are used for data of HOCHCH2 and based on the equation from Properties of Gaseand Liquids by Robert, c. Reid et al. (MCGROW-HILL BOOK COMPANY) -

Table E-b
Calculated Apparent Reaction Rate Constants*

Reaction . p	A	n	Ea
76.0	2.95E48	-11.20	13.43
$\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{OH}=\mathrm{HOCH}_{2} \mathrm{CH}_{2} 760.0$	5.71 E 45	-9.91	14.22
27600.0	6.10 E 34	-6.59	10.81
76.0	2.88 El 5	-0.84	12.04
$\begin{array}{r} \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{OH}=\mathrm{HOCHCH}_{2}+\mathrm{H} 760.0 \\ 7600.0 \end{array}$	$8.04 \mathrm{El7}$	-1.50	14.32
	3.93E20	-2.17	18.75
$\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{OH}=\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}$	9.23E30	-7.16	17.43
	2.68 E 33	-7.54	19.27
	7.93E32	-7.00	21.40
$\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{OH}=\mathrm{CH}_{3}+\mathrm{CH}_{2} \mathrm{O} \begin{array}{r}760.0 \\ 7600.0\end{array}$	$1.11 \mathrm{El7}$	-1.72	12.59
	2.17E19	-2.34	14.84
	1.36 E 21	-2.74	18.90
$\begin{array}{r} 76.0 \\ \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{OH}=\mathrm{CH}_{3} \mathrm{CHO}+\mathrm{H} \quad 760.0 \\ 7600.0 \end{array}$	1.77E15	-1.09	11.95
	$4.63 \mathrm{El7}$	-1.75	14.25
	1.20E20	-2.33	18.64

* Bath gas is Ar; Temperatures range from 800-1500 K.


## BIBLIOGRAPHY

1 Shilov, A. E., et al., J. Fiz. Kim., 33 (1959): 6.
2 Holbrook, K. A., Trans. Faraday Soc., 57 (1961): 2151.
3 Frost, W., et al., Can. J. Chem., 43 1965: 3052.
4 Kondo, O., et al., Bull. Chem. Soc. Jpn., 53 (1980): 2133.

5 LeMoan, G., C. R. Aczd. Sci. (Paris), 258 (1964): 1535.

6 Benson, S. W., International Journal of Chemical Kinetics, 16 (1984): 307-333.

7 Westbrook, C. K., 19th Symposium (International) on Combustion/Combustion Institute Pittsburgh, (1982): 127.

Benson, S. W., Thermochemical Kinetics, John Wiley and Sons New York (1968).

9 Senkan, S. M., et al., Combust, Sci and tech, 60 (1988): 45-62.

Senkan, S. W., et al., Combust Sci tech, 54 (1987): 333.

11 Miller, T. H., et al., CHEMKIN: A GeneralPurpose, Problem-Independent, Transportable, Fortran Chemical Kinetics Code Package, SANDIN, (1980).

Dean, A. M., and Westmoreland, P. R., Int. J. Chem. Kinet. 19 (1987): 207-228.

Westmoreland, P. R., and Dean, A. M. AIChE J., 32 (1986): 171.

Dean, A. M., J. phys. Chem., 89 (1985): 4600.
Ritter, E., Bozzelli, J. W., and Dean, A. M., J. Phys. Chem. 94 (1990): 2493.

16 Miller J. A. and Melius, C. F., Twenty-Second Symposium (International) on Combustion/The Combustion Institute (1988): 1031-1039.

Modeling research needs accurate thermodynamic properties, thermodynamic analysis, QRRK kinetic analysis, and reliable kinetic constant (rate data) from experimental measurement. This study is a survey of reaction rate data important in describing high-temperature combustion of $\mathrm{C}_{2}$ species because oxidation of $C_{2}$-species plays an important role in hydrocarbon and chlorocarbon combustion. The preceding work (Warnatz [1] and Tsang [2]) did not include the rate data of chlorine radical reactions. This work concentrates on evaluation and development of the rate constants of $\mathrm{C} 2 \mathrm{H} 6, \mathrm{C} 2 \mathrm{H} 4$, and C 2 H 2 reaction with $\mathrm{OH}, \mathrm{O}, \mathrm{H}$, and Cl . These reactions are important to acetylene production, which is of special interest in rich fuel combustion due to it's role in the processes of soot formation [2].

The principle for this work is to evaluate the available data and select accurate kinetic data to included in the statistical analysis rather than be exhaustive. Results obtained with experimental methods capable of measuring isolated elementary reaction rate parameters directly are preferred. Results obtained using computer simulations of complex reacting systems are considered only when sensitivity to a particular elementary reaction was demonstrated in the literature or when direct measurement are not available.

The important thermochemical analysis in both forward and reverse directions is also considered. Reaction products are specified.

REACTION OF $\mathrm{C}_{2} \mathrm{H}_{6}$ WITH OH, $\mathrm{H}, \mathrm{O}$, AND Cl

Ethane is found as a intermediate product during the oxidation and pyrolysis of methane and chloromethane. Ethane is also a precursor of $\mathrm{C}_{2} \mathrm{H}_{5}$, which is an active species whose further reaction may involve higher hydrocarbon formation. Therefore elementary reactions of $\mathrm{C}_{2} \mathrm{H}_{6}$ play an important role in soot formation chemistry, especially in fuel-rich combustion. Ethane is thought to be removed primarily by OH and H attack [3,4] in stoichiometric combustion. Nevertheless, the reaction with 0 atoms probably plays a significant role in fuel-lean and higher temperature systems. When a chlorocarbon, HCl , and $\mathrm{Cl}_{2}$ are present $C l$ atoms can rapidly abstract $H$ from ethane to accelerate $\mathrm{C}_{2} \mathrm{H}_{6}$ conversion.

In all cases above, there are sufficient data to evaluate and weight to obtain rate data covering a greater temperature range. Recommended values for $\mathrm{OH}, \mathrm{O}, \mathrm{H}$, and Cl reactions with $\mathrm{C}_{2} \mathrm{H}_{6}$ are shown in Table and Figures 1-4.

A	n	Ea		Reference		T	Method
	$\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{OH}=\mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O} \quad(/ \mathrm{H}=-18700)$						
$1.40 \mathrm{E13}$	0.00	2660	[5]	BAU/BOW	(1986)	250-1200	Review
8.85 E 09	1.04	1810	[2]	TSA/HAM	(1986)	300-2500	Review
6.29 E 06	2.00	646	[1]	WAR	(1984)	300-2000	Review
6.62 E 12	0.00	2190	[6]	DEM/GOL	(1987)	200-300	Review
9.67E08	1.33	1460		Recommend	ded 2	200-2500	
	$\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{H}=\mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \quad(/ \triangle \mathrm{H}=-3500)$						
554	3.50	5167	[2]	TSA/HAM	(1986)	300-2500	Review
540	3.50	5210	[1]	WAR	(1984)	300-2500	Review
1.00 E 14	0.00	9600	[7]	CAO/BAC2	(1984)	300-2000	Review
3.24 E 05	2.63	6300		Recommen	ded	300-2500	
$\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{O}=\mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{OH} \quad(/ \mathrm{H}=-1450)$							
$1.20 \mathrm{El2}$	0.60	7313		TSA/HAM	1986)	300-2500	Review
3.00 E 07	2.00	5115	[1]	WAR	(1984)	300-2000	Review
1.10 El 4	0.00	7850	[8]	HER	(1988)	400-1100	Review
2.70 E 06	2.40	5840	[8]	HER	(1988) 11	1100-2000	Review
3.56 E 06	2.40	5842	[9]	$\mathrm{COH} / \mathrm{WES}$	(1986)	300-2000	Review
1.15 E 07	6.50	270	[10]	MAH/MAR	(1988)	297-1270	Photo
0.0193	4.85	2030	[10]	MAH/MAR	(1988)	297-1270	Calcul
2.62E07	2.05	5400		Recommend	ded	297-2500	
$\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{Cl}=\mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{HCl}(/ \triangle \mathrm{H}=-2410)$							
$7.29 \mathrm{E13}$	0.00	460	[11]	TSC/NIE	(1989)	280-368	Photo
4.63E13	0.00	179	[6]	DEM/GOL	(1987)	200-300	Review
$3.85 \mathrm{El3}$	0.00	0	[12]	85ATK/ASC	C2 (1985)	5) 296	Photo
$3.72 \mathrm{E13}$	0.00	0	[13]	87ATK/ASC	C5 (1987)	7) 298	Photo
$4.04 \mathrm{El3}$	0.00	0	[14]	DAV/BRA	(1970)	298	Photo
$3.67 \mathrm{E13}$	0.00	0	[15]	DOB/BEN	(1990)	298	
4.63 E13	0.00	179	[16]	ATK/BAU	(1989)	220-350	Review
$5.43 \mathrm{El3}$	0.00	260	[17]	LEW/SAN	(1980)	220-604	FT
$5.43 \mathrm{El3}$	0.00	246		Recommend	ded	200-604	
in $\mathrm{cm}^{3}$, mol, s , cal, K units : Photo, Calcul, FT denote Photolysis, Calculation and Flow Tube respectively. The bellows are same.							

## CHAPTER 3

## REACTION OF $\mathrm{C}_{2} \mathrm{H}_{4}$ WITH OH, $\mathrm{O}, \mathrm{H}$, and Cl

Under normal hydrocarbon combustion conditions, the reaction consuming the majority of the ethylene is $\mathrm{C}_{2} \mathrm{H}_{4}+$ $\mathrm{OH}=\mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{H}_{2} \mathrm{O}$. Tully et al [18] have established that the net reaction between $\mathrm{C}_{2} \mathrm{H}_{4}$ and OH consists exclusively of H atom abstraction under high temperature condition (above 1000 K ), rather than an addition-rearrangementdecomposition channel. Our QRRK analysis results support their view, which indicates that sum of all addition-rearrangement-decomposition reactions only accounts for $0.85 \%$ of the total rate of the reaction $\mathrm{C} 2 \mathrm{H} 4+\mathrm{OH}$ at 1200 K . Next in importance is the reaction $\mathrm{C}_{2} \mathrm{H}_{4}+{ }^{3} \mathrm{O}$, whose rate data will be treated separately below. The reaction of $\mathrm{C}_{2} \mathrm{H}_{4}$ with H atoms consumes only a small fraction of $\mathrm{C}_{2} \mathrm{H}_{4}$ especially under the oxygen-rich conditions [19]. The hydrogen atomic Resonance Adsorption Spectrophotometry can be used to investigate the kinetic behavior of the decay of C 2 H 4 from reaction with H and to characterize the formation of H 2 and C 2 H 3 [20]. According to the work of Gay [21] and Just [22], the channel $\mathrm{C} 2 \mathrm{H} 4+\mathrm{H}=\mathrm{C} 2 \mathrm{H} 3+\mathrm{H} 2$ can be responsible for the acceleration of C 2 H 4 decay in fuel-rich conditions. The channel $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{Cl}=\mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{HCl}$ could be important to not only c2H4 decay but also the formation of higher hydrocarbons and soot. Benson's group has reported the rate data of this channel, however, these data are scattered, which indicates the need for
additional kinetic studies.
In order to obtain reasonable rate data of this reaction, we correlate a reference reaction, $\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{Cl}=$ $\mathrm{C}_{6} \mathrm{H}_{5}+\mathrm{HCl}$, with title reaction. This channel rate data ( $\mathrm{A}=2.0 \mathrm{E} 13$, Ea=10 $\mathrm{Kcal} / \mathrm{mol}$ ) are recommended. The recommended rate constants of C 2 H 6 reactions with $\mathrm{OH}, \mathrm{O}, \mathrm{H}$, and Cl are showed in Table 2 and Figures 5-7.

Table 2. Rate Data on $\mathrm{C}_{2} \mathrm{H}_{4}$ Reactions

A	n	Ea		eference		T	Method
	$\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{OH}=\mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{H}_{2} \mathrm{O} \quad(/ \backslash \mathrm{H}=-9400)$						
1.50 E 04	2.75	4000	[4]	TSA/HAM	(1986)	300-2500	Review
$2.02 \mathrm{El3}$	0.00	5940	[18]	TUL	(1988)	650-901	Photo
1.45 E 13	0.00	4180	[19]	LIU/MUL	(1987)	748-1173	EB
2.09 E 06	2.01	1160	[23]	LIU/MUL	(1988)	723-1173	Calcul
9.41E13	0.00	8330		Recommen	ded	300-2500	

$$
\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}=\mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{H}_{2} \quad(/ \backslash \mathrm{H}=5760)
$$

$1.33 E 06$	2.53	12241	$[2]$	TSA/HAM	$(1986)$	$300-2500$	Review
$8.99 E 10$	0.00	0	$[24]$	JAY/PAC	$(1988)$	900	Therm
1.00 E 14	0.00	15010	$[25]$	MAN/LOU	$(1988)$	$872-1085$	Calcul
$1.31 E 04$	3.10	11400		Recommended	$300-2500$		

$$
\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{Cl}=\mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{HCl} \quad(/ \backslash \mathrm{H}=6900)
$$

$2.39 E 13$	0.00	2600	$[26]$	PAR/BEN	$(1988)$	$263-338$
1.00E14	0.00	7000	$[27]$	WEI/BEN	$(1984)$	$1260-1310$

* EB, Therm, and DC denote Electrical Beam, Thermal, and Discharge respectively. the belows are same.

The products for the reaction of $\mathrm{C}_{2} \mathrm{H}_{4}$ with 0 are very complicated. The reaction paths have been reported [28-32 and 51] as follow:

$$
\begin{equation*}
\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{O}=\mathrm{CH}_{2} \mathrm{CHO}+\mathrm{H} \tag{1}
\end{equation*}
$$

$\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{O}=\mathrm{CH}_{3}+\mathrm{CHO}$

$$
\begin{equation*}
\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{O}=\mathrm{CH}_{2}+\mathrm{CH}_{2} \mathrm{O} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{O}=\mathrm{CH}_{2} \mathrm{CO}+\mathrm{H}_{2} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{O}=\mathrm{CH}_{3} \mathrm{CO}+\mathrm{H} \tag{4}
\end{equation*}
$$

$$
\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{O}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O} \text { (Ethylene Oxide) }---(6)
$$

A number of experimental studies [28-32] have been carried out to elucidate the reaction of triplet oxygen atom with ethylene in gases. Cvetanovic [28] first reported that the primary process is a direct addition of ${ }^{3} 0$ to double bond of ethylene to form an energized ${ }^{3}\left[\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right]^{\#}$, which further undergoes unimolecular reaction:

According to the product determinations by Cvetanovic [28,29], fragmentation $\mathrm{CH}_{3}+\mathrm{CHO}$ is the most dominant process in the gas phase. By contrast, gas kinetic experiments using the flow technique $[30,31]$ indicated that the fragmentation (1) and (2) are the two main processes. A recent study by microwave kinetic spectroscopy [32], however, has provided results similar to those of previous

$$
\begin{align*}
& 3\left[\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right]^{\#} \rightarrow \mathrm{CH}_{2} \mathrm{CHO}+\mathrm{H}----------(1) \\
& \rightarrow \mathrm{CH}_{3}+\mathrm{CHO}  \tag{2}\\
& \rightarrow \mathrm{CH}_{2}+\mathrm{CH}_{2} \mathrm{O}  \tag{3}\\
& \rightarrow \mathrm{CH}_{2} \mathrm{CO}+\mathrm{H}_{2}  \tag{4}\\
& \text {-> Ethylene Oxide } \tag{6}
\end{align*}
$$

flow experiments. Our $Q R R K$ analysis (see part I) of reaction $\mathrm{C}_{2} \mathrm{H}_{4}+{ }^{3} \mathrm{O}$ showed that the energized ${ }^{3}\left[\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right]^{\#}$ could convert to a energized ${ }^{1}\left[\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right]^{\#}$, which further undergoes unimolecular decomposition reaction to $\mathrm{CH}_{3}+\mathrm{CHO}$ and $\mathrm{CH}_{3} \mathrm{CO}+\mathrm{H}$; the major channels were (1), (2), and (3). Table 3 and Figures 8-10 illustrate these results.

Table 3. Calculated Apparent Rate Constants*

Reaction	A	n	Ea
$\mathrm{C}_{2} \mathrm{H}_{4}+{ }^{3} \mathrm{O}={ }^{3}\left[. \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}.\right]$	1.77E18	-2.97	2770
$\mathrm{C}_{2} \mathrm{H}_{4}+{ }^{3} \mathrm{O}=\mathrm{CH}_{2} \mathrm{CHO}+\mathrm{H}$	7.77E13	-0.35	1910
$\mathrm{C}_{2} \mathrm{H}_{4}+{ }^{3} \mathrm{O}={ }^{3} \mathrm{CH}_{2}+\mathrm{CH}_{2} \mathrm{O}$	6.50 E 06	1.61	3790
$\mathrm{C}_{2} \mathrm{H}_{4}+{ }^{3} \mathrm{O}={ }^{1}\left[\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}.\right]$	1.84 Ell	-1.03	1720
$\mathrm{C}_{2} \mathrm{H}_{4}+{ }^{3} \mathrm{O}=\mathrm{CH}_{3} \mathrm{CHO}$	1.12 E 43	-8.83	27310
$\mathrm{C}_{2} \mathrm{H}_{4}+{ }^{3} \mathrm{O}=\mathrm{CH}_{3} \mathrm{CO}+\mathrm{H}$	3.58 E 34	-6.53	43930
$\mathrm{C}_{2} \mathrm{H}_{4}+{ }^{3} \mathrm{O}=\mathrm{CH}_{3}+\mathrm{CHO}$	2.25E41	-7.67	46260

Acetylene decay is usually thought to involve hydroxyl radicals or 0 atoms depending on equivalence ratios. Fenimore and Jones [33] measured the concentration profiles of stable species in acetylene-oxygen flames. Assuming the elementary reactions of the $\mathrm{H}_{2} / \mathrm{O}_{2}$ system practically reach equilibrium in burned gas zone, they computed the concentration of $\mathrm{H}, \mathrm{O}$, and OH radicals by means of the equilibrium constants in that region. From their data they concluded that acetylene is removed primarily by $O$ atoms in lean mixtures and by $O H$ radicals in very rich mixtures.

The reactions of H atoms with $\mathrm{C}_{2} \mathrm{H}_{2}$ do not play an important role as far as the acetylene consumption in the flame investigation is concerned, when one considers the low concentration of H atoms compared with the OH concentration.

### 4.1 Reaction of $\mathrm{C}_{2} \mathrm{H}_{2}$ with OH

As what was stated by Miller [37], "The reaction between hydroxyl and acetylene is problematic in combustion modeling research. No consistent set of rate data or a clear determination of the dominant product channel, has emerged from the experimental sector at temperatures of direct interest in combustion. Almost all high-temperature determinations are indirect, involving a complex analysis
of flame or shock tube data. Various sets of products have been proposed for the high-temperature reaction."

In order to determine the species resulting from the elementary processes concerning acetylene combustion, the earlier studies using different techniques have been compared at 300 K . Gehring [34] suggested the formation of methyl radical by $\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{OH}=\mathrm{CH}_{3}+\mathrm{CO}$; While Porter [35] supported the formation of ethynyl radical via $\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{OH}$ $=\mathrm{C}_{2} \mathrm{H}+\mathrm{H}_{2} \mathrm{O}(1)$; Konofsky [36] using a similar technique detected ketene and proposed the elementary steps should cover the reaction $\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{OH}=\mathrm{CH}_{2} \mathrm{CO}+\mathrm{H}$. The earlier studies have shown that the $\mathrm{CH}_{2} \mathrm{CO}+\mathrm{H}, \mathrm{CH}_{3}+\mathrm{CO}$ and $\mathrm{C}_{2} \mathrm{H}+$ $\mathrm{H}_{2} \mathrm{O}$ are prevalent.

In the recent years, the investigations from Miller et al. [37] and Bozzelli et al. showed the path $\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{OH}$ $=\mathrm{HOCCH}+\mathrm{H}$ might need to be considered although other channels are more prevalent for the high-temperature reaction (see Table 4 and Figures 11-14).

Table 4-1. Rate Data on $\mathrm{C}_{2} \mathrm{H}_{2}$ Reaction with $\mathrm{OH}^{*}$

A	n	Ea		eference	T	Method
	$\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{OH}=\mathrm{C}_{2} \mathrm{H}+\mathrm{H}_{2} \mathrm{O} \quad(/ \triangle \mathrm{H}=10520)$					
$3.37 \mathrm{E07}$	2.00	14000	[38]	MIL/BOW (1989)	1000-2500	Review
1.45 E 04	2.68	12040	[4]	TSA/HAM (1986)	300-2500	Review
2.71E13	0.00	10500	[39]	LIU/MUL (1988)	1073-1273	Review
3.37 E 07	2.00	14000		Recommended	300-2500	

Table 4-2 Rate Data on $\mathrm{C}_{2} \mathrm{H}_{2}$ Reaction with $\mathrm{OH} *$

A	n	Ea	Reference	T	Method

$$
\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{OH}=\mathrm{HOC} \mathrm{\# CH}+\mathrm{H}(/ \backslash \mathrm{H}=8730)
$$

5.04 E 05	2.30	13500	[38] MIL/BOW (1989)	$500-2500$	Calcul	
9.31 E 08	1.04	11910	$\mathrm{YU} / \mathrm{BOZ}$	$(1992)$	$300-2400$	Calcul
9.31 e 08	1.04	11910		Recommended	$300-2500$	

$$
\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{OH}=\mathrm{CH}_{2} \mathrm{CO}+\mathrm{H} \quad(/ \backslash \mathrm{H}=-23090)
$$


1.73 E 16 -1.12 $2830 \quad \mathrm{YU} / \mathrm{BOZ}$ (1992) 300-2400 Calcul
$4.83 \mathrm{E}-044.00-2000$ [38] MIL/BOW (1989) 500-2500 Calcul
5.50 E 130.0013700 [41] VAN/VAN (1977) 650-1110 Therm 1.73E16-1.12 2830 Recommended 300-2500

[^2]In this study, other intermediate products of C 2 H 2 reaction with OH can occur in low temperatures by our QRRK analysis (See Table 5).

Table 5. Calculated Apparent Rate Constants*

Reaction	A	n	Ea
$\mathrm{C} 2 \mathrm{H} 2+\mathrm{OH}=\mathrm{HOCHCH}$.	2.12E26	-4.85	4.36
$\mathrm{C} 2 \mathrm{H} 2+\mathrm{OH}=. \mathrm{CH} 2 \mathrm{CHO}$	1.25 E 27	-5.08	5.87
$\mathrm{C} 2 \mathrm{H} 2+\mathrm{OH}=\mathrm{CH} 3 \mathrm{C} . \mathrm{O}$	3.41 E 20	-3.54	3.59

### 4.2 Reaction of $\mathrm{C}_{2} \mathrm{H}_{2}$ with O Atoms

We still do not have an exact answer of the nature of primary products of the reaction of $\mathrm{C}_{2} \mathrm{H}_{2}$ with O atoms:

$$
\begin{array}{ll}
\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{O} \Rightarrow \mathrm{CH}_{2}+\mathrm{CO} & \Lambda \mathrm{H}=-47 \mathrm{Kcal} / \mathrm{mol} \\
\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{O} \Rightarrow \mathrm{HCCO}+\mathrm{H} & \Lambda \mathrm{H}=-19.4 \mathrm{Kcal} / \mathrm{mol} \tag{II}
\end{array}
$$

Fenimore [33] suggested reaction (I) as a dominant reaction path at high temperatures (flame temperatures). The view that CH 2 is the major product while HCCO formation -at least at low to moderate temperatures -- is negligible, was supported by the cross molecular beam experiments of Blumenberg et al. [42], by the modeling of stable product formation of Homann et al. [43], and the H-Production analysis of Lohr at al. [44] in shock tubes.

On the other hand, (I) and (II) ab initio calculations by Harding [45] showed that H-Displacement path (II)
was energetically favored; also the HCCO radical was detected in crossed molecular beam experiments by clem [46]. The occurrence of both reaction paths simultaneously is also proposed by several groups: Bayes [47] found 12\% to probably $25 \%$ methylene formation; williamson [48] concluded that route (I) accounts for about $40 \%$ of the total product formation. Both $\mathrm{CH}_{2}$ and HCCO were detected as major products in a crossed molecular beam experiment by Kanofsky et al. [36]. From an appropriate calibration of the $\mathrm{CH}_{2}$ concentration, Vinckier [49] deduced that reaction channel (I) accounts for about $50 \%$ of the primary $\mathrm{C}_{2} \mathrm{H}_{2}$ destruction rate. According to Aleksandrov [50], the production of hydrogen atoms shows that at room temperature $5 \%$ and at $600 \mathrm{~K} 16 \%$ of the primary reaction proceeds via HCCO. Our QRRK analysis indicates that the reaction channel (I) accounts for $34 \%$ of total $\mathrm{C}_{2} \mathrm{H}_{2}$ reaction rate and the channel (II) accounts for close to $66 \%$ at 1200 K . A small amount of products, $\mathrm{OCH} * \mathrm{CH}$. and ${ }^{3}$ [ CH 2 C .0.$\left.\right]^{0}$ amount to less than $1 \%$ of the reaction (see Table 6 and Figures 15-16).

Table 6. Rate Data on $\mathrm{C}_{2} \mathrm{H}_{2}$ Reaction with 0

A	n	Ea		eference		T	Method
$\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{O}=\mathrm{CH}_{2}+\mathrm{CO} \quad(/ \mathrm{H}=-47000)$							
2.70 El 4	-0.55	1460		YU/BOZ	(1992)	300-2400	Calcul
5.20 El 3	0.00	3700	[51]	PEE/MAH2	(1973)	1200-1700	Est
1.21 El 4	0.00	6560	[52]	ROT/LOE2	(1982)	1500-2600	ST
4.08 E 08	1.50	1690	[53]	CVE	(1987)	300-2500	Review
4.10 E 08	1.50	1700	[1]	WAR	(1984)	300-2500	Review
$1.21 \mathrm{E14}$	0.00	6560	[44]	LOH/ROT	(1981)	1500-2570	ST
1.60 El 4	0.00	8100	[54]	FRA/BHA	(1988)	1500-2500	ST
$1.61 \mathrm{El0}$	0.98	1720		Recommend		300-2600	
$\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{O}=\mathrm{HCCO}+\mathrm{H} \quad(/ \triangle \mathrm{H}=-19440)$							
7.95E09	0.74	550		YU/BOZ	(1992)	300-2400	Calcul
9.04E12	0.00	4540	[50]	ALE/ARV	(1981)	298-608	DC
$4.34 \mathrm{El4}$	0.00	12120	[52]	ROT/LOE2	(1982)	1500-2600	ST
4.30 El 4	0.00	12120	[53]	CVE	(1987)	1000-2500	Review
$9.04 \mathrm{El2}$	0.00	4540	[2]	TSA/HAM	(1986)	300-2500	Review
4.30 El 14	0.00	12120	[1]	WAR	(1984)	1000-2500	Review
$4.00 \mathrm{El4}$	0.00	10660	[54]	FRA/BHA	(1988)	1500-2500	ST
7.95 E 09	0.74	550		Recommend	d	300-2600	

### 4.3 Reaction of $\mathrm{C}_{2} \mathrm{H}_{2}$ with H Atoms

Due to the endothermicity, this reaction needs to be considered only at high temperatures. Warnatz, and Tsang, et al. have made extensive literature reviews. We have compared their data and did not find any obvious inconsistency. The weighted data have been chosen (see Table 7 and Figure 17).

Table 7. Rate Data on $\mathrm{C}_{2} \mathrm{H}_{2}$ Reaction with H

A	n	Ea	Reference			T	Method
	$\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{H}=\mathrm{C}_{2} \mathrm{H}+\mathrm{H}_{2} \quad(/ \backslash \mathrm{H}=24000)$						
$6.03 \mathrm{El3}$	0.00	23660	[55]	GAR/TAU	(1985)	1800-2500	Review
6.03 E 13	0.00	22260	[2]	TSA/HAM	(1986)	300-2500	Review
6.00 El 3	0.00	23660	[1]	WAR	(1984)	300-2500	Review

### 4.4 Reaction of $\mathrm{C}_{2} \mathrm{H}_{2}$ with Cl Atoms

The only mention of this reaction in the literatures is an estimate of its rate data used in modeling research and theoretical consideration. The basis of recommendation given here is the fact that Ea of H-abstraction reaction is always greater than $/ \backslash H$. The rate data from Benson's group has been chosen (see Table 8 and Figure 17).

Table 8. Rate Data on $\mathrm{C}_{2} \mathrm{H}_{2}$ Reaction with Cl


## CHAPTER 5

 CONCLUSIONSThis study evaluated and analyzed theoretically the rate constants of $\mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{4}$, and $\mathrm{C}_{2} \mathrm{H}_{2}$ reactions with $\mathrm{OH}, \mathrm{O}, \mathrm{H}$, and Cl important to incineration based on detailed selection of accurate experimental measurement data and QRRK analysis.
(1). Hydrogen abstraction reactions from $\mathrm{C}_{2} \mathrm{H}_{6}$ by $\mathrm{OH}, \mathrm{O}, \mathrm{H}$, and Cl are important to decay of the $\mathrm{C}_{2} \mathrm{H}_{6}$.
(2). Under normal Hydrocarbon combustion conditions, the reaction consuming the majority of $\mathrm{C}_{2} \mathrm{H}_{4}$ is H abstraction by OH . Addition-rearrangement-decomposition channels are not important. The reactions where $\mathrm{O}, \mathrm{H}$, and Cl abstract H from $\mathrm{C}_{2} \mathrm{H}_{4}$ contribute $\mathrm{C}_{2} \mathrm{H}_{4}$ consumption.
(3). Addition-rearrangement-decomposition channels are very important for OH and O reactions with $\mathrm{C}_{2} \mathrm{H}_{2}$. (4). Recommended rate constants can be applied to model research.


Figure 1. Rate data on $\mathrm{OH}+\mathrm{C} 2 \mathrm{H} 6 \Rightarrow \mathrm{H} 2 \mathrm{O}+\mathrm{C} 2 \mathrm{H} 5$
$\begin{array}{lll}+ & 86 B A U / B O W \\ \bigcirc & \square 4 W A R & \text { 86TSA/HAM } \\ 87 D E M / G O L\end{array}$
RECOMMENDED DATA:
Temperature range: 200-2500
Linear fit:
$A=2.41 \mathrm{e}+13 \mathrm{~cm} 3 /(\mathrm{mol} \cdot \mathrm{s})$
$E_{a}=\quad 2.90 \mathrm{kcal}$
Nonlinear fit:
$A=9.67 \mathrm{e}+08 \mathrm{~cm}^{3} /(\mathrm{mol} \cdot \mathrm{s})$
$n=1.33 E_{a}=1.46 \mathrm{kcal}$
$k=A \uparrow n^{\exp }\left(-E_{a} / R T\right)$


Figure 2. Rate data on $\mathrm{H}+\mathrm{C} 2 \mathrm{H} 6 \Rightarrow \mathrm{H} 2+\mathrm{C} 2 \mathrm{H} 5$

$$
+\quad 86 T S A / H A M \quad \square \quad \text { 84WAR }
$$

$$
\text { O } 84 C A O / B A C 2
$$

RECOMMENDED DATA:
Temperature range: 300-2500
Linear fit:
$A=3.46 \mathrm{e}+14 \mathrm{~cm}^{3} /(\mathrm{mol} \cdot \mathrm{s})$
$E_{a}=\quad 9.92 \mathrm{kcal}$
Nonlinear fit:
$A=3.24 \mathrm{e}+05 \mathrm{~cm}^{3} /(\mathrm{mol} \cdot \mathrm{s})$
$n=2.63 \quad E_{a}=\quad 6.30 \mathrm{kcal}$
$k=A T{ }^{n} \exp \left(-E_{a} / R T\right)$



Figure 4. Rata data on $\mathrm{Cl}+\mathrm{C} 2 \mathrm{H} 6 \Rightarrow \mathrm{HCl}+\mathrm{C} 2 \mathrm{H} 5$


Temperature range: 200-604
Linear fit:
$A=5.43 \mathrm{e}+13 \mathrm{~cm} /(\mathrm{mol} \cdot \mathrm{s})$
$E_{a}=0.25 \mathrm{kcal}$
Nonlinear fit:
$A=1.48 \mathrm{em}+14 \mathrm{~cm}^{3} /(\mathrm{mol} \cdot \mathrm{s})$
$n=-0.148 \quad E_{a}=\quad 0.34 \mathrm{kcal}$
$k=A T n_{\exp }\left(-E_{a} / R T\right)$


Figure 5. Rate data on $\mathrm{OH}+\mathrm{C} 2 \mathrm{H} 4 \Rightarrow \mathrm{H} 2 \mathrm{O}+\mathrm{C} 2 \mathrm{H} 3$

- 86TSA/HAM $\square$ 88TUL

○ 87LIU/MUL $\AA$ 88LIU/MUL3

RECOMMENDED DATA:
Temperature range: 300-2500
Linear fit:
$A=9.41 e+13 \mathrm{~cm}^{3} /(\mathrm{mol} \cdot \mathrm{s})$
$\mathrm{E}_{\mathrm{a}}=8.33 \mathrm{kcal}$
Nonlinear fit:
$A=1.49 \mathrm{e}+15 \mathrm{~cm}^{3} /(\mathrm{mol} \cdot \mathrm{s})$
$n=-0.363 \quad E_{a}=\quad 8.80 \mathrm{kcal}$
$k=A T^{n} \exp \left(-E_{a} / R T\right)$


RECOMMENDED DATA:
Temperature range: 300-2500
Linear fit:
$A=2.95 \mathrm{e}+14 \mathrm{~cm}^{3} /(\mathrm{mol} \cdot \mathrm{s})$
$E_{a}=15.4 \mathrm{kcal}$
Nonlinear fit:
$A=2.48 \mathrm{e}+05 \mathrm{~cm}^{3} /(\mathrm{mol} \cdot \mathrm{s})$
$n=2.72 E_{a}=\quad 11.9 \mathrm{kcal}$
$k=A T n^{\exp }\left(-E_{a} / R T\right)$


## RECOMMENDED DATA:

> Temperature range: $300-1500$ Linear fitt: $A=\quad 2 \mathrm{e}+13 \mathrm{~cm} 3 /(\mathrm{mol} \cdot \mathrm{s})$ $E_{a}=\quad 10.00 \mathrm{kcal}$ $\mathrm{k}=\mathrm{AT} n_{\mathrm{n}} \exp \left(-\mathrm{E}_{\mathrm{a}} / \mathrm{RT}\right)$


Figure 8. Rate date on $\mathrm{O}+\mathrm{C} 2 \mathrm{H} 4 \Rightarrow \mathrm{CH} 2 \mathrm{CHO}+\mathrm{H}$

$$
+92 Y U / B O Z \quad \square^{-} \quad 835 R I / K A U
$$

RECOMMENDED DATA:
Temperature range: 300-2400
Linear fit:
$A=4.83 \mathrm{~cm}+12 \mathrm{~cm} /(\mathrm{mol} \cdot \mathrm{s})$
$E_{a}=1.41 \mathrm{kcal}$
Nonlinear fit:
$\mathrm{A}=7.77 \mathrm{e}+13 \mathrm{~cm} 3 /(\mathrm{mol} \cdot \mathrm{s})$
$A=7.77 \mathrm{e}+13 \mathrm{~cm}^{3} /(\mathrm{mol} \cdot \mathrm{s})$
$\mathrm{n}=-0.35 \mathrm{E}_{\mathrm{a}}=\quad 1.91 \mathrm{kcal}$
$k=A T \Gamma_{\exp }\left(-E_{a} / R T\right)$


Figure 9. Rate data on $\mathrm{O}+\mathrm{C} 2 \mathrm{H} 4 \Rightarrow \mathrm{CH} 2+\mathrm{CH} 2 \mathrm{O}$

## $+92 Y \mathrm{H} / \mathrm{BOZ} \square$ 73PEE/MAH2 RECOMMENDED DATA:

Temperature range: 300-2400
Linear fit:
$A=2.31 \mathrm{e}+12 \mathrm{~cm} /(\mathrm{mol} \cdot \mathrm{s})$
$E_{a}=\quad 6.09 \mathrm{kcal}$
Nonlinear fit:
$A=6.5 e+06 \mathrm{~cm}^{3} /(\mathrm{mol} \cdot \mathrm{s})$
$n=1.61 \quad E_{a}=\quad 3.79 \mathrm{kcal}$
$k=A T \cap^{n} \exp \left(-E_{a} / R T\right)$


Figure 10. Rate data on $\mathrm{O}+\mathrm{C} 2 \mathrm{H} 4 \Rightarrow \mathrm{CH} 3+\mathrm{CHO}$

+ 92YU/BOZ $\square$ 73PEE/MAH2
- 86TSA/HAM


## RECOMMENDED DATA:

Temperature range: 300-2400
Linear fit:
$\mathrm{A}=8.06 \mathrm{e}+14 \mathrm{~cm} 3 /(\mathrm{mol} \cdot \mathrm{s})$
$\mathrm{E}_{\mathrm{a}}=35.3 \mathrm{kcal}$
Nonlinear fit:
$A=2.25 e+41 \mathrm{~cm}^{3} /(\mathrm{mol} \cdot \mathrm{s})$
$n=-7.67 \quad E_{a}=\quad 46.3 \mathrm{kcal}$
$k=A T^{n} \exp \left(-E_{a} / R T\right)$


Figure 11. Rate data on $\mathrm{OH}+\mathrm{C} 2 \mathrm{H} 2 \Rightarrow \mathrm{C} 2 \mathrm{H}+\mathrm{H} 2 \mathrm{O}$

$$
\begin{array}{ll}
+\quad 89 M I L / B O W \\
\bigcirc \\
\hline
\end{array} \quad \begin{array}{r}
86 T S A / H A M \\
\\
\\
\text { RECOMMENDED DATA: }
\end{array}
$$

Temperature range: 1000-2500
Linear fit:
$\mathrm{A}=6.74 \mathrm{e}+14 \mathrm{~cm} 3 /(\mathrm{mol} \cdot \mathrm{s})$
$\mathrm{E}_{\mathrm{a}}=\quad 20.1 \mathrm{kcal}$
Nonlinear fit
$A=3.37 e+07 \mathrm{~cm}^{3} /(\mathrm{mol} \cdot \mathrm{s})$
$\mathrm{n}=2 \mathrm{E}_{\mathrm{a}}=14.0 \mathrm{kcal}$
$k=A T n^{n} \exp \left(-E_{a} / R T\right)$


## RECOMMENDED DATA:

Temperature range: 300-2400
Linear fit:
$A=3.59 \mathrm{e}+12 \mathrm{~cm} 3 /(\mathrm{mol} \cdot \mathrm{s})$
$\mathrm{E}_{\mathrm{a}}=\quad 13.4 \mathrm{kcal}$
Nonlinear fit:
$A=9.31 \mathrm{e}+08 \mathrm{~cm}^{3} /(\mathrm{mol} \cdot \mathrm{s})$
$n=1.04 \mathrm{E}_{\mathrm{a}}=\quad 11.9 \mathrm{kcal}$
$k=A T n^{n} \exp \left(-E_{a} / R T\right)$


Temperature range: 300-2400

Linear fit:
$A=8.56 e+11 \mathrm{~cm}$
$/(\mathrm{mol} \cdot \mathrm{s})$

$E_{a}=1.96 \mathrm{kcal}$
Nonlinear fit:
$\mathrm{A}=1.75 \mathrm{e}+12 \mathrm{~cm}^{3} /(\mathrm{mol} \cdot \mathrm{s})$
$n=-0.09 \quad E_{a}=\quad 2.09 \mathrm{kcal}$
$k=A T^{n} \exp \left(-E_{a} / R T\right)$


RECOMMENDED DATA:
Temperature range: 300-2400
Linear fit:
$A=2.38 \mathrm{e}+12 \mathrm{~cm} 3 /(\mathrm{mol} \cdot \mathrm{s})$
$E_{a}=\quad 1.23 \mathrm{kcal}$
Nonlinear fit:
$A=1.73 \mathrm{e}+16 \mathrm{~cm}^{3} /(\mathrm{mol} \cdot \mathrm{s})$
$n=-1.12 \quad E_{a}=\quad 2.83 \mathrm{kcal}$
$k=A T^{n} \exp \left(-E_{a} / R T\right)$


Temperature range: $300-2500$
Linear fit:
$A=2.89 \mathrm{e}+12 \mathrm{~cm}^{3} /(\mathrm{mol} \cdot \mathrm{s})$
$E_{a}=\quad 1.62 \mathrm{kcal}$
Nonlinear fit:
$A=7.95 e+09 \mathrm{~cm}^{3} /(\mathrm{mol} \cdot \mathrm{s})$
$n=0.74 E_{a}=\quad 0.55 \mathrm{kcal}$
$k=A T n^{n} \exp \left(-E_{a} / R T\right)$



## RECOMMENDED DATA:

$$
\begin{aligned}
& \text { Temperature range: 300-3000 } \\
& \text { Linear fit: } \\
& A=5.51 \mathrm{e}+13 \mathrm{~cm} 3 /(\mathrm{mol} \cdot \mathrm{~s}) \\
& E_{a}=\quad 22.9 \mathrm{kcal} \\
& \text { Nonlinear fit: } \\
& A=3.91 e+12 \mathrm{~cm}^{3} /(\mathrm{mol} \cdot \mathrm{~s}) \\
& n=0.327 \quad E_{a}=\quad 22.4 \mathrm{kcal} \\
& k=A T n^{\exp }\left(-E_{a} / R T\right)
\end{aligned}
$$



## RECOMMENDED DATA:

Temperature range: 500-1500
$\begin{array}{ll}\text { Linear fit: } \\ A= & 14+14 \mathrm{~cm}^{3} /(\mathrm{mol} \cdot \mathrm{s})\end{array}$
$E_{a}=\quad 27.7 \mathrm{kcal}$
$k=A T^{n} \exp \left(-E_{a} / R T\right)$

## BIBLIOGRAPHY

1 Wanartz, J. et al., Combustion Chemistry (ed. W. C. Gardiner, Jr.) Spring-Verlag, NY 197 (1984).

2 Tsang, W. et al., J. Phys. Chem. Ref. Data 15 (1986): 1087,

3 Fenimore, C. P. et al., Ninth Symposium (International) on Combustion, Academic Press, 597 (1963).

4 Peeters, J. et al., First Specialists Meetin (International) of the Combustion Institute, 307 (1987).

5 Baulch, D. L. et al., J. Phys. Chem. Ref. Data 15 (1986): 465.

6 DeMore, W. B. et al., JPL Publication 1 (1987): 87-41.

7 Cao, J. R. et al., Int. J. Chem. Kinet. 16 (1984): 961.

8 Herron, J. T., J. Phys. Chem. Ref. Data, 17 (1988): 967.

9 Cohen, N. et al., Int. J. Chem. Kinet. 18 (1986): 99.
10 Mahmud, K. et al., J. Chem. Phys. 88 (1988): 2393.
11 Tschuikow-roux, E. et al., Can. J. Chem. 63 (1985): 1093.

Atkinson, R. et al., Int. J. C̈hem. Kinet. 17 (1985): 33.

13 Atkinson, R. et al., Int. J. Chem. Kinet. 19 (1987): 1097.

14 Davis, D. D. et al., Int. J. Chem. Kinet. 2 (1970): 101.

15 Dobis, O. et al., J. Am. Chem. Soc. 112 (1990): 1023.
16 Atkinson, R. et al., J. Phys. Chem. Ref. Data 18 (1989): 8.

17 Lewis, R. S. et al., J. Phys. Chem. 84 (1980): 2009.
18 Tully, F. P., Chem. Phys. Lett. 143 (1988): 510.
19 Liu, A. D. et al., Int. J. Chem. Kinet. 19 (1987): 25.

Just, TH. et al., Sixteenth Symposium (International) on Combustion, The Combustion Institute, 961 (1976).

Gray,I. D. et al., J. Chem. Phys. 45 (1966): 2371. Just, TH. et al., Phys. Chem. 77 (1973): 1114. Liu, A. et al., J. Phys. Chem. 92 (1988): 3828. Jayaweera, I. S. et al., Int. J. Chem. Kinet. 20 (1988): 719.

5 Manion, J. A. et al., J. Chem. Soc. Perkin Trans. 2 (1988): 1547 .

Parmar, S. S. et al., J. Phys. Chem. 92 (1988): 2652. Weissman, M. et al., Int. J. Chem. Kinet. 16 (1984): 307 .

Cvetanovic, R. J. J. Phys. Chem. 74 (1970): 2730. Pruss F. J. et al., J. Phys. Chem. 78 (1974): 663. Inoue, G. et al., J. Phys. Chem. 74 (1981): 425. Buss R. J. et al., J. Photochem. 17 (1981): 377. S. Koda, et al., J. Chem. Phys. 85 (1986): 4446 . Fenimore, C. P. et al., J. Chem. Phys. 39 (1963):1514. Gehring, M. et al., J. Z. Naturforsch, A25 (1970): 675.

Porter, R. P. et al., Eleventh Symposium (Internatioal) on Combustion the Combustion Institute 907 (1967).

Kanofsky, J. R. et al., J. Phys. Chem. 78 (1974): 311.
Miller, J. A., et al., Twentieth Symposium (International) on Combustion, The Combustion Institute. 103 (1988).

Miller J. A. et al., Prog. Energy Combust. Sci. 287 (1989).

Liu, A. et al., J. Phys. Chem. 92 (1988): 5942.
Kaiser, E. W. et al., J. Phys. Chem. 94 (1990): 4493.

41 Vandooren, J. et al., Symp. Int. Combust. Proc. 16 (1977): 1133.

42 Blumenberg, B. et al., Sixteenth Symposium (Interna tional) on Cmbustion Institute, 841 (1976).

43 Homann, K. H. et al., Ber. Bunsenges. Phys. Chem. 85 (1981): 569.

44 Lohr, R. et al., Ber. Bunsenges. Phys. Chem. 85 (1981): 153.

45 Harding, L. B. J. Phys. Chem. 85 (1981): 10.
46 Clemo, A. R. et al., J. Chem. Soc. Faraday Trans. II 78 (1982): 1231.

Bayes, K. D. et al., J. Phys. Chem. 73 (1969): 1232. Williamson, D. G., J. Phys. Chem. 75 (1979): 4053. Vincker, C. et al., Symp. Int. Combust. Proc. 17 (1978): 623.

50 Aleksandrov, E. N. et al., Kint. Katal. 22 (1981): 513.

Peeters, J., et al., Combust. Inst. Eurepean Symposium Academic Press, London. 1 (1973): 53.

Roth, P., Symp. Int. Shock Tubes Waves Proc. 13 (1982): 593.

Cvetanovic, R. J., J. Phys. Chem. Ref Data 16 (1987): 261.

Frank, P., Symp. Int. Combust. Proc. 21 (1988): 885.
Gardiner, W., et al., Bull Chem. Soc. JPN 58 (1985): 1851.

56 Benson S. W. estimated data (1989).
57 Brouwer, R., Longwell, J., Sarofim, A., Bozzell, J. W., and Barat, R., Combust. Sci. and Technology Jon (1992).


[^0]:    * Bath gas is Ar; Temperatures range from 800-1500 K.

[^1]:    * Bath gas is Ar; Temperatures range from 300-1500 K.

[^2]:    * Via addition reaction followed by other reaction channels.

