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ABSTRACT

I: REACTION OF CH3CI WITH H, AND CH,
UNDER OXIDATION AND PYROLYSIS CONDITIONS

II: KINETIC ANALYSIS OF C,Hg, CoH,,
AND C,H, REACTIONS WITH OH, O, H, AND Cl

by
Qing-Rui Yu

Experimental and detailed modeling are presented for
the high temperature combustion systems involving
CH4C1/CH,/0, and CH;Cl/H,/0, reactions. More important c,
species reaction rate constant are created. A mechanism
incorporating 263 step elementary reactions and 76 stable
compounds and active radicals is developed based on (1)
fundamental thermochemical and Kinetic principles (2)
Quantum Rice-Ramsperger-Kassel (QRRK) theory analysis (3)
accurate thermodynamic Properties and thermochemical
analysis (4) reliable experimental data to validate our
model.

The study of Part II evaluates and analyzes theoreti-
cally the rate constants of C,Hg, CyHy, and C,H, reactions
with OH, O, H, and Cl important to incineration based on
detailed selection of accurate experimental data and QRRK
analysis. Recommended rate constants can be applied to model

research.
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CHAPTER 1
INTRODUCTION
1.1 Review of Previous Research

Earlier kinetic studies on methyl chloride pyrolysis were
reported in 1959 by Shilov and Sabirova [1]. Measurements
were made at initial CH3;Cl pressures of 10.1-34.3 torr,
temperatures of 1062K-1147K, and at contact times of 0.4-
5.0 seconds; They found HCl, CH,, and C,H, in the ratios
of 3:1:0.6. These yields were reported to be consistent
with the following proposed mechanism:
CH4Cl = CH4 + C1
CH3 + CH43Cl = CH, + CH,Cl
Cl + CH4Cl = CH,Cl + HC1
ZCH2C1 = CHZClCHZCI
CH,C1CH,Cl= C,H,;Cl + HCl
C,H;Cl = C,H, + HCl
They also reported that the measured apparent first-order
rate constants increased with increasing pressure.

Slater's theory was used by Holbrook [2] to calculate
the rate constant for the decomposition of CH5Cl in the
fall-off region. The value obtained was by 5-6 orders of
magnitude lower than the reported experimental values
above. Frost and Laurent [3] obtained a better fit to this
value using RRKM theory, where rotations were considered
inactive, and activation energy was taken from the exper-

imental data. With Harmonic energy levels the calculated



rate constant was 32 times smaller than experimental
value, and with a correction for an harmonicity the
calculated rate constant was only 20 times smaller. These
modeling calculation may have indicated that the experi-
mental data was not correctly fit rate constants.

In 1980, Kondo, Saito, Murakami [4] pyrolyzed CH5C1
in shock tube at temperatures between 1680K and 2430K, at
total pressures of 1-5 atm, for reactant mixtures of
0.2%-0.5% methyl chloride in argon. CH; concentrations
were measured via their absorption band at 216 nm. From
the initial rate of CH; formation the elementary rate
constant for breaking the C-Cl bond was obtained. The
reactionr ‘mn *the fall-off region even at the highest
pressures, For these high temperature shock tube data,
the mechanism was considered to include the following

likely reactions:

Il

CH3Cl + M = CHy + Cl + M (1)
CH3Cl+ Cl = CH,Cl + HCl (2)
CH3Cl + CH5 = CH,Cl + CH, (3)
CH3Cl + CH,Cl = CH; + CH,Cl, (4)
CoHg + M = 2CHy + M (5)

Cl, + M = 2C1 + M (6)

2CH,Cl = C,H,Cl, (7)

C,H,Cl, = C,H4Cl + HCl (8)
C,H3Cl + M = C,H, + HCl + M (9)



C,H5Cl = C,H, + HCl (11)

Co,Hy + M = CoHy + Hy + M (12)

Computer simulation of the CH; profiles without reaction
(4), and with k; and k,, equal to kg fitted the experimen-
tal data at high temperatures exactly and were higher by a
factor of 2 at low temperatures. Low- and High-pressure
rate constants (k, [Ar] and k) were obtained from the
experimental data applying a refined RRKM theory which
involved a weak collision effect: logk,/[Ar] = 12.56-
59/6L/mol.s log k., = 13.86-91.0/8s"1. The low-pressure
rate constant is in agreement with the value derived by
Holbrook [2] from the data reported in [1].

Data on the pyrolysis of CH3Cl at a high degree of
conversion were reported by LeMoan [5]. The reaction was
run at 993K in 30 hours in batch reactor at conversion
larger than 95%. The gas phase contained HC1, CHy, and
small gquantities of H2, benzene, and toluene. At the
beginning of the pyrolysis low transient concentrations of
CH,Cl, C,Hg, and C2H5C1 were detected at 993K. In the
liquid phase benzene (72%), toluene (11%), xylene (1%),
and monochlorobenzene (12%) were identified. There were
two distinct solid phases: carbon in the reactor and
naphthalene and soot at the exit from the reactor. The
reaction mechanism, despite the large number of products
identified, was considered to be schematically simple. It

was proposed that, initially, CH3Cl1 would decompose into



HC1 and CH,, which would dimerize into C,H; or decompose
into CH + H or C + H,. The combination of two CH radicals
would form acetylene, which could cyclize to form benzene,
from which the identified higher molecular weight
compounds would be formed. The hydrogenation of CH, radi-
cals would lead to methane. As we shall see later, this
mechanism is not plausible.

M. Weissman, and S. W. Benson [6] presented results
obtained in batch laboratory experiments and detailed
modeling of the chlorine-catalyzed polymerization of
methane at 1260-1310K. The reaction can be separated into
two stages, the chlorination of methane and pyrolysis of
CH5Cl. The pyrolysis of CH5Cl1 formed C,H, and C,H, in
increasing yields as the degree of conversion decreased
and the excess of methane increased. In the absence of CH,
C,H; and C,H, are formed by the recombination of CH; and
CH,Cl radicals. With added CH, recombination of CH; forms
C,Hg, which dehydrogenates to C,H, + H,. C,H, in turn
dehydrogenates to C,H, + H,. They thought that HC1l, C,
CH, and H, were the ultimate stable products, CoHg, CoHy,
and C,H, are produced as intermediates and appear to
approach stationary concentrations in their reaction
system. The secondary reactions can be described by
radical reactions. CH3-initiated polymerization of C,H,
was negligible relative to the C,H; formation through H

abstraction by Cl. The fastest reaction of C,Hy is its



decomposition to C,H,. About 20% of the consumption of
C,H, can be accounted for by the addition of C,H; to C,H,
with formation of the butadienyl radical (CyHg or
Cc*CC*C.); About 10% of C,Hg was indicated to abstract H
from HC1l and form butadiene (C4Hg or C*CC*C). Successive
additions of C,H; to butadiene and the respective products
of addition were reported to form benzene, styrene,
naphthalene, and higher polyaromatics under the condition
of pyrolysis of CH;Cl.

A mechanism was written to describe the early stages
(10% conversion) of CH3Cl decomposition in CH5;Cl/CH,
system:
CH5Cl = CHy + Cl (1)
Cl + CH3Cl = CH,Cl + HC1l (2)
Cl + CH, = CHy + HC1l (3)
2 CH; = C,Hg (4)
2 CH,Cl = CLCH,CH,C1 (5)
CH; + CH,Cl = CH5CH,Cl (6)
CH;CH,Cl = C,H, + HCl (7)
C1CH,CH,Cl = HCl + C,H4Cl (8)
C,H4Cl = C,H, + HC1 (9)
C,Hg + Cl = HCl + CyHg (10)
C,Hg = C,H, + H (11)
H + HC1l = H, + C1l (12)
Cl + CyHy, = C,H + HC1 (13)

Cl + C,Hy = C,Hy + HCl (14)



CH;3 + C,H, = CH3CH,CH, (15)
CH;CH,CH, = CC*C + H (16)
CHy + CC*C = C,CC. (17)
C,CC. = C,C*C + H (18)
C,Hy + C,H, = C*CCC. (19)
C*CCC. = C*CC*C + H (20)
C,Hy + Co,H, = C*CC*C. (21)
C*CC*C. = C#CC*C + H (22)
C*CC*C. + HCl = C*CC*C + Cl (23)
Benson postulated that once formed, butadiene can add
rapidly to C,H; and through subsequent cyclizations and
dehydrogenations, which are very fast processes, lead to
benzene:
Co,Hy + C*CC*C = C*CCC.C*C (24)
C*CCC.C*C = C*CC*CC*C + H (25)
C*CC*CC*C = C6H6 + H2 (26)
Other pathways for CgH, formation were reported through
the additions of C, radicals to C,H, and C,H,. The path-
ways leading to polyaromatics and soot are through
reactions of C2H3 radical addition to multiple bonds as,
for example,
CoH3 + CcHg = CgHgCyHy = CgHgCoH3 + H
CgH5CyHy + CoHy = CgHgCyHe = CigHpg + H

Benson's modeling did not consider CH; addition to
C,H, to form Cy species followed by reactions between C,

to lead to C6H6.



Westbrook C. K. [7] reported his studies on inhibi~-
tion and extinction of hydrocarbon oxidation by halogen
acids and halogenated hydrocarbons formed by combining C1,
Br, or I atoms with methyl, ethyl or vinyl radicals in
both laminar flame and detonations both in experiment and
theory. In all of cases examined, halogenated species act
by catalyzing the recombination of H atoms into relatively
non-reactive H, molecules reducing the available radical
pools and lowing the overall rate of chain breaching. In
agreement with experimental observations, his modeling
study indicated I atoms are the most effective. Br atoms
are slingtly less effective than I atoms and Cl atoms are
very much less effective as kinetic inhibitor. The addi-
tional fuel content of halogenated hydrocarbons makes
their inhibition efficiency vary with equivalence ratio,
and for all of the inhibitors increased pressure also
increases the inhibition efficiency. The reported inhibi-
tion mechanism for HI, HBr, and HCl can be summarized in
cycle I of reactions.

HX +X

H + X,

H + HX

Hy, + X
X+ X+M=X, +M
H+X+M=HX+M
In cycle I X refers to the halogen atom. The first three
reactions in cycle I about constitute a catalyzed recombi-

nation of H atoms which are the unavailable for chain



breaching through reaction with 0, molecules or reactions
fuel molecules in the pre-~flame pyrolysis region. For the
halogenated hydrocarbons C-X bond energies are much less
than the C-H bond energies (ie. CH;-H 104 Kcal/mole; CH;-
Cl 83.5; CH3-Br 70; CH3-I 56 [8]) so halogen atom abstrac-
tion have a much larger rate than H atom abstraction for
these inhibitors. For the halogenated hydrocarbon species
the reported inhibition pattern is dominated by cycle II
of reactions:

H + RX HX + R

R+X2=RX+X

H + HX = H2 + X

X+ X+ M= X2 + M

Like the earlier cycle I, the net result of these reac-
tions is H+ H = H, a catalyzed recombination of H
atoms and a reduction in chain breaching.

In 1988, Senkan et al. [9] constructed the CH;Cl
combustion mechanism by combining a mechanism describing
CH, combustion together with sub-mechanism describing the
chlorine inhibition of €O oxidation. This mechanism was
used to calculate the stable species concentration pro-
files in atmospheric pressure sooting CH3Cl/CH,/0,/Ar
premixed flat flames [10]. Their studies concluded that
CH5Cl promotes not only the decay of CH, to CO, and H,O
but also soot formation by simultaneously increasing the

rates of C,H; and C,H, formation. However a number of their



rate constants were from estimation techniques and their
mechanism extended only up to C,-species. C; reaction
mechanism involving unimolecular decomposition, abstrac-
tion, and oxidation is reasonably well understood in
describing CH, combustion at present. The C, chenistry,
however, is in need of improvement and specially reactions
of chlorinated C, radicals. CH; and C, radical reactions:
thermal decomposition, oxidation by O and O,, recombina-
tion and addition are four competitive reactions because
Cl abstracts H rapidly (high Arrhenius A factor and low
energy of activation), which produces and active hydrocar-
bon or H radical pool early in the reaction. These hydro-
carbon radicals combine to C, radical more in presence of
Cl. Therefore, the C, chemistry is important here even
though the amount of C+2 species account under 15% of

carbon in the CH;Cl/CH,/0, system.

1.2. The Objectives of Research

In view of above review, the objectives of this thesis
are as follow:

(1) . Analysis of selected C,-species reactions with OH, O,
H, and Cl important to incineration and creation of rea-
sonable reaction rate constants of important C, species.
(2). Clarifying the important species reaction behavior
and their effects on other reations in the studied

systenms.
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(3). Developing a detail model describing CH4Cl combustion

to shed some light on these issues discussed in review.



CHAPTER 2
EXPERIMENTAL METHOD
2.1. The Basis on Use of Tubular Flow Reactor
Isothermal tubular reactors are commonly used for funda-
mental reaction rate studies. The encountered problem of
relating axial distance along the reactor with residence
time has been resolved well by Chang and Bozzelli [11].
They have solved the continuity equation for laminar flow
in a tubular reactor considering a parabolic velocity
profile with radial dispersion, parallel bulk and wall
reactions with coupled first order rate constants. They
show a method to determine homogeneous and heterogeneous
rate parameters simultaneously from their optimum values.
The plug flow model is a good approximation for our

present reactors.

2.2. Experimental Method

The thermal reaction of CH3Cl in H,/0, or CH,/O, mixtures
in an Ar bath gas was studied at 1 atmosphere total pres-
sure in a 10.5/16.0 mm ID tubular flow reactors. The
reaction systems were analyzed systematically over a
temperature range from 1098K to 1173/1223K, with average
residence times ranging from 0.2/0.4 to 2.0 secands.

A schematic of the apparatus is shown in Chart 1. The
feed gases CH3Cl, O,, and H, were added into the argon
flow stream as required and flow rate is measured with

calibrated rotameter. Make-up Ar was also introduced after

11
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the mixture to adjust to the total concentration. A small
computer code is used to calculate the flow of each re-
agent for the desired residence times at each tempera-
tures. Complete feed gas mixing occurred in 38 cm of the
flow tube located upstream of the furnace and held at
423K.

The high temperature quartz, tubular flow reactors
were heated in a three zone electric tube furnace. Temper-
ature profiles were obtained using a type K thermocouple
probe moved axially within the reactor under representa-
tive flow cond:::.ons. Tight control resulted in tempera-
ture profiles isothermal to within + 5K over the central
80% of the furnace length throughout the temperature range
studied.

The reactor effluent was monitored by an on-line
Perkin Elmer 900 Gas Chromatograph (GC) equipped with dual
Flame Ionization Detector (FID). A methanizer catalyst is
used to convert CO and C02 to CH4 so that they can be
detected by the FID. The GC peak areas corresponding to
the inlet concentrations were determined by sampling a
reactor bypass stream. All connecting lines from reactor
to the GC (ca 1 meter in length) were heated to 373K to
limit condensation. Two VALCO 6 port gas sampling valves
were used to direct the reactor effluent to the GC col-
umns. A 1% ALLTECH AT-1000 on Graphpac-GB 60/80 column

3.175 mm X 2.43 m length was used to separate C, through
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Cg compounds (acetylene through chlorobenzene). A GCA-013
SPHEROCARB 100/120 column 3.175 mm x 1.8 m length was used
to separate CO, CO,, CH,, and CH3Cl before the methanizer
and second FID.

A series of seven to eight residence times were run
for each given inlet concentration matrix by systematic
variation in the methyl chloride, hydrogen, oxygen, and
make-up argon flowrates. Every third run was repeated to
ensure reproducibility of results. The relative deviation
on GC results is less than +15%.

Quantitative analysis of product HC1l was performed
for all cases. The samples for HCl analysis were collected
independently from GC sampling as illustrated in Chart 1.
In this analysis, the effluent was passed through a two
stage bubbler containing 0.01 M NaOH before being exhaust-
ed to the hood. The effluent HCl concentration was then
calculated based upon titration of the solution with 0.01
M HC1l to its phenolphthalein end point. Several titrations
were performed using buffered solution (pH 4.7) to discern
if co, was effecting the quantitative measurement of HC1.
No significant effect was observed due to the relatively
low levels of CO,. The relative deviation on HCl analysis
is less than +5%.

Positive identifications of all reactor effluent
species were made by GC/Mass Spectrometer applied to batch

samples drawn from the reactor exit into previously evacu-
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ated 25 ml stainless steel or Pyrex glass sample cylinders.
A Finnigan 4000 series GC/MS, with a 0.22 mm x 50 m methyl
silicone stationary phase column was used. Gas samples
were inlet by cryofocussing (ie 77K) on a 12 cm length of

the capillary column.
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Table 1. Average Retention Time of Products
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Average Retention Time (min.)

Compound Column A Column B
CH, 6.82 1.73
Co, 9.63
C2H2 12.48 2.39
C,H, 14.44 2.66
C,Hg 16.87
CH3C1 30.64 4.43
C,H5CL 7.42
C2C12* 9.97
C2H2C12 12.78
CeHg 17.97

* Estimated compound based on its retention time and

reaction mechanism of CH3Cl.
** A column,
B column,
3.18 mm * 2.43 m (the below is same).

GCA-OB SPHEROC CARB 100/120 3.175 mm * 18 m.
1% ALLTECH AT-1000 on GRAPHPAC-GB 60/80,
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Table 2. Relative Response Factors of Several Compounds

Relative Response Factors (RRF)

Compound Column A Column B
CO 1.082

CH4 1.00 1.00
Co, 1.19

C,H, 1.14

C,H, 1.972 2.00
CoHg 2.036

CH3C1 1.00 1.00
C,H;C1 1.67
C,Cl,* 2.00
C,H,Cl,* 2.00
CgHg* 6.00

* Estimated on Carbon Number Contribution to Response

Values
** Corrected area = Measured area/RRF
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2.3 Kinetic Model Computer Integration — A
Thinking Experimental Tool

The CHEMKIN computer program package is used in interpret-
ing and integrating the detailed reaction mechanism
(model) of the reaction system. The CHEMKIN program [12],
Chart 2, reads the user's symbolic description of the
reaction mechanism. The thermodynamic data base, which has
the appropriate thermodynamic information and mass for all
species present in mechanism. The information on the
elements, species, and reactions in the mechanism; and
finally the CHEMKIN gas phase subroutines, which can be
called to return information on the elements, species,
reactions equations of state, thermodynamic properties,
chemical production rates, and derivatives of thermodynam-
ic properties relative to any time in the integration. The
input to these subroutines are usually the state variables
of gas pressure or density, temperature and species compo-
sition at initial time of reaction. The routines can be
called with the species composition defined in terms of
either mass fraction or molar concentration. Numerical
calculations were carried out using the CHEMKIN computer
code coupled to LSODE a linear solver of ordinary differ-
ential calculations.

The input data requirement to run CHEMKIN program
include:

. Detailed reaction mechanism
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Mole fraction of all gases present in the reaction

system



. DESCRIPTION OF .
. REACTION MECHANISM .

\Y%

v

THERMODYNAMIC .
DATA BASE .

¢ o 2 ¢ o0 0 ¢ 0 0 0

. INTERPRETER .
v
. LINKING FILE .
v

. INITIALIZE CHEMKIN WORK .

. SPACE IN USER CODE .

® ® 0 0 6 06 85 06 00060 000090 00

® ® & 0 6 0 8 0 6 000 000009909000

© 9 0 % @ 0 8 0 8 0 P E 0O L LGOS0 G e e a0 g e e o0

CALL CHEMKI SUBROUTINES .

FROM USE CODE .

® 8 8 0 6 ¢ 0 00000000 00 0000

Chart 2. Structure of the CHEMKIN Package
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. Pressure and temperature at which the reaction system
being studied

. Time increament at which the concentration of species
present in the system be reported

A thermodynamic data base for species with C/H/Cl1l/0

elements is developed at NJIT and used for modeling the
kinetic scheme of elementary reactions input to the pro-
gram. For those species where thermodynamic information
was not available in the data base, thermo data was gener-
ated utilizing Thermfit program. This program requires
heat of formation and entropies, as well as heat capaci-
ties, from 298 to 1000K as input. These parameters were
calculated by group additivity method of Benson [8] when

not available in literature and computer code THERM [13].



CHAPTER 3
RESULTS and DISCUSSION
The experimental conditions of the reaction of CH;Cl/H,/0,
and CH3Cl/CH,;/0, mixtures with argon are listed below:
Reactant molar ratios:
(1). Ar:CH3C1:H2:O2 = 97:1:1:1
(IT). Ar:CH4Cl:H,:0, = 96:2:1:1
(III). Ar:CH3Cl:CH4:0, = 96:1:1:2
(IV). Ar:CH5Cl:CH,:0, = 95:2:1:2
Reactor Internal Diameter (ID) is 10.5 mm.
Reaction Temperature (OK): i098, 1123, 1148, 1173, 1198,
1223.
For the 16.0 mm ID reactor,
Reactant molar ratios:
(I). Ar:CH;Cl:H,:0, = 97:1:1:1
(V).  Ar:CH3Cl:H,:0, = 95.5:1:1:2.5
(III). Ar:CH3Cl:CH4:0, = 96:1:1:2
(VI). Ar:CH5Cl:CH,:0, = 94:1:1:4
Reaction Temperature (°K): 1098, 1123, 1148, 1173.
Residence Time (second=sec): |
0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0 (ID=10.5 mm)
0.4, 1.0, 1.2, 1.4, 1.8, 2.0 (ID=16.0 mm)
Operation Pressure: 1 atm.

Effective Reactor Length: 38.0 cm.
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3.1 Thermal Reaction of CH,;Cl/H,/O,/Ar Systems
In the thermal reaction systems of CH;3Cl/H,/0,/Ar of this
study, CH;Cl, CH,, C,H,, C,H,, C,H3Cl, CO, CO,, and HCl
were major products. small amounts of CyHg, CyH,C1,,
C,Cl,, and CgHg were sometimes measured depending on resi-
dence time, temperature. Experimental results on product
distribution of thermal reaction of methyl chloride are in
Figure 1 to 36 (ID=10.5 mm) and 78 to 101 (ID=16.0 mm).
These Figures show normalized concentration (Cx/Co) as a

function of the average residence time for several temper-

atures.

3.1.1 Initial Conversion and Complete Conversion
Temperatures

The temperature of initial conversion (around 5%) for
methyl chloride at 0.4 s is 1098K and the temperature of
complete conversion (around 99%) is 1173K at less than 1.0
second reaction time for the ratio of Ar:CH4Cl:Hy:0, =
95.5:1:1:2.5 (close to stoichiometric ratio). The ratios
of CH3Cl and H, to O, (mole) and of reactor surface (S) to

volume (V) influence the conversion of CH3cl and product

distribution.

3.1.2 Residence Time and Temperature Effects

The figures 1 to 36 and 78 to 101 show the effects of time
and temperature on the reaction system. Methyl chloride
decay, and the formation of CO,, and HC1 increase with

time and temperature. CH4, €O, CyH,, CoH,, C,H3Cl, CyHg,
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C,H,Cl,, C,Cl,, CgHg increases with time at lower tempera-
ture. Their maxima were present with time increase. These

maxima shift to lower times with increasing temperature.
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3.1.3 Oxygen Content Effects

A. Oxygen Initiation Effect

We consider data from 10.5 mm ID reactor and two reactant
ratios (Ar:CH;3;Cl:H,:0,=97:1:1:1 and Ar:CH,;Cl:H,:0,
=96:2:1:1) CH3Cl1l/02, 1/1 and 2/1 respectively. In order
to show the effect of oxygen, the low temperature (1098K)
results are taken for illustration. These results indicate
that oxygen contributes to increased CH3Cl conversion but
also to major product formation (Figures 37-41). In order
to verify the reliability of the results, another controll
experiment was performed for (Ar:CH,Cl:H5:0,=97:1:1:1
and Ar:CH3Cl1:H,:0,=95.5:1:1:2.5) in the 16.0 mm ID reac-
tor. A more clear set of results (Figures 126-130) was
obtained. This reason may stem from the following reac-
tions:

CH;Cl = CH5 + Cl (1)CH3 + 02 = CH20 + OH (2)

CH3Cl + O, = CH,Cl + HO, (3)

H, + O, = H + HO, (0, stimulates reactive H formation) (4)
H + CH3Cl = CH3 + HC1l (5)

CH; + H = CH,; ( The path of CH, formation) (6)

CH2C1 + CH3 = CHZClCH3 (7)

CH,C1CH; = C,H, + HCl (8)

H+ O, =OH + 0 (reactive H atoms abstract O from less
reactive 0, to produce more reactive OH and 0) (9)

CHy + CHq = C,Hg (10)
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C,Hg = C,H, + H (12)

C,H, + OH = CyH3 + H,0 (13)

C,Hy = C,H, + H (14)CH,Cl + CH,Cl = CH,CICH,Cl (15)
CH,C1CH,Cl = C,H,5Cl + HCl (16)

It can be seen that the reaction (2)-(3) show oxygen
effect on CH3Cl decay; the reactions (4)-(6) indicate
oxygen stimulates CH, formation. Reactions (3), (5), (7).,
and (8) though (12) show that oxygen contributes to C,H,
formation. The reactions (2), (9), and (13)-(14) show
oxygen contribution to C,H, formation. The final result of
reactions (3) and (16) is that oxygen also stimulates
C,H;Cl production.

B. Oxygen Effect on the Complete Oxidation of
All Species

Controlled oxidation of CH5;Cl and intermediate products
(as C,H,, C,H,, C,Hg, C,H3Cl, CO, C,H,Cl,, C,Cl,, and
CgHg) for above reaction systems via changing oxygen
content in the reaction system or controlling reaction
temperature can help us to evaluate the CH4Cl combustion
mechanism. Information about oxygen effect on complete
oxidation of all species was obtained that when oxygen
content is about stoichiometric (0,/CH;Cl/H, = 2.5/1/1)
almost all of species are converted completely to co, at
1173K and 1.2 sec residence time. We can predict that the
temperature of CH5;Cl complete conversion to CO, will be

reduced if the oxygen concentration is increased.
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3.1.4 Effects of s8/V

In order to indicate the effect of S/V on CH;Cl conversion
and product distribution, the results for two types of
reactor at the same reactant ratio
(Ar:CH3C1:H2:02=97:1:1:1) are compared. S/V increase
contributes to increased CH;Cl conversion (Figures 131-
134) but also contributes to CH,, C,H,, C,H,, CyHg,
C,H;C1, €O, and CO,, C,H,Cl,, C,Cl,, CgHg¢ formation
(Figures 1-12 and 80-91). That is, When ID 10.5 mm reactor
was used, these species formation temperatures were
lowered and their concentration were increased. These
reasons are likely due to effects of heat and mass trans-
fer difference between two types of reactor. In view of
higher temperature gradient presence for 16.0 mm ID reac-

tor, experimental results obtained in 10.5 mm were used to

validated our model.
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3.2, Thermal Reaction of CH43Cl/CH,/0,/Ar Systems
In the thermal reaction systems of CH3Cl/CH4/0,/Ar, CH3C1,
CH,, C,H,, C,H,, C,H53Cl, CO, CO,, and HCl are major
products. C,Hg, C2H2C12, C2C12, and CgHg are small amounts
of products.
3.2.1 Initial Conversion and Complete Conversion
Temperatures
The temperature of initial conversion (about 5%) for CH5Cl
at 0.4 sec is 1098K. The temperature of complete conver-
sion (99%) is 1173K at 1.0 sec for the ratio of
Ar:CH;Cl:CH,:0,=96:1:1:4 (close to stoichiometric). The
ratios of CH5Cl and CH; to O, and of S/V influence the
conversion of CH;Cl and affect the product distribution to

a small extent as CH3Cl/H,/0,/Ar system.

3.2.2 Residence Time and Temperature Effects
The figures 42 - 77 and 102 - 125 show the effects of time

and temperature, which are similar to that discussed

earlier in CH5;Cl/H,/0,/Ar system.
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3.2.3 Oxygen Content Effect

In order to discuss oxygen initiation effects in
CH4Cl1/CH,/0,/Ar system, Results at 1098K in the 16.0 mm ID
reactor are used for illustration. These indicate that
oxygen participates in initiation of CH3Cl decay and
contributes to intermediate product formation (Figures 135-
140). These reasons may stem from the following reactions:
CH;Cl = CH5 + Cl (1)

CH; + O, = CH,0 + OH (2)

CH5Cl + O, = CH,Cl + HO, (3)

CH, + O, = CHy + HO, (4)

CH;Cl + Cl = CH,Cl + HCl (5)

CHy + Cl = CHy + HCl (6)

CH; + HO, = CH, + 05 (7)

CHy + HCl = CH, + Cl (8)

CHy + CH,Cl = CH, + CH,Cl (9)

CHy + CH,Cl = CH,CH,Cl (10)
CH;CH,Cl = C,H, + HCl (11)

CHy + CH3 = C,Hg (12)

CoHg + (Cl or OH ) = C,Hg + (HCl or H,0) (13)
C,Hg = C,H, + H (14)

H+ O, = OH + O (15)

CoH, + OH = C,Hy + H,0 (16)

CoHy = CoHy, + H (17)

CH,Cl + CH,Cl = CH,ClCH,Cl (18)
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Reactions (2) and (3) show oxygen contributes to CH4Cl
decay at very early time. The overall effects of reactions
(1), (6), (7), (8), and (9) leads to a slightly increase
in CH, at 1098K (see Figure 136); the result of reactions
(1) - (6), and (10) - (14), lead to C,H, formation. The
general result of reactions (15) - (17) shows oxygen
effect on C,H, formation. Reactions (3), and (19) show

oxygen's stimulation effect on C,H;Cl formation.

3.2.4 HC1l Effect on CO Conversion to CO,

When the concentration of CH, and O, is maintained at
values of ca 1% and 2% respectively and CH5Cl concentra-
tion is changed, the effect of HCl produced in reaction
can be obtained. The following experimental results
(Table 3 ) indicate that HCl1l inhibits oxidation of CO to
CO,. Since C.. = <oncentration of component II is two
times that of component I, the concentration of HC1
produced in II is about two times that of I under same
reaction conditions. The data tell us that the concentra-
tion ratio of CO to CO, in II is greater than that in I,
which means the greater, HCl concentration in reaction

system; the lower, the conversion of CO to CO,.



Table 3. The Effect of HCl Concentration in Products on

CO Conversion
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Temperature Reactant Component (HC1) (CO)/ (CO2)

I 0.06 1.6
825C

IT 0.14 2.0

I 0.14 3.6
850¢C

11 0.42 8.3

I 0.44 7.8
875C

II 0.83 9.4

I 0.74 11.9
900C

11 1.45 13.9

I 0.97 11.5
925C

II 1.94 13.0

I 0.99 6.9
950C

11 1.98 10.3

* Reaction Time is at 1.0 second; ( ) denotes mole
concentration.

I denotes Ar:CH3Cl:CH4:O2 = 96:1:1:2.

II denotes Ar:CH3C1:CH4:O2 95:2:1:2.
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3.3 Quantum Rice-Ramsperger-Kassel (QRRK) Analysis
Quantum Rice-Ramsperger-Kassel (QRRK) is a straightfoward
method for calculating apparent rate constants of ener-
gized complexes. A brief description of its theoretical
basis is derived from the article by Westmoreland and
Dean [14]. The energized radical and molecular complexes
are modeled using the QRRK analyses. The details of bimo-
lecular QRRK method have been presented and discussed
[{14,15). This computer code has been modified by Ritter
and Bozzelli [16] to use gamma function instead of facto-
rials. The QRRK computer code was used to determine the
energy dependent rate constants for all reaction channels
of the energized complexes and calculates rate
constants as function of both temperature and pressure.
The use of this formalism is important in determination of
accurate rate constants needed for input to the mecha-
nism, specifically in choice of the important reaction
paths. This is also applied to accurate product distribu-
tion prediction from the activated complex.

ORRK analysis of the chemically activated systenm,
using generic estimates or literature values for high
pressure rate constants and species thermodynamic proper-
ties for the enthalpies of reaction, can yield thermody-
namically and kinetically plausible apparent rate con-
stants which are needed for the temperatures and pressures

of our reaction systems. The input rate parameters used in
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these calculations and results from the calculations are
summarized in APPENDIX I Table A-E. In order to illustrate
this calculation method, the reaction, C,H, + OH =>
products as a example is presented:

The reaction of C,H, with OH will be considered first as
addition reaction to form the energized complex
[HOCH*C.H]# ( # denotes energized complex). It can further
react as shown in reactions (2) to (3) or be stabilized

and or return to initial reactant.

(1)
C,H, + OH <=> [HOCH*C.H]# => C,H + H,0 (74.2) (2)
(63.7)
=> HOC#CH + H (72.4) (3)

*e 6o oo oo

=> [.CH,cHOI? (3.2) (4)
HOCHYC.H
(28.3)

Reaction (2) is not important comparing with abstraction
reaction Cy,H, + OH = C,H + H,0. So this channel is omitted
in QRRK analysis. Channel (3) has a higher energy barrier
than channel (4). Based on BAC-MP4 potential-energy-sur-
face information and statistical-theoretical methods
presented by Miller [17], however, channel (3) is impor-
tant path at combustion conditions. Reaction (4) is ther-
modynamically favorable relative to initial energy of the
reactants ( Isomerization through H shift from oxygen to
carbon atom). The species .CH,CHO can form CH,CHO and H

via beta scission reaction (5) or further isomerize (7) to

product CH3C.O. It is interesting that CH;C.O converts to
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CH,CO + H (9) but also reacts to form CH; + CO (8).

[.CH,CHO]¥ => CH,CO + H (40.7) (5)

(3%2)
<=> [CHyc.01% (-5.4) (7)
[cHyc.01% => cH,y + CO (8)
(8.4)
[cHyc.01% => CH,cO + H (9)

The energy diagram for above reaction channels is
illustrated in Figure 141. The QRRK calculation results
for this reaction system indicate that the reactions for
CH; + CO and CH,CO + H are the dominant channels. The rate
constant for the HOC#CH + H channel increase faster than
other channels with increasing temperature. When tempera-
ture increases from 1200K to 1500K, the rate constant for
CH; + CO decreases slightly. The rate constant for CH,CO
+ H increases slightly. The rate constant increase for
HOC#CH + H is three times greater, however, which is
agreement with data reported by Miller.

The important elementary reactions and their energy
diagrams for the reaction systems C,H, + O, C2H4 + 0, and

C,H, + OH are shown in Figures 142-144.
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Table 4, Detailed Reaction Mechenisa for CH3CT/CH4/0E Syctens

feaction A n Ea Swurces
LW +0H =G b +CH, (LIKE CLARKADIVE--0PT) 0,550 4.60 8300, (3
CHo#CH TR A0, (IPCRD) 5.505413 0,00, 0. 2
CY L1, = CHOI + HOY 1.82E435 -7.43 g5730. e}
tHElp= tHL + 0l 1. 80E+40 -7, 82550, 2
CHLI = Dy ¢ £ 1.266437 -.91 50540, (2
CH L1 = CHS + KO 8526427 -5.13 109840, e}
Ll ¢ K= CHAL + KD 7.00E+1 0.00 gl:d (3
CHClg + Ho= L1y + H 3.60E412 0,00 15295, &)
CHALT + W= CHEL ¢ H 1.79E+12 0.60 13057 (2
CH Ll + €1 = O, ¢ KO B.51E413 0.0 2100 (3]
CHLL ¢ H = Clig ¢ HC) 3.726413 660 (@
CHy = Clig+ H 1.03E+33 -5.58 111 s
[Hy + Ho= Tig ¢ M (TER) 2. 205405 3.00 g f18]
Oiy ¢ € = 05 ¢ KO 2.09E413 0.69 3 3]
CH L1+ 01 = CHEL + Ko 3.18E412 0.0 3 £2
CHLL, ¢ Ty = (4, + CHOL, b.T6EHD 6.0 724 2
o+ LRy = BHEL ¢ CHT) 1468411 0,60 494 23
L+ Ty = CH, + CR A 3.30E¢! 0,40 4440 &3
(48t ¢ Ol = O LD, T.OGEHE  -10.T 13170, [46)
Gillg ¢ CHEYp = CHE 9+ € L 36E430 -5.73 14120 (461
CHCIp ¢ CHOD, = L0+ KOO 6.726435 711 13219, 48]
LT+ AT = C 0l 1L 0E+H3 6,00 0, 4]
GILL + CHED = CHLICH, + D) 4476429 4,93 14070, (23
GHL + CHEY = CAE1 + KL 1.88E435 -6.73 3140, 23
CELL + Tl = DR g SHIET -10.22 2910, 2]
CHLL + CHOD 5 = CH AT, + HOL 3.756436 -7.28 12520, (23
(41 + [HC1 5 = CHCICHCL + HE) 1,226437 -7.20 13840, 2]
LD + Ty = CH 5.01E413 4,60 0, 443
CHLL ¢ Ty = CH, + HCI 3.50£428 4,49 9120, 23
gl ¢ CHy= CHe+ O 9.27E419 -2.07 10130, [21
Tl o + Oy = CHgHCL 2.28E 4] -3.48 11620, 2
[HCl 5 + CHy = D41 + He) 1.35E430 4.9 11550, 2
CHCI 5 ¢ Dy = CHAHEL + O 2.T4E+25 -3.45 12810, [2)
CHALL + H 2 0o £ 3.43E+27 -5.02 5380, (2
CHELL + K= Ty + O} §.49E415 -0.50 780, 2]
THEL + H = TH S + HO) 1L C4E+0 1,65 3320, 146
CH1 5 ¢ B = CHEL §.81E426 -4.82 3810, 2
CHCIp ¢ Ho= CHEL+ C) .25E¢14 -0.03 0. 23
CHLL + H = CHLICH, 5.01E423 -4.2] B4T0. [44)
CHLL +H=CH, + €1 (RED) 1.E9E+14 0.0 5040, (5]
CHLL + 8= CHq+ KOL (RED) b.45E+437 -7.09 18400, [5
LI+ H = CHAICE 151423 -4.18 20, GRRK
CHlg+r H=CHifl, 2476422 4.9 10890 GRRK
CHlgt = waccxg + 01 1L4SE43 0,61 220, aRRy
CaiClqg + H = CHOICHDY + €] 7.278412 0.0 7220, BRRN
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CHLY, ¢
AP Hae- CHC}E‘P By
CHElp ¢ GH = CHCL ¢ HY
CH3[‘12+ f= (HL‘IB + OH
CHEL + Dy CHP + C10
EHLI + g = CHOID +0H
CHELD + 0= CHLID {ORRK)
CHE1 ¢ 0= CHD ¢ €1 (BRRK)
CHLL ¢ G4 = CHD + HCL (BRRK)
CHLl + 04 = T4 + C1 ORRY)
CHEL ¢ KO = CHLIO0 + GH
L‘Hé}ﬂ = CHC10 ¢+ H

0210 = T ¢ T

CHEIG = CHD + 0}
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3.4. Kinetic Mechanism and modeling

The reaction mechanism for the oxidation and pyrolysis of
CH3Cl/H,/0,/Ar has been published [18]. This study is
trying to develop and improve this chemical kinetic mecha-
nism to model the results of thermal reaction system
CH3Cl1/CH,/0,/Ar (see page 86, Table 4). Thermochemical
parameter for some C, Oxy-Carbon intermediates that have
not been previously measured or calculated are also
developed because these are important to the chemical
kinetic rate constant evaluation.

The kinetic reaction mechanism used in this study
(Table 4) includes 263 elementary reaction steps involving
76 radical and stable compounds. Important unimolecular
reactions, addition and recombination reactions are ana-
lyzed by the DISSO and CHEMACT computer codes [16]. The
rate constants for theimportant C, species abstraction
reactions are evaluated.

A comparison of calculated and experimental data on
CH;Cl decay, important intermediate, and final product
versus reaction times at 1173K and versus temperatures
between 1098K-1223k at 1.0 sec are shown in Figures 145-
160 respectively. For CH;Cl/H,/0,/Ar systems, the agree-
ment between the model and experiment is quite good. The
model slightly underpredicts the C,H, concentration prior
to 0.4 sec for the ratio Ar:CH;Cl:H,:0,=97:1:1:1 (I) and

prior to 0.8 sec for Ar:CH,Cl:H,:0,=96:2::1:1 (II) and



97

somewhat overpredicts it after 0.4 sec for (I) and after
0.8 sec for (II) at 1173K (Figure 147, 148 and 155, 156).
The model initially predicts higher conversion of CH;Cl
and higher yield of CO and HCl than those observed at
1098K-1148K. But at 1173K and above, the model has good
fits to experiments of these three species for (I) and
(II) (Figure 149, 150 and 153, 154). For CO, yield, model
has underprediction. Figures 161-176 illustrate the fit of
the model ( Table 4) to data of experiment for
CH3Cl1/CH,/O,/Ar reaction. The comparison between model and
experiment on CH;Cl decay, CH,, CO, HCl, and C,H;Cl forma-
tion with reaction time at 1173K or with reaction temper-
ature at 1.0 sec is reasonably good over the general trend
(Figures 161 to 176). The model underpredicts conversion
of CH5;Cl and formation of CO, HC1, C,H,, and CyH, for
Ar:CH4Cl1:CH,:0,=96:1:1:2 (III) and
Ar:CH4Cl:CH,:0,=95:2:1:2 (IV) and overpredicts the produc-
tion of CO02 for system (III) after 1.6 sec and for system
(IV) after 1.8 sec at 1173K. Model prediction for CH4 and
C2H3Cl formation is better for (III) than (IV) at 1173K.
Experimental data are compared also with model prediction
for CH3Cl decay and other product distribution between
1173-1223K at 1.0 sec. Results show that the general
reaction trend for CH;Cl decay and the formation of CHy,
co, co,, HCl, C,H,, C,yH,, and C,H3Cl is agreement between

modeling and observed data. However, the model underpre-
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dicts the CH3Cl decay and formation of CO, HCl1l, C,H,, and
C,H, and overpredicts the formation of CO, for systems
(III and IV); the model prediction for CH4 is also better

for system (III) than for (IV).
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PRODUCT DISTRIBUTION
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__*— _——-——-"-“-‘*
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= - ]
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¥
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1

—— CH3Cl —+—CH4 —*CO —=CO2 — HCI
PRODUCT DISTRIBUTION
Ar:.CH3CLH2:02=97:1:1:]

12 Cx/Co(CH3Cl)

»

0

1 i

0 02 04 06 08 1 12 14 16 18 2
Time(sec)

i 1

— CH3ClI —+CH4 —*CO ~-S-C02 — HCI

Fig. 146 1173K (M)
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PRODUCT DISTRIBUTION
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Fig. 148 1173K (M)
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PRODUCT DISTRIBUTION

Ar:CH3CIL:H2:02=97:1:111

12 Cx/Co(CH3Ch
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—— CH3Cl —+—CH4 —*CO —SHCl
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Temp.(K)
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F150. 1.0 s 1098-1223K (M)
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PRODUCT DISTRIBUTION
Ar:CH3CLH2:02= 97:1:1:1

Cx/Co(CH3CI
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PRODUCT DISTRIBUTION
AT:.CH3CLH2:02=96:2:1)1
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PRODUCT DISTRBUTION
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PRODUCT DISTRIBUTION
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0.2 -
0.1-
0 s e —— T
0 02 04 06 08 1 12 14 16 18
Time(sec)

— CH3Cl] —+CH4 —*CO —*-CO2 —* HCI

Fig. 161 1173K “10.5° Tube

PRODUCT DISTRIBUTION
AT:CH3CL:CH4:02+96:1:1:2

Cx/Co(CH3C1+CH4)

0.6

0.5

0.4

03

0.2

0 & & 1 L i

0 02 04 06 08 1 12 14 16 18
Time(sec)

—— CH3Cl —+—CHB4 —+—CO —S-C02 —HCI

Fig.162 1173K (M)
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PRODUCT DISTRIBUTION
AR:CH3CI:CH4:02+=96:1:1:2

Cx/Co(CH3CI+CH4)

0.1
0.08 -
0.06
0.04 -

0.02

=
0 02 04 06 08 1 12 14 16 18 2
Time(sec)

—— C2H2 — C2H4 —*— C2H3Cl
Fig. 163 1173K “10.5° Tube

PRODUCT DISTRIBUTION
AT:CH3CL.CH4:02=96:1:1:2

Cx/Co(CH3CI1+CH4)

0.03

0.025

0.02

0.015

0.01

0.005

0 02 04 06 08 1 12 14 16 18 2
Time(sec)

—— C2H2 ~—+—C2H4 —5 C2H3Cl

Fig.164 1173K (M)
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PRODUCT DISTRIBUTION
AT:CH3CL:.CH4:02=96:1:1:2

Cx/Co(CH3CI+CH4)

0.7 -
0.6

1098 1123 1148 173 1198 1223
Temp.(K)

—— CH3Cl —+ CH4 —*CO —= HCl
PRODUCT DISTRIBUTION
Ar:CH3CLCH4:02«96:1:1:2

Cx/Co(CH3CI1+CH4)

0.8
0.7 r
0.6

T

0.4
03+

.rr

0 i
1098 1123 1148 173 1198 1223

Temp.(K)

1 1

—— CH3Cl —+—CH4 —*CO —=HC

Fig.166 1.0 s 1098-1223K (M)
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PRODUCT DISTRIBUTION
Ar:CH3CLCH4:02=96:1:1:2

Cx/Co{CH3C1+CH4)

0.12

0.1

0.08

0.06

0.04

0.02

1098 1123 1148 173 1198 1223
Temp.(K)

—e oy - G284 % C02 —8- C2H3CI

Fig. 167 1.0 sec °10.5° Tube

PRODUCT DISTRIBUTION
AT:CH3CL:CH4:02=96:1:1:2

Cx/Co(CH3CI1+CH4)

0.2
0.18
0.16
0.14
0.12

0.1}
0.08
0.06
0.04 )
0.02 | . ¥
i} = =% R e P &
1098 1123 1148 173 1198 1223

Temp.(K)

H

T

T

1

T

—— C2H2 —+C2H4 —*—C0O2 ~=- C2H3Cl

Fi1g.168 1.0 s 1098-1223K (M)



PRODUCT DISTRIBUTION
AT:CH3CLCH4:02=95:2:1:2

7 Cx/Co(CH3CI+CH4)

0.6 1 ' x
0.5 -

0.3 -
0.2 1
0.1 4

0

T
0 02 04 06 08 1 12 14 L6 18 2
Time(sec)

— CH3CL —+CHB4 —*—CO —*=-C02 —* HCI

Fig. 169 1173K “10.5* Tube

PRODUCT DISTRIBUTION
AT:CH3CL.CH4:02=95:2:1:2

Cx/Co(CH3CI+CH4)

&
Q 0.2 04 0.6 08 1 12 14 L6 18 2

Time(sec)

——CH3Cl —+CH4 —*CO ~—*=-C0O2 —+HCI

Fig. 170 1173K (M)

0.4 1 . N /
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PRODUCT DISTRIBUTION

Ar:CH3CIL:.CH4:02=95:2:1:2

ol6 Cx/Co(CH3CL+CH4)

0.14f

012}

0.1}

0.08|

0.06 |

0.04+

0.02- ’//L\*\
0,&’ il e 2 : b . !
0 02 G- ; 0.8 1 12 14 16 18 2

Time(sec)

—=C2H2 —+C2B4 —5— C2H3Cl

Fig. 171 173K *10.5° Tube

PRODUCT DISTRIBUTION

AT:.CH3CLCH4:02=95:2:1:2
Cx/Co(CH3CI+CH4)
04
0.03
0.02+
0.01+
0 1 ! A 1 1 1 A i 1
0 02 04 06 08 1 12 14 16 18 2
Time(sec)

—— C2H2 ~—+ C2H4 —5- C2H3Cl

Fig. 172 1173K (M)



PRODUCT DISTRIBUTION
AT:CH3CL.CH4:02+956:2:1:2

Cx/Co(CH3CI1+CH4)

0.7

0.6
0.5

0.4

T

0.3

0.2

0.1

o

0 i | 1
1098 123 1148 1173 198 1223
Temp.(K)
—— CH3Cl ——CH4 —=CO — HCl
Fig. 173 1.0 sec °10.5° Tube
PRODUCT DISTRIBUTION
ATr:CH3CIL:.CH4:02=95:2:1:2

Cx/Co(CH3CI+CH4)

0.7

i H

1098 1123 1148 173 1198 1223
Temp.(K)

— CH3Cl ~—+CH4 ——CO ~—S HCl

Fig.174 1.0 s 1098-1223K (M)
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PRODUCT DISTRIBUTION
Ar:CH3CLCH4:02%95:2:1:2

Cx/Co(CH3C1+CH4)

0.16
0.14
012

0.1
0.08
0.06
0.04
0.02

_-$_~_ ¢
1098 1123 1148 173 1198 1223

Temp.(K)

— C2B2 —+-C2H4 —*CO2 ~—5 C2H3Cl

F1g. 175 1.0 sec °10.5" Tube

PRODUCT DISTRIBUTION

Ar:.CH3CL:CH4:02«95:2:1:2

Cx/Co(CH3CI+CH4)

0.06

0.05

0.04

1098 123 1148 173 1198 1223
Temp.(K)

— C2H2 ~—+-C2H4 —*-C0O2 -~ C2H3Cl

Fig.176 1.0 s 1098-1223K (M)
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The sensitivity computer code SENS ( Lutz et al.
1987, Won and Bozzelli 1991) was utilized to determine
reactions exhibiting high sensitivity to various species
in the given reaction systenmn.

The dominant initiation step either in CH3Cl/H2/02/Ar
or in CH3Cl/CH4/02/Ar reaction is unimolecular decomposi-
tion of CH3Cl to CH; + Cl due to its relatively low Ea and
higher A facter (Table 4). Reactions of 0, with reactants
also are very important at the beginning stage including H
abstraction by 0,. A brief reaction rate comparison has
been done as the following example is shown:

for Ar:CH;3Cl:CHy:0,=96:1:1:2, at 727C (1000K).

Reaction Rate (mol/cm3*s)
CH,;Cl = CHy + Cl 5.85E-11
CHycl = lcH, + HCl 2.00E-16
CH3Cl + 02 = CHZCl + H02 5.60E~-14
CH, = CH, + H 1.50E-15
CH, + 0, = CH5 + HO, 1.16E-14

It should be noted that the relative reaction rate between
CH5Cl unimolecular decomposition and H abstraction from
CH;Cl/CH,/H, by O, molecule is dependent on not only their
kinetic rate constant but also these species relative
concentration. At the initial reaction stages, the above
reactions contribute to initiation. At the stage for
medium to high conversion of CH5Cl, sensitivity analysis

indicates that these reactions proceed in reverse.
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Sensitivity analysis tells us that the most significant
routes for formation of CH5 radical in Ar:CH;Cl:CH :0, =
96:2:2:1 system at 1.0 sec and 1173K are following reac-
tions:

CH2C1 + HCl = CH3C1 + Cl

CH;Cl = CH5 + Cl

The production for CH, stems from the reactions:

CH3Cl + CH,Cl = CH,Cl, + CH,4

CH;Cl = CH5 + Cl

Results from both model and experiment show that CHy
production is close to or greater than its loss at the
temperature below 1173K and 1.0 sec in CH3Cl/CH,/0,/Ar
systems. These results from the important reaction CH5Cl =
CH; + Cl.

Sensitivity analysis also help us probe key reaction
channel for the CO conversion to CO,. The reaction CO +
OH = CO, + H,0 for formation of CO, is an important path-
way. While when the concentration of HCl is comparable to
that of CO, the reaction HCl + OH = H,0 + Cl depletes OH
and effectively inhibits CO conversion. As the rate for
the latter is faster than that of the former (the latter
k = 1.5E+12 cm3/mol * sec; the former k = 2.42E+11
cm3/mol*sec at 1000K). Model research results further
indicate reactions of CO with HO, and Cl0 become more
important for CO conversion to CO, under the conditions

stated above:
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CO + HO, = CO, + OH
CO + ClO = CO, + C1

The channel C,H; + O, = CH,CHO + O 1is an important
reaction that is analyzed by Bozzelli and Dean. Input of
this reaction into mechanism leads to increases of major
species (CH5Cl, CH,, C,H,, C,H,, C,H;3Cl, CO) conversion to
CO2 with The reaction CH,CHO = CH,CO + H is also important
here. Model research found that C,H; could liberate reac-
tive O atom from less active O, molecule and CH,CHO decom-
position could release active H atom.

Another interesting species is 1CH2. Model research
indicated that it was not important for all reactions at
below 1173K. Whereas at temperature above 1198K the
following reactions accelerate conversion of CH,, CH3Cl,
C,H,, C,H,, and C,H4Cl to CO and CO,.
cH, + H, = CH; + H
lcH, + 0, = CO + OH + H
When temperature increases to above 1173K, the reaction
rate for CH,Cl = 1CH2 + HC1l is increased because of its
higher A factor. The reaction of 1CH2 with O, and H,
causes more active OH and H production, which leads to
CH4, CH3Cl, C,H,, CyH,, and C,H4Cl further conversion.

Modeling research found formaldehyde is important
product in our studied systems. It has yet to be experi-

mentally monitored.



CHAPTER 4

CONCLUSIONS
Comparison between experimental data and detailed modeling
is presented for the high temperature combustion systems
involving CH4Cl/H,/0O,/Ar and CH43Cl/CH,/O0,/Ar reaction
systems. Rate constants of important C, species reaction
with O and OH are analyzed and reported.
Experimental and modeling results indicate:
1. The initiation step is unimolecular decomposition of
CH;Cl to CH5 + Cl in all studied systems under all given
conditions.
2. 0, contributes to accelerated decay of CH;Cl, CH,, H,
and C, intermediates (as C,H,, C,H,, and C,H;Cl) formation
in fuel rich conditions and O, also serves to help CH;Cl
conversion to CO, in fuel lean conditions.
3. The reaction OH + HCl = H,0 + Cl is an important source
of OH loss, which strongly effects the rate of conversion
of CO to CO, in fuel rich conditions. Therefore, CO +
HO, = CO, + OH, and CO + ClO0 = CO, + Cl both become more
important for CO conversion to CO2.
4. CH, formation occurs in CH;Cl/H,/0,/Ar reaction systems
from CH; reactions with H, an Hy0,.
5. Conversion of C; to C, species results from combi-
nation reactions CH; + CH;, CH3 + CH,Cl, and CH,Cl +
CH,Cl.

6. 1CH2 reactions with 0,, H,, and contributes to
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CH, and C,H, conversion and CO and CO, formation at
higher tempertures. This comes from above lCHZ reactions
liberating more active OH, and H radicals.

7. C;H3 + 0, = CH,CHO + O is very important. Its small
rate changes drastically influences the CH3Cl conversion
due to production of significant O atoms from O,.

8. Modeling research found that formaldehyde is an
important product, which has yet to be experimentally

monitored.



APPENDIX
GISOQRRK INPUT DATA and CALCULATION RESULTS

Table A-a
1 2
CH,Cl + H <====> (CHycl)¥ ====> cH; + C1
3
====>1cH, + HC1
K A Ea Source
1 1.00E + 14 0.00 a
-1 1.44E + 16 100.50 b
2 1.39E + 15 82.50 c
.3 1.69E + 14 103.10 d
A = (coiaec wi . »y i’sec. Ea = Kcal/mol below is same
<v> = 1565.26 1/cnm e
LJ Parameters:
Sigma = 4.18 A e/k = 350 K f

Number of Oscillator for CH3C1 = 9 JIts Mass = 50.5

Third body is Ar.
Mass = 40 Sigma = 3.330 A e/K = 113.8 K
Energy Transferred = 630 cal/mol

a. Al and Eal are taken as those for 1-C4H,+H=C3Hg.
Allara and Shaw J. Phys. Chem. Ref. Data 9, 528,

(1980)

b. k-1 is based on Thermodynamic Analysis for Reaction.

c. A=2E13, data of reference reaction, CH3 + C2H5 = C3HS8
as A-2. A2 is based on thermrxn. Reference is same as
that of a. Ea=/\H-RT (data are from Thermorxn.).

d. A3 is based on Transition State Theory (TST), A=ekT/h,
/\S= (no rotor is lost), Ea3=/\H+3.75. (K range between
800-1500K) .

e. V is based on the cpfit.

f. Sigma and e/k are based on the equation from
The Properties of Gases and Liquids by Robert, C. Reid
et al. (McGRAW-HILL).
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Calculated Apparent Reaction Rate Cconstants™

Table A-b

Reaction P A N
76.0 1.560E+26 -4.94 4,27
CH2C1+H=CH3C1 760.0 1.622E+27 -4 .95 4,29
7600.0 2.305E+28 -4 .99 4.50
76000.0 7.921E+29 -5.12 5.68
76.0 3.267E+15 -0.46 0.69
CH2C1+H=CH3+C1 760.0 3.453E+15 -0.47 0.71
7600.0 5.774E+15 ~0.53 0.96
76000.0 7.938E+16 -0.82 2.50
76.0 2.420E+06 1.26 7.64
CH2C1+H=1CH2+HC176O.O 2.460E+06 1.25 7.65
7600.0 2.890E+06 1.24 7.72
76000.0 1.089E+07 1.08 8.35

* P Unit is Torr; The below is same.
Bath gas is Ar; Temperatures range 800-1500K.
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Table B-a
1 2
CH#CH + O <===>3[0.CH*CH.]*% ---> HCcCO + H
/\ /\
N e
\/ 6 HIH
3[O.C.*CH2]# HHHHH
i1t 5
Y
CH, + CO
k A Ea Source
1 7.00E12 1.00 a
-1 2.19E13 46.20 b
2 6.60E13 30.00 c
4 5.62E13 21.50 d
-4 1.12E14 38.00 e
5 2.55E13 19.20 f
6 1.07E14 46,20 g

Units: A = (cc/sec mol) or 1l/sec Ea = Kcal/mol

<v> = 1091.3 1/cm h
LJ Parameters:
Sigma = 4.25 A e/k = 301.8 i

Number of Oscillator for OCHCH = 9 Mass = 42
Third body is Ar

Mass = 40 Sigma = 3.33 A e/k = 136.50
Energy Transferred = 630 cal/mol

a. A and Ea are estimated using for the kinetic data of
acetylene reaction with hydroxyl radical.

b. Reverse reaction data are from thermrxn and thermody-
namics.

c. A=3.98E1l2, Ea= 2.7 data of reference reaction,
H+CH,*C*CH,=CH,CHC.H, Dean A. M. J. Phys. Chem. 89,



k.
1.

123

4600, (1985) and based on thermrxn.
Based on TST: Ea4 = Rs+/\H+Eab = 16+0+5.5 = 21.5.

A4=1013’75=5.62E13; degeneracy=1; Eab is obtained using
for Eab=5.5 of reference reaction, CoH3+CH,=C,H,+CH,
Tsang, W. et al. J. Phys. Chem. Ref. Data 15, 1087,
(1986) .

Based on TST: degeneracy=2; Ea-4=16+16.5+5.5=38.0.
Reference reaction, CO + CH3 = CHCO A=5.19E11l Ea=6.5
Anastasi, C. et al. J. Chem. Soc. Faraday I 78, 2423,
(1982) and based on thermrxn.

CH2C.O. species B scisson forms HC#CO. + H. HC#CO. is
easy to convert HCCO. Reference reaction CH3C#CH + H =
CH5C. *CH.

<v> is based on cpfit.

1LJ parameters are based on refernce species CH,CO.



Calculated Apparent Reaction Rate Constants®

Table B-b

Reaction P

76.0
C,H,+0=0CHCH 760.0
7600.0

76.0
C,H,+0=HCCO+H 760.0
7600.0

76.0
C,H,+0=CH,C.0.760.0
7600.0

76.0
C,H,+0=3CH,+C0760.0
7600.0

A

4.41E18
4.44E19
4.72E20

6.38E09
7.04E09
7.55E09

1.87E17
1.8SE18
2.04E19

7.06E14
7.11E14
7.72E14

n

=3.27
-3.27
-3.28

0.81
0.76
0.75

-2.96
-2.96
-2.97

-0.66
-0.66
-0.67

Ea

2.79
2.79
2.83

0.53
0.59
0.62

2.65
2.65
2.69

1.80
1.80
1.84

* Bath gas is Ar; Temperatures range from 800-1500 K.
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Table C-a
1 2
CH#CH + OH <===> [HOCH*CH.]¥ ---> HOC#CH + H
/\
t: 4
\/ 5
[0=CHCH,.1% ---> CH,cO + H
/\ /\
2 7 :: 9
[0=C.CH3]# :::zrsrzzs:
:: 8
\/
CH; + CO
| 4 A Ea Source
1 5.12E12 1.40 a
-1 5.50E13 38.40 b
2 3.12E13 47.48 c
4 7.60E12 25.00 d
-4 1.52E13 49.50 e
5 8.23E12 42.71 £
7 7.59E12 33.60 g
-7 2.28E13 42.89 h
8 1.61E13 20.78 i
9 3.39E13 51.31 i

Units: A = (cc/sec mol) or 1/sec Ea = Kcal/mol

<v> = 1278.5 1/cm k
LJ Parameters: 1l
Sigma = 4.29 A e/k = 334.0

Number of Oscillator for HOCHCH. = 12 Mass = 43
Third body is Ar

Mass = 40 Sigma = 3.33 A e/k = 136.50

Energy Transferred = 630 cal/mol




a.
b.

C.

d.

e.
f‘
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A and Ea derived from Liu, A. et al. J. Chem. Phys., 92
3942, (1988).

Reverse reaction data are from thermrxn and thermody-
namics.

A = 5.8E12, Ea = 2.414, data of reference reaction C,H,
<=> C,H, + H (4 Refs. of NIST) to obtain A. Ea comes
from %hermrxn and thermodynamics.

Based on TST: loss of one rotor and degeneracy = 1

1013:75-4.0/4.6-7 6E12; Ea,=Rs+/\H+Eab=15+0+10=25.0
Eab is obtained using for Eab=10 data of reference
reaction: Cy,H3; + C,Hg = C,H, + C,Hg Hidaka, Y. et al
Int. J. Chem. Kinet. 17, 441, (1985).

Based on TST: degeneracy = 2; Ea-4 = 15+25.4+10 = 50.4
Use for reference reaction H+C*C*C=C*CCH,. A=4.0El2
Ea=2.7 and on thermrxn and thermodynamics.

Based on TST: loss of 1 rotor and degeneracy = 1

1013-75-4.0/4.6-7 gr12; Ea,=Rs+/\H+Eab=27.6+0+6.0=33.6
Eab is obtained using for that of reference reaction:
CH3 + CH3CHO = CH3CO + CH4

Based on TST: degeneracy=3; Ea_4=27.6+9.29+6.0=42.89
Based on A=6.2El11, Ea=6.7, data of reaction CH, + CO =
CH3CO and thermrxn. The above data are from the fit of
that of two references from NIST.

Based on rate data of reaction CH,CO + H = CH3CO and
thermrxn. Wagner, H. Gg. et al. Ber Bunsenges, Phys.
Chem. 76, 667, (1972).

<v> is based on cpfit.

LJ parameters are based on arithmetic mean of that of
CH,CHO and CH,CO.
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Table C-b

Calculated Apparent Reaction Rate Constants™

Reaction P A n Ea
76.0 1.64E27 -5.38 5.58
C2H2+OH=HOCHCH. 760.0 3.37E28 -5.46 5.93
7600.0 4,49E30 -5.75 7.71
76.0 2.59E09 0.93 12.41
C2H2+OH=HOCCH+H 760.0 3.24E09 0.90 12.51
7600.0 1.97E10 0.69 13.30
76.0 1.74E25 -4.83 5.29
C2H2+OH=C, 760.0 5.07E26 -4 ,95 5.80
-0 7.02E29 -5.51 8.72
o 1.33E12 -0.03 2.15
C2H2+OH=CH2CO+H 760.0 1.22E13 -0.32 2.84
7600.0 1.31E16 -1.13 6.15
76.0 5.19E20 -3.87 4.40
C2H2+OH=CH3CO 760.0 1.66E22 -4,00 4.93
7600.0 5.47E25 -4.67 8.05
76.0 7.89E16 -1.30 3.27
C2H2+OH=CH3+CO 760.0 2.68E17 ~-1.44 3.81
7600.0 1.56E20 -2.18 7.04

* Bath gas is Ar; Temperatures range from 800-1500 K.
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e 3
CHZ*CHZ + 0 <===>

Table D-a

"
[.OCH,CH,. ]
/82

2
---> .CH,CHO + H

3 3
14 —--> 3CH, + CH,0
1 v #
[.OCHCH, . ]
/\
HE Y
\/ 8 -
lrcHycHo1*  -=-> CH3CO + H
9
--=> CH, + CHO
k A Ea Source
1 6.40E12 1.59 a
-1 1.87E13 21.23 b
2 2.46E13 5.70 c
3 7.70E13 20.40 a
4 1.00E13 15.00 e
-4 1.42E13 26.90 e
7 4.28E12 9.30 £
-7 6.42E12 89.63 £
8 2.85E16 83.90 g
9 8.30E13 85.39 h

128

Units: A = (cc/sec mol) or 1l/sec Ea = Kcal/mol

<v> = 1328.7 1l/cm

LJ Parameters:
Sigma = 4.64 A

e/k = 396

.4

Number of Oscillator for .OCH,CH,. = 15 Mass = 44

Third body is Ar
Mass = 40 Sigma

= 3.33 A e/

k = 136.50

Energy Transferred = 630 cal/mol
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a. A and Ea are derived from Cvetanovic, R. J. et al. J.
Chem. Phys. Ref. Data 16, 261, (1987).

b. Thermodynamic data for the reverse reaction are from
Takayuki FUENO, et al. Chem Phys. Letter 167, 4, 291
(1990) and thermodynamics.

c. A=7.94E12; Ea=2.9, data of reference reaction as k_,
CH3CH*CH2 + H = CH CH Dean, A. M. J. Phys. Chemn.
89, 4600, (1985) and gased on thermodynamics.

d. A=5.19E11; Ea=6.6, data of reference reaction as k_3
CH3 + CO = CH;C.0 Anastasi, C. et al. J. Chem. Soc.
Faraday Trans I, 78, 2423 (1982) and based on
thermodynamics.

e. K, reference reaction CH + N2 = HCN + N spin forbidden
Ea=15 as Ea, A, is estimated k_, is based on
thermodynamics and microreversibility.

f. are from data of Takayuki FUENO. A, ,_- are based
on éST degeneracy = 2 for A-; degeneracy = 3 for A_,.

g. A=1.8E13; Ea=0, data of reference reaction
CH4+CHO=CH;CHO, Tsanv, 7. J. Phys. Chem. Ref. data 15,
1087, (1987) and bascc ..: thermodynamics.

h. A=1El4, data of reactlip CH,0 = CHO + H and Ag is
adjusted to be (30/44) *1E14 = 8.3E13 and Ea is based
on thermodynamics.

i. <v> is based on cpfit.

j. LJ parameters are used for that of .CH,CHOH.



Calculated Apparent Reaction Rate Constants®

Table D-b

Reaction P A n Ea
76.0 5.67E16 -2.82 2.61
c,H,+30=3[CH2CH20]760.0 5.69E17 -2.82 2.61
7600.0 5.85E18 -2.82 2.63

76.0 2.69E13 -0.20 1.76

C,H,+30=.CH,CHO+H 760.0 2.70E13 -0.20 1.76
7600.0 2.78E18 -0.21 1.78

76.0 9.49E-02 3.91 -0.35

C,H,+30=3CH,+CH,0 760.0 9.53E-02 3.91 -0.35
7600.0 9.93E-02 3.90 -0.33

o 2 .99E08 -0.48 1.13
c,H,+30=1[CH,CH,01750. 0 3.05E09 -0.48 1.14
7600.0 3.63E10 -0.50 1.24

76.0 1.22E07 1.28 1.08

C,H,+30=CH;CHO 760.0 1.50E06 1.57 0.81
7600.0 4.06E05 1.75 0.71

; 76.0 2.03E33 -6.23 40.35
C,H,+70=CH;CO+H  760.0 1.11E27 -4.34 39.74
7600.0 1.61E16 -1.17 36.82

76.0 3.32E37 -6.65 40.57

C2H4+3O=CH3+CHO 760.0 2.70E30 -4.54 39.49
7600.0 1.89E19 -1.29 36.32

* Bath gas is Ar; Temperatures range from

300-1500 K.
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Table E-a

1 2

CH,CH, + OH <===> [HOCHZCHZ.]# -=--> HOCH=CH, +H

5
S
[.OCH,CH;] - > CH,0 + CHy

---> CH;CHO + H

k A Ea Source
1 5.42E12 0.00 a
-1 2.10E13 29.70 b
2 1.27E13 39.62 c
4 1.