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ABSTRACT 

Pure Strong Competition for Two Nutrients 
by Two Microbial Populations in a Chemostat 

by 
Efthimios Ioannis Banias 

The dynamics of pure, strong, double competition between two microbial 

populations in an ideal chemostat have been investigated by using mathe-

matical and numerical analysis. The two nutrients competed for have been 

assumed to be complementary for both competitors. Inter active models have 

been used for the specific growth rates. Two cases have been considered; one 

in which neither of the two substrates exerts inhibitory effects on the growth 

of either one of the competing populations, and one in which the growth 

of one population is inhibited by only one of the two substrates. The pri-

mary focus of this investigation was on the coexistence steady state and the 

ability to maintain a mixed culture in a chemostat. It has been found that 

except for rare cases, there are regimes in the operating parameters space of 

a chemostat where coexistence is possible. Conditions for stability have been 

derived, situations where multiple states are possible have been found, and 

the main results are presented in the form of characteristic two-dimensional 

diagrams. 
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CHAPTER 1 

INTRODUCTION 

Microorganisms are responsible for many human diseases, and are also known 

as agents that spoil food. Even though they can be harmful to humans, mi-

croorganisms can also be beneficial to mankind by producing useful products 

[13] and by destroying harmful materials [25]. Dionysus (Greek ancient god) 

was credited by the ancient Greeks with the invention of Fermentation for 

the production of wine. What the Greeks back then most probably did not 

know is that microorganisms were the biological agents responsible for their 

wine production. Fermentation products, such as food (cheese, yoghurt, 

bread, etc), beverages (wine, etc), vitamins, antibiotics, aminoacids, and 

many more, are essential for life. It was not until the late nineteenth century 

that Pasteur and Tyndall identified microorganisms as the active agents in 

the up till then primitive fermentation technology. Further work in the early 

twentieth century from various researchers led to the development of pro-

cesses for the production of chemicals such as ethanol. But microorganisms 

find application not only in fermentation technology. In Environmental engi-

neering microorganisms decompose municipal and industrial wastes and thus 

decrease the negative impact of these materials on the environment. In Ge-

netic engineering existing species are cloned for the production of new strains 

having specified desired properties. Microorganisms can be employed even in 

the Mining industry (e.g. leaching of sulfur from coal). Microorganisms are 

also used by nature itself for the formation of coal, oil, for the mineralization 

of dead organic matter, for the regeneration of the atmosphere, etc. It is not 

possible for the biosphere to function without microorganisms. 

The 1940's mark the birth of systematic biochemical engineering. In that 

period humanity entered the era of antibiotics which gave relief to man's 

suffering from disease. 
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Microbial populations in order to grow and reproduce need a number 

of materials which are essential in their cellular economy. These materials 

include: (1) an energy source (energy can be obtained by breaking chem-

ical bonds or from light); (2) a carbon source (which can be the same as 

the energy source); (3) a nitrogen source; (4) minerals such as phosphorus, 

potassium, sulfur, magnesium (major minerals) and iron, copper, cobalt, 

zink, manganese, molybdenum (minor minerals); (5) growth factors such as 

vitamins, which the cell may be able to synthesize and if not, they have to 

be externally supplied; (6) dissolved gases such as oxygen. 

Depending on how microbial populations meet their needs for the above 

mentioned materials, they are divided into osmotrophic (bacteria, yeasts, 

molds, microalgae) and phagotrophic (protozoa) microorganisms. Based on 

how they satisfy their needs for specific elements, species are divided into 

heterotrophic and autotrophic (which are divided into photoautotrophs and 

chemoautotrophs) microorganisms. 

Various environmental factors such as temperature, pressure, and medi-

um properties (pH, toxins, inhibitors) may affect the growth of microorgan-

isms. 

In industrial operations, either pure or mixed cultures are used. Pure 

cultures are predominant in the fermentation industry while mixed cultures 

are useful for waste treatment. When several populations of microorganisms 

share a common environment they will interact with one another. Fredrickson 

[10] classifies interactions into positive and negative, direct and indirect. 

Competition is the most common microbial interaction, and its patterns 

have been discussed by Fredrickson and Stephanopoulos [11]. The same au-

thors have defined competition between two species as follows: Two popula-

tions X and Y compete for a resource s1, if and only if: (1) both populations 

use, but do not necessarily require, s1; (2) s1  has a dynamical effect on at 
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least one of X and Y. If competition is the only interaction between two 

species and if it occurs for a single resource, the pattern is called pure and 

simple competition. Competition may be single or double depending upon 

the number of resources competed for. Competition between two populations 

is strong when all resources competed for have a dynamical effect on both 

populations. 

Regarding nutrients, they are classified as complementary when they ful-

fill different needs in the cellular economy or as substitutable when they fulfill 

the same needs in the cellular economy (e.g. two different carbon sources). 

This topic has been addressed by various authors, see for example Baltzis 

and Fredrickson [5]. 

In order to understand the dynamics of a microbial system we must: (1) 

identify the populations involved; (2) identify the population-changing pro-

cesses; (3) identify the environmental factors and study how they affect the 

population-changing processes; and (4) identify how the population-changing 

processes affect the environment. Over the years a large number of models 

describing microbial growth has been derived. Most of them are highly ide-

alized expressions describing only some aspects of the problem. This is the 

result of the fact that it is almost impossible to formulate a model which 

includes and takes into account every aspect of the problem. After a model 

is derived, its predictions should be tested experimentally. If the model is 

valid, it can be improved by incorporating neglected aspects of the problem 

and the scheme model-experimental testing-improved model should be re-

peated. First, one needs a model for describing growth. Having an adequate 

such model, maintenance, lysis, variability of yield coefficients are some of 

the species related phenomena which need to be investigated. Moving then 

to the reactors used, one can relax the assumption of ideal chemostats and 

consider effects of mixing, of cell attachment to the walls of the reactor etc. 
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Very fast the picture becomes too complicated. 

Even though models can be simplistic at times, they nevertheless can 

help us get valuable insight in key aspects of dynamics, and guide us in 

developing a proper experimental plan. The present study does not involve 

experiments. It is a theoretical investigation of the possibility to maintain 

a mixed culture at steady state in an ideal chemostat. Two populations 

are considered, and they compete for two complementary resources. There 

is no other interaction, hence competition is pure. Since it occurs for two 

resources, competition is not simple but double. Furthermore, it is assumed 

that the availability of both nutrients exerts dynamical effects on both species 

hence, competition is strong. Two cases are considered. In the first, neither 

substrate is inhibitory for either population while in the second one of the 

substrates is inhibitory for one of the two competitors. A number of results 

have been obtained analytically , while the investigation has been completed 

by extensive numerical studies. 



CHAPTER 2 

LITERATURE REVIEW 

The question regarding the proper way to express the specific growth rate 

of a population when more than one resource is present at relatively low 

levels in the environment where growth occurs, started being of interest to 

researchers in the late sixties and to date, has not been completely resolved. 

This is due to the fact that it is not easy to understand cellular regulatory 

processes as has been discussed by various investigators [e.g., [12] and [25] 

with regard to biodegradation of pollutants]. 

With regard to substitutable resources, organisms have been found to 

use substrates sequentially or simultaneously. For example, Lee et al. [21] 

have reported that when a medium containing glucose and lactate is inocu-

lated with P.shermanii, lactate is consumed first and then glucose utilization 

begins. This is a typical case where a species exhibits diauxic growth. 

Yoon et al. [35] assumed that two (or more) substitutable resources are 

simultaneously used, but the uptake of each resource is inhibited (in a com-

petitive fashion) by the other substrates. By modifying the Monod model to 

include the postulated inhibitory effects and by using a sequence of "microbial 

reactions", they applied the pseudo-steady-state approximation for interme-

diates to develop a generalized expression for the specific growth rate. They 

tested their model in two series of experiments. In both series they used 

mixtures of glucose and fructose in batch experiments. In the first series of 

experiments they used the species Bacillus cereus, while in the second se-

ries they used Candida tropicalis. In both cases they found good agreement 

between experimental data and their proposed model. 

Ramkrishna [26] introduced a completely new concept, that of cybernetic 

approach, for modelling growth of microorganisms on multiple substitutable 

resources. In this approach, the use of substrates is based on the principle 

5 
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of optimal allocation of existing resources as microbes have the capability 

to control their regulatory processes in order to maximize their growth rate. 

In this approach, a fundamental question is whether optimization can be 

done at every instant, or if microbes need a finite time period for achieving 

optimization. 

Kompala et al. [15] have developed cybernetic models assuming that 

optimization can be accomplished at every instant of time (also known as 

short-term perspective). In one case the assumed objective was maximum 

biomass productivity, while in a second case they used the "matching law". 

In the first approach, the model assumes that at any instant of time the 

organism synthesizes the key enzyme required for the utilization of a given 

substrate in order to maximize biomass growth at that instant of time. This 

model does not account for inhibition or activation of existing enzymes and 

thus, it would not necessarily predict the maximum average productivity 

if any changes in the environment are with respect to enzymes which have 

not been accounted for in the optimization approach. The "matching law" 

approach takes into consideration inhibition and activation of the existing 

enzymes and can predict more phenomena. The model has been tested in 

batch experiments [16] when Klebsiella oxytoca was fed with various mixtures 

made of the following carbon/energy sources: glucose, xylose, arabinose, 

lactose, and fructose. Good agreement was found between experimental data 

and model predictions. In fact, when sequential use of the substrates was 

observed, the model not only predicted the diauxic growth but the order in 

which the substrates were removed as well. 

Dhurjati et al. [9] considered a cybernetic model assuming that optimiza-

tion is not an instantaneous process as Kompala et al. [15] assumed, but that 

it is accomplished over a finite period of time. Using Klebsiella pneumoniae 

growing in batch culture on mixtures of D-glucose and D-xylose, they were 
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able to get limited agreement between their data and their model predictions. 

Regarding complementary resources, two schools of thought have devel-

oped over the years. Some researchers have argued that when two comple- 

mentary resources are present at low concentrations, both exhibit a dynam-

ical effect on the growth of a population. These researchers have used what 

are known as interactive models. A second group of researchers has argued 

that under no conditions can more than one substrate exert rate limitation 

on the growth of a population. These researchers have used what are known 

as non-interactive models. 

Megee et al. [23] have used an interactive model to describe the growth 

of Lactobacillus casei in glucose and riboflavin minimal media. Their model 

is essentially a product of two Monod-type expressions, one involving the 

concentration of glucose while the other that of riboflavin. They had excellent 

agreement between data and model predictions. 

Cooney and Wang [8] also used an interactive model to describe the 

growth of Enterobacter aerogenes NCTC 418 in nitrogen and phosphate min-

imal media. They found good agreement between model and data, except in 

cases where one of the nutrients was supplied in excess. Namely, when the 

cells were provided with ammonia (in a pulse fashion) sufficient to remove 

nitrogen limitation, the maximum specific growth rate achieved was not what 

the model predicted in the limit where nitrogen would not be limiting. 

Sinclair and Ryder [28] used two interactive models for describing the 

growth of Candida utilis in oxygen and glucose minimal media. The first 

model was the expression of Megee et al. [23] discussed previously, while 

the second was a product of a Monod-type expression involving the oxygen 

concentration and a Contois-type expression involving the glucose concentra-

tion. They concluded that the second model could describe the data more 

accurately than the first one. In an earlier study with the same system but 
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different concentration levels of glucose and oxygen, the same authors intro-

duced a non-interactive model. This model descsribed in Ryder and Sinclair 

[27], assumes that the specific growth rate is given by either a Monod model 

involving the oxygen concentration or a Monod model involving the glucose 

concentration. Which one of the two expressions should be used is deter-

mined by which one predicts the lowest biomass production at steady state, 

and under the given operating conditions of the chemostat. This model can-

not be correct since it cannot work in a batch situation. Probably because 

of this problem, these researchers used an interactive model in their batch 

studies [28] discussed above. 

Sykes [30] proposed a non-interactive model which assumes that the spe-

cific growth rate is given by a Monod model involving either one or the other 

of the substrates. Up to this point, the model is identical to that of Ryder 

and Sinclair [27]. The difference is with regard to which of the two expres-

sions should be actually used. Sykes proposed that the expression having 

the smaller value should be used (the comparison being made at every in-

stant of time). He was able to show that in the operating parameters space 

of a chemostat, the regions where growth occurs under limitation of either 

nutrient do not overlap. 

In an effort to resolve the controversy between proponents of interactive 

models and proponents of non-interactive models, Bader [3] used conceptual 

and mathematical descriptions to argue that a unique model describing all 

cases of growth under conditions where two complementary nutrients are 

present in less than saturation levels may not exist. In fact, he argued that 

there must be operating regimes where growth cannot be described but by 

an interactive model, and other regimes where a non-interactive model is 

needed. 

Baltzis and Fredrickson [5] observed that all non-interactive models pro- 
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posed up-till then, assumed that yield coefficients were constant regardless 

of what substrate was rate-limiting. For example the yield of Candida utilis 

on glucose was assumed constant regardless of whether glucose was the rate-

limiting substrate or not [27]. From a number of published experimental 

results they found that the assumption of constant yield coefficients was not 

correct. Relaxing this assumption, and using a model practically the same 

as that of Sykes [30] they were able to show that even if a non-interactive 

model is used, there are domains in the operating parameters space (for a 

chemostat) where growth actually occurs under dual limitation. This model 

although too simplistic in the sense that it assumes for the yield coefficient a 

switch from one value to another as the identity of the rate-limiting nutrient 

changes, it has nevertheless shown that dual limitation does exist and it does 

not require, as Bader [3] suggested, an interactive model to express it. 

This concludes the literature review on how to express growth rates when 

more than one nutrient is present at relatively low concentrations in the 

environment of growth. In the present thesis, interactive models have been 

employed. 

Regarding competition, the literature is fairly extensive especially for the 

pattern which is pure and simple, and for the case of non-inhibitory growth. 

A good review of this subject can be found in Fredrickson and 

Stephanopoulos [11]. Aris and Humphrey [2] have studied competition between two species 

for a single inhibitory substrate, when the specific growth rate is expressed via 

an Andrews [1] expression. The main conclusion is that pure and simple com-

petitors cannot coexist at a steady state in an ideal chemostat. Steady state 

coexistence of two pure and simple competitors has been found to be possible 

in two interconnected chemostats [17, 18]. These results cannot be extended 

to any number of competitors since it has been found that three pure and 

simple competitors cannot coexist in three interconnected chemostats [7]. 
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Competition between two species for two resources has been studied up 

to a certain extent. 

When two species compete for two substitutable resources, it has been 

found that coexistence can occur at steady state in a chemostat. For example, 

Yoon et al. [35] in a study which has been already mentioned earlier in this 

review, studied competition between Bacillus cereus and Candida tropicalis 

for a mixture of fructose and glucose. They found coexistence to be possible, 

and in fact their proposed model predicts that it is possible to maintain a 

mixed culture at a steady state in a chemostat even when the competitors 

exhibit strong preference for one of the substrates competed for. Leon and 

Tumpson [22] have concluded that when two species compete for two perfectly 

or imperfectly substitutable resources, coexistence is possible at a stable 

equilibrium point provided that at that point a different resource contributes 

more to the growth of each competitor 

In the aforementioned study by Leon and Tumpson [22], competition for 

two complementary nutrients between two species has been also considered. 

In this study a non-interactive model was essentially used and it was con-

cluded that coexistence can occur at a stable equilibrium point provided that 

at that point each competitor consumes its own rate limiting resource at a 

rate faster than the other species. In this case, although both species uti-

lize both substrates, a different nutrient is rate limiting for each one of the 

populations, hence competition is not strong. 

Using the interactive model of Megee et al. [23] which has been dis-

cussed earlier in this review, Yoon and Blanch [34] and Taylor and Williams 

[311 have studied competition between two species for two complementary 

resources. These studies have concluded that stable coexistence of the two 

competitors is possible in a chemostat. Yoon and Blanch [34] have concluded 

that coexistence depends on the saturation constants, the maximum specific 
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growth rates, and on the yield coefficients of the two competitors on the two 

substrates. Taylor and Williams [31] have concluded that in general, in order 

to maintain a mixed population at steady state at least an equal number of 

growth limiting substrates is required. Thus, two species competing for two 

resources can in fact coexist. Using the model of Megee et al. [23] they 

have also concluded that two coexistence steady states could arise, but they 

have not been able to determine whether both could be meaningful and sta-

ble under the same operating conditions. Using topological considerations 

and Hopf's index theorem, Stephanopoulos [29] was able to show that it is 

impossible to obtain two meaningful and stable coexistence steady states in 

any domain of the operating parameters space when the system equations 

of Taylor and Williams [31] are valid. The same topic has been considered 

in a section of the present thesis. Although the results are basically the 

same with those already reported in the literature, it is the first time that 

operating diagrams have been constructed for this system and the effects of 

system and operating parameters on the domain of coexistence have been 

investigated in detail. 

In experimental studies, Tilman [32] and Titman [33] have reported data 

on the competition between Asterionella formosa and Cyclotella 

meneghiniana for phosphate and silicate. Although they have observed coexistence, 

they have found A.formosa to be competitively dominant under phosphate 

limiting conditions and C.meneghiniana to dominate under silicate limiting 

conditions. It should be mentioned of course, that when only one substrate is 

present at limiting conditions the pattern of competition is pure and simple 

rather than double strong and thus, the results are in agreement with the 

pertiment theory. 

Although this thesis is on pure competition in an ideal reactor, a few 

things need to be mentioned in order to emphasize the fact that the picture 
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can be completely altered when the reactor is not ideal and when interactions 

other than competition are also occuring in a competitive system. 

For example, although pure and simple competitors cannot coexist in an 

ideal reactor, Baltzis and Fredrickson [6] and Lagonikos [19] have shown that 

attachment of cells to solid surfaces (reactor walls, impeller, etc.) can lead 

to steady state coexistence. Furthermore, pure and simple competitors can 

coexist in an ideal chemostat in a state of sustained oscillations when the 

competing species are members of a more complex food chain. For exam-

ple, Jost et al. [14] have studied competition between Escherichia coli and 

Azotobacter vinelandii for glucose in a chemostat. They observed that while 

A.vinelandii was always excluded from the chemostat, it could be maintained 

in it, along with E.coli when a third protozoan population of Tetrahymena 

pyriformis was introduced in the same vessel. The protozoa preyed upon 

both bacterial species and all three populations could coexist in a state of 

sustained oscillations. 

When the competing species are also involved in commensalistic or mutu-

alistic interactions, chances for stable steady state coexistence are increased. 

For example, Megee et al. [23] have studied competition for glucose be-

tween Lactobacillus casei and yeast. When riboflavin was present in the feed, 

L.casei won the competition. When the feed was riboflavin free, the two com-

petitors coexisted at steady state as riboflavin, needed for growth of L.casei, 

was produced by the yeast. In this case competition was complicated by 

the commensal dependence of L.casei on yeast and allowed for coexistence. 

In another study, Lee et al. [20] examined competition between Lactobacil-

lus plantarum and Propionibacterium shermanii for glucose. This pure and 

simple competitive pattern should lead to exclusion of P.shermanii from the 

reactor since it grows slower than L.plantarum on glucose. Nonetheless, it 

was found that the two species coexisted at steady state. This was due to 
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the fact that actually competition did not occur as P.shermanii did not use 

glucose but it preferred lactic acid, a by-product of L.plantarum metabolism 

on glucose. Hence, instead of pure and simple competiton the two species 

preferred to interact via a pure commensal pattern. As has been shown by 

Meyer et al. [24], mutualism can also lead to coexistence of two species which 

compete (not purely) for a single resource in an ideal chemostat. 

Microbial systems are very complex, but as argued at the end of the 

Introduction modelling of idealized systems can provide some important basic 

information on dynamics. Thus, although relatively simple systems have 

been considered in the present study, it is believed that the results contibute 

towards a better understanding of microbial competition. 



CHAPTER 3 

MATHEMATICAL DESCRIPTION 

OF THE UNINHIBITED SYSTEM 

This chapter describes competition for two complementary nutrients by two 

microbial populations in a chemostat, when inhibitory effects are not included 

in the analysis, and when the growth rates follow a Monod dependence on 

both nutrients. 

3.1 Model Equations 

In order to have a fully described system, one needs to derive four mass 

balances, two of which are written for the biomass of the two populations 

and two for the rate-limiting substrates. When an interactive model is used, 

the equations describing the system are the following: 

where, 

j = 1, 2: biomass concentration of species j, in the chemostat 

D: dilution rate (inverse of the holding time) defined as q/V 

q: volumetric flow rate of medium externally fed to chemostat 

V: working volume of chemostat 

sif  , i = 1, 2: concentrations of the rate-limiting substrates in the feed to the 

14 
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chemostat 

si, i = 1, 2: concentrations of the rate-limiting substrates in the chemostat 

yield coefficient of species j on substrate i; i = 1, 2 and j = 1,2 

µj : specific growth rate of species j; j = 1,2 

For this part of the study it is assumed that 

with, 

characteristic constant for species j, having units of inverse time 

K13  and K23: kinetic constants for species j having units of concentration. 

By introducing the following dimensionless quantities: 

equations (3.1) through (3.4) can be written in dimensionless form as: 
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with, 

3.2 Dimensional Reduction of the Model 

Although the sustem is described by four differential equations, its actual 

dimensionality is two, according to the arguments of Aris and Humphrey [2]. 

In fact, one can easily show that equations (3.8) and (3.9) can be substituted 

for by the following two algebraic expressions: 

The dimensional reduction from 4 to 2 actually implies that 2 of the 4 

eigenvalues of the unreduced system are always equal to —α, and thus they 

need not be further considered. 
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3.3 Possible Steady States 

By setting the left-hand side of equations (3.6) and (3.7) equal to zero, and 

by using eqns (3.12) and (3.13), one can see that the system can have the 

following types of steady states: 

• SS1: x=y=0 

Both populations wash out of the chemostat. 

• SS2: x=0, y > 0  

Population 1 washes out of the chemostat, while population 2 survives. 

• SS3: x > 0, y=0 

Population 2 washes out of the chemostat, while population 1 survives. 

• SS4: x > 0, y > 0 

Both competing population coexist in a steady state. 

3.4 Stability Analysis 

The local stability character of any meaningful steady state can be deter-

mined by the eigenvalues of the Jacobian matrix of the system. Using eqns 

(3.6), (3.7) , (3.12), and (3.13), the Jacobian is the following 2 x 2 matrix: 

where, 
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with, 

and, 
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3.5 Analysis of Steady State 1 ( SS1) 

The stoichiometric relations, i.e eqns (3.12) and (3.13), imply that u=uf  and 

v=v f . This steady state is always meaningful, since the conditions 0 < u < 

uf  and 0 < v ≤  vf  are unconditionally satisfied. 

The terms J12  and J21  of the Jacobian stability matrix are equal to 

zero while 	 and J22=-α+µ'2 . The eigenvalues are: 

It is obvious that both eigenvalues are real, while both of them are neg-

ative if and only if a > µ'1  and a > µ'2 . Hence SS1 is stable if and only 

if: 

where, 

and, 

3.6 Analysis of Steady State 2 (SS2) 
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In this steady state population 2 wins the competition while population 1 

washes out of the chemostat. 

Equations (3.7), (3.12) and (3.13) imply that 

Equation (3.33) implies that 

It is easy to see that the condition 0 < u < u f  (necessary for meaningfulness 

of SS2) will not be satisfied unless 

Similarly, the condition 0 < v < vf  will not be satisfied unless 

When conditions (3.37) and (3.38) are satisfied, taking into consideration 

equation (3.33), one can easily conclude that SS2 cannot be meaningful unless 

where g(u f,v f ) is defined by expression (3.32). 

One can easily see that when condition (3.39) is satisfied, it is also true 

that α  < φ  which in turn combined with expression (3.36) implies that v will 

be positive only if a meaningful value of u satisfies the following condition: 
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Equations (3.34) and (3.35) imply that 

One can easily observe that a meaningful value of u will imply [through 

(3.41)] that v < vf. Using equations (3.33) and (3.41) one can show that the 

value of u is given as a solution to the following quadratic: 

where, 

One can show that the following inequalities hold, when condition (3.39) is 

satisfied: 

and 

Case 1: c1  > 0 

In this case, F(0) < 0 and hence, if (3.39) is satisfied (implying that α  < φ), 

F(u) = 0 has one positive and one negative root. Call u1  the positive root. 

Because of relations (3.46), (3.47) and (3.40), one can conclude that u1  < uf 

and that v > 0. Furthermore, due to (3.41) and (3.34) one can see that v < vf  

and y > 0. Hence, when c1  > 0, and when condition (3.39) is satisfied, there 

is a meaningful and unique steady state 2. 
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Case 2: c1  < 0 

In this case, due to (3.47) one can conclude that the quadratic F(u) = 0 has 

two positive roots, u1  and u2. Assuming that u1  < u2, due (3.47) and (3.40) 

only u2  will lead to a positive value for v. When (3.39) is satisfied, one can 

easily show that 

Relations (3.46) through (3.48) imly that 

Hence, when c1  < 0 there is one and only one meaningful SS2, provided that 

(3.39) is satisfied. 

The general conclusion from the foregoing analysis is that there is a mean-

ingful and unique SS2 whenever (3.39) is satisfied. 

3.6.1 Stability analysis of steady state 2 

The terms of the Jacobian stability matrix are: 

The eigenvalues are: λ1  = —α  + µ'1, λ2  = y(dµ'2/dy), where (dµ'2/dy) is given 

by eqn (3.19). 

Looking at (3.23), (3.25), (3.28) and (3.29) one can easily see that λ2  is al-

ways negative. Thus, the necessary and sufficient condition for a stable SS2 
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is that a > /4. 

3.7 Analysis of Steady State 3 (SS3) 

In this steady state population 1 wins the competition by excluding popula-

tion 2 from the chemostat. Since SS3 is a case symmetric to that of SS2, the 

analysis is not repeated and only the results are presented. 

When 

there is a unique meaningful SS3 which is stable if and only if a > µ'2 . In 

this case, as in SS2 all eigenvalues are real and thus, no oscillatory behavior 

is exhibited by the system during transients. 

3.8 Analysis of Steady State 4 (SS4) 

This is the steady state where the two competitors coexist. 

From eqns (3.6) and (3.7) at steady state it follows that a 

Equations (3.12) and (3.13) can be viewed as a system of two equations in 

two unknowns x and y. The solution of the system, using Kramer's rule, is: 

In order to have meaningful values for x and y one of the following two 

inequalities must be valid: 

either 



24 

Or 

Since µ'1  = µ'2, one can write: 

and, 

By substituting eqn (3.59) into α  = 

µ'1 

 the following quadratic in u is ob-

tained: 

where, 

To get the values of the state variables at steady state, one has to solve 

G(u) = 0 to determine the value(s) of u. Then, using eqns (3.59), (3.55), 

and (3.56) the values of v, x, and y are determined. In this case it is possible 

that there are two SS4. 

It should be mentioned that since a = 

µ'1 

 = µ'2  and since one must 

have u < u f , and v < vf  a necessary (but not sufficient) condition for 

meaningfulness of SS4 is that 

where f(u f ,v f ) and g(u f ,v f ) are defined by relations (3.31) and (3.32), re-

spectively. 
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One can also observe that when (3.65) is satisfied, condition (3.30) is 

violated. This implies that SS1 and SS4 are mutually exclusive steady states, 

in the sense that it is impossible for them to be both meaningful and stable 

for the same operating parameter values. Actually, SS1 is also mutually 

exclusive with both SS2 and SS3 since condition (3.30) is violated when 

(3.39) and/or (3.54) is satisfied. 

3.8.1 Stability analysis of steady state 4 

The eigenvalues of SS4 are given as roots to the following quadratic equation: 

where, 

M, N, K, and A are defined by relations (3.26) through (3.29) and because 

of (3.10) and (3.11) they are all positive. The discriminant of eqn (3.66) is: 

Since A > 0, the roots of (3.66) are real. 

Let λ1  and λ2  to be the two roots. Then 

It is clear that λ1  + λ2  < 0, hence the necessary and sufficient condition for 

a stable SS4 is d2  > 0. 

Using the expressions (3.26) through (3.29) one can show that 
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where 

Using (3.73) one can write 

If σ  < 1  < δ, (3.74) implies that L, and consequently ΛM — KN is negative. 

If σ  > 1 > δ, (3.74) and (3.72) imply that ΛM — KN is positive. Since 

a = µ'1  = µ'2, (3.73) can be brought into the form 

where 

If σ  < δ  < 

1

, (3.76) implies that 

Hence, (3.77), (3.75) and (3.72) imply that ΛM — KN < 0 when σ  < δ  < 1. 

If σ  > δ >  1, (3.76) implies that 

Hence, (3.78), (3.75) and (3.72) imply that ΛM — KN > 0 when σ  > δ  > 1. 

Since a = µ'1  = µ'2, (3.73) can be also brought into the form 

where 
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If 1 <  σ  < δ, (3.80) implies that 

Hence, (3.81), (3.79) and (3.72) imply that AM — KN < 0 when 1 < σ  <  δ. 

If 1 > σ  > δ, (3.80) implies that 

Hence, (3.82), (3.79) and (3.72) imply that AM — KN > 0 when 1 > σ  > δ. 

From the foregoing considerations, one can conclude the following: 

Relations (3.83) and (3.84) when combined with relation (3.71) lead to the 

final conclusions: 

• If σ  < δ, a meaningful SS4 is stable if and only if εγ  > 1 

• If σ > δ, a meaningful SS4 is stable if and only if εγ  < 1  

It should be emphasized here, that the results show that the stability 

of a meaningful coexistence steady state is independent of operating parame-

ters (α, uf , vf ), and is determined only by the system parameters (σ, δ, ε, γ). 

3.9 Conclusions from the Analysis of Steady States 

From the analysis performed in the previous sections, one can conclude the 

following: 
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• The system never exhibits an oscillatory (damped or sustained) re-

sponse. 

• Only SS4 may exhibit multiplicity. 

• SS1 is mutually exclusive with every one of the remaining steady states. 

• The analytical work has not shown if in fact SS4 can have two equilib-

rium points, and if there is a regime in the operating parameter space 

where SS4 (at least one) can be meaningful and stable. Furthermore , 

the analysis could not show if SS2, SS3, and SS4 are mutually exclusive 

with one another. 

These answers have to be found via numerical studies. 

The analysis has shown that there are two curves, f(u f , v f ) and g(u f,v f ) 

defined via relations (3.31) and (3.32), respectively, which play a very impor-

tant role for the rise and/or stability of the various steady states. Actually, 

the relations a = f(u f,v f ) and α  = g(u f ,v f ) define surfaces in the α — uf  — v f  

space. Since three dimensional diagrams are neither easy to construct nor to 

read (in some cases), one can decide to construct projections of these surfaces 

on a 2-dimensional plane. Here it has been decided to show things on the 

α — uf plane for most of the cases considered. Also, without loss of generality 

one can assume that φ  > 1. Then, for a fixed vf-value, the  f(u f,  v f )  and 

g(u f ,v f ) curves may or may not cross each other. In the later case, for a 

given vf -value it will be g(u f ,v f ) > f(u f ,v f ) for any uf  value. If crossing 

occurs, it does so at a single point only, namely at 

Crossing of the f(u f , vf ) and g(u f ,v f ) curves occurs in the following cases 

(when φ  > 1): 
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Crossing of the f(u f ,v f ) and g(u f,v f ) curves does not occur in the fol-

lowing cases (when φ  > 1): 

3.10 Results of Numerical Studies and Operating Diagrams 

A number of important results have been obtained analytically as discussed 
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in the preceeding sections of this thesis. Nonetheless, some important ques-

tions could not be answered but through numerical studies. Among these 

questions, the most important ones were the following: 

• Under what conditions can a coexistence steady state really arise? 

• Can the coexistence steady state really exhibit multiplicity? 

• When coexistence is possible, does it occur in a domain of the operat-

ing parameters space, or does it occur only for discrete values of the 

parameters in which case it would not be possible to get it practically 

(in an experimental or actual process)? 

• Do the results of the local stability analysis hold globally or not? 

• Do the pairs of SS2 and SS3, SS2 and SS4, SS3 and SS4 constitute 

pairs of mutually exclusive steady states or not? 

Answers to the foregoing questions have been found through extensive 

numerical studies. The main results are the following: 

• The necessary and sufficient condition for SS4 (coexistence) to arise is 

that the f(u f ,v f ) and g(u f ,v f ) [defined by relations (3.31) and (3.32)] 

curves, cross each other. For a given vf  value, crossing of the curves 

occurs at a specific value of uf , called ufc  and defined by relation (3.85). 

The value of 

ufc 

 is the minimum value of uf  for which coexistence is 

possible. At 

ufc

, the f(u f,v f ) and g(u f,v f ) curves cross each other at f(u f,v f ) 

 = g(u f , vf ) = αc. For a given vf  value, the point (αc , 

ufc

) 

defines the point in the α  — uf  plane from which the region of SS4 

arises. If σ  < δ, coexistence occurs for values of a less than αc  in the α 

 — uf  plane, and for values of a larger than 

αc 

 in the α — vf  plane. If σ 

 > 

δ, the opposite is true, i.e., in the α — uf plane coexistence occurs 
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at values of a higher than αc  and in the α  — v f  plane at values of a 

less than αc. It should be mentioned here, that αc  in the α  — vf  plane 

is not the same as in the α  — uf  plane. In the α  — v f  plane, αc  critical 

is defined as αc  = f (u f ,vfc) = g(uf, vfc) for a given value of u f , while 

vfc  is defined by an expression similar (analogous) but not identical to 

(3.85). 

• The coexistence steady state does not exhibit multiplicity. Since the 

absence of multiplicity has been excluded (analytically) for the other 

steady states as well, it can be now concluded that for the uninhibited 

system none of the possible steady states exhibits multiplicity. 

• Whenever coexistence arises, it does so in a domain of the α  — uf  —  vf  

space except for the special case where εγ  = 1. In this special case, 

coexistence arises on a surface in the α  — u f  — vf  space or on a curve 

in the α  — uf  plane (see Figures 3.5 and 3.7). 

• SS2 and SS4 as well as SS3 and SS4 constitute pairs of mutually ex-

clusive steady states in the sense that there is no domain where both 

steady states of these pairs can be meaningful and stable. 

• As has been proved analytically, if σ  < δ, SS4 is stable provided that 

εγ > 1. Similarly, if σ < δ , SS4 is stable provided that εγ < 1. In such 

cases, SS2 and SS3 are mutually exclusive. 

• As has been proved analytically, if σ 

 < δ, 

 a meaningful SS4 is unstable 

if εγ < 1. Similarly, if σ 

 < 

δ

, 

 a meaningful SS4 is unstable if εγ > 1. 

In such cases, SS2 and SS3 are not mutually exclusive. In fact, in the 

region where SS4 is meaningful but unstable, both SS2 and SS3 are 

meaningful and stable. 

• The results of the local stability analysis hold globally as well except 
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in regions where SS2 and SS3 are both meaningful and stable. In such 

cases, the outcome of competition (i.e., exclusion of population 1 or 

2) will depend on the initial conditions, that is on how the system is 

started-up. It should be also mentioned that if one is interested in 

maintaining a mixed culture but SS4 is unstable whenever meaningful, 

proper control action could stabilize SS4 and prevent exclusion of either 

one of the two species. 

• When the f(u f, vf ) and g(u f, vf ) do not cross each other, coexistence is 

impossible. In such cases, the system has only two possible outcomes. If φ 

 > 1, there is a total washout for α  > g(u f,v f ) while SS2 is meaningful 

and stable for α  < g(u f ,v f ). In such cases, SS3 is unstable whenever 

meaningful. If φ  < 1, there is a total washout for α  > f(u f , vf ) while 

SS3 is meaningful and stable for α  < f(u f ,v f ). In such cases, SS2 is 

unstable whenever meaningful 

The numerical work was done as follows: For fixed values of the system 

parameters (φ, σ, δ, ε,  γ ) the equations developed in earlier sections were 

used in order to determine the regions in the α  — u f  — vf  space [or in a 

projection of it on either the α  — uf  or α  — v

f 

 plane] where each steady state is 

meaningful and stable or unstable. Some simulations were also performed by 

integrating the state model in order to check the global validity of the results 

of the local stability analysis. The main programs used in this study are given 

in the Appendix of the thesis. Some characteristic results are shown in the 

operating diagrams of Figures 3.1 through 3.9. The values of the parameters 

used in constructing these diagrams are given in Table 3.1. Since the most 

important question in this study was to explore the possibility of coexistence, 

no diagrams are shown for cases where the f(u f,v f ) and g(u f,v f ) do not 

cross each other, since in such cases coexistence is impossible as has been 

discussed earlier. As has been discussed in an earlier section of the thesis, 
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one can assume without loss of generality that φ  > 1. Thus, all diagrams 

presented here are for φ  = 1.25. 

Diagrams 3.1 and 3.2 are for cases where a < S and 

εγ 

 < 1. In such 

cases, there is a region where SS4 is meaningful but unstable, and in that 

same region both SS2 and SS3 are meaningful and stable. The only difference 

between the diagrams of Figures 3.1 and 3.2 is that ε < 

γ 

 in 3.1 while ε > 

γ 

 

in 3.2. One can observe that when ε > 

γ 

 the region where SS4 is meaningful 

but unstable is larger than when 

ε 

< 

γ 

 and the region shifts to the right, i.e., 

to larger uf  values. 

As has been already discussed, when a < S but 

εγ 

 > 1 there is a region 

where SS4 is meaningful and stable, while all possible steady states are mu-

tually exclusive. These characteristics can be seen in Figures 3.3 and 3.4. 

Once again, when 

ε 

 > 

γ 

(Figure 3.4) the region of coexistence is larger than 

when 

ε 

 < 

γ 

 (Figure 3.3), and the region shifts to larger u f  values (at low a 

values). 

When the value of 

εγ 

decreases while it remains larger than 1 the region 

of SS4 becomes smaller and eventually reduces to a curve. This can be seen 

from Figures 3.3 and 3.5. Similarly, when the value of εγ increases while it 

remains less than 1 the region where SS4 is meaningful but unstable becomes 

smaller and eventually reduces to a curve as can be seen from Figures 3.1 

and 3.5. The foregoing considerations are true when σ  < δ. 

When σ 

 < δ 

 and 

εγ 

 > 1 the region where SS4 is meaningful and stable 

arises for α  < αc. The opposite is true when σ 

 > δ 

 and 

εγ 

 < 1. These 

observations can be made for the cases of Figures 3.3 and 3.6. 

When σ 

 > δ 

 and εγ increases while it remains less than 1, the region of 

SS4 eventually reduces to a curve (Figures 3.6 and 3.7). This observation is 

analogous to the one made for the case of Figures 3.3 and 3.5. 

Selecting the α  — uf  as opposed to the α  — vf  plane for the graphs is not 
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important. The only difference is that whatever is observed ( regarding SS4) 

in the α  — uf  plane for α  < αc is also observed in the α  — vf  plane for α  > αc  

(Figures 3.1 and 3.8). 

Lastly, one can without loss of generality assume that σ  < δ. In the same 

plane, e.g., α — uf , whatever is observed for α 

 < 

αc  when σ 

 < 

δ, it is observed 

for α 

 > 

αc  when σ 

 > 

δ  (e.g., Figures 3.3 and 3.6). When the inequality 

σ  < 

δ is reversed, whatever is observed in the 

 

α  — uf  plane is now observed in the 

 

α — vf plane (Figures 3.1 and 3.9; actually an identical picture would require 

inversing the value of εγ  as well). 

3.11 Main Conclusion 

The main conclusion from this part of the present thesis is the following: 

Two populations competing purely and strongly for two non-inhibitory com-

plementary substrates can coexist in a chemostat in a steady state which 

is either stable by itself or can be stabilized by the use of proper control 

action. Coexistence occurs in a domain of the operating parameters space 

(α  — u f  — vf ). There are two exceptions: (1). When εγ  = 1, the domain 

of coexistence becomes a surface in the α  — uf — vf  space and thus, coexis-

tence is practically unattainable due to the ever existing fluctuations in the 

operating parameter values; (2). When the f(u f ,v f ) and g(u f ,v f )  surfaces 

do not cross each other for any values of uf  and vf ; the latter, when φ  > 1 

occurs when φ  > σ, δσ  < φ and S < φ. It should be mentioned here that 

exclusion of coexistence is decided by the system parameters (ε, γ, σ, δ, φ) 

which physically means that it depends on the identity of the competitors 

and of the two substrates competed for. 
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Table 3.1 

Uninhibited System-Parameter values used for operating diagrams 3.1-3.9 

Figure ε  γ  φ  σ  δ  v f  

3.1 0.2 0.5 1.25 1.1 1.82 4.0 

3.2 0.5 0.2 1.25 1.1 1.82 4.0 

3.3 1.3 1.7 1.25 1.1 1.82 4.0 

3.4 1.7 1.3 1.25 1.1 1.82 4.0 

3.5 4.0 0.25 1.25 1.1 1.82 4.0 

3.6 0.5 0.2 1.25 1.82 1.1 4.0 

3.7 4.0 0.25 1.25 1.82 1.1 4.0 

Figure ε  γ  φ  σ  δ  u f  

3.8 0.2 0.5 1.25 1.1 1.82 4.0 

3.9 0.2 0.5 1.25 1.82 1.1 4.0 
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CHAPTER 4 

MATHEMATICAL DESCRIPTION 

OF A PARTIALLY INHIBITED SYSTEM 

This chapter describes competition for two complementary nutrients by two 

microbial populations in a chemostat, when the growth of one competitor is 

inhibited by only one of the two substrates. Using interactive expressions 

for the specific growth rates, the case is described by one expression which 

can be viewed as a product of two Monod expressions, and one which can 

be viewed as a product of one Monod-type and one Andrews-type expression. 

4.1 Model Equations 

In order to have a fully described system, one needs to derive four mass 

balances, two of which are written for the biomass of the two populations 

and two for the rate-limiting substrates. When an interactive model is used, 

the equations describing the system are the following: 

where, 

bj, j = 1, 2: biomass concentration of species j, in the chemostat 

D: dilution rate (inverse of the holding time) defined as q/V 

45 
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q: volumetric flow rate of medium externally fed to chemostat 

V: working volume of chemostat 

si f , i = 1, 2: concentrations of the rate-limiting substrates in the feed to the 

chemostat 

si, i = 1,2: concentrations of the rate-limiting substrates in the chemostat 

Yij: yield coefficient of species j on substrate i; i = 1, 2 and j = 1, 2 

µj: specific growth rate of species j; j = 1,2 

For this part of the study it is assumed that 

with, 

characteristic constant for species j, having units of inverse time 

Kij: kinetic constant having units of concentration; it refers to species j and 

substrate i (i = 1, 2; j = 1, 2); it is known as the half -saturation constant 

KI11: kinetic constant having units of concentration; it refers to species 1 and 

the inhibitory substrate 1; it is known as the Andrews inhibition constant 

By introducing the following dimensionless quantities: 
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equations (4.1) through (4.4) can be written in dimensionless form as: 

with, 

This system is in many ways similar to the one analyzed in Chapter 3 of this 

thesis. It has the same type of steady states as those discussed in section 3.3. 

Furthermore, the stoichiometric relations (3.12) and (3.13) are valid for the 

present case as well, implying again that two of the four eigenvalues of the 

system are equal to —a and that the actual dimensionality of the system is 

2. The local character of the stability of each steady state is decided by the 

eigenvalues of the 2 x 2 Jacobian matrix J presented in section 3.4. Relations 

(3.14) through (3.25) hold for the present case as well, the only difference 

being that the expressions for M, N, K, and A are not those given by relations 
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(3.26) through (3.29); for the system studied here, the expressions for M, N, 

K, and A are the following: 

4.2 Analysis of Steady State 1 ( SS1) 

The stoichiometric relations, i.e., eqns (3.12) and (3.13), imply that u=uf  

and v=vf . This steady state is always meaningful, since the conditions 0 < 

u ≤  uf  and 0 < v ≤  vf  are unconditionally satisfied. 

The terms J12  and J21  of the Jacobian stability matrix are equal to 

zero while J11=-α+µ'1  and J22=-α +µ'2. The eigenvalues are: λ1=

-α+µ'1, λ2=-α

+

µ'2 . 

It is obvious that both eigenvalues are real, while both of them are neg-

ative if and only if α  > µ'1  and α  > µ'2. Hence SS1 is stable if and only 

if: 

where, 
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and, 

4.3 Analysis of Steady State 2 (SS2) 

In this steady state population 2 wins the competition by excluding popula-

tion 1 from the chemostat. One can easily observe that SS2 of the system 

studied here, is described by equations identical with those describing SS2 

of the system studied in Chapter 3. Hence, the analysis is not repeated and 

only the results are presented. When 

there is a unique, meaningful SS2 which is stable if and only if α  > µ'1. The 

eigenvalues are real and thus, no oscillatory behavior is exhibited by the sys-

tem during transients. 

4.4 Analysis of Steady State 3 (SS3) 

In this steady state population 1 wins the competition, while population 2 

washes out of the chemostat. Equations (4.7), (3.12), and (3.13) imply that 
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Equation (4.21) implies that the values of u and v will not be meaningful, 

unless the following condition is met: 

Using equations (4.21) through (4.23), one can show that the value of x is 

given as a solution to the following cubic equation: 

where, 

One can show that the following statements are true: 
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It should be mentioned here that uf  < (

v f

/γ ) does not necessarily imply 

that F(v f/γ )> 0. 

Case 1: 

From (4.30) one can conclude that d1  < 0. From (4.26) it is obvious that 

a l  > 0. Let x1, x2, and x3  be the roots of (4.25). The product of the three 

roots is equal to 

d1

/a1  which is negative, thus implying that at least one of 

the three roots is negative. Let x3  < 0. 

Case 1a: u f  > (1 + vf )/γ  

In this case, (4.34) and (4.36) imply that there are positive values of x for 

which F(x) < 0. Hence, x1  and x2  are both real and positive. Let x1  < x2 . 

Relations (4.32) and (4.36) imply that 

Now, taking into consideration relations (4.22) and (4.23) one can conclude 

that only x

1 

 leads to meaningful values for both u and v. Hence, in this case 

there is a unique meaningful SS3. 

Case lb: 

v f

/γ  < u f  < 

(1 + vf )/γ 

 

In this case, (4.33) and (4.36) imply that there are positive values of x for 

which F(x) < 0. Hence, x

1 

 and x2  are both real and positive. Let 

x1 

 < x2. 

Relations (4.33), (4.35) and (4.36) imply that 

Now, taking into consideration relations (4.22) and (4.23) one can conclude 

that only 

x1 

 leads to meaningful values for both u and v. Hence, again in 

this case there is a unique meaningful SS3. 
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Case 1c: uf  < vf /γ  

In this case, (4.33) impies that there is at least one positive value of x for 

which F(x) < 0. Hence, x1  and x2  are real and positive. Let x1  < x2. 

Relations (4.33) and (4.35) imply that either 

Or 

In either case, when relations (4.22) and (4.23) are taken into consideration, 

the conclusion is that only x1  leads to meaningful values for both u and v. 

Hence, again in this case there is a unique meaningful SS3. 

The following conclusion can be reached: SS3 is meaningful and unique, 

provided that 

Case 2: 

In this case, following the reasoning of Case 1, one can show that (4.25) has 

at least one positive root which leads to meaningless values for u and v. It 

is not possible to show analytically that there is no meaningful SS3 when 

(4.37) is violated but numerical calculations have shown that in fact this is 

the case. 

Regarding the stability of SS3, one can show that the eigenvalues are 

given as: λl  = —x(M + γN), 

λ2 

 = -α+µ'2. From expressions (4.13) and 

(4.14) one can see that for a meaningful SS3, N > 0. The sign of Al cannot 

be analytically predicted here. Hence, there are two conditions for stability 

of a meaningful SS3; namely α  > µ'

2 

 and M + γ N > 0. Once again, the 

eigenvalues are real, and thus the system will always approach this steady 
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state in an exponential fashion. 

4.5 Analysis of Steady State 4 (SS4) 

For this coexistence steady state, eqns (4.6) and (4.7) imply that α  = µ'1  = 

µ'2 . In this case one can see that a meaningful SS4 requires that α  < g(u f , v f ) 

but it does not necessarily require that α  < f (u f , v f ). One can conclude that 

SS4 and SS1 are mutually exclusive. Since the stoichiometric relations are 

the same for both cases considered in Chapters 3 and 4, the values of x and 

y (when u and v are known) will be given for the system considered in this 

Chapter, by eqns (3.55) and (3.56). 

Since µ'

1 

 = µ

'2

, one can show that the value of v (when u is known) will 

be given by the following expression: 

Using the eqn. α  = µ'

1 

 and substituting for v the expression (4.38) one can 

show that the value of u is given as a solution to the following cubic equation: 

where, 

It is clear that there may be up to three different steady states 4. The 

expressions are too complex for the analysis to proceed any further. As 
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discussed in the following section, numerical results have shown that there are 

cases where  in the α  — uf  — vf  space there is a domain where two different SS4 

actually arise. So, in this case SS4 can in fact exhibit multiplicity. It should 

be mentioned that three SS4 have never been found during the numerical 

studies. 

Regarding the stability of SS4, its two eigenvalues are again given as so-

lutions to the equation (3.66). In this case though, the expressions (values) 

of M, N, K, and A are those described by relations (4.13) through (4.16). 

Since it cannot be exluded that M may be negative, for the partially inhib-

ited system considered here we cannot conclude (as in the case studied in 

Chapter 3) that the eigenvalues of SS4 are always real, or that the stability 

of SS4 is determined only by the values of ε  and γ. In fact, numerical studies 

have shown that the latter is not always true.  

4.6 Numerical Results and Operating Diagrams 

As in the case of the uninhibited system discussed in Chapter 3, a number 

of questions regarding the partially inhibited system had to be answered nu-

merically. In this section, results of extensive numerical studies are discussed 

and some operating diagrams in the α  — u f  plane are presented. The pro-

grams used in these studies are given in the Appendix of this thesis; they 

are based on the expressions which have been developed in the preceeding 

sections while for getting the roots of cubic equations the subroutine ZPORC 

of the IMSL/Math Library was employed. 

The main conclusions from the numerical studies on the partially inhib-

ited system are as follows: 

• The surfaces defined by relations (4.18) and (4.19) play a very impor-

tant role on the outcome of competition. In the  α  — uf  plane, the 
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f(u f , vf ) and g(u f ,v f ) surfaces become curves. Unless the f(u f , vf ) 

and g(u f ,v f ) surfaces (or curves) cross each other, coexistence of the 

two competitors is not possible. 

• When α  > f (u f ,v f ), SS3 cannot arise. 

• The coexistence SS4 arises only if 

α 

 < min[f(u f , v f), g(u f , vf )]. 

• The total washout steady state (SS1) is mutually exclusive with each 

one of the remaining three types of steady states. 

• The coexistence steady state (SS4) is the only type of steady state 

which exhibits multiplicity. In fact, although theoretically one can 

have up to three different SS4, numerically only up to two different 

SS4 have been found under the same operating conditions (i.e., α, u f , 

vf ). It should be also mentioned that when two SS4 arise, one is stable 

while the other is unstable. Furthermore, under the same operating 

conditions there is a meaningful and stable SS2 (e.g., Figures 4.14 and 

4.16). 

• The pairs of SS2 and SS3; SS2 and SS4 are not mutually exclusive in 

the sense that there are domains in the α  — u f  — vf  space where both 

steady states of each pair are meaningful and stable. Whenever this 

happens, there is a meaningful but unstable SS4 in the same domain. 

Based on the calculations performed for this study, it seems that SS3 

and SS4 are mutually exclusive. 

As can be seen from the expressions (4.18) and (4.19), for a given vf , 

the f (u f ,v f ) and g(u f,v f ) curves may cross each other at a single uf-value; 

they may cross each other at two uf-values; or they may not cross each other 

for any uf-value. Since the last case never leads to coexistence of the two 

competitors, no operating diagrams are presented here for such situations. 
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The diagrams of Figures 4.1 through 4.9 are for cases where the f(uf , vf) 

and g(uf ,vf ) curves cross each other at a single uf-value, while the diagrams 

of Figures 4.10 through 4.19 are for cases where the f(uf ,vf ) and g(uf ,vf ) 

curves cross each other at two uf-values. 

When the f(uf ,vf ) and g(uf ,vf ) curves cross each other at a single u1-

value (in the α  — uf  plane), the results are identical with those obtained 

for the uninhibited case (Chapter 3). The coexistence steady state does not 

exhibit multiplicity, and its stability is determined by the system parameters 

only (i.e., (φ, σ, δ, ε, and γ). 

When σ 

 > 

δ, and εγ  < 1 (Figures 4.1, 4.3, 4.7 through 4.9) there is 

a region where both SS2 and SS3 are meaningful and stable. In the same 

region, there is a unique, meaningful but unstable SS4. The extent of this 

region reduces as the value of εγ  increases (Figures 4.1 and 4.3) towards 1, 

and when εγ  = 1 the region becomes a curve (Figure 4.6). The region where 

SS4 is meaningful but unstable, shifts to higher uf  values and its extent 

increases considerably as the value of vf  increases (Figures 4.1 and 4.7). The 

opposite is true when vf  decreases (Figures 4.1 and 4.8). As the value of 

w increases (i.e, inhibitory effects are more pronounced), the region of SS4 

shifts to lower uf  values (Figures 4.1 and 4.9). It seems that a decreasing 

w-value and an increasing vf-value have the same impact on the system. 

When σ  > δ, and εγ  > 1 (Figures 4.2, 4.4, and 4.5), there is a region 

of a unique, meaningful and stable SS4. When w increases, the region of 

coexistence shifts to lower uf-values and the extent of the region decreases. 

When the f(uf , vf ) and g(uf ,vf ) curves cross each other at two uf-values 

in the α  — uf  plane, the situation is much different from the uninhibited 

case and the system exhibits much more complex dynamics. In such cases, 

the possibility of maintaining a mixed culture (coexistence) increases sig-

nificantly. In fact, one can always find a region where at least one SS4 is 
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meaningful and stable, provided that εγ  ≠ 1. When εγ = 1 coexistence is 

not possible, neither regions where SS2 and SS3 are both meaningful and 

stable can be found (Figure 4.19). 

When σ  > δ, and εγ  < 1 (Figure 4.10), a region of stable SS4 arises from 

the lower of the two uf-values for which f(u f ,v f ) = g(u f , vf ), while a region 

of an unstable SS4 [with both SS2 and SS3 meaningful and stable] arises from 

the larger of the two uf-values. Exactly the opposite is true when εγ  > 1 

(Figure 4.11). 

Comparing the diagrams of Figures 4.10, 4.14, and 4.15 one can see that 

when σ  > δ  and εγ  < 1, at low vf-values the regions where SS4 arises are 

further apart and their extent is small. At large vf-values (Figure 4.14) the 

two regions overlap and give rise to a new one. This is a very interesting 

region since there are two meaningful SS4 only one of which is stable, and a 

stable SS2 as well. Comparing the diagrams of Figures 4.10, 4.16, and 4.17 

one can see that the effect of an increased w-value on the system is the same 

as that of an increased vf . 

The effects of vf  and w on the system when εγ  > 1 are the same with 

the ones already discussed for εγ  < 1. From Figures 4.11 and 4.12 one can 

see that as vf  increases the two regions of SS4 come closer. From Figures 

4.11 and 4.13 one can see that as w decreases, the two regions of SS4 become 

more separated from one another. 

The main conclusion here is that coexistence is possible in most cases 

when the system is partially inhibited. The dynamics can be quite com-

plex with a number of different steady states arising in the same domain of 

the operating parameters space, something which may imply that control is 

required for maintaining a mixed culture at the desired concentration levels. 
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Table 4.1 

Partially Inhibited System-Parameter values used for operating diagrams 

4.1-4.19 

Figure ε  γ  φ  σ  δ  ω  vf  

4.1 0.2 0.5 0.6 1.2 0.8 0.1 2.0 

4.2 1.3 1.7 0.6 1.2 0.8 0.1 2.0 

4.3 0.45 1.0 0.6 1.2 0.8 0.1 2.0 

4.4 1.3 1.7 0.6 1.2 0.8 0.5 2.0 

4.5 1.3 1.7 0.6 1.2 0.8 0.05 2.0 

4.6 4.0 0.25 0.6 1.2 0.8 0.1 2.0 

4.7 0.2 0.5 0.6 1.2 0.8 0.1 5.0 

4.8 0.2 0.5 0.6 1.2 0.8 0.1 1.0 

4.9 0.2 0.5 0.6 1.2 0.8 0.3 2.0 

4.10 0.2 0.5 0.6 1.1 0.4 0.1 4.0 

4.11 1.3 1.7 0.6 1.1 0.4 0.1 4.0 

4.12 1.3 1.7 0.6 1.1 0.4 0.1 5.0 

4.13 1.3 1.7 0.6 1.1 0.4 0.05 4.0 

4.14 0.2 0.5 0.6 1.1 0.4 0.1 8.0 

4.15 0.2 0.5 0.6 1.1 0.4 0.1 1.0 

4.16 0.2 0.5 0.6 1.1 0.4 0.2 4.0 

4.17 0.2 0.5 0.6 1.1 0.4 0.05 4.0 

4.18 0.2 0.5 0.6 1.1 0.4 0.05 8.0 

4.19 4.0 0.25 0.6 1.1 0.4 0.1 2.0 
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CHAPTER 5 

CONCLUSIONS 

In this thesis, aspects of a pure-double-strong competition pattern between 

two populations has been examined. The two resources competed for, have 

been assumed to be complementary and interactive models have been used 

for expressing the specific growth rates of the two species. Two cases have 

been examined: one in which neither of the two substrates exerts inhibitory 

effects on either population, and one in which only one of the substrates 

inhibits the growth of one of the two populations. 

Based on analytical and numerical results, it has been found that the two 

competitors can coexist at a steady state in an ideal chemostat. Coexistence 

is excluded only if one of the competitors grows faster than the other under all 

operating conditions. This is determined by the system parameters (kinetic 

constants) appearing in the expressions of the specific growth rates. 

Coexistence may arise at an unstable equilibrium point, in which case 

proper control of the chemostat will be necessary for maintaining a mixed 

culture. The stability of coexistence (for a given system) is determined solely 

from the yield coefficients when the system is not inhibited by either of the 

two substrates. In the case of partial inhibition, it has been found that the 

stability of coexistence may depend on the operating conditions (dilution 

rate, feed concentrations of the substrates) as well as on the yield coefficients. 

Inhibition increases the complexity of the system and gives rise to do-

mains where multiple outcomes and possible multiple coexistence states arise. 

The dynamics of such systems depend strongly on the way the chemostat is 

started-up. 

There are other systems which need to be analyzed in further studies 

in order to complete the analysis of the double-strong competition pattern. 

Such systems are the following: 
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• both populations are inhibited by one, and the same substrate 

• each population is inhibited by a different substrate 

• only one population is inhibited by both substrates while the other is 

either not inhibited by any or at most by one of the two substrates 

• both competitors are inhibited by both substrates 

As the complexity of the system increases with the number of inhibition 

terms, it is anticipated that more and more one will have to rely on numerical 

results only. On the other hand, an increased complexity is expected to lead 

to more intriguing and interesting dynamics for this system. 



APPENDIX 

PROGRAM SOURCE FILE 

The following source files are written in Fortran 77 and have been imple- 

mented on a VAX/VMS system. 

80 



C 	 UNINHIBITED SYSTEM 
C 
C 	  
c 	program to calculate numerically the regions 
c 	where SS2(x=0) is meaningful and stable 

c 	Parameters: e=epsilon, g=gamma, p=phi, s=sigma 
c 	 d=delta 
c 	Operating parameters: a=alpha, uf, of 
C 

integer vf,ufmax 
real d,e,p,s,g,a,uf,u,v,mu1,muo,y,ufin 

open(unit=2,file='ss2.2',status='new') open(unit=3,file='ss2.0',status='new'
) 

read *,e,g,p,s,d,vf,ufin,ufmax,deluf,ain 
uf=uf in 

5 	continue 
dela=(p*uf*vf/((d+uf)*(s+vf)))/100 
fina=100*dela 
a=ain 

count=1 
25 	continue 

Discr=(((p-a)*(uf+e*vf)-a*(d+e*s))**2) 
$ -4*e*(p-a)**2*uf*vf+4*e*a*(p-a)*(d*s+d*vf+s*uf) 

y=((p-a)*(uf+e*vf)-a*(d+e*s)-Discr**0.5) 
$ /(2*e*(p-a)) 
u=uf-e*y 
v=vf-y 

mu1=u*v/((1+u)*(1+v)) 
if(a.gt.mu1)then 
write(2,50)uf,a,y,u,v,mul 
afin=a 
if(count.eq.1)then 
aar=a 
count=2 
endif 
endif 
muo=p*uf*vf/((d+uf)*(s+vf)) 
a=a+dela 
if(a.lt.muo.and.a.lt.fina)then 
go to 25 
else 
write(3,60)uf,aar,afin 
endif 
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50 	format(1x,f6.3,1x,5(f11.7,1x)) 
60 	format(5x,f6.3,5x,2(f11.7,10x)) 

uf=uf+deluf 
if(uf.gt.ufmax)go to 80 
go to 5 

80 	continue 
stop 
end 

c 	  
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c 	 UNINHIBITED SYSTEM 
C 

c 	program to calculate numerically the regions 
c 	where SS3(y=0) is meaningful and stable 

c 	Parameters: e=epsilon, g=gamma, p=phi, s=sigma 
c 	 d=delta 
c 	Operating parameters: a=alpha, uf, of 

C 	  
integer vf,ufmax 
real d,e,p,g,s,a,uf,u,v,mu2,muo,x,ufin 

open(unit=2,file='ss3.3',status='new') 
open(unit=3,file='ss3.o',status='new') 
read *,e,g,p,s,d,vf,ufin,ufmax,deluf,ain 
uf=uf in 

5 	continue 
dela=((uf*vf)/((1+uf)*(1+vf)))/100 

fina=100*dela 
a=ain 
count=1 

25 	continue 
Discr=(((1-a)*(vf+g*uf)-a*(g+1))**2) 

$ -4*g*((1-a)**2)*uf*vf+4*g*a*(1-a)*(1+uf+vf) 
x=((1-a)*(vf+g*uf)-a*(g+1)-Discr**0.5)/(2*g*(1-a)) 

u=uf-x 
v=vf -g * x 
mu2=p*u*v/((d+u)*(s+v)) 
if(a.gt.mu2)then 
write(2,50)uf,a,x,u,v,mu2 
afin=a 
if(count.eq.1)then 
aar=a 
count=2 
endif 
endif 

muo=uf*vf/((1+uf)*(1+vf)) 
a=a+dela 
if(a.lt.muo.and.a.lt.fina)then 
go to 25 
else 
write(3,60)uf,aar,afin 
endif 

50 	format(2x,f6.3,2x,5(f11.7,2x)) 
60 	format(10x,f6.3,5x,2(f11.7,10x)) 



uf=uf+deluf 
if(uf.gt.ufmax)go to 80 
go to 5 

80 	continue 
stop 
end 

c 	  
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C 	  
C 
c 	 UNINHIBITED SYSTEM 
C 
C 	  

c 	program to calculate the regions where the 
c 	coexistence steady state is meaningful and stable 

c 	  
integer vf,ufmax 
real e,g,s,d,uf,ain,deluf,m1,m2,Discrv,Discr 
real M,N,K,L,L1,L2 
open(unit=2,file='ss4.out',status='new') 
open(unit=3,file='ss4.444',status='new') 

c 	  
c 
c 	Parameters: e=epsilon,g=gamma,p=phi 
c 	L1,L2=eigenvalues(SS4), d=delta,s=sigma 
c 	Operating parameters: a=alpha, uf, of 

read *,e,g,p,s,d,vf,ufin,ufmax,deluf,ain 
uf=ufin 

5 	continue 
dela=p*uf*vf/((d+uf)*(s+vf))/160 
fina=p*uf*vf/((d+uf)*(s+vf)) 
a=ain 

25 	continue 
Discrv=((a*(d-1)*(s+1)-(d*s-p))**2) 

$ -4*(a*(d-1)-(d-p))*(a*s*(d-1)) 
if(Discrv.gt.0)then 
v=((d*s-p)-a*(d-1)*(s+1)-Discrv**0.5) 

$ /(2*(a*(d-1)-(d-p))) 
if(v.gt.0.and.v.lt.vf)then 
u=(d*s-p+v*(d-p))/(p-s+v*(p-1)) if(u.gt.0.and.u.lt.uf)then 

x=((uf-u)-e*(vf-v))/(1-e*g) 
y=((vf-v)-g*(uf-u))/(1-e*g) 
if(x.gt.0.and.y.gt.0)then 
M=v/((1+u)**2*(1+v)) 
N=u/((1+u)*(1+v)**2) 
K=p*v*d/((d+u)**2*(s+v)) 
L=p*u*s/((d+u)*(s+v)**2) 
Discr=(x*M+g*x*N-y*L-e*y*K)**2+4*(y*K+g*y*L) 

$ *(x*N+e*x*M) 
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L1=(-(x*M+g*x*N+y*L+e*y*K)+Discr**0.5)/2 
L2=(-(x*M+g*x*N+y*L+e*y*K)-Discr**0.5)/2 
write(2,60)uf,a,v,u,x,y,L1,L2 

60 	format(1x,f6.3,1x,7(f9.6,1x)) 
write(3,70)uf,a,v,u,L1,L2 

70 	format(2x,f6.3,2x,5(f11.7,2x)) 
endif 
endif 
endif 
endif 
a=a+dela 
if(a.lt.fina)go to 25 
uf=uf+deluf 
if(uf.gt.ufmax)go to 80 
go to 5 

80 	continue 
stop 
end 

c 	  
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c 	 PARTIALLY INHIBITED SYSTEM 

c 	program to calculate numerically the regions where 

c 	ss2 (x=0) is meaningful and stable 

c 	Parametres: e=epsilon, g=gamma, p=phi, s=sigma 
c 	 d=delta, w1=omega 

c 	Operating Parameters: a=alpha , uf, of 

integer vf,ndeg,ufmax 
parameter(ndeg=2) 
real d,e,p,s,g,uf,ufin,u,v,y,mu1,w1,r(ndeg+1) 
real deluf,ain 
complex zero(ndeg) 
external wrcrn,zporc 
open(unit=2,file='x2.22',status='new') 
open(unit=3,file='x2.2',status='new') 
read *,e,g,p,s,d,w1,vf,ufin,ufmax,deluf,ain 
uf=ufin 

5 	continue 
dela=((p*uf*vf)/((d+uf)*(s+vf)))/160 
fina=(p*uf*vf)/((d+uf)*(s+vf)) 
a=ain 
count=1 

25 	continue 
r(1)=((p-a)*uf*vf-a*(d*s+d*vf+s*uf)) 
r(2)=(a-p)*(uf+e*vf)+a*(d+e*s) 
r(3)=((p-a)*e) 

c 	  

c 	Subroutine ZPORC (IMSL/Math Library) 

call zporc(ndeg,r,zero) 
call wrcrn('the zeros found are',1,ndeg,zero,1,0) 
do 65,i=1,2 
if(aimag(zero(i)).eq.0.0)then 
y=real(zero(i)) 
if(y.gt.0.0)then 
u=uf-e*y 
if(u.gt.0.0.and.u.lt.uf)then 



v=vf-y 
if(v.gt.0.0.and.v.lt.vf)then 
mul=(u*v)/((1+v)*(1+u+w1*u**2)) 

c 	q=(-1)*y*(((p*u*s)/((d+u)*(s+v)**2))+((e*u) 
$ /((d+u)**2*(s+v)))) 

if(a.gt.mu1)then 
write(3,60)uf,a,y,u,v,mul 
afin=a 
if(count.eq.1)then 
aar=a 
count=2 
endif 
endif 
endif 
endif 
endif 
endif 

60 	format(f10.7,5(f11.7)) 
65 	continue 

a=a+dela 
if(a.lt.fina)then 
go to 25 
else 
write(2,70)uf,aar,afin 
endif 

70 	format(10x,f10.7,2(2x,f11.7)) 
uf=uf+deluf 
if(uf.gt.ufmax)go to 80 
go to 5 

80 	continue 
stop 
end 
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C 	  
C 

PARTIALLY INHIBITED SYSTEM 

C 	  
C 
c 	program to calculate numerically the regions where 
c 	ss3(y=0)is meaningful and stable. 

c 	Parameters: e=epsilon, g=gamma, p=phi, s=sigma 
c 	 d=delta, wl=omega 

c 	Operating Parameters: a=alpha, uf, of 
c 

integer vf,ufmax,ndeg 
parameter(ndeg=3) 
real e,g,p,s,d,w1,x,u,ufin,uf,v,deluf,a,r(ndeg+1) 
real mu2,q 
complex zero(ndeg) 
external wrcrn,zporc 

open(unit=2,file='x3.3',status='new') 
open(unit=3,file='x3.33',status='new') 

read *,e,g,p,s,d,w1 
read *,vf,ufin,ufmax,deluf,ain 
uf=ufin 

5 	continue 
dela=((uf*vf)/((1+uf+w1*uf**2)*(1+vf)))/160 

c 	fina=vf/((1+2*(w1**0.5))*(1+vf)) 
c 	dela=((p*uf*vf)/((d+uf)*(s+vf)))/100 

fina=(uf*vf)/((1+uf+wl*uf**2)*(1+vf)) 
a=ain 
count=1 

25 	continue 
r(1)=(uf*vf*(1-a)-a*(1+vf+uf)-a*wl*uf**2*(1+vf)) 
r(2)=(a*(g+1)+g*uf*(a-1)+vf*(a-1)+a*wl*uf 

$ *(2+2*vf+g*uf)) 
r(3)=(g*(1-a)-a*w1*(1+vf+2*g*uf)) 
r(4)=(a*g*wl) 

c 	Subroutine ZPORC (IMSL/Math Library) 
C 

call zporc(ndeg,r,zero) 
call wrcrn('the zeros are',1,ndeg,zero,1,0) 
do 65,i=1,3 



90 

if(aimag(zero(i)).eq.0.0)then 
x=real(zero(i)) 
if(x.gt.0)then 
u=uf-x 
if(u.gt.0.and.u.lt.uf)then 
v=vf-g*x 

if(v.gt.0.and.v.lt.vf)then 
mu2=(p*u*v)/((d+u)*(s+v)) 
q=-x*((v*(1-w1*(u**2))/((1+v)*(1+u+w1*(u**2))**2)) 

& +((g*u)/((1+u+wl*(u**2))*((1+v)**2)))) 
if(a.gt.mu2.and.q.lt.0.0)then 
write(3,60)uf,a,x,u,v,mu2,q 
afin=a 
if(count.eq.1)then 
aar=a 
count=2 
endif 
endif 
endif 
endif 
endif 
endif 

60 	format(1x,f6.3,1x,6(1x,f9.6)) 
65 	continue 

a=a+dela 
if(a.lt.fina)then 
go to 25 
else 
write(2,70)uf,aar,afin 
endif 

70 	format(2x,f6.3,2(10x,f11.7)) 
uf=uf+deluf 
if(uf.gt.ufmax)go to 80 
go to 5 

80 	continue 
stop 
end 
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PARTIALLY INHIBITED SYSTEM 
C 

C 
c 	program to calculate the regions where the coexistence 
c 	steady state is meaningful and stable 

c 	Parameters: e=epsilon, g=gamma, p=phi, s=sigma 
c 	 w1=omega, d=delta 

c 	Operating Parameters: a=alpha, uf, of 

c 	  
integer vf,ndeg 
parameter(ndeg=3) 
real e,g,p,s,d,w1,x,u,uf,ufmax,v,a,deluf,r(ndeg+1),L1,L2 
real m,nn,kk,l,d1,d2,DD 
complex zero(ndeg) 
external wrcrn,zporc 
open(unit=2,file='x4.4',status='new') 
open(unit=3,file='x4.44',status='new') 
read *,e,g,p,s,d,w1,vf,ufl,ufmax,deluf,ain 

uf=uf1 
5 	continue 

dela=(p*uf*vf/((d+uf)*(s+vf)))/30 
c 	dela=(vf/((1+2*(w1**0.5))*(1+vf)))/30 

fina=p*uf*vf/((d+uf)*(s+vf)) 
a=ain 

25 	continue 
r(1)=a*d*p*(s-1) 
r(2)=a*s*p*(d+1)-d*p*(a+s)+p*(p-a) 
r(3)=s*p*(a-1)+a*p*d*w1*(s-1)+p*(p-a) 
r (4) =p*w1* (a*s-a+p) 

C 
c 	Subroutine ZPORC (IMSL/Math Library) 
c 
c 	  

call zporc(ndeg,r,zero) 
call wrcrn(' the zeros are',1,ndeg,zero,1,0) 
do 65,i=1,3 
if(aimag(zero(i)).eq.0.0)then 
u=real(zero(i)) 
if(u.gt.0.0.and.u.lt.uf)then 

v=((d*s-p)+u*(s-p)-p*w1*u**2)/((p-d)+u*(p-1)+p*w1*u**2) 
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if(v.gt.0.0.and.v.lt.vflthen 
z=((uf-u)-e*(vf-v))/(1-e*g) 
y=((vf-v)-g*(uf-u))/(1-e*g) 
if(z.gt.0.and.y.gt.0)then 
m=v*(1-w1*u**2)/((1+u+w1*u**2)**2*(1+v)) 
nn=u/((1+u+w1*u**2)*(1+v)**2) 
kk=p*v*d/((d+u)**2*(s+v)) 
l=p*u*s/((d+u)*(s+v)**2) 
d1=z*m+g*nn*z+y*l+e*y*kk 

c 	d2=(y*l+e*y*kk)*(z*m+g*z*nn)-(y*kk+g*y*l)*(z*nn+e*z*m) 
d2=z*y*(l*m-kk*nn)*(1-e*g) 
DD=d1**2-4*d2 

L1=(-d1+DD**0.5)/2 
L2=(-d1-DD**0.5)/2 

if(L1.lt.0.0.and.L2.lt.0.0)then 
write(2,60)uf,a,u,v,z,y,L1,L2 

60 	format(1x,f6.3,7(1x,f8.5)) 
endif 
endif 
endif 
endif 
endif 

65 	continue 
a=a+dela 
if(a.lt.fina)go to 25 
uf=uf+deluf 
if(uf.gt.ufmax)go to 80 
go to 5 

80 	continue 
stop 
end 
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