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ABSTRACT 

A Theoretical Model for Biased 
Superlattice Devices 

by 
Michael Ferner 

A model describing the subband structures and tunneling 

characteristics of superlattices is presented. The model solves 

the envelope function equations by the transfer matrix 

technique. The results are codified in a Fortran program, and 

the model is applied to several structures. 

Superlattice have been studied extensively, however 

many new structures await investigation. 

This model is presented as a preliminary design tool. 

The program allows a designer to do preliminary calculations. 

This type of investigation guides a designer toward a goal by 

making possible a large number of calculations on many 

different structures. 
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CHAPTER 1 
INTRODUCTION 

A useful and efficient model describing electronic subband 

structures and tunneling characteristics in multiple quantum 

wells (MQW) or superlattices is the topic of this thesis. Such a 

model provides a designer of such structures with a means of 

making preliminary decisions and calculations. Fine tuning a 

structure to better realize a particular phenomena and 

discovering a new device application are two purposes 

accomodated by a practical, superlattice model. The model 

discussed in this work culminates with a Fortran program 

included in the appendix. 

Many superlattices have been grown and studied to 

date. In fact, ultrathin superlattices became widely studied 

because of advances in microstructure technology such as 

molecular beam epitaxy and electron beam lithography. 

However, unlike conventional semiconductor materials, 

superlattices provide a seemingly endless variety of structures 

to study. Material choices, band edge lineups, and layer 

thicknesses are among the parameters that can be varied by 

the designer. Needless to say, many new structures await 

investigation. 

Having established that a theoretical model with 

computer code can be of value to a designer in the preliminary 

stages of development, it remains to discuss what matters must 



be addressed by such a model. Consider that the energy band 

offsets between bands of superlattice layers are typically on 

the order of hundreds of meV. Since modifications to 

electronic structure that are due to the periodic "modulation' of 

the superlattice are on this scale, a useful theoretical model 

should deal with questions on this scale. 

Furthermore, electronic states with mean free paths 

much smaller than a layer's thickness are essentially confined 

within that layer. On the other hand, states with mean free 

paths comparable to or greater than the thickness of layers are 

appreciably modulated by the periodic superlattice. Therefore, 

states of interest are close in energy to band edges with 

relatively long lifetimes and mean free paths. It is required, 

then, that the superlattice model be a band edge theory. 

The theoretical scheme employed by this work is based 

on the envelope function approximation starting from Kane's 

k•p theory. This method focuses on the above mentioned 

"interesting states" and consolidates other facets of th

e superlattice into effective parameters. 	Chapter two deals with 

these matters. The resulting, Schrodinger-like equation, called 

the envelope function equation, is solved in chapter three by 

the transfer matrix technique. A difficulty arises when an 

applied bias voltage is considered. This problem of handling 

the bias potential is addressed in chapter four. Also, in chapter 

four, the Fortran program is discussed. Chapter five presents 

several structures and summarizes the information obtained 
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from the model. Finally, the computer program and sample 

input and output files are included in the appendix. 

The intent of this work is to demonstrate the increasing 

role of computer simulation and computational methods in 

applied physics research. However, this author seeks to obtain 

analytic results from an appropriate theoretical model 

wherever possible. The computer code is written only to do 

the tedious calculations quickly. While there is no substitute 

for real experimentation, this model with computer code can be 

of great value in the preliminary stages of research. 



CHAPTER 2 

THE ENVELOPE FUNCTION APPROXIMATION 

2.1 KANE'S k•p THEORY 

Superlattices provide for a diverse collection of phenomenal[3]. 

The theory one adopts to explain a particular effect depends on 

what superlattice application one has in mind. In bulk 

semiconductors, k•pop theory effectively describes states near 

band edges. As was mentioned in chapter one, it is these band 

edge states that are of interest when discussing superlattices. 

It is reasonable, then, to apply this theory to superlattices. 

The k•p

o p 

 representation comes from the Schrodinger 

Equation. 

Bloch showed that the solution of eq(2.1) can be written in 

terms of eigenfunctions W nk , with k in the first. Brillouin zone 

and n indexing the electron's energy bands. 

4 
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In 	eq(2.2) Un k (r) has the periodicity of V(r) and the 

exponential factor describes a free electron plane wave with 

momentum hk. The infinite set of Unk(r) form a complete set 

for a given k, say kn. For a different k we have the so called 

k0 representation. Eq(2.3) means that any function with the 

periodicity of V(r) can be expressed in terms of the infinite 

basis, the Unk (r). 

The theory continues to get a matrix eigen-value equation that 

can be treated by perturbation theory. 	The details are not 

included here. 	A previous thesis[31]  derives and solves this 

matrix equation using Kane's model. 

Kane's model[1,8]  deals with the perturbation term. 	For 

Zincblende III-V and II-VI materials, the fundamental band 

gap occurs at k o=0. The infinite series, eq(2.3) is truncated to 

eight terms near the fundamental band gap. 	Four terms in the 

conduction band and four terms in the valence band are used 

to approximate the infinite series. 
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2.2 ENVELOPE FUNCTIONS 

The envelope function method[4-10]  is essentially a plane wave 

model. The envelope function is built as a sum of products of 

slowly varying functions on the scale of the host unit cell. 

Rapidly varying functions are consolidated into effective 

parameters. The host crystalline potentials, the fixed band 

gap, and the effective masses of the host materials are 

considered known. The goal is to find a Schrodinger-like 

equation governing the states that are considered interesting. 

The derivation of such an equation is not included here. 	The 

derivation is included in Chen's work[31] . The equation, called 

the envelope function equation will be solved in chapter three 

and is included here as equation 2.4 In

eq(2.4a), f is the envelope function. 	It is the wave 

function describing the large scale, interesting states discussed 

previously. E is energy. The operator Pz  is given by eq(2.5). 
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The effective mass t  is different for each layer and depends on 

energy and position. 	Vs is the conduction band offset related 

to the first layer, and Vext is the external potential. 

The boundary conditions given by eq(2.4b) apply at the 

boudaries between layers of the superlattice. 	Additional 

boundary conditions called the Born - von Karman expansion 

are built into the formalism. Only a finite number of layers 

can be studied so it is required that the last layer be the same 

as the first. 



CHAPTER 3 
TRANSFER MATRIX SOLUTION 

3.1 INTRODUCTION 

At this point, a Schrodinger-like equation exists and needs to 

be solved. This equation, the envelope function equation, will 

yield all required information about electronic structure and 

transport properties of a given MQW device. The 

characteristics of the host materials are included as effective 

parameters to make possible this analytic solution, called the 

transfer matrix solution. 

The method constructs a transfer matrix for each layer of 

a period of a MQW. This transfer matrix is formed by the 

solution of the envelope function equation, and it depends on 

the structural and band parameters of a given layer. The 

transfer matrix of more than one layer is the matrix product of 

matrices of the constituent layers. 	This chapter will outline the 

formalism and show that the transfer matrix of a period of a 

device is the required solution. 

This chapter is organized into three sections following 

this introduction. First, the formalism is discussed, leading to 

the above mentioned solution. Secondly, tunneling is 

discussed. Finally, the subband structure for a MQW is briefly 

described. 

8 
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3.2 TRANSFER MATRIX SOLUTION 

3.2.1 Basic Equation 

In the previous chapter, the envelope function equation was 

obtained and is written here as eqs.(3.1) and (3.2). 

These equations appeared as eqs(2.4) and the description of 

the variables in the above equations is given in section 2.2. 

To begin, define the state vector 

with continuous components that satisfy equation 3.2. It is 

easily verified that the components of f satisfy the coupled 

eqs.(3.4) and are consistent with eq.(3.1). 
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In matrix form this can be written as 

where 

Eqs.(3.5) are the basic equations to be solved. Many 

techniques exist to solve eqs(3.5). The results are eqs(3.6). 
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In the development to follow, the solution sets that will be 

used satisfy certain initial conditions and are given as eqs(3.7). 

3.2.2 Transfer Matrix for One Layer 

It can be shown[30]  that f satisfies 

where 
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The transfer matrix S(z1,z2 ) has the properties (3.10). 

If µ and k are constant in the region between z1  and z2, such 

as in a single superlattice layer, then the transfer matrix is 

given by eq(3.11), 

Essentially eq(3.11) is the transfer matrix for one layer of a 

MQW. 	For example, if the layer has a thickness L, then the 

state f(L) can be found by f(L)=S(L,0) f(0) provided the state 

f(0) is known. 
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3.2.3 Transfer Matrix for Multiple Layers 

Consider a multiple layered structure such as figure 3.1. 

Figure 3.1 A Multiple Layered Structure 

Within the i th  layer f i (L i )=S(L i ,Li-1 )• f i (L i-1 ), and at the 

boundaries f is continuous so that fi(L i )=fi+1 (L i ). 	Clearly, the 

process of induction yields the following: 

This leads to the result eq(3.12) 
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S is the transfer matrix of the N-layered structure, and it is the 

simple matrix product of transfer matrices of the form given 

by eq(3.11) 

3.3 TUNNELING 

To calculate the tunneling coefficient Ttunnel , consider an 

incident plane wave with unit amplitude striking a layered 

structure shown in figure 3.2. The wave is partially 

transmitted and reflected with amplitudes T and R 

respectively. The wave functions are: 

Figure 3.2 Elementary Tunneling Model 
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The corresponding state vectors are given in a general form as 

eqs(3.14). 

Now, the tunneling coefficient is defined as 

It remains to solve for Ttunnel  in terms of the transfer matrix. 

The following equations show the details of the calculation. 
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Thus, equations for R and T can be obtained as eqs(3.16) 



17 

From the definition of M , one can determine det(M ) and M22. 
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Therefore, the calculation of Ttunnel  follows, and the result is 

eq(3.17) 



CHAPTER 4 
THE APPLIED BIAS VOLTAGE 

4.1 INTRODUCTION 

The application of a bias voltage across a structure offers an 

obstacle to the model discussed in the previous chapters. This 

bias has the effect of tilting the band diagram while the model 

expects a piecewise flat band structure. The slope of a segment 

of the resulting band diagram depends on the dielectric 

constant of that layer. 	This problem is handled in section 4.2. 

The tilted band diagram is approximated by a staircase-like 

diagram in section 4.3. Here, a given superlattice and bias 

potential are used to generate a pseudo-structure that can be 

analyzed by the program. Thus, an applied bias can be 

included in the model. Section 4.4 explains the Fortran 

program in greater detail. 

4.2 BIASING A LAYERED DIELECTRIC 

4.2.1 Statement of the Problem 

An elementary problem is the case of finding electric fields E 

and D in the dielectric layers of a capacitor. 	Figure 4.1 

exemplifies the situation. 

19 



20 

 

Figure 4.1 	Biased Dielectric Layers 

4.2.2 Solution to the Problem 

This problem is solvable at sight. The normal component of D 

is continuous across the boundaries dividing the layers. Apply 

formula 4.1 along a path from left to right. 

This means that V=E1 d 1 +...+E 3d 3. Therefore, in the i th  layer. 
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4.3 THE STEP APPROXIMATION 

4.3.1 The Tilted Hands 

It is clear from the previous section that an applied bias causes 

the bands to tilt. The slope of a segment of a band is 

essentially the electric field E in that layer. 	As was previously 

mentioned, this slope depends on the dielectric constants of the 

materials making up the superlattice. For the moment, assume 

the slope is the same for all layers. A possible band diagram is 

represented as figure 4.2, and the tilted band is depicted in 

figure 4.3. 

Sample Band Diagram 

Figure 4.2 Sample Band Structure 



Tilted Band Diagram 

Figure 4.3 A Tilted Band 

Notice that the last or fifth segment in the above 

diagrams is actually the beginning of the next cycle in the 

superlattice structure. The structure depicted above has a four-

layered cycle. This will be important when the step 

approximation is applied to the tilted band. 
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4.3.2 The Step Approximation 

The sloped band diagram is handled by a straightforward 

approximation. Each sloped segment is replaced by a number 

of steps as shown in figure 4.4. 	The result is a piecewise flat 

diagram that will be accepted by the computer program, and 

its accuracy increases with the number of steps. 

Staircase Approximation 

Figure 4.4 Steps Approximating a Tilted Band 
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4.4 THE FORTRAN PROGRAM 

The program requires input describing a cycle of the structure 

plus one extra layer. This extra layer is the start of the next 

cycle. If, for instance, each of the five segments in figure 4.3 is 

broken into ten steps, then fifty steps would be pictured in 

figure 4.4. However, the "extra" layer that begins a new cycle 

in figure 4.4 is the forty first segment. Therefore the program 

input is indicated accordingly in that figure. 

The program calculates subband structure and tunneling 

coefficients for a range of energies. 	Two input files are 

required. 	One describes the conduction and valence bands of 

the MQW. As was stated earlier, these effective parameters 

are assumed to be a priori known. The second input file needs 

to be constructed manually. 	It contains the slope of each 

segment of the band diagram and the number of steps used to 

approximate the sloped band. This information is calculated 

from an applied voltage, the dielectric constants of the 

constituent layers, and the thicknesses of the layers. 

Several "self-consistency" tests were performed on the 

program. For a trial structure, the applied voltage was set to 

zero. The number of steps was varied from one to fifty with no 

difference in the output. Also, for an increasing, yet small, 

applied voltage, the results changed continuously from the 

unbiased case. Also, since it is required to supply one period to 
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the program, any layer can be considered as the first layer of 

the period. Indeed several possible ways were tried with no 

appreciable difference in output. 	If these tests yielded any 

other outcomes, then the model would have been rendered 

questionable. 

The actual program and sample input and output files are 

included in the appendix. 



CHAPTER 
APPLYING THE SUPERLATTICE MODEL 

TO A DESIGN GOAL 

5.1 INTRODUCTION 

As a demonstration of the usefulness of the model discussed in 

the previous chapters, a design goal with be presented. The 

model will be applied to the design goal and used in the 

preliminary stages of the design process. 

As the design objective, it is desired to develop a 

MQW infrared laser. Optical transitions between subbands in 

quantum well structures have received considerable 

attention [21-26]. 	The possibility of tuning the wavelength of 

the emission makes this objective important. 	Infrared lasing 

can occur utilizing a resonant tunneling diode structure[22], but 

this is subject to problems[21]. 	Several superlattice structures 

will be examined as to the feasibility of the desired goal. 

The next section will discuss general considerations 

regarding population inversion, a fundamental condition for 

the realization of lasing. The remaining sections will apply the 

superlattice model to several structures and show how 

preliminary, numerical results can be of value. 

26 
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5.2 GENERAL CONSIDERATIONS 

Current injection by resonant tunneling has been proposed as a 

means of operating a possible lasing device. 	Current is injected 

into an upper subband of a MQW. The electrons can tunnel 

through the structure or move to a lower subband emitting 

radiation. Electrons in the lower subband tunnel through the 

device. Figure 5.1 shows this current injection scheme. 

Figure 5.1 Current Injection Scheme 

To have population inversion, the tunneling time 

through the upper level (2) should be greater than the 

relaxation time to the lower level (2 to 1). 	In addition this 

relaxation time should be greater than the lower level (1) 

tunneling time. 
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5.3 PRELIMINARY STRUCTURE 

One possible design is a diode-like structure composed of type

-II heterojunctions[24]. 	Recent tunneling measurements in such 

structures have shown negative differential resistance[16,17,19]. 

Figure 5.2 shows a structure under a small bias and 

approximated by steps as discussed in chapter 4. 

Figure 5.2 Structure 1 
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The calculated tunneling characteristics are shown in figure 5.3 

Calculated Data for Structure 1 

Figure 5.3 Tunneling Data for Structure I 

This data does not satisfy eq(5.1). Population inversion is not 

achieved. Varying the thickness of the barrier gave similar 

results 

As another attempt consider structure 2 in figure 

5.4. 	Two barriers of different thicknesses make up this 

structure. 
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InAs-AlGaSb-InAs-AlGaSb 

Figure 5.4 Structure 2 

The tunneling data is presented as figure 5.5. This data shows 

promise. The negative slope of portions of the tunneling data 

shows the posibility of population inversion. 	However the 

effect needs to be enhanced. 
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Calculated Data for Biased Structure 2 

Figure 5.5 Data for structure 2 

Another possibility is structure 3 shown in figure 5.6 

[16-20,27]. In this structure, the upper subband in the InAs well 

is blocked by the forbidden gap of GaSb. The lower subband in 

the well can tunnel through the valence band of GaSb. The 

AlSb layers enhance the effect. 



InAs-AlSb-GaSb-AISb 

Figure 5.6 Structure 3 

The tunneling data is presented in figure 5.7. 	This 

data shows enhanced results over structure 2. The peaks in 

the data occur close to unity while a sufficient negative slope is 

achieved. 	It remains to fine tune the data by varying 

thicknesses and perhaps trying different materials. 
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Figure 5.7 Data for Structure 3 

It is clear that this model with program makes 

preliminary calculations on many different structures possible. 

Such a model can save a designer time in the early stages of 

development. The goal of this work was to present the model 

as a design tool. 	Of course any design objective requires 

exhaustive use of many resources, and this model is offered as 

one. 



APPENDIX 

AA INTRODUCTION 

For the sake of completeness, relevant input and output files, 

along with the Fortran-77 program are included here. 	Figure 

A.1 shows the relationships among theses files. 	Subsequent 

sections of this appendix include brief descriptions and 

samples of the files. 

Figure A.1 Pictorial representation of computer files 

34 



35 

A.2 INPUT FILES 

Two input files are accessed by the Fortran-77 program. The 

first is called 'initial.dat;1'. It consists of seven lines. 	The 

first line contains the coupling parameter. Next is the number 

of materials in a period (plus one). The last five lines describe 

the energy band diagram. Each line contains a width, an energy 

gap, and the conduction band offset related to the first layer. 

A sample file follows and is represented in figure A.2 

Figure A.2 Sample input file 'initial.dat;1' and graphical 

representation 
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The second input file is called 'slope.dat;1'. 	It contains the 

number of energy steps or increments on the first line. Next 

comes the energy range over which the program studies the 

structure. Each subsequent line contains a slope of the energy 

band diagram for a layer and the number of flat steps used to 

approximate the biased layer. The listing follows in figure A.3 

along with a graph showing how the biased structure is 

approximated. 

Figure A.3 Sample input file 'slope.dat;1' and graph of the 

step approximation 



A.3 FORTRAN-77 PROGRAM 

The following Fortran-77 program calculates subband 

structure, tunneling coefficients, and other data. This 

program ran under VAX/VMS. 

real*8 iw(10),ieg(1 0),ivs(10),sl(10) 

real*8 px(100),py(100),x(10),y(10) 

real*8 w(300),eg(300),vs(300) 

real*8 a,cp,e0,em,estep,e,o,u 

real*8 z1(300),z2(300),z3(300) 

real*8 	s11,s12,s21,s22,t11,t12,t21,t22 

real*8 h11,h12,h21,h22,h1,h3,q,r,t,lgt,temp 

real*8 a1,a2,a3,a4 

real g(300) 

integer ibr(10) 

character elevel*7 

data a/0.26246644d0/ 

data o/0.0d0/ 

data u/1.0d0/ 

open(2,file='initial.dat;1',status='old') 

rewind(2) 

open(6,file='slope.dat;1',status='old') 

rewind(6) 

read(2,*)cp 

read(2,*)n1 

read(6,*)ntot 

read(6,*)e0,em 

do 280 i=1,n1 

read(2,*)iw(i),ieg(i),ivs(i) 

280 	continue 

close(2) 

x(1)=0.0d0 

y(1)=ieg(1) 

37 



read(6,*)s1(1),ibr(1) 
n=ibr(1) 

call pieces(x(1),y(1),iw(1),ibr(1),s1(1),px,py) 

open(7,file='mac_check.dat;1',status='new') 

do 333 i=1,ibr(1) 

eg(i)=ieg(1) 

w(i)=iw(1)/ibr(1) 

vs(i)=py(i)-y(1) 

101 	format(1x,3f16.8) 

q1=real(px(i)) 

q2=real(py(i)) 

q3=real(py(i)-eg(1)) 

write(7,101)q1,q2,q3 

333 	continue 

temp=0.0d0 

do 300 i=2,n1 

read(6,*)sl(i),ibr(i) 

temp=temp+sl(i-1)*iw(i-1) 

x(i)=x(i-1)+iw(i-1) 

y(i)=y(1)+ivs(i)-temp 

call pieces(x(i),y(i),iw(i),ibr(i),sl(i),px,py) 

do 334 j=n+1,n+ibr(i) 

eg(j)=ieg(i) 

w(j)=iw(i)/ibr(i) 

vs(j)=py(j-n)-y(1) 

q1=real(px(j-n)) 
q2=real(py(j-n)) 

q3=real(py(j-n)-eg(j)) 

write(7,101)ql,q2,q3 

334 	continue 

n=n+ibr(i) 

300 	continue 

close(6) 

close(7) 

n=n+1-ibr(n1) 

estep=(em-e0)/(ntot+1.0d0) 

38 



e=e0 

open(3,file='final.dat;1',status='new') 

rewind (3) 

do 281 i=1,ntot 

e=e+estep 

do 282 j=1,n 

z1(j)=1.5d0*(e+eg(j)-vs(j))/cp 

z2(j)=a*z1(j)*(e-vs(j)) 

z3(j)=dsqrt(dabs(z2(j))) 

282 	continue 

s11=1.0d01 

s12=0.0d0 

s21=0.0d0 

s22=1.0d0 

do 283 j=2,n-1 

if (z2(j).lt.0.0d0) then 

call work1(t11,t22,t12,t21,z3(j),w(j),o,u,z1(j)) 

else 

call work1(t11,t22,t12,t21,z3(j),w(j),u,o,z1(j)) 

endif 

call 	work2(t11,t12,t21,t22,s11,s12,s21,s22) 

283 	continue 

call work1(h11,1122,h12,h21,z3(1),w(1),u,o,z1(1)) 

q=(h11*s11+h22*s22+h12*s21+h21*s12)/2.0d0 

r=dabs(q) 

elevel='subband' 

if (r.gt.1.0d0) elevel='  ' 

h1=z3(n)/z1(n)*z1(1)/z3(1) 

h3=z3(n)/z1(n)*z3(1)/z1(1) 

a1=h1*s11*s11 

a2=s22*s22/h1 

a3=h3*s12*s12 

a4=s21*s21/h3 

t=4.0d0/(2.0d0+a1+a2+a3+a4) 

lgt=dlog10(t) 

g(i)=lgt 
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284 	format(1x,3d16.8,a7,d16.8) 

write(3,284)t,lgt,e,elevel,q 

281 	continue 

close(3) 

call graph1(g,0.0,ntot) 

call graph2(g,ntot) 

end 

subroutine work1(a1,a2,a3,a4,b,c,d,e,f) 

real*8 a1,a2,a3,a4,b,c,d,e,f 

a1 =d*dcos(b*c)+e*dcosh(b*c) 

a2 =a1 

a3=d*f/b*dsin(b*c)+e*f/b*dsinh(b*c) 

a4=-1.0*d*b/f*dsin(b*c)+e*b/f*dsinh(b*c) 

return 

end 

subroutine 	work2(t11,t12,t21,t22,s11,s12,s21,s22) 

real*8 	s11,s12,s21,s22,t11,t12,t21,t22,a,b,c,d 

a=t11*s11+t12*s21 
b=t11*s12+t12*s22 

c=t21*s11+t22*s21 

d=t21*s12+t22*s22 

s11=a 
s12=b 

s21 =c 

s22=d 

return 

end 

subroutine pieces(x,y,w,n,m,px,py) 

real*8 x,y,w,px(100),py(100),m,c 

c=w/n 

px(1)=x 

py(1)=y 
do 99 j=2,n 

px(j)=px(j-1)+c 

py(j)=py(j-1)-m*c 

99 	continue 
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return 

end 

subroutine graph1(y,tol,ntot) 

real y(300) 

open(9,file='graph1.dat;1',status='new') 

rewind(9) 

a=y(1) 

b=y(2) 

do 173 j=1,ntot 

if (y(j).lt.a) a=y(j) 

if (y(j).gt.b) b=y(j) 

173 	continue 

c=b-a 

if (c.lt.tol) then 

write(9,*)'no graph' 

return 

else 

do 174 i=1,ntot 

j=int((y(i)-a)/c*70+1) 

write(9,*)(' ',k=1,j),'*' 

174 	continue 

endif 

close(9) 

return 

end 

subroutine graph2(g,ntot) 

real g(300) 

character*1 x(300),y(100) 

open(8,file='graph2.dat;1',status='new') 

rewind(8) 

DO 1010 J=1,71 

1010 	Y(J)='-' 

DO 1020 J=1,8 

J1=10*J-9 

1020 	Y(J1)-='+' 

WRITE(8,*)(Y(J),J=1,71) 
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DO 1070 I=1,ntot.  

IF (MOD(I,10).EQ.0) GOTO 1040 

X(1)='l' 

X(71)='l' 

GOTO 1050 

1040 	X(1)='+' 

X(71)='+' 

1050 DO 1060 J=2,70 

1060 X(J)=' ' 

I1=INT(71+10*G(I)+0.5) 

IF (I1.LT.1) I1=1 

X(I1)='*' 

WRITE(8,*) (X(J),J=1,71) 

1070 CONTINUE 

WRITE(8,*) (Y(J),J=1,71) 

close(8) 

return 

end 
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A.4 Output Files 

Four output files are generated by the Fortran-77 program. 

The most important is called 'final.dat;1'. 	It contains columns 

showing tunneling coefficient, log of tunneling coefficient 

energy, and subband indicator. A sample file is listed below. 

1.907E-01 -7.1 96E-01 5.000E-03 2.211 E+00 
3.656E-01 -4.370E-01 1.000E-02 subband -8.943E-01 
7.814E-02 -1.107E+00 1.500E-02 -3.364E+00 
3.738E-02 -1.427E+00 2.000E-02 -5.172E+00 
2.353E-02 -1.628E+00 2.500E-02 -6.317E+00 
1.695E-02 -1.771E+00 3.000E-02 -6.821 E+00 
1.326E-02 -1.877E+00 3.500E-02 -6.726E+00 
1.099E-02 -1.959E+00 4.000E-02 -6.096E+00 
9.518E-03 -2.021E+00 4.500E-02 -5.014E+00 
8.560E-03 -2.068E+00 5.000E-02 -3.578E+00 
7.960E-03 -2.099E+00 5.500E-02 -1.899E+00 
7.643E-03 -2.117E+00 6.000E-02 subband - 9.532 E -02 
7.580E-03 -2.120E+00 6.500E-02 1.709E+00 
7.779E-03 -2.109E+00 7.000E-02 3.390E+00 
8.297E-03 -2.081 E+00 7.500E-02 4.831 E+00 
9.258E-C3 -2.033E+00 8.000E-02 5.922E+00 
1.093E-02 -1.961E+00 8.500E-02 6.568E+00 
1.391E-02 -1.857E+00 9.000E-02 6.694E+00 
1.972E-02 -1.705E+00 9.500E-02 6.245E+00 
3.333E-02 -1.477E+00 1.000E-01 5.193E+00 
7.928E-02 -1.101E+00 1.050E-01 3.537E+00 
4.525E-01 -3.444E-01 1.100E-01 1.309E+00 
2.925E-01 -5.339E-01 1.150E-01 -1.430E+00 
4.559E-02 -1.341E+00 1.200E-01 -4.587E+00 
1.547E-02 -1.810E+00 1.250E-01 -8.039E+00 
7.158E-03 -2.145E+00 1.300E-01 -1.163E+01 
3.895E-03 -2.410E+00 1.350E-01 -1.519E+01 
2.342E-03 -2.630E+00 1.400E-01 -1.851E+01 
1.508E-03 -2.821 E+00 1.450E-01 -2.138E+01 
1.021E-03 -2.991 E+00 1.500E-01 -2.357E+01 
7.182E-04 -3.144E+00 1.550E-01 -2.484E+01 
5.207E-04 -3.283E+00 1.600E-01 -2.496E+01 
3.871 E-04 -3.412E+00 1.650E-01 -2.371 E+01 
2.938E-04 -3.532E+00 1.700E-01 -2.087E+01 
2.270E-04 -3.644E+00 1.750E-01 -1.627E+01 
1.781E-04 -3.749E+00 1.800E-01 -9.759E+00 
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Another output file is called 'mac_check.dat;1'. 	This file 

contains x and y coordinates of points defining the step 

approximation to the biased structure. It is used to generate 

pictures like figure A.3 and is not reproduced here. 	Finally, 

two preliminary graphs are produced by the program, 

'graph1.dat;1', and 'graph2.dat;1'. The author found it 

convenient to see preliminary results graphically. Figure A.4 

shows a sample. 

Figure A.4 Preliminary graph produced by program 
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