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ABSTRACT 

Fabrication and Characterization 

of

Gated Silicon Field Emission Micro Triodes

ty

Nanchou Liu

This d issertation  describes the fabrication technology and 

characterization of a gated silicon field emission micro triode that is a novel 

electron tunneling device for generating electron emission into a vacuum. 

Conic (point) and wedge field emitter structures with nm-scale radii were 

fabricated in silicon and GaAs by etching, MOCVD and dry oxidation. A new 

self-aligned process was developed for fabrication of vertical field emission 

triodes. This process allows control of gate opening to less than 0.5 pm 

diameter without the need of electron-beam writing. It also provides a planar 

gate electrode and a thick dielectric layer for reduction of the gate-cathode 

capacitance. Gated silicon field emission triodes, with silicon resistivity of

0.005 - 0.02 £2-cm were studied. Gate and collector currents were measured in a 

vacuum of 2 x 10"^ torr, and current-voltage (I vs. V), current-time (I vs. t), 

Fowler-Nordheim (I/V^ vs. 1/V), and triode characteristics were determined. 

The data showed that the electron emission followed Fowler-Nordheim 

behavior. Single emitters had turn-on gate to cathode voltages (V) above 25 

volts (typically 50 - 90 volts) and reproducible emission currents were 

measured in the range 5 pA -1 pA. Emitting areas of 1.0x10'^ - 1.5x10-* 1 cm2 

and field conversion factors a / r  (where electric field = V a /r )  of 3x10^ - 8x10^ 

cm_l  were calculated. Temporal fluctuations in emission current of 10%, 16%, 

and 40% were found for emission currents of 0.35 nA, 50 nA, and 0.5 pA,
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respectively. The triode characteristics showed an Ig/Ic ratio of 0.25% and 

higher. Transconductances were found to be 3 xl0"& m hos/tip.

Leakage characteristics of various dielectric materials used in the new 

self-aligned process (thermal oxide, CVD oxide, polyimide and spin-on-glass) 

were measured and evaluated. Electrostatic discharge and other device 

failure mechanisms have been observed and explained.
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CHAPTER 1 
INTRODUCTION

This dissertation investigates the development and characterization of gated 

field emission micro triodes for vacuum microelectronic devices. The 

experimental work reported in this paper was done under the direction of Dr. 

R.B. Marcus at Navesink Engineering and Research Center of Bellcore, Red 

Bank, NJ.

Field emission vacuum microelectronics devices are novel electron
<

tunneling devices for generating electron emission into a vacuum. These 

devices are attractive since they have higher cutoff frequency, less 

tem perature sensitivity and better radiation hardness than solid state 

microelectronics devices [1]. Furthermore, field emission vacuum 

microelectronics devices offer a new approach to flat panel displays [2] and 

also to many devices using an electron source such as the scanning electron 

microscope, and the scanning tunneling microscope [3]. Field emission from a 

micro emitter has been intensively studied since the first international 

vacuum microelectronic symposium in Williamsburg, VA in 1988.

It is important that field emitters are sharp since the electric field scales with 

sharpness and electron emission is strongly dependent on the electric field [4]. 

Sharp emitters also make it possible for electron emission devices to operate 

at low voltage. The emitter damage by ion bombardment (the ions are 

generated by collisions with residual gas) can be reduced at low operating 

voltage due to kinetic energy reduction, and therefore the emitter lifetime can 

be extended. To reduce ionized collisions, the distance from cathode to anode

1
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2

must be less than the electron mean free path (X-c). The electron mean free 

path X.c is given by

i T
^  "  273 pPc (V) 0111

where Pc (V) is the average number of collisions an electron of velocity u 

makes in traveling 1 cm in a gas at a pressure of 1 torr at 0° C, V is the applied 

potential to produce electron velocity i), T is the absolute temperature in 

Kelvin, and p is the pressure in torr [4]. Since the value of Pc (V) is typically 

about 70, p must be < 314 torr if T is 300 °K and d = 50 pm. However, the 

device life can be increased in a better vacuum since ion bombardment is 

further reduced.

In addition to a sharp emitter, an optimum field emission device requires 

other features: (1) for emitters of the same radius, emission increases with 

smaller half angle [5]; (2) a low work function emitter helps to enhance 

electron emission [6]; (3) a high melting point emitter helps to withstand high 

temperature caused by resistive heating [7]; (4) a small gate opening for a 

gated emitter structure helps to increase the electric field [8]; (5) the dielectric 

film applied between electrodes should have high dielectric strength and the 

film should be thick in order to maintain the necessary operating voltage 

without breakdown or significant leakage; (6) a planar gate electrode helps to 

reduce capacitance between gate and cathode; (7) a tall emitter helps to 

enhance electron emission [5].

Chapter 2 describes basic features and general concepts of field emission. 

Various existing approaches by other researchers to fabricate gated field 

emitters are also discussed. These approaches are self-aligned processes, which
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3

align the gate opening to the emitter without using lithography. Chapter 3 

deals with the fabrication of micro field emitters. Various approaches to form 

micro field emitters developed in this research are discussed and compared 

including the approach using oxidation sharpening, which generates 

emitters with radii < 10 A. The effect of oxygen plasma on silicon tips also 

will be discussed. Chapter 4 extends the fabrication of micro field emitters in 

Chapter 3 to gated field emitter fabrication. A new self-aligned processing 

approach was developed in this research which forms (1) a gate opening less 

than 0.5 pm diameter without electron beam writing assistance, (2) a planar 

gate electrode, and (3) a thick dielectric layer for capacitance reduction. Special 

problems associated with the electron bombardment on the surface of 

material during the SEM (scanning electron microscope) examination also 

will be discussed. Chapter 5 investigates the characterization of the behavior 

of the gated field emission triodes fabricated in this research. Gate and 

collector currents were measured and I vs. V, I vs. t, Fowler-Nordheim (I/V^ 

vs. 1/V), and triode characteristics are determined. Chapter 6 gives the 

conclusions of this research. The Appendix describes the detailed processing 

parameters used in this research.
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CHAPTER 2 
FIELD EMISSION: BACKGROUND

This chapter describes some basic principles of field emission. Special 

attention is given to the role of emitter material, emitter geometry, and triode 

electrode geometry on field emission. Comparisons with existing devices 

such as thermionic emission devices and solid state microelectronic devices 

are also made and discussed.

2.1 History of Field Emission

The first field emission of electrons from sharp points was observed by Wood

[9] in 1897. However, field emission was never well understood until Fowler 

and Nordheim applied quantum tunneling to explain and model this effect 

in 1928 [6]. In 1953, Dyke and Dolan reported the effect of morphology on 

emission and suggested that a vacuum arc was initiated by field emission [7]

[10]. In 1961, Shoulders proposed the first vacuum microelectronic devices

[11].

Nevertheless, the high packing density of micron-size emitters (6.4 x 10^

tips/cm ^) was not available until Spindt used solid state process technology

for fabrication in 1968 to make tips of 500 A radius [12] and later in 1976 [13].

This device was fabricated with a defined gate electrode on a silicon substrate

followed by a molybdenum evaporation to form a sharp emitter. The emitter

was self-aligned to the gate with the gate opening about 1 |im in diameter.

The emitter radius was 500 A. The major features demonstrated were: (1) a

packing density of emitters of 6.4 x 10^ tips/cm^; (2) sharp emitters with

radius about 500 A; (3) maximum currents in the range 50-150 [lA/tip with

applied voltage in the range of 100-300 volts when operated at pressure of 10'9
4
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5

torr; (4) more than 7000 hrs. operating lifetime. These experiments by Spindt 

inspired other researchers to further investigate field emission devices. 

About ten years later, the first international conference of vacuum 

microelectronics was held in Williamsburg, VA in 1988, which made a new 

landmark in vacuum microelectronics. Since then, field emission vacuum 

microelectronics has been intensively studied and rapidly developed.

2.2 Theory of Field Emission

Electron emission from a solid surface into a vacuum may be generated by 

several different ways such as thermionic emission (the electrons are 

thermally excited over the potential energy barrier), photoemission (the 

electrons are excited over the potential energy barrier by the incoming 

photons) and field emission [14-15]. In field emission, the electrons tunnel 

through the surface potential energy barrier, which has been thinned by the 

influence of a strong electric field. The surface potential energy E for a typical 

value of Fermi level Ep and work function 0 is illustrated in Fig. 2.2.1 [16] 

where Z is the distance from metal surface, Zc is the distance from the metal 

surface at which the surface barrier is zero, and Zm is the distance from the 

metal surface at which the surface barrier is maximum.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6
E (ev)

10 - Surface Barrier without Applied Field

Contribution of Image Charge Effect 

^ S u rfa c e  Barrier with Applied Field

Surface Barrier with 
Applied Field and Image 
Charge Effect

►  Z(A)
VacuumMetal 0 Z Z 20m

Fig. 2.2.1 The surface potential energy diagram for electrons at a metal surface 

in the presence of a strong electric field (bold solid line). This shaped potential 

energy is the results of the image potential energy (light line) and the strong 

electric field (solid line).

Since the image force Fi is Fi = - e^/4ne4Z^ (the image potential energy Ei is 

Ei = - e2/4jte4Z) where e is the permitivity in vacuum, the surface potential 

energy E(Z) in ev seen by an electron on the vacuum side of the metal- 

vacuum interface is asymptotically given by

e2
E(z) = E f  + 0 - - —  (2.2.1)47te4z
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7

where E f and 0 are in ev. Eq. 2.2.1 is valid for Z > 3A (i.e. Zc = 3 A). When 

an electric field F is applied to the surface, the surface potential energy seen by 

an electron changes into

e2
E(z) = E f + 0 -  -eFz fo rZ > Z c (2 2 2)

4k e 4z  v '

E(z) = 0 for Z < Zc (2.2.3)

Therefore, the maximum surface barrier Em can be found

Em = E f + 0 -
e3p
4jte

or (2.2.4)

= Ef + 0 - 3.79 x F ev 

for F in v/m. The maximum surface barrier appears at Zm where

x- 4jie4F »  <2-2'5>

1.9x 10*5 
----------- m

There are several equations describing field emission. One equation which 

derived by Fowler and Nordheim in 1928 [6] does not consider the barrier 

lowering by the image effect [17-18]. This form of the "Fowler-Nordheim" 

equation is given by
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J(F) = 6.2x10  *----------- F e

( 0  + Ef)V_0 _

where current density J is in A/cm^, electrical field F is in v/cm , Fermi level 

E f  and work function 0 is in ev. Another equation is derived with 

consideration of the barrier lowering by the image effect [13] [19]. This 

modified Fowler-Nordheim equation is often used in the form

-6 7 3/2
_  1.54x10 2 - 6.83x10 0 v(y)/F (2.2.7)

J(F) = --------5----- F e
0 t (y)

where emission current density J is in A/cm^, electric field F is in v/cm , work 

function 0 is in ev, the Schottky lowering of the work function barrier y =

3.79 x 10'4 a/f / 0. The functions v(y) and t(y) have been computed and shown 

in Fig. 2.2.2 [20]. The approximation 1.1 for f2(y) and 0.95 - y2 for v(y) can be 

applied in Eq. 2.2.7. It is clear from Eq. 2.2.6 (or 2.2.7) that the electric field 

dominants the current density. In other words, a strong electric field is a must 

in order to have high current density. It should be noted that a smaller r of 

an emitter not only means higher emission current density J but also 

indicates a smaller emitting area A. If the tip is too sharp, the emission 

current I may be decreased because of the smaller product of J and A. A 

simulation shows the maximum emission current is at r = 10 A based on an 

extraction voltage of 30 volts, an extraction distance of 1 pm and a work 

function of 4.01 ev [21].
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>;
>

0.8
Approximate 

~  v(y) = 0.95-y0.6

0.4

0.2

0 0.2 0.4 0.6 0.8 1.0

y

Fig. 2.2.2 Comparison of approximate forms with exact solutions for the 

Fowler- Nordheim field emission function v(y) and £  (y)

It also should be noted that the thermionic emission contribution to the 

emission current density becomes important when the temperature rises. In 

thermionic emission the metal is heated so that the electrons can be excited 

over the potential energy barrier. The equation of thermionic emission is 

given by

J(T) = 120T2 e ' ^ f  (Z2-8)
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where the emission density J is in A/cm^ , absolute temperature T is in °K, 

work function 0 is in ev and Boltzmann constant k is 8.625 x 10‘5 ev / °K [14]. 

For thermionic emission, tem perature dominants the current density 

whereas electric field dominants the current density for a field emission. Fig.

2.2.3 shows the thermionic current emission and field emission regions for a 

range of temperature and applied field for a 4.5 ev work function emitter [16] 

[22]. This indicates that at sufficiently high field, the major emission is from 

field emission. But at sufficiently high temperature and low field, the major 

emission is from thermionic emission.
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T (1000 °K)

Thermionic 
Emission /

Field
Emission

0 5 12

Fig. 2.2.3 Thermionic emission and field emission regions of temperature and 

applied field for a 4.5 ev work function emitter.

2.3 Field Emitter Materials

Many materials including semiconductors can be used as field emitters [23], 

Ideally, the field emitter should be a material of high melting point to 

withstand more current, low work function to have more emission, and low 

vapor pressure to maintain necessary vacuum in a sealed device [24]. An 

emitter also should be sharp in order to have sufficient electric field for 

electron emission at a low voltage without causing dielectric breakdown. The
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common emitters such as Si [25-30], W [31-32], Mo [13] [33-34], LaB6 [35-36], 

and Ta [37-38] used in field emission devices are listed in Table 2.3.1 along 

with some of their properties.

Table 2.3.1 The most common emitters used in field emission devices.

Si W Mo LaB.
6

Ta

Melting
Point
(°C)

1410 3410 2617 >1500 2996

Work
Function
(ev)

4.50 4.50 4.50 2.66 4.25

Vapor
Pressure

(torr)

io -6

at
1200°C

10-11

at
1800°C

7x10 "7 

at 
1800°C

-

-10
5x10

at
1800°C

Reported
Emitter
Radius
(A)

<10
[30]

<200
[31]

400
[34]

Not
Available

<200
[37]

Among these emitters tungsten has the highest melting point and the lowest 

vapor pressure, and silicon has the lowest reported emitter radius. Since
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silicon can use standard semiconductor fabrication technologies to form sharp 

tips, it has been studied and used broadly as a field emitter in spite of its 

relatively low melting point and high vapor pressure compared to other 

materials such as W, Mo, and Ta.

2.4 Field Emitter Geometries

Field emitter structures can be in the shape of a cone, a wedge or a cylinder. 

The emitting region is a tip for conic type emitter, and an edge for the other 

structures. In order to increase the current density, each structure can have 

multiple emitters. Figs. 2.4.1.(a), (b), and (c) show the conic type [39], wedge 

type [40] and circular type [41] field emitters (arrows), respectively.

(Single Tip Emitter) (Four Tip Emitters)

Figs. 2.4.1.(a) The conic type field emitters (arrows).
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(Single Wedge Emitter) (Dual Wedges Emitters)

Figs. 2.4.1.(b) The wedge type field emitters (arrows).

(Single Circle Emitter) (Dual Circles Emitters)

Figs. 2.4.1.(c) The circular type field emitters (arrows).
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2.5 Gated Field Emission Triode Geometries
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Gated field emission triodes are formed by the addition of a third electrode 

(gate) between the collector and the emitter. The gate is usually much closer 

to the emitter than to the collector in order to control (or modulate) the 

electron emission which is from the emitter. The collector current depends 

on the voltage between the gate and the emitter Vge (which extracts the 

emission current from the emitter) and the voltage between the collector and 

the gate Vcg (which determines the distribution magnitude of emission 

current to the collector and to the gate). Fig. 2.5.1 shows a typical gated conic 

type field emission triode where r is emitter radius, 0 is emitter half angle 

/which is measured a distance r from the top of the emitter, d is diameter of 

the gate opening, h is the emitter height, 8 is the tip elevation above the top 

edge of the gate, Scg is the space between the collector and the gate, Vge is the 

voltage between the gate and the emitter, and Vcg is the voltage between the 

collector and the gate. It should be noted that the electric field F is F = f (r, 0, d, 

h, 8, Vge) and emission current density J is J = f (F).
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Collector

Scg

Vcg - = ■

Emitter

Fig. 2.5.1. A typical gated conic type field emission triode.

However, the collector, the gate and the emitter electrodes can be arranged in 

various configurations as shown in Fig. 2.5.2. The collector of the vertical 

triode is placed above the gate . The collector of the lateral and lateral edge- 

film triodes are placed on the same elevation level of the gate. The lateral 

edge-film triode is characterized by using the edge of a thin film as a linear 

emitter [30-31] [42-44]. Since the emitted electron must fly over the gate to 

reach the anode for lateral triodes or lateral edge-film triodes devices, the gate
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will receive more current than will the gate of vertical triodes for modest 

collector voltages. Modeling experiments show that the vertical triode collects 

more current than the collector of the lateral triode (or lateral edge-film 

triode) for the same operating conditions and the vertical triode has a higher 

transconductance and cut off frequency [45].
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(I) Vertical Triode

1AT
(II) Lateral Triode

1 8

Collector

Emitter

Gate

Emitter

Gate

Collector

(III) Lateral Edge-Film Triode

Emitter

Gate
Collector

Fig. 2.5.2 Typical triode configurations.
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2.6 Fabrication Approaches for Gated Field Emitters

Many approaches has been developed to fabricate gated field emitters by other 

researchers. In this section three existing approaches will be discussed. These 

fabrication approaches are all self-aligned processes, which align either the 

emitter to the gate opening (Spindt approach) or align the gate opening to the 

emitter (shadow mask evaporation approach and resist etch back approach) 

without using lithography.

2.6.1 Spindt Approach

This approach fabricates the gate electrode followed by forming a sharp 

emitter by evaporation. The major fabrication steps are shown in Fig. 2.6.1.1 

[12-13] and are described as follows:

(a) Define a gate opening.

1. Oxidize silicon wafer to have the desired thickness of silicon oxide.

2. Evaporate gate metal.

3. Spin resist on the gate metal.

4. Make a resist pattern in a desired configuration and transfer pattern to gate 

metal. The pattern typically is a disc.

(b) Define a silicon oxide opening.

1. Remove resist.

2. Etch silicon dioxide down to silicon base by hydrofluoric acid (HF) and form 

a silicon dioxide opening.

(c) Form lift-off layer.
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1. Mount the sample to a substrate in an evaporation system and rotate the 

substrate about an axis perpendicular to its surface.

2. Evaporate aluminum (or alumina) at 15° angle to the surface of sample. 

The alumina layer serves as a layer for subsequent lift-off.

(d) Evaporate molybdenum at 90° angle to the surface of sample until the 

opening is closed. During the evaporation the size of the opening continues 

to decrease (because of condensation of molybdenum on its periphery) and a 

cone grows inside the cavity. Eventually, a sharp conic emitter is formed and 

self-aligned to the gate when the opening is completely closed.

(e) Dissolve aluminum (or alumina) layer and lift off molybdenum layer on 

the top of alumina layer. A self-aligned gated emitter therefore is formed.

This approach was the first successful method for fabricating gated field 

emitters. This type of emitter was first fabricated by Spindt [13] and it is known 

as the Spindt type emitter. There are two minor disadvantages to this 

approach: (1) Electron beam writing is required in order to form the gate 

electrode with a very small gate opening; (2) The emitter height is decided by 

the gate opening, and it is difficult to have a tall emitter with a small gate 

opening.
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Gate - 

(a) Si0 2 '

Resist

JL
Define 
gate opening

(b)
Remove resist 
Etch silicon 
oxide

(c)

A K o r A l^ )

) Evaporate 
A1 (or A120 3>

(d)
Evaporate
Mo

(e) Dissolve A1 
(or A^Og)

Fig. 2.6.1.1 The major fabrication steps of the Spindt approach [12-13].
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2.6.2 Shadow Mask Evaporation Approach

This approach uses the initial mask used during tip formation to also serve as 

a shadow mask during deposition of dielectric and gate films. The major 

fabrication steps are shown in Fig. 2.6.2.1 [27] [29] and are described as follows:

(a) Define a silicon dioxide pattern.

1. Oxidize silicon wafer to have the desired thickness of silicon dioxide.

2. Spin resist on the sample.

3. Make a resist pattern in a desired configuration and transfer pattern to 

silicon oxide. The pattern typically is a disc.

4. Remove the resist.

(b) Etch silicon by either dry etching or wet etching until the silicon beneath 

the silicon oxide mask is thin enough (usually is less than 2000 A) but with 

the silicon oxide mask still in place.

(c) Oxidize silicon. The new thermal oxide then becomes continuous with the 

oxide mask.

(d) Deposit silicon oxide and gate metal. The oxide and gate metal are self

aligned to the silicon oxide mask during the deposition.

(e) Dissolve silicon oxide by buffered hydrofluoride (BHF) solution. A self

aligned gated emitter is formed.

There are three minor disadvantages with this approach: (1) The emitter 

height and gate opening are controlled by the same mask and therefore it is 

not easy to have a tall emitter with small gate opening. (2) Electron beam
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writing is required for small gate opening. (3) This process does not permit 

the use of metcil tips or metal coated silicon tips.
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(a) Obtain SiO  ̂pattern

(b)

v/m/m

Etch Si

(c) Oxidize Si

Metal

SiO.
ww/A

SiOn
(d) Deposit SiO  ̂

and metal

(e) Etch SiQ,

Fig. 2.6.2.1 The major fabrication steps of shadow mask evaporating approach 

[27] [29].
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2.6.3 Resist Etch Back Approach

This approach uses a sacrificial resist for etch back followed by formation of a 

gate opening. The major fabrication steps are shown in Fig. 2.6.3.1 [46-47] and 

are described as follows:

(a) Start with a metal-silicon oxide-polysilicon emitter structure. This may be 

obtained by the following "molding/casting" process:

1. Etch a <100> silicon substrate through a square silicon nitride mask by 

potassium hydroxide (KOH) until a pyramidal cavity is formed. The width of 

the opening determines the depth of this self-limiting anisotropic etching.

2. Oxidize silicon to have a pinhole free oxide etch barrier.

3. Deposit ("cast") polysilicon to the silicon "mold" with a thickness of several 

hundred microns.

4. Selectively etch silicon over the silicon oxide to remove the " mold” 

leaving the polysilicon substrate and a polysilicon emitter is formed.

5. Deposit chemical vapor deposition (CVD) silicon oxide and gate metal.

(b) Spin resist on the top of gate metal to planarize the surface.

(c) Etch back resist until the desired elevation level is reached. The etching 

back exposes the gate metal over the emitter only.

(d) Form the gate.

1. Etch out the exposed metal, followed by etching out the metal-uncovered 

silicon oxide.
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2. Remove resist, leaving a self-aligned gated field emitter.

One disadvantage with this approach is that the leakage current from gate to 

emitter can be serious and the capacitance can be high when a small gate 

opening is required, since a small gate opening requires a thin dielectric layer.
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Metal

(a) Polysilicon
Deposit SiC>2 

and metal

(b)

Resist

Spin resist

(c)
Etch back 
resist

(d)
Etch metal 
and oxide 
Remove resist

Fig. 2.6.3.1 The major fabrication steps in resist etch back approach [47] [64].
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2.7 Comparison of Field Emission Vacuum Microelectronics 

Technology with Other Technologies

Compared with thermionic devices (where electron emission is caused by 

therm al excitation), field emission vacuum microelectronics devices 

(FEVMD) have four major advantages as follows:

(1) The efficiency of thermionic emission is low and therefore thermionic 

devices consume more power.

(2) In thermionic devices, preheat time is needed in order to have a hot 

cathode and generate emission, and this can be a disvantage in some 

applications.

(3) FEVMD perm it higher integration (higher packing density) than 

thermionic devices since more heat dissipation occurs with thermionic 

devices and a larger surface and volume per device must be provided in order 

to maintain a reasonable operating temperature.

(4) Since the emitters of thermionic devices are operated at high temperature 

(typically above 1500°C), less thermal degradation is expected from the 

emitters of FEVMD which operate at room temperature.

Compared with solid state microelectronics devices (SSMD), FEVMD have 

three major advantages as follows:

(1) Since electrons are emitted in vacuum with ballistic velocity, FEVMD 

have the potential to operate at higher speed (theoretically to 3 x lO^O cm/sec. 

and practically to 6-9 x 10$ cm/sec.) [48] compared with the limiting saturation
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velocity of electrons in SSMD (most semiconductor velocities are limited to 

values less than 5 x 10^ cm/sec.) [49].

(2) FEVMD have relatively wider operating temperature range than SSMD 

devices, which are limited to temperature where the intrinsic carrier 

concentration is less than the doping level (typically 200°C in silicon).

(3) Since radiation can result in SSMD electron-hole pair generation and 

trapping and affect the resistivity of substrate current paths, can produce 

lattice displacement, and can cause voltage breakdown and affect other 

features of device performance [50-53], SSMD are not suitable for use in a 

hostile radiation environment. FEVMD are expected to be less sensitive to 

radiation.

However, the FEVMD have two drawbacks as follows:

(1) The emitters are vulnerable during the fabrication processing. Many 

processes often used in the typical semiconductor fabrication process such as 

blowing nitrogen to speed-up drying, or using oxygen plasma for 

descumming, will easily destroy the emitter.

(2) The emission is sensitive to the surface condition of the emitter. A clean 

emitter surface is generally required to have reliable field emission.
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CHAPTER 3 
FABRICATION OF MICRO FIELD EMITTERS

Sharp field emitters are needed in order to permit electron emission at 

moderate voltage. Sharp field emitters can be produced in many ways such as 

anisotropic etching of silicon in KOH (potassium hydroxide) solution [44] [46] 

[54-55]; isotropic etching of silicon in HNO3 (nitric acid): CH3COOH (acetic 

acid) : HF (hydrofluoric acid) solution [56]; RIE (reactive ion etching) [57]; ion 

milling [58]; evaporation [13]; MOCVD (metal organic chemical vapor 

deposition) [59]; oxidation and some of the above in combination [37] [39- 

40][57].

However, oxidation is the only way reported that is able to generate 

atomically sharp silicon field emitters. During oxidation, the preliminary 

structure is sharpened due to the slower rate of surface reaction at the tip than 

at the sidewall [60]. The faster surface reaction rate at the sidewall results in 

more silicon being consumed than at the tip and consequently the emitter is 

sharpened [60]. In this chapter various approaches developed in this research 

for forming micro field emitter are described and compared. At the end of 

this chapter the effect of oxygen plasma on silicon is discussed.

3.1 Silicon Tip Formation: RIE, Wet Etching Followed by Oxidation

The method we have developed to fabricate atomically sharp silicon field

emitters consists of two stages. In the first fabrication stage, C2F6

(hexafluoroethane) RIE is used to define the silicon oxide pattern; the silicon

is etched to give a straight wall structure; finally the silicon is isotropically

etched in 95ml HNO3 : 3ml CH3COOH : 2ml HF (the NAH solution) in

order to obtain a preliminary structures [30] [39] [56]. In the second stage, the
30
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preliminary structures are sharpened at the top by a dry oxidation technique 

which is known to sharpen convex structures [30] [39] [61]. The major 

fabrication steps are described in Figs. 3.1.1 and 3.1.2; the photographs shown 

in Figs. 3.1.2 were taken by the scanning electron microscope at 20 kv with a 

Hitachi S-800.
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resist

(a)
Grow silicon oxide and 
spin photoresist

Define silicon oxide 
pattern and etch silicon

Remove photoresist and 
etch silicon under 
silicon oxide mask

Continue etching until 
less than 2000 A of 
silicon remains 
under mask

Remove silicon oxide 
by HF

Oxidize at 950 °C; 
then remove thermal 
silicon oxide with HF

Fig. 3.1.1 The major steps to fabricate atomically sharp silicon field emitters.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



33

(a) Oxidize a silicon sample at 1050°C for 2 hrs. in oxygen to grow a 1500 A 

thermal oxide; follow this step by spinning photoresist on the surface.

(b) Define silicon oxide pattern.

1. Use lithography to transfer a pattern into resist. The pattern typically 

consists of 2-4 pm diameter discs.

2. Transfer photoresist pattern to silicon oxide and etch silicon by RIE, 

followed by resist removal. The etching is performed by C2F6 gas using a 30 

seem (standard cm^/min.) flow rate, 300 mtorr gas pressure, and at 100 W of 

RF power. The etching rate ratio for silicon : silicon oxide : photoresist (AZ 

5214E) is 1: 2: 2 and the silicon etch rate is 160 A/min.

(c) Remove the photoresist and etch the silicon under a silicon oxide mask in 

the NAH solution. It should be noted that during the etching the etching rate 

of silicon increases as the diameter of the silicon disc decreases.

(d) Continue etching until the diameter of the silicon disc which supports the 

silicon oxide mask is decreased to around 1000 - 2000 A. Typical etch time for 

a 2 pm mask is 3 min..

(e) Remove the silicon oxide mask by HF.

(f) Oxidize at 950°C and then remove silicon oxide with HF. This step may be 

repeated a few times to obtain an atomically sharp emitter. The oxidation 

period typically was 5.5 hrs. each time. Each time after oxidation the oxide is 

removed by HF. Final oxide stripping is done in HF which is used not only to 

remove the oxide but to passivate the silicon tips against further oxidation 

[62].
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(m) dv)

Figs. 3.1.2 (I), (n), (HI), and (IV) SEM photographs corresponding to Figs. 3.1.1

(b), (c), (e), and (f), respectively.
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Reactive ion etching with C2F6 for 35 min. was used to transfer the 

photoresist (AZ 5214E) pattern to silicon oxide, and 5000 A silicon was etched 

to give the structure shown in Fig 3.1.2.(I). This etched silicon wall is used to 

obtain a tip more needlelike during the latter oxidation. Silicon was etched by 

the NAH solution for 2 min 15 sec. to give the structure shown in Fig. 

3.1.2.01). The width of the silicon supporting the mask is around 8500 A. Fig. 

3.1.2.(111) shows the structure after an accumulated etching time of 3 min. 30 

sec. and after the silicon oxide mask removal. Fig. 3.1.2.(IV) shows the 

sharpen emitter with around 1 pm height after 5.5 hrs. of oxidation in 

oxygen at 950° C followed by silicon oxide removal. The emitter height is 

approximately 1/2 of the diameter of the oxide mask feature. The emitter 

with a relative long stalk as shown in the Fig. 3.1.2.(IV) is typical for this 

fabrication approach.

Transmission electron microscope (TEM) specimens were prepared from the 

sharp silicon emitters. The specimens did not need further thinning since 

the tips of the emitters were already electron transparent. A sample was 

mounted on its side on a 3 mm diameter molybdenum ring using silver paste 

for ease of removal, and the ring mounted in the TEM with the emitter axes 

perpendicular to the electron beam. The sharpened emitters were studied at 

400 Kv with a JEOL 400 FM [39] and a typical TEM image is shown in Fig. 3.1.3.
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Fig. 3.1.3 High magnification TEM image of sharp emitter after removal of 

the thermal oxide.

The lattice image were obtained by aligning the electron beam along a silicon
A0

<110> direction. Since the space d between the (111) planes given by d= -^=,

where Ao is the lattice constant of silicon, the silicon {111} planes with a 

spacing 3.13 A can be observed in the micrograph. The emitter radius was 

found to be less than 10 A. The fringe contrast disappears when the tip 

diameter is less than 10 A because there are too few atoms left to scatter the 

incident electron beam. The amorphorus image outside of the lattice image,
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which has around 20 A thickness can be a native oxide or polymerized 

hydrocarbon grown inside the TEM during electron beam bombardment.

Oxidation sharpening is based on an experimental study which found a 30% 

decrease in oxide thickness at silicon step edges following wet oxidation at 

900° - 1050°C [61]. Modeling studies showed this effect to be due to an increase 

in the activation barrier to interfacial reaction caused by the stress build-up at 

these regions [60].

The classical model of planar oxidation of silicon [63] consists of two regimes. 

In the first regime the rate limiting step during oxidation is the interfacial 

reaction of an oxygen-containing species with the silicon surface and the 

reaction is linear. Beyond a critical oxide thickness (which depends on 

pressure and temperature), the rate limiting step becomes the diffusion of 

oxygen across the already grown oxide, and the reaction follows a parabolic 

rate law.

For a planar silicon surface these two mechanisms are quite sufficient to 

predict the oxide thickness, but at silicon wedges and other regions of high 

curvature, the stress built-up results in a suppression of interfacial reaction, 

and hence the oxidation rate slows down in the linear regime. The stress is 

largely a result of specific volume difference of silicon oxide with respect to 

the silicon which can not be relieved at temperatures less than 1050°C due to 

the high viscosity of the oxide which is appreciable below this temperature. 

For oxidation temperatures greater than 1050°C, the viscosity of the oxide is 

sufficiently low that the oxide can flow, relieving stress built-up. For this 

oxidation sharpening experiment, we used a temperature of 950°C.
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To study the effect of differences in the preliminary structure morphology on 

the final configuration, various preliminary structures were prepared and 

followed by SEM during oxidation sharpening. The four preliminary 

structures were obtained by steps (a), (b) and (c) followed by continuous 

etching for 10, 20, 30 and 40 sec. (samples 48-9, 48-10, 48-11 ,and 48-12, 

respectively).

The results of the oxidation treatments of these different silicon preliminary 

structures are shown in Table 3.1.1 where r is the tip radius, and 0 is the tip 

half angle (0 is measured at a distance r from the top of the tip). All four 

experimental samples were given three successive oxidations. Each 

oxidation was performed in dry oxygen for 5.5 hrs. at a temperature of 950°C. 

The radius and half angle are measured after the oxide is stripped off.
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Table 3.1.1 The tip radii r and half angles 0 for experimental samples.

Preliminary
Structure

(Before
Oxidation)

After
First
Oxidation

After
Second
Oxidation

After
Third
Oxidation

r 8 r 8 r 6 r 8
Sam ples (A) ( ° ) (A) ( ° ) (A) ( ° ) (A) n

4 8 -9 750 45 650 35 125 28 <50 23

4 8 -1 0 1000 45 500 40 350 35 <50 25

4 8 -1 1 2000 40 1750 30 600 25 <50 11

4 8 -1 2 4000 36 2250 35 * **

* Becomes concave; circular sharp edge begins to form (see arrow). 

** More concave features occurs (see arrow).

It should be noted that the oxide was stripped off before the next oxidation. 

Table 3.1.1 shows that in general the radius and half angle became smaller as
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oxidation treatments continue. However, not all preliminary structures 

become a single tips after oxidation treatments; sample 48-12 begins to form a 

circular sharp edge after two oxidation treatments. The SEM photographs of 

sample 48-12 in Figs. 3.1.4 shows the silicon morphology after each oxidation 

followed by oxide removal.
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Figs. 3.1.4. The emitter morphology of sample 48-12 shown in (I) is before 

oxidation. Figs. (II), (III), and (IV) show the sample is after one, two, and 

three 5.5 hrs. oxidations followed by oxide removal, respectively. The 

beginning of a circular sharp edge can be seen in Fig. 3.1.4.(TV).
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For most samples with r < 2000 A and 0 < 45°, the preliminary structures are 

converted by oxidations to single sharp tips. Figs. 3.1.5 shows the silicon 

morphology of sample 48-11 after each oxidation followed by oxide removal. 

SEM studies show that tip radii are typically < 50 A, and TEM studies show 

the radii are < 10 A (see Fig. 3.1.3).
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Figs. 3.1.5.(1), (II), (III), and (IV) The emitter morphology of sample 48-11 

shown in (I) before oxidation. Shown in (II), (III), and (IV) are after one, two, 

and three 5.5 hrs. oxidations followed by oxide removal, respectively.
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These are typical results for morphology changes during the oxidation 

treatments described above. Further oxidation of the tip results in no change 

in the tip sharpness once atomic sharpness is achieved.

It is concluded that when r < 2000 A and 0 < 45° , the preliminary structure 

can be a single sharp tip after oxidation. However, If the preliminary 

structure has r > 4000 A, the preliminary structure will become concave and a 

circular sharp edge begins to form after oxidation.

3.2 Silicon Wedge Formation: RIE Followed by Oxidation

The fabrication of atomically sharp silicon wedges was demonstrated in this 

research using an approach based on RIE and dry oxidation [40]. The major 

fabrication steps to form silicon wedges for these studies are shown in Fig. 

3.2.1. and are described as follows:

(a) Use an n+-type (100) silicon sample and oxidize it in steam (water) at 

1050°C for 1 hrs. to grow a 5000 A thermal silicon oxide; spin photoresist on 

the surface.

(b) Define silicon dioxide pattern.

1. Photolithography. Rectangular patterns were used with a width of 2 pm 

and various lengths of 50 pm and 290 pm.

2. Transfer photoresist pattern to silicon oxide by BHF (buffered hydrofluoric 

acid).

(c) The silicon under the silicon oxide mask is etched down by RIE to form 

rectangular silicon bars. The etching is perform ed by a CF3B r
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(bromotrifluoromethane) gas with 15 seem flow rate and 300 mtorr at an RF 

power of 100 W. The etching rate ratio for silicon : silicon oxide : photoresist 

(AZ 5214E) is 4 : 1 : 1 and the etching rate for silicon is 800 A/min. [64]. The 

CF3Br RIE used in this approach has higher silicon etching selectivity than 

the C2F6 RIE (see section 3.1). This higher silicon etching selectivity gives 

taller silicon structures which are better for field emission [5].

(d) Remove photoresist. Remove silicon oxide by HF. Figs. 3.2.2.(a) and (b) 

show an illustration and SEM photograph of part of a silicon bar, 

respectively.

(e) Oxidize in oxygen at 950°C; then use HF to remove silicon oxide. Sharp 

wedges are obtained.
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resist

(a) Si
BEZS2 i -  SiOg Grow silicon oxide and 

spin on photoresist

(b)
Define silicon oxide 
pattern
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Etch down silicon

(d)

Remove photoresist 
Remove silicon oxide 
by HF

(e)

Oxidize at 950 °C. Then use  
HF to remove the 
thermal silicon oxide 
(Sharp w edges are obtained).

Fig. 3.2.1 The major steps to fabricate atomically sharp silicon wedge.
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gpSS
Fig. 3.2.2.(a) Illustration of part of a silicon bar used for these experiments. The 

wedges (arrows) are to be sharpened by oxidation treatment.

Fig. 3.2.2. (b) SEM photograph of part of a silicon bar.
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The effect of oxidation on the morphology at the wedge was studied at low 

magnification by SEM and at high resolution by TEM. For TEM study, thin 

cross-section samples were made by standard techniques [65]. Wedge 

morphology was characterized by wedge radius and half angle. Comparisons 

of wedge radii and half angles after oxidation treatments in oxygen are listed 

in Table 3.2.1 where T is the oxidation temperature, t is the oxidation time, 

and doxide is the nominal thickness of silicon oxide grown on a planar 

silicon surface..

Table 3.2.1 Wedge radii and half angles for experimental samples.

Sample
T

r o

t

(hr.)

d
oxide

(nm)

Wedge
Radius

(nm)

Wedge
half
angle
( ° )

1 a — 50.0 45

2 980 10.0 200 4.0 40

3 950 2.5 60 5.0 50

4 950 1 1.0 200 5.0 55

5 b 950 2.5 60 1.0 30

a. Sample 1 received only RIE without oxidation.

b. Sample 5 received two oxidations and each 
oxidation was at 950° c for 2.5 hrs..; after  
the f irst  oxidation the oxide was removed 
by HF and the second oxidation was performed.
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Before oxidation (after RIE), the wedge radii and wedge half angles were 

observed to be approximately 50 nm and 45°, respectively (sample 1). The 

round silicon corner produced by RIE is probably due to the very thin taper of 

the oxide mask at the edge, and the loss of oxide protection during RIE. 

Nevertheless, the radii of the wedge-shaped samples after oxidation became 

much smaller as shown in Figs. 3.2.3 and 3.2.4. It is concluded that wedges 

with 1 nm radii can be made by oxidation(s) at 950°C.

Fig. 3.2.3 High magnification TEM micrograph of a cross section of a wedge 

after 950°C, 2.5 hrs. oxidation (sample 3). The wedge radius and half angles are 

5.0 nm and 50°, respectively.
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Fig. 3.2.4 High magnification TEM micrograph of a cross section of a wedge 

after repeated oxidation at 950°C (sample 5). The wedge radius and half angles 

are 1.0 nm and 30°, respectively.

3.3 GaAs Wedge Formation: RIE Followed by MOCVD

We have described an oxidation method to sharpen the silicon tips and 

wedges. However, GaAs also has potential to be used as a field emitter. Sharp 

GaAs wedges can be formed by MOCVD on n+-type (100) GaAs samples. The 

major fabrication steps are best described with the aid of Fig. 3.3.1.
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(a) Spin photoresist on surface.

(b) Photolithography. The pattern typically is a rectangular bar 2 pm x 50 pm 

with the long sides aligning along the <011> or <011> direction on (100) 

oriented GaAs substrate [59].

(c) GaAs, selectively protected by photoresist, is etched by RIE to form a 

rectangular GaAs bar, as shown in Fig.3.3.1. The etching is done with BCI3 

(borontrichloride)/argon mixtures with 90% argon and 15 mtorr pressure at 

50 watt power (300 V). The etching ratio for GaAs to photoresist is 9 to 1 and 

the etching rate for GaAs is 280 A/min. [66].

(d) Remove photoresist.

(e) Grow MOCVD GaAs on GaAs substrate until the GaAs wedge is formed. 

The MOCVD growth of GaAs is performed by TMG (trimethylgallium) and 

arsine at 650°C and at atmosphere pressure. The growth rate is 1300 A/m in 

[59].
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Fig. 3.3.1 The major fabrication steps of MOCVD approach.
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Fig. 3.3.2 shows a low magnification SEM photograph of GaAs wedges after 

MOCVD GaAs growth. The wedge half angle is determined by the 

crystallography of the intersection of {111} planes and is 35.5°. No growth is 

observed on the {111} planes. It is seen as well that the growth on the edge 

stops once the two {111} planes meet and a sharp wedge is formed.

Fig. 3.3.2 A low magnification SEM photograph of GaAs wedges after 

MOCVD growth on GaAs rectangular bars.
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Fig. 3.3.3 Shows a high magnification SEM photograph of a typical GaAs 

wedge. The radius of the wedge is approximate 400 A. Since the surface of 

crystal growth is diffusion-enhanced when a growth surface, (100) plane, is 

adjacent to a non-growth surface, (111) plane, [67] the wedge radius could be 

made smaller if the diffusion-enhancement could be reduced. A lower 

MOCVD operating temperature which reduces the effect of diffusion- 

enhancement could be a method for getting a smaller radius.

Fig. 3.3.3 A high magnification SEM photograph of GaAs wedge after 

MOCVD GaAs growth on a rectangular GaAs bar.
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3.4 Effect of Oxygen Plasma on Silicon Tips

Oxygen plasma is a helpful aid in cleaning device surfaces. However, the 

effect of oxygen plasma cleaning on a silicon tip was not known. A silicon tip 

was treated with oxygen plasma at 50 watts of power for 5 min., and the 

results are shown in Figs. 3.4.1.

(a) (b)

Figs. 3.4.1.(a) and (b) A high resolution TEM micrograph of silicon tip before 

and after oxygen plasma, respectively.

It is concluded that oxygen plasma cleaning, which is often used in 

semiconductor processing to descum the surface, can attack the silicon tip.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4 
FABRICATION OF GATED MICRO FIELD

EMITTERS

As we described in section 2.5, gated field emitters are needed in order to 

control (or modulate) the electron emission. This chapter will describe a new 

self-aligned process, discuss some properties of dielectric films and describe 

the fabrication of gated micro field emission devices. Special problems 

associated with electron bombardment of the device material during the SEM 

examination also will be discussed.

4.1 A New Self-Aligned Process

A new self-aligned processing approach was developed in this research. This 

process starts from field emitters, which can be Si or GaAs (as described in 

chapter 3) or metal or metal coated tips, and ends up with gated field emitters. 

Two different dielectric films (dielectric I and dielectric II) are used in this 

process to control the gate opening (by dielectric I) and planarize the surface 

(by dielectric II), respectively; this is followed by gate metal deposition, 

removal of the metal from the emitters by etching back or by anodic etching. 

The major steps, as shown in Fig. 4.1.1, are as follows [68]:

(a) Obtain an emitter which either is Si, GaAs, metal or metal coated tip, etc.. 

The Si conic tip and GaAs wedge tip can be acquired as described in chapter 3. 

The metal coated tip can be formed by evaporating metal on a tip.

(b) Form the first dielectric layer (dielectric I) which will control the gate 

opening. The diameter of gate opening is determined by the thickness of the 

dielectric on the sidewalls.

56
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(c) Spin on the second dielectric layer (dielectric II), which planarizes the 

device surface.

(d) Etch back dielectric II to a desired level which exposes dielectric I as 

required. The dielectric II surface provide a planar substrate for the gate.

(e) Etch back dielectric I to form the gate opening and moreover to undercut 

the dielectric II layer, which enable the dielectric II to perform as a shadow 

mask for the following gate metal deposition. At this step dielectric II serves 

as an etching mask for dielectric I.

(f) Directionally deposit the gate metal with a desirable thickness. The 

thickness deposited at this step and the extent of etching performed in 

step (d) determine the elevation of the tip above the gate. The dielectric II 

layer is used as a shadow mask during the gate metal deposition.

(g) Remove the gate metal from the tip. There are two methods to remove 

the gate metal from the tip. (1) Anodic etching: A non-polar solution of 

tetrabutylammonium bromide (TBAB) in a acetonitrile is used as the 

electrolyte. This etching does not damage the emitter. Alternatively anodic 

etching can be done in 10% HC1 (hydrochloride) solution. (2) Etch back: Since 

the gate metal is thinner at the tip region than on the gate area because of the 

slope of the tip side wall, controlled etching can be used to removed the gate 

metal from the tip while keeping gate metal on the gate area.
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Fig. 4.1.1 The major fabrication steps of this new self-aligned process.
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Using these procedures, we have obtained self aligned gated field emitters 

with the diameter of the gate opening equal to 2  t + u Sj -  2 k , where t is the 

thickness of dielectric I at the sidewall of emitter, u sj is the diameter of the 

silicon cone at that height, and k  is the thickness of the gate metal at the edge 

of dielectric II.

This process using typical semiconductor processing technologies provides 

five main advantages over other methods for forming the gate electrode: (a) 

the gate is planar; this helps to reduce capacitance between the gate and the 

emitter, (b) The gate opening can be made with a diameter below 0.5 pm 

without electron beam writing assistance; a small gate opening helps to 

increase electron emission, (c) A thick dielectric can be used between gate and 

cathode simultaneously with a small gate opening; this helps to maintain the 

necessary operating voltage and also to reduce capacitance between the gate 

and the emitter, (d) Si, GaAs, metal or metal coated tips, etc. can be used in 

this process; and (e) the gate opening is self-aligned to the tips; this puts the 

tip in the center of the gate opening to the tip without lithography.

4.2 Dielectric Films Considerations

In the processing steps discussed in section 4.1, two dielectrics (dielectric I and 

II) are needed. In principle, there are four requirements for these dielectrics: 

(1) ability to form a stable coating of less than a few microns thickness; (2) 

ease in deposition; (3) compatibility with the rest of the process steps; (4) high 

dielectric strength. However, the high dielectric strength is particularly 

important in order to maintain the necessary applied voltage between the 

gate and the emitter with low leakage current and low capacitance. The 

dielectric leakage current must be small compared with the expected value for
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the operating (collector) current (for a field-emission display application, the 

operating current is less than 0.1 |i.A/tip [69]).

Two dielectric films have been evaluated for dielectric I. (1) CVD silicon 

oxide; (2) Thermal silicon oxide. Thermal silicon oxide grown in oxygen at 

950°C is part of the procedure for forming atomically sharp tips. For dielectric 

n, two dielectric films also have been evaluated: (1) Spin on glass (S.O.G.) : 

S.O.G. is made from a ladder siloxane made by Owens-Illinois (resin GR 650) 

[70]; (2) polyimide: The polyimide used in these experiment is made by 

National Starch and Chemical Corporation (Thermid 6800-92) [71].

Properties of these materials were explored in order to determine their 

suitability for the process steps outlined in Fig. 4.1.1. The CVD silicon oxide is 

grown by silane, nitrous oxide and argon at 300°C, and thermal silicon oxide 

was grown by oxidation in oxygen at 950°C. The S.O.G. was spun on for 30 sec. 

at 4k (4 thousand) rpm (rotation per minute), and cured for 30 min. at 130°C; 

the polyimide was spun on for 30 sec. at 4k rpm, and was first cured at 230°C 

for 30 min. followed by final cure at 400°C for 30 min.. The temperature for 

the final polyimide cure was gradually increased at the rate of 2°C/min. from 

R.T. to 400°C.

Leakage currents were measured at 140 V between gate electrodes (area= 3.12 

xl05 |im2 per electrode) and the silicon substrate (gate positive) and results 

are shown in Figs. 4.2.1.(a) and (b). Fig. 4.2.1.(a) shows the leakage current 

densities of polyimide and S.O.G.; and Fig. 4.2.1.(b) shows the leakage current 

densities of thermal silicon oxide, and CVD silicon oxide. The leakage 

current of S.O.G is about two orders of magnitude less than that of 

polyimide at 100 volts applied voltage and at a dielectric thickness of
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14000 A. For the 8000 A films, the leakage current of the polyimide 

significantly increases at voltages above 10 volts whereas the S.O.G. is much 

more resistive. Those results show that the S.O.G. film has lower leakage 

current than does the polyimide. Fig. 4.2.1.(b) shows that the thin thermal 

silicon oxides (1800 A and 3600 A films) have less leakage current than does 

the thicker (4300 A) CVD silicon oxide film. This indicates that the thermal 

silicon oxide has a lower leakage current than does the CVD silicon oxide as 

expected [72].
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Fig. 4.2.1.(a) The leakage current densities plots of polyimide with thickness 

8000 A (P-l) and 14000A (P-2), S.O.G. with thickness 8000 A (S-l) and 14000 A 

(S-2).
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Fig. 4.2.1. (b) The leakage current densities plots of thermal silicon oxide with 

thickness 1800 A (T-1) and 3600 A (T-2), and CVD silicon oxide with 4300 A 

(C-1).

4.3 Fabrication of Gated Micro Field Emitters

Based on the results in section 4.2, the CVD silicon oxide and S.O.G. are 

suitable to be used as dielectrics I and II in this fabrication approach. SEM 

photographs of the major steps are shown in Figs. 4.3.1, and the processing 

conditions and parameters are given as follows (the generic processing steps 

were shown in Fig. 4.1.1.) :

Step (a): Form an emitter using the processing step (a) shown in Fig. 4.1.1.
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Step (b): CVD silicon oxide is used as the dielectric which control the gate 

opening. The CVD silicon oxide is grown by silane, nitrous oxide and argon at 

300°C.

Step (c): the S.O.G. is deposited, followed by a cure at 130°C for 30 min..

Note: When polyimide is used, the polyimide is cured at 230°C for 120 min..

Step (d): the S.O.G. is etched back by C2F6 reactive ion etching with a flow rate 

of 5 seem at 30 mtorr pressure and 100 W power. The etch ratio of S.O.G. to 

CVD silicon oxide is 2.2 to 1.0 and the S.O.G. etch rate is 650 A/min..

Note: If polyimide is selected in step (c), it can be etched back by a barrel 

oxygen plasma with an etch rate 50 A/min.. followed by a 30 min. cure at 

400°C. The temperature should gradually increase at a rate 2°C/min. from 

room temperature to 400°C. This cure is important to prevent the polyimide 

film from cracking when acetone is applied to the post-oxygen-plasma etched 

polyimide film.

Step (e): the CVD silicon oxide is etched in BHF at an etch rate of 1000 

A/min..

Step (f): 2000 A aluminum has been directionally deposited on the sample.

Step (g): Two methods as described in section 4.1 are used for different 

samples: (1) Anodic etch: This is performed with a EG & G model 179 digital 

coulometer set at a current source 0.2 mA. One min. is sufficient to remove 

aluminum from the tip; emitter sample 33-7-7 in chapter 5 was made using 

this method. (2) Etch back: The etchant for the gate metal A1 is 3 ml D.I. 

(deionized water) : 12 ml CH3COOH : 3 ml HNO3 :12 ml H3PO4 (phosphoric 

acid). The samples were deposited with 2000 A aluminum. After controlled
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etching at R.T. for 3.5 min. to remove the metal from the tip, around 1000 A 

aluminum remained on the gate area; emitter samples 41-2-2 and 42-1-5 in 

chapter 5 were made using this etch back method.
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(in)

Figs. 4.3.1. (I), (II), and (III) SEM photographs corresponding to Figs. 4.1.1 (b), 

(e), and (g), respectively; the etch back method was used to make the device 

shown in figure (III).
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The self aligned gated field emitter shown in Fig. 4.3.1.(IV) was made with a 1 

|im high Si emitter, 1000 A A1 as gate metal, 4500 A CVD silicon oxide, 4500 A

S.O.G. as dielectric II and a 0.7 pm diameter gate opening. The tip is 1000 A 

above the bottom edge of the gate film.

4.4 Special Problem: Electron Bombardment

SEM is an indispensable tool to investigate the morphology of the field 

emitter or gated field emitter. However, damage occurs when an electron 

beam hits the surface of material. The major damage occuring during study 

is:

(1) Contamination: Contamination occurs on the surface region being 

studied. The contamination resulting from SEM study of an emitter region in 

an array is shown in Fig. 4.4.1 (see abdc square).
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Fig. 4.4.1 Contamination (see abdc square) caused by previous higher- 

magnification SEM examination of emitters region. The light square area 

shows the contamination.

The contamination is a polymerized hydrocarbon which is grown during an 

incident beam bombardment. It will change the emitter work function and 

therefore affect the emission characteristics. The light block appearing in the 

picture shows the contaminated area after examined under SEM at 20 kv. A 

950°C dry oxidation was used to clean up the contamination. Note that an
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oxygen plasma is not a good method for removing this contamination since it 

will change the tip shape (see section 3.4).

(2) S.O.G. Film shrinkage: A S.O.G. film used in the new self-aligned process 

as dielectric II and spun on the device followed by 130°C bake for 40 min., was 

etched back by C2F6 RIE. A SEM examination resulted in the shrinkage of the

S.O.G. film as shown in Fig. 4.4.2 where the hikj path is the shrinkage region. 

Since the S.O.G. film becomes denser at a higher temperature [70], high 

energy electron beam bombardment of a S.O.G. film surface, resulting in high 

local temperature may be responsible for this damage. Curing S.O.G. at higher 

temperature might avoid this SEM effect.

Fig. 4.4.2 A S.O.G. film shrinkage (see hikj path) caused by previous higher- 

magnification SEM examination.
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CHAPTER 5 
CHARACTERIZATION OF GATED SILICON 

FIELD EMISSION MICRO TRIODES

This chapter describes the measurement circuit and the test environment 

used to characterize the gated silicon field emission micro triodes. It also 

presents the measured triode characteristics. Error bars are calculated for most 

of the data points given in section 5.5; these error bars are determined by 

current fluctuations described in section 5.4.

5.1 Characterization Set-up

This section discusses the experimental procedure for characterizing the 

triodes. Section 5.1.1 describes the final test configuration for the gated silicon 

field emitter triode. Sections 5.1.2 and 5.1.3 describe the test circuit and test 

environment, respectively.

5.1.1 Final Device Structure

The gated silicon field emitters described in chapter 4 and used to make the 

final device structures are shown in Fig. 5.1.1.1.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



70

Fig. 5.1.1.1 The gated silicon field emitters for the final device structure set-up.

Between the four crosses are eight gated field emitters devices. The ones with 

the larger circular area control emission from 10 emitters at each gate, while 

the smaller devices control emission from a single emitter. The gate opening 

is located in the circular area of the gate pattern and the emitter is at the 

center of the gate opening. These gate electrodes are extended to bonding pads 

which are not shown in this figure but which are shown in Fig. 5.1.1.3.

A cross-section of the final test structure including the collector electrodes is 

shown in Fig. 5.1.1.2 where 8 is the tip elevation above the top edge of the 

gate.
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Fig. 5.1.1.2 A cross-section of the final test structure.

The collector electrode is an optical glass plate coated with ITO (indium tin 

oxide). The gated field emitter triode is made by placing the ITO glass on 

spacers on the surface of the sample containing the gated field emitters. The 

spacers consist of 50 pm diameter glass cylinders (obtained from EM 

Industries Inc.). The spacers are mixed with Norland optical adhesive 61, 

cured under a UV lamp for 1 hr., and placed in 4 small corners of the device, 

away from the gate electrodes (approximately in the four corners shown in 

Fig. 5.1.1.1).

This device then is placed onto a glass slide (which has 8 individual gold 

runners) with silver paste (obtained from SPI Inc.) and electrically connected 

using wire ultrasonically bonded to the bonding pads connected to the gold 

runners of the glass slide that connect with the gated silicon field emitters. 

The gold wires are bonded by a Westbond ultrasonic wire bonder; the wire 

bonding to four bonding pads is shown in Fig. 5.1.1.3.
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Fig. 5.1.1.3 The results of wire bonding on the bonding pads.

5.1.2 Test circuit

The test circuit for measuring the triode characteristics is shown in Fig. 5.I.2.I. 

Two battery power supplies (VI and V2) were used to supply stable voltage 

sources for the emitter and the collector. The collector current Ic and the gate 

current Ig were measured by a Keithley 602 solid-state electrometer and 410 

micro-microammeter, respectively. Simpson 464-4 digital multimeters 

measured the voltages of the supply voltage sources Vi and V2- A strip chart 

recorder was recorded the collector current as a function of time.

The resistor Rg was using as a current limiter for the gate path to protect the 

device from current bursts. It should be noted that the current limiting in the 

collector path was observed by setting the Keithley 602 at the normal position 

mode. The measurements were done in a vacuum 2 x 10‘® torr, at room 

temperature. Prior to measurements, the triodes were baked in the vacuum at
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90° C for 12 hrs.. It should be noted that all the gated field emitters used for 

emission measurements were fabricated by the process described in Chapter 4.
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Fig. 5.1.2.1 The test circuit for the gated silicon field emitter triodes.
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5.1.3 Test Environment

Since field emission devices require a vacuum, a high vacuum system was 

used; the schematic is shown in Fig. 5.1.3.1.
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Fig. 5.1.3.1 Schematic diagram of the vacuum system used for testing field 

emission devices.
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This vacuum system incorporates a CTI Cryo-torr 10 as the main pump, two 

sorption pumps for vacuum roughing, vacuum gauge systems and a 

temperature indicator (10°K to 300°K temperature range ) for the cryo pump. 

The system provides vacuum of a vacuum of 2 x 10"8 torr. The pump is 

equipped with a water cooled compressor. The vacuum measuring apparatus 

includes a high vacuum indicator (ion gauge) and a low vacuum indicator 

(thermocouple gauge). A gas heater was used to assist the vacuum pump 

regeneration.

5.2 The Test Samples

A number of samples have been tested and measured in this research on field 

emission. The results for three typical field emission samples (33-7-7, 41-2-2, 

and 42-1-5) with different configurations and fabrication conditions, as 

summarized in Table 5.2.1, are reported. All devices tested were single

emitter conical tip devices where the emitters were silicon with the resistivity 

0.005 - 0.02 £2-cm. The radii shown in the Table 5.2.1 were measured from the 

SEM photographs. The tip elevation, 5, is defined as the distance from the 

emitter to the top edge of the gate. These different configuration devices have 

different emission behavior and I vs. V characteristics, as will be discussed in 

later sections.
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Table 5.2.1 The configurations and fabrication conditions of three typical field 

emission samples

Sample 33-7-7 42-1-5 41-2-2

S.O.G.
Baked
Condition

130 °C 
30 min.

130 °C 
30 min.

130 °C 30 min. 
Followed by 
380 °C 30 min.

Gate Metal 
Removal

Anodic
Etching

Etch
Back

Etch
Back

Tip Radius 

r (  A)
< 1 0 0 * < 100 * < 1 0 0

Gate Metal
Thickness
(pm)

0 . 1 8 - 0 . 2 2 0.09-0 .11 0 . 09 - 0 . 11

Gate Opening 
in Diameter 
(pm)

1.0 -1 .2 1 . 0 - 1 . 2 1 . 0 - 1 . 2

Tip Elevation 
8

(pm)
-0.15-  -0.14 0.04 - 0.07 0 . 1 7 - 0 . 2 3

* Probably atomically sharp, though not confirmed by 
TEM study.
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5.3 Fowler-Nordheim Characterization

One of the characteristics of field emission is Fowler-Nordheim (F-N) 

behavior, in which a plot of log I/V^ vs. 1/V is a straight line for the narrow 

region of a typical field emission experiment (3 v/cm  < F < 5 v /cm  ).

5.3.1 Derivation of the Formulas for Emitting Area and Field Adjustment 

Factor

In order to analyze the F-N plot, it is desirable to derive the formulas for 

emitting area and field adjustment factor a; a  is defined as F=V a / r  where F 

is the electric field, V is the applied gate to emitter voltage, and r is the emitter 

radius. The derivation starts from the Fowler-Nordheim equation [13] (see 

section 2.2).

J = M — e -B(0.95-y2)-^3/2
<j>tl.l F (5.3.1.1)

where field emission current density J is in A/cm^, electric field at the tip 

surface F is in v /cm , emitter work function <j> is in electron volt (ev), 

A=1.54xl0"6, B=6.83x 10^, and y=3.79xl0'^ F^/2/(j) (y is the Schottky lowering of 

the work-function barrier). We may let J = I/(3r2 and use F = Va/r where jir^ is 

the emitting area , a /r is the field conversion factor and I is the field emission 

current. Thus Eq. (5.3.1.2) becomes

Av2r»2 0.95Bro3/2  1.436 x 10-7 B

The factor (Jr  ̂can be obtained by rearranging Eq. (5.3.1.2).
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V2 1.54xl0‘6a 2

0r2 6.49 x 107r 03/2 -9.81
(5.3.1.3)

Eq. (5.3.1.3) can also be written as:

tog ̂ 2 = '5-85 + lo8 +“T 7T  - 2819 x 107 0 3/2^  (5.3.1.4)

The slope S of the tog vs- y  pl°t is derived as follows:

dd°ĝ 2>
S = I 

d ( y )

-2.819 x 107 r 0 3/ 2

a
(5.3.1.5)

Thus the field conversion factor a  can be obtained from the slope of the F-N 

plot since r and 0 are known or assumed:

Thus Pr2 and a  can be calculated from Eq. (5.3.1.3) and (5.3.1.6), respectively. 

For an emitter with constant 0, r and a, the slope will be constant during 

the change of voltage.

5.3.2 Fowler-Nordheim Behavior

A number of single silicon emitter samples have been tested and measured 

for field emission. Typically when emission is first observed, it is very 

unstable and the average emission current keeps increasing gradually as 

shown in Fig. 5.3.2.I. This phenomenon is possibly caused by the emitter 

surface being cleaned by the emission [29]. The emission becomes relatively 

constant and stable after a few tens of minutes.
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Vge = 1 3 5 v

Vge = 115 v

Vge =106 v

0 5 10 15 20 25 30 35 40 45 50 55 60

t, min

Fig. 5.3.2.1 The characteristics of initial emission of sample 42-1-5.

The emission data reported here were collected after the current was constant 

for constant applied voltage. The emission data followed the F-N equation. 

Single silicon emitters had turn-on voltages above 25 v and typically 50-90 v. 

Emission currents have been measured in the range 5 pA- 1 pA. for single 

emitter. Fig. 5.3.2.2 shows the emission data of samples 33-7-7,41-2-2 and 42-1- 

5 and compares these results with other research results [13] [29] [44] [73].
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Fig. 5.3.2.2 A comparison of emission data in this research with other 

researches.
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It should be noted that the Bandy experiment was for single edge film 

emitters and the other researchers used conic tip emitters. Spindt and Bandy 

used single metal emitters and the others used single silicon emitters. The 

three curves of samples 33-7-7, 41-2-2, and 42-1-5 shown in Fig. 5.3.2.2 are 

typical of the emission data we obtained and are similar to other researcher’s 

curves. However, the emission data have different slopes for reasons that are 

not clear. It is known that the slope is a function of the field conversion 

factor and emitter work function. The emission current ranges shown in the 

curves are 40 pA - 0.4 pA, 5 pA - 0.5 jiA, and 5 pA - 3 nA for samples 33-7-7. 

41-2-2, and 42-1-5, respectively. The applied voltages necessary for initiation of 

emission currents are 45 v, 56 v, and 80 v, respectively. An SEM photograph, 

after being tested and having current up to 5 nA is shown in Fig. 5.3.2.3. The 

device configurations and fabrication conditions for these samples were 

described in section 5.2.
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Fig. 5.3.2.3 A SEM photograph of the emitter of 42-1-5 after the emission 

measurement.

It should be noted that the top area of the emitter appears semitransparent 

since the area is very thin and therefore the electron beam transmits through 

it. The emitter radius is certainly less than 100 A, which is as sharp as virgin 

emitters observed by SEM.

In order to analyze the emission data, Eq. (5.3.1.3) and (5.3.1.6) were used to 

calculate the emitting area and the field adjustment factor. Table 5.3.2.1 show 

the field adjustment factor and the emitting area for the same three devices 

shown in Fig. 5.3.2.2.
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Table 5.3.2.1 Derived values of field adjustment factor a  and emitting area 

pr2 of samples 33-7-7,41-1-5, and 42-2-2; 0 = 5 and 3 ev; r= 10"? and 10'6 cm.

Sample r

(cm)

a
(ev)

a Pr2

(x10 14cm)

33-7-7

10 -7

5 0.07 1515.00

3 0.03 1198.00

10

5 0.70 1515.00

3 0.30 1198.00

41-2-2

10

5 0.08 0.47

3 0.04 0.42

10 -6

5 0.80 0.47

3 0.40 0.42

42-1-5

-7
10

5 0.06 0.02

3 0.03 0.01

-6
10

5 0.60 0.02

3 0.30 0.01
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The calculations are based on two reasonable assumptions for r, 10"7 and 

10'6 cm, and 0, 5 and 3 ev. With regard to the calculations of table 5.3.2.1 

four points need to be made clear: (1) Since the emitter radius is less than 100 

A from the SEM photograph and is less than 10 A from the TEM photograph 

on the typical emitters, it is reasonable to assume r as equal to either 10"? or 

10-6 cm for the calculations; (2) Since 0 is not known for the measured 

emitters, reasonable values of 3 and 5 ev have been assumed; (3) The value of 

the field adjustment factor a  increases as r or 0 increases; (4) The derived 

values of the emitting area are the same for different assumed radii and 

change only slightly with 0.

Our results for a  (or a /r )  and 0r2 can be compared with other values for 

these parameters obtained in other field emission studies. The results of this 

comparison are given in Table 5.3.2.2.
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Table 5.3.2.2 A comparison of field conversion factor a / r  and emitting area 

pr2 with other researches.

Researcher a/r (cm"1) Pr^(cm 2) Reference

Spindt,1976 5
1.25x10 -15

1.3x10 [13]

Harvey, 1991 5
1.1x10 4x10 ' 14 [74]

Busta, 1991 6.22x10 5 5x10 '15 [75]

Marcus, 1991 5
0.7-1.5x10

-14
6x10 [73]

This Work 
33-7-7 3-7*x10 5

-11
1.2-1.5*x10

—

This Work 
41-2-2 4-8*x10 5 4.2-4.7*x10 ’15 —

This Work 
42-1-5

5
3-6 x10

-16
1-2 x10 _

* Corresponding to 0 ranging from 3.0 to 5.0 ev.
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The comparison shows that the field conversion factors and most of the 

emitting areas are similar except for the larger area of sample 33-7-7. This is 

possibly due to the fact that the emitter in this sample is a relative long stalk 

that projects beyond the top of the emitter (see chapter 3). The significantly 

larger emitting area for this sample could be due to the emission area not 

being restricted to the top of the emitter where the top area of tip 

2rcr2=6.28xl0"14 cm2, but to the surface of the small conical region at the top of 

the emitter. Since the emitting surface of a cone equals

n R 's j +h^ - 7tR2

where h is the cone height, R is the cone base diameter and the tip is 

approximated by a right cone with half angle of 10°, then an emission area of 

10 "11 cm^ suggests that the emission region is the top 500 A of the tip.

The smaller emitting areas obtained in other two samples (41-2-2 and 42-1-5) 

correspond to only a few atomic sites at the each emitter contributing to the 

emission. This result suggests that emission occurs at the atomically sharp tip 

region only [13].

The field conversion factors obtained from these experiments are similar to 

results of other research studies. This is probably due to the similar device 

geometry.

5.4 I vs. Time Characterization

Tem poral fluctuations have been observed in em ission current 

measurements since Spindt’s observations on molybdenum around two
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decades ago [13]. Fluctuations of field emission current from single silicon 

gated emitters were measured after the emission becomes relatively calm and 

stable. Figs. 5.4.1.(1), (2), and (3) show the short term fluctuation at various 

emission current levels for sample 41-2-2.
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10x10-10

j= 5 X10-10

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

t, sec.

(1)

10x10*8

I  5 X10-8

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

t, sec.

(2)

10x10-7  -----

< 5x10-7

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

t. sec.

(3)

Figs. 5.4.1.(1), (2), and (3) The short term fluctuation of various emission 

current levels from single silicon gated field emitter of sample 41-2-2.
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The fluctuation data of Fig. 5.4.1. (3) were obtained after the emission current 

reached about 0.5 |xA and stabilized for a few tens of minutes. Then V was 

reduced to lower the emission current to around 50 nA at which values the 

data of Fig. 5.4.1.(2) were acquired. Finally, the emission current was reduced 

to 0.35 nA by further reducing the applied voltage and the data for Fig. 5.4.1.(1) 

were obtained. The fluctuation rates are 10%, 16% and 40% for Figs. 5.4.1.(1),

(2) and (3), respectively. Similar behavior is observed for sample 42-1-5 with a 

29% fluctuation rate at around 1.4 nA emission current. The higher 

fluctuation rate for higher emission current is not well known. However, the 

current fluctuation can be reduced significantly by using a field emitter array 

and obtaining an average current from the array [29].

5.5 I vs. V Characterization

In order to understand more about the emission, the gate current Ig and the 

collector current Ic were measured. Fig. 5.5.1 shows the collector current 

behavior as a function of both Vge and Vcg for device 42-1-5 where Vge is the 

voltage between the gate and the emitter, and Vcg is the voltage between the 

collector and the gate. The error bars are based on the temporal current 

fluctuations described in Fig. 5.4.1.
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Tip 42-1-5
3e-9

Vge = 130 V

3e-9

2e-9

ri.
E< 1e-9
o'

Vge = 120 V -1e-9

5e-10 Vge=115V

Oe+O
-200 -150 -100 -50 0 50 100 150 200

Vcg, Volt

Fig. 5.5.1 The triode behavior of sample 42-1-5.

The collector begins to collect the emission current when Vcg is -100 v. The 

collector current increases as Vcg increases; this is the region in which the 

current is limited by the space charge. The collector current becomes 

saturated when Vcg increases to around - 50 v. In the saturation region the 

collector current is limited by the emission current and does not change as 

Vcg increases unless Vge increases.

It is interesting to set Vcg at extreme values to observe the relation of Ic and 

Ig. For Vcg = -200 v most of the emission current goes to the gate while the 

collector collects very little current (almost zero) as shown as Figs. 5.5.2. The
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collector current shown in this figure is leakage current and this current does 

not increase as Vge increases.

Tip 41-2-2

Vcg = - 200 V

10'8

□□ □ □□

50 60 70 80 90 100 110 120

Vge, Volt

Fig. 5.5.2 The gate and the collector currents as a function of Vge for sample

41-2-2.

If Vcg is set at 200 V, a major part of the emission current goes to the collector 

and only a minor part to the gate. Figs. 5.5.3.(a), and (b) show the collector 

current Ic and the gate current Ig as a function of Vge for devices 41-2-2, and

42-1-5, respectively.

The transconductance gm, which is defined by gm=3Ic/3Vge is 3x10"® mhos 

for device 41-2-2 at Ic = 0.35 |iA and Vge =120 v and is 5x10' ^  mhos for device
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42-1-5 at Ic = 5 nA and Vge = 130 v. These values can be increased (1) by 

increasing the Vge or (2) by using a field emitter array.

Tip 41-2-2

Vcg = 200 V

40 50 60 70 80 90 100 110 120 130

Vge, Volt

Fig. 5.5.3.(a) The collector and the gate currents as a function of Vge for 

sample 41-2-2.
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Tip 42-1-5
10

Vcg = 200 V

10

10

70 80 90 100 110 120 130 140

Vge, Volt

Fig. 5.5.3.(b) The collector current as a function of Vge for sample 42-1-5.

In Figs. 5.5.3.(a) and (b), the gate current is smaller than the collector current 

and both gate and collector currents increase as Vge increases. This triode 

behavior has been observed elsewhere with a Ig/Ic ratio range from 0.1% to 

30% [27] [29] [47] [77-78]. The large variation of the Ig/Ic ratio is possibly due to 

variations in test device geometry. From the Figs. 5.5.3, the typical Ig/Ic ratios 

are 0.25% for device 41-2-2 and 5% for device 42-1-5. The low Ig/Ic ratio for
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the former device can be explained by the fact that the emitter in device 41-2-2 

protrudes more (higher 8) than in device 42-1-1.

5.6 Device Failure and Electrostatic Discharge (ESD)

(1) Device Failure:

The phenomenon of a vacuum arc completely destroying the emitters 

during emission measurement is generally accepted as the cause of device 

failure [79-81], where the vacuum arc is initiated by the high emission current 

density [76]. The device failure has been observed in this research as well as by 

other researchers [13] [27] [81].

Fig. 5.6.1 shows the various degrees of damage to the gated field emitter 

structures. Outgasing from the material of the device is one possible cause of 

the vacuum arc. Extra baking at higher temperature (380°C for 30 min.) at the 

final fabrication stage help to reduce outgassing was used on the device and 

fewer devices failed was observed. It is possibly that reduced device failure 

was a result of reduced outgassing. It should be noted that the damages, which 

occur even the applied gate to emitter voltage is less than 150 volts. The 

occurings do not trigger or chain trigger on neighboring gated field emitters.
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Fig. 5.6.1 Various degrees of device damage.

(2) ESD (electrostatic discharge):

Electrostatic discharge which destroys gated field emitters and produces a 

structure essentially the same as that shown in Fig. 5.6.1 has been observed. 

An electrostatic charge may accumulate on the field emission device during 

fabrication or while handling, as in the case of other semiconductor devices. 

Since the field emission device uses a sharp emitter and a narrow space 

separating the emitter and the gate , an accumulated electrostatic charge on 

the gate or on the emitter can be discharged to the other easily. In order to
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avoid the ESD, there are two possible major approaches: (1) build in a 

protection circuit which must be able to sink a ESD to the device; (2) use extra 

precautions such as conducting gloves or handling tools.
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CHAPTER 6 
SUMMARY OF RESULTS

This experimental work has been concentrated on the fabrication of silicon 

conic tips, and wedges and GaAs wedges, and the characterization of gated 

silicon micro field emitter triodes. The main result of this dissertation are as 

follows:

(1) Silicon conic and wedge tips with nm-scale radii have been fabricated by 

etching and dry oxidation. Techniques were developed for making optimum 

shapes, and optimum oxidation treatments were determined.

(2) GaAs wedges with radius 400 A or less also have been fabricated. These 

wedges have potential use as field emitters.

(3) A new self-aligned process has been developed to make a gated field 

emitter. This process provides advantages such as a self-aligned gate opening 

to less than 0.5 pm diameter, a planar gate electrode, and a thick dielectric 

layer for capacitance reduction.

(4) The effect of oxygen plasma on silicon tips and a problem of electron 

bombardment on the surface of the dielectric material has been revealed and 

discussed.

(5) Various materials such as thermal silicon oxide, CVD silicon oxide, S.O.G. 

and polyimide used for dielectric films have been evaluated and used for 

device fabrication.

(6) The emission of single gated silicon field emitters has been observed and 

shown to obey Fowler-Nordheim behavior. The single emitters have turn-
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on voltage above 25 and typically 50-90 V, and reproducible emission currents 

have been measured in the range 5 pA-lpA. Emitting areas of 1 x 10"16 - 1.5 x 

10" 11 cm2 ancj field conversion factors 3 x 10^ - 8 x 10^ cm"l have been 

calculated from the emission data, and comparison were made with other 

research results.

(7) The gradually increasing emission current at the early stage of emission 

has been observed and self-cleaning is a likely cause of this phenomenon. 

Emission becomes relatively calm and stable after a few minutes emission.

(8) The temporal fluctuation of emission current have been measured after 

the emission has been stabilized. Fluctuation rates of 10%, 16% and 40% were 

found for emission current around 0.35 nA, 50 nA and 0.5 pA, respectively.

(9) I vs. V characteristics were investigated. The field emission triodes show 

an I vs. V curve similar to that of solid state triodes. One triode with a low 

Ig/Ic ratio of 0.25% is probably due to a high protrusion of the emitter above 

the gate.

(10) The device failure of the gated field emitter has been observed, and 

material outgassing is likely responsible. ESD which also destroys the emitter 

also has been experienced occuring during device handling.
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APPENDIX A
SILICON FIELD EMISSION MICRO

EMITTERS PROCESSING PARAMETERS

The following steps are ordered in numbers for the processing.

(1) Use a n+ (N d = 10*8 cm'3) (100) silicon wafer.

(2) Dry oxidation to form 1500 A silicon oxide.
Gas: oxygen
Gas: Flow Rate: 150 seem 
Reaction Chamber Pressure: 1 atm 
Substrate Temp.: 1050°C 
Oxidation Time: 2 hrs.

(3) Spin on resist.
Resist: AZ 5214E 
Spin Rate: 4K rpm 
Spin Time: 30 sec.

(4) Softbake 30 min. at 90°C oven.

(5) U.V. Exposure for 5.5 sec. followed by 1 min. at 125°C hot plate, 
then flood U.V. exposure for 9 sec..
Exposure Energy: 15.0 W/cm^

(6) Develop in a solution of one part AZ developer and one part D.I. for 45 
sec..

(7) Hardbake 30 min. at 130°C.
Note: Steps (3) - (7) are typical lithography technique.

(8) RIE.
Reactive Gas: C2F6 

Gas Flow Rate: 5 seem

101
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Chamber Pressure: 30 mtorr 
RF Power: 100 W
Etching Rate: 300 A /m in for resist; 300 A/min. for silicon dioxide; 
300A/min. for silicon.

(9) Apply acetone, methanol to wash out resist.

(10) Use oxygen plasma to clean resist residue.
Reactive Gas: 100 % oxygen
Chamber Pressure: 280 mtorr 
Power: 50 W 
Etching Time: 5 min.

(11) The NAH etching.
Etchant Composition: 95ml CH3COOH; 3mlHN03 ; 2ml HF 
Etching Temp. : R.T.
Etching Time: 3 min. for 2 pm disc mask

(12) Use HF to remove silicon dioxide.

(13) Oxidation on Sample.
Gas: oxygen
Oxidation Temp.: 950°C 
Oxidation Time: 5.5 hrs.
Note: The step (13) may repeat to obtain desired sharpness.

(14) Use HF to remove silicon oxide
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APPENDIX B
GATED SILICON FIELD EMISSION MICRO

EMITTERS PROCESSING PARAMETERS

The following processes have been used in this research for a gated field 

emitter. Some of them are industry standards, some are prepared to serve this 

research only.

(1) Deposit 4500 A plasma CVD silicon oxide.
Gases: silane; nitrious gas; argon
Gas Flow Rate: 160 sccm/silane; 90 seem/nitrious oxide; 680 seem/argon
Chamber Pressure: 200 mtorr
Substrate Temp.: 300°C
RF Power: 30 W
Deposition Tme: 75 min.

(2) Check the thickness by Rudoph Research/AutoEL ellipsometer.

(3) Spin S.O.G. on sample with spin rate 4 K rpm and spin time 30 Sec..

(4) Hardbake 40 min. at 130°C.

(5) Check S.O.G. thickness by Nanometrics 210 film thickness system.

(6) Electron beam evaporate Ti/Au (200/2000 A) on backside of sample. 
Evaporation Rate: 5 A/sec. for Ti, 10 A/sec. for Au.

(7) RIE S.O.G..
Reactive Gas: C2F6

Gas Flow Rate: 5 seem 
Chamber Pressure: 30 mtorr 
RF Power: 100 W
Etching Rate: 650 A/min. for S.O.G.; 300 A/min. for silicon dioxide.
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(8) BHF ( BOE 6:1) 1.5 min..

(9) Electron beam evaporation A1 (2000 A)
Evaporation Rate: 5 A/sec.

(10) Repeat steps (3) - (7).

(11) A1 etch to obtain gate runner pattern.
Etchant Composition: 3ml D.I.; 12 ml CH3COOH; 3ml HNO3:12ml H3PO4 

Etching Temp.: R.T.
Etching Time: 5 min.

(12) Use acetone, methanol to wash out resist.

(13) A1 etch to remove A1 from the emitter.
Etchant Composition: 3ml D.I.; 12 ml CH3COOH; 3ml HNO3:12ml H3PO4 

Etching Temp.: R.T.
Etching Time: 3.5 min.
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APPENDIX C
GATED SILICON FIELD EMISSION MICRO

TRIODES PROCESSING PARAMETERS

(1) Use steps (3) - (7) of Appendix A.

(2) Electron beam evaporate Ti/Au (200/2000 A) on the sample.
Evaporation Rate: 5 A/sec. for Ti, 10 A/sec. for Au

(3) Lift-off by immersing in acetone solution.

(4) Package ITO plate to sample with a mixture of 50pm glass spacers and 
Roland Adhesive 61 followed by U.V. cured 1 hr..

(5) Place device on Au patterned glass slide with silver paste.
Note: The Au pattern glass is prepared by the following steps:
(a) Use step (2) of this Appendix
(b) Use Steps (3) -(7) of Appendix A
(c) Ion Mill: Ion mill power density: 0.25 W / cm
(d) Use step (10) of Appendix A
(e) Use acetone, methanol to wash out Resist.

(6) Connect the gate pads of the sample to Au pads of glass slide by wire 
bonding.
Wire Type: Au 
Bonding Type: ultrasonic

(7) Put Device into Vacuum Pump with Device Holder Followed by Baking 24 
hrs. at 90°C.
Vacuum Performance: 2x10 "8 torr
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APPENDIX D  
TEM SAMPLE PREPARATION STEPS FOR 

SILICON WEDGE

1. Coat CVD silicon oxide 8000 A on the sample.

2. Make a sandwich (sample is packaged in the middle part) and put on a 

stand.

3. Grind gradually and slowly until observe the wedge.

4. Polish with syton.

5. Flip sample and grind it until 100 pm thickness Left.

6. Dimple sample.

(a) Polish with 2-4 pm diamond paste until 35 pm thickness left.

(b) Polish with 0.3 pm aluminum oxide paste for 15 -20 min.

(c) Polish with syton for 10 -20 min.

(d) Place Mo ring on sample by epoxy + hardener followed by cure 2 hrs. at 

R.T..

(e) Remove sample with ring from stand by dipping in TCE (Trichloro 

ethane).

7. Ion mill sample.

Ion Miller:

Vacuum: 5x10 torr 

Gas: Ar

Beam Angle: 20°

Gun Current: 0.5 mA 

Mill Rate: 5 pm /hr at 4 kv

(a) Place sample with ring onto ion mill specimen holder.
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(b) Ion mill until a small hole is formed nearly a wedge (usually takes 8 hrs. to 

generate a small hole).

(8) Sample is ready for TEM examination.
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