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ABSTRACT
Kinetic Studies of Photo-Initiated Oxidation of Toxic Organic 

Pollutants Including the Formation and the Destruction of Intermediates

by
Yuan-Shen Li

The photo-initiated oxidation process, using hydrogen peroxide or ozone under 
ultraviolet radiation, has been proven to be an effective treatment method for toxic 
organic pollutants in wastewater. Most of the recent kinetic studies of the process were 
concentrated on the breakdown mechanisms of the pollutant itself. The formation and 
the destruction of intermediates were seldom investigated. Also the mechanisms and 
their reaction rate constants of free radical formation and destruction in the O3 /UV or 
H2 O2 /UV reactor were seldom studied.

The objective of this research is to study the kinetics of photo-initiated oxidation of 
toxic organic pollutants including the formation and the destruction of the 
intermediates. The reaction mechanisms and their rate constants of free radical 
formation and destruction in the ozone (O3 ), O3 /UV, and H2 O2 /UV reactor were also 
studied. Three refractory pollutants, nitrotoluene, naphthalene and 2,4,6- 
trichlorophenol were conducted in a 1 2 0  liter stainless reactor and the ultraviolet 
radiation source was provided by a low pressure mercury lamp located at the center of 
the reactor. The analysis of the concentration of pollutants and their intermediates were 
done by high performance liquid chromatograph (HPLC). The intermediates were 
identified by the GC/MS and HPLC. The kinetic models developed were verified by 
the experimental data taken from the reactor. The Rosenbrook Hillclimb Optimization 
Algorithm together with the Foudh-order Runge-Kutta method were used on a digital 
computer to calculate the reaction rate constants. By comparing the theoretical output 
concentration of pollutants with the experimental results in the CSTR processes, it is 
believed that the calculated rate constants and the proposed kinetic models can be 
practically used in the photolytic oxidation waste water treatment process.
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CHAPTER 1 
INTRODUCTION

In recent years the major emphasis in the waste-water treatments has shifted from the 

removal of conventional pollutants (e.q. Biological Oxygen Demand and Suspended 

Solid) to a variety of the hazardous/toxic chemical pollutants. Chemicals which are 

referred as hazardous/toxic are being found more and more in our environments. The 

sources of the toxic chemical pollutants are mostly from the industrial processes. 

Although the flow of the waste waters from the industrial processes may be small, the 

high concentration and the increasing volume give great pressure on the natural 

environment. In order to reduce the concentration of the toxic pollutants to a low 

residual level, many waste water treatment methods have been proposed, such as the 

physical/chemical treatments: precipitation, coagulation, filtration, activated carbon 

adsorption oxidation and biological treatment methods.

Oxidation is one of the chemical treatment methods used for the degradation of 

the chemical pollutants from water solutions. Four chemical oxidants are commonly 

used in the U.S.A. : chlorine, chlorine dioxide, bromine chloride and ozone. 

Chlorination is one of the most commonly used methods for the water and waste 

water treatment because chlorine can destroy the pathogenic as well as other harmful 

organisms that may endanger human health. However, chlorination is effectiveless to 

those toxic and refractory chemical pollutants and has been found that many organic 

constituents in waste water may react with chlorine to form toxic compounds. 

Chlorination has also been found to produce trihalomethanes which are suspected of 

being carcinogens in water treatment. Because of the potential hazards associated with 

chlorination by-products, other methods for the treatment of water and waste water 

are considered as alternatives to chlorination. Among the alternatives, biological unit 

processes and advance oxidation methods such as ozone, ozone with ultraviolet
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radiation, hydrogen peroxide, hydrogen peroxide with ultraviolet radiation and other 

combinations have been receiving much attention. With proper analysis and 

environmental control, almost all waste water which have concentrations below a 

certain value can be treated biologically. But for some highly toxic pollutants, they 

may kill biomass at a higher concentration. Also, the degradation rate is so low that it 

takes time to degrade to a low concentration. Ozone was first used to disinfect water 

supplies in the France in the early 1900s. Its use there increased and eventually spread 

into several European countries. A common use for ozone in this process is to control 

taste-, odor, and color-producing agents. Recently, advances in ozone generation and 

solution technology have made the use of ozone more competitive economically, for 

waste water disinfection. Ozone can also be used in waste water treatment for odor 

control and in advanced waste water treatment for the removal of some soluble 

refractory toxic chemicals. In the early 1970's, the combination of ultraviolet (UV) 

radiation with ozonation had been shown to increase the rate of ozone oxidations in an 

aqueous solution. A later series of experiments demonstrated that ozone/UV 

combination caused oxidations to proceed more rapidly than does the use of ozone 

alone, especially for compounds normally refractory to the use of ozone alone ( 1). 

This is due to the decomposition of ozone under UV radiation which can produce 

more powerful oxidants, such as hydroxyl radical (OH*) and hydrodioxy radical 

(H0 2 *), and a constant intensity of ultraviolet radiation is used to activate those 

compounds and accelerate the reaction. The ozone, hydroxyl radicals and hydrodioxy 

radicals are the species responsible for the strong germicide activity of ozonated 

solutions.

While ozone/UV treatment process is undoubtedly effective on a wide range of 

compounds, it has a number of disadvantages. Ozone is an unstable gas and must be
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generated on-site and used immediately. An ozone contacting device must be provided 

which can achieve adequate mass transfer of ozone. An oxidant which may be as 

effective as ozone but is better suited for use in small treatment system is hydrogen 

peroxide. As one of the strongest oxidants, hydrogen peroxide (H2 O2 ), when 

dissolved in an aqueous solution and when its exposed to the ultraviolet radiation, it 

can also produce the same free radicals, hydroxyl radical, and hydrodioxy radical, 

same as the ozone under the ultraviolet radiation. For some pollutants, the 

decomposition rate in the H2 O2 /UV process is more effective than in the O3 /UV 

process. This phenomena depends on which radical predominates the reaction 

pathway. In H2 O2 /UV treatment process, the predominant radical is hydroxyl radical. 

While in O3 /UV process, the hydrodioxy radical is the predominant radical.

In the ozone treatment process, several investigators have reported that ozonation 

can produce some toxic mutagenic and/or carcinogenic compounds. Whether toxic 

intermediates are formed during ozonation depends on ozone dose, contact time, and 

precursor pollutants (2). Very little research has been done in the O3 /UV and 

H2 O2 /UV processes. It is believed that the formation of toxic intermediates are 

dependent on the contact time, the precursor pollutants, the intensity of ultraviolet 

radiation, and the ozone or hydrogen peroxide dose.

The topic of this research involves the study of the degradation of o-nitrotoluene 

(C7 H7NO2 ), naphthalene (CiqHs) and 2,4,6-trichlorophenol using O3 , O3 /UV and 

H2 O2 /UV processes. Also during the pollutant degradation period, to investigate the 

formation and the destruction of the intermediates. We intended to propose 

reasonable kinetic reaction models for the degradation of these compounds and 

intermediates using O3 , O3 /UV and H2 O2 /UV. Before study, the degradation of 

those pollutants, mechanisms and their reaction rate constants of free radicals 

formation and destruction in a H2 O2 /UV reactor and in a O3 /UV reactor will also be
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investigated. By using the Rosenbrook Hillclimb Optimization Algorithm (3) with the 

Fourth-Order Runge-Kutta method on a digital computer, we can obtain the reaction 

rate constants for the different kinds of reaction mechanisms and the mass transfer 

coefficients between liquid and gas phase for the reaction of O3  alone, O3 /UV and 

H2 O2 /UV in the photo-reactor and O3 , O3 /UV and H2 O2 /UV with these three 

compounds.

In order to demonstrate the feasibility of the O3 /UV and the H2 O2 /UV processes 

in waste water treatment, constant flow stirred tank reactor (CSTR) experiments were 

also conducted. By using the reaction rate constants and the mass transfer coefficients 

which are obtained from the batch reactor reaction from a series of experiments, the 

theoretical output concentration for CSTR can also be predicted. Comparison of the 

theoretical data and the experimental data in the CSTR process, has shown good 

aggrement. We believe, that these kinetic models and the rate constants for the 

pollutants and intermediates in different treatment processes can be used in practical 

waste water treatment.



CHAPTER 2 
REVIEW OF PREVIOUS STUDIES

2.1 Ozone Properties 

Ozone (O3 ) is an unstable, blue colored gas having a pungent characteristic odor, but 

at the concentration at which it is ordinary produced this odor is not noticeable. The 

most efficient method of producing ozone today is by electric discharge. Ozone is 

generated either from air or pure oxygen when a high voltage is applied across the 

gap of narrowly spaced electrodes. The high energy corona created by this 

arrangement dissociates one oxygen molecule, which reforms with two other oxygen 

molecules to create two ozone molecules. Thus the structure of the ozone molecule is 

that of an obtuse angle, where a central oxygen atom is attached to two equidistant 

oxygen atoms. Ozone gas is slightly soluble in water, and even more in other liquids, 

especially at low temperatures. In an acid solution, ozone has an oxidation potential

2.07 volts and of 1.24 volts in basic solution at 20 °C, thereby making it capable of 

oxidizing many organic and inorganic chemicals. Rosenthal (4) reported that the half- 

life period of ozone in distilled water is about 20 minutes at 20 °C. When it is 

sparged into water, saturation is difficult to achieve. This is because in water solution, 

ozone may react directly with the dissolved substances or it may decompose to form 

secondary oxidants such as hydroxyl radical (OH*) and hydroperoxide radical (HC^*)- 

Ozone is used commercially in the purification of drinking water, the preparation of 

chemicals, the treatment of industrial wastes, the deodorization of air and sewage 

gases and the preservation of goods in cold storage.

2.2 The Decomposition of Ozone in W ater

The decomposition of ozone in an aqueous solution has been thoroughly studies for 

many years. However, prediction of the reaction mechanism and the reaction kinetics 

of the decomposition of ozone in water are still uncertain. This is because in water

5
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solution ozone may react directly with dissolved substance or it may decompose to 

form secondary oxidants, such as OH* and H0 2 *, which then react with solutes 

immediately. These different reaction pathways produce different products, each 

having a different kind of kinetics and reaction mechanisms.

Peleg (5) proposed that the kinetics of ozone decomposition in water solution is 

between first order and second order, depending on the pH value and the temperature. 

Stumm (6 ) pointed out that at pH ranging between 7.6 to 10.4 and temperature from

1.2 °C to 19.8 °C the reaction order with respect to ozone is first order reaction. 

Rothmund and Burgstaller (7) found that it is second order reaction with respect to 

ozone at the pH range 2 to 4 at 0 °C. Hewes and Davison (8 ) summarized the 

reference literature and suggested that the decomposition of ozone in water is a second 

order reaction at pH 2 to 4 with the rate insensitive to pH, at pH 6  the reaction order 

is 2/3 to 2, at pH 8  it is first order reaction and above pH 6  the reaction rate increases 

rapidly with pH.

One reaction mechanism, suggested by Weiss (9) showed that the decomposition 

of ozone in water, at a given pH value, was catalyzed by the hydroxyl ion (OH-) for 

the initial reaction. The overall reaction mechanism which he suggested was :

O3  +  OH—> O2  +  HO2 *

O3  +  HO2 * —> 2 0 2  +  OH*

O3  +  OH* —> 0 2  +  H0 2 *

2H02* —> 0 3 +  H2O

H02- +  OH* -> O2  +  H2 O

From this mechanism above, Weiss calculated that the kinetics of ozone 

decomposition was 3/2 order with respect to the ozone concentration.

Alder and Hill (10) on the basis of their kinetics studies, suggested the following 

first order reaction mechanism :
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O3  +  H2 O -> HO3  +  +  0H - 

HO3 +  +  OH' «  2H 02- 

O3  +  H02* HO’ +  2 0 2  

H 0*+ H02* —> H20  +  0 2

Peleg (11) referred the previous studies and proposed the following more 

reasonable reaction mechanism for the ozone decomposition in an aqueous solution : 

O3  +  H20  —> 0 2  +  20H*

O3  +  OH* —> 0 2  +  H 0 2 ’

O3  +  HO2 * —̂ 2 0 2  OH*

OH* +  OH- -> H2 O2  

OH* +  HO2 ’ ~* H20  +  0 2  

OH* +  OH' -> O ' +  H20  

o -  +  o 2  - » 0 3 - 

H 0 2* +  H02* —> H2 O2  +  0 2  

Staehelin and Holgne (12) also proposed a more complicated reaction mechanism

for the decomposition of ozone in the pure water and in the presence of organic

solutes. Tomiyasu and co-workers (13) reported the kinetics and the reaction 

mechanism of ozone decomposition in an basic aqueous solution. All of the above 

mentioned investigators generally agreed that the decomposition of ozone in an 

aqueous solution can produce hydroxyl radical and be catalyzed by these hydroxyl 

radicals. Thus, we can write the overall reaction mechanism of ozone decomposition 

in an neutral aqueous solution as follows :

O3  -f H20  —> 2 OH* +  0 2  

O3  +  OH* —> 0 2  +  H 0 2*

O3  +  HO2 ' —> 2 0 2  +  OH*
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OH- + OH- -> H202 

OH- +  H 0 2- —> H20  +  0 2 

h o 2- +  h o 2- —> H20 2 +  0 2

2.3 The Ozone Oxidation of Organic Chemicals

Ozone oxidation can generally be classified into two types : mass transfer controlled 

and chemical reaction rate controlled (14). Mass transfer controlled oxidation with 

ozone occurs so rapidly that rate is limited only by the speed at which ozone can be 

added to the solution. However, for those highly volatile organic chemicals the mass 

transfer controlled reaction is as important as the chemical reaction rate control. Thus, 

this reaction still should be considered during the ozone oxidation. Previous 

researchers neglected this effective which may cause a serious error during the 

reaction kinetic study. Thus, we put this reaction control in our ozone oxidation 

mechanism which will propose in chapter 4. As for the chemical reaction rate 

controlled, Hoigne and his co-workers (15) stated that there are two types of 

ozonation reaction : the direct reaction of ozone with the organic compound and the 

free radicals of ozone which involve hydroxyl radical and hydroperoxide radical.

During ozonation, some of the added ozone may react directly with the solute. 

However, part of the added ozone decomposes to form hydroxyl free radicals and 

hydroperoxide free radicals before its reaction with the oxidized solute. Ozone in 

acidic solution has an oxidation potential of 2.07 volts and of 1.24 volts in an basic 

solution. The oxidation potential of the hydroxyl free radical is 2.87 volts and the 

hydroperoxide is 1.7 in acidic solution. Those are all extremely reactive oxidants.

The quantitative of formation of the free radicals is dependent on pH value (16). 

A higher pH value can increase the formation of hydroxyl free radical and 

hydroperoxide free radical. Thus, there may be several reaction pathways contributing
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to the oxidation of organic chemicals. Singer and Gurol (17) used ozone to treat 

phenol solution at pH 3.0 found that muconic acid is the predominant intermediate 

and the concentration of other intermediates, catechol and hydroquinone, is small. 

This is contrary to the observations of Eisenhauer (18). Eisenhauer who run the same 

experiment at higher pH value found that catechol and hydroquinone are the major 

intermediates. Thus it is very important to maintain the pH at a certain value.

Many chemistry researchers reported the papers about the initial ozone direct 

attack organic chemicals. They found that ozone molecule has an obtuse apex angle 

and that it should be consider a hybrid of the following resonating structure:

0  =  0 - 0 < -> 0 - 0  =  0 < -> 0 - 0 - 0 < -> 0 - 0 - 0  

The first step is the electrophic attack by a terminal oxygen atom and the second step 

is the central oxygen atom completes the attack on the other carbon atom.

Hydroxyl radical and hydroperoxide radical initiate oxidation by three main types 

of reaction : (1) radical addition reaction (2) hydrogen abstraction reaction (3) 

electron transfer reaction (19). Because these two radicals do not react very 

selectively with the dissolved materials, their reactions always lead to a great variety 

of intermediate products.

2.4 Photolytic Ozonation : 03/U V  

The ozone in combination with ultraviolet radiation (O3 /UV) process for the 

oxidation of refractory and toxic organic or inorganic was developed in the 1970's. In 

recent years, this combination process has been shown to increase the rate of many 

ozone oxidation in an aqueous solution, especially for those chemicals that do not 

react directly with ozone.

UV radiation at 180 - 400 nm provides 72 - 155 Kcal/mole (20) energy. For 

many organic chemicals, this radiation supports enough energy to reach the excited
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state, when it is easier to be decomposed by oxidants. This energy also accelerates the 

decomposition of ozone and produces other oxidizing free radicals, hydroxyl radical 

and hydroperoxide radical from ozone.

At present a detailed investigation of the mechanisms of ozonation in the presence 

of UV radiation, and the proposed mechanisms are speculative. Prengle and Mauk 

(20) proposed the following steps for the reaction of ozone under the UV radiation :

(1) production of highly oxidizing photolytic species from ozone.

(2 ) production of free radicals and excited state photolytic species from the parent 

compound.

(3) reaction with water species OH* and H*.

Those reaction steps did not tell us the detailed reaction mechanisms of O3 /UV 

reaction. Gray and co-workers (21) also proposed the following simple O3 /UV 

reaction mechanism :

O3  -----—— X)2 + 0 (!D)

O +  H20 ----- * 2HO*

In the water - rich gas phase, the process involves dissociation into an oxygen 

molecule and an oxygen atom in the state. The latter may react with a water 

molecule to produce two hydroxyl radicals. They also determined the ozone mass 

transfer coefficients between the gas phase and the liquid phase at different ozone gas 

flow rate and the experimental results of the concentration of ozone in the liquid 

phase with and without irradiation with 254-nm UV radiation. This reaction 

mechanisms is too simple to explain all of the reaction. For example, it did not 

mention the decomposition reaction of ozone which had already dissolved into water.

Prengle (22) presented a overall reaction mechanisms of the O3 /UV photo 

oxidation of M species containing sulfur, phosphorous and halogen in an aqueous 

solution in a simplified process.
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O3 ---------- » O2 * +  0*

O* +  H20  — > 20H*

O3  +  OH* —^ H 0 2* +  0 2

h v
M -----------> M*

M —  — R. +  0 2

M* +  {hv, O*, OH*, H 0 2* }—>R ., I, H

The overall reaction is given as :

M, M*, R., I +  {hv, O*, OH*, H 0 2.} —» C 02, H2 0 , SO4 2-, P 0 42' ,  C1‘ 

Prengle used trihalomethane as the M species, As a result of UV radiation, the 

overall oxidation rate was enhanced.

Although the above listed reactions have different kinds of reaction mechanisms, 

many investigator (2 1 ) believe that there have in common a chain reaction which is 

introduced by UV protons that decompose ozone into an oxygen molecule and an 

oxygen radical. The oxygen radical may immediately react with the water molecule to 

produce two hydroxyl radicals. Hydroxyl radicals continue to be produced and 

consumed in a complex radical reaction mechanism. The hydroperoxide radicals 

which are produced from the reaction of ozone with hydroxyl radical also involved in 

the chain reaction. The O3 /UV treatment process may also involve the formation of 

excited organic species which may subsequently react with hydroxyl radicals and 

hydroperoxide radicals. Since the concentration of ozone is very small in this process, 

the effective of ozone on the pollutants is also small.

Gurol and Vatistas (22) did a comparative study of oxidation of phenolic 

compounds by UV 03 and 03/UV at different pH values. They obtained the 

following results :

(1) The ozone molecular is the predominant oxidation in an acid solution.
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(2) In a basic solution, in the absence or presence of UV radiation, free radicals 

reaction are the major pathway to the oxidation of phenolic compounds.

(3) The overall removal of the phenols and the total organic carbon (TOC) are 

increased with increasing pH value during ozonation, with or without UV radiation.

(4) For a specific pH value, the ozone/UV process has the highest removal rate for 

the phenol and the TOC chemicals, followed by ozone alone, and then UV light 

alone.

Our experimental result also match above conclusion.

2.5 Photolytic Hydrogen Peroxide

Hydrogen peroxide is a weak acidic, colorless and rather unstable liquid It is 

completely miscible with water. Hydrogen peroxide is also a strong oxidant and can 

oxidize some of the organic chemicals.

While the ozone/UV treatment is undoubtedly effective on a wide range of 

compounds, it still has a number of disadvantage. Ozone is unstable gas and must be 

generated on-site and used immediately. An ozone contacting device must be provided 

which can achieve an adequate mass transfer of ozone into the liquid phase. An 

oxidant which may be as effective as ozone, but is better suited for use in a small 

treatment system, is hydrogen peroxide, H2 O2 , plus UV radiation. Malaiyandi and 

co-worker (23) found that this method could reduce the TOC content of distilled water 

by about 8 8  % and of tap water by 98 %. Sundstrom used this process effectively 

destruct the halogenated aliphatics (24). They also compared the reaction rate with 

UV, H2 O2 , H2 O2 /UV at different temperature and had the following resu lt:

(1) H2 O2 /UV process has the highest efficiency as compared to other methods.
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(2) The rates of decomposition is increased when the hydrogen peroxide concentration 

and the temperature are increased and the rate of decomposition is highly on the 

structure of organic compounds dependent.

Weir et al. (25), in 1987, studied on the destruction of benzene by H202/UV 

process. They point out th a t:

(1) Reaction rate increasing when hydrogen peroxide concentration or UV radiation 

intensity increased.

(2) At higher pH value, benzene decomposed slowly which probably caused by 

hydrogen peroxide's base catalyzed decomposition.

The chemistry of the H2 O2 /UV reaction involves the generation of hydroxyl 

radicals and other reactive species by the photochemical reaction of UV light on 

hydrogen peroxide. The detail reaction mechanisms are still not clear. Hochanadel 

(25) first proposed a simple but useful mechanism for the H2 O2 /UV reaction.

hv
H2 O2 ---------- > 20H-

H2 O2  +  OH- —> H2 0 . +  H 02‘

2H02- —> H202  +  02.

Later Yoshiro Ogata (26) proposed a very similar reaction mechanism as follows

H2 O2 ---------- > 20H-

H2 O2  +  OH- —> H2 0 . + H 02- 

H02* +  H2 O2  —  ̂OH- + H2 O +  O2  

2H02- —> H202  + 0 2
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Basically hydrogen peroxide produces two hydroxyl radical under suitable 

working condition. Then a series of chain reactions happen among the hydrogen 

peroxide, hydroxyl radical and hydroperoxide radical. Since the hydroxyl radical is 

produced first by the hydrogen peroxide decomposition, we should not neglect the 

reactions between two hydroxyl radical and hydroxyl radical with hydroperoxide 

radical. Thus, we propose a two step chain reaction mechanism for the hydrogen 

peroxide with ultraviolet radiation.. The detail mechanism is in chapter 4, reaction 

mechanism and kinetic model.

2.6 The Reaction Intermediates 

The intermediates which are produced from the pollutants were seldom studied, 

specially the reaction kinetic study in the O3 /UV and H2 O2 /UV process. Sundstrom 

(24) used benzene as the target pollutant and found that phenol, catechol, resorcinol 

and hydroquinone were produced from benzene. But the power of ultraviolet source 

and the reactor he used are so small that a total annular volume of 285 ml of reactor 

and 5.3 watts of ultraviolet source, which could not be used in the industrial waste­

water treatment for any practical purposes. The reaction rate constant which he 

calculated is only for the target pollutant, not including the intermediates. For some 

of the intermediates which have a quite high concentration, we should also consider 

the competitive reaction between the intermediates and the target pollutant.



CHAPTER 3
EXPERIMENTAL EQUIPMENTS AND PROCEDURES

3.1 Experimental Equipment

A schematic diagram of the apparatus used in the experiments is shown in Figure 3.1. 

The detail descriptions are as follows :

3.1.1 The Reactor

The vertical cylindric type reactor is made of #304 stainless steel. The outside 

diameter is 13 inches and the length is 55 inches, which gives approximately 104 

liters of hold-up volume. There are nine vertical sample ports evenly spaced in three 

rows. All the tubes connected to the reactor are of #304 stainless steel. The ultraviolet 

light source residue in the reactor with an annular space of about 3.5 inches between 

the lamp and the reactor well. A pH electrode which connects to the pH controller is 

located in the center of the reactor. There are two pumps used in this reactor. One 

pump, of 1 / 2  horse power rating, is used to recycle the solution in order to have 

maximum mixing. Another pump is used for feeding the pollutant solution to the 

reactor from a reservoir tank. The flow rate of the pollutant solution into the reactor 

is measure by a rotameter.

Ozone, oxygen or nitrogen introduced through the bottom of the reactor through 

a four-head sparger of medium porosity. The exhaust gas is vented from the top of the 

reactor into the laboratory hood. Complete mixing of the solution is achieved by 

recycling the solution and bubbling nitrogen gas into the reactor. The acid or basic 

solution is pumped into the reactor from the reservoir by the pH controlling pump to 

maintain a constant pH value. Hydrogen peroxide and pollutants are fed into the 

reactor from a port which is at the top of the reactor.

3.1.2 Ozone Generator

15
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Ozone is produced by a T-816 Ozone Generator which manufactured by the Welsbach 

Ozone System Corporation, Philadelphia, PA. This generator has a capacity for 

producing a minimum of 16 grams of pure, dry ozone per hour. It is a corona 

discharge type and cooled by water. Ozone output flow-rate is adjustable by a ball 

valve. The power is set at 110 W and 99.6 % pure, dry oxygen was used for ozone 

generation in this experiment.

3.1.3 Ultraviolet Light Source

The ultraviolet light source lamp was purchased from the Canrad - Hanovia Inc., 

Newark, NJ. It is a low pressure mercury vapor lamp with an arc length of 25 inches 

and has a power rate of 5000 watts. The lamp is a clear fused quartz tube with 

tungsten electrodes at both sides, filled with precisely measured amounts of mercury 

and inert argon gas. It is encased in two concentric wells made of quartz glass. The 

inner well, which houses the mercury lamp is connected to a nitrogen gas feed line to 

avoid an explosion hazard. Nitrogen if fed with a flow rate of under 100 cm3/min. 

The outer well is used to circulate the cooling water. Cooling water flow rate is kept 

at about 4 - 8  gallons per minutes. The power supplied to the lamp can be set to 300, 

200 or 125 watts/inch levels. Experiments are conducted at the 200 watts/inch power 

level for the UV lamp. Output wavelength of the lamp is around 254 nm. A detail 

structure of the UV lamp is in Figure 3.2, Appendix I.

3.1.4 pH Control System

A Cole Parmer Co. pH control system model 5654-12 is used to keep the solution in 

the reactor at a constant value. This system includes inbuild pH indicator and 

recorder, adjustable controlling pump, basic solution reservoir, and pH electrode 

which is installed inside the reactor.
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3.1.5 High Performance Liquid Chromatograph (HPLC)

A LDC / Millton Roy Co. made HPLC which includes Spectro Monitor III with 

variable UV/VIS detector, Constra Metric III & I, and Gradient Master, is used to 

determine the calibration curves and calculate the concentration for the pollutants. 

Analysis of the nitrotoluene and the naphthalene is conducted by using a 25 cm x

4.6 cm Zorbax ODS column,lot no. 7288B, which purchased from Phenomenex Co. 

with mobile phase gradient from 62 % acetonitrile in water to 1 0 0  % acetonitrile in 

water at 1.0 ml/min, and the flow rate of the mobile phase was 2.4 ml/min. The 

absorption wave length of the UV/VIS detector is set at 254 nm for these two 

chemicals. 2,4,6-trichlorophenol was measured by a 25 cm x 4.6 cm C8  column, 

LOT NO. 23826, with mobile phase 75 % methanol and 1 % acetic acid in water, 

and the flow rate is 1.0 ml/min. The absorption wave length of the detector is 280 

nm.

3.1.6 UV/VIS Spectrophotometer

A Varian DMS 200 UV-Visible spectrophotometer is used to determine the 

absorbance of the hydrogen peroxide mixture and the ozone solution at a certain 

wavelength, 260 nm and 352 nm.

3.1.7 Gas Chromatograph with Mass Detector (GC/MS)

The identification of the intermediates are done by the HP 5998 mass spectrometry 

couple with HP 5890 Gas chromatograph. All the samples were extracted by 

dichloromethane before inject into the instrument and 1 ul sample is injected into the 

GC/MS. A 25 m x 0.21 mm crosslink methyl-silicone capillary column was installed 

in the gas chromatograph.
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3.2 Experiments

3.2.1 Reagents and Chemicals

Distilled water is used in all experiments and the following chemicals are used as 

target pollutants :

1. O-Nitrotoluene (C7 H7 NO2 )

CH3

Yellow liquid; m.w. 137.13; b.p. 225° C; solubility 652 mg/1 at 30° C in water.

2. Naphthalene (C iqHs)

White solid; m.w. 128; b.p. 101.7° C; d 1.162 

3. 2,4,6-Trichlorophenol (C6 H3 OCI3 )

Cl

needle solid; m.w. 197.46 m.p. 197.46° C; b.p. 244.5° C ; solub. 800 mg/1
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3.2.2 Sample Collection and Analysis

One sample port, located in the center of the reactor, is used for sample collection. In 

order to eliminate the collection of the dead volume in the sample port, each sample 

jar was rinced twice with effluent solution from the reactor just prior to the sample 

collection. A 20 ml sample is collected and filtered before inject into the HPLC. The 

sample volume injected into the HPLC is 20 ul which was controlled by a sampling 

loop. In order to avoid of analysis error, each sample was measured two times.

3.2.3 Standard Solution

The pollutant solution was prepared precisely as in a closed flask as a standard 

solution. After completely dissolvies in distilled water, using HPLC analyzes to get 

the area reference concentration. By plotting the area versus concentration figure from 

the different sets of data, a straight line can be obtained. From the straight line, we 

know the pollutants concentration for each area which we read from the HPLC 

integrator. Standard solution stored for more than three days were discarded. Efforts 

have been made to maintain HPLC conditions as constant as possible. The calibration 

curves for three pollutants were plotted from Figure 3.3 to Figure 3.5.

3.2.4 Sample Preparation for GC/MS Analysis

The method which we used in the sample preparation for GC/MS analysis is follow 

the EPA standard method in series 625. The procedure is as follows :

1. Transfer 200 ml of the sample into a 500 ml separatory funnel.

2. Put 50 ml of the dichloromethane (DCM) into the funnel, then shake it for about 5 

minutes. After it settles down, transfer the bottom part solution into a beaker.

Repeat this procedure three times.
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3. By use of a hot water bath to concentrate the collected solution to about 5 ml and

ready to be analyzed.

3.2.5 Ozone Concentration Analysis

A sensitive spectrophotometric method was used to determine the ozone concentration

in water (25). The procedure was as follows :

1. 5 ml of the sample solution are introduced in a test tube containing 5 ml of 2 % 

neutral potassium, dissolve 13.61 g potassium dihydrogen-phosphate, 14.2 g 

anhydrous disodium hydrogen phosphate and 2 0 . 0  g potassium iodide in 1 0 0 0  ml 

distilled water.

2. After about 30 minutes the intensity of the absorbance at 352 nm is read using cells 

of 2 0  mm light path.

3. Calibration curve, Figure 3.6, was plotted from reading of a series of freshly 

prepared standards. The stock iodine solution 0.01 N (1 ml = 240 pg of ozone) is 

dilute to different portions with neutral potassium iodide. Then read the intensity of 

the absorbance at 352 nm for those standard solutions.

3.2.6 Hydrogen Peroxide Concentration Analysis

The concentration of hydrogen peroxide in the reactor was measured by a

spectrophotometric method. (26) The procedure is as follows :

1. A 80 ml of a sample solution is transferred into a 100 ml volumetric flask and 1 ml 

of the sodium hexametaphosphate solution, 10 g/1, 1 ml of the Co+ +  reagent, 4 

g/1 are added into the flask. The mixture was made up to 100 ml with the saturated 

bicarbonate solution.

2. The absorbance was measured at 260 nm using a 10 mm quartz cell by comparison 

with a blank-reagent solution.
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3. The standard solution ,3 % hydrogen peroxide, was diluted to different portion to 

make a calibration curve, Figure 3.7.

3.2.7 Calibartion Curve Between Ozone and Hydrogen Peroxide

We used photometric methods for analysis of ozone and hydrogen peroxide. We find 

that there some relationship exists between the concentration of ozone and the 

concentration of ozone. The calibration curve was prepared as described below :

1. 4 beakers were taken each containing 2 liters of water.

2. Ozone was sparged into those beakers at the same time. After 1 minute, shut down 

the ozone supply in the first beaker and turned off the ozone supply to the others in 

each addition 1 minute.

3. By use hydrogen peroxide and ozone analysis methods to measure those four 

solutions.

4. Plotted ozone concentration versus hydrogen peroxide concentration from the 

analysis result, in Figure 3.8.

3.2.8 Batch Experiments

Two experimental trials were performed for each pollutant in the batch experiments. 

The first step towards the batch experiment comprises of pumping the uniform 

pollutant solution into the reactor. Then recycle was started followed by the 

introduction of the nitrogen at a flow rate of 10 1/min into the reactor. The UV light 

source, if needed, was activated. Before switching the UV light source power on, 

cooling water and nitrogen flow for the UV lamp started at a safe level. Setting the 

power rate at 125 W/inch first, after 30 seconds power rate was increased 200 

W/inch. Timing of the experiment began about 20 seconds later. The N2  alone and
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the N2 /UV processes belong to above mode batch experiment. Another batch mode 

experiments were the H2 O2  and N2 /H2 O2 /UV processes.

The pollutants solution were prepared just as previous batch experiment. But 

before the UV light power on, we add exact amount of the H2 O2  into the reactor. 

The amount of the H2 O2  was added to the reactor in the experiment was the 

stoichiometric amount needed for oxidation of the compound to carbon dioxide, water 

or halide ion. For example, the balanced chemical reaction for 2,4,6-trichlorophenol 

is

C6 H3 OCI3  +  11 H2 0 2  —> 6  C 0 2  +  11 H2 O +  3 HC1 (2 .1)

Thus, the initial concentration of the H2 O2 , which would be added to the reactor was

11. times of the initial concentration of the 2,4,6-trichlorophenol.

After 1 minute mixing of the H2 O2  with solution, we began to the following 

procedure as the N2  or the N2 /UV process. Sample collection was down as frequently 

as possible and all the samples were subjected to analysis as soon as possible after 

collection in order to avoid of any possibility of chemical evaporation.

3.2.9 Semi-Batch Experiments

In the semi-batch reactor, pollutants were added batch-wise initially. The experiment 

was then conducted with a constant flow of the second reactant, oxygen or ozone. 

Three experiments were conducted in the semi-batch experiments. There are the 

O2 /UV, the O3  alone and the O3 /UV experiments.

In the ozone alone experiment, cooling water and oxygen flow to the ozone 

generator before the ozone generator power on. Oxygen flow rate was regulated at 9 

psig and controlled by a ball valve for a flow rate of 10 1/min. In the O3 /UV 

experiment, the UV light source power was turned on after introducing the O3  into 

the reactor.
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3.2.10 CSTR Experiments

The O3 /UV and the H2 O2 /UV experiments were introduced in the CSTR 

experiments. The pollutant solution was dissolved in a reservoir tank before feeding to 

the reactor. In the O3 /UV experiment, UV light was turned on after O3  flow was 

started. After 5 minutes feeding of the pollutant solution to the reactor was started 

from the reservoir at a certain flow rate which controlled by a flow-meter. In the 

H2 O2 /UV process, hydrogen peroxide was dissolved in the reservoir. The quantity of 

the hydrogen peroxide was also followed the stoichiometric relationship with pollutant 

as shown in equation 2.1. Then the feed and UV light turn on at the same time. The 

experiment was terminated when the feed solution was exhausted.
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CHAPTER 4
REACTION MECHANISM AND KINETIC MODELS

4.1 Introduction

Use of ozone with UV radiation process or hydrogen peroxide with UV radiation to 

treat waste water has been demonstrated effectively; however, the detail reaction 

mechanism is not clear yet. Based on previous research and chemical properties, we 

designed a series of experiments and propose following reaction mechanism and 

kinetic models for these processes. Then, a optimization program would be used to 

calculate the reaction rate constants and give a best fit to the experimental data.

The reaction kinetic models for the each experimental mode were initially 

developed by Dr. C. .R. Huang in 1983 and revised in 1984, 1988, 1991 (28, 29, 30, 

31). In order to distinguish the effects of the different processes and get the reaction 

rate constants, at least 9 experiments are run for each chemical , i.e. (1) bubbling 

with nitrogen, (2) nitrogen plus UV radiation, (3) oxygen plus UV radiation, (4) 

ozone alone, (5) ozone and oxygen plus UV radiation. (6 ) hydrogen peroxide only, 

(7) hydrogen peroxide plus UV radiation, (8 ) CSTR for ozone plus UV radiation and 

(9) CSTR for hydrogen peroxide plus UV radiation. Three basic kinetic model for the 

ozone and the hydrogen peroxide under the UV radiation was also proposed.

The reaction kinetic models set up for each experiments are based upon the 

following assumptions :

(1) The reaction in each of the mechanism was considered as a first order reaction.

(2) Assume complete mixing by both bubbling and pumping circulation.

4.2 H 2 0 2  With UV Radiation

The purpose of this experiment is to determine decomposition rate of H2 0 2  with UV 

radiation. At the same time we can calculate the reaction rate constants which are the 

reactions between free radicals or free radicals with hydrogen peroxide.

29
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A two steps reaction mechanism is proposed as follows :

(I) Region I  (0 < t < t l)

H2 C>2 —~ > 2 OH-
K kH2 O2  +  O H ------------ > H 02‘ +  H2 O

H2 0 2  +  H 0 2  H2 O +  O2  +  OH-

With initial conditions :

At t =  0 C h 202  =  CH2 O2  i

C o h - = 0

CH02- = 0

Here tl is a value measured after 20 minutes.

The material balance for H2 O2 , OH- and H0 2 * is as follows :

dCH202

dt

dCoH

dt

dCHQ2

dt

=  -KfCH202 - K i 3C H202C 0 h - -k 14C H202C H02- 

=  2 K fC H 2Q 2 - k 1 3 C h 20 2 ^ 0 H -  +  K 1 4 C h 20 2 ^ H 0 2 -  

=  k 1 3 C h 20 2 ^ 0 H *  " k 1 4 C h 20 2 ^ H 0 2 *

Those unknown reaction rate constants was calculated by use of the Rosenbrock 

Hill Climb Optimization Program with the Fourth Order Runge-kutta method to give 

the best fit to the experimental data.

(II)Region II (tl < t <  t2)

In this region, those free radicals will react each other. Thus, we add two more 

reactions schemes
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OH- +  OH > H2 0 2

K\(\
OH- +  H 0 2 -------— — > H20  +  0 2

Initial conditions :

At t =  t l  CH202, COH. and CH02. can be calculated from the previous 

region.

The material balance for each species becomes :

dCH 2 0 2  n  n  n  n  n ' t
— =  *KfC H 2 0 2  ‘ K 13 H 2 O2 HO2 * "K14c H202C H02- +  K 1 5 C OH.-

(4.1)

- J t—  =  2 KfC H202 ■ K 13 C H 202C H 0 2 '+  K14C H202C H02- '

2k 15Cqh . '  K 16CoH-C-H02- (4.2)

dCH0 2  _  _
— —  =  k 13 H 2O2 HO2 * • K 14C H202C H02- - K 16C OH-C H02-

(4.3)

In this region, the unknown constants are K 1 5  and Kjg. We used the same method to 

find the optimal value.

(HI) 0 <  t  <  t2

Finally, we can put these 5 reaction mechanisms together and use Kf, K 1 3 , K 1 4 , 

K 1 5 , obtained before as initial guessed values for regression analysis.

The final reaction mechanisms are as follows :

H2 0 2  — > 2 OH-
K\$

H2 0 2  +  OH > H 0 2- + H20

H2 0 2  +  H 0 2 -------------> H20  +  0 2  +  OH-

OH- +  OH- —  > H2 0 2

OH- +  H 0 2  > H20  +  0 2
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The material balances for each species are as the mechanisms in region II.

4.3 Saturation of Ozone in W ater

Ozone was sparged into the water and the mass transfer coefficient which from gas 

phase to liquid phase can be calculated as follows :

0 3  (g) “ > 0 3  (1)

The mass balance for ozone is

=  KL 03a (C 0 3 s '  C 03)

With initial condition C0 3  (t = 0) =  0

The above equation can be solved by Laplace Transform method. The 

concentration of ozone which dissolved in the water can be express as follows :

c 0 3  =  C 0 3 s H - exp(-KL03a x 0 ]

Here a is the ration of interface area and volume of mixture.

Thus, the mass transfer coefficient can be obtained from the experimental data.

4.4 The Effect of UV Radiation in W ater Saturated With Ozone 

There are two cases in this model. (1). After ozone is saturated in water, turn off the 

ozone source and turning on the UV radiation at the same time. (2) After ozone is 

saturated in water, turn on the UV radiation and keep supply the ozone. For the first 

case, since there no ozone supply, ozone would be decomposed to two hydroxyl 

radicals immediately. The two hydroxyl radicals would react together and become 

hydrogen peroxide. The following reactions were just like the reactions of hydrogen 

peroxide under the UV radiation.
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The whole reaction mechanisms are as follows :

0 3  +  H 20 — 20H.  +  0 2  

OH. +  OH. — H2 O2  

H2 O2  — > 2 OH-
v  _

H2 O2  +  OH------------- > H02- +  H2 O

H2 O2  +  HO2  » H20  +  O2  +  OH-
J 7 .fi

OH- +  HO2 ------------- > H2 O +  O2

The material balance for H2 O2 , OH- and H0 2 * was same as equation 4.1 ,4.2 

and 4.3 and the initial conditions are

t =  0  c H2 0 2  =  0

COH- = C0 3 S

CH02- = 0

Those reaction rate constants, Kf, K1 3 , K 1 4 , K 1 5 , K j6  were calculated in the 

previous model, hydrogen peroxide with UV radiation. Thus, we were able to predict 

the hydrogen peroxide concentration in this case.

In the second case, ozone sparged into the solution continuously after turn on UV 

radiation, most of the saturated ozone be decomposed to hydroxyl radicals and the 

undecomposed ozone would react with those redicals, hydroxyl radical and hydroxyl 

peroxide radical. Thus, the total reaction scheme would be sketched as follow s:

O3  +  H 20 - 

O3  +  OH- -  

O3  +  HO2 '

OH- +  OH-

h 2 o 2  — —

h v
-> 20H- +  O2

K 8 f
-> O2  +  HO2 ’ 

2 0 2  +  OH-
K \ 5

-» H2 O2

2 OH-

(very fast) 

(fast)
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K 13
H2 C>2 +  OH------------- > H 02* +  H20

K u
H2 0 2  +  H 0 2 ------------- > H20  +  0 2  +  OH*

K\6
OH* +  H 02*  > H20  +  0 2

Ozone mass transfer :
_ K lomi _
O3 1  > 0 3 g

Oxygen mass transfer:
_ K u n a  _
0 2i --------------- > 0 2g

The material balance for each species is as follow s:

(1Ch202

dt

dCo3

'Kf^ H 2 0 2  ' K 1 3 C h 20 2 ^ H 0 2 *  ' K 1 4 C h 20 2 ^ H 0 2 -  +  k 1 5 ^ o h .  

=  - k I0 3 iC 0 3  ' K8fC o3C OH* “ K12f C 0 3 C H02* +  KL 03a(C 0 3 s
dt

- c 03>

——— = 2KfCH2Q2 ' k13Ch202^H02>+ K14Ch202Ch02* '
dt

2K15Coh.‘ k 16C oh*C h02* ’ K8f(^ 0 3 ^ 0 H *  +  2 KI0 3 JC o 3

dCH02 '
— ——  =  k 13C H 202CH02* ■ k 14C H202C H02* • k 16C 0 H -C H02* dt

-  K 12fC o3C jjQ 2*

dCo2
— —  =  -K io 2 iC o 2  +  KL02â O?s '  ^02) +  K102b̂ 02!t! 

dt

d C o 2 *
"  d t ~  =  KI0 2 lC 02  - KI02bc 0 2 I"

Initial conditions :

t =  0 C0 3 , C q2 , C h 2 02> C02*> c OH*> CH02* = 0
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The unknown parameter in the above equations were Kjq^I, Kgf, and K i2 f 

which could be decided in this experiment.

4.5 Bubbling with Nitrogen

The purpose of this experiment was to estimate the evaporation effects of the 

chemicals due to the nitrogen bubbling. We can calculate the mass transfer coefficient 

between the bulk liquid stream and the liquid film and the Henry’s constant for the 

specific pollutant.

Two film theory was used to produce the following material balance equation in 

the different phases. It was assumed that the resistance between the gas film and the 

gas bulk is negligible because a well mixed system was postulated, that is, the 

concentration of species A in the gas film (Cag') is equal to the concentration in the 

bulk gas phase (Cag). The mass transfer diagram is in the Figure 4.1. It was further 

assumed that the concentration of the liquid film at the gas-liquid interface (Cas) 

satisfies the Henry's Law relationship with Cag', that is,

Cag =  Cag' =  M*Cas 

With the above assumption, the mass balance for reactant A in the liquid phase was 

input - out =  accumulation

dCa
0 - V * KLAa * (Ca - C as) = V—  (4.4)

dt

K l a 3  is the mass transfer coefficient between the bulk liquid stream and the 

liquid film.

The mass balance of reactant A in the gas phase is 

0 - (CagQg +  KLAa * V * (Cas - Ca) = (4.5)
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Henry's Law gives : C ag =  M * Cas (4.6)

The initial conditions are 

t =  0 Cag =  0 

Ca =  Cas

We can solve the simultaneous equation (4.4), (4.5) and (4.6) with the initial 

conditions and give the relationship between the concentration of species A in the 

liquid phase and the time .

KLAa + M 2 

M 2 -  Mi
* e(Ml * t) _ KlaS + M l * £(M2  * t) 

M 2 -  Mi

Where

2

The values of K ^ a  and M could be optimized with the aid of the optimization 

program, so as to give the best fit to the experimental data.
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Figure 4.1

Mass transfer between gas phase and liquid phase

Cag

bulk gas phase

Cag'

Cas'

^as liquid 
filra film

Cas

liquid phase

4.6 Reaction with UV Radiation

The purpose of this experiment was to determine the effects of UV radiation on the 

chemicals. There are two types of experiments, one with nitrogen bubbling and 

another one without nitrogen bubbling. In order to compare the different reaction 

effects on the pollutant and to get the complete mixing, we performed this experiment 

at the condition with nitrogen bubbling.

The reaction mechanisms for these two types are as follows :

(1) With nitrogen

At this condition, evaporation and decomposition occur at the same time.

K iaI  _  K i  
A +  h v ------------» A * -----------> Aj

K ia \ 1  _  „  ,
A \  +  h v  > Decompose Products



Substrate mass Balance
.,  K u a  A1-------------» Ag

The material balance for each species is as follows : 

dCa

dt
=  -KIAlC a +  K3C a» +  kLAa(Cag/M  - C a)

d C Q*
=  -K2C a * +  KIAlC a .  K3C a»

dC ai
—  = K IAlC a . K IA1lC al

dCag _  Cag * Q g kLAa(Cag /  M  -  C a)

dt V  * E  E

Initial conditions : 

t =  0 Ca =  Cao

Cag, Ca*, Cal =  0

(2) Without Nitrogen bubbling

. , , KiaI  . * K i  A ,
A +  h v ------------ > A * ---------- > A1

Aj +  h v ------------- > Decompose

The material balance for A, A* and A1 are as follows

dCa

dt
=  -KIAlC a +  K3Ca*

dC„*
— =  -K2Ca* +  KIAlC a . K3C a* 

dCai

dt
=  K1AlC a . K ,A1lC a i
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Initial conditions : 

t =  0 Ca =  Cao

Ca*, Cal =  0

These simultaneous differential equations were solved by the fourth order Runge- 

Kutta method. The reaction rate constants, KjAI, K2 , K3  and KjA jI also can be 

determined by using the Rosenbrock Hill Climb Optimization Algorithm. The KLAa 

value was calculated from the previous experiment. If the decomposition of pollutants 

by this process is slow, we may neglect the intermediate A l.

4.7 Reaction with Oxygen and UV Radiation 

This experiment was designed to determined the interaction between the pollutant and 

the activated oxygen (O2 *).

The reaction mechanism is as follows :

0 2  +  hv 0 2 *
K j a I

A +  h v  » A *  1—> Decompose Product
Kb

A +  O2 * ---------- > Decompose Products

Oxygen mass transfer O2 1 — ^ L0~a—> Q2g 

Substrate mass transfer Al— — > Ag 

Material balance for each species is as follows : 

dCa
dt

= -KIAlC a +  K3 Ca* - K6 CaC0 2 * +  KLAa(Cag/M - Ca)

dC_*
= -K2 Ca* +  KIAlC a . K3Ca.
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~ j ~  = -KI0 2 l^ 0 2  +  KL 02a(C 02s '  ^0 2 ^  +  KI02b^ 0 2 *

J p  5̂

—™ ~  = KI02lC 02 - K6CaC o 2* - KI02bC 02*

dCag _  Cag * Q g kLAa(Cag /  M  -  C a)  

dt V * E  E

Initial conditions : 

t =  0 Ca = Cao

C02 =  C02o =  0.11 

Ca* , C02* ,Cag = 0 

The rate constants K io 2 I, K jo2b anc* Kg were determined by this experiment. 

By comparing this experimental result with the nitrogen bubbling with UV radiation 

experiment, we found that the 0 2* effect on the decomposition of pollutant was very 

small. Thus, we did not consider the intermediates which were produced from 

pollutant by this reaction.

4.8 Reaction with Hydrogen Peroxide

In this experiment we were able to study the effect of hydrogen peroxide effects on 

the chemicals. The reaction mechanism is very simple.

A +  H2 0 2  — K m m —  ̂ decompose product 

The material balance for each species is as follows : 

dCa

dt

d C H 202

dt

= '  KH2 0 2 C aC H2 0 2  

= - KH2 0 2 C aC H2 0 2
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In our experiments, we found that the three pollutants we chose could not be 

decomposed by the hydrogen peroxide. Thus KH2 O2  1S eQual to zero.

4.9 Photolytic Hydrogen Peroxide

Hydrogen peroxide can serve as a source of hydroxyl radical in aqueous solution 

under UV radiation. In section 4.2, H2 O2  with UV radiation, we discuss the reaction 

between hydrogen peroxide and UV radiation which did not involve the reaction of 

pollutant and the intermediates that produced by the pollutant. In this section, we 

would consider the competitive reaction between the pollutant and the intermediates. 

Those reaction rate constants, Kf, K 1 3 , K 1 4 , K 1 5 , was calculated in section 4.2 

and used in this model.

The reaction mechanism is as follows :

H2 0 2  — > 2 OH-

H202 +  OH > H 0 2- +  H20

H2 0 2  +  H02. —  » H20  + 0 2  +  OH-

OH- +  OH- —  H2 0 2

OH- +  HO2  > H2 O + 0 2

^  , K102I ^  ^
O2  +  h v ------------- > O2

KjaI  K**
A +  h v  > A *  :—> Decompose Product

~  ^  K t  ^A +  O2  > Decompose product
K 4

A +  OH----------- > Al
K 44

Al +  H0 2 *-----------> Decompose Product
K s

A + HO2 -----------> A2
K s  5

A2 +  OH------------ > Decompose Product



The material balance for each species is as follows : 

dCa

dt
=  ' KIAlC a + K3Ca* - K6CaC02* - K4CaC0H- - K5CaCH0:-

dC.» 
= -K2Ca* + KIAlCa - K3Ca* 

dCai

dt

dCa2 

dt

dCH202

dt

=  K4C aC 0 H . - K44C a iC H 0 2 .

=  ^ 5 ^ a C 'H 0 2 * " K55^-a2 C H 0 2 *

= -KfCH202 - K i3CH2q,CHq2. - K i4CH202CH02. +

K 15C £H.

■ dt -  2Kf^ H 202 ■ K 13C H202C H0 2 -+  K 14C h 20 2 ^ H 0 2 * "

2 k 15C qh.' k 16C oh*^H 02- '  K4C aC 0 H- '  K55Ca2CoH*

dCH02 ^  ^  ^  ^  ^  ^
^  -  k 13 H2O2 HO2* ’ K 14(- H 202C H0 2 - ' K 16C 0 H - C H 02-

K5CaCH02. -K44CaiCH02* 

=  -KI0 2 lC 0 2  +  KL0 2 a(C o2s - C o 2) +  KI0 2 b C o 2*

dCo2 *

dt
= KI02lCo2 - K6CaCo2’t‘ - Kio2bC0 2 *

With initial conditions : 

t =  0 Ca = Cao, Cal =  0, Ca2 = 0

c 02 = c 0 2 o = 0.11 , CH202 = c H202o 

c OH*. C h02 > Ca*> C02* = 0
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From above simultaneous equations, four unknown reaction rate constants, K4 , 

K4 4 , K5  and K5 5 . should be calculated. In this experiment we have three sets of 

experimental data for pollutant and its intermediates. The optimized rate constants 

would give us the best fit to the three experimental data which are the decomposition 

of pollutant and the formation and the destruction of the intermediates.

4.10 Reaction with Ozone

Ozone is a quite strong oxidant and after getting dissolved in water would produce the 

hydroxyl radicals and the hydroperoxide radicals, in very small amounts. The reaction 

mechanism is as follows :

O3  +  H20  —  20H . +  0 2

O3  +  OH. > H 0 2. +  0 2

O3  +  H 0 2. o h .  +  2 0 2

^ 1  s
OH- +  OH--------■=— > H2 0 2

K\6
OH- +  H 0 2 -------------> H20  +  0 2

K i
A  +  O3  > Decompose

K a
A  +  O H ---------- > Decompose
.  . K i  ^A + H 0 2---------- > Decompose

Ozone mass transfer
_ K icna  _
O3 1 -------------- > 0 3g

Substrate mass transfer
. ,  Klaci .Al-------------> Ag

From the experimental result we found that most of the pollutant was 

decomposed by the oxidation of ozone and hydroxyl radicals. The concentration of 

the intermediate,A2, was very small. Thus, in the above reaction mechanism we did
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not consider the intermediates which was produced by attact of hydroperoxide radicals 

on the pollutant.

The material balance for ozone and pollutant are as follows : 

dCa

dt

dC o3

: -K jCaCo3 - IfyCaCQjj. - K5 CaCjjQ2. +  K ^ a  (Cag/M - Ca) 

=  -K iC aC o 3  - K g fC c ^ C o n * - K 12fC ()3C H C )2-" K7 f^ 0 3  +
dt

KL03a(C()3s * C 0 3 )

'Vj =  2K7fC03 - 2 K1 5 C 0 H. - K8 fC 0 3 C()H*' k 16C oh*C h02* " 

K4CaC 0 H . +  K i2 fC o 3 C H0 2 -

~  =  K8 f^ 0 3 C o H ‘‘ k 1 6 C o h -^H 0 2 *  '  K5CaC H0 2* -

K 12fC 0 3 C H02-

dCag Cag * Q g kLAa(Cag / M  -  C a)

dt V  * E  E

Initial conditions : 

t =  0 Ca =  Cao

c 03> c OH-> c H02* = 0  

The unknown values are K j, K7 f, Kgf, and K j2f which also could be determined 

by the optimization method.

4.11 Photolytic Ozonation

In this experiment, the combined effect of all the radicals created by the ozone under 

the UV radiation was determined. The reaction is faster and more effective than the 

previous experiments. From section 4.4 we know that the concentration of ozone in
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the liquid phase was very small at this condition. Thus, the predominate 

decomposition of the pollutant become the hydroxyl radical and the hydroperoxide 

radical. This could be proved by that the intermediates which produced from the 

pollutant are same as the intermediates at the hydrogen peroxide under the UV 

radiation. In this mechanism we still include the ozonation effect, but the contribution 

is small. Thus we did not consider the intermediate which produced by direct 

ozonation.

The whole reaction mechanism is as follows :

O3  +  H20  — — 0 2  +  20H- 

03 +  OH------K&f > 0 2  +  H 02-

03 +  H 0 2- 2 0 2  +  OH.
K\s

OH- +  OH------------- » H2 0 2

K
OH- +  H 0 2  > H20  +  0 2

H2 0 2  — 2 OH*
K m

h 2 ° 2  +  0 H  > h o 2* +  h 2 °

H2 0 2  +  H 02. —  > H20  +  0 2  +  OH-

0 2  +  hv —  —' 0 2*
KjaI K 2

A +  h v  > A * -----------> Decompose Product
K \A +  O3 ----------> Decompose Product

A +  0 2* — — Decompose Product 

A +  OH » Al
K44

Al +  H 0 2------------ > Decompose Product
Ks

A + H 0 2------------> A2
KS5

A 2  +  OH- > Decompose Product

Ozone mass transfer :
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_ Klomi _O3 1  » 0 3g

Oxygen mass tra n s fe r :
_ Kloicl _
O2 1 ---------------> 0 2 g

Substrate mass tra n s fe r :
A1 K u a  
Al-------------» Ag

The material balance for each species is as follow s: 

dCa
~ — = ^ I A ^ a  +  K3 Ca* " K6CaC02* - K4CaC o H - '  K5CaCH02* ‘ 

dt

KlCaC03 +  KLAa(Cag/M - Ca)

dC„*
= -K2Ca» + KIAlCa. K3Ca»

dCai

dt

dCa2 

dt

dCH202

=  K4CaC 0 H* - K44Ca lCH02*

=  K5CaC Ho 2- - K55Ca2CoH*

‘K f ^ H 2 0 2  '  K 1 3 C h 2 0 2 ^ H 0 2 -  _ K 1 4 C H 2 0 2 C h 0 2 -  +  K 1 5 C O H .dt

p j p  = -KlCaC 0 3  - KI0 3 lC 0 3  - K8 f € 0 3 C 0 H* ‘ K i2 fC o3 C H 02. +  

KL03a(c 03s - C03)

dCoH * ~  ̂ ^
=  2KfC H202 ' K13C H202C H 0 2 -+  K 14c H 202C H02- ■

2^ 1 5 ^ o h ._ ^16^'OH*^-'H02* " ^4^-'a^'OH* " ^55^'a2^-'OH* '

K8 fC o 3 c OH- + 2 K io 3 IC q 3  +  K l2 fC o 3 C H0 2 *



47

“ j ~  =  K13C H202C H02- - k 14Ch 20 2 C H02- " K16C 0 H -C H02- ’ 

K 5 ^ a ^ ' H 0 2 • " K 4 4 C a l C H 0 2 -  ’  K 1 2 f C 0 3 ^ H 0 2 *

dC o2
=  -K1 0 2 1 C 0 2  +  KL 02a(Cc>2s '  C 0 2 ) + KI0 2 bCc>2* 

dC o 2 ^
~ d t ~ =  K io 2 Ic 0 2  - K6 c aC o 2 ’t< ” KI0 2 b C o 2 >,t

dCag _  Cag * Q g kLAa(Cag /  M -  C a) 

dt V  * E  i
Initial conditions :

t = 0 Ca = Cao, C0 2  = C0 2 0  — 0-11

Co3» Ca*, C Q 2* , Cqh-» C h 0 2  > = 0

The reaction constants, K8 f, K12f, KI03I, were determined in this experiment.

4.12 CSTR Process

The rate constants and the mass transfer coefficients which were calculated from the 

previous experiments were used in the CSTR process. The reaction mechanism of the 

CSTR process was the same as the mechanism in the batch reaction. The only 

difference is the mass balance for the pollutant.

A mass balance can be given as follows :

accumulation of A =  input - output - decomposition by reaction.

Two experiments are conducted in the CSTR process, O3 /UV process and 

H2 O2 /UV process.
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4.12.1 For 03/UV Process

The reaction mechanism was same as the 03/UV process in the semi-batch reaction. 

The material balance was as follows :

—  =  — x Cao - Q  x Ca - ra 
d t V  V  a

ra =  -KIAlC a +  K3C a* - K6CaC 0 2* - K4C aC 0 H - ‘ K5C aC H 0 2 . - 

K iC aC 0 3  

dC_*
— a -  =  -K2C a* +  KIAiC a . K3C a*

d t 

dC ai

~ d T

dCa2 

d t

dCH202

d t 

dCos

= K4 CaC o n *  • K44 Ca lC H02«

=  K5CaC H0 2- '  K55Ca2CoH*

_Kf^ H 2 0 2  " K13C h20 2 C h 0 2 -  _K14 C h 2 0 2 C h 0 2 - +  K 1 5 C qh.

= -KlCaCo3 -KI03lCo3 -K8fC o 3CoH.-K12fCo3CHo 2. +

KL0 3 a(C 0 3 s - C 0 3 )

d^ '  "" =  H2O2 ' K13C H 202C H 02*+  K14C H 202C H02- '

2 k 15Coh.‘ k 16Coh*Ch02* ' K4 CaC 0 H . - K55Ca2 C 0 H- -

K8fC 03C 0H* +  2k I03iC 0 3

=  k 13 C H 202C H 0 2 * ' K14C H 202C h 02* ‘ k 16C 0H *C H02* '

k 5 Q C h 0 2- - K44 Ca lC H 02- - K12f^03CH02*
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=  -K io 2lC o 2  +  KL 02a(Cc>2s - C 0 2 ) +  KI0 2 bC o 2*

dCo2 * _  _  _
dt =  KI0 2 l C02  " K6CaC 0 2 * - KI0 2 bC C>2*

Initial conditions :

t =  0 Cao =  Cain, Co2 = Co2o = 0.11,

c H202 > Ca> Ca*> c OH-» c H02-> c 03 =  0  

The theoretical output concentration of the pollutant was compared to the

experimental data to evaluate the proposed reaction kinetic models and the reaction

rate constants.

4.12.2 For H20 2/UV Process

The reaction mechanism is same as the H2 O2 /UV process in the batch reactor. The 

material balance for each species becomes as follows :

dCa Q Q
  -  — x L a o  x L a - ra

d t V  ao V  a a

ra =  -K lA ^a +  K3^a* - K6CaC 0 2* - K4CaC 0 H* ' K5^aCn02*

dCa* „  ^
= -K2Ca* + KIAlC a . K3Ca*

d t

dC ai

dt

dCa2

dt

=  K 4 C a C 0 H . - K4 4 C a i C H 0 2 - 

=  K5CaC H 0 2 * - K55Ca2CoH*

dCH2 0 2  _ _  2
— —— =  -KfCH 202 " K13C H20 2 C H 02- - k 1 4 C h 20 2 C H 0 2 -  +  K 1 5 C OH. 

dt
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d dt -  2KfC H202 _K 13C H 202C H 0 2 -+  k u C H2 0 2 C H0 2 - -

2k 15Coh . ' K16 ^ o h -C h 0 2 • ■ K4CaC oH  • " K55C a2C oH •

J  =  k 13 C H 202CH 0 2 -" k 14C H 202C H02* ‘ k 16C 0H *C H02* ' 

K5 C aC H0 2 . - K44Ca lC H 02-

d C o 2
— =  -K io2 iC o 2  +  KL0 2 a(C 0 2 s " C 0 2 ) +  KI0 2 b(^ 0 2 *

(IC0 2  *

dt
KI0 2 lC 02  '  K6 CaC o 2 * - K i02bC 02*

Initial conditions :

t =  0 Cao =  Cain, C0 2  =  CO20 =  ° - 11» CH2 0 2 o =  c H2 0 2 in

c H202 > Ca> Ca*> c OH*i c H02*> = 0 
Again the computed output concentration of pollutant was compared to the

experimental data to evaluate the accuracy of the reaction rate constants and the

proposed kinetic model.

After demonstrating the validness o f the proposed reaction mechanisms and the 

calculated reaction rate constants, we could control the effluent concentration of the 

pollutant from the reactor by changing the parameters. In the UV/H2O2 CSTR 

process the controlling parameters are the influent flow rate and the quantities o f the 

hydrogen peroxide. In the O3/UV CSTR process, it is the inlet flow rate.



CHAPTER 5 
RESULTS AND DISCUSSIONS

5.1 Experimental Results 

In order to study the photo-initiated oxidation of organic pollutants, different 

experiments had been run including : (1) hydrogen peroxide with UV radiation, (2) 

ozone with UV radiation, (3) air stripping effects on pollutants, (4) UV radiation 

effects on pollutants, (5) pollutants under UV radiation with oxygen, (6 ) pollutants 

with hydrogen peroxide, (7) pollutants under UV radiation with hydrogen peroxide, 

(8 ) pollutants with ozone, (9) pollutants under UV radiation with ozone, (10) CSTR 

experiments, including UV/O3  process and UV/H2 O2  process.

The above experimental results for three pollutants, nitrotoluene, naphthalene and 

2,4,6-trichlorophenol are shown in Figure 1 through Figure 31 . In these figures, the 

dot points represent the experimental data while the curves were drawn based on 

calculations from the reaction mechanism that was proposed in chapter 4. The 

comparison plots of different decomposition effects on the pollutants are shown in 

Figure 32 to Figure 49 . The different design consideration of CSTR process are 

shown in Figure 50 to Figure 58. The GC/MS spectra of the pollutants and the 

intermediates which produced from the decomposition of the pollutants are shown in 

Figure 59 to Figure 65. The reaction rate constants which were calculated by the 

Rosenbrock Hillclimb Optimization Algorithm are listed in Table 1. A detailed 

description is as follows.

5.1.1 Decomposition of Hydrogen Peroxide with UV Radiation.

The experimental data and the theoretical prediction of the decomposition of hydrogen 

peroxide under UV radiation is shown in Figure 5.1 - 1. The pH value was controlled 

between 6 . 8  and 7.2 and the temperature maintained between 25 °C and 27 °C. The 

values of the optimal reaction rate constants are Kf = 0 .1169E-4 m in'1, K13 =

51
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0.522E+5 1/mole-min, K14 = 0.8461 E + 4 1/mole-min, =  0.5804E+5 1/mole- 

min and =  0.4679E+4 1/mole-min. The same experiment was run with the 

different initial hydrogen peroxide concentration, the result is in Figure 5 . 1 - 2  which 

shows a good agreement between experimental data and theoretical prediction. From 

these two figures we can find that the decomposition of hydrogen peroxide under UV 

radiation is very slow. The calibration curve between ozone concentration and 

hydrogen peroxide concentration is in Figure 5.2. The calibration curve had the slope 

0.3622 , intercept 4.476E-3 with the correlation 0.999121. This relationship would be 

used in the convertion of ozone concentration to hydrogen concentration in the next 

experiments.

5.1.2 Saturation of Ozone in Water and the Effects of UV Radiation

The saturation curve of ozone dissolved into water is shown at the initial 62 minutes 

in the Figure 5.3. After the water was saturated with ozone, UV radiation was turned 

on and the ozone feed to the reactor was turned off. With the UV radiation, the 

dissolved ozone is decomposed to two hydroxyl radicals instantly and hydrogen 

peroxide is produced. Since there is no continuous ozone supply, the concentration of 

ozone should be zero. However, ozone is still detected in the reactor by using the 

ozone measurement method. It is believed that there is a interference of hydrogen 

peroxide when we used the ozone measurement method to measure the ozone 

concentration. Figure 5.2 is the calibration curve for ozone and hydrogen peroxide. 

By using this calibration curve we could convert the theoretical output of the 

hydrogen peroxide concentration to the ozone concentration. The result was the solid 

line in Figure 5.3 after 62 minutes.
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In other experiment, ozone was continuously sparged into water after UV 

radiation was turned on, as shown in Figure 5.4. In this experiment, most of the 

influent ozone would be decomposed to hydroxyl radicals and the left ozone would 

react with free radicals which were produced from the photo-decomposition of ozone. 

By this experiment we calculate the rate constants, KJ0 3 I, Kgf and K j2 f-in the 

kinetic model. These valuses are listed in Table 5.1.

The ozone mass transfer coefficient and the saturated concentration of ozone also 

were also determined by the first part of this experiment. The mass transfer 

coefficient is 0.1817 1/min and the saturated concentration of ozone is 0.045 mg- 

mole/1 at 25° C.

Table 5.1

Co3s K-T ,03a K i03l Kgf K n f

value 0.048 0.1817 0.9800 0 .1562E+5 0.3985E+4

5.1.3 Bubbling with Nitrogen

This experiment was designed to calculate the gas stripping effects on the pollutants. 

By this experiment we calculate the mass transfer coefficient of pollutant, K ^ a ,  

which transferred from liquid phase to gas phase and the Henry constant, M, for the 

pollutant

The experimental results for three different pollutants are shown in Figure 5.5 to 

Figure 5.7, nitrotoluene in Figure 5.5, naphthalene in Figure 5.6 and 2,4,6- 

trichlorophenol in Figure 5.7. The flow rate of the nitrogen influent was 10 1/min. 

The results showed that almost no concentration change in 2,4,6 - trichlorophenol and
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a small concentration changed in nitrotoluene. Thus, KLAa and M are both zero for

2,4,6 - trichlorophenol. The values for the other two pollutants are listed in table 5.2

Table 5.2

Kt Aa 1 /min M

Nitrotoluene 0.8434E-2 0.465E-2

Naphthalene 0.2814E-1 0.2735E-1

5.1.4 Reaction with UV Radiation

The experimental results of the effects of UV radiation on the pollutants are shown in 

Figure 5.8 to Figure 5.10. In this experiment, nitrogen was sparged into the reactor 

with the flow rate of 10 1/min. Since there were no oxidants present in the aqueous 

solution, the decomposition of pollutant was caused by the UV proton which broke 

down the chemical bond of the pollutant. The effects of uv radiation on nitrotoluene is 

very small, after running for 130 minutes at 10 % treatment efficiency. However, the 

effects on 2,4,6 - trichlorophenol was significant, with nearly 70 % decomposed in 70 

minutes. Figure 5.9 shows the result of naphthalene, which was decomposed 60 % in 

2  hours.

The reaction rate constants calculated in this experiment were KiAI, KjAIb and 

K2. These values are listed in Table 5.3
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Table 5.3

Cao ppm KTaI 1/1-min KTAlb 1/i-min K? 1/min

Nitrotoluene 91.64 0.4646E-2 0.1141 0.2281E-2

Naphthalene 19.86 0.4315E-2 0.9956E+1 0.5561E-1

2,4,6 - TCP 60.5 0 .1715E-1 0.5375E-1 0.9961E+1

5.1.5 Reaction with Oxygen and UV Radiation

This experiment was designed to calculate the effects of activated oxygen on the 

pollutant. Oxygen under the uv radiation would produce activated oxygen which is 

also a strong oxidant. The experimental results for these three pollutants are shown in 

Figure 5.11 to Figure 5.13. These results indicated that some of the nitrotoluene 

would be decomposed by the activated oxygen. But, it is not so important in the 

decomposition of naphthalene and 2,4,6 - trichlorophenol which are shown in Figure

5.12 and Figure 5.13.

In this experiment the rate constants of Kjo2 I, Kio?b and K6 are determined 

which are listed in the Table 5.4.

Table 5.4

Cao ppm KjooI KjO0b K*

Nitrotoluene 110.56 0.7985E-2 0.3459E+2 0 .1973E-1

Naphthalene 18.057 0.7985E-2 0.3459E+2 0.559E-1

2,4,6-TCP 70.448 0.7985E-2 0.3459E+2 0.5595E-1
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5.1.6 Reaction with Hydrogen Peroxide

Figure 5.14 to Figure 5.16 show that hydrogen peroxide would not decompose the 

pollutants, although hydrogen peroxide is also an oxidant. At higher temperatures the 

oxidizing ability of hydrogen peroxide may increase, however, we run this 

experiment at room temperature. From these results we could neglect the effects of 

hydrogen peroxide on the pollutants.

5.1.7 Photolytic Hydrogen Peroxide Oxidation

Hydrogen peroxide under the uv radiation can produce two hydroxyl radicals and 

hydroperoxide is also produced from the consequent chain reaction of hydroxyl 

radicals with hydrogen peroxide. These two radicals play a major roles in the 

decomposition of the pollutant and its intermediates.

The experimental result of the decomposition of nitrotoluene on this experiment 

is shown in Figure 5.7. Two intermediates were found during the decomposition of 

nitrotoluene. These intermediates were identified by the GC/MS were oxime 

cyclobutanone and 2-methyl cyclobutanone. The spectrum of these two intermediates 

were shown in Figure 5.59 and Figure 5. 65. It is also believed that the 2-methyl 

cyclobutanone was from the oxidizing of nitrotoluene by hydroxyl radicals and the 

oxime cyclobutanone was from the hydroperoxide radicals attack on nitrotoluene. The 

reaction schematic diagram is as follows :

N oh  Oxime cyclobutanone

o 2-methy, cyclobutanone
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Since the decomposition rate of nitrotoluene is not fast by this process, the 

concentration of intermediates was very small. For the kinetic model, the rate 

constants that were calculated by this experiment are K4 , K5, K44, K55. These values 

are listed in Table 5.5.

The experimental result for the naphthalene is shown in Figure 5.18. After 

running 40 minutes the naphthalene in the aqueous solution was nearly decomposed 

totally. During the reaction, there was only one intermediate present. Figure 5.61 

shows the GC/MS spectrum of this intermediate, 4-methyl 2-pentanone. This 

intermediate was produced from the destruction of naphthalene by hydroxyl radicals. 

The concentration of another intermediate which was produced from the attack of 

hydroperoxide radicals was very low and could not be detected by the GC/MS. The 

concentration of 4-methyl 2-pentanone was quite high, thus, it became a competitive 

reaction between naphthalene and 4-methyl 2-pentanone. The reaction schematic 

diagram is as follows :

The reaction rate constants K4, K5, K44  are listed in Table 5.5.

The experimental result for 2,4,6 - trichlorophenol is shown in Figure 5.19. 

From this figure we could see that the decomposition rate is slow, compared to the 

O3 /UV process. During the reaction we could not detect any intermediates. Two 

reasons may explain this phenomena

OH.
4-m ethyl 2-pentanone
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(1) The decomposition rate of 2,4,6 - trichlorophenol by this process was slow. The 

intermediate was produced and suddenly destroyed by the oxidants. Thus the 

concentration of the intermediate was very small.

(2) The effects of UV proton on the pollutant was significant. The result of the 

UV/N2  experiment, Figure 5.10, gives us the information that the chemical structure 

of 2,4,6 - trichlorophenol is easily destroyed by UV proton.

The reaction rate constants K4, K5 are listed in Table 5.5

Table 5.5

Cao ppm k 4 Ks K44 Kss

Nitrotoluene 116.66 0.963E+3 0.25E+4 0.832E+4 0.76E+5

Naphthalene 18.5 0 .137E+4 0.5262E+3 0.35E+3

2,4,6-TCP 59.52 0.8525E+4 0 .1915E+5

5.1.8 Reaction with ozone alone

The purposes of this experiment is to evaluate the effect of ozone on the pollutant. 

Ozone dissolved in water would produce hydroxyl radicals and further reaction would 

produce hydroperoxide radicals, although the quantities of this radical was small. 

Basically, ozone mass transfer reaction and hydroxyl radical attack predominate the 

reaction of decomposition of pollutant. The experimental results for these three 

pollutants are shown in Figure 5.20 to Figure 5.22. In Figure 5.20, the results shows 

that the attack of ozone to the nitrotoluene is significant. The decomposition rate is a 

little slower than the decomposition rate of H2 O2 /UV process. It took about 9 

minutes to decompose 90 % of naphthalene which shows in Figure 5.21. The
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experimental result for 2,4,6 - trichlorophenol is shown in Figure 5.22. Within 25 

minutes, 2,4,6 - trichlorophenol was decomposed 90 % of its initial concentration. 

From these three figures conclude that the effect of ozone is very important.

The reaction rate constants which were calculated by this experiment are K7 f, 

Kgf, K12f and Kj. These values are listed in Table 5.6. For the initial guess values of 

Kgf and K 12f, we could use the values which were calculated in section 5.1.2.

5.1.9 Photolytic Ozonation

The reaction involved three strong oxidants : hydroxyl radicals, hydroperoxide 

radicals and ozone. Since ozone was continuously introduced into the aqueous 

solution, the decomposition rate of pollutant would be very fast. The experimental 

result of the reaction for three pollutants is shown in Figure 5.23 to Figure 5.25.

Nitrotoluene was decomposed about 90 % within 1 hour by this process and the 

result is shown in Figure 5.23. During the decomposition of nitrotoluene two 

intermediates, 2 -methyl,cyclobutanone and oxime,cyclobutanone were detected. 

These two intermediates are the same intermediates which were produced in the 

H2 O2 /UV process. However, the concentration of intermediates in the O3 /UV 

process was much higher than in the H2 O2 /UV process.

Naphthalene was decomposed completely within 5 minutes and the experimental 

result is shown in Figure 5.24. There was only one intermediate, 4-methyl 2 

pentanone, detected by GC/MS. Although naphthalene was decomposed instantly, the 

concentration of intermediate was quite high and was decomposed slowly. 2,4,6- 

trichlorophenol was also decomposed by this process quickly. The result is shown in 

Figure 5.25. It was like decomposition of 2,4,6-trichlorophenol by UV/H2 O2 

process, there was no intermediates detected by GC/MS in this process.
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The reaction rate constant that was calculated from the experimental data is 

KjojI. The other rate constants which were used in this kinetic model had already 

been calculated in the previous experiments. The optimal value of the Kjq3I is 0.9008 

1 /min.

Table 5.6

Nitrotoluene Naphthalene 2 , 4 , 6 - TCP

Cao ppm 1 1 2 .6 16.05 73.03

K7f 1/min 0 .1004E+2 0 .1008E+2 0.1008E+2

KRf 1/mg-mole min 0.1018E+5 0 .1562E+5 0.1562E+5

K17f 1/mg-mole min 0.3803E+4 0.3985E+4 0.3985E+4

Kt 1/mg-mole. min 0.8787E-2 0.6969E+1 0.3097E+3

CSTR Process

The purpose of the CSTR experiments is to test the validity of the proposed kinetic 

models and the calculated rate constants. The CSTR processes includes H2 O2 /UV 

process and O3 /UV process were run for three pollutants.

5.1.10 Photolytic Hydrogen Peroxide Oxidation Process

The experimental results for these three pollutants are shown in Figure 5.26 to Figure 

5.28. The flow rate of the influent was controlled at a certain value. The pH value 

was also controlled between 6 . 8  - 7.2. Since the reaction rate constants which are 

required in the kinetic model of CSTR process had already been calculated in the
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batch or semi-batch experiments, a theoretical output of the decomposition of the 

pollutant by this process can be plotted. The comparison between the theoretical 

prediction and the experimental result for nitrotoluene is shown in Figure 5.26. From 

this figure we can see that the deviation of theoretical prediction is very small, 

especially at the steady state. The comparison plot for naphthalene is shown in Figure 

5.27. The result shows that the prediction was also quite match to the experimental 

data, except at the first 10 minutes of experiment. The comparison plot for 2,4,6 - 

trichlorophenol is in Figure 5.28. The theoretical prediction is a little smaller than the 

experimental data, however it is still in the permissible range, 3%  deviation from the 

experimental result. There is a common phenomena in these figures : we had a larger 

prediction error at the beginning of the experiment. This is because of the UV lamp 

did not warm enough at the beginning of the experiment. From these comparison 

plots, it proves that the kinetic model of decomposition of pollutants by H2 O2 /UV 

process and the rate constants we calculated can be practical used in the waste water 

treatment.

The operation conditions of this experiment for three chemicals are listed in the 

Table 5.7.

Table 5.7

nitrotoluene nephthalene 2,4,6 TCP

Cao ppm 107.6 14.07 60.594

Flow rate GPM 0.4 1 .2 0.7

Cw?n?n mg-mole/1 57.19 5.72 3.43
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5.1.11 Photolytic Ozonation Process

The experimental results and the theoretical prediction of this process for the three 

chemicals are shown in Figure 5.29 to Figure 5.31. From these figures we found that 

the prediction values are higher than the experimental data at the beginning of 

experiment which is opposite to the CSTR H2 O2 /UV process. This is because of the 

fact ozone can suddenly be decomposed and produce free radicals even at the lower 

UV radiation. The theoretical prediction of nitrotoluene output fits the experimental 

data well which shows in Figure 5.29.

The theoretical prediction of output concentration of naphthalene which shows in 

Figure 5.30 is higher than the experimental data. This difference is from the high 

flow rate of the effluent. Because the feeding pump we used was small, it caused the 

fluctuation of influent at the higher feeding flow rate. This phenomena also happened 

in the experiment for 2,4,6 - trichlorophenol. Although there is a small deviation in 

the theoretical prediction for naphthalene and 2,4,6-trichlorophenol, it believed that 

the rate constants still can be used in the design purpose.

The operation conditions are listed in the Table 5.8

Table 5.8

Nitrotoluene Naphthalene 2,4,6 - TCP

Cao (ppm) 107.55 18.31 51.37

Flow rate (GPM) 0.7 2 . 0 1 .6
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5.2 Discussions

5.2.1 Analysis of the Decomposition Effects

By the comparison of the decomposition curves of pollutants in the different 

experiments, we can know the individual effect on the decomposition of pollutants. 

The comparison analysis is as follows :

(1) Effect of UV radiation : UV/N2  versus N2 .

(2 ) Effect of activated oxygen : UV/O2  versus UV/N2 .

(3) Effect of ozone : O3  versus N2 .

(4) Effect of photolytic ozonation : UV/O3  versus UV/N2  and O3 .

(5) Effect of photolytic hydrogen peroxide : UV/H2 O2  versus UV/N2 .

(1) Effect of UV Radiation

The effect of UV radiation on nitrotoluene and naphthalene is very small. In Figure 

5.33 shows that about 10% of nitrotoluene is decomposed by UV radiation after 2 

hours reaction. It is about 25 % of naphthalene decomposed by UV protons within 2 

hours which shows in Figure 5.34. However, the effect on the 2,4,6 - trichlorophenol 

is significant. From Figure 5.35 we can see that there is about 70% of 2,4,6 - 

trichlorophenol decomposed by UV radiation within 70 minutes. Since it is so easy to 

be destroyed by UV proton, this may be able to explain the phenomena that there is 

no intermediates found by the GC/MS analysis in the O3 /UV and H2 O2 /UV process.

(2) Effect of Activated Oxygen

Oxygen under UV radiation would produce activated oxygen which is also a strong 

oxidant. However, from Figure 5.35 to Figure 5.37 we could see that the effect of 

activated oxygen on the decomposition of these three pollutants are very small. There
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is even no contribution to the decomposition of naphthalene. Thus we may eliminate 

the decomposition reaction between the pollutant and the activated oxygen.

(3) Effect of Ozone

The ability of ozone decomposition of these three chemicals is strong. From Figure 

5.38 we can see that 90 % of nitrotoluene is decomposed by the ozone oxidation 

within 90 minutes. Naphthalene is totally decomposed within 10 minutes which shows 

in the Figure 5.39 and 95 % of 2,4,6 - trichlorophenol is decomposed within 25 

minuteswhich shows in the Figure 5.40. When the pH value is at neutral, ozone mass 

transfer reaction and hydroxyl radicals predominate the oxidation of pollutants. Thus, 

most of the pollutants are decomposed by these two oxidants. Also this can be 

identified by the output of computer calculation which shows that the contribution of 

decomposition of pollutants by these two oxidants is about 95 %. Following 

conclusions are made from the experimental result and the kinetic model.

1. The mass transfer of ozone from gas phase to liquid phase performs a very 

important role in ozonation, specially for the pollutants like naphthalene which 

is easily decomposed by ozonation.

2. The saturated concentration of ozone is increased with the decreasing of 

temperature. Thus, by decreasing the temperature we could improve the 

ozonation ability.

3. The quantity of hydroperoxide radicals which produced from the decomposition 

of dissolved ozone is small.

(4). Photolytic Ozonation

A comparison of ozonation and photolytic ozonation, from Figure 5.41 to Figure 

5.43, show that there is an enhancement in the decomposition of pollutant by UV
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radiation with ozone process. Photolytic ozonation reaction basically involved three 

oxidants hydroxyl radical, hydroperoxide radical and ozone. Although the 

concentration of ozone in this process is small, we still should not neglect its strong 

oxidation ability. From the comparison figures and the calculation of kinetic reaction 

the following conclusions are proposed :

1. The role of hydroperoxide radical in this process was very important. Because 

hydroxyl radicals would continuously react with dissolved ozone to produce 

hydroperoxide radicals.

2. It will produce less intermediates in this process for those chemicals which is 

easily decomposed by uv radiation.

3. Most of the decomposed products were acid chemicals, because the pH value 

of the solution during the reaction was going down very fast.

(5). Photolytic Hydrogen Peroxide

In the photolytic hydrogen peroxide, there are only hydroxyl radicals and 

hydroperoxide radicals present in this process. These radicals also existed in the 

photolytic ozonation process, however its ability of decomposition of pollutant is 

much higher than the photolytic hydrogen peroxide process, The comparison result 

for three pollutants shows in Figure 5.44 to Figure 5.46. There are four reasons 

which can explain this result

1 In photolytic hydrogen peroxide process, there is not ozone able to improve the 

decomposition of pollutant.

2 The decomposition of hydrogen peroxide under UV radiation to produce 

hydroxyl radicals is slow, but the dissolved ozone is very easily decomposed to 

hydroxyl radicals.
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3. The commercial product of hydrogen peroxide was added some inhibitor in it. It 

would protect hydrogen peroxide to be decomposed by UV radiation.

4. Photolytic hydrogen peroxide is a acid catalyst reaction. That means we could 

increase the decomposition of pollutants by reduce the pH value in this process.

5.2.2 Comparison of the Experiments

The comparison of all experimental results for the three pollutants are shown in 

Figure 5.47 to Figure 5.4. From these figures we could see the sequence of 

decomposition rate of pollutants by the different processes as follow

For nitrotoluene : UV/O3  >  O3  >  H2 O2 /UV > UV/O2  > UV/N2  >  N2  

For naphthalene : UV/O3  >  O3  >  H2 O2 /UV > UV/O2  , UV/N2  > N2  

For 2.4.6-TCP : UV/0 3 , O3  >  H2 O2 /UV >  UV/O2  >  UV/N2  >  N2

5.2.3 CSTR Design Consideration.

Since we had already known the rate constants in the proposed kinetic model, by 

changing the operation conditions we could achieve the desired effluent concentration 

of pollutants from the CSTR process.

A CSTR Photolytic Hydrogen Peroxide Process

Two operation conditions could change the outlet concentration of pollutants from the 

CSTR process, inlet flow rate of solution from the reservoir and the quantities of 

hydrogen peroxide added into the reservoir. The computation results of the different 

inlet flow rate of pollutants from reservoir are shown in Figure 5.50 to Figure 5.52. 

The following conclusions can be obtained from these figures :

1. The decomposition of nitrotoluene and 2,4,6 - trichlorophenol by this process 

are not very fast, so we should operate at a low inlet flow rate.
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2. The decomposition of pollutants is very sensitive to the inlet flow rate, specially 

for the low inlet flow rate.

The computation results of changing the amount of hydrogen peroxide added into 

the reservoir at a constant inlet flow rate are shown in Figure 5.53 to Figure 5.55. 

From these figures we have the following conclusion

1. The decomposition rate of pollutants is not proportion to the amount of 

hydrogen added.

2. The decomposition of nitrotoluene and 2,4,6'trichlorophenol is not seneitive to 

the change of the quantity of hydrogen peroxide added into the reservoir. 

However the change is significant for naphthalene.

B CSTR Photolytic Ozonztion Process

In this process we can change the inlet flow rate of solution from the reservoir to 

achieve the desired output concentration of pollutant from reactor. The computation 

results for the three pollutants are shown in Figure 5.56 to Figure 5.58. The 

following conclusions can be obtained from these three figures 

1 Nitrotoluene is very seneitive to the change of inlet flow rate.

2. The effect of changing inlet flow rate of naphthalene is not significant. For 

2 ,4,6 ,-trichlorophenol, the effect is important at low inlet flow rate.



CHAPTER 6  
CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

From the experimental results and the proposed kinetic models the conclusions are as

follows:

1. Advance oxidation processes, ozonation, photolytic ozonation and photolytic 

hydrogen peroxide have been shown to be effective treatment methods for the 

three pollutants, nitrotoluene, naphthalene and 2,4,6-trichlorophenol.

2. The decomposition of hydrogen peroxide to produce hydroxyl radicals under UV 

radiation is slow. However, the dissolved ozone is instantly decomposed totally to 

hydroxyl radicals.

3. Air stripping effect on the three pollutants is very small.

4. 2,4,6 - trichlorophenol can be destructed by UV radiation easily. This phenomena 

maybe because of the fact that there is no intermediate found in the advance 

photolytic oxidation processes. The effect of UV radiation on nitrotoluene is 

insignificant and it has a medium effect on naphthalene.

5. The effects of activated oxygen is negligible on the three pollutants .

6 . Mass transfer of ozone from gas phase to liquid phase is the key factor in the 

ozonation process.

7. The intermediates produced from the photolytic ozonation and the photolytic 

hydrogen peroxide are same. Oxime cyclobutanone and 2-methyl cyclobutanone 

are the intermediates which have been identified from the photolytic oxidation of 

nitrotoluene. For naphthalene, there is only one intermediate, 4-methyl 2- 

pentanone, whereas no intermediates were detected for 2,4,6,- trichlorophenol 

during photolytic oxidation treatments.

68
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8 . The production and decomposition of intermediates should be considered in the 

kinetic model, as there is a competitive reaction between the intermediates and the 

pollutants.

9. The free radicals, hydroxyl radical and hydroperoxide radical, have important 

contributions to the decomposition of pollutants in the photolytic oxidation 

processes.

10. The proposed kinetic models, in chapter 4, and the calculated rate constants have 

been used correctly in the CSTR processes and also can also be used for the 

practical design purpose.

6.2 Recommendations

In order to have a still better understanding of the photolytic oxidation processes, the

following are the recommendations for the further study.

1. The intensity of UV radiation should be considered in the photolytic oxidation 

processes.

2. It is important to keep the solution at a constant pH value and as well as study the 

system at different pH values.

3. Hydrogen peroxide concentration should be observed during the photolytic 

hydrogen peroxide process.

4 .Ozone concentration should be measured during ozonation process and photolytic 

ozonation.

5.The effects of temperature on the ozone mass transfer from gas phase to liquid 

phase should be studied.

6 . A more basic study on the production and decomposition of intermediates should 

be investigated.
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Figure 5.59

GC/MS spectra of nitrotoluene and intermediates
in photolytic ozonation process

M l

1029.KM
IIM -

117
SI 71

IS O

0.0 0 . 0 0 .0 II.o la .o is .o

i . 0 C 4 t

* . 0 0 4 4

4.00*4
5
S a.ocm
|  I.K«4 
|  4 . 0 0 4 4

a.oc44
0.0044
1 . 0 0 4 4

o =

< 7 1  S c « n  4 . 4 U I  mtr>. ml  D flT A tS L C C O .O

A

o h  Oxime cyclobutanone

I.O04O-*-—**

1S00

a*
an

toi

in
10

000

jj
.j Lx J- , 4  7 7  7 »  4 1

•ra*i.< > a. I mm

( 4 »  C c a n  4 . 4 1 4  - « n .  a t  O ffT A iQ L C C A .D

i .

4 4  4 4

_ L .

’ <> o 2-methy,cyclobutanone

BO ■» I* ,  ■■Nse2»£?*2ri2 — __



fb
u

n
lM

M
 

I 
ft

o
u

n
a

w
iM

facing 133

Fig 5.60

GC/MS spectra of nitrotoluene and intermediates
in photolytic hydrogen peroxide process
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Fig 5.61

GC/MS spectra of naphthalene and intermediate 
in photolytic ozonation process
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Fig 5.62

GC/MS spectra of naphthalene and intermediate
in photolytic hydrogen peroxide process

c a n  1 3 . 0 1 1  o f  D R T R t I2 I .C E R .U

t«i

■s
V5I

in
lea

n e
TZC o f  D R T R t U L C E R .  0iei

hbct!IS II II

( 2 1 )  S c a n  S . S 4 S  a l n .  o f  D R T A iI0 L C E R .D

t i e  
tea 
ice 
tea

: mi
{
i

>M

T f
4-methyl 2-pentanone

4a 4i  sa is  ia •i ?oO ut yy
ric  o f  drtri leixcn.o

79 9 0 10 II



facing 136

Fig 5.63

GC/MS spectrum of 2,4,6 - trichlorophenol 
in photolytic ozonation process
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Fig 5.64

GC/MS spectrum of 2,4,6 - trichlorophenol 
in photolytic hydrogen peroxide process
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