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ABSTRACT

Errors in Constant-Velocity Shaft Couplings

by
Philip M. Remington

A Multiloop spatial system of rotations is used to represent a shaft coupling,

allowing a transmission plane which may deviate from the plane of symmetry to be

specified. The plane of transmission, for intersecting input and output shaft axes, is

the locus of intersections of screw axes that compose the system. By prescribing the

transmission plane outside of the plane of symmetry (commonly called the

"homokinetic plane" or "bisecting plane") to pecified orientations, a phase shift

between the input and output shaft rotational displacements will he quantified. The

rotational phase shift between the input and output shafts can be evaluated for a series

of configurations to classify the critical deviations from constant-velocity transmission

as a function of the transmission plane location.
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CHAPTER 1.
INTRODUCTION

1.1 Overview.

A constant-velocity shaft coupling, often refered to as a CV shaft coupling, ideally

provides constant-velocity transmission between two non-colinear shafts, Because of

wear and manufacturing tolerances, CV shaft couplings may deviate from the ideal

geometry which produces constant output speed for a constant input speed. This

stor y is concerned with calculating the fluctuation in the output -shaft speed, relative

to the input-shaft speed, when the dimensional differences between (he ideal and

actual geometry of the CV shaft coupling are known, A CV shaft coupling mathemat-

ical model is developed which allows the dimensional differences between the ideal

and actual geometry to be specified. This model is then evaluated for fluctuations in

the output-shaft speed relative to the input-shaft speed subject to various actual

eornetric possibilities, This mathematical model will allow the design engineer to

directly correlate the CV shaft coupling dimensional tolerances and the deviation

from constant velocity performance. It will also lead to a better understanding of the

wear patterns in the coupling components.
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Fig. 1- 1 	 The Carden or Hooke joint is the most common shaft coupling for rotational
transmission through two shafts whose ekes of rotation intersect.

12 Definition of Shaft Coupling

Shaft Couplings are mechanisms used to transmit rotational displacement between

two shafts whose axes of rotation are not collinear. The angle between the two shaft

axes of rotation is refered to as the shaft angle. The most common shaft coupling in

use is the Cardan or Hooke joint, shown in Fig. 1 - 1, which consists of four perpendic-

ular revolute joints in series whose axes of rotation intersect at a point. The Cardan

joint be more easily observed if redundant revolute joints are omitted, as represented

in Fig. 1-2, The Cardan joint is not a constant-velocity coupling, as there will be a

cyclic variation in the output-shaft speed relative to a constant input-shaft speed. The

cyclic variation can be derived as a function of the frame angle, for a given shaft

coupling.

Fig. 1 - 2 The Cardan or Hooke joint can be reduced to this form, remaining faithful to the
kinematic design. This representation shows the essential kinematic structure, consisting of four
perpendicular revolute joints in series. All four revolute joint axes must intersect at a single point.
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13 Definition of Constant-Velocity CouplinL

A constant-velocity shaft coupling is designed such that the output shaft always rotates

at the same speed as the input shaft. The general characteristics of constant-velocity

shaft couplings has been a topic of great interest to theoretical kinematics researchers

and automotive engineers alike (Freudenstein and Maki 1979, Steeds 1937), A brief

discussion of existing CV shaft couplings will assist in understanding the design

requirements. Constant-velocity shaft couplings, often called "constant-velocity uni-

versal joints", have been extensively used in front wheel automobile drives and this

application has led to many advancements in CV shaft coupling design.

Fig. 1 - 5 	 This sliced view of a simplified fizeppa CV shaft cooplinu shows the application of
hall-uroove joints. Four other balls are situated similarly about the shaft °pooling, The center of
cuivatore of ail spherical ()moves meet et the Intersection of shaft axes.

The most popular constant - velocity couplings for dItlits whose axes of rotation

intersect at a point are those with ball-groove joints which have compactness, preci-

sion and durability (Miller 1965). The ball-groove joint was first recognized as a viable

option for constant velocity shaft couplings in the late 1920's. Although a large variety

of CV shaft coupling designs came from E E. Myard (1933),A. H. Rzeppa (1928) was

recognized as the innovator of the ball-groove CV shaft coupling. A Rzeppa constant-



velocity shaft coupling contains six balls in spherical grooves. These grooves are made

concentric about the intersection of the two shaft axes of rotation. The balls are forced

against the grooves, which transmits torque between the input shaft and the output

shaft (H. H. Mabie 1948).

Fig. 1 - 4 	 This sliced piece of a Rzeppa CV shaft coupling shows the ball cage, directed by
the spring loaded pilot lever, positioning a ball in a position symmetric to both the input shaft
and the output shaft.

The success of the Rzeppa CV shaft cotpling is contingent on the precise

positioning of the balls in a plane symmetric to both shafts. This plane is called the

homokinetic or bisecting plane. This was first accomplished by using a ball cage

cirected by a spring loaded pilot lever (Rzeppa 1928 ). This ball positioning mecha-

nism can approximately position the balls in the hornakinetic plane, which leads to

the investigation of the deviation from constant velocity due to errors in this approx-

imation,

Later patents on the Rzeppa CV shaft coupling involving eccentric and non-

spherical ball grooves lead to ball positioning without need for a pilot lever ( Rzeppa

1934,1935). For these designs the tolerances in the grooves must be very precise, to

maintain acceptable constant-velocity transmission. These designs adhere to the
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principle of the homokinetic plane so the mathematical model that follows remains

valid. The deviation from constant,-velocity transmission can be attributed to the

deviation of the balls from the homokinetic plane.

Fig. 1 - 5 	 The double Cardan joint configured with equally opposite shaft angles of can
produce a sum rotational phase shift of zero between the input shaft and the output shaft.

There are two basic classes of constankvelocity shaft couplings. One class

includes the double-Cardan joint driveline which 114S been extensively studied by

Fischer one/ Paul 0987) and the double-pode joint driveline by Akbil and Lee (1983).

These drivelines operate on the premise that two non-constant-velocity couplings

configured in series at. equally opposite angles will procuca a sum rotational phase

shift of zero.

The other class of CV shaft couplings, which is of primary interest to this study,

produces constant-velocity through shafts, whose axes of rotation intersect at a point,

Tins class of shaft couplings operate on the principle of the hornokinatic plane. The

homokinetic plane is the plane symmetric to both the input and odtput shafts, where

the location of transmission between the-shafts must occur for constant-velocity
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transmission (Sturges 1947). Most of all known mechanisms which comprise this class

have been derived by Freadenstein and Mild (1979) using a graph-theory synthesis

method.

This graph-theory synthesis method consists of reducing all mechanisms to

fundamental components, where rigid bodies are represented by vertices(points) and

joints which connect the rigid bodies are represented by edges(lines) which connect

the corresponding vertices. The variety of constant-velocity couitlings derived, in-

cludes the Tracta, Clemens, Altman, Wiyard and Rzeppa plus some of which have not

been implemented into practice. This graph-theory synthesis method revelled several

possible combinations of joints, all of which follow the principle of the homokinetic

plane.

The principle of the homokinatic plane more specifically includes kinematic

requirements in addition to the fundamental  geometric requirements. As noted in

Hunt (1973), the theory of shaft couplings designed to produce constant-velocity

transmission, requires an odd number of joints arrayed equally about a central axis.

A central joint in the coupling must be located in the plane of symmetry between the

input and output shafts, commonly called the "homokinetic liane" or "bisecting Plane",

to achieve constant-velocity transmission. This plane of symmetry most also contain

the intersection of the axes of the joints configured about it. Two examples of CV

shaft couplings which explicitly show these requirements, discussed later, are shown

in Fig, 1-7, As the hornokinetic --)lane is the ideal location of transmission, the actual

plane of transmission wil) be refered to as the transmission plane. The transmission

plane ideally coincides with the homoldnetic plane, lowever in actuality this is not

the case. The effect on constant-velocity.transmission due to the deviation of the

transmission plane from the homokinetic plane is developed here.
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Fig. 1 - 6 	 Spherical construction of CV shaft coupling with external locating device
positioning the Central axis joint in the plane of transmission.

1.4 Description of Model

As noted in Freudenstein and Maki (1979), the sum of the freedoms of the joints in a

spatially derived CV shaft coupling must be seven to maintain the needed symmetry

and freedoms, This note is relevant only for spatial mechanisms. The mathematical

model is developed in spherical space and need possess five rotational freedoms in

the shaft coupling with specialized constraints for positioning the transmission plane.

This configuration was alluded to by How (1973) in an approach to synthesize a

high-precision general CV coupling composed of lower pairs with the minimum

number of freedoms. This configuration, like the well-known Rzeppa (Rzappa 1953)

or f3andix-Weiss (Pulps 1947) ball groove type CV shaft couplings, operates on the

principle of the homokinetic plane,



central joint

intermediate

joints

shafts

Fig. 1 - 7 (a) 8, (b) 	 These mechanisms consist of seven revolute joints arrayed equally about
a central axis symmetric to the input and output shafts, which satisfies the principle of the
hornokinetie plane.

The 7R(seven revolute joints in series) spatial mechanisms, shown in Fig. 1-7,

suitable for constant-velocity transmission, originally introduced by *arc/ (1933), are

thoroughly discussed by Hunt (1973), Spherical space, which simplifies the system,

ean be achieved by projecting the spatial system of orthogonal rotations in Fig. 1.7

(a), declaring all axes intersect at a point, on that point, where all distances degenerate

from the mechanism. This transformation, accomplished by representing the two

intermediate joints on each side of the mechanism as single linearly independent

joints, satisfies the mobility criteria in spherical space, More simply, the transforma.

don between any two axes in spherical space can be represented by A single rotation

about an axis linearly independent to both axes, This holds true for the transformation

between the axes of the central joint and each shaft. This kinematic rule helps

describe the reduction of a one degree-of-freadom, 7R spatial mechanism to a two

degree”or-fraeclom, SR spherical mechanism with out violating the principle of the

homokinetic plane, when the central joint is externally constrained to the hornokinetic

plane. The additional degree-of-freedom will be utilized to locate the transmission

plane independent of the shaft locations. The prospect of utilizing this construction
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as a means of analyzing the errors in couplings that operate on the principle of the

homokinetic plane does prove to be effective. The deviation from constant-velocity

transmission of the CV shaft coupling when the orientation of the transmission plane

leaves the bisecting plane or homokinetic plane is the focus of this study.

LS Motivation

For Rzeppa CV shaft couplings the Motion of the pilot lever and clearance of the ball

grooves, determine the position of the transmission plane. Contact between the balls

and ball grooves in these couplings are the primary location of fatigue (Sutherland

1976, Macielinski 1970). Wear and manufacturing - tolerance deviations from ideal

geometry induce output speed fluctuation in what was intended as a constant -velocity

coupling. These limitations inspire a need to investigate in detail the effect of the

manufacturing tolerances and wear on the ability of the CV shaft coupling to transmit

constant-velocity.

By developing a technique, to relate geometric aspects like bail-groove clearances

and the pilot lever motion accuracy to the input/output shaft rotational displacement,

a better evaluation of designs will be possible. This model is developed on the premise

that the transmission plane can be located independent of the shaft locations. This

will allow the model to evaluate the effect of specific locations of the transmission

plane on the phase shift between the input and output shaft rotational displacement

at different frame angles. This knowledge will provide a reference for existing shaft

couplings to be evaluated and modified to optimize shaft transmission tolerances as

a function of the ball groove clearances and pilot lever motion accuracy. The type of

CV shaft couplings, where the axes of rotation of the shafts intersect will be investi-

gated in this study and the errors which occur when the homokinetic-plane require-

ment is not satisfied will be presented and quantified. The relationship between the
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ball-groove contact location and the deviation from constant-velocity of the coupling

(when the transmission plane is not coincident with the homokinetic plane) is the

focus of this study.

1.6 Description of the Topic of each Chapter

Chapter 2 will provide the thQorptical background and the development, of the CV.

shaft coupling model. Chapter 3 explains the mathematical procedure which trans-

forms the CV shaft coupling model into an explicit solution. Chapter 4 implements

the model for various geometric configurations. A brief discussion will also be offered

describing characteristics of particular interest found in the results. Chapter 5 will

summarize the study and offer insight as to how this study provides essential informa-

tion for the improvement, of CV couplings,



CHAPTER 2,
DEVELOPMENT OF THE N40 DEL

2.1 General discussion of approach

COL-PLANE'

Fig. 2-1 General 131ack i3ox Coupling

A conceptual discussion of model development is presented in this chapter. The

coupling model will be a multiloop system consisting exclusively of successive °Ming-

onal revolute joints, which have been chosen as fundamental building blocks. To

develop the model, a modified graph theory will Ile used to visualize the construction.

Modified graph theory is an extension of the mectinnislii-calqorizinA type-synthesis,

technique developed by Froudfm.vioin (1078), While in the mechanist-11 type-synthesis

graph theory the relationship between links through joints was specified, graphs will

be used here to specify the relationships between coordinate frames fixed on the links

and the base through coordinate transformations. The constraints that describe this

11
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will be individually contended with as the model is formulated. The criteria such as the

degrees-of-freedom and the general principle-of the homokinetic plane will he incor-

porated into with a general "black box" shaft coupling.

2.2 Degree-of-freedom criteria

A generalized shaft coupling is a one degree-of-freedom mechanism which will provide

the first formulation. The following degree-of-freedom equation can be be utilized to

implement the first constraint for the generalized shaft coupling.

F= 
—A Lind+E f i 	 (2 - 1)

Lind =j-I+1 	 (2-2)

whore variables are defined such that:

F 	 = degree of freedom of the system
degree of freedom of the space

/ 	 = number of links in the system
number of rotations in the system
number of freedoms in the system

Lind ---- number of independent closed loops

This equation will be used evaluate the shaft coupling where all the axes of

rotation intersect at a single point, which justifies projecting t he system onto spherical

space which is a three freedoms space, /1, 	 3, characterized by X, Y and Z rotations.

A simple shaft coupling is defined as having a single independent loop, Lind 	 1 and

a single degree of freedom, F 	 1, so that

—3 (1) + Σfi 	 (2-3)

4 = Ef . 	 (2-4)

This value corresponds to the Cardan joint, which with four revolute joints, has

the minimum number of freedoms possible for a shaft coupling. It is important to note
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that for the Cardan joint all axes of rotation of these revolute joints in series are

perpendicular to their neighbors, except for the terminal joints. The terminal joints

represent the rotation of the input and output shafts. This lack of symmetry of all

couplings with an even number of freedoms in spherical space is the reason non-con-

stant velocity transmission occurs. An additional degree of freedom in the system is

needed to comply with the odd number of rotations requirement described by Hunt

(1973), Since constant velocity is desired, the freedoms of the system will be set to

= 5. This result is valid for a double Cardan joint where the intermediate shaft is

reduced to zero length. Considering a coupling with five revolute joints, eq (2-1) is

evaluated as eq (2-5). Five revolute joints, whose axes intersect at a point, meets the

odd number of freedoms requirement, yet represent a two degree-of-freedom system.

An external device to align the homokinatic plane will account for the second degree-

of-freedom.

-3(1) + 5 2 (2-5)

To satisfy the symmetry relationship between the shafts, the axes of rotation of

the joints configured about the central joint must intersect in the homoldnatic plane

which creates indeterminant configurations of the cenoal joint. Indeterminate config-

urations occurs at some point during the articulation of the shaft coupling when the

two neighboring revalute joints axes of rotation become collinear. The indeterminacy

of the central joint can only be eliminated by locating it with an external device, Thus

it is the intention of this study to locate the central joint with an external device. The

additional degree of freedom will be allocated to the locating device which will specify

the position of the central joint.



2.3 Application of modified graph theory

/4

Flu. 2-2 The COMA' axis joint in an indeterminent configuration, winere its Iwo neighboring joints
axes are collinear and redundant

To develop the coupling model, a modified graph theory will he employed since

the parameters that describe the fixed frames play an important role in this construc-

tion and would be excluded with the existing graph theory. Graph theory is a method

of representing mechanisms with a combination of vertices (v) and edges (a) The

vertices, as points, will represent frames and the edges, as lines, will represent

rotations.



X1

Z1

The joint rotations symbolized in Fig. 2-3 can be combined by condition of

Y2

x3

73

X4
Fig. 2-3 	 Modified graph theory diagram of underconstrainecl CV coupling.

loop closure as

ZIX1Y2X3Z3X4 = 1 	 (2-6)

where:

Zi	 Input Shaft Rotation
- input Shaft Alignment Angle
= KOtatiali with axis in transmission plane

X3 Output Shaft Alignment Angle
Z3 	 Output Shaft Rotation

Frame Angle

The choice of rotation axes were selected to maintain yi-nrtie-try )e. ow the

shafts and adhere to the common convention of shaft rotations about Z axes. By

defining the frame angle as a parameter, the system satisfies the five joint freedoms

constraint.

15



Y1 Y]

X 1 X3

Z1 Z3

This system must be expanded to allow the location of the central joint axis to

be specified. An additional relationship between the central joint axis and the fixed

frame will offer a means of prescribing the orientation of the transmission plane, The

central joint axis lies in the transmission plane according to the principle of the

hornokinetic plane. Consider expanding the central joint rotation into two separate

angles about the same axis. This expansion of the system will not effect the freedoms

of the system since the new rotations, Yi and Y3 shown in Fig. 2-4, are redundant

with the original rotation Y2. The frame between the redundant transmission angles

is located in the transmission plane. The magnitude of the rotations Y1 and Y3 are

proportioned to define a frame located in the transmission plane so that

16

X4
Flu. 2 -4	 CV coupling with frame In transmission plane.

( 2-7)

The frame angle will also he split into two redundant angles at this stage in the

development of the model, The new frame developed between the Yi and Y3 rotation
will he connected to the new transmission frame by an additional rotation, This

rotation between a frame in the transmission plane and the fixed frame will have its

axis perpendicular to the transmission plane, and Will articulate the central-joint axis

about the prescribed transmission plane so that the rotation through the frame angle,

which is the sum of the rotations X21 and X23, shown in Fig. 2-5, is



X1 X3

71 Z3
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Y1 	 Y3

72

X21 	 X23
Fig. 2-5 CV Coupling with Rotation in Tfansmission Plane

X4 X21X23 (2-8)

The Z2 transmission rotation, shown in Hg. 2-5, whose axis is perpendicular

to the axes of theY2 andX4, rotations, defines an axis perpendicular to the transmission

plane. The transmission plane is the locus of positions of the central-joint through

articulation of the coupling, Each location of the central-joint axis will be constrained

about this rotation which defines the transmission plane. The transmission rotation

axis can only achieve positions perpendicular to the frame angle axis in this formula-

tion, as one single rotation is installed to locate the transmission plane about the frame

angle.

By expanding the transformation specifying the ground link (frame angle) with

a set of two Y-rotations, 112i and Y23,shOWn in Fig. 2-6, it will be possible to evaluate

all transmission plane location possibilities. By prescribing the two Y-rotations with
a product equal to the identity matrix, they will not effect the original configuration,

it is critical to maintain characteristics of the original system to maintain the frame

angle about the X-axis. This is the final cohfiguration which can will be developed

into a mathematical model.



X1.1 X3

21 Iza Z3

X2 1. )2.3

Y21 Ya3

The mechanism can be considered as a two-loop structure, represented by the

modified graph theory diagram shown in Fig 2-6, where,

Y1 	 Y3

18

Hg. 2-6 Modified Graph Theory Diagram of Solution Model

Input Loop:

Output Loop:

where,

(2-9)

(2-10)

ZLZ3 	 = Input and Output Shaft Rotations ( variables )
Y3 	 Central Axis Joint Rotations ( variables)

XLX3 	 = Outer Joints Rotations ( variables )
Z2 	 Rotation in Transmission Plane ( variables )

X21,Y21 	 Input Shaft Frame Rotations ( parameters )
X23,1123 --- Output Shaft Frame Rotations ( parameters )

Thew rotations will be thoroughly explained in the mathematical model that

follows, To confirm the validity of the modifications the model, the degree of freedom

equation will be used. For this model most maintain 1 degree of freedom in the

system, F = 1, through two independent loops, Lind = 2. The number of freedoms is

predicted to be Ef = 7. The number of freedoms corresponds to the number of

variable rotations in the system which confirms this system is valid.



CHAPTER 3
DESCRIPTION OF MATHEMATICAL MODEL

3.I General discussion of mathematical techniques

This model is developed on the premise that the all the axes of rotation intersect at a

single point in space, which allows the model to be projected onto spherical space.

This configuration is particularly relevant to the ball-groove CV joint as the balls of

the central-joint maintain a circular orbit in the transmission plane. Although the

central-joint of a CV joint is ideally constained to the homokinctic plane, it is not

particular to the instantaneous radius, only to the instantaneous angular position.

From this principle the central-joint need not perform a circular orbit in the transmis-

sion plane. This model will assume a circular orbit which maintains the exact

instantaneous angular position. This provision simplifies the model, yet does not

effect the input-output relationship, The static forces and torques on the balk in the

ball-grooves of a CV joint was accomplished by Bellorno (1975), which excludes all

non-constant-velocity configurations due to mechanical tolerances and wear, yet

confirms the circular orbit of the central-axis joint,

19
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The term "I" denotes the identity transformation and for spherical space

represents a diagonalized 3x3 unity matrix. Each of the rotational transformations

are 3-dimensional proper orthogonal rotation matrices in this solution scheme, which

can be denoted by

using the notation,
Co cos (0), So = sin (0), and Ta -= tan (0)

32 Application of niathernatical techniques to model

The rotational transformations are concatenated in a double-closed chain to repre-

sent the CV shaft coupling model. This is achieved using a closed form solution

method. In this context "closed form" means a solution method based on analytic

expressions, such that non-recursive calculations suffice to arrive at a solution ( Craig

1986 ). Double-closed chain implies the use of loop closure for a system of rotations

which achieve closure with two interdependent loops. Each of the elements of t he

matrix product of a closed chain represent a structure equation descriptive of the

coordinate transformations in that. loop, which comes to n2 equations for n-space. The

result is a constraint on the allowable values of the joint rotations in the chain, which

maintain the closure of the chain (McCarthy 1990 ).

The input-output rotational displacement relationgdhp can he solved from the

Iwo closed loop equations. The relationship between the input shaft and t he trans-

mission rotational displacement is solved in the first loop. The corresponding trans-
.

mission rotational displacement is applied to solve for the output-shaft rotational.

displacement in the second loop. The total system at this point has one degree of

freedom with four parameters to describe the locations of the rotations of links
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connected to the fixed-frame. As was previously mentioned, the Y-axis rotations are

equally opposite which reduces the fixed frame description to three parameters. The

single degree of freedom will be the rotation of the input shaft to obtain the corre-

sponding output shaft rotational displacement.

To maintain the customary convention of the input and output shaft axes as

Z-axes pointing outward, some modifications will be employed. The rotations in the

transmission plane for each of the, loops will be supplementary. The necessary

changes can be seen in Fig. 3-1, The 09 and 03 values in the output loop will have signs

opposite from the sense of the input loop. The at and a3 values are now the

supplement of the frame angle also called the driveline angular offset. These modi-

fications produce a genuinely simplified model as both sides of the shaft coupling are

now modeled identically.

This model maintains essential characteristics of the original configuration

while incorporating the transmission plane locating device. The first closed loop of

rotations relating the input shaft to the transmission plane takes the form

ZXYZYX 1, The second closed loop of rotations relating the transmission plane to

the output shaft and takes the identical form ZXYZYX = 1.

The model is represented in Fig. 3-1 as successive coordinate frames. These

coordinate frames are characterized by the rotation at that location in the closed loop

chain. This figure makes the mathematical model easier to understand and visualize



Fig. 3-1 General Coupling with Fixed Transmission Plane.

The loop equations are

Input Loop:

Output Loop:

Input and Output Shaft Rotations ( variables )

Central- Axis Joint Rotations ( variables )

= 0111ff joint Rotations ( variables )

= Rotation in Transmission Plane ( variables )

= Input Shaft Frame Dimensions ( parameters )

= Output Shaft Frame Dimensions ( parameters )

22
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The fixed frame is parameterized by the driveline offset angles, 021 and 093

for the input and output loops, respectively. The corresponding fixed frame angles,

)721 and 7723 will occur about the axis perpendicular to the driveline offset angles in

the transmission plane. The input-shaft rotation is input-variable angle 01 and the

output shaft rotation is output-variable angle 03. These loops both have the same

transmission rotation through intermediate variable angle 02, in the transmission

plane which connects them. The sign of the transmission rotation will be opposite

from one loop to the other for convienient notation. Let it be noted that the

Z2-transmission rotation is the rotation of the locating device which constrains the

Y-rotation, central-joint axis to the transmission plane.

The input loop is evaluated for function Θ2 = φθ1,η21,a21), the transmission

rotation, by expanding the rotation transformations in the form,

(3-2)

to obtain intermediate variable 02, element (1,2) is divided by (11),

(3-3)

The output loop is evaluated for function 03 	 (1)(02d/237023) by expanding

the equation in the form,

(34)

and to obtain output variable 03, element (1,2) is divided by (2,2),

(3-5)
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It is essential to take make provisions for quadrant changes, which the general

arctangent function does not, in refining the solution. The function,

ATAN2(sin(0),cos(0)), a FORTRAN notation, can be incorporated into the solution

for both 09 and 93 to obtain the correct quadrants in the solution.

(3-6)

(3-7)

These equations together make up the generalized input/output relationship

for the CV coupling including the configurations where constant-velocity constraints

are not satisfied, By substituting eq (3-6) into eq (3-7) can be obtained the generalized

coupling input/output equation,

(3-8)

The focus of this study is the rotational phase shift between the input and

output shaft rotational displacements for specified configurations so the following

analysis will deal with the deviation,

• (3-9)
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33 Refinement of mathematical model

A scheme to make the solution more amenable will simplify the variable angles into

three functions of the original variables and the input shaft rotation. The new

variables will be defined as the frame angle and two orthogonal locating-device

transmission angles, which are illustrated in Fig. 3-2. The provision that angle

77dev=1/21 =77 23 is incorporated to add simplicity to the system, without loss of gener-

ality, regarding the shaft couping. This provision reduces the five degrees of freedom

system to four, although these two original variables were previously defined as equal.

The frame angle used throughout the development can now be taken to full advantage

by the transformation X4 = X21X23 which represents rotation through the angle a4

=a21 +a23. Again the modification discussed and illustrated in the first section of

this chapter leads to the use of a supplementary value. The angle, a4 is now redefined

as the driven ne offset angle, which is the supplement of the frame angle illustrated in

Fig.3-2. The frame angle is the angle between the shafts about an axis perpendicular

to both shafts. The frame angle between the input and output shafts is angle aframe

= π - (α21+α23) TIT which uses the property that the frame angle is the supplement

of the driveline offset. For this system the homokinetic plane is maintained when a21

and the transmission plane under the influence of the alpha transmission angle

deviates from the homokinetic plane by the difference between these angles now

defined as angic.=-' adev—(1( 21-(α23)/2,

These manipulations produce three desired functions which define angles am

a23, rot and η23 in terms of angles ηdev, a cloy and atrarne .

(3-10)

(3-11)

(3-12)



transmission plane

aclev=(a21-3)12 about

Intersection of bisecting plane

\ with perpendicular to shaft axes
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driveline offset angle

ηdev=η21 =η23 23about

intersection of transmission plane

with plane of shaft axes

Fig. 3-2 New variables for amenable solution

Utilizing these new variables with some algebraic and trigonometric manipu-

lation a mare amenable solution will be developed, This is a concise generalized

solution for the coupling input/output equation for specified transmission planes,

(3-13)
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Fig. 3 - 3 Locating Scheme for Eta Transmission Axis.

The frame angle is comprised of a single X-rotation about an axis perpendic-

ular to both the input and output shafts. The transmission angle adev occurs about

the same axis and describes the angle between the transmission plane and the

bisecting plane. The transmission angle /Kiev occurs about an axis in both the trans-

mission plane, determined by the transmission angle αdev, , and the plane that contains

both shafts. These two angles give the ability to locate the transmission in any

orientation desired.

ALPI1A IPANSHISSIliq AXIS
FIRPENDIGUI_AR 	 SHAFTS

Fig. 3 - 4 	 Locating Scheme for Alpha Transmission Axis.

The transmission angle adev defines the location of the transmission plane with

respect to the homokinetic plane about an axis perpendicular to both shafts. The
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transmission axis qciev is located at the intersection of transmission plane located by

the angle adev and the plane that contains both shafts. The angle 72dev and the angle

adev are parts of the fixed frame that give the ability to achieve all possible transmis-

sion plane orientations.



CHAPTER 4
RESULTS AND DISCUSSION

41 Discussion orAmenahle Variable Scheme

- I Alpha transmission angle about axis perpendicular to bath shafts

The transmission angles actev and ηdev provide a means of referencing the angular

phase shift between the input and output shafts to the location of the transmission

plane‘ With the new variables developed in the previous chapter, this shows to he a

more amenable scheme, as this equation shows.

29



Fig. 4 - 2 Eta transmission angle about axis in plane with both shafts
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(4-1)

42 Presealatiott of Solutions for Trial Parameters

It is important to nate each of the deviation Porarneters in this model are refffenced

the hornoldnetie plane. The frame angle (.10.am-tines the location of the homokinetio

plane, implicitly. This allows the deviation of the transmission plane from the

homokinetic plane to be controlled exclusive13, by the angles adev and qdev.
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The deviation through a complete articulation of the coupling for the case with

angle qdev = 00 is shown in Figures 4-3,44.

• αdev = 0
x adev 	 1/2
+ adev = 1
o adev 3/2

adov = 2
Degrees

Input Shaft, A.ngle (Degreeti)

Fig. 4 - 3 inpui/Output shah deviation with aframe = 120 degrees for various adav values.

• αdev =- 0
• adev = 1/2

adev = 1
O aclev = 312
4 alleV 	 2

Rroes

360

Fig. 4 -4 Input/Output shaft deviation with aframe = 150 degrees for various adev values.
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The deviation through a complete articulation of the coupling for the ease with

adev = 0° is shown in Figures 4-5,4-6,

• /Neu = 0
X ridev = 1/2

+ 'Nov =

O ηdev	3/2
* ?Nov -= 2
)egroes

input 	 Shaft Angle ( Owe

Fig. 4 - 5 Input/Output shaft deviation with atr4irio - 120 degrees for various qdev values.

• )jciev =

ildev = 1/2

17dav =

0 )idev = 3/2

17dav = 2
DeRree

Input Shaft Angle (Degrees)

Fig. 4 - 6 Input/Output shaft deviation with atiame = 150 degrees for various ridev values.
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A general set of solutions incorporate combinations of the transmission angles

adev and ridev for frame angles, afrarne = 120' and 150' as shown in Figures 4-7,4-8.

//dev = 0

X 77dev 	 1/2

+ ildev	 1

o ηdev 	 3/2

/may 2
Degro,es

boa Shaft, Alagio (Degrees)

Fig. 4 -7 Input/Output shaft deviation with aframe = 120 degrees and actev =1/2 degree for
various 7i dev values.

Input Shaft Angle (Degrees)

Fig. 4 - 8 Input/Output shaft deviation with atrame 	 150 degrees and adev = 1/2 degree for
various ridev values.



Input Stu& A.a.gle (Dort-eftv)

Fig. 4 - 9 Input/Output shaft deviation with ame = 120 degrees and adov = 1 degree for
various ljdev values.

, lidev

	

iidev 	 1/2

rid ev

	

d •Pidev 	 3/2

Odav

Dogrcia&'

Input Shaft Angle (Degrees)

Fig. 4 - 10 Input/Output shaft deviation with aflame = 120 degrees and adev =3/2 degree for
various ridev values.
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Input Shari. Angle (Derreoli)

Fig. 4 - 11 Input/Output shaft deviation with corame = 120 degrees and aciv =2 degree for
various ildav values.
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Input Shaft Anglb (Degrq-ea)

Fig. 4-12  Input/Output shaft deviation with afrarne 	 150 degrees and adev =2 degree for

various ydev values.
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4.3 Discussion or Results

The CV coupling deviation solution provides a complete relationship between the

input and output shaft rotations for all possible configurations of the transmission

plane. It is essential to delineate the effects adev and 77dev, on the input/output

relationship throughout various frame angles. These two angles give absolute control

over the deviation of the transmission plane with respect to the homokinetic plane.

The effects of these angles can be described by grouping the Orientations of the

central-axis joint into quadrants.

These quadrants represent sub-sets of all possible central-axis joint locations.

The quadrants are characterized by the quarter-spaces whose boundaries are central-

axis joint locations which produce zero deviation between the input and output shafts.

These boundaries correspond to the central-axis joint located in the homok.inetic

plane or the plane that contains both shafts. As either of these boundaries are crossed

by the central-axis joint the deviation between the input and output shafts will switch

signs. These ideas help the designer get a quick idea of the general effects of the

location of the central - axis joint on the input/output relationship. The use of these

quadrants will be elaborated upon, as this concept. will assist in the discussion of the

two deviation angle's effects upon the input/output relationship.

The adev deviation angle, when it is the only deviation of the transmission

plane from the homoldnetic plane, will send the central - axis joint through all four

quadrants. This will 3R3lIre the input/output relationship changing signs four times

for one full rotation of the input shaft. The cedev deviation angle has less effect on the

input/output relationship per degree of deviation then does the ridev deviation angle,

although it is the most volatile with respect to.the frame angle. The implicit locating

of the homokinetic plane at one-half the frame angle directly effects the reference

frame of the adev. The α frame axis coincides with the adev axis which shows the direct



input shaft output shaft

input shaft output shaft

KAI adev

rdz aframe
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4- -ia Views of actev to destinguish the transmission plane passing through four quadrants

correlation between the afrarne angle and the reference frame for the adev angle. This

deviation angle is the angle of greatest concern to designers as this angle contends

with the axis that requires the most modification for a given change in the aframe angle,

The adev reference changes by one-half the change in the frame angle as it is

referenced from the homokinetic plane.
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input shaft output shaft

input shaft a ftdle
„output shaft

ildev 	 0

Fig. 4-14 Views ot ηdev to destinguish the transmon plane passing through Iwo quadrants

The qd-ov cieviWinn angle rotates about the axis in the transmission plane which

is in the plane with both shafts, When this is the only angle of deviation the central-axis

joint will pass through two quadrants of the same sign. The location of the ri day axis

when auev is zero is the line touching all four quadrants. By passing through this line

twice tha input/output relationship will maintain the same sign. The quev deviation

angle has a greater effect on the input/output relationship per degree of deviation

from the homokinetic plane yet, is nearly independent of the positioning of the

locating device. The ridev deviation axis is orthogonal to the axis of the frame angle

and thus the ?Kiev reference is ideally unchanged by the bisecting angle variations,
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The adev deviation angle, most dependent on the locating device, occurs

about an axis perpendicular to both shafts. The aframe angle rotates about the same

axis as the adev angle. It should be noted that the locating of the homokinetic plane

is at one-half the aframe angle and in the plane with both shafts, so the adev angle as

it is referenced to the homokinetic plane is most affected by the locating device. The

variation in the position of the homokinetic plane about this axis during variations in

the aframe angle, although implicitly defined in the solution, must be considered

carefully. Although the locating devices in primarily positioning the transmission

plane to accommodate the new frame angles, the input/output relationship may still

develop deviation by the iidev angle,

The input/output relationship, Odev for one rotation of the input shaft, passes

through four quadrant boundaries when Odev is non -zero. This implies the edev

value will switch signs four times during one rotation of the input shaft, These

solutions are double frequency periodic functions which are symmetric about zero

when lidev is zero. The larger the driveline offset angle the sharper the change and

the larger the amplitude of the edev deviation values, The iidev also produces a

double frequency periodic function, although the Odev value does not change signs.

At the small deviation angles that can be attributed to tolerances and wear, the

solutions appear to be sinusoidal. This is not completely true as extreme deviation

angles and frame angles will show an interesting phenominon.

This phonominon becomes noticable for large deviation angles becomes

particularly relevant when the central-axis joint is approaching or departing from a

boundary. Note the -rwo sides of the coupling, about the transmission plane, can be

viewed as identical mechanisms. As the central axis joint approaches a boundary the

edev values become smaller. This reducing of the Odev value can be attributed to

motions in the mechanism on each identical side of the mechanism. If the output side
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of the mechanism is closer to the boundary configuration then the input side, a sharp

change in the edev value will occur. This occurs when the Odev is appraaching zero

from any quadrant. These function characteristics provide additional insight into the

more volatile central-axis joint locations.

Although the amplitude of the edev deviation is small under the influence of

the adev deviation angle, the locating device is most likely to produce greater errors

about the adev deviation axis. The locating device is most apt to produce errors about

this axis due to the previously discussed dependence on the aframe. The small ridev,

when adev is non-zero, makes a considerable change in the amplitude and phase of

the edev angle. This finding localizes the most volatile central-axis joint locations

and attributes the error in the CV coupling to specific characteristics of the locating

device,

The ?Kiev deviation angle produces much larger magnitudes in the edov

deviation angle for a given cycle. The /Nov angle produces Oclev deviations 90' out

of phase from what the adev angle produces. The general shape of the corresponding

input/output relationships are quite similar between the two transmission plane

deviation angles. The oev deviation axis although generally less dependent on the

locating device does produce a considerably larger amplitude in the input/output

relationship,

The most concerning variations in the input/output relationship occur when

the two deviation angles are both non-zero. The slightest addition of the ictev to the

adov can change the phase and increase the amplitude amplitude. The mechanical

tolerances in the locating device of a CV coupling should take into account the

volatility of the ridev as it can have grave effects at very minute values. As the locating

device is generally concerned with positioning of the transmission plane about the
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axis of the frame angle, perhaps additional concern should be made to accomodate

the strong influence of the lidev value.



CHAPTER 5
CONCLUSION

The CV shaft coupling deviation solution provides a complete relationship between

the input and output shaft rotations for all possible configurations of the transmission

plane. The intent of this study is to give the designer needed insight, into the

relationship between the transmission plane and the deviation between the input and

output shaft rotational displacements. The two deviation angles, adev and ridev give

absolute specification of the location of the transmission plane.

The possible central-joint axis locations are grouped into four quarter spaces.

The quarter spaces are separated by the plane containing both shafts and the

homokinetic plane. When the central-joint axis passes a quarter space boundary, the

input/output relationship, ()cloy will switch signs. This implies, if the input shaft

rotation leads the output shaft rotation, then it will lag or visa-versa, As ihe central-

joint axis moves deeper into a quarter-space the lead/log magnitude will become

larger.

The ijoev deviation angle per degree has a greater effect on the input/output

relationship then does the adev deviation angle. The ridev deviation axis is orthog-

onal to the axis of the frame angle and thus the qdev reference angle is unchanged by

the bisecting angle variations. The central-joint axis only passes through two quarter

spaces under the influence of qdev. By remaining in a single quarter space for 180°

42
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the central-axis joint will reach much deeper and allow the lead/lag magnitudes to

become exceedingly large. The axis of the deviation angle, /May is orthogonal to the

axis of the frame angle, which shows that the deviation angle, tidev is least likely to be

have errors due to the variations in the frame angle. These changes in the frame angle

correspond to changes in the transmission plane locating device, ideally of one-half

the frame angle.

The adev deviation angle, occurs about an axis perpendicular to both shafts.

The airame angle rotates about the same axis as the adev angle. The location of the

homokinetic plane is at one-half the atrame angle, so the adev angle as it is referenced

to the homokinatic plane is most: affected by the transmission plane locating device.

The variation in the position of the homokinetic plane about this axis during variations

in the aframe angle, although implicitly defined in the solution, must be considered

carefully.

The central-joint axis for one rotation of the input shaft, passes through four

quarter spaces boundaries when the adev is non-zero. This implies the input/output

relationship, edev value will switch signs four times during one rotation of the input

shaft. These solutions are double-frequency periodic functions for specified deviation

angles, The larger the driveline offset angle the sharper the change and the larger the

amplitude of the edev deviation values.

Although the amplitude of the Odev deviation is small under the influence of

the re ci v deviation angle, the transmission plane locating device is most likely to

produce greater errors about the atrame axis. The transmission plane locating device

is most apt to produce errors about this axis. as the maximum variation of the

homokinetic plane with respect to the changesin the frame angle will occur about this

axis.
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The most concerning variations in the input/output relationship occur when

the two deviation angles are both non-zero. The slightest combination of the ?Nov

with the adev can change the phase and increase the amplitude of the lead or lag. The

mechanical tolerances in the transmission plane locating device of a CV coupling

should take into account the volatility of the qdev as it can have grave effects at very

minute values. As the locating device is generally concerned with positioning of the

transmission plane about the axis of the frame angle, perhaps additional concern

should be made to accomodate the strong influence of the lidev value,

Combinations of the qdev and adev transmission angles prescribe all possible

configurations of a general coupling with a specified transmission plane. The )/dev

and adev transmission angles once established can he evaluated to obtain the

input/output relationship. An efficient non-recursive formula for the relationship

between the input and output shafts of a CV coupling, when constant-velocity con-

straints are not satisfied, has been presented here. A mathematical model has been

derived to allow for all possible configurations of the CV joint to he evaluated.

This system offers insight on the CV Coupling's short comings and focuses on

an approach to quantifying performance of specific CV coupling mechanisms, This

system provides information on how precise a CV Coupling will be subject to

mechanism designs and tolerances, 13y quantifying the input/output relationship for

a CV coupling a set of standards can be established.
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