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ABSTRACT
Influence of Fly Ash and Chromium Characteristics on Compressive

Strength of Mortar and Concrete

by
Lin Wang

The behavior of cement mortar incorporating fly ash varies with chemical

and physical characteristics of fly ash. Of many parameters affecting the

compressive strength of fly ash 'mortar, five were investigated in this study. They

are the particle size, the particle size distribution, fineness of fly ash, the CaO

content and the Fe p 3 content.

Fly ashes from two different sources were used in this study. One comes

from the Public Service Electric and Gas (PSE&G)'s electrical generation station

in Hudson county and the other is from the PSE&G plant in Mercer county. Each

was separated into seven different particle size ranges.

The results of the tests indicated that there are direct relationships between

the particle size, Blaine fineness, mean diameter of fly ash and the compressive

strength.

Fe203 content of fly ash is not found to have a notable effect on the mortar

strength. CaO content of fly ash varying from 2.47% to 6.76% also has no

significant effect on the strength of mortar.

Additionally, the effect of chromium on cement mortar and concrete was

studied. Trivalent and haxavalent chromium were used in the experiment. The

compressive strength of mortar and concrete incorporating Cr(III), as well as

mortar and concrete incorporating Cr(VI) were tested up to 180 days according to

ASTM C-109. Leaching tests were conducted with different pH extractants.

The results of the tests showed that the leaching characteristic of Cr(III)

mortar and Cr(VI) mortar are different. The influence of Cr(III) and Cr(VI) on

compressive strength of mortar and concrete is also varied. 	 The results of



leaching tests indicated that cement is very good for immobilizing Cr(III) under

field condition, unless the pH is extremely low. However, Cr(VI) can be leached

from the mortar at early ages. The compressive strength of Cr(III) mortar and

concrete is higher than that of the conventional mortar and concrete at all ages.

But the strength of Cr(VI) mortar and concrete is lower than that of the

conventional mortar and concrete.

A major finding was the discovery of significant amount of soluble

chromium in Mercer fly ashes. The results show that the majority of the chromium

in Mercer fly ash is concentrated in the small particles, those in the 0-10 micron

range.
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CHAPTER 1

INTRODUCTION

1.1 General

Coal Fly Ash is the unburned residue resulting from the combustion of coal in

utility and industrial boilers. It is a fine, silt-size material consisting largely of

spherical, sometimes hollow, glassy particles. In 1988, the electric utility industry

generated about 50,900,000 tons of fly ash, 14,300,000 tons of bottom ash, and

5,000,000 tons of boiler slag. Of these amounts, only 22%, 38%, and 56% of fly

ash, bottom ash and boiler slag, respectively, were used beneficially with the

remaining material placed at great expense in disposal areas [1]. Because of the

difficultly locating ash disposal areas and the existence of environmental

problems, the disposal of coal ash is being restricted and very costly. In order to

cope with the increase in the generation of fly ash, it is necessary to find a

utilization method of fly ash that is feasible and more cost effective so that large-

volume disposal can he avoided. Over the past few decades fly ash utilization has

been found largely in the construction industry [2]. Fly ash is a pozzolan and a

considerable amount is used as a concrete additive. It is also used in combination

with lime, portland cement and aggregate as road base [3, 5], grout, and as a

backfill [4]. Fly ash is also useful as a soil amendment for land reclamation and for

subgrade stabilization. Large volumes have also been used as structural fill [5]. It

has also been studied for use as an absorbent in waste water treatment as

replacement for higher cost absorbents(e.g. ion-exchange resins, activated

carbon) [6, 7]. It has also been mixed with cement for the

solidification/stabilization of contaminated soil [8, 9].



The handling, use and disposal of large volumes of fly ash are formidable

engineering problems. This paper focuses on the influence of the above

mentioned physical and chemical properties of fly ash on the compressive

strength of cement mortar and, the discovery of the trace soluble chromium in the

fly ash used in this study. Also, the effects of chromium on the compressive

strength of mortar and concrete will be investigated.

1.2 Literature Review

1.2.1 Application of Fly Ash in Construction

Over the past few decades fly ash emerged as a construction material in its own

rights. Fly ash serves two functions in fly ash concrete. The recognition that fly

ash exhibits pozzolanic properties had originally lead to its use as a cementitious

material, which replaces considerable percentages of cement in concrete. The

other function is as a micro aggregate (the part of fly ash that does not completely

react with Ca(OH)? ), which makes the concrete mixture more workable and

impermeable. Regardless of what it substitutes for in concrete, fly ash is known to

affect all aspects of concrete properties [10].

Fly ash tends to densify the microstructure, hence improves the durability.

This is achieved through improved particle packing between fly ash particles and

cement grains at the initial stages of hydration. This improved particle packing

lays down the framework for later densification of the paste by the pozzolanic

reaction of the fly ash. At the initial stages of cement hydration, most fly ash

particles do not react, hut merely serve as nuclei for precipitation of Ca(OH) land

C-S-H gel. The actual pozzolanic reaction usually begins after this "incubation

period", when the alkalinity of the pore water has increased sufficiently to break

down the glass network. This rising alkalinity results from the release of alkalies
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from the cement used, from alkali salts deposited on the fly ash surface and, in

later stages, from alkalies of the dissolving fly ash glass [11].

The hydration of fly ash in cement-water system is known to occur mostly

on the particle surface [12, 13]. Many researchers have observed that it is difficult

for fly ash and lime to completely react with each other. This is, in part, because

the degree of hydration of fly ash depends on the alkalinity of the cement paste.

As the products surrounding the surface of fly ash harden, the diffusion of (OH)

ions is inhibited. One may predict that the hydration of fly ash will cease when the

pH of the cement paste in pores decreases to a certain value.

Since some part of fly ash does not completely react with Ca(OH) 2, this

part of fly ash works as micro aggregates in concrete. Most of fly ash is

composed of spherical particles. When they are mixed into the concrete, they

improve the workability of the fresh concrete allowing further reductions in the

water/cement ratio. It results in a porosity reduction, and this is so called the

packing effect.

Researchers consider two distinct aspects when evaluating fly ash

characteristics; direct assessment of material properties and the evaluation of

properties of fly ash in concrete or mortar mixes. Attempts are being made to find

relations between the physical and chemical properties of fly ash with its behavior

in concrete.

Some studies conducted have revealed that chemical composition alone is

not the governing criterion for the behavior of fly ash in concrete [14]. However

many researchers have observed that there is a direct increase in strength with

the increase of the content of CaO in fly ash [15, 16, 17].

Studies conducted so far have revealed that the favorable influence of fly

ash on concrete properties is attributable to various factors, with not only the

chemical but also the physical effects being of importance [18]. Many
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investigations have been made of the physical and chemical properties of fly ash

and the strength of fly ash concrete [19, 20, 21, 22]. The studies illustrated the

dependence of the mortar strength on the fineness of the fly ash. At low median

diameter, D50 , strengths of fly ash mixtures are higher than those of coarser fly

ash mixtures [19]. Similar results have been observed by S. Slanicka [22] in his

experiments conducted with fly ashes which have similar chemical and

mineralogical composition but different fineness. The utilization of fly ash for the

production of concrete can be considerably increased when its finest size

fractions are withdrawn separately from the end stages of the retainers. In the

cases where researchers have concluded that particle size does not have any

notable effect on fly ash concrete strength, it is noted that they have paid no

attention to the particles finer than 45 microns [23, 24].

Pozzolanic activity of fly ash is found to increase with the content of CaO of

the fly ash. Also, studies conducted have revealed that there is a direct increase in

compressive strength with the increase of soluble SiO land soluble Al 1:2 3

contents in fly ash [19]. Since the hydration of fly ash occurs between soluble

Al2 03 and soluble SiO2 and Ca(OH)2 to get C-S-H gel, the more soluble Si02

and Al 2 03 content in the fly ash, the more the reaction of fly ash with Ca(OH)2

is possible, and the more C-S-H gel will be produced. Thus, the concrete strength

is improved.

1.2.2 Application of Fly Ash in Environment

The huge amounts of fly ash produced by thermal power plants create disposal

problems. In addition to its utilization for bricks, portland cement, pozzolona etc.,

it has also been recently used for pollution control.

Researchers have found several ways to utilize fly ash in environmental

management. Fly ash has been used as an absorbent in wastewater treatment;
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as a cementitious binder in solidification/stabilization of a heavy metal sludge; and

as a soil conditioner for land reclamation.

Adsorption at solid-solution interfaces is an important means of controlling

the extent of pollution due to metallic species in industrial effluent. The use of

activated carbon is not suitable for this use in developing countries due to its high

cost. So, fly ash can sometimes be used for this purpose as an inexpensive

absorbent. One application using absorbent properties of fly ashes is the

inexpensive treatment of leachate generated from industrial waste in landfills. Fly

ash can serve as absorbents for heavy metals, toxic anions, and organic

substances commonly found in leachates.

Studies conducted have pointed out that coal fly ash is a good adsorbent

for mercury(II) and copper(II) from aqueous solutions and it can be utilized for the

removal of mercury(II) and copper(II) from wastewater [25, 26]. The hydrolyzed

species of Cu(II) are in complexed with surface active sites of fly ash. Low and

Batley [27] demonstrated the effective removal of phenolic compounds and PAHs

(Polycyclic aromatic hydrocarbons) from aqueous industrial wastes by adsorbing

these compound on fly ashes. The adsorption of PAHs on fly ash particles,

therefore, can have an important implications for the management of PAHs in the

environment. Investigations conducted the adsorption capacity of PAHs on fly

ashes [27, 28, 29] indicated the residual carbon content of fly ash is the main

regulating parameter. The removal of Omega Chrome Red ME (a popular chrome

dye) from aqueous solutions can be accomplished by adsorption on a

homogeneous mixture of fly ash and coal. It has been noted that the adsorption

capacities increase at low adsorbate concentration, with small particle size of

adsorbent, low temperature and acidic medium [30].

Another environmental application of fly ash is that fly ash is used for the

solidification/stabilization (S/S) of contaminated soil [31, 32]. Researchers have
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observed that solidification/stabilization by cementitious binders is the best

demonstrated available technology for some wastes and waste forms [33]. The

United States Environmental Protection Agency has approved its use for clean-up

of certain Superfund sites [34]. Studies conducted by Helmuth,R. [35] revealed

that fly ash in solidification/stabilization of heavy metal sludge process affects

leaching rates by reducing the permeability of hardened paste. It can also

chemically react with the waste and the binder. Microanalyses of the cement/ash

mixtures used in S/S of a heavy metal sludge study indicated that fly ash spheres

reacted with the ordinary portland cement (OPC) component to form a variety of

reaction products including ettrigite and straetlingite [9].

Although past research has helped to establish many parameters that may

affect fly ash concrete's behavior and its utility in environmental management,

utilization of fly ash in concrete and in the environment are hampered mainly by

the lack of understanding of this material. A more detailed knowledge is needed

before fly ash can he properly used in structural concrete and for environmental

management with effectiveness and confidence.

1.2.3 Effect of Chromium on Concrete Structure

There are numerous kinds of hazardous wastes which may be in solid, liquid, or

gaseous forms. Potential source of chromium in industrial waste streams include

metal cleaning and chromium plating, encompass pigments, tanning and textile

chemicals synthetic rubies for lasers, synthetic emeralds, wood preservatives,

catalysts, stainless steels, etc [36]. Chromium can cause serious injuries like

burns to the skin, nose, throat; prolonged exposure can cause lung cancer. It can

damage the liver and kidneys and has mutated the DNA in the laboratory. Some

people think that chromium can also produce serious problems when it is in soil

which even damage concrete structure and threaten human health. This problem
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can be seen in some places in Jersey City, New Jersey where there are failure of

buildings and pavements, believed to cause by chromium contamination. The

results of analyzing the soil from that site showed the chromium concentration

was as high as 53,000 ppm [37]. According to the standard of DEP(the

Department of Environmental Protection), all sites contaminated with more than

75 milligrams of chromium per kilogram of soil must be cleaned up [38].

Previously, studies conducted focused on the leaching characteristics of

treating sludge or contaminated soil bound into a cement matrix. Little research,

however, has been devoted to the effect of chromium itself on the concrete

strength. Experimental data [8] show that strength of mortar cast by mixing

contaminated soil (containing chromium(III)) with cement is higher than the

strength of mortar which cast by mixing uncontaminated soil(no chromium(III))

with cement. This means that certain amount of chromium in cement mortar can

increase the strength of mortar.

Studies conducted have revealed that potassium chromate and

dichromate can be used in concrete as corrosion inhibitors [39]. Chromium

hydroxide from the chromates is adsorbed on the reinforcing sheet and a

protective film is formed. If large quantities of chromium inhibitors are used,

adverse effects, such as severe localized corrosion or pitting will occur on

concrete [40]. For longer curing periods, the splitting tensile strength of concrete

decreased with increased percentages of potassium chromate, and there were

substantial decreases in compressive strengths. There is ample evidence to

suggest that the strength of concrete decreases with increased quantities of

potassium chromate [39].

Researches showed that there was significant deterioration of the building

and the parking lot which were constructed on fill made up of chromium ore

residue mixed with soil. The building was no longer usable because the structural
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integrity of the building had deteriorated. Bricks had fallen from the walls because

the wall was heavily contaminated with chromium residue.

In light of the review, the more knowledge regarding chemical compatibility

and the long term effects of a chemical on materials and structures will be

required before any definite conclusions can be drawn as to the effect of

chromium on concrete.

1.3 Objectives

Review of past work has brought to light many parameters that could affect the

behavior of fly ash in concrete and chromium in concrete. If a definite relationship

could he established between these parameters and the effects of its application it

would enable the use of fly ash and chromium in structural concrete more

effectively.

This research consists of three parts. They are:

1.3.1 Effects of Fly Ash on Compressive Strength of Mortar

The parameters selected for investigation are

1.Different particle size with the same chemical and

mineralogical composition

2. Fineness of fly ash

3. CaO content of fly ash

4. Fe 	 content of fly ash

5. Particle size distribution

8



Each of the two fly ash types, Hudson and Mercer, was separated into

seven different particle size range. Investigations are made to find a relationship

between the compressive strength of fly ash-cement mortars and different particle

size ranges of fly ashes which have the same chemical and mineralogical

composition at various ages up to 180 days. The particle size distribution are also

studied and used in the evaluation of this study.

Specific surface area of selected fly ash types are analyzed. Attention is

given to the effects of fineness on compressive strength of mortar.

Chemical composition of fly ash are analyzed and attempt is made to

determine if chemical composition, especially Ca0 and Fe 23 3 contents, of fly

ash with same particle size range have any effect on the compressive strength of

mortar.

1.3.2 Effects of Cr(III) and Cr(VI) on Compressive Strength of Mortar and

Concrete

The parameters selected in the investigations are

(1) Chromium (III)

(2) Chromium (VI)

(3) Leaching in the deionized water

(4) Leaching in the acetic acid

investigations are made to discover whether the chromium-hazardous

heavy metal in soil will destroy the concrete structures or not. In addition, the

leaching of chromium mortar in deionized water and acetic acid (0.5N) have been

studied.

9



1.3.3 Determination of Soluble Chromium in Fly Ash

The surface layers on coal fly ash particles are of special environmental interest in

that concentration enrichments of trace elements may occur, thereby enhancing

the potential bioavailability of toxic species. Little research, however, has been

devoted to the analytical characterization of intraparticle and interparticle

distributions of trace elements{41].

In this experiment, chromium concentrations were determined for all kinds

of fly ashes used.
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CHAPTER 2

EXPERIMENTAL PROGRAM

Experiments were set up in three series with the objectives of investigating: (1) the

influence of selected parameters on the unconfined compressive strength of fly

ash concrete and mortar; (2) the influence of chromium(III) and chromium(VI) on

the compressive strength of concrete and mortar; (3) determining the

concentration of chromium in fly ash.

2.1 Test Series 1

In this study, experimental programs were conducted for the purpose of studying

the influence of selected parameters on the unconfined compressive strength of

fly ash.

The standard 2"x2"x2" cube mortar specimen and 3"x6" concrete cylinder

were used. The compression tests were conducted using an MTS closed-loop

testing machine. Details of these tests are discussed below.

2.1.1 Materials

Materials used in the mortar and concrete of this study consisted of standard

portland cement type I, siliceous sand (river sand), fly ash, and tap water.

Cement	 throughout the experiment the same type of cement Portland

Cement Type I was used.

Crushed limestone

Sand	 local siliceous sand (river sand) passing through sieve No.8

(opening size 3.36mm) was used in this experiment.
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Fly Ash Fly ash from two different types of coal-fired boilers were

selected in this study. The first was the dry bottom boiler with . direct fired burn

located on opposite walls. The second type, was wet bottom boiler. The

difference of these two boilers is that the dry bottom boiler is designed to have

flame being below the fluid temperature of the coal ash, 2600 F, while the wet

bottom boiler is designed to have a flame being higher than the fluid temperature

of the coal ash. Dry bottom ash was collected from the Hudson plant while the

wet bottom ash was from the Mercer plant. Each was separated into seven

different particle size range. Using the Micro-Sizer Air Classification System of

Progressive Industries Inc. The ranges fractionated are as follows:

Hudson fly ash: 11C(94.4%-88 microns)

I1F(94.4%-44 microns)

10F(99.4%-31 microns)

7F(93.6%-16 microns)

6F(94.6%-11 microns)

5F(95.4%-7.8 microns)

3F(91.5%-5.5 microns)

Mercer Fly Ash: 18C(96.7%-88 microns)

18F(93.7%-22 microns)

17F(97%-22 microns)

16F(99.5%-22 microns)

15F(97.6%-11 microns)

14F(96.5%-7.8 microns)

13F(94.6%-5.5 microns)



Note: 11C(94.4%-88) indicates that 94.4% of the particles of 11C Hudson

fly ash was smaller than 88 micron. The others are similar.

Fig. A.1 and Fig. A.2 in Appendix A show the particle size distributions of

Hudson fly ash and Mercer fly ash respectively.

2.1.2 Test Program

Fly Ash Mortar

Fly ash from Hudson and Mercer power plants with different particle sizes were

mixed with cement and sand. 35% by weight of cement in the mix was replaced

by fly ash. The specimens were mixed and cast in accordance with ASTM C-109.

All specimens were cured in lime saturated water and tested at the ages of 1, 3, 7,

14, 28, 56, 90, and 180 days. The type of test specimen used is 2"x2"x2" cube.

Fly Ash Concrete

Fly ash from Hudson and Mercer power plants with different particle size were

mixed with cement, sand, and coarse aggregate following a standard mixing

procedure. 35°4 by weight of cement was replaced by fly ash. The specimens

were mixed and cast in accordance with ASTM C-109. All specimens were mixed

and cured in lime saturated water and test at the ages of 1, 3, 7, 14, 28, 56, 90,

and 180 days. The test specimen used for evaluating the concrete strength is the

3"x6" cylinder.

2.1.3 Test Procedure and Setup for Compressive Strength

The compressive strength of mortar and concrete specimen was tested in a 100

kips MTS servo-controlled closed-loop hydraulic testing machine. The closed-

loop control system provides very accurate control of the loading rate.
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The 2"x2"x2" cube and 3"x6" specimens were tested in uniaxial

compression under closed-loop stroke control. All tests were conducted at the

displacement rate of 0.0008 in./sec.. The observed parameter from this testing

was the ultimate load. The compressive strength was then calculated. The data

used in the strength analysis was obtained from the average of three specimens.

2.1.4 Mix Proportion

In this experiment, fly ash replacement is 35% of cement, the ratio of water to

cementitious material is 0.5, and the ratio of sand to cementitious material is 2.75

in every mix proportion. Tables 2.1, 2.2, 2.3, and 2.4 show the mix proportions

used in test series 1.

2.1.5 Specific Gravity and Fineness

The specific gravities of fly ashes and cement used in the experiments were

determined according to the standard procedures of ASTM C 188.

The fineness of fly ashes and cement conducted in the experiments were

determined according to the standard procedures of ASTM C 204.

2.2 Test Series 2

Experiments were set up with the objective of investigating the influence of

chromium on the unconfined compressive strength of mortar and concrete. The

standard 2"x2"x2" cube mortar specimen and 3"x6" cylinder concrete specimen

were used for the compression test of mortar and concrete in an MTS closed-loop

testing machine.

Leaching test was set up with the objective of checking whether the

chromium in the mixture of mortar can be fixed without leaching.

14
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1 NIJIA,J. 1 ly C.1311%..3 1-13%., U Cl./

HCA3S	 Hudson feed fly ash CaO% = 6.89%

MCA35	 Mercer feed fly ash CaO% = 6.89%

5CA35	 Hudson(95.4%-7.8) CaO% = 6.71% *

14CA35	 Me rcer(96.5 6/0-7.8) CaO%. = 6.71%

6CA35	 Hudson(94.6%-11) CaO% = 6.55% *

16CA35	 Mercer(99.5%-22) CaO% = 6.55%

* Free lime (CaO) is added in order to provide the same CaO content in both

Hudson and Mercer fly ash concrete mixes.
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Notes: Fly ashes used are:

5FE35 	 Hudson(95.4%-7.8) Fe p 	 = 13.02% *

14FE35 	 Mercer(96.5%-7.8) Fe203% = 13.02%

6FE35 	 Hudson(94.6%-11) Fe Z0 3% = 13.26% *

16FE35 	 Mercer(99.5%-22) Fe203% = 13.26%

* Additional Fe 7 0 3 is added to keep the same Fe 70 3 content in the fly ash

concrete mixes.
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2.2.1 Materials

Material used in the mortar and concrete of this study are standard portland

cement type I, siliceous sand(river sand), chromium(III) and chromium(VI).

Cement and Sand are the same as those used in SERIES 1

Coarse Aggregate max. size is 3/8"

Chromium Two kinds of valences chromium were used.

chromium(III) comes from CrC13 .6th 0

chromium( V1) comes from K2 Cr2 07

2.2.2 Test Program

For the 2"x2"x2" mortar cubes, the chromium was mixed with cement and river

sand. The amount of chromium as C1Cr fiH p (Cr(III)) and as K2Cr2O7 (Cr(VI))

used was 5Cic by weight of cement. The ratio of water to cement is 0.5. The

chromium is first added into the water in the bowl and allowed it to dissolve

completely. The mixer was set at a slow speed and cement and sand were

added. The specimen were mixed and cast in accordance with ASTM. C-109. All

the specimens were cured in tap water and tested at the ages of 1, 3, 7, 14, 28,

56, 90, and 180 days.

For the 3"x6" concrete cylinder, the chromium was mixed with cement river

sand, and coarse aggregate. The amount of chromium as C1Cr 02(Cr(III))

and as K ',Cr20-7 (Cr(VI)) used was also 5% of cement by weight. The ratio of

water to cement is 0.5625. All the specimens were cured in tap water and tested

at the ages of 1, 3, 14, 28, 56, 90, and 180 days.



2.2.3 Mix Proportion

In this test chromium(III) and chromium(VI) were mixed in the cement mortar and

concrete. Chromium content added as C1Cr .§11 (Cr(III)) and as K 2Cr 207

(Cr(VI)) was 5% by weight of cement. The mix proportion is shown in Table 2.5

and Table 2.6.

Tahlp ; Miv Prnnnrtinn of Chrnminm Mnrtar
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2.2.4 Leaching Test Pricedure

The 2"x2"x2" blocks were suspended separately in the 500 ml deionized water

and 500 ml acetic acid (0.5N) extractant and gently stirred by means of magnetic

stirrers for 24 hours. The leachates were filtered through 0.45 urn membranes for

analyses. The process repeated for 1, 3, 7, 14, 28, 56 days of age.

2.2.5 Test of Leachates with AAS

Method AA Direct Aspiration

Flame Conditions:

•

Element:	 Cr

HCL: 6 ma(sig)

Nitrous Oxide/Acetylene

Reducing: (Fuel Rich, Yellow)

Wavelength: 357.9 nm-UV

Band Width 0.5

PROCEDURE	 The test procedure of Atomic Absorption Spectrometer is

given in Appendix D.

2.2.6 Test Procedure and Set up for Compressive Strength

The compressive strength of mortar and concrete specimen was tested using the

procedure described in 2.1.3.
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2.3 Test Series 3

2.3.1 Materials

Two kinds of fly ash were used in this study. They are Hudson fly ash and Mercer

fly ash of different particle size.

2.3.2 Test Procedure

The experiment was carried out by soaking 50 gram of fly ash sample in 100 ml

tap water for 24 hours. The concentration of chromium was determined by

filtering the solution then analyzing the solution with AAS. Blanks without fly ash

were also prepared to correct for any trace metal chromium in the tap water.
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CHAPTER 3

EXPERIMENTAL RESULTS AND DISCUSSION

3.1 Experimental Results of Test Series 1

3.1.1 Chemical Compositions of Fly Ash

The chemical compositions of fly ashes used in this experimental program were

analyzed by X-Ray Fluorescence according to ASTM Method D 4326: Major and

Minor Elements Content of Coal/coke Ash. The results are given in Appendix A.

There is no significant variation in the chemical compositions apparent among

different particle size of Hudson fly ashes and among different particle size of

Mercer fly ashes.

The values of loss on ignition (LOI) of both Hudson and Mercer fly ashes

with different particle size vary a little, range from 1.46% to 4.97% by weight. The

moisture contents of all fly ashes were found to be very close and also very small.

All fly ashes have moisture content as little as 0.11% by dry weight.

There is little variation in the minor element composition between Hudson

and Mercer fly ashes. Among major elements, the average of calcium oxide(CaO)

contents of Hudson fly ashes is about 2.47% by weight while the average of

calcium oxide contents of Mercer fly ashes is about 6.76% by weight. It is obvious

that Mercer fly ashes have higher calcium oxide content than Hudson fly ashes.

The iron oxide (Fe701) content varies considerably between Hudson and Mercer

fly ashes. The average of iron oxide content of Hudson fly ashes and Mercer fly

ashes are about 5.03% and 14.01% by weight respectively.
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3.1.2 Compressive Strength Development

In this experiment, Hudson and Mercer fly ash were used as 35% replacement of

cement by weight of cement. The mix proportions are given in Table 2.1 and

Table 2.2.

The tabulated results for the compressive strength and the percentage

compressive strength of Hudson and Mercer fly ash mortars compared to

conventional (with no fly ash) mortar strength are given in Appendix B.

The results of the tests show that the compressive strength development

and the rate of strength gain vary with the different particle size of fly ash

incorporated in the mortar mixture for same ages.

The difference in compressive strength can be observed in Fig.3.1, Fig.

3.2, Fig. 3.3 and Fig. 3.4. which show that incorporation of different particle size of

Hudson fly ash in the mortar gave a wide range of strengths for the same mix

proportions. The finer the particle size fly ash incorporated in mortar, the higher

the compressive strength obtained. A similar relationship was also found using

Mercer fly ash mortar with different particle size of fly ash.

In Fig.3.1 and Fig. 3.2, all the strengths of Hudson fly ash mortar are lower

than the conventional mortar strength before 28 days age except 3F (91.5% -5.5)

fly ash mortar. Similarly, all the compressive strength of Mercer fly ash mortar are

lower than the conventional mortar strength before 28 days age except

13F(94.6%-5.5) fly ash mortar.

It is interesting to note that 3F Hudson fly ash mortar and 13F Mercer fly

ash mortar have higher compressive strength than the conventional mortar even

at an early 14 days age. At 28 days, the strengths of 3F35 and 13F35 have

increased to more than the conventional mortar by about 15.27% and 6.5%

respectively. After 28 days age, however, the rate of strength gain for both 3F35

and 13F35 diminish similar to the conventional mortars.
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Fig. 3.1 Compressive strength development of Hudson fly ash mortars

Fig. 3.2 Compressive strength of Hudson fly ash mortars as a percentage of

control strength

25



+ 13FF35(13F,94,6%-5.5)

O 14F35(14F,96.5%-7.8)

15F35(15F,97.6%-11)

X 16F.35(16F,99.5%-22)

CMC(CONCROL,NO FLYASH1

18F35(18F,93.7%-22)

o M035(ORIGINAL FLYASH)

+ 18C35(18C,96.7%-88)

MERCER FLYASH MORTAR

I 	 I 	 1 	 1	 1 	 1 

80
	

120 	 160 	 200 	 24-0

AGE (days)

400

26

a

13.0

12.0

11.0

10.0

9.0

zoto
8.0

ct
7.0g4°

6
> 6.0
to

5.0
cea_z
0c.)

4.0

3.0

2.0

1.0

0.0

150.0

140.0

130.0

120.0

110.0

100.0

90.0

80.0

70.0

60.0

50.0

40.0

30.0

20.0

10.0

0.0

+ 13F35(13F ,94.6%-5.5)

o 14F35(14F,96.5%-7.8)

A 15F35(15F,97.6%-11)

x 16F35(16F,99.5%-22)

'1=16 CMC(CONTROL,NO FLYASH

o11035(ORIGINAL FLYASH)

18F35(18F,93.7%-22)

+ 18C35(18C,96.7%-88)

MERCER FLY ASH MORTAR

I 	 I 	 I 	 I 	 I 	 1 	 1 	 i is 	1	 1 

4D 	 80 	 120 	 160 	 200 	 240

AGE (days)

Fig. 3.3 Compressive strength development of Mercer fly ash mortars

••••■••••.■11.	

Fig. 3.4 Compressive strength of Mercer fly ash mortars as a percentage of

control strength



For other Hudson fly ash mortar, such as 5F35, 6F35, 10F35, 11F35, 1C35,

and the original Hudson fly ash mortar H035, the rate of strength gain continues

to increase steadily up to 180 days age. But their strengths are lower than that of

the conventional mortar before 28 days age. So far, the experiments conducted

up to 180 days age show that the strength of 10F35, 6F35, 5F35 14F35 15F35,

16F35 and M035 surpass the conventional mortar strength at 180 days.

Moreover, the strength of 5F35, 6F35, 14F35, 15F35, and 16F35 already surpass

the conventional mortar strength at 56 days. On the other hand, 11F35, 1C35,

H035, and I8C35 mortars still show compressive strengths lower than the

conventional mortar strength at the age of 180 days.

3.2 Influence of Selected Parameters on the Unconfined

Compressive Strength of Mortar (Test Series 1)

3.2.1 Influence of Particle Size

In spite of these large differences in particle size, little variation in bulk chemical

composition is observed for the same kind of fly ash.

It is evident from the results of these test that the finer the particle size of fly

ash incorporated into mortar, the higher the mortar compressive strength for both

Hudson and Mercer fly ash mortar. The past research work shows that fly ash

mortar has a lower compressive strength at early age(up to 28 days), compared

to conventional mortar. The reaction of fly ash in cement is initiated only after one

or more weeks. In this period the fly ash behaves as a more or less inert material

and serve as a precipitation nucleus for Ca(OH) land C-S-H gel originating from

cement hydration [48]. The 3F35 and 13F35 mortars, however, exhibited noted

increase in compressive strength at 14 days age compared to the conventional
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mortar as shown in the following figures: Fig. 3.5 and Fig. 3.6. This indicated that

for 3F and 13F fly ashes the hydration reaction occurs at an early age.

The cause, in part, is that finer particles contain a higher glass content

[42], and are thus more reactive. More C-S-H gel is produced to fill the pore

space in the mortar or in the concrete and therefore yield a higher compressive

strength. Another part of the reason is its "shape" function. The finer particles are

generally spherical in shape which permits large water reductions in mortar or in

concrete mixes while maintaining good workability. Water reduction is an

important contribution to a strength gain. The last reason is that the 0-5.5 micron

particle size fly ash have a very large specific surface area, and the specific

surface area of 0-5.5 micron fly ash is more than twice as that of cement used.

This will be further discussed later.

The above discussion concludes that fly ash with particle size 0-5.5 micron

range not only has a cementitious effect as good as cement, but also gives a

good workability which the cement itself does not have. Therefore, cement

incorporating this kind of fly ash can give a higher compressive strength than

conventional mortar. A similar trend in long-term strength development can be

observed with 3F35 and 13F35 compared to the conventional mortar. They show

that the strength increase very little beyond 28 days

age.

For the fly ashes in which more than 30% of the particles are larger than 45

micron, such as 1C Hudson fly ash (particles >45 micron = 42%) and 18C

Mercer fly ash(particles >45 micron = 30%), their mortar strengths are much

lower than fly ash mortars made with smaller particles. They are even weaker than

conventional mortar at the age of 180 days. This is because, in part, the large

particles contain less glass and thus are less reactive. This agrees with the

observations reported by the past researchers [43]. Also, the coarse fly ashes
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require an increase of the W/(C+F) ratio [44]. Since every mix proportion has the

same W/(C+F), the coarse fly ashes result in lower workability of the mixes and

therefore reduces the compressive strength. ASTM and CSA specify that no more

than 34% by weight of a given ash be coarser than 45 microns(um) if the ash is

proposed for use as a pozzolan in concrete. More severe are British standards

which restrict the amount of +45 urn fraction to 12% [45].

It is evident from the results of tests and analyses that particle size of fly

ash larger than 45 micron have little contribution, even negative contribution, to

the compressive strength. The variations in the amount of glassy phase has a

direct influence on the reactivity of the fly ash.

3.2.2 Influence of Particle Size Distribution

Compressive strengths plotted against mean particle size, D sp which is the

mean diameter of particles in a sample, show that there is a relationship between

D50 and the compressive strength (Fig. 3.7, Fig. 3.8, and Fig. 3.9). The mean

diameter D50 can he identified on the particle size distribution curve. Different

types of fly ash has different particle size distribution curves and give different

D50. The Dm is an important index expressing particle size distribution.

It is important to note that the compressive strength development of fly ash

mortar changes with the change of mean diameter of fly ash particles. The smaller

the D50 of the fly ash, the higher the compressive strength of fly ash mortar. This

relation is more apparent observing for long-term strength (after 14 days).

However, it is not quite significant for strength development at early age.

29



130

120

110

100

90

80

70

50

50

40

30

20

10

3F

X 13F

Control

A 3F35 (HUDSON, 91.5%-5.5)

X 13F35 (MERCER, 94.6%-5.5)

O CMC (CONTROL, NO FLY ASH)

REPLACEMENT OF FLY ASH 35% BY WEIGHT OF CEMENTITIOUS MATERIAL

1	 1 	 1 	 1	 1 	 1	 1	 1 	 1 	 1 	 1	 1	 1 	 1 	 1

30

12 —	

11

10

9

	.4 e 3F35

x 13F35

	D D Control

1:1C41C (CONTROL, NO FLY ASH)

A 3F35 (HUDSON, 91.5X-5.5)

x 13F35 (MERCER, 94.6%-5.5)

REPLACEMENT OF FLY ASH 35% BY WEIGHT OF CEMENTITIOUS MATERIAL

I 	 I 	 II 	 1 	 1	 1 	 I 	 !III 	 ti 	 I 	 I 	 II 

0 	 20 	 40 	 60 	 80	 100 	 120 	 140 	 160 	 180 	 200

AGE (DAY)

Fig. 3.5 Compressive strength of 3F35 and 13F35 mortars

7

6

5

4

3

2

0 	 20 	 40 	 60 	 80 	 100 	 120
	

140
	

160
	

180
	

200

AGE (DAY)

Fig. 3.6 Compressive strength of 3F35 and 13F35 mortars as a percentage

of control test strength



The graphs presented in Fig. 3.10 and Fig. 3.11 show that the percentage

of the compressive strength of fractionated types of Hudson and Mercer fly ash

mortars compared to the original Hudson and Mercer original fly ash mortars

respectively. The results of tests revealed that particle size of fly ashes between

11-44 micron have an amphoteric effect depending on the particle size

distribution. Although the original Hudson fly ash often includes particles which

are larger than 45 urn, mortar made with this fly ash still has higher strength than

11F35 mortar which does not contain fly ash particles larger than 44 um. Since

the mean diameter of 11F Hudson fly ash is slightly larger than that of the original

Hudson fly ash, so its mortar strength is lower.

There is a notable difference in the strength of 16F35 mortar and 18F35

mortar regardless of their particle size range, chemical and mineralogical

composition, and mix proportion. The graph Fig. 3.12 shows that 16F35 mortar

has higher compressive strength than 18F35 mortar. The higher mean particle

size of 16F Mercer fly ash is part of explanation. Another reason can be seen in

Fig.3.13. It shows that 16F Mercer fly ash contains more 0-5.5 urn and 5.5-10 urn

particles, and fewer 10-22 urn particles than 18F fly ash. This confirmed that 0-5.5

um and 5.5 - 10 urn particles always induce strength gain.
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Fig. 3.13	 Dominant particle size range of 16F and 18F fly ashes

3.2.3 Influence of Blaine Fineness

Specific Gravity

Specific gravity is one parameter that is frequently determined when analyzing fly

ash for chemical properties and for use as an additive in concrete. It is also of

interest in understanding the engineering properties of fly ash. The specific

gravities of fly ashes and cement were determined by Le Chatelier flask according

to ASTM C 188. The results of those tests, given in Appendix B and Appendix C,

show that there is a slight variation (from 2.279 to 2.748) in the specific gravity

with these large differences in particle size. Specific Gravities plotted against



mean particle size D50, given in Appendix C, show that generally the smaller the

D50 , the higher the specific gravity.

Blaine fineness

Fineness of fly ashes and cement were determined by Blaine Air Permeability

Apparatus according to ASTM C204. The results of tests in Appendix B and

Appendix C exhibit a significant difference in fineness with different particle size fly

ashes.

The graph Fig. 3.14 illustrates the dependence of the compressive strength

on the fineness of the fly ash. The larger the specific surface area, the higher the

strength. 3F and 13F fly ashes have very large specific surface areas. The most

significant influence of large specific surface of fly ashes on fly ash mortar is at

early stage strength development. The large specific surface area of fly ashes

support a fast reaction between fly ash and lime which results in higher

compressive strength at early ages. It is very evident from the results of tests that

3F35 and 13F35 mortar have higher early strength. At 7 days, their strength was

85% and 90% of the strength of conventional mortar. At 28 days, they had a

higher or equal strength compared to the conventional mortar. After 28 days, their

strengths are generally higher than that of the conventional mortar.

The hydration rates of 3F and 13F fly ashes are much faster than that for

other fly ashes from 1 to 28 days. Therefore, their early strengths are higher than

other fly ash mortars. After 28 days, however, their hydration rates diminish and

are slower than other fly ashes. This is because the surface of fly ashes particles

were surrounded by the hydration products, which almost stop the hydration

process after 28 days. This explains why the compressive strengths of 3F35 and

13F35 mortars increase very little after 28 days.
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The figure in Appendix C shows a relationship between mean particle size

D50 and Blaine fineness. It indicates that the smaller the D50 , the larger the

Blaine fineness.
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Fig. 3.14 Effect of fineness of fly ash on compressive strength

3.2.4 Influence of CaO and Fe I:2 content

Hudson and Mercer fly ash mortars which have same particle size range like 3F

and 13F, 5F and 14F, as well as 6F and 16F fly ashes, still have notable

differences in their compressive strengths. Usually Mercer fly ash mortar has a

higher strength than Hudson fly ash mortar for the same particle size range. See

Fig. 3.5, Fig. 3.6 and Appendix C.

The results of chemical analyses, found in Appendix A, show that Mercer

fly ash has higher CaO and Fe 20 3content than Hudson fly ash. The average



difference of CaO content between Mercer fly ash and Hudson fly ash is about

4.29% by weight and the difference of Fe J 3content is about 8.98% by weight.

In order to determine if the differences in CaO and Fe2O3 content of fly ash

caused the difference in strength of mortar, CaO and Fe 20 3were added to

Hudson fly ash to achieve the same content as in Mercer fly ash. The mix

proportions are given in Table 2.3 and Table 2.4.

The experiments to investigate the effect of CaO content were conducted

using original Hudson fly ash and original Mercer fly ash, 6F and 16F fly ash, as

well as 5F and 14F fly ash. The graphs, given in Appendix C, show that even by

adding additional amount of CaO to Hudson fly ash mortars, the resultant

strength was still lower than for the related Mercer fly ash mortars.

Past research [16] reveals that additives based on calcium compounds

contribute to early and long-term strength of fly ash concrete. Calcium -enriched

fly ashes also improve carbonation resistance of fly ash concrete. The reason for

this was generally attributed to the CaO content of up to 10% by weight of fly ash

(Class C). The variation of CaO content of fly ash in our experiments conducted in

test series 1 is from 2.47% to 6.76%. This still is in the low CaO content fly ash

(Class F) range. Thus, there is no significant effect of CaO content change on the

strength.

The experiments for studying the influence of Fe 2 0 3 content were

conducted using SF and 14F fly ash, and 6F and 16F fly ash. The mix proportions

are given in Table 2.4. The graphs, presented in Appendix C, show that Hudson

fly ash mortars with additional Fe2O3 still yield a lower strength than the related

Mercer fly ash mortars. The Fe 203 content varying from 5.03% to 14.01% has no

notable influence on the compressive strength of mortar. This is because that

Fe-)03 in fly ashes does not react with Ca(OH) 2 directly.
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In conclusion, the particle size and its distribution and the fineness of fly

ashes have significant influence on the strength of fly ash mortar. CaO content

varying in the range below 6% of CaO content has no notable effect on the mortar

strength. Fe 20 3 content of fly ashes also does not have any notable effect on the

mortar strength.

3.3 Experimental Results of Test Series 2 - Effects of Chromium on Mortar

and Concrete Strength

In the Test Series 2, chromium(III) and chromium(VI) were mixed in the cement

mortar and concrete. The addition of chromium(III) as CrC13.6120 and

chromium(V1) as K? Cr? 07 was 5% of the cement by weight. In addition, leaching

tests were conducted with the mortars using deionized water and acetic acid (0.5

N) as extractants separately.

3.3.1 Chemistry of Chromium

The inorganic chemistry of chromium is not only rich in its variety of colors, but

also in its many oxidation states and the geometries of its many compounds. The

oxidation states of chromium can go from -2 to +6. In aqueous solution the +3

state is most stable, followed by the +2 state. The + 6 state is unstable in acid

solution and goes to the +3 state. Further more, chromium in the +2 state is a

good reducing agent, while in +6 state it is a powerful oxidizing agent.

There are differences in toxicity and carcinogenicity of trivalent and

hexavalent chromium. Hexavalent chromium is a potent carcinogen while trivalent

chromium is an essential trace element [46]. Available data show trivalent

chromium compounds to be less toxic than those of hexavalent chromium. It

should be noted that at low pH, the +3 state, Cr(H 10) 6 +3 is the predominant or
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stable species, and the +6 state, Cr0 4 -2, is the predominant species at high pH.

It is believed that the +3 oxidation state is the most stable oxidation state of

chromium, and it is represented by thousands of compounds. The oxidation

states of + 3 and + 6 are most commonly encountered in the environment [471

3.3.2 Development of Compressive Strength

The tabulated results for the compressive strength and the percentage of control

compressive strength of chromium mortar and chromium concrete are shown in

Appendix B. Strength relationships are graphically illustrated in Fig. 3.15, Fig.

3.16, Fig. 3.17 and Fig. 3.18.

The difference in compressive strength can be observed through out the

test. The results of tests indicate that different valences of chromium in mortar

have different strengths for the same mix proportions. Up to the age of 180 days,

the chromium(III) mortar has a higher compressive strength as compared to the

conventional mortar. The compressive strength of chromium(VI) mortar, however,

is less than that of the conventional mortar up to the age of 90 days. Similar

results can be observed in chromium concrete.

It is evident from the results of these tests that the compressive strength

gain of chromium of chromium(VI) mortar is very small after 14 days. And, the

strength of chromium(VI) mortar concrete even decreases a little after 28 days

age. On the other hand, the compressive strengths of chromium(III) mortar and

chromium(III) concrete still increase after 14 days. The rate of strength gain is

higher than those for conventional mortar and concrete.

3.3.3 Leaching Test with Deionized Water Extractant

The significant differences in the leaching characteristics of chromium(III) and

chromium(VI) mortar can be seen. With deionized water as extractant, there is no

40



4 1

detectable leaching of chromium from the chromium(III) mortar specimen

determined by Atomic Adsorption Spectrometer. But leaching of chromium from

the chromium(VI) mortar specimens was clearly observed. Fig. 3.19 graphically

indicates that chromium(VI) concentration in the leachates decreased with the

development of strength. Before 14 days, the concentration of chromium(V1) was

higher than the EPA standard of 5ppm. After 14 days, it is lower than the EPA

standard of 5 ppm.

3.3.4 Leaching Test with Acetic Acid (0.5N) Extractant

The leaching test result of Cr(III) and Cr(VI) mortar using acetic acid (0.5N) as an

extractant is given in Fig. 3.20.

There is considerably chromium leaching from both Cr(III) mortar and

Cr(VI) mortar when using acetic acid as an extractant. The concentrations of both

Cr(III) and Cr(VI) in leachates decreased with the development of strength.

Chromium leaching from Cr(VI) mortar was much higher than that of Cr(III) mortar

at all ages. This may he due to the fact that the strength of Cr(VI) mortar is lower

than that of Cr(III) mortar at any ages. The maximum chromium concentration in

the leachates of Chromium(VI) mortar is 420 ppm while those from chromium(III)

is only 130 ppm.
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3.4 Influence of Chromium on

Compressive Strength of Mortar and Conctete

In the presence of lime most heavy metals will be combined to form colloidal

metal hydroxides. The metal hydroxides become an intimate constituent of the

cement matrix. The reaction is divided into two steps. The first is that cement

reacts with water to form calcium-silicate-hydrate gel(C-S-H). Along with this gel

formation comes the formation of various crystalline hydration products such as

calcium hydroxide and various heavy metal hydroxides. In the second step, the C-

S-H gel swells to the point where particle overlap occurs and silica fibrils develop.

During the gel development, crystals of hydration by-products, which have a

layered structure, have grown to their maximum size. They might be either

overlapped by fibrils or have grown into the particle gel themselves. If there is

room which is suitable for crystal growth, the interlocking of the fibrils and the

formation of various hydration products bind the cement and other component of

the mixture into a rigid mass. It is evident from the results of the tests that the

compressive strengths of Cr(III) mortar and concrete are higher than for

conventional mortar and concrete. This is because chromium hydroxide crystals

have formed in such a way that it tends to lock the concrete paste together in a

tighter way than before.

Tests indicated that this amount of chromium(III) in mortar and concrete

(5% by weight of cement) has a positive effect on the compressive strength up to

180 days of age. Attention should be given to the fact that the strength gains of

the Cr(III) mortar and concrete are small after 28 days. The experimental data [8]

revealed that the compressive strength of Cr(III), cement and soil mixtures

decreased when Cr(11I) content increased from 2% by weight of cement to 6% by

weight of cement.
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The results of the tests show that the effect of chromium (VI) in mortar and

concrete on the strength is very different from those of chromium(III). The

strengths of chromium(VI) mortar and concrete are much lower than the

conventional mortar and concrete.

The reason may be that if the heavy metal hydroxide crystals grow too big,

it swells the C-S-H gel structure and destroys or looses the structure of the C-S-H

gel. That is, the crystallization of salts from supersaturated solutions produces

pressures which may cause cracking in the concrete thereby reducing the

concrete strength. Also, because Cr(VI) in cement mixture may form CaCr

Cr(VI) is leached from cement mixtures readily and results in a decrease in

strength of the cement matrix. The strengths decreased. Laboratory tests indicate

that chromium migrates into the pores filled by capillary action over a period of

time and causes swelling to occur, resulting in damage to slabs, parking lots, and

other structures [39]. Part of the reason is that the degree of hydration of

chromium phases in mortar is low as compared to conventional mortar as

indicated by the amount of unhydrated calcium silicate grains in the former group.

It has been reported that the presence of heavy metals tends to retard hydration

of the calcium silicates [9].

3.5 Influence of Cr(III) and Cr(VI) on the Leaching Results

Leaching tests using deionized water as an extractant on cement mixtures

containing Cr(III) show that cement is very good for immobilizing Cr(III) as a result

of the formation of Cr(OH)3 . Because chromium hydroxides are quite insoluble

under field conditions, unless the pH is extremely low. However, Cr(VI), on the

contrary, readily leached from the cement matrix. The release of the Cr(VI) is
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similar to the release of Ca 2+ and may be related to the formation of CaCr p 7

within the cement mixture.

It is evident from the results of the test that both trivalent and hexavalent

chromium leached more readily in low pH extractant (in acetic acid, 0.5 N). And, it

is also evident that chromium leached from Cr(VI) mortar at a relatively high

concentrations.

The reason is that the hydroxyl ions from calcium hydroxide combine with

heavy metals to form complexes, the pH, and therefore the concentration of

hydroxyl ions, has a significant effect on the stability of the heavy metal. In the

absence of calcium hydroxide, the pH of the system would be even lower,

perhaps affecting the solubility of the heavy metals in a manner unlike a system

containing calcium hydroxide. The research verified that the calcium hydroxide in

heavy metal(including chromium) cement mixtures is lower than that of

conventional mortar [9].

3.6 Experomental Results of Test Series 3

In Test Series 3, the soluble chromium concentration were determined for both

Hudson fly ashes and Mercer fly ashes by soaking in the tap water. The results of

tests are given in Appendix D.

The absence of soluble chromium in all Hudson fly ashes was observed.

However, a significant amount of soluble chromium was found in Mercer fly

ashes. The highest concentration of chromium is 21.75ppm or 2262 mg/Kg. The

chromium concentration varied with the different particle size of Mercer fly ashes.

Instead of having the usually gray color of fly ash, Mercer fly ash has an orangish

color. Fig. 3.21 and Fig. 3.22 show the relationship between chromium

concentration and different particle size. The result of test shows that the heavy
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metal chromium is more concentrated in the small particles than among larger

particles. Enrichment of trace metals in the finer particles has been also reported

by a number of investigators [42].

In terms of glass inhomogeneity, it has been suggested that as the fly ash

particle cools from a droplet of an homogeneous aluminosilicate melt, trace

elements (e.g. As, Be, Cd, Cr, Mn, Ni, Pb, Sb, Se, Tl, V and Zn) may migrate to

the surface from within the molten particle to decrease surface free-energy by an

increase in chemical potential of solute. This would lead to a concentration

gradient across the diameter of the particle with "impurities" enriched in the outer

regions. This phenomena has also been associated with an energy barrier to

inter-particle coalescence as a rationale for the greater enrichment of trace

elements in the smaller particles [48].

Fig. 3.22 shows that the effect of 0-10 micron particles content on

chromium concentration. It is evident from the result that the chromium is mainly

concentrated on the 0-10 micron Mercer fly ash particles. Attention should be

given to the fact that the chromium concentration of original Mercer fly ash (6.56

ppm) is also higher than the EPA leaching test standard of 5ppm. This small

amount of chromium may contribute to the variation of the concrete strength.

It should he noted that the general chemical composition analyses often do

not pay much attention to these key trace elements.
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CHAPTER 4

CONCLUSION

The results of the experiments conducted in this study lead to the following

conclusions.

The chemical compositions and chemical contents do not show any

significant difference among different particle size of same kind of fly ash except

that Mercer fly ash contains trace amount of chromium. Specific gravity of fly ash

of different particle size and from different sources has slight variation. The finer

the particle size, the larger is the specific gravity of fly ash.

CaO content varying from 2.47% to 6.76% has no notable effect on the

mortar strength. The reason may be that the CaO content presents in the fly ash

is still far below the range of CaO content needed.

Fe203 content of fly ash is not found to have a notable effect on the mortar

strength. This is because Fe 20 in the fly ash does not react with Ca(OH) 2

directly.

It is quite evident from the results of the tests conducted that there is a

direct relationship between particle size and its distribution and the compressive

strength development of fly ash mortar.

The effect of particle size range of fly ash from 0-5.5 urn, 0-7.8 urn, 0-11

urn, 0-22 urn, 0-31 urn, 0-44 urn to 0-88 urn on the compressive strength of fly ash

concrete were studied. It is found that the finer the particle size of fly ash

incorporated into mortar, the higher the compressive strength of the cement

matrix.

Unlike past research, which indicated that the compressive strength of fly

ash mortar at early ages (up to 28) is lower than conventional mortar, fly ash
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mortars that use the finest particle size range, 0 to 5.5 um, exhibited a notable

increase in compressive strength even at an early (14 days) age. The causes may

be: (1) the finer particles contain a higher glass content; (2) the finer particles are

generally spherical in shape, which improves workability of mortars, and permit

large water reductions in mortar or in concrete mixes; and (3) the specific surface

area of 0-5.5 urn fly ash is very large, and is about twice that of cement type I. The

finest particles fly ash mortars, however, have very little strength gain beyond 28

days.

Fly ash particles larger than 45 micron contribute little to the compressive

strength of mortar and concrete.

The mean diameter, D50, is an important index expressing particle size

distribution. The strength development of the fly ash mortar changes with the

change of mean diameter D 50 of fly ash particles. The smaller the D 50 of the fly

ash, the higher the compressive strength. This relationship is obvious for long-

term strength (after 14 days). Additionally, there is a relationship between the

mean diameter and the Blaine fineness. The smaller the D 50, the larger the Blaine

fineness.

It is evident from the results of the tests that there is direct relationship

between Blaine fineness and the compressive strength. The larger the fineness,

the higher the strength. In particular, very large Blaine fineness of fly ash results in

a fast hydration rate and induces high strength at an early age.

The leaching characteristic of Cr(III) mortar and Cr(VI) are very different.

They have different behaviors with changes in pH and type of extractants.

With deionized water as an extractant, no chromium leached from Cr(III)

mortar specimens. But chromium was clearly leached from Cr(VI) mortar

specimens and the leaching amount of chromium decreased with the age of the

specimens.



5 2

When acetic acid(O.5N) was used as an extractant, both Cr(III) mortar and

Cr(VI) mortar have a great deal of leaching. The chromium leached from Cr(VI)

mortar at a relatively high concentration and with a maximum concentration of

chromium up to 420ppm.

The effect of chromium(III) and chromium(VI) on mortar and concrete

strength is quite different. The strength of Cr(VI) mortar and concrete is lower

than that of the conventional mortar while the strength of Cr(III) mortar and

concrete is higher.

Because chromium hydroxides are quite insoluble under field conditions,

the cement mixtures containing Cr(III) show that cement is very good for

immobilizing Cr(I11) as a result of formation of Cr(01-4, unless the pH is extremely

low. However, Cr(VI) readily leached from the cement mortar. The release of the

Cr(V1) may be related to the formation of CaCr2 07 within the cement mixture.

It is suggested that future research is needed to identify different

mechanisms involving Cr(III) and Cr(VI) in cement hydration through micro-

structural analyses of cement mortar.

It is interesting to find that there is soluble chromium in Mercer fly ashes.

The chromium is more concentrated in the small particles, i.e. those in the 0-10

micron range.



APPENDIX A

PROPERTIES OF MATERIALS

Table A.1 Chemical Composition of Hudson Fly Ashes

Parameter
Composition in Percentage

3F 5F 6F 7F

Loss on Ignition 4.97 4.10 3.12 2.56

Moisture 0.22 0.13 0.15 0.25

Sulfur Trioxide 1.69 1.53 1.09 0.86

Silicon Dioxide 49.89 50.27 51.40 51.95

Aluminum Oxide 26.94 26.74 26.54 26.27

Iron Oxide 5.43 5.30 4.91 4.63

Calcium Oxide 2.99 2.95 2.72 2.51

Potassium Oxide 1.76 1.74 1.71 1.67

Phosphorous 0.60 0.55 0.37 0.25
Anhydride

Magnesium Oxide 0.99 0.93 0.74 0.63

Barium Oxide 0.17 0.16 0.14 0.12

Sodium Oxide 0.33 0.33 0.31 0.30

Manganese Oxide 0.04 0.04 0.03 0.03

Titanium Dioxide 1.91 1.88 1.76 1.68

Strontium Oxide 0.20 0.20 0.19 0.17
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Table A.2 Chemical Composition of Mercer Fly ashes
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APPENDIX B

EXPERIMENTAL RESULTS OF TESTS

Table B.1 Compressive Strength of Hudson Fly Ashes Mortar

Sample
no.

Compressive Strength of Cube 	 (psi.)

lday 3day 7day 14day 28day 56day 90day 180day

CMC 2850 5170 6233 6898 7763 7946 8032.5 8131

3F35 2088 4296 5163 6944 8949 9229 9740 9956

5F35 1634 3477 4600.8 5882 6872 8475 8772 9656

6F35 1620 3580 4355 5768 7374 8719 9146 9729

10F35 1458 3233 4257 5539 6661 7728 8174 8518

11F35 1358 2670 3835 4792 5931 6618 6767 7791

1C35 896 2213 3025 3470 3813 4467 4989 5243

H035 117 3008 3961 5073 5850 6794 7729 8094
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Table B.2 Compressive Strength of Mercer Fly Ashes Mortar

Sample
no.

Compressive Strength of Cube (psi.)

lday 3day 7day 14day 28day 56day 90day 180day

CMC 2850 5170 6233 6898 7763 7946 8032.5 8131

13F35 2238 4241 5583 7165 8271 9566 9740 9898

14F35 1898 4175 4933 6611.7 7358 8763 9424 9884

15F35 1781 4018 482 6265 7228 8778 9163 9488

16F35 1701 3941 4648 6246 7078 8750 9151 9358

18F35 1597 3445 4095 5441 6180 7353 8042 8379

18C35 1674 3069 3694 4458 4932 5600 6080 6805

M035 1918 3843 4953 5390 6668 7848 8284 8293
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Table B.3 Compressive Strength of Fly Ash Mortar for Studying the Effect
of CaO Content

60

Note: Replacement of Fly Ash 35% by Weight of Cement
CaO = 6.55%(16F, 6F) Ca0=6.71% (5F,14F)
CaO = 6.89 6,ve (original fly ash)
Water/(Cement +Fly Ash) Ratio = 0.5



Table BA Compressive Strength of Fly Ash Mortar for Studying the Effect
of Fe 20 3 Content

61

Note: Replacement of Fly Ash 35% by Weight of Cement
Fe?0-3 = 8.35 %(16F, 6F) Fe203 = 7.72% (5F,14F)

Water/(Cement + Fly Ash) Ratio = 0.5



Table B.5 Compressive Strength of Chromium Mortar and Concrete

62

Sample

no.

Compressive Strength (psi.)

1day 3day 7day 14day 28day 56day 90day 180day

CHROMIUM MORTAR

CMC

CMC3

CMC6

2850 5170 6233 6898 	 7763 	 7946 8032.5 8131

3388 6445 7160 7298 	 7963 	 8843 	 8207 9848

3044 4690 5369 5891 	 5895 	 6163 	 6349 8525

CHROMIUM CONCRETE

CMY

CMY3

CMY6

1899 	 4575 5645 	 6076 	 6299 	 7056 8263

2049 4917 6348 6112 	 6866 	 7389 	 8941 9221

1308 2842 3671 4414 	 4573	 4273 	 6078 6410

Note: Chromium (111) :CrCI3 .6H2 0
Chromium (VI) 	 Cr2



Table B.6 Specific Gravity, Mean Particle Size and Blaine Fineness of
Hudson and Mercer Fly Ash

Sample 	 Specific
No. 	 Gravity

Blaine Fineness
(cm2/g)

Mean Particle
Size D50 	 (um)

CEMENT 3.122 3815

HUDSON FLY ASH

3F 2.535 7844 2.126
5F 2.529 6919 2.698
6F 2.488 4478 5.736
10F 2.424 2028 8.498
11F 2.400 1744 15.476
1C 2.279 1079 38.566
ORIGINAL 2.343 3235 13.738

MERCER FLY ASH

13F 2.748 11241 1.88
14F 2.729 9106 2.492
15F 2.641 7471 3.15
16F 2.609 5171 5.557
18F 2.512 3216 10
18C 2.416 1760 29.442
ORIGINAL 2.500 5017 6.723
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Table B.7 Chromium Concentration of Mercer Fly Ash Soaking in Tap
Water

Sample

no.

Concentration of Chromium

(ppm) (mg/Kg)

18C 0.764 79.456

18F 1.136 118.144

Original 6.56 682.24

17F 11.93 1240.74

16F 14.0 1456

15F 14.45 1473.9

14F 21.75 2262

13F 14.46 1503.84

64



APPENDIX C

GRAPHS DEVELOPED FROM THE EXPERIMENTAL RESULTS
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APPENDIX D

TEST PROCEDURE OF AAS

1.Turn on the exhaust fan and install chromium hollow cathode lamp.

2. Turn on instrument and adjust lamp current as necessary and adjust lamp
position(back and forth) to set the ENERGY to the maximum reading on
the green range.

3. Chosse and adjust the wavelength in order to let the ENERGY at the maximum
reading on the green range.

4. Adjust the height of the flame in order to set the ab'sorbance at zero when there
is no samples to be aspirated.

5. Turn on the air and acetylene, check the fuel flow rate(usually about 4.5) and air
flow rate(usually about 10). Ignite flame by pressing the PILOT button for 5-
10 sec.

6.Adjust the fuel flow rate to get the yellow flame over the blue flame.
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