

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

Title of Thesis: A Mouse-Driven Interface for Androx ICS-400

Name: Chin-Tien Chen
Master of Science in Electrical Engineering, 1991
Department of Electrical and Computer Engineering

Thesis directed by: Dr. Edwin S. H. Hou

A mouse-driven interface is extremely useful for software performing

image processing tasks. This thesis describes an implementation of a mouse-

driven interface for the Androx ICS-400 image processing board. The Androx

board is housed in a Sun 4/330 running a UNIX-based operating system. The

main goal of this interface is to provide a consistent and friendly user interface

for image processing tasks and integrating the Sun window libraries with the

Androx libraries. Various image processing tasks, such as gray scale and binary

morphological operations, histogram, thresholding, filtering, spot, logical opera-

tions, arithmetic operations, zooming, scrolling, rank and image acquisition are

implemented in this interface. An on-line help is also available.

A Mouse-Driven Interface for
Androx ICS-400

by

Chin-Tien Chen

Thesis submitted to the Faculty of the Graduate School of

the New Jersey Institute of Technology in partial fulfillment of

the requirements for the degree of

Master of Science in Electrical Engineering

1991

APPROVAL SHEET

Title of Thesis: A Mouse-Driven Interface for Androx ICS-400

Candidate: Chin-Tien Chen
Master of Science in Electrical Engineering, 1991

Thesis and Abstract Approved by the Examining Committee:

Dr. Edwin S. It. Hou, Advisor
Assistant Professor
Department of Electrical and Computer Engineerig

Dr. Nirwan Ansari r DZte
Assistant Professor
Department of Electrical and Computer Engineerig

Dr. Anthony D. Robti.
Associate Professor
Department of Electrical and Computer Engineerig

New Jersey Institute of Technology, Newark, New Jersey.

Date

Date

VITA

Chin-Tien Chen

Date of Birth:

Place of Birth:

Education:

1990-1991 New Jersey Institute of Technology MSEE

1978-1981 National Taipei Institute of Technology BSEE

Position Held:

Taiwan International Standard Electronics Ltd.

Electronic Engineer

1983-1985

Digital Equipment Corporation Taiwan Ltd.

Project Engineer

1986-1987

GTE-TAICOM Systems Limited

Hardware, R & D

Project Engineer

1988-1989

ACKNOWLEDGMENTS

The author would like to express appreciation to Dr. Edwin S. H. Hou, his

major professor, for his inspirations, guidances and support during the entire

course of this thesis. The author also wishes to express his indebtedness to Dr.

Nirwan Ansari for his support in the image processing software. Appreciation

is also extended to the committee member, Dr. Anthony D. Robbi, for serving

on the examination committee and for evaluating this research. Finally, special

thanks go to Miss Heui-Chu Lin, his fiancee, for her help and encouragement.

Contents

1 Introduction 1

1.1 SunView Interface 1

1.2 Androx Interface 2

1.3 Interface Implementation 2

1.4 Operational Instructions 2

2 SunView Interface 4

2.1 Windows 4

2.1.1 Frames and Subwindows 5

2.1.2 Panels 5

2.1.3 Windows Generating and Destroying Procedure 6

2.1.4 Manipulating Frames via Menus 7

2.1.5 Window Pop-ups 7

2.2 Menus 7

2.2.1 Menu Usage 7

2.2.2 Components of Menus Items 8

2.2.3 Menus Generate Procedure 8

2.3 Events 8

2.3.1 Notify Procedure 9

2.3.2 Events Generation 9

i

2.3.3 Event Handling 9

2.3.4 Classes of Events 10

2.3.5 Enabling and Disabling Events 10

2.4 SunView Libraries 12

3 Androx Interface 13

3.1 System Structure 13

3.2 Memory Configurations 15

3.3 Event Scheduling 16

3.3.1 PEV(event) 16

3.3.2 Wait Event 17

3.3.3 Create Event 18

3.4 Androx Libraries 18

3.4.1 Applications Library 18

3.4.2 Graphics Library 19

3.4.3 Image Processing Library 19

3.4.4 Video Library 20

4 Interface Implementation 21

4.1 SunView 21

4.1.1 Menus and Selection Structure 21

4.1.2 Event Structure 24

4.1.3 Subwindow Popup Structure 27

4.2 Androx 28

4.2.1 Accessing and Releasing System 28

4.2.2 Image Processing Functions 29

4.3 Passing Parameter 39

ii

4.3.1 Variables 40

4.3.2 Subroutine Call 41

4.4 Software Compile and Link 42

5 Operational Instructions 44

5.1 Load RGB File 48

5.2 Save RGB File 48

5.3 Histogram 48

5.4 Linear Operations 49

5.4.1 Convolution 49

5.4.2 Laplacian 49

5.4.3 Median 49

5.4.4 Sobel 49

5.4.5 Gaussian 50

5.5 Nonlinear Operations 50

5.5.1 Morphological 50

5.5.2 Rank 52

5.5.3 Spot 53

5.5.4 Reset 53

5.6 Logical Operations 53

5.6.1 AND Image 53

5.6.2 OR Image 53

5.6.3 XOR Image 54

5.7 Arithmetic Operations 54

5.7.1 Add Image 54

5.7.2 Sub Image 54

iii

5.7.3 Sum Image 54

5.8 Acquisition 55

5.8.1 Digitize Mono 55

5.8.2 Digitize RGB 55

5.8.3 Data Move 55

5.9 Display Bank Image 55

5.10 Others 56

5.10.1 Thresh 56

5.10.2 Lookup Table 56

5.10.3 Pseudo Color 56

5.10.4 Scroll 56

5.10.5 Zoom 57

5.10.6 Blank 57

5.11 Help 57

5.12 Quit Help 57

5.13 Quit Program 57

6 Conclusions 58

Bibliography 59

iv

List of Figures

2.1 The events process diagram 11

3.1 The Androx system structure 14

3.2 The memory mapping of ICS-400XM9 16

4.1 Hierarchical menu structure 23

5.1 The menu items of mouse-driven interface 45

5.2 The menu items of mouse-driven interface (continued) 46

5.3 An example of menu item operational instruction 47

List of Tables

4.1 Laplacian 3 x 3 mask 31

4.2 Sobel 3 x 3 image region 32

4.3 Sobel Gx 3 x 3 mask region 32

4.4 Sobel Gy 3 x 3 mask region 33

0

Chapter 1

Introduction

A mouse-driven interface is a very useful tool for performing image processing

tasks. This thesis presents a mouse-driven interface for image processing tasks.

The interface links two systems: SunView interface system and Androx interface

system. The SunView interface is a tool to support interactive, graphics-based

applications running within windows on the Sun workstation. The Androx

interface is an image processing board which is housed in the Sun workstation

running a unix-based operating system. All the image processing tasks are

based on this Androx interface system.

1.1 SunView Interface

SunView is an object-oriented system. The most important class of SunView

objects are windows and menus. An object can be defined as a software entity

presenting a functional interface. There are two classes of windows in SunView:

overlapping frames and nonoverlapping subwindows. A menu contains menu

items, some of which may have an arrow pointing to the right. The menu item

1

is selected by pressing the right mouse button and this item will be executed

when the right mouse button is released. Events are the input of SunView.

The event handling and notify procedure are very important concept in the

functional interface of a software entity.

1.2 Androx Interface

The Androx system consists of four parallel programmable image array pro-

cessors which provides four types of image libraries. The user can program these

libraries according to his or her algorithm. The image processing algorithm

of this mouse-driven interface contains morphological operations, filtering, im-

age acquisition, histogram, logical operations, arithmetic operations, zooming,

scrolling, rank, spot, and thresholding.

1.3 Interface Implementation

The mouse-driven interface implementation algorithm integrates the Sun-

View and the Androx system. The SunView software and Androx software are

linked together. The parameter-passing problem between SunView software and

Androx software is also considered.

1.4 Operational Instructions

All the image processing operational procedures and instructions are de-

scribed in this chapter. The purpose of this mouse-driven interface is to provide

2

a user friendly interface for performing image processing tasks with the SunView

and Androx system.

3

Chapter 2

SunView Interface

SunView(Sun Visual/Integrated Environment for Workstations) is a user-

interface tool to support interactive, graphics-based applications running within

windows. SunView is an object-oriented system. We can think of SunView

objects as visual building blocks which the user can use to assemble the interface

to his applications. The most important class of SunView objects are windows

and menus. Technically, we can say that an object is a software entity presenting

a functional interface. In SunView system, there are two types of windows:

frames and subwindows. Frames can be viewed as a tree of subwindows. The

top frame is called base frame. Menus can chain individual menu together into

a collection known as a walking menu. The inputs of SunView are events which

are generated in the kernel process and application process. The function of the

notifier is to control the process and format it into high-level events. In this

chapter, we will discuss the window objects, menu objects and events. Finally,

we will overview the SunView libraries. See [1] for the SunView in details.

2.1 Windows

There are two classes of windows in SunView: overlapping frames and non-

overlapping subwindows. Every window or frame has its attributes. SunView

4

also provides window functions and macros for creating a window, initiating

event processing and destroying windows. In this section, we will discuss how

to pop up a window, how to manipulate frame via menus and the panel of a

window.

2.1.1 Frames and Subwindows

The purpose of a frame is to bring subwindow of different types together

into a common framework so that they can be operated on as a unit. A frame

is said to own the subwindows it contains. In the basic hierarchy of windows

of SunView structure, frames may also own other frames. Frames also can be

viewed as a tree of windows in which the non-leaf nodes are frames and the

leaf nodes are subwindows. The frame at the top of the hierarchy is called base

frame, other frames are called subframes.

2.1.2 Panels

Panels contain items through which the user interacts with a program. There

are six basic types of panel items:

Message Item The only visible component of a message item is a label, which

may be a title, comments, descriptions or pictures. Message items are

selectable, and one may specify. A notify procedure will be called when

the item is selected.

Button Item Button items allow user program to initiate commands. Button

items, like message items, have a label, are selectable, and have a notify

procedure.

Choice Item Choice items allow the user to select one choice from a list.

5

Toggle Item Toggle items are identical with choice items. Each choice may

be either on or off.

Text Item Text items are basically typein fields with optional labels. The user

can specify that his notify procedure be called on each character typed in.

Slider Item Slider items allow the graphical representation and selection of a

value within a range.

2.1.3 Windows Generating and Destroying Procedure

For window object, there is a set of standard functions to create, destroy the

object, and to get and set the object attributes. The window functions are:

window_create(), window_get(), window set(), and window _destroy().

The following is an example of creating a window, which also includes a panel:

/ * create a window * /

Window frame;

Panel panel; frame = window-create(NULL, FRAME, FRAM E _LAB EL, Mouse _Drzven Inter f ace" , 0);

panel = window_create(frame, PANEL, 0);

pane/ _ereate(panel,PAN EL-TE XT , 0);

window_fst_height(panel);

window_main_loop(frame);

The call to window_create() does not display the frame on the screen until the

window_main_loop() is called. The window_fit() macro causes a window to

exactly fit its contents. The user can destroy windows with the following call:

window-destroy(frame);

6

2.1.4 Manipulating Frames via Menus

A menu is associated with each frame, which allows the user to manipulate

the frame directly. The menu is invoked by pressing the right mouse button on

the exposed parts of the frame.

2.1.5 Window Pop-ups

In SunView, pop-ups are implemented as subframes containing subwindows.

The subframe, along with its subwindows, is displayed in the base frame. In this

mouse-driven interface, all the Androx image processing items are invoked by

the right mouse button and subwindow will be displayed by the window pop-up.

2.2 Menus

Menus allow the user to chain individual menu together into a collection

known as a walking menu. A menu contains menu items, some of which may

have an arrow pointing to the right. This indicates to the user that if he or she

slides the mouse to the right of that item, a pull-right menu will appear. Menus

can be strung together hierarchically in this fashion, so that the user can "walk"

down the chain of menus to make a selection.

2.2.1 Menu Usage

Menus are created with the function menu_create(), which specifies the ap-

pearance of the menu items. It takes a null-terminated attribute list. The user

can use the routine menu_set() and menu_get() to modify and retrieve the value

of attributes for both menus and menu items.

7

2.2.2 Components of Menus Items

A menu item can be displayed as a string. If the item has a submenu associ-

ated with it using the M ENU _PU LLRIGHT attribute, then it is a pull-right

item. Each menu item is associated with a value, by default the value is the

initial ordinal position of the item if it was created with MENU _ST RI NG; oth-

erwise the default value is zero. The user also can explicitly set an item's value

with MENU_VALUE, but if an item is a pull-right, then its MENU_VALUE

is the value of its pull-right menu. This means that only "leaf" menu items

without submenus have a true value. Each menu item has a client data field,

accessible through the MENU_CLIENT_DATA, which can be used to asso-

ciate a pointer to a menu structure with each menu item.

2.2.3 Menus Generate Procedure

We programmed the routine initialize_menu() to create the menu items and

build_menu() routine to set up all menus including the pull-right menus. We

used the menu_return_value() routine as the notify or action procedure to read

the return value. If the required selection item is reached, then the action

procedure is called.

2.3 Events

SunView is a notification-based system. The notifier acts as the controlling

entity within a user process, reading UNIX input from the kernel, and formatting

it into high-level events. Events are generated from several sources. These

include standard devices such as mouse and keyboard. The notifier weaves

events from these sources into a single, ordered event stream.

8

2.3.1 Notify Procedure

The notifier is a general-purpose mechanism for distributing events to a col-

lection of clients within a process. The notifier reads events and notifies, or calls

out to, various procedures which the application has previously registered with

the notifier. These procedures are called notify procedure.

2.3.2 Events Generation

In SunView system, events are generated in two processes: kernel process

and application process. Figure 2.1 illustrates the event process diagram. In

the kernel process, hardware events are input from the physical input devices,

such as mouse and keyboard, to kernel device drivers. The kernel device drivers

will interpret the hardware events by a "virtual" user input device (VUID)

interface. The VUID interface packages the data it receives into firm events and

sends them to the window drivers for event mask. The window drivers deliver

mask events to the notifier. In the application process, the notifier receives

events from window drivers then notifies events to event translation procedure.

After action events are translated, the notifier event procedure will received all

the events for execution.

2.3.3 Event Handling

How do subwindows handle events ? The canvas1 and panel subwindows

pass events that they receive on to an event procedure. These event procedures

are supplied by the application as the value of WIN_EVENT_PROC. If the

WIN_EVENT_PROC of a canvas or a panel is set to a function, then event

will be process by that function. Every event has an identifying code, which is

la canvas is essentially a window for drawing or displaying an image

accessed with the macro event_action().

2.3.4 Classes of Events

Every event has its event code, we can group each event code into logical

class. Specifically, we will look at the following two events:

Locator Button Events The Sun locator is a three button mouse, whose but-

tons generate the event codes "MS_LEFT ","MS_MIDDLE", and

" MS_RIGHT ", indicating left button pressed, middle button pressed,

and right button pressed, respectively.

Locator Motion Events The locator constantly provides a (x,y) coordinate

position in pixels; this position is transformed by SunView to the coor-

dinate system of the window receiving an event. Locator motion event

codes include "LOC_MOVE","LOC_DRAG" and others.

Since the locator tracking mechanism reports the current position at a set sam-

pling rate, 40 times per second, fast motions will yield non-adjacent locations in

consecutive events. A LOC_MOVE event is reported when the locator moves,

despite the state of the locator buttons when the user enable LOC_MOVE or

LOC_DRAG. The window system gives user the current locator position by

collapsing consecutive locator motion events into one. The location of the event

in the window's coordinate system is accessed with the macro event_x() and

event_y().

2.3.5 Enabling and Disabling Events

Event input can be controlled by using input focus and input mask. The

input focus is the window that is currently receiving input. The input mask

10

 11

specifies which events a window will receive or ignore. To enable or disable

locator motion and button events, we can use the pick mask. An application

needing to track mouse motion with the button down would enable LOC_DRAG

by calling:

window_set(canvas, W IN_CONSUME_PICK _EV ENT, LOC_DRAW, 0);

To disable the mask, the user can use the special WIN_NO_EVENTS descrip-

tor :

window_set(canvas,WIN_CONSUME_PICK _EVENT,W IN _NO_EVENTS, LOC _DRAW ,0);

If the user want to find out whether the MS_LEFT is down he or she would

call:

window_get(canvas, WIN_EVENT_STATE, MS_LEFT);

The call will return non-zero if the key is down, and return zero if the key is up.

2.4 SunView Libraries

The SunView functions are mostly in the library file /usr/lib/

libsuntool.a (if using the archive libraries) and lusr /lib/libsuntool.so (if using

shared libraries). The basic definitions needed by a SunView application are

obtained by including the header file:

#< suntool/sunview.h >

#< suntool/panel.h>

#< suntool/canvas.h >

12

Chapter 3

Androx Interface

The Androx ICS-400 consists of four parallel programmable image ar-

ray processors featuring multiple digital signal processing chips(DSP's) with

cache memories and a graphics processing chip(GRP). The programmability

of the DSP's provides the flexibility to address the board spectrum of image

processing applications and parallel processing capabilities result in system per-

formance. The GRP comes with an extensive library of C — callable graphics

processing functions, which allow the user to create attractive image process-

ing displays. In this chapter, we will discuss the system structure, memory

configurations, event scheduling, and libraries. See [2] for the Androx in details.

3.1 System Structure

Figure 3.1 shows the block diagram of the Androx system structure. In

this system structure, the graphics controller is used to transform and transmit

graphics data to graphics data RAM. There are four image processing nodes in

the system, each node consisting of an analog device ADS2100 and associated

cache memory. Image pixel can be transmitted by the way of pixel bus interface

to pixel buffer. The analog-to-digital converter (ADC) can convert the video

13

Figure 3.1: The Aniliox system structure

signal into pixel data. The pixel data can be stored in look up tables (LUTs)

or transmitted to pixel serializer and formatter. The formatted pixel data can

be transmitted to digital-to-analog converter (DAC) for output. The DSP's

can read and process the image data from scratch RAM or data RAM then

output the data through data bus interface.

3.2 Memory Configurations

The Androx ICS — 400XM9 system has two types of memories: video and

scratchpad cache memory. The video memory has eight megabytes memory,

which can be addressed as 4096 rows of 2048 bytes. When the user gains control

of the ICS with the attach() statement, the board is in " 2K mode " that is,

the eight megabytes video memory is divided into four banks. When displaying

the contents of this video memory in RGB mode the four banks are assigned

specific color planes:

Bank Color

0 Red

1 Green

2 Blue

3 Overlay

The three planes of RGB image must be placed in the same relative location

within their respective banks. The scratchpad memory has one megabytes of

memory, which can be addressed as 512 rows of 2048 bytes and half-megabyte of

scratchpad memory is reserved by the graphics processor. Figure 3.2 illustrates

the memory mapping of ICS — 400XM9.

15

3.3 Event Scheduling

If the host processor program invokes the image processor or graphics pro-

cessor functions, the ICS generally will execute these functions.

There is a number that allows the user to synchronize execution of image proces-

sor and graphics processor functions and the calling host program. This number

is called the " event number".

3.3.1 PEV(event)

To enable the user to synchronize function execution, ICS functions return

event numbers, which can be used as input to other functions. The format is as

16

follow:

The event number is from 1 to 255, which can be specified as input to the

PEV(previous event) parameter of a subsequent function. This event number's

flag is cleared only when the function from which the number was returned

completes. For example:

3.3.2 Wait Event

Some functions do not accept a PEV parameter such as release(). To en-

sure completion of a function before invocation of one of these functions, the

user can call wait_event(). The wait_event() suspends program execution un-

til the specified event number's flag is cleared. The format of wait event is

wait_event(BRD(0)1 event), for example:

17

3.3.3 Create Event

The create_event() function creates a compound event made up of to four

other events. The format is as follow:

create-event(BRD(0) | control I num-event, event1, event2, event3, event4);

where "control" specifies when the compound event will be considered com-

pleted. If zero, it means one of the events has completed. If CMPND_ALL, it

means all the events have completed. For example:

The event3 will wait until event1 and event2 have finished before exiting.

3.4 Androx Libraries

There are four types of libraries for the user to program his or her applica-

tions. They are: applications library, graphics library, image processing library,

and video library.

3.4.1 Applications Library

The applications library contains some useful functions that simplify cer-

tain aspects of writing a program. The functions are contained in the file

18

/usr 1 lib/ androx Ilibandrox.a. Some of the functions in this library are built

from lower_level library functions, and can be written by the user.

3.4.2 Graphics Library

The graphics processor library functions are invoked through a graphic mon-

itor by a call to the host function grp_event(). Its format is as follow:

event x = grp-event(FUNCTION-OPCODE I BRD(0) I PEV(x),arg1,argn);

The graphics processor can execute only one function at a time. All the graphics

processor library function names are defined in the include file gxlib.h. A host

processor program that calls graphics processor library functions must include

the files:

3.4.3 Image Processing Library

All the image processing library functions are invoked through calls to the

host function isp_event(). Its format is as follow:

event x = tsp-event(FUNCTION-OPCODE I BRD(0) I NPROC(x) I PEV(x),argl,argn);

The library routines can return linear data or two-dimensional data to global

memory. The global memory consists of two sections: one used for image ac-

quisition and display, referred to as "video memory", and the second used as a

scratchpad and communications are for the data processing nodes, referred to

as "scratchpad memory". A host processor program that calls image processor

library functions must include the files:

19

3.4.4 Video Library

Acquisition and display are programmed with the video library. The video

library contains two levels of function calls. The low level functions are sched-

uled events referred to as vid_event() calls. The second level functions simplify

the task of programming the video hardware. To accommodate various acqui-

sition and display timing formats, the ICS has a programmable video timing

register and a programmable pixel clock. The ICS also has various synchro-

nization sources for horizontal, vertical, composite, and externally generated

composite video. The ICS has four independent video input channels from 0 to

3. Acquisition of RGB input uses channels 0, 1, and 2 for red, green, and blue,

respectively. Acquisition of monochrome input can be achieved through any

of the four channels. The ICS has eight look-up tables(LUTs) on each input

channel. The input LUTs transform incoming video data. All the LUTs can

be defined by the user.

20

Chapter 4

Interface Implementation

This chapter describes the mouse-driven interface which integrates the Sun-

View interface and Androx interface. Parmeter-passing between these two in-

terface is also discussed in this section.

4.1 SunView

The SunView interface is composed of menus and selection structure, event

structure, and subwindows pop-up structure.

4.1.1 Menus and Selection Structure

The hierarchical menu structure is designed as a recursive structure. The

components of the structure are "key", " name", and "next". Key is used as

the menu return value when the menu item is selected by the user. The key

value is an integer and is predefined by the user. Name is a pointer of the name

of the menu. Next is a pointer that point to the next submenu. If a NULL,

the terminator of the structure, appears after an item, it means that this item

is the end leaf of the recursive structure. The selection menu is starting from

the top menu to next submenu. Figure 4.1 is an example of hierarchical menu

structure. Following is this example structure algorithm.

21

/ * menu structure algorithm * /

#define NULL 0

#define OPTION struct MENU

#define Item1 1 / * menu return value is 1 * /

#define Item2.1 4 / * menu return value is 4 * /

#define Item2.2 5 / * menu return value is 5 * /

#define Item3.1.1 7 / * menu return value is 7 * /

OPTION {

char key; / * menu return item * /

char *name; / * pointer of menu name * /

char *next; / * pointer of next menu * /

};

static OPTION menu3l ={

7, "Item3.1.1", NULL,

NULL, NULL, NULL

};

static OPTION menu3 = {

6, "Item3.1", menu3.1, / * to submenu menu3.1 * /

NULL, NULL, NULL

};

static OPTION menu2 = {

4, "Item2.1", NULL,

5, "Item2.2", NULL,

NULL, NULL, NULL

};

OPTION Topmenu = {

22

1, "Item1", NULL,

2, "Item2", menu2, / * to submenu menu2 * /

3, "Item3", menu3, / * to submenu menu3 * /

NULL, NULL, NULL

};

The menu is selected in the canvas by pressing the right mouse button. Once

the menu item is selected, the WIN_EVENT_PROC will pass the event to

the event procedure, the routine Testevent() and the event return value will be

passed to the routine selection(). The selection routine will select the desired

function to execute according to the return value. Following is the algorithm

selection:

23

/ * the algorithm of selection * /
/ * where i is the menu return value * /

WIN_EVENT-PROC, Test event,

Testevent(win, event)
Frame win;
Event *event;

{
int i;
if (win != canvas) return;

switch (event_action(event)) { / * check event code */
case MS RIGHT: / * event code is mouse Right button * /
i = (int)menu_show(top_menu, win, event, 0);
if (i != 0) selection(i); / * go to selection items * /
break;

}
}

selection(i) / * the event code selection items */
int i;

{

switch(i) {
case Histogram: / * the return value is histogram * /
androx_mouse();
break;
case Laplacian: / * the return value is laplacian * /
Laplacian image();
break;

}
}

4.1.2 Event Structure

According to section 2.3, we know that the notifier formats the user inputs

into events. In this section, we will discuss the following two events: the panel

button events and mouse button events.

Panel Button Events

When the left mouse button is pressed over a button item, the item's rectangle

is inverted. When the mouse button is released over a button item, indicating

that the item has been selected and the command is being executed. This

24

procedure is specified via the attribute PANEL_NOTIFY _PROC. Following

is an example of this event. When the "Accept" panel button is pressed, the

load_image_proc routine will be executed.

/ * panel button event procedure * /

panel_create_item(loadimage_panel, PANEL_BUTTON,

PANEL_ITEM_X, ATTR_COL(0),

PANEL_ITEM_Y , ATTR_ROW (6),

PANEL_LABEL_IMAGE,panel_button_image(panel,

" Accept ", 0 , 0), / * create the Accept panel button * /

PANEL_NOTIFY _PROC, load_image_proc, / * the notify event * /

0);

load_image_proc() / * the file for notifier execution * /

{

FILE *fp, *fopen();

char *val;

val = (char *)panel -get_value(load_fname_item);

print_load_msg(" can't open file");

return(1); }

load_image_file(val; / * load an image file routine * /

fclose(fp);

}

25

Mouse Button Events

We use mouse buttons and locator as the mouse event inputs. When the

event identifying code is accessed by the routine event_action(), all the

"MS_RIGHT","MS_MIDDLE","MS_LEFT","LOC_M-OVE", and

" LOC _DRAG" can be identified and each event will be executed. In the mouse-

driven interface, MS_RIGHT is used to select menu items. LOC_MOVE is

used to get the location of the event in the window's coordinate, then the coordi-

nate values will be passed to Androx system for displaying Androx mouse cursor

in a RGB monitor. MS_LEFT is used to enable or disable the LOC_DRAG.

If MS_LEFT is not in the up event, the user can move the locator to draw a

line, a rectangle, or a dot in the RGB monitor. If MS_LEFT is in up event a

histogram will appear in the RGB monitor. The MS_MIDDLE is used to pop

up the gray value in RGB monitor for a spot area. Following is the structure

of these events:

/ * structure of mouse events * /
switch (event_action(event)){

case MS_RIGHT: / * the mouse right button event code * /
i =(int)menu_show (top_menu, win, event, 0);
if (i !=0) selection(i);

break;

case LOC -MOVE: / * the mouse locator moving event code * /
if(state == AXMOUSE){
mx = event_x(event); / * x coordinates value */
my = event_y(event); / * y coordinates value */
move_androx_mouse(mx - sun-x, my - sun_y);
suns = mx; sun_y = my; }

break;

case MS_LEFT: / * the mouse left button event code * /
if(!event_is_up(event)) {
window_set(win, WIN_CONSUME_PICK_EVENTS,
LOC_DRAG, W IN_MOUSE_BUTTONS, W IN _UP-EV ENT S, 0, 0);

l_sun_x = sun_x; l_sun_y = sun_y;
else histogram();

break;

26

case LOC-DRAG: / * the mouse locator drawing event code * /
if(window_get(win, WIN_EVENT_STATE, MS LEFT)){

mx = event_x(event);
my = event_y(event);

drawing(sun_x - 1-sun-x, sun_y - 1-sun_y,
mx - 1-sun-x, my - 1-sun-y);
suns = mx; sun_y = my; }

break;

case MS-MIDDLE: / * the mouse middle button event code * /
if(!event_ts_up(event)) {

mouse-spot(spl,sp2);
}

break;

}

4.1.3 Subwindow Popup Structure

There are two types of popup windows: non-blocking pop-up and blocking

pop-up. Blocking pop_up are not used and will not be described here. The

display of a non-blocking pop_up is controlled by the WIN_SHOW attribute.

If the user want to pop up a subwindow, the WIN_SHOW should be set

to TRUE. The user can use the routine of window_destroy() to destroy the

subwindow. The purpose of using popup subwindow is to get inputs from the

user to set parameters. There are six types of panel item inputs as in mention

section 2.1.2. Following is an example of subwindow popup structure:

/* subwindow pop up structure * /
load_proc()
{
loadsmage-popup();
/ * set the WIN_SHOW to TRUE * /
window-set(loadimage_frame, WIN_SHOW, TRUE, 0);

}

load_image_popup() / * create the load file subwindow * /

{
load_image_frame = wtndow_create(frarne, FRAME, 0);
load_image_panel = window-create(load_image_frame,PANEL,0);

load-item= panel-create_item(load_image_panel,PANEL-TEXT,
PANEL.ITEM _X , ATTR_COL(0),
PANEL-ITEM-Y, ATTR-ROW (0),

27

PANEL_V ALUE_DISPLAY _LENGTH, 40,
PANEL-LABEL_STRING,"Load File:",
PANEL_VALUE, temp,
0);

panel_create_item(loadimage_panel, PANEL_BUTTON,
PANEL-ITEM_X, ATTR-COL(0),
PANEL-ITEM_Y , ATTR_ROW(5),
PANEL-LABEL-IMAGE, panel _button_image(panel,
"Accept", 0, 0), / * create "Accept" button * /
PANEL NOTIFY PROC, loadimage-proc,
0); / * to execute load a file event * /

window_fit(load_image_panel);
window_fit(load-image_frame);
window_set(load_image_panel, PANEL_CARET _ITEM,

load_fname_item, 0);

load_smage.4woc() / * the load file subroutine * /

{

char *val;

val = (char*)panel_get_value(load_f name_stem);

load_image_file(val);

}

4.2 Androx

The Androx interface consists of the accessing and releasing system and the

image processing functions, which are implemented in this mouse-driven inter-

face.

4.2.1 Accessing and Releasing System

To access the Androx system, the program must call the attach(0) to gain

control of the ICS before calling any routine that access the board and call

release(0) to relinquish control of the ICS before existing. For example:

/* attach and release the ICS * /
#include < andros/axdef .h >
#include < androslaxlib.h >

28

#include < androxIgxlib.h >
#include < androxlax_color.h >

.main()

{

int event;

attach(0); / * access the Androx system */

event = grp_event(IN IT-SC REENI BRD(board#)I PEV (event));

• •

release(0); I * release the Androx system * /

}

4.2.2 Image Processing Functions

The following image processing functions are implemented in this mouse-

driven interface. See [3] to [9] for the image processing in details.

Load and Save Image File

The file_to_rgbimage() routine is used to load a color (RGB) image file from

host memory to ICS video memory and the rgbimage_to_file() routine is used

to save a color (RGB) image file from ICS video memory to host memory. The

RGB image file in ICS memory is loaded in bankO(R), bankl(G), and bank2(B),

respectively.

Convolution

The purpose of convolution is used to accomplish different effects in image

filtering and segmentation. The filtering can be used to suppress certain spatial

frequencies in an image. A linear operation can be defined as space invariant if

29

the response to 6(x — a, y — β, which is a point source at (a, β) in the xy_plane,

is given by h(x — a, y — /3). For a linear sum of point sources f(x,y), we can

write f(x,y) as:

Let the response of the operation to the input f(x, y) be denoted by R[f]. We

obtain:

The response to 6(a — x, /3 — y), which is a point source at (a, /3), is given by

h(x — a, y — β). We denote R[f] by g. We obtain:

The right_hand side is called convolution of f and h. It also denoted as g = f *h.

The convolution is also superimposing an m x n kernel over an m x n pixel

area(window) in the image. In this mouse_driven interface, the m x n kernel

is input by the user. We performed the convolution by calling the function

CONV_SK.

Laplacian

The purpose of Laplacian is used to find edge elements. It sums the second

partial derivatives of the image intensity in the x and y directions. The Laplacian

is an orientation_invariant derivative operation defined as:

30

Table 4.1 is the Laplacian 3 x 3 mask. If a vector W is formed from the

coefficients of this mask, we can express the Laplacian in vector form as:

Where X is a vector containing the pixel values. The Laplacian is 0 in constant

areas and on the ramp section of an edge, as expected of a second_order deriva-

tive. We performed the Laplacian for the edge enhancement by the function

LAPLACIAN.

Sobel

Sobel operation yields the magnitude of the brightness gradient as a means of

edge detection in an image. Edge detection is an important process employed in

image segmentation. The object of an edge operation is to detect the presence

and location of gray level change in an image. The Sobel operator using a 3 x

3 window approximate the local edge by gradients. Assume the gradient of an

image f(x, y) at location (x, y) is defined as the two-dimensional vector

The magnitude of this vector is

31

Let α(x, y) represent the direction angle of G at location (x, y), the direction of

gradient vector is

If we define the component of the gradient vector in the x direction as :

and the y direction as:

where xi, i = 1, 2, 9 is the 3 x 3 image region as shown in table 4.2.

We can obtain the 3 x 3 mask region of Gx and the 3 x 3 mask region of Gy

as shown in table 4.3 and table 4.4 respectively. The 3 x 3 mask region of Gs

and Gy are the Sobel filter's kernel for the horizontal and vertical direction.

We performed the function of "Sobel Horizontal" to enhance horizontal edges,

32

the function of "Sobel Vertical" to enhance vertical edges, and the function of

"Sobel Mag" for horizontal and vertical convolution, then create the sum of the

results' absolute values.

Median

The operation of median filtering is to sort the pixel values under the ker_

nel, locate the middle value in the sequence, and place that value in the pixel

position under the center of the kernel. This method is particularly effective

when the noise pattern consists of strong, spikelike components, and where the

characteristic to be preserved is in edge sharpness. We performed the median

filtering under a 3 x 3 kernel by the function MEDIAN 3X3 of the isp_event()

routine.

Gaussian

The purpose of Gaussian filter is used for smoothing image noise. The Gaus_

sian function is

The Gaussian integral function will be equaled to one, if the integral range is

from negative infinity(—oo) to positive infinity(+oo). Following is its integral

function

33

Histogram

Given an image f, let Pf (z) denote the relative frequency with which gray

level z occurs in f, for all z in the gray level range [zi, zk] of f. The graph of

Pf (z) as a function of z, normalized so that the f: Pf (z)dz is equal to the area

of f is called the histogram of f. The histogram is generated in the following five

steps:

Step1 The event routine event_x() and event_y() are used to obtain the loca-

tion of the x and y coordinate values of the SunView mouse locator, then

these two values will be passed to the Androx.

Step2 In Androx, the BIT_EXPAND function is used to set up a mouse

cursor in the monitor, which then receive the SunView mouse locator x

and y values.

Step3 When the SunView left mouse button is pressed, the mouse locator x

and y values will be passed to Androx and these values will be used as the

original point for selecting an area of picture in monitor.

Step4 Before the SunView left mouse button is up, the mouse locator x and y

values will be passed to Androx continuously when the locator is moving.

The x and y values will be checked in Androx when these values are

received, then the user can according to the successive x and y values to

draw a picture area in monitor. This picture area can be a dot, a line, a

rectangle, or a quadrate.

34

Step5 After the SunView left mouse button is up, the histogram of this picture

area will be displayed in monitor.

We performed the histogram by the do_histo() routine.

Thresholding

Thresholding is an important technique for image segmentation. Suppose we

have a function T of the form:

where f(x,y) is the gray level of point (x,y) and p(x,y) denotes some local prop-

erty of this point—for example, the average gray level of a neighborhood centered

at (x,y). We create a threshold image g(x,y) by defining

In examining g(x,y), we found that pixels labeled 1 correspond to objets, while

pixels labeled 0 correspond to the background. We use the AH(2) function, a

two_dimensional to two-dimensional data transfer method of image-read rou_

tine, to read image into host memory and compare each gray level with desired

threshold level and label each pixel with 1 or 0, then use image-write to output

image.

Pseudo Color

The purpose of pseudo color is to convert a black_white image into a color image.

It can be defined as follow

35

where the F(x,y) is an input image. OR {}, OG{}, and OB{} are the output

functions of red, green, and blue respectively. We performed this function by

the load_pseudo_color() routine.

Zoom and Scroll

The method of bilinear interpolation is used to zoom an area of interest. The

bilinear interpolation approach uses the gray levels of the four nearest neighbors.

Consider a location (x, y), which yield the spatial mapping into location (x, y)

and let the gray_level value of (x,y) be v(x, y). Suppose the integer parts [x]x],

[y] of x and y are x and y, so that the point (x, "A) is surrounded by the four

integer-coordinate points:

Let the fractional parts of x, y be A and B, where A = x — [x] and B = y — [y],

thus 0 < A, B < 1, and we have the gray level as follow :

We actually interpolate a value at location (x, y) and use this value for the

gray-level assignment at (x, y). We use the function "BILIN" to perform this

zoom operation. Scrolling is the process of moving an area within a rectangular

region in any direction. We use the function "SCROLL" to perform this scrolling

operation. The direction of scrolling is determined by dx and dy.

36

dx Horizontal direction. Negative value is scrolling to the left, positive value is

scrolling to the right.

dy Vertical direction. Negative value is scrolling up, positive value is scrolling

down.

Morphological Operations of Image

Morphological erosion and dilation of binary images are defined from a geo_

metric point of view as set transformations that shrink or expand a set. Alge_

braically, they are actually Minkowski set subtraction and addition, respectively.

Let two sets A and B, vectors a and b belong to the sets A and B. The Minkowski

set addition A e B is defined as

The Minkowski subtraction A e B is defined as

Let x be a binary image, B a structuring element, and Bs the symmetric set of

B. It means that B8 is rotated 180 degrees. If the erosion of x by B is z, then

the subtraction of B8 from x is

If the dilation of x by B is z, then that sum of x and B8 is

Based on the Minkowski set of subtraction and addition, we can use the

isp_event() routine to perform binary erosion and dilation respectively. The

37

binary open is performed by first erosing and then dilating. The binary close

is performed by first dilating and then erosing. The gray scale morphological

operations such as dilation, erosion, open, and close are also implemented. The

gray scale morphological operations are performed by using structuring element

and a gray image. The user should input the structuring element data file from

the panel before executing the binary or gray scale morphological operations. In

order to represent the structural shape of a plane region, an important approach

is to reduce it to a graph. This approach is often accomplished by obtaining

the skeleton of the region via thinning algorithm. We performed the thinning

algorithm by the routine skeletonize().

Digitize MONO and RGB Image

The method for digitizing monochrome image is to set up the camera,

monochrome acquisition and display the video memory bank into which live

video will be written. We performed this function by mono_init() and grab()

routines. The method for digitizing color image is also to set up camera, color

acquisition and display the video memory bank into which live video will be

written. We performed this function by rgb_init() and grab() routines.

Look up table

There are eight look_up tables (LUTs) on each input channel. The input

LUTs can transform incoming data. The LUTs can be programmed by the

user. We performed this function by program_lut() and select_lut() routines.

38

Logical and Arithmetic Operations

. The logical operations AND, OR and XOR are for operation in two areas of

interest. We also implemented the arithmetic operations of the pixel values in

two areas of interest by the functions of ADD, SUB, and SUM.

Max Min and Rank Image

The purpose of MAX is to determine the maximum value of corresponding

pixels in two areas of interest. We performed it by the function of MAX2. The

purpose of MIN is to determine the minimum value of corresponding pixels in

two areas of interest. We performed it by the function of MIN2. The purpose of

RANK is to specify the rank order filter with a n x m area and operate this rank

in it. The user must specify the rank order a nxm window before executing.

Data Move and Reset

The purpose of DATA MOVE is to move an image data from one place to

another in the video memory. This function is performed by using the pan()

routine. The purpose of RESET is to reset all image data in the video memory.

4.3 Passing Parameter

In the Androx system, a dedicated image program is called the subroutine.

The purpose of a subroutine is to perform some image algorithm. A subroutine

may take the number x in its function operation and the operation of this

subroutine function depends on x. In logic, we can write this subroutine function

as f(x), the variable x is called an argument or a parameter.

When a subroutine is called, certain parameters are specified; these may be

39

variables, values or names. These are called the "actual parameter" associated

with this particular call to the subroutine. To determine what the subroutine

does to these parameters, we check the definition of the subroutine. Associated

with this definition there will be certain parameter names, which are the "formal

parameters" or "dummy parameters". When the subroutine is called, each

actual parameter is associated with or bound to one of the formal parameters.

For example:

/* actual parameters val, il,j1 */
main()
{
char *val;
int il, j1;
load_image-file(val, i1,j1);
}

/ * formal parameters val, il, jl * /

loadimage_file(val, il, jl)

char *val;

tnt i1, j1;

{

file-to_rgInmage(0, il, 31, 512, 512, P8 — 8, val);

}

4.3.1 Variables

There are two types of variables in subroutine: local and global variable. If

a variable is recognized only by the function which included this variable, this

variable is called a local variable. If a variable can be recognized by all functions,

this variable is called global variable. Any reference to a global variable or

global symbol from outside the object program which contains, it is known as

an external reference. For example:

/ * reference external file * /

40

extern move-androx-mouse(); / * define external file * /
int suns, sun_y; / * define global variables as integer * /
int mx, my;

•:
Testevent()
{

case LOC -MOVE :
move_androx_mouse(mx — suns, my — sun_y);/ * global variables * /

}

/ * This file is called by external * /

move-androx_mouse(dx,dy)

int dx, dy;

{

int event; / * local variable * /

wait-event(BRD(0) I event); / * using local variable * /

}

4.3.2 Subroutine Call

In subroutine call procedure, we use two types of parameter-passing methods:

passing the pointer and passing the value. When a subroutine is called, a

value or a pointer is assigned to a formal parameter, this value is stored in the

corresponding actual parameter. For example:

/ * passing the pointer val to subroutine * /
load_image_proc()
{
char *val
val = (char*)pante_get_value(load_fname_item);
load_iamge_ftle(val); / * call subroutine and pass pointer val * /
}
load_iamge-file(val) / * the called subroutine * /
char *val;
{

41

fae-to_rgbimage(0, il, jl, 512, 512, P8 — 8, val);
}
/ * passing the value s to subroutine * /
thresh_image_proc()

{
int s = (int)panel-get(thresh_iteml, PANEL_VALUE);
xthresh(s); / * call subroutine and pass integer value s * /

}

xthresh(s) / * the called subroutine * /

int s;

{

}

4.4 Software Compile and Link

The command for compiling the program in SunView is

cc —o —g myprog myprog.c —lsuntool —lsunwindow —lpixrect

The command for compiling the program in Androx is

cc —o —g myprog myprog.c —L/usr/lib/androx —landrox

A makefile is used to compile and link all programs. For example:

/ * the makefile contents * /

AXLIB = —L/usr/lib/androx —landrox

SUNLIB = —lsuntool —lsunwindow —lpixrect

CFLAGS = —c

OBJ = menu.o ax2.o help.o spot.o erode2.o rank.o logical.o

.SUFFIXES: .0 .0

.C.0 :

cc $(CFLAGS)$?

all: (OBJ)

cc (OBJ) —o menu (AXLIB) (SUNLIB)

The AXLIB represents the Androx library. The SUNLIB represents the Sun-

42

View library. The makefile will trace the latest object file, if a program was

changed contents then it will be compiled to generate a new object file. The

makefile will link all programs together and generate an execution file.

43

Chapter 5

Operational Instructions

There are two types of file which must be created before executing the mouse-

driven interface. They are image file and data or kernel file.

Image File The user can load or save image file into the memory banks. For

color image, the three planes of RGB image must be placed in the relative

location within their respective banks. The video memory is divided into

eight banks. Each bank has three 512 x 512 locations.

Data File The user must load data or kernel coefficients file in some operations.

The format of the data or kernel coefficients should be created correctly

before loading for execution. The general format of the file is as follows

n m

All A21 Anl

Al2 A22 An2

Alm A2m Anm

where the n and m are the two-dimensional array of rows and columns. A13 is

the value of kernel coefficients at the location of the jth row and jth column.

44

Figure 5.1: The menu items of mouse-driven interface

45

Figure 5.2: The menu items of mouse-driven interface (continued)

46

Figure 5.3: An example of menu item operational instruction

47

Figure 5.1 and figure 5.2 illustrate the menu items of this mouse_driven inter_

face. Some of the items have an arrow pointing to the right. This indicates to

the user that if he or she slides the mouse to the right of that item, a pull-right

menu will appear. Figure 5.3 illustrates an example of subwindow popup for

the operational instruction of "Load RGB File" menu item. The user can type

in file name and memory bank in panel, then select the "Accept" button to exe-

cute or select "Cancel" button to quit subwindow. Following are the operational

instructions of the mouse-driven interface.

5.1 Load RGB File

Select the Load RGB File menu item from menu item streams. Type in

File Name or the Path if needed and select the Memory Bank(0 — 7). Press

the Accept button to execute or Cancel button to cancel the command.

5.2 Save RGB File

Select the Save RGB File menu item from menu item streams. Type in

File Name or the Path if needed and select the Memory Bank(0 — 7). Press

the Accept button to execute or Cancel button to cancel the command.

5.3 Histogram

Select the Histogram menu item. Move the Sun mouse in the canvas

area(must be in range), the Androx mouse cursor will move simultaneously.

Select one point and press the Left mouse button to draw a dot, a line, or

a rectangle in monitor. The histogram will appear in monitor when the left

button is released.

48

5.4 Linear Operations

All the linear operations are pull-right menu items. Select the Linear Oper-

ations and pull this item to right, then select the Filter menu item streams.

5.4.1 Convolution

Select the Convolution menu item from menu item streams, Type in the

coefficients of Data File Name and select the Memory Bank(0 — 7). Press

the Accept button to execute or Cancel button to cancel the command.

5.4.2 Laplacian

Select the Laplacian menu item from menu item streams and select the

Memory Bank(0 — 7). Press the Accept button to execute or Cancel button

to cancel the command.

5.4.3 Median

Select the Median menu item from menu item streams and select the Mem-

ory Bank(0-7). Press the Accept button to execute or Cancel button to cancel

the command.

5.4.4 Sobel

Select the Sobel menu item from menu item streams and select the Memory

Bank(0-7). Press the Accept button to execute or Cancel button to cancel

the command.

49

5.4.5 Gaussian

Select the Gaussian menu item from menu item streams and select the

Memory Bank(0 — 7). Type in the standard deviation o(0.0 - 5.0). Press the

Accept button to execute or Cancel button to cancel the command.

5.5 Nonlinear Operations

The nonlinear operations also have pull-right menu items. Select the Non-

linear Operations and pull this item to right, then select the Morphological or

Rank menu item to pull right, else select Spot or Reset item.

5.5.1 Morphological

There are two type of morphological operations: binary and gray scale. The

user should binarize an image before execution the binary morphological oper-

ations Select the Binarize menu item from menu item streams. Type in the

value of High Thresh and Low Thresh. Press the Accept button to execute

or Cancel button to cancel the command.

Binary Erosion

Select the Binary Erosion menu item from menu item streams, Type in

the coefficients of Data File Name. Press the Accept button to execute or

Cancel button to cancel the command.

Binary Dilation

Select the Binary Dilation menu item from menu item streams, Type in

the coefficients of Data File Name. Press the Accept button to execute or

Cancel button to cancel the command.

50

Binary Open

Select the Binary Open menu item from menu item streams. Type in

the coefficients of Data File Name. Press the Accept button to execute or

Cancel button to cancel the command.

Binary Close

Select the Binary Close menu item from menu item streams. Type in

the coefficients of Data File Name. Press the Accept button to execute or

Cancel button to cancel the command.

Gray Erosion

Select the Gray Erosion menu item from menu item streams. Type in

the coefficients of Data File Name. Press the Accept button to execute or

Cancel button to cancel the command.

Gray Dilation

Select the Gray Dilation menu item from menu item streams. Type in

the coefficients of Data File Name. Press the Accept button to execute or

Cancel button to cancel the command.

Gray Open

Select the Gray Open menu item from menu item streams. Type in the co-

efficients of Data File Name. Press the Accept button to execute or Cancel

button to cancel the command.

51

Gray Close

Select the Gray Close menu item from menu item streams. Type in the co-

efficients of Data File Name. Press the Accept button to execute or Cancel

button to cancel the command.

Thinning

Select the Thinning menu item from menu item streams. Type in the co-

efficients of Data File Name. Press the Accept button to execute or Cancel

button to cancel the command.

5.5.2 Rank

The Rank menu item is to operate pixels value of two areas.

Max

Select the Max menu item from menu item streams, select first Memory

Bank(0-7) and select the second Memory Bank(0 — 7). Press the Accept

button to execute or Cancel button to cancel the command.

Min

Select the Min menu item from menu item streams, select first Memory

Bank(0_7) and select the second Memory Bank(0 — 7). Press the Accept

button to execute or Cancel button to cancel the command.

Rank

Select the Rank menu item from menu item streams, select first Memory

Bank(0-7) and select the second Memory Bank(0 — 7). Press the Accept

52

button to execute or Cancel button to cancel the command.

.5.5.3 Spot

Select the Spot menu item. Moving the Sun mouse in the canvas area(must

be in the range), the Androx mouse cursor will move simultaneously. Select

one point and press the Middle mouse button to display gray level value in

monitor. If middle button is up then gray level value will disappear.

5.5.4 Reset

Select the Reset menu item. All the video memory banks will be clear.

5.6 Logical Operations

All the logical operations are pull_right menu item. Select the Logical Oper-

ations and pull this item to right, then select the menu item streams.

5.6.1 AND Image

Select the AND Image menu item from menu item streams, select first

Memory Bank(0 — 7) and select the second Memory Bank(0 — 7). Press

the Accept button to execute or Cancel button to cancel the command.

5.6.2 OR Image

Select the OR Image menu item from menu item streams, select first Mem-

ory Bank(0-7) and select the second Memory Bank(0 — 7). Press the Accept

button to execute or Cancel button to cancel the command.

53

5.6.3 XOR Image

Select the XOR Image menu item from menu item streams, select first

Memory Bank(0_7) and select the second Memory Bank(0-7). Press the Accept

button to execute or Cancel button to cancel the command.

5.7 Arithmetic Operations

All the arithmetic operations are pull-right menu item. Select the Arithmetic

Operations and pull this item to right, then select the menu item streams.

5.7.1 Add Image

Select the Add Image menu item from menu item streams, select first

Memory Bank(0_7) and select the second Memory Bank(0-7). Press the Accept

button to execute or Cancel button to cancel the command.

5.7.2 Sub Image

Select the Sub Image menu item from menu item streams, select first

Memory Bank(0_7) and select the second Memory Bank(0-7). Press the Accept

button to execute or Cancel button to cancel the command.

5.7.3 Sum Image

Select the Sum Image menu item from menu item streams, select

Memory Bank(0 — 7) Press the Accept button to execute or Cancel button

to cancel the command.

54

5.8 Acquisition

All the acquisition is a pull-right menu item. Select the Acquisition and

pull this item to right, then select the menu item streams.

5.8.1 Digitize Mono

Select the Digitize Mono menu item from menu item streams, select the

Sync Video Channel(0 — 3) and press the Acquisition button to execute or

Stop/Cancel button to stop or cancel the command.

5.8.2 Digitize RGB

Select the Digitize RGB menu item from menu item streams, select the

Sync Video Channel(0 — 3) and press the Acquisition button to execute or

Stop/Cancel button to stop or cancel the command.

5.8.3 Data Move

Select the Data Move menu item from menu item streams, select source

Memory Bank(0 — 7) and select destination Memory Bank(0 — 7). Press

the Accept button to execute or Cancel button to cancel the command.

5.9 Display Bank Image

Select the Display Bank Image menu item and select the desired displaying

Memory Bank(0 — 7) Press the Accept button to execute or Cancel button

to cancel the command.

55

5.10 Others

All the others are pull-right menu item. Select the Others and pull this item

to right, then select the menu item streams.

5.10.1 Thresh

Select the Thresh menu item from menu item streams, select gray level

value in panel Slider then the thresholding will display in monitor. Press the

Return RGB button to return original image or Cancel button to cancel the

command.

5.10.2 Lookup Table

Select the Lookup Table menu item from menu item streams, select the

Sync Video Channel(0 —3) and press the Accept button to select or program

look up tables or Cancel button to cancel the command.

5.10.3 Pseudo Color

Select the Pseudo Color menu item from menu item streams. The pseudo

color will display in monitor.

5.10.4 Scroll

Select the Scroll menu item from menu item streams, select the Horizontal

Slider dx and select the Vertical Slider dy press the Accept button to execute

or Cancel button to cancel the command.

56

5.10.5 Zoom

Select the Zoom menu item from menu item streams, select the Zoom of

x and the Zoom of y then, select the Length of x and the Length of y press

the Accept button to execute or Cancel button to cancel the command.

5.10.6 Blank

Select the Blank menu item. The video memory banks will be clear.

5.11 Help

Select the Help menu to popup the help window. Press the right mouse

button to select the instruction of help message from the help selection menu

items.

5.12 Quit Help

Select the Quit Help item to quit help window.

5.13 Quit Program

Select the Quit Program item to quit this software.

57

Chapter 6

Conclusions

A mouse-driven interface is extremely useful for any software performing im_

age processing tasks. A mouse-driven interface for integrating the SunView

window system and the Androx image processing system is presented in this

thesis. SunView is an object_oriented system, where windows and menus can

be created. The user can create mouse-driven interface for his or her applica-

tion algorithms under the SunView windows system. The Andorx system is

a parallel programmable image array processor, which provides four types of

image libraries: application library, image processing library, graphics library,

and video library. In this thesis, we designed and implemented a mouse_driven

interface for performing image processing tasks for the Androx system. The

operational instructions are implemented in this thesis and an on line help is

also available.

58

Bibliography

[1] Sun Microsystems, Sun View Programmer's Guide, Sun Microsystems, May

1988.

[2] Androx Corporation, ICS-400 Library Programmer's Reference Manual,

Androx, Feb. 1989.

[3] R. C. Gonzalez and P. Wintz, Digital Image Processing, Addison_Wesley,

1987.

[4] P. A. Maragos and R. W. Schafer, "Morphological Skeleton Representation

and Coding of Binary Images," IEEE Trans. ASSP, Vol. 34, No. 5, Page

1228, October. 1986.

[5] Yiher Chang, Practical VLSI relations of Morphological Operations, Master

Thesis, Electrical and Computer Engineering Dept. NJIT, Dec. 1990.

[6] A. Rosenfeld and A. C. Kak, Digital Picture Processing , Academic Press,

1982.

[7] E. J. Wegman and D. J. Depriest, Statistical Image Processing and Graph-

ics, Marcel Dekker, 1986.

59

[8] N. Zuech, Applying Machine Vision, John Wiley & Sons, 1988.

[9] G. Y. Tang, Digital Image Processing , World Computer Center in Taiwan,

1986.

60

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Sheet
	Vita
	Acknowledgments
	Table of Contents (1 of 4)
	Table of Contents (2 of 4)
	Table of Contents (3 of 4)
	Table of Contents (4 of 4)
	Chapter 1: Introduction
	Chapter 2: SunView Interface
	Chapter 3: Androx Interface
	Chapter 4 Interface Implementation
	Chapter 5: Operational Instructions
	Chapter 6: Conclusions
	Bibliography

	List of Figures
	List of Tables

